
Implementation and Performance Evaluation of
Elliptic Curve Cryptography over SECP256R1 on

STM32 Microprocessor
Onur İŞLER

R&D
TÜRKTRUST

Ankara, TÜRKİYE
onur.isler@turktrust.com.tr

Abstract—The use of Internet of Things (IoT) devices in em-
bedded systems has become increasingly popular with advancing
technologies. These devices become vulnerable to cyber attacks
as they gain popularity. The cryptographic operations performed
for the purpose of protection against cyber attacks are crucial to
yield fast results in open networks and not slow down network
traffic. Therefore, to enhance communication security, studies
have been conducted in the literature on using asymmetric
encryption and symmetric encryption together in IoT devices
for activities such as key sharing, encryption, decryption, data
signing, and verifying signed data. In this study, we first propose
a cryptographic system engaging of IoT devices operated from
a server. Then we do performance analysis of our proposal.
In particular, we evaluate the elliptic curve Diffie-Hellman key
exchange and elliptic curve digital signature algorithms on the
Secp256r1 elliptic curve and AES symmetric encryption via the
Micro uECC library conducted with the 32-bit STM32F410RB
Nucleo development board microprocessor running at 48 MHz.

Index Terms—Key Exchange, Digital Signature, Elliptic Curve,
Secp256r1, IoT

I. INTRODUCTION

The usage of embedded systems, increasingly prevalent in
our homes, not only makes our lives more convenient but also
brings along security risks. These embedded systems have
made our homes smarter through Internet of Things (IoT)
devices connected to home networks. However, these devices
can be vulnerable to cyber attacks, putting home security at
risk [3], [11]. Cyber attackers can infiltrate IoT devices on
home networks, gaining access to devices such as cameras,
audio devices, or internet-connected kitchen appliances. This
situation can jeopardize user privacy and security.

Attackers, by compromising these devices over the internet,
can impersonate users, steal, record sensitive data, or harm
the devices. Therefore, ensuring the security of messages sent
in the communication of embedded systems is of critical
importance. Messages or commands used in communication
between devices must be protected against external malicious
interventions. This protection should be based on features

This study is supported by TÜBİTAK under the project number TEYDEP-
3192166

such as confidentiality and non-repudiation in communication.
Confidentiality in communication between devices means that
messages or commands sent cannot be understood by external
malicious actors. This is critical for information security, pre-
venting malicious individuals from monitoring or understand-
ing communication. Non-repudiation, on the other hand, is
another important factor that secures communication between
devices. Malicious actors may perform harmful actions by im-
personating users or other devices. Therefore, it is crucial for
devices to authenticate themselves and their communication
securely. However, during the implementation of these security
measures, there should be no disruption in communication
between devices. Security measures in communication should
enable smooth interaction between devices without impacting
performance.

To ensure the security of data transmission between devices,
cryptographic algorithms and protocols are employed. How-
ever, these cryptographic algorithms generally require more
powerful processors to perform mathematical calculations. IoT
devices operate with lower power consumption but lower
performance and processing limits. Therefore, cryptographic
operations in IoT devices may lead to communication delays.
To address this, lightweight algorithms that do not compromise
security but do not hinder device performance should be
preferred. For instance, Diffie-Hellman (DH) key exchange
algorithm is used for generating and sharing a common
cryptographic key during symmetric encryption, especially in
Device-to-Device (D2D) data transfer over insecure networks.
If the DH key exchange algorithm is defined on an elliptic
curve, it tends to be faster than finite field version [22]. Elliptic
curve cryptography (ECC) offers a lower key size compared to
finite field public key cryptography, providing similar security
levels, see [17] for security levels, and [5] for their faster
implementation. As the equal security level is satisfied by
lower key sizes, ECC requires less number of field operations
[8, Section 5]. This makes it more appealing for use in IoT
devices with low performance and limited resources than RSA
and DH variants. For instance, in [13] it was shown that RSA
exponentiation takes about 10x longer than an equivalently



secure scalar multiplication over an elliptic curve on resource
constrained devices.

The Standards for Efficient Cryptography (SEC) academic
committee is a well known non-profit community for elliptic
curve cryptography (ECC) and they proposed a set of param-
eters for implementing ECC [4]. We preferred a randomly
selected curve for a security level of 128-bits only. Therefore,
in this work, we implemented our system on the recommended
curve Secp256r1. But other non-random curves and curves
from other security levels would be considered in another
work.

In this study, a protocol to secure a client’s communication
with an IoT device thorough a central server is established by
using cryptographic methods. Elliptic curve DH (ECDH) key
exchange mechanism is established for a secure key establish-
ment between IoT device and the server. Elliptic curve digital
signature algorithm (ECDSA) is used for authenticating both
sides. In addition, the symmetric encryption AES [1] in cipher-
block-chaining (CBC) mode [18] is used for securing the com-
munication between IoT device and server. The performance
evaluation of the ECDH key exchange, ECDSA signature gen-
eration and verification on the randomly generated Secp256r1
elliptic curve, and AES-CBC encryption are conducted on
an IoT device STM32F410RB Nucleo development board
microprocessor [19] for cryptographic processing times during
the communication. The performance of the protocol on the
IoT device is calculated through time measurements.

II. RELATED WORK

Research into the implementation of cryptographic algo-
rithms on MCUs primarily emphasizes performance, memory
usage, and energy consumption. For instance, a study by Liu
et al. [10] implements elliptic curve cryptography on the 8-bit
ATmega128 processor (used in the MicaZ) and on the MSP430
(utilized in the Tmote Sky), focusing on optimizing execution
speed and memory usage. Similarly, Wenger et. al. [21] evalu-
ates three popular microprocessors (Cortex-M0+, MSP430 and
ATmega) based on their runtime, chip area, power, and energy
consumption in standard side-channel protected elliptic curve
cryptography. Results indicate that the Cortex-M0+ excels in
speed and energy efficiency, ideal for Wireless Sensor Nodes;
the MSP430 enables compact and low-power designs, suitable
for RFID tags; and the ATmega performs best with instruction-
set modifications, making it suitable for long-lived products
requiring ECC.

Later, Ledwaba et al. [9] examined the costs associated
with cryptographic software on contemporary end-point de-
vices, analyzing the performance of AES-CTR, SHA256, and
ECDSA algorithms across various ARM Cortex-M devices.

Kane et. al. [14] analyzed performance metrics of micro-
controller devices commonly used in IoT applications. In
particular, AES, ChaCha, and Acorn ciphers were evaluated on
three microcontroller devices STM32F103C8T6, ATmega328,
and ESP8266 Wi-Fi Witty Cloud Development Board with
measurements taken for power consumption, time cost, en-
ergy cost, peak RAM usage, and flash usage. Results were

compared, and the STM32F103C8T6 emerged as a balanced
choice for IoT deployments, offering good performance and
speed.

A detailed analysis was conducted in [20] to estimate the
computation and communication energy expenses of algo-
rithms for end-to-end security and digital signatures. Measure-
ments were taken across three platforms (STM32L073RZT6-
ARM Cortex-M0+, MSP432P401R-ARM Cortex-M4F, and
MAX32620-ARM Cortex-M4F) utilizing three distinct wire-
less communication protocols (BLE, Wi-Fi, and LoRaWAN).

Apart from these studies, we in this paper focus on
the algorithms required to establish an end-to-end secure
communication. In particular, we implemented elliptic curve
cryptography algorithms including key generation, signing,
verification and shared secret calculation, and AES-CBC for
symmetric encryption on the STM32F410RB-ARM Cortex-
M4F Nucleo development board.

III. BACKGROUND

A. Finite Fields

Finite fields, also known as Galois fields, constitute a
fundamental concept in algebra and cryptography. A finite
field is a mathematical structure that consists of a finite
set of elements along with two binary operations, addition
and multiplication. The order of a finite field, denoted as q,
represents the number of elements in the field, which can
be only a prime power integer e.g. q = pn for some prime
number p. Finite fields find extensive applications in various
areas, particularly in error-correcting codes, cryptography, and
algebraic coding theory. In cryptography, they play a crucial
role in algorithms such as elliptic curve cryptography, where
the arithmetic operations are performed within a finite field to
ensure security and efficiency.

Let p be prime number. A finite field Fp containing p
elements is called a prime finite field. While there is a unique
finite field Fp for each odd prime p, there are many different
ways to represent the elements of Fp. The elements of Fp are
represented here as {0, 1, . . . , p−1}, with addition and multi-
plication operations performed using the standard addition and
multiplication operations under modulo p. The set F∗

p denotes
the multiplicative group of elements in {1, . . . , p − 1} under
multiplication modulo p.

B. Elliptic Curve Cryptography (ECC)

The discrete logarithm problem is a cryptographic challenge
based on the difficulty of computing a certain element’s spec-
ified exponent within a mathematical group G. This problem
plays a fundamental role in cryptographic protocols such as
El-Gamal Encryption, Diffie-Hellman Key Exchange, and the
Digital Signature Algorithm (DSA), where G = F ∗

p is often
considered. Specifically, when examining the discrete loga-
rithm problem on a group of points on an elliptic curve over a
finite field, it refers to the difficulty of calculating the result of
multiplying a certain element by a predetermined scalar on the
curve. For instance, given a pair P,Q on an elliptic curve and
knowing that Q is a scalar multiple of P , finding this scalar is



known as EC discrete logarithm problem and it is believed to
be one of the hard problems in mathematics. Currently, a 256-
bit finite field provides a sufficient security level for securing
data transferring on the web. For greater security or long-term
durability, curves defined on larger finite fields can be chosen.
For example, Secp256r1 is an elliptic curve proposed by The
Standards for Efficient Cryptography Group (SECG) [4]. This
parameter set is defined for use in digital signature algorithms
and key exchange protocols.

Secp256r1 represents an elliptic curve over a prime field,
given by the equation y2 = x3 − 3x + b mod p, where p =
2224(232−1)+2192+296−1 is a prime, and a, b are coefficients
defining the curve, where a = −3 and b is randomly selected
integer. The Secp256r1 curve provides a 256-bit security level
and is particularly favored in digital signature algorithms
like ECDSA (Elliptic Curve Digital Signature Algorithm) and
key exchange protocols like ECDH (Elliptic Curve Diffie-
Hellman). Secp256r1 is also standardized by NIST as P-256,
and is widely used in various cryptographic applications e.g.
in Transport Layer Security (TLS) of web communication.

C. Diffie-Hellman Key Exchange

The Diffie-Hellman (DH) protocol is the first example
of asymmetric cryptography, used to securely facilitate key
exchange. Typically, two parties, often referred to as Alice
and Bob, create a mutual agreement to share secret keys. This
protocol allows the parties to determine a shared secret key
before communicating with each other. It was proposed by W.
Diffie and M. Hellman in 1976 [6]. In this study, the Elliptic
Curve Diffie-Hellman (ECDH) key exchange scheme based on
the DH scheme is employed.

D. Elliptic Curve Digital Signature Algorithm (ECDSA)

ECDSA [7] is essentially a version of the digital signature
algorithm, where operations are performed on an elliptic curve.
It is used in many applications as it performs the signing
process more efficiently than DSA and RSA, primarily due
to providing the same level of security with smaller key sizes
[22]. In this study, we implement ECDSA on Secp256r1 curve
for authentication.

In ECDSA, a private key and a public key are generated on
an elliptic curve, where private key is an integer and public key
is a point on the curve. The private key is kept secret, while the
public key is shared with others. To sign a message, the private
key is used to generate a digital signature. This signature is
then attached to the message and sent to the recipient. To
verify the authenticity of a signed message, the recipient uses
the sender’s public key to validate the digital signature. If the
signature is valid, it means that the message has not been
tampered with and that it was indeed signed by the sender.

E. Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES), also known as
Rijndael, is a symmetric block cipher that was adopted as a
U.S. Federal Information Processing Standard (FIPS) in 2001
[1]. It is one of the most widely used encryption algorithms in

the world, and is used to protect sensitive data in a variety of
applications, such as secure communication over the internet,
data storage on any kind of devices, encrypting software
programs to prevent unauthorized access or modification. AES
uses a combination of mathematical operations, including
substitution, permutation, and diffusion, to encrypt and decrypt
data. It is considered to be a very secure algorithm and
extensively analyzed by cryptographers around the world, see
the selection procedure [2], and it is still an active standard
available in [1]. AES is a block cipher, which means that it
operates on blocks of data of a fixed size. The block size for
AES is 128 bits, which means that each block of data that is
encrypted or decrypted is 128 bits long. AES uses a key to
encrypt and decrypt data. The key is a sequence of bits that
is used to control the encryption and decryption process. The
key size for AES can be 128, 192, or 256 bits. The larger
the key size, the more secure the encryption is. AES is a
very efficient algorithm, and can be implemented in embedded
devices. In this study, AES-128 is implemented to secure the
communication between IoT devices and server.

IV. MATERIAL AND METHOD

A. Development Board

The STM32F410RB series Nucleo development board [19]
from STMicroelectronics has been used in this study. It is a
part of the STM32 series and operates on the ARM Cortex-
M4 processor core, providing a high-performance, energy-
efficient, and reliable platform. It is particularly suitable
for embedded systems, industrial automation, smart home
applications, medical devices, portable devices, and similar
application areas. However, this series does not have a Trusted
Platform Module (TPM) module or Secure Module. Therefore,
it is known that implementing key storage and prevention
of external exposure may require additional effort with this
model. Its main specifications are given below:

• Processor: It has ARM Cortex-M4 core, a 32-bit proces-
sor offering high-performance computational capabilities.

• Memory: It has a comprehensive memory configuration,
including 128 KB Flash memory and 64 KB SRAM,
expandable with external memory interfaces.

• Peripherals: It provides a range of integrated peripher-
als, including GPIO (General-Purpose Input/Output), US-
ART, SPI, I2C, ADC (Analog-Digital Converter), Timers,
and others.

• Communication: STM32F410RB supports popular com-
munication protocols for serial communication, such as
USART, SPI, and I2C. This can be used for communi-
cation with sensors, displays, memory cards, and other
external devices.

B. ECC Library

There are many public libraries supporting elliptic curve
cryptography, one of which is Micro uECC [16]. The Micro
ECC library offers a robust defense against known side-
channel attacks, ensuring the security of cryptographic op-
erations. Implemented in C, with the option for GCC inline



assembly tailored for AVR, ARM, and Thumb platforms,
it ensures efficient performance across various architectures,
including 8, 32, and 64-bit systems. Notably, it boasts a com-
pact code size and eliminates the need for dynamic memory
allocation, enhancing its suitability for resource-constrained
environments. Additionally, the library provides support for
five standard SEC curves: Secp160r1, Secp192r1, Secp224r1,
Secp256r1, and Secp256k1, catering to diverse cryptographic
requirements. Its BSD 2-clause license promotes flexibility and
ease of integration into different projects. See its web page for
further details [16]. These features are important reasons for
us to choose Micro ECC library in this work. STM32CubeIDE
version 1.13.2 for STM32 family has been used in order to
implement the libraries and develop code scripts.

C. The protocol

The protocol in this study involves data transmission from
the client to the center, from the center to the device, from
the device to the center, and from the center to the client. The
STM32F410RB has been selected, and it is operated at 48
MHz to make a fair comparison with the microcontrollers with
lower speeds. This setting is done through STM32CubeMX. In
the scenario, for decrypting incoming data or encrypting data
to be sent, devices need a symmetric key and distribution of
this key in an insecure network. In this work, ECDH is applied
for this key distribution, and AES-CBC is used for symmetric
encryption. In order to authenticate the sender, ECDSA is
applied at both sides. The general scenario is depicted in
Figure 1.

Various stages of the system, including generating and
distributing a shared key, encrypting and decrypting data,
signing for sender and recipient authentication, are evaluated
for the time consumption in this study. Different key pairs have
been selected for key establishment and signing/verification
processes, which creates an additional security layer even if
the key is compromised.

Fig. 1. General Scenario

In the scenario depicted in Figure 1, our objective is to
establish secure communication among devices situated at
remote locations from the central server, with each IoT device

possessing a unique shared key with the server. Additionally,
at intervals specified by the server, each device regenerates
its key pair to update the shared key with the server and
notifies the central server accordingly. It’s important to note
that the key pair utilized for key establishment differs from
the one employed for signing, and a server-specific certificate
is generated for the signing key pair, valid for the duration
specified in the certificate.

All messages directed to the devices from the client are
routed through the TÜRKTRUST server before reaching the
device, and similarly, the response messages from the devices
also pass through TÜRKTRUST to reach the client. Each
command issued by the client undergoes encryption and
signing at the TÜRKTRUST server before transmission to
the device, with each signing operation executed by the HSM
using securely stored keys. On the device end, incoming mes-
sages are initially verified, then decrypted, and subsequently,
the requisite commands (such as temperature or humidity
measurements) are executed. Upon readiness to transmit data,
the device encrypts the message and employs a distinct key
pair for signing. The server verifies, decrypts, and forwards the
message to the client, thus safeguarding against interception,
alteration, or capture by unauthorized parties.

V. RESULTS

The project’s initial settings were done with
STM32CubeMX, a screenshot can be seen in Figure 2.
Then, in STM32CubeIDE, relevant settings and project files
were opened, and evaluation operations were coded into
the appropriate steps of the protocol. Measurements of the
operations were done with a time counter embedded into the
code.

Fig. 2. Timer Setup on STM32CubeMX

In measurement with a timer, all operations were run 1000
times and the minimum time, maximum time and average time
were calculated in these cycles.

TABLE I
GENERATING KEY PAIR FOR ENCRYPTION ON SECP256R1

Generating key pair for encryption on Secp256r1
Time (ms) Average Value Median Value

283 284 285 284,244 284
Frequency 22 712 266



As seen in Table 1, the key pair to be used in the calculation
of the public key is generated 22 times in 283 ms, 712 times
in 284 ms, and 266 times in 285 ms. We conclude that the
minimum and maximum key generation time of the key pair
are 283 ms and 285 ms, respectively. We illustrated the timings
in Figure 3 and Figure 4. From Table 1 we obtain that the
average time is 284,244 ms and the median value is 284 ms.

Fig. 3. Generating key pair for encryption on Secp256r1

Fig. 4. Generating key pair for encryption on Secp256r1

Similarly, Table 2 tabulates generation time of the key pair
which are used in signing and verification is 16 times 283 ms,
705 times 284 ms, 273 times 285 ms, 1 time 286 ms, 1 time
346 ms, 1 time 347 ms, 2 times 348 ms, 1 time in 361 ms.
Figure 5 and Figure 6 show that the generation time of the
key pair ranges between 283 ms and 361 ms, and the average
is 284,589 ms.

TABLE II
GENERATING KEY PAIR FOR SIGNATURE ON SECP256R1

Generating key pair for signature on Secp256r1
Time (ms) Average Value Median Value

283 284 285 286 346 347 348 361 284,589 284
Frequency 16 705 273 1 1 1 2 1

As seen in Table 3, the calculation of the shared secret is
produced 10 times in 283 ms, 707 times in 284 ms, and 283
times in 285 ms. Figure 7 and Figure 8 gives the calculation
time of the public key with minimum 283 ms, maximum 285
ms, and average is 284,273 ms.

Fig. 5. Generating key pair for signature on Secp256r1

Fig. 6. Generating key pair for signature on Secp256r1

TABLE III
SHARED SECRET KEY CALCULATION

Shared Secret Key Calculation
Time (ms) Average Value Median Value

283 284 285 284,273 284
Frequency 10 707 283

Fig. 7. Shared Secret Key Calculation

Fig. 8. Shared Secret Key Calculation



TABLE IV
AES ENCRYPTION

AES Encryption
Time (ms) Average Value Median Value
2 3 2,816 3

Frequency 184 816

The encryption process with AES 128 takes 2 ms 184 times
and 3 ms 816 times, they are tabulated in Table 4. It lasts
minimum 2 ms, maximum 3 ms, and the average is 2,816 ms,
see Figure 9 and Figure 10.

Fig. 9. AES Encryption

Fig. 10. AES Encryption

TABLE V
SIGNING MESSAGE

Sign
Time (ms) Average Value Median Value

336 337 338 415 336,861 337
Frequency 254 708 37 1

In our experiment, the signature generation on a fixed
message takes 336 ms 254 times, 337 ms 708 times, 228 ms 37
times, and 415 ms once given in Table 5. Figure 11 and Figure
12 show the minimum, maximum and average time of signing
process as 336 ms, 415 ms and 336,861 ms, respectively. On
the other hand, the signature verification process takes 368 ms
446 times and 369 ms 554 times, and hence the minimum is
368 ms, the maximum is 369 ms, and the average is 368,554
ms, see Table 6, Figure 13 and Figure 14.

Fig. 11. Signing Message

Fig. 12. Signing Message

TABLE VI
VERIFYING MESSAGE

Verify
Time (ms) Average Value Median Value
368 369 368,554 369

Frequency 446 554

Fig. 13. Verifying Message



Fig. 14. Verifying Message

Fig. 15. Average of All Processes

Figure 15 shows the average duration of all transactions
together. According to this graph, the total average time of
all operations from start to finish = 1.561,337 ms, and again
according to this graph, the time for the device to process a
routine command (decrypting the message, verifying, encrypt-
ing and signing the new message, respectively) is 711,047
ms. Since the routine operation will be performed every time
information is requested from the device, taking less than 1
second is considered a successful result in our project. In this
way, the speed of information exchange is not affected much.

VI. CONCLUSION

The use of IoT devices in embedded systems is gaining
popularity, but it also makes them vulnerable to cyber attacks.
To protect against these attacks, cryptographic operations are
crucial, and studies have explored using both asymmetric and
symmetric encryption in IoT devices. This study proposes
a novel approach for securing IoT devices in the wild op-
erated form a server by using elliptic curve Diffie-Hellman
(ECDH) key exchange, elliptic curve digital signature algo-
rithm (ECDSA) and AES symmetric encryption. In addition,
we analyzed the performance of DH key exchange, ECDSA
and AES algorithms on the Secp256r1 elliptic curve in the
Micro uECC library using a 32-bit STM 32F410RB Nucleo
development board microprocessor from STMicroelectronics
running at 48 MHz. As a result of our analysis, it is seen
that ECDH key generation and key establishment take 284

ms approximately while ECDSA signing and verification take
336 ms and 368 ms respectively. On the other hand, AES
algorithms takes only 2.816 ms approximately. The experi-
ment analysis also shows that our implementation on the all
cryptographic operations does not vary for different sessions,
in other words they are constant time implementations.

REFERENCES

[1] National Institute of Standards and Technology, ”Advanced Encryption
Standard (AES),” NIST FIPS 197-upd1, May 9, 2023. [Online]. Avail-
able: https://doi.org/10.6028/NIST.FIPS.197-upd1.

[2] AES Development. [Online]. Available:
https://csrc.nist.gov/projects/cryptographic-standards-and-
guidelines/archived-crypto-projects/aes-development. [Accessed:
May 8, 2023].

[3] M. Abomhara and GM Køien, ”Cyber security and the internet of things:
Vulnerabilities, threats, intruders and attacks,” J. Cyber Secur. Mobil.,
vol. 4, no. 1, pp. 65-88, Jan. 2015.

[4] D. Brown, ”SEC 2: Recommended elliptic curve domain parameters,”
[Online]. Available: https://www.secg.org/sec2-v2.pdf. [Accessed: Jan.
2013].

[5] M. Brown, D. Hankerson, J. López, and A. Menezes, ”Software imple-
mentation of the NIST elliptic curves over prime fields,” in Topics in
Cryptology—CT-RSA 2001: The Cryptographers’ Track at RSA Con-
ference 2001 San Francisco, CA, USA, April 8–12, 2001 Proceedings,
2001, pp. 250-265.

[6] W. Diffie and M. E. Hellman, ”New directions in cryptography,” IEEE
Transactions on Information Theory, 1976.

[7] D. Johnson, A. Menezes, and S. Vanstone, ”The elliptic curve digital
signature algorithm (ECDSA),” International journal of information
security, vol. 1, pp. 36-63, 2001.

[8] N. Koblitz, A. Menezes, and S. Vanstone, ”The state of elliptic curve
cryptography,” Designs, codes and cryptography, vol. 19, pp. 173-93,
Mar. 2000.

[9] L.P.I. Ledwaba, G.P. Hancke, and H.S. Venter, ”Performance costs
of software cryptography in securing new-generation internet of en-
ergy endpoint devices,” IEEE Access, vol. 6, pp. 9303, 2018, doi:
10.1109/ACCESS.2018.2793301.

[10] Z. Liu, X. Huang, Z. Hu, M. K. Khan, H. Seo and L. Zhou, ”On
emerging family of elliptic curves to secure Internet of Things: ECC
comes of age,” IEEE Trans. Depend. Sec. Comput., vol. 14, no. 3, pp.
237-248, Jun. 2017.

[11] Y. Lu and L. Da Xu, ”Internet of Things (IoT) cybersecurity research:
A review of current research topics,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 2103-15, Sep. 2018.

[12] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. Springer, 2004.

[13] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, ”Comparing
Elliptic Curve Cryptography and RSA on 8-Bit CPUs,” in Cryptographic
Hardware and Embedded Systems – CHES 2004, 6th International
Workshop, Cambridge, MA, USA, August 11-13, 2004, Proceedings,
vol. 3156, pp. 119–132, 2004.

[14] L. E. Kane, J. J. Chen, R. Thomas, V. Liu and M. Mckague, ”Security
and Performance in IoT: A Balancing Act,” IEEE Access, vol. 8, pp.
121969-121986, 2020, doi: 10.1109/ACCESS.2020.3007536.

[15] A. Menezes, ”Implementation of elliptic Curve cryptosystems,” in El-
liptic Curve Public Key Cryptosystems, vol. 234, 1993.

[16] MICRO-ECC repository. [Online]. Available:
https://github.com/kmackay/micro-ecc. [Accessed: Jan. 26, 2024].

[17] E. Barker and Q. Dang, ”NIST Special Publication 800-57 Part 3 Re-
vision 1: Recommendation for Key Management: Application-Specific
Key Management Guidance,” NIST, Jan. 22, 2015. [Online]. Available:
https://doi.org/10.6028/NIST.SP.800-57pt3r1.

[18] National Institute of Standards and Technology, ”Recommenda-
tion for Block Cipher Modes of Operation: Methods and Tech-
niques,” NIST Special Publication 800-38A, Final, [Online]. Available:
https://csrc.nist.gov/pubs/sp/800/38/a/final.

[19] STMicroelectronics, ”STM32F410RB Product overview specification.”
[Online]. Available: https://www.st.com/en/microcontrollers-
microprocessors/stm32f410rb.htmldocumentation.



[20] J. Winderickx, A. Braeken, and D. Singelée, ”In-depth energy analysis of
security algorithms and protocols for the Internet of Things,” J Cryptogr
Eng, vol. 12, pp. 137–149, 2022, doi: 10.1007/s13389-021-00274-7.

[21] E. Wenger, T. Unterluggauer, and M. Werner, ”8/16/32 Shades of
Elliptic Curve Cryptography on Embedded Processors,” in Progress in
Cryptology – INDOCRYPT 2013, vol. 8250, 2013.

[22] E. De Win, S. Mister, B. Preneel, and M. Wiener, ”On the performance
of signature schemes based on elliptic curves,” in Algorithmic Number
Theory: Third International Symposiun, ANTS-III Portland, Oregon,
USA, June 21–25, 1998 Proceedings, vol. 3, pp. 252-266, 1998.


	Introduction
	Related Work
	Background
	Finite Fields
	Elliptic Curve Cryptography (ECC)
	Diffie-Hellman Key Exchange
	Elliptic Curve Digital Signature Algorithm (ECDSA)
	Advanced Encryption Standard (AES)

	MATERIAL AND METHOD
	Development Board
	ECC Library
	The protocol

	Results
	Conclusion
	References

