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Abstract. Every computing paradigm involving communication requires new security protocols em-
ploying cryptography. For example, the Internet gave rise to TLS/SSL, and Mobile Computing gave
rise to End to End Encryption protocols. In this paper, we address an emerging IoT paradigm involving
beacons attached to things and security protocols associated with this new configuration.
Specifically, we address the “beacon notification problem,” a critical IoT paradigm aims at providing
secure and efficient real-time notifications from beacons to their owners. Since the beacon notification
problem has not yet been formally defined, we begin by inspecting natural requirements based on the
operational setting and establishing correctness, security, and privacy definitions through the use of
cryptographic games.
To resolve this problem, we propose a novel cryptographic tool we call XDHIES, which is a considerable
extension of available Diffie-Hellman encryption schemes. We then show a new notification protocol built
upon XDHIES and we prove that this cryptographic protocol is secure and private and successfully
meets all the above problem’s requirements.

1 Introduction

The IoT paradigm we address in this paper is the following emerging prototypical information flow
scenario: Assume Alice owns an item with no Internet connection and wishes to receive notifications
about the item’s status such as temperature, humidity, or battery level as well as notifications from
nearby devices such as smartphones in the beacon’s vicinity. To enable this, Alice attaches to her item
a small broadcasting device, referred to as a beacon, which incorporates the required sensor. This
beacon is paired with Alice’s mobile phone, which enables the establishment of shared cryptographic
keys for secure communication. During operation, the beacon broadcasts its ephemeral ID (EID)
along with its status, which is encoded in a quantized format (e.g. low, med, high) and represented
by a small number of bits.

A device with IP connection in proximity to the beacon (referred to as an “observer”) “hears”
the beacon’s broadcasts and forwards the received information (EID and status) to a cloud server
(i.e., a typical app cloud server), together with its own message (e.g. its geo location), see Figure 1.
The cloud server, forwards a received pair of beacon’s status and observer’s message to the beacon’s
owner based on the EID in the beacon’s broadcast.

We motivate the above scenario with the following two applications:

(1) Location-tracking A person traveling by plane wishes to track in real time the location and
temperature of its suitcase. The suitcase location may be important in case the suitcase gets lost
and its temperature may be vital if the suitcase contains items sensitive to temperature extremes.
To this end, the owner attaches a beacon with a temperature sensor to the suitcase and an observer
adds its geo-location before forwarding the resulting notification to the owner (through the cloud
server). The beacon’s status (namely, its temperature) and the observer’s location should remain
private, allowing only the owner to track its suitcase and find out its status.



Fig. 1: The beacon notification configuration in IoT

(2) Proximity-based auction An anonymous donor has provided a valuable piece to a gallery for
auction and desires (or is legally required) to limit real-time bids to individuals who can physically
view and evaluate the piece. To facilitate this, the donor places a beacon next to the artwork,
enabling observers in proximity to receive the beacon’s broadcast, piggyback their bids and send
the resulting notification to the owner (again through the cloud server). It is imperative that bidders,
submitted bids and the auction winner remain confidential.

Here, the beacon’s status may convey information about the temperature or humidity surround-
ing the piece to ensure that it is maintained within safe environmental conditions. This scenario may
require a secure bi-directional connection to enable back-and-forth communication between bidders
and the owner.

For example, we can assume that a winner can prove who it is (i.e., by presenting a long enough
random message it can recite). Also, while our beacon notification protocol can be easily extended
to accommodate bi-directional communication, in this paper we focus on the uni-direction bidding
case only.

In the scenarios above, an adversary Eve aims at exposing beacons’ status messages and ob-
servers’ messages as well as compromising the owner’s anonymity. To achieve secure and efficient
notifications, we specifically require that a beacon notification protocol achieves the notions of se-
curity, privacy and integrity described below.

– Security: (1) A beacon’s status message remains secret even if Eve has read access to cloud server
data; (2) Any past or future message of an observer in the vicinity of a beacon remains secret
even if Eve has read access to cloud server data and even if the beacon’s keys are compromised
(i.e., forward and backward secrecy).

– Privacy: Any beacon’s broadcast must be pseudorandom and ephemeral to prevent tracking.
– Integrity: An observer can verify that a received beacon’s broadcast is valid before piggybacking

its own secure message and forwarding both to the cloud server.

1.1 Current State of the Art

Currently, only one protocol designed for non real-time secure beacon-location tracking, the Apple’s
FindMy protocol [12], exists. It is built upon a pseudorandom version of DHIES [2]. However, the
FindMy protocol does not adhere to the same framework, as it neither provides a beacon’s status
nor supports real-time communication. Furthermore, it fails to meet our specified requirements for
privacy, security, and integrity.

More specifically, the pseudorandom DHIES cryptosystem does not support:

– Beacon’s status input: DHIES does not support a status input and therefore it does not provide
security for the beacon’s status. Appending the beacon’s status independently to its broadcast
would unwantedly increase the broadcast length. Since the beacon operates with low power con-
sumption, it is crucial that its broadcasts remain brief, as extended broadcasts would deplete
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the battery. Additionally, broadcasting a single long message through multiple short transmis-
sions poses a challenge, as it prevents observers which are briefly in proximity to the beacon
from capturing an entire broadcast message. Therefore, enabling the beacon to securely broad-
cast its status without increasing its broadcast’s length, that is without increasing the DHIES
communication length, constitutes the first reason for extending the DHIES.

– Backward and forward security for observer’s messages: The pseudorandom DHIES does not
inherently support backward and forward security. Since the primary function of a beacon is to
operate effectively when it is primarily distant from its owner, it becomes vulnerable to potential
compromise. In such scenarios, adversaries may gain access to the beacon’s secret keys and can
therefore read any future/past message of an observer in this beacon’s vicinity. Hence, achieving
both backward and forward security is essential in beacon-based applications to ensure their
overall security.
Currently, backward security in DHIES is typically established through the process of re-pairing.
However, this approach is inadequate for beacons, since they may remain separated from their
owners for extended periods. If an adversary successfully exposes the beacon’s secret keys, they
can decrypt all future messages from observers in proximity to the beacon until the next en-
counter with the owner. This duration can extend to several days or even weeks. Forward security,
in contrast, can be implemented in DHIES by applying a one-way function to the beacon’s se-
crets at regular intervals, denoted as T . However, should an adversary uncover the beacon’s
secrets, they would be able to access all messages from observers within that time frame T and
future messages beyond T .
Thus, enabling the secure transmission of both future and past messages, independent of the
duration T and the timing of the next encounter with the owner, constitutes the second reason
for extending the DHIES.

Moreover, the existing routing in the FindMy protocol does not provide integrity, nor efficient real-
time communication, and it is vulnerable to security attacks such as [6,4] (more details on these
attacks in Section 10).

Consequently, a new cryptographic scheme and a new protocol are required to solve our notifi-
cation problem in the setting above with the desired security and privacy requirements.

1.2 Contributions

Our central technical contribution is XDHIES, a novel and considerable extension of DHIES that
integrates a status input and provides inherent backward and forward security for any past/future
observer’s message. Building on XDHIES (which may have other applications of independent inter-
est), we propose a beacon notification protocol with a new routing scheme inspired by Eddystone-
EID [9]. Unlike FindMy, our routing ensures integrity, enables efficient real-time communication,
and mitigates security attacks [6,4]. Finally (and, again, unlike FindMy), we prove that our new
beacon notification protocol meets the security and privacy requirements.

2 Threat Model and Requirements

In this section, we carefully and formally define the beacon notification problem, along with its
associated correctness, security, privacy, and integrity requirements. These requirements are derived
from the discussion above regarding the emerging new IoT setting.
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2.1 Problem Definition

As described above, the beacon notification problem aims at forwarding both a status from a beacon
and a message from an observer in this beacon’s vicinity to the beacon’s owner. The notification,
therefore, includes both the beacon’s status and the observer’s message. Let tb be the system’s
starting time and let te be the system ending time. We assume that the system’s lifetime te − tb is
polynomial in the security parameter n. In addition, let S be the set of all possible status messages.

Next we formally define the Beacon Notification Problem. Let

BcnNtf = (Init, {Bcni}wi=1,Obs,Svr, {Owni}wi=1)

be a set of probabilistic polynomial-time algorithms. Specifically,

– The initialization algorithm Init takes as input a security parameter 1n and a parameter
1w indicating the number of owners in the system (for simplicity of presentation we assume
that this number is known a priory), and outputs cryptographic parameters: (1) Ki intended for
beacon i for each i ∈ [1, w]; (2) K′i intended for owner i for each i ∈ [1, w]; and (3)M intended
to the cloud server (M stands for a mapping table as will be described later).

– The operation algorithm which is a collection of events, each being an instance of one of the
following atomic algorithms:
• The i’th beacon’s algorithm Bcni takes as input a time t ∈ [ts, te] and a status s ∈ S,

and outputs its broadcast
Bcni(t, s).

• An observer Obs takes as input a beacon’s output x (which is expected to be Bcni(t, s) for
some i, t and s) and a message m, and outputs

Obs(x,m).

• The cloud server algorithm Svr takes as input an observer’s output y (which is expected
to be Obs(Bcni(t, s),m) for some i, t, s and m) and outputs the index of the beacon that
initiated y

Srv(y) := i.

The cloud server then delivers y to the i’th owner.
• The i’th owner’s algorithm Owni takes as input the cloud server’s output y (which is

expected to be Obs(Bcni(t, s),m) for some t, s and m) and outputs

Owni(y) := s,m.

2.2 Security

Beacon’s status CCA-security Informally, we require that an adversary who can observe both
a beacon’s outputs and observers’ outputs, and who has read-access to the cloud server data, would
be unable to expose the beacon’s status messages. Formally,

Definition 1. (Beacon’s status CCA-security) Let i ∈ [1, w] be a beacon, let Bcn := Bcni, let
Own := Owni, and let A be an adversary in the following game ExpCCA

BcnStat,A(n):

– Adversary A receives access to: (1) M (the cloud server’s security parameter), (2) the beacon
oracle Bcn(), and (3) the owner oracle Own().
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– Adversary A chooses two status messages s0, s1 and time tc such that tc is distinct from all times
t in the queries to Bcn() and Own() that adversary A has already made. It then sends tc, s0, s1
to the challenger.

– The challenger chooses a random bit b ∈ {0, 1} and returns x = Bcn(tc, sb) to adversary A.
– Adversary A continues to have access toM and the oracles as before, where: (1) the parameter

t for any call to Bcn() must be distinct from tc; and (2) Own() cannot be queried with y =
Obs(x,m) for any m (that is, we do not allow to decrypt the challenge x).

– Adversary A returns b′ and wins if b′ = b.

We say that BcnNtf achieves beacon’s status CCA-security if for any PPT adversary A there exists
a negligible function negl such that

Pr[ExpCCA
BcnStat,A(n) = 1] ≤ 1

2
+ negl(n).

Observer’s message CCA-security with backward and forward security Informally, we
require that an adversary who can observe both a beacon’s outputs and observers’ outputs, has
read-access to the cloud server data, and possesses knowledge of the beacon’s secret keys, would
be unable to expose any past/current/future messages from observers generated by this beacon’s
output. Note that providing an adversary with access to the beacon’s secret keys is required to
assure backward and forward security. Formally,

Definition 2. (Observer’s message CCA-security with backward and forward security) Let i ∈ [1, w]
be a beacon, let Bcn := Bcni, let Own := Owni, and let A be an adversary in the following game
ExpCCA

ObsMsg,A(n):

– Adversary A receives access to: (1) M (the cloud server’s security parameter), (2) the beacon’s
keys K (the compromised beacon’s secrets for backward and forward security), and (3) the owner
oracle Own().

– Adversary A chooses a desired time tc, a status s, and two distinct messages m0 6= m1. It then
sends tc, s,m0,m1 to the challenger.

– The challenger chooses a random bit b ∈ {0, 1} and returns

y = Obs(Bcn(tc, s),mb)

to adversary A.
– Adversary A continues to have access to (1), (2) and (3) above, but cannot query Own() oracle

with y.
– Adversary A returns b′ and wins if b′ = b.

We say that BcnNtf achieves observer’s message CCA-security with backward and forward security
if for any PPT adversary A there exists a negligible function negl such that

Pr[ExpCCA
ObsMsg,A(n) = 1] ≤ 1

2
+ negl(n).
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2.3 Privacy

Informally, we require that an adversary observing the outputs of a beacon, would be unable to
distinguish these outputs from random values. Formally,

Definition 3. (Beacon’s Indistinguishability) Let i ∈ [1, w] be a beacon, let Bcn := Bcni, and let A
be an adversary in the following game ExpBcnInd,A(n):
– The challenger chooses a random bit b.
– If b = 0, the beacon’s oracle Bcn() remains unchanged; otherwise if b = 1 then Bcn() is replaced

with a random function Rand which returns random values in the range of Bcn().
– Adversary A guesses b′ and wins if b′ = b.

We say that BcnNtf achieves beacon’s indistinguishability if for any PPT adversary as above there
exists a negligible function negl such that

Pr[ExpBcnInd,A(n) = 1] ≤ 1

2
+ negl(n).

2.4 Unforgeability

Informally we require that the cloud server is unable to forge a valid beacon’s broadcast despite
the fact that it is equipped with the means of recognizing valid beacon broadcasts. Since beacon
broadcast are pseudorandom this in turn means that the cloud server cannot generate valid observer
messages.

Formally,

Definition 4. (Beacon’s Broadcast Unforgeability) Let i ∈ [1, w] be a beacon, let Bcn := Bcni, and
let A be an adversary in the following game ExpBcnFrg,A(n):
– Adversary A receives read-access toM.
– Adversary A wins if succeeds to generate Bcn(t, s) for some t and s.

We say that BcnNtf achieves beacon’s broadcast unforgeability if for any PPT adversary A there
exists a negligible function negl such that

Pr[ExpBcnFrg,A(n) = 1] ≤ negl(n).

2.5 Integrity

Informally, we require that an observer is able to verify the reliability of a received beacon’s broadcast
before using it to encrypt its message. To this end, we provide the adversary with access to a beacon’s
outputs, observers’ outputs, and read-access to the cloud server data, and require that it is unable
to generate a value which is not a valid output of any beacon, but yet the observer accepts it.
Formally,

Definition 5. (Beacon’s Integrity) Let A be an adversary in the following game ExpBcnInt,A(n):
– Adversary A receives access to: (1) M, (2) beacon’s oracle Bcni() for any i ∈ [1, w], and (3)

owner’s oracle Owni() for any i ∈ [1, w].
– Adversary A generates v and wins if (1) there does not exist i, t, s such that v = Bcni(t, s); and

(2) there exists a message m for which Obs(v,m) 6= ⊥.
We say that BcnNtf achieves beacon’s integrity if for any PPT adversary A there exists a negligible
function negl such that

Pr[ExpBcnInt,A(n) = 1] ≤ negl(n).
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2.6 Correctness

Definition 6. (BcnNtf correctness) It is required that for every i ∈ [1, w], time t ∈ [ts, te], status
s ∈ S, and message m

(s,m) = OwnSvr(Obs(Bcni(t,s),m))(Obs(Bcni(t, s),m)).

3 Background: DHIES and Preliminaries

Our protocol extends the Diffie-Hellman public encryption scheme DHIES [2]. In this section we
describe DHIES and its security and then describe the pseudo-random version of DHIES, we call
PR-DHIES.

Definition 7. (Group Generator) Let GroupGen be a probabilistic polynomial-time (PPT) algorithm
that, on a security parameter input 1n, outputs a description of a cyclic group G, its prime order q,
and a generator g ∈ G. Run GroupGen(1n) to obtain the public parameters (G, q, g).

Definition 8. (DHIES [2]) Let SYM = (E ,D) be a private-key authenticated-encryption scheme.
We run GroupGen(1n) to obtain (G, q, g). Let KDF be a key derivation function KDF : G→ {0, 1}n.
DHIES = (K, E ,D) is the following three-tuple of algorithms defining public-key encryption:

– K: Chooses a uniform x ∈ Zq, sets the private key sk = x intended for the decryption function
Dsk, and outputs the public key pk = gsk.

– Epk(m): Chooses a uniform z ∈ Zq, computes gz and sets k = KDF((pk)z). Computes c = Ek(m)
and outputs (gz, c).

– Dsk(ĉ, c): Returns ⊥ if ĉ /∈ G. Else sets k = KDF((ĉ)sk). If authentication succeeds it returns
m = Dk(c), else returns ⊥.

Definition 9. (negligible) A function f from the natural numbers to the non-negative real numbers
is negligible if for every positive polynomial p there exists an N0 such that for all integers n > N0 it
holds that f(n) < 1/p(n).

Throughout the paper, we chose a security parameter n which will determine the suitable space of
keys and will be suitable for the desired security definition of all cryptographic functions.

Definition 10. (Oracle Diffie-Hellman Assumption ODH [2]) Run GroupGen(1n) to obtain (G, q, g),
let KDF : G → {0, 1}n, and for w ∈ Zq let KDFw(X) := KDF(Xw). The ODH assumption is the
following: For any PPT adversary A, there exists a negligible function negl such that

Pr[u
R←− Zq; v

R←− Zq;AKDFv(·)(gu, gv,KDF(guv)) = 1]

− Pr[u
R←− Zq; v

R←− Zq;AKDFv(·)(gu, gv, {0, 1}n) = 1] ≤ negl(n).

Definition 11. (ExpCCA
ASYM,A(n)) Let A be an adversary in the following game ExpCCA

ASYM,A(n):

– The challenger randomly chooses a private key sk = r ∈ Zq and sends the public key pk = gr to
adversary A.

– Adversary A has access to the decryption oracle Dsk(·, ·).
– Adversary A sends to the challenger two distinct messages m0 6= m1.
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– The challenger chooses a random bit b ∈ {0, 1} and sends y = Epk(mb) to adversary A.
– Adversary A continues to have access to the decryption oracle as before, but it cannot apply the

decryption oracle on y.
– Adversary A returns b′ and wins if b′ = b.

We say that ASYM achieves CCA-security if for any PPT adversary A there exists a negligible
function negl such that

Pr[ExpCCA
ASYM,A(n) = 1] ≤ 1

2
+ negl(n).

Theorem 1. [2] If the Oracle Diffie-Hellman (ODH) assumption holds and the private-key authenticated-
encryption scheme SYM used in DHIES is CCA-secure, then DHIES is CCA-secure.

Proof. In [2].

Definition 12. (Pseudorandom Function (PRF)) Let PRF be a keyed function PRF : {0, 1}n ×
{0, 1}∗ → Z∗q where the first parameter is the key and q is a parameter. For a key k, we denote
PRF(k, t) by PRFk(t). We say that PRF is a pseudorandom function if for all polynomial time
distinguishers D there exists a negligible function negl such that∣∣Pr[DPRFk(·)(1n) = 1]− Pr[DRand(·)(1n) = 1]

∣∣ ≤ negl(n),

where Rand is a random function of the same domain and range as PRF.

3.1 PR-DHIES: Pseudorandom DHIES

In the DHIES protocol a random private key sk is utilized. However, this approach is not sufficient in
our context: In the beacon notification problem, privacy concerns dictate that a beacon’s broadcasts
look to an eavesdropper independent from one another. Since a beacon’s public key pk is used to
encrypt messages to the beacon’s owner, the beacon cannot independently select a random sk and
broadcasts the corresponding pk. Instead, as is the case in the FindMy protocol, a pseudo-random
version of DHIES is utilized in the beacon scenario. In this version, the beacon and its owner share
a (symmetric) secret key x, and sk is generated based on a pseudo-random function of a shared
nonce (in our case the current time t) keyed with x. This ensures that a beacon and its owner can
independently generate the same private key sk.

This pseudo-random DHIES, which we denote “PR-DHIES”, is defined as follows (see Figure 2):

Definition 13. (PR-DHIES) Let SYM = (E ,D) be a private-key authenticated-encryption scheme.
We run GroupGen(1n) to obtain (G, q, g). Let KDF be a key derivation function KDF : G→ {0, 1}n.
DHIES = (I,K, E ,D) is the following four-tuple of algorithms defining public-key encryption:

– I(n): Chooses a uniform x ∈ {0, 1}n intended for both the key-generation function Kx and the
decryption function Dx.

– Kx(t): Sets the private-key skt = PRFx(t) and outputs the corresponding public-key pkt = gskt.
– Epkt(m): Chooses a uniform z ∈ Zq, computes gz and sets k = KDF((pkt)

z). Computes c = Ek(m)
and outputs (gz, c).

– Dx(t, (ĉ, c)): Returns ⊥ if ĉ /∈ G. Else sets skt = PRFx(t) and k = KDF((ĉ)skt). Returns m =
Dk(c) if authentication succeeds, and ⊥ otherwise.

8



Fig. 2: PR-DHIES

Notice that the framework of public key encryption implemented by PR-DHIES is of the form
(I,K, E ,D) rather than the normal (K, E ,D) framework. Specifically, this framework could be de-
fined as follows:

Definition 14. (Pseudorandom Public-Key Encryption) The framework consists of the following
four probabilistic polynomial-time algorithms (I,K, E ,D):

– I(n): the initialization function I takes a security parameter n and generates a secret key x ∈
{0, 1}n.

– Kx(t): the key-generation function Kx takes a time parameter t and returns a pseudorandom
public key pkt.

– Epkt(m): the encryption function Epkt takes a message m and returns its encryption.
– Dx(t, c): the decryption function Dx takes an encryption c, and decrypts it to get the respective

m.

This pseudorandom public-key encryption framework fails to meet two crucial requirements for
beacons:

1. While such a framework allows a beacon to generate and broadcast a pseudorandom public
key, it does not support additional inputs. This would force the beacon to broadcast its beacon
status (in encrypted form) alongside the public key thus increasing the broadcast length. This
is highly undesirable: The beacon is a small battery-powered device which may be in the field
far from its owner for long time durations so that frequent battery replacement is not practical.
To preserve beacons’ battery, it is important to reduce the beacon’s broadcast length. In fact,
short broadcast is required by the beacon’s standard. For example in Bluetooth Low Energy
(BLE) the broadcast is length-limited (broadcast in BLE-4 and BLE-5 are limited to 37 and
256 bytes, respectively). Furthermore, the beacon’s message should be transmitted over a single
broadcast and should not be fragmented into multiple broadcasts. This is since an observer may
be moving along, and such a moving observer may not stay long enough in close proximity to
the beacon to be able to read multiple broadcasts. Hence the beacon’s broadcast should be short
and unfragmented.

2. The framework does not support backward and forward security. That is, if an adversary reveals
the beacon’s secret x, it can calculate the corresponding DH private-keys skt for all past and
future values of t and can therefore decrypt any past/future messages. Backward and forward
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security is a critical concern in beacon scenarios, as the beacon may be vulnerable to compromise
when located far from its owner. Therefore, ensuring both forward and backward security is
essential to protecting the confidentiality of observers’ messages. Existing solutions for forward
security apply a one-way-function to the beacon’s secrets at regular interval, typically every T
time units. However, if the beacon’s secrets are compromised, the adversary can still decrypt
all messages from observers within that T -time window. More crucially, for backward security,
there is currently no solution other than re-pairing. Since beacons mainly operate at a distance
from their owners, if the beacon’s secrets are exposed, the adversary can read all messages from
observers who were in the vicinity of this beacon until the next time this beacon meets its owner
and re-establishes a secure connection with it. This can take days or even weeks.

We next define a new pseudorandom public-key encryption framework which extends the above
(I,K, E ,D) framework to address the missing requirements. We then establish the new framework’s
security criteria.

4 Extended Pseudorandom Public-Key Encryption Framework

We formally define the new framework and subsequently establish its security requirements.

4.1 Defining the Extended Framework

Definition 15. (Extended Pseudorandom Public-Key Encryption) The new framework consists of
the four probabilistic polynomial-time algorithms (I,K, E ,D):

– I(n): the initialization function I takes a security parameter n and generates two sets of random
keys K and K′, where K is intended to the key-generation function and K′ is intended to the
decryption function.

– KK(t, s): the key-generation function KK takes a time parameter t and a small domain parameter
s, and returns a pseudorandom public key pkt,s which incorporates the encryption of s.

– Epkt,s(m): the encryption function Epkt,s takes a message m and returns its encryption.
– DK′(c): the decryption function DK′ takes an encryption c, and decrypts it to get the respective

s and m.

4.2 Defining the Framework’s Security

Definition 16. (Exps-CCA
ASYM,A(n)) Let ASYM = (I,K, E ,D) be an extended pseudorandom public-key

encryption scheme and let A be an adversary in the following game Exps-CCA
ASYM,A(n):

– The challenger randomly chooses K,K′.
– Adversary A has access to both the key-generation oracle KK(·, ·) and the decryption oracle
DK′(·).

– Adversary A chooses two distinct messages s0 6= s1 and tc ∈ [ts, te] such that tc is distinct from
all values of t used in the queries above. It then sends tc, s0, s1 to the challenger.

– The challenger chooses a random bit b ∈ {0, 1} and sends pktc,sb = KK(tc, sb) to adversary A.
– Adversary A continues to have access to both KK(·, ·) and DK′(·) as before, where: (1) the pa-

rameter t for any call must be distinct from tc; and (2) the decryption oracle cannot be queried
with y = Epktc,sb (m) for any m (that is, we do not allow to decrypt the challenge pktc,sb).
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– Adversary A returns b′ and wins if b′ = b.

We say that ASYM achieves s-CCA security if for any PPT adversary A there exists a negligible
function negl such that

Pr[Exps-CCA
ASYM,A(n) = 1] ≤ 1

2
+ negl(n).

Definition 17. (Expm-CCA
ASYM,A(n)) Let ASYM = (I,K, E ,D) be an extended pseudorandom public-key

encryption scheme and let A be an adversary in the following game Expm-CCA
ASYM,A(n):

– The challenger randomly chooses K and K′.
– Adversary A has access to K (the compromised secret keys for backward and forward security).

It also has access to the decryption oracle DK′(·).
– Adversary A chooses tc, a short domain message sc, and two distinct messages m0 6= m1 and

sends tc, sc,m0,m1 to the challenger.
– The challenger calculates pktc,sc = KK(tc, sc), chooses a random bit b ∈ {0, 1}, and returns

y = Epktc,sc (mb)

to adversary A.
– Adversary A continues to have access to all oracles and keys as above, but cannot query the

decryption oracle with y.
– Adversary A returns b′ and wins if b′ = b.

We say that ASYM achieves m-CCA security with backward and forward security if for any PPT
adversary A there exists a negligible function negl such that

Pr[Expm-CCA
ASYM,A(n) = 1] ≤ 1

2
+ negl(n).

Definition 18. (ExpInd
ASYM,A(n)) Let ASYM = (I,K, E ,D) be an extended pseudorandom public-key

encryption scheme and let A be an adversary in the following game ExpInd
ASYM,A(n):

– The challenger chooses a random bit b and K.
– If b = 0, the key-generation function KK remains unchanged; otherwise if b = 1 then KK is

replaced with a random function Rand which returns random values in the range of KK.
– Adversary A guesses b′ and wins if b′ = b.

We say that ASYM achieves indistinguishability if for any PPT adversary as above there exists a
negligible function negl such that

Pr[ExpInd
ASYM,A(n) = 1] =

1

2
+ negl(n).

5 The XDHIES Scheme

We present XDHIES, an extended pseudorandom public key scheme. We explain below how XDHIES
extends PR-DHIES to achieve the two crucial requirements discussed above.
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5.1 Embedding Beacon’s Status

To enable secure status transmission in the beacon’s broadcast while preserving the length of a
single DH public key, we incorporate the status as an additional input to the pseudo random
function thus embedding (or “folding”) the status within the public key. This approach allows the
beacon to broadcast only the public key, which now includes the embedded status. Hence, the public
key at time t becomes

pk = gPRFx(t,s)

where x is the symmetric key shared between the beacon and its owner.
Obviously, decryption of the value pk to get status s cannot be achieved by applying an inverse

function, since this would require solving a discrete log problem and inverting the PRF. Instead,
since the number of different status messages s is relatively small (recall that the status s is composed
of only a few bits), decryption of a beacon’s status can be easily done in a brute-force manner or
by maintaining a small table.

5.2 Providing Backward and Forward Security

The key idea enabling the beacon notification protocol to achieve backward and forward security
is to prevent the beacon from holding critical secrets, rather than relying on one-way functions or
re-pairing to update the beacon’s secrets. In this way, even if an adversary compromises the beacon
and reveals its secret key, it cannot decrypt any messages. Our solution is inspired by the security
principle of “separation of duties,” specifically as applied in key-insulated cryptography [11,10],
where a server “helps” an entity susceptible to key extraction by periodically refreshing its secret
key. In our case, the owner plays the role of the “helping” entity.

We designed XDHIES to incorporate such a secret separation. Specifically, XDHIES separates
the secrets required for key-generation from those needed for decryption. We provide the beacon
with only the information necessary for generating public keys and give the owner, who is the trusted
entity, the information required for decryption, that is, the information necessary for generating the
secret keys.

In particular, we provide the decryption function with a random value r ∈ Zq and provide the
key-generation function with gr. The key-generation function uses gr as its base-point generator
instead of g and applies the exact same operations as before (i.e., this modification is transparent to
the function). Consequently, r is known only to the owner who does not share it with the beacon.
The beacon’s public key at time t with status s is then:

pk = (gr)PRFx(t,s).

This separation of responsibilities between the key-generation function (representing the beacon)
and the decryption function (representing the owner) neutralizes the risk of compromising the
beacon’s secret keys since the beacon is no longer the “holder of all secrets.” The DH private-key
for decryption is then

sk = r · PRFx(t, s).

As can be seen, even if an adversary reveals the beacon’s secrets (x, gr), it cannot reveal r, and is
therefore unable to compute the DH private-key and decrypt past or future messages based on this
DH-private key.

12



Fig. 3: XDHIES

5.3 XDHIES Definition

Definition 19. (XDHIES) Let SYM = (E ,D) be a private-key authenticated-encryption scheme.
We run GroupGen(1n) to obtain (G, q, g). Let KDF be a key derivation function KDF : G→ {0, 1}n.
XDHIES = (I,K, E ,D) is the following four-tuple of algorithms defining extended pseudorandom
public-key encryption:

– I(n): Chooses a uniform x ∈ {0, 1}n and a random r ∈ Zq. Additionally generates table Tbl
for the decryption function as follows: for any s ∈ S and t ∈ [ts, te] sets pkt,s = gr·PRFx(t,s) and
stores the entry (t, s) = Tbl[pkt,s]. Sets K = (x, gr) which is intended for the key-generation
function and sets K′ = (x, r,Tbl) which is intended for the decryption function.

– Kx,gr(t, s): For a given pair of (t, s) sets the corresponding private key skt,s = PRFx(t, s) and
returns the corresponding public key pkt,s = (gr)skt,s .

– Epkt,s(m): Chooses a uniform z ∈ Zq, computes gz and sets k = KDF((pkt,s)
z). Computes

c = Ek(m) and outputs (gz, c).
– Dx,r,Tbl(h, ĉ, c): Returns ⊥ if h /∈ Tbl or if ĉ /∈ G. Otherwise, applies (t, s) = Tbl[h], sets

skt,s = r ·PRFx(t, s) and calculates k = KDF((ĉ)skt,s). Returns s and m = Dk(c) if authentication
succeeds.

6 Security Proofs for XDHIES

Theorem 2. XDHIES is s-CCA secure.

Proof. To prove this, we define XDHIES-R, a variant of XDHIES where we replace every appear-
ance of the pseudorandom function PRFx(·, ·) with Rand(·, ·), where Rand(·, ·) is a random function
returning a random value in Z∗q .

Clearly, for any PPT adversary A, there exists a negligible function negl such that

Pr[Exps-CCA
XDHIES,A(n) = 1]− Pr[Exps-CCA

XDHIES-R,A(n) = 1] ≤ negl(n).

The challenge in the s-CCA game of XDHIES-R is pktc,sb = gr·Rand(tc,sb). Since the value tc is only
used to generate the challenge (and is not used in any of the oracle calls) and since the encryption
is a random group element, it follows that

Pr[Exps-CCA
XDHIES-R,A(n) = 1] =

1

2
.

Therefore Theorem 7 follows.
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Theorem 3. XDHIES is m-CCA secure with backward and forward security.

Proof. To prove the above, let A be an adversary against the m-CCA security of XDHIES =
(I,K, E ,D). We build an adversary A′ against the CCA-security of DHIES = (K′, E ′,D′):

– The DHIES challenger randomly chooses a private key r ∈ Zq and sends the public key pk = gr

to adversary A′.
– Adversary A′ generates x ∈ {0, 1}n and sends x, pk to adversary A. Additionally, adversary A′

generates Tbl with entries (t, s) = Tbl[pkPRFx(t,s)] for any s ∈ S and t ∈ [ts, te].
– Adversary A′ runs adversary A and simulates an XDHIES decryption oracle call Dx,r,Tbl(h, ĉ, c)

as follows: adversary A′ returns ⊥ if h /∈ Tbl or ĉ /∈ G, and otherwise applies (t, s) = Tbl[h] and
returns the pair (s,D′r(ĉPRFx(t,s), c)).
Indeed, the shared symmetric decryption key in D′r(ĉPRFx(t,s), c) is (ĉPRFx(t,s))r which is equal
to ĉr·PRFx(t,s), the shared symmetric decryption key in Dx,r,Tbl(h, ĉ, c).

– Adversary A chooses tc, a short domain message sc, and two distinct messages m0 6= m1 and
sends tc, sc,m0,m1 to adversary A′. Adversary A′ sends m0,m1 to its DHIES challenger.

– The DHIES challenger chooses a random bit b ∈ {0, 1} and sends to adversary A′

(y1, y2) = E ′gr(mb).

– Adversary A′ sends to adversary A the challenge

y = (pkPRFx(tc,sc), y
1/PRFx(tc,sc)
1 , y2).

The pair (y1/PRFx(tc,sc)
1 , y2) is indeed a correct challenge for adversary A since y

1/PRFx(tc,sc)
1 is a

random group element (because y1 is), and since

(y1)
r = (y

1/PRFx(tc,sc)
1 )

r·PRFx(tc,sc)
.

– Denote (y0, y1, y2) := y. Adversary A continues to have access to the decryption oracle as above,
but we forbid the adversary from querying the decryption oracle with yv = (y0

v, y1
(1/v), y2) for

any v. While this requirement is stronger than not querying with y as required in the m-CCA
definition (Definition 17), this requirement is reasonable since y1 is an ephemeral public key
which is random and is thus independent of y0.

– Eventually, adversary A returns its guess b′, and adversary A′ returns this guess b′ to its chal-
lenger.

Since the view of adversary A in Expm-CCA
XDHIES,A is identical to the view of adversary A when its

experiment is simulated by adversary A′, it holds that:

Pr[ExpCCA
DHIES,A′(n) = 1] = Pr[Expm-CCA

XDHIES,A(n) = 1].

The assumed CCA-security of DHIES, thus implies Theorem 3.

Theorem 4. XDHIES achieves indistinguishability.

Proof. Since Kx,gr(t, s) = gr·PRFx(t,s), and the adversary has access only to Kx,gr(·, ·), the theorem
is implied from the pseudorandomness of PRFx.
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7 The Beacon Notification Protocol

Let XDHIES = (I,K, E ,D) be the XDHIES encryption scheme described above with group pa-
rameters (G, q, g). Let H be a cryptographic hash function H : G → {0, 1}n, and let PRF be a
pseudorandom function PRF : {0, 1}n × {0, 1}∗ → Z∗q .

Our beacon notification protocol is built upon the XDHIES scheme. In Section 2.1 we define
five-tuple of algorithms

BcnNtf = (Init, {Bcni}wi=1,Obs,Svr, {Owni}wi=1)

which constitute the interface of the beacon notification protocol. Below we complete the definition
of these five algorithms by providing the algorithmic details. We start with some general details and
then delve into each algorithm.

First, a beacon broadcasts every second or two, but in practice it only changes its broadcast
every fixed time period T (e.g. 15 minutes) in order to save battery.

Second, to achieve efficient real-time communication, enable integrity and mitigate security
attacks such as [6,4], the design of the cloud server in our beacon notification protocol is inspired by
Eddystone-EID [9]. In particular, the cloud server is provided with a mapping tableM associating
the beacons’ broadcasts with the beacons’ respective owners. That is, for each beacon i the mapping
table M has an entry for every possible beacon’s broadcast in [ts, te]. We refer to the table M as
the “beacon-to-owner mapping table.” We note that in practice M is generated piecewise on the
fly: the time axis is divided into consecutive non-overlapping time periods of, say, 24 hours, and at
the start of each time period the cloud server is provided only with the part of the mapping table
corresponding to the that time period.

Third, generating the beacons’ broadcasts requires knowledge of the respective beacon’s secret
key, so that the cloud server cannot generate the mapping table M by itself. Instead, each owner
generates the possible broadcast values of its beacon and sends them to the server. The server then
unifies the received values from all owners into the complete mapping tableM.

Fourth, recall that a beacon’s broadcast is the beacon’s public key (embedded with the beacon’s
status). To prevent the cloud server from using these public keys to forge observers’ messages, the
cloud server mapping tableM is keyed by a cryptographic hash of the beacons’ public keys instead
of the public keys themselves.

– Init(1n, 1w):
1. Beacon and Owner keys initialization: For each i ∈ [1, w]: apply I(n) to get random ri ∈ Zq

and xi ∈ {0, 1}n.
2. Owner tables initialization: For any i ∈ [1, w], generates Tbli as follows: For any s ∈ s and

t ∈ [ts, te]

Tbli[H(gri·PRFxi (bt/T c,s))] := (bt/T c, s).

3. Cloud server keys initialization: Generating M as follows: for all i ∈ [1, w], t ∈ [tb, te], and
s ∈ S:

M[H(gri·PRFxi (bt/T c,s))] := i.
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4. Key distribution: Let
Ki = (xi, g

ri),K′i = (xi, ri,Tbli).

Ki is given to the i’th beacon, K′i is given to the i’th owner and M is given to the cloud
server. We note that each pair of Ki and K′i is generated locally in private by the respective
owner andM is combined by the cloud server from the pieces sent by all owners as described
above.

– Bcni(t, s): On input time t and status s, applies Kxi,gri to get pki,t,s, and returns

Bcni(t, s) = pki,t,s = gri·PRFxi (bt/T c,s).

– Obs(pk,m): On input pk and a message m, if H(pk) /∈M returns ⊥; otherwise returns:

Obs(pk,m) = (H(pk), Epk(m)).

– Svr(h, (ĉ, c)): On input (h, (ĉ, c)) where h is expected to be the hash value of the i’th beacon’s
public-key pki,t,s for some i, t and s and (ĉ, c) is expected to be Epki,t,s(m) for some message m,
if h /∈M it returns ⊥; otherwise forwards (h, (ĉ, c)) to the corresponding owner which is

Svr(h, (ĉ, c)) =M[h] = i.

– Owni(h, (ĉ, c)): If h /∈ Tbli returns ⊥; otherwise, returns

Owni(h, (ĉ, c)) = Dxi,ri,T bli(h, ĉ, c)

which is s,m if authentication succeeds, and ⊥ otherwise.

8 Protocol Security and Privacy Proofs

In this section we prove that our beacon notification protocol achieves the security, privacy, unforge-
ability, integrity, and correctness requirements.

Theorem 5. (Beacon’s status CCA-security) The beacon notification protocol achieves beacon’s sta-
tus CCA-security according to Definition 1.

Proof. Implied from the s-CCA security of XDHIES (Theorem 2).

Theorem 6. (Observer’s message CCA-security) The beacon notification protocol achieves observer’s
message CCA-security with backward and forward security according to Definition 2.

Proof. Implied from the m-CCA security of XDHIES (Theorem 3).

Theorem 7. (Beacon indistinguishability) The beacon notification protocol achieves indistinguisha-
bility according to Definition 3.

Proof. Implied from the indistinguishability of XDHIES (Theorem 4).

Theorem 8. (Unforgeability) The beacon notification protocol achieves unforgeability according to
Definition 4, where H is modeled as a random oracle.
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Proof. Implied directly from the pseudorandomness of Bcn() and the randomness of H in the map-
ping tableM.

Theorem 9. (Integrity) The beacon notification protocol achieves integrity according to Defini-
tion 5.

Proof. Implied from the fact that the observer verifies with the cloud server that a received beacon’s
output is valid before using it.

Theorem 10. (Correctness) The beacon notification protocol is correct according to Definition 6.

Proof. We need to show that

(s,m) = OwnSvr(Obs(Bcni(t,s),m)(Obs(Bcni(t, s),m)).

Recall that Bcni(t, s) = pk where pk = gri·PRFxi (t,s). Thus

Obs(Bcni(t, s),m) = (H(pk), Epk(m)),

and
Svr(H(pk), Epk(m)) =M[H(pk)] = i.

Therefore, the i’th owner finds (t, s) from Tbli[H(pk)], computes sk = ri · PRFxi(t, s), uses it to
decrypt m = Dsk(Epk(m)), and output s,m.

9 Complexity of Time and Space

We next consider the complexity of each component in the beacon notification protocol:
Beacon: Beacon i computes the public key values, where a public key value is computed by

a single group exponentiation (or more precisely a single elliptic curve multiplication) using the
base gri . This exponentiation can be performed very efficiently (following pre-computation) since
the base is fixed (see [5]). The beacon broadcasts (the x-coordinate of) a single curve point. NIST
recommends using 224-bit elliptic curves through year 2030 and 256-bit elliptic curves through
and beyond year 2030.1 Using these recommendations implies that the curve point broadcast by
the beacon is of length 224 bit or 256 bit, respectively which is extremely small. The public key
value computation time is in milliseconds and its power consumption is negligible relative to the
power consumption of the beacon’s communication. In fact, the beacon can operate on a small
battery for at least a full year. The choice of a pseudo-random ri is done via an extraction from
a (possibly forward secure) pseudorandom generator (based on symmetric key operation) and a
modular reduction in the field to get proper value from he drawn random long enough string.

Observer: The observer (which is a smartphone with much larger computation and power
resources than those of the beacon) applies two group exponentiations per beacon in its vicinity:
One exponentiation uses a fixed base (g) and the other uses a random base (gr·PRFx(t,s)) which the
observer gets from a near by beacon. Again, the fixed-base exponentiation can benefit significantly
from [5], but in any case computing two group exponentiations is reasonable and has negligible
affect on the observer’s battery (which is the primary concern with respect to observers).
1 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
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Cloud server: The main complexity measure for the cloud server is the size of the mapping
table. With 256-bit hash function and three different signal values, each entry in the table is com-
posed of 128-bit for the hash of the public key value (by using, e.g., only 128 out of 256 bits of the
hash value) and a 64-bit owner ID. Therefore, the size of each table entry is 192 bits. Consider for
example a period of 24 hours and a new beacon broadcast every 20 minutes, namely 72 daily public
key values. Then, the number of entries per beacon per 24 hours is 72× 3 = 216 (the ’3’ represents
the three possible battery values). Therefore required size per beacon is 216× 192 bits = 41.5 KB.
We consider two (very) different application scenarios below. The first application is a small city’s
sensory data collection with 1000 beacons. The size of the mapping table in this case is 41.5 MB -
very small indeed. The second application is asset tracking. Here we assume 108 beacons. The size
of the mapping table in this case is therefore 4.15 TB. This is certainly reasonable for a company
with 108 users (or to its cloud provider).

The mapping table is implemented as a hash table, and therefore the lookup operation is very
fast, taking a few milliseconds. For efficiency and privacy the table values are not retained beyond
the day.

Owner: For each beacon, the owner needs to generate its Tbl table entries periodically. The
owner then keeps the table to enable decryption and sends only the table’s public key values to
the server. Using the above parameters, each entry of Tbl requires 128 bits, 32 bits and 2 bits
for the public key value, time and signal, respectively. For 24 hours and public key value change
every 20 minutes, the table is of size 72 × 162 bits = 12 KB. Computing Tbl entails 72 × 3 = 216
exponentiations for computing the required public key values. Each group exponentiation is with a
fixed base and can therefore be computed using the efficient algorithm of [5]. Due to the multiple
exponentiations, the process of generating the Tbl table takes a few seconds but can nevertheless
be done without affecting user experience by either (1) pre-computing the exponentiations during
the phone’s idle times; or (2) computing the entries in small batches during the day instead of all
at once (and similarly sending the table’s computed public key values to the cloud server in batches
during the day).

To summarize, the beacon notification protocol is efficient in all the relevant parameters and
can be easily integrated in real-world applications (in fact, parts of it have already been adopted to
and implemented within a concrete setting).

10 Related Work

Beacons and BLE broadcasting in particular are widely useful in real-life proximity applications:
contact tracing systems like Google-Apple Exposure Notification (GAEN) [3,8] has been such an
example for a mobile-to-mobile signaling. We also note that there are works that study the beacons
privacy such as [7].

However, we are not aware of any work with respect to the beacon notification problem as
derived from the IoT setting and defined in this paper (essentially a beacon to owner real-time
signaling via an observer), hence we consider below the closest protocols for different and weaker
versions of this problem as is reflected by industrial deployments.

Specifically, in Samsung’s SmartTag [13] and Tile [1] the beacon does not send a status so
obviously no beacon’s status security is provided. In addition, SmartTag and Tile do not provide
end-to-end security with respect to the observer’s message.

Apple’s FindMy [12], on the other hand, provides end-to-end security with respect to the ob-
server’s message but
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– without forward and backward security for all future/past messages,
– without beacon’s status support,
– without efficient real-time communication,
– without observer’s message integrity,
– and without formal cryptographic definitions, threat model, and security proofs.

It is worth noting that FindMy aims at neither an efficient real-time communication nor observer’s
message integrity, due to not supporting beacon-to-owner mapping table. This lack of the beacon-
to-owner association at the cloud server in FindMy provides strong anonymity to the owner with
respect to the cloud server, but opens the door to two types of attacks. (i) attacks [6,4] which use
the FindMy network as a public database; and (ii) attacks where a beacon sends a weak key to
an observer with the intention to reveal the observer’s message (which is the location in the case
of Apple’s FindMy). Such an attack would succeed since the observer lacks the ability to validate
the received public key. In contrast, achieving anonymity in our server model relies on the server
honestly erasing its data after using it in real time for association. Finally, we note that Apple
has published neither a detailed description of the FindMy protocol nor cryptographic proofs of its
security.

11 Conclusions

We presented the general problem for the IoT involving broadcasting beacons. In particular, we
derived and presented novel cryptographic definitions for the beacon notification problem (including
its security, privacy, and integrity requirements). To solve the problem we presented an extension
for DHIES, which we called XDHIES and built upon it our beacon notification protocol. We then
proved that our resulting protocol achieves all the formalized requirements.

Furthermore and looking forward, we believe that our new protocol, given its unique and com-
prehensive security features, its versatility, and its suitability for real-world IoT applications, may
be considered for standardization for global use in the IoT area.
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