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Abstract. The notion of Anamorphic Encryption (Persiano et al. Euro-
crypt 2022) aims at establishing private communication against an adver-
sary who can access secret decryption keys and influence the chosen mes-
sages. Persiano et al. gave a simple, black-box, rejection sampling-based
technique to send anamorphic bits using any IND-CPA secure scheme as
underlying PKE.
In this paper however we provide evidence that their solution is not as
general as claimed: indeed there exists a (contrived yet secure) PKE
which lead to insecure anamorphic instantiations. Actually, our result
implies that such stateless black-box realizations of AE are impossible
to achieve, unless weaker notions are targeted or extra assumptions are
made on the PKE. Even worse, this holds true even if one resort to
powerful non-black-box techniques, such as NIZKs, iO or garbling.
From a constructive perspective, we shed light on those required assump-
tions. Specifically, we show that one could bypass (to some extent) our
impossibility by either considering a weaker (but meaningful) notion of
AE or by assuming the underlying PKE to (always) produce high min-
entropy ciphertexts.
Finally, we prove that, for the case of Fully-Asymmetric AE, iO can ac-
tually be used to overcome existing impossibility barriers. We show how
to use iO to build Fully-Asymmetric AE (with small anamorphic mes-
sage space) generically from any IND-CPA secure PKE with sufficiently
high min-entropy ciphertexts. Put together our results provide a clearer
picture of what black-box constructions can and cannot achieve.
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1 Introduction

The recently proposed paradigm of Anamorphic Encryption (AE) aims at en-
abling confidential communication in scenarios where an adversary wields strong
control over users. This includes accessing user’s private encryption keys (vio-
lating so-called receiver privacy) and restricting the messages users are allowed
to transmit (infringing sender freedom). Such capabilities are conceivable in au-
tocratic regimes, where citizens might face strong censorship measures.

In their work, Persiano et al. [PPY22] introduced two variations of Anamor-
phic Encryption, depending on whether sender freedom or receiver privacy is
compromised. Here we discuss only the second one, called receiver Anamorphic
Encryption, as it is the focus of this work. Informally, receiver AE can be de-
ployed in one of two modes: regular and anamorphic. In the regular mode, the
encryption scheme functions as a standard public key scheme. In anamorphic
mode, a public key (apk) is generated along with two secret keys: a conven-
tional one (ask) and an additional key, referred to as the “double key” (dk). Bob
shares dk privately with Alice and uses apk as his public key. When required to
surrender his secret key to the adversary, he reveals only ask.

Clearly (apk, ask) are expected to be compatible with the regular scheme.
Yet, Alice can use dk as a symmetric key to embed an extra message into her
ciphertext, which remains concealed even knowing ask. More in detail, when op-
erating in anamorphic mode, the scheme enables the encryption of two messages:
a regular-looking one m, intended to be seen by the adversary, and a covert one
m̂. The resulting anamorphic ciphertext reveals either m, when decrypted with
ask, or m̂ when anamorphically decrypted via dk. The main security requirement
is for anamorphic ciphertexts to be indistinguishable from regular ones.

In [PPY22], Persiano et al. observed that devising new schemes supporting
anamorphic mode might prove futile. An influential enough adversary could in-
deed push for adopting new PKE schemes as standard and ban the anamorphic
ones. Thus, the real challenge here is proving that existing, possibly deployed in
practice, constructions have an anamorphic nature. This was tackled by sev-
eral recent works proposing novel realizations [PPY22, KPP+23b, BGH+24,
WCHY23, CGM24a, CGM24b] and refining security notions [BGH+24, KPP+23b,
CGM24a]. Most of them, however, build upon rather specific properties of the
underlying PKE. Exceptions are the rejection sampling scheme from [PPY22]
and the robust one in [BGH+24, Section 4.1], both claimed to work for any
IND-CPA secure encryption scheme. In what follows we recall the former con-
struction, as it plays a pivotal role in our work.

Starting from a pseudorandom function f and any PKE, anamorphic mode is
constructed as follows. Public and secret keys (apk, ask) are produced according
to the given PKE, whereas the double key dk is a random seed k for f . To encrypt
a regular message m and an anamorphic bit m̂, one uses rejection sampling to
produce a ciphertext c for m such that fk(c) = m̂. Regular decryption works
as expected, while m̂ is retrieved as fk(c). In spite of its elegance, this solution
only supports up to O(log λ)-bit long anamorphic messages, with λ security
parameter.
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This was recently shown to be optimal by Catalano et al. [CGM24b]. Specif-
ically, they prove secure black-box constructions can convey at most O(log λ)
covert bit per ciphertext, and cannot achieve stronger notions, such as Fully-
Asymmetric security [CGM24a]. In their work, black-box refers to generic con-
struction accessing the underlying PKE only through oracle calls. This is for
instance the case for the rejection sampling scheme above.

1.1 Our contributions

In this paper we revisit the question of studying generic constructions of Anamor-
phic Encryption scheme from PKE and show that the answer is more convoluted
than anticipated by previous works. We make progress on this question in several
directions. First, in the context of black-box constructions (Sections 3-4):

1. We show the rejection sampling scheme (RS) is actually insecure when ap-
plied to a (admittedly contrived, but still IND-CPA) PKE. Thus, RS does
not generically realize AE.

2. More generally, we prove that stateless black-box anamorphic encryption
is impossible. Stateless here means that sender and receiver do not keep a
synced state. In particular, the usage of synced state in [BGH+24, Section
4.1] is necessary.

3. We introduce a weaker security notion for AE called Semi-Adaptive (see be-
low for a discussion on this). We show that RS achieves either semi-adaptivity
for any PKE, or the original notion from [PPY22] but only for PKEs with
high min-entropy ciphertexts.

4. We extend the message space size bound and impossibility from [CGM24b]
to Semi-Adaptive security and high min-entropy PKEs. This shows that
[PPY22] is again optimal regarding covert bits per ciphertext among semi-
adaptively secure black-box constructions.

Next, we ask whether obfuscation, garbling or NIZKs could help bypass these
limitations. Towards this, we then allow constructions to obfuscate (or prove
statements about) circuits with gates evaluating the underlying PKE procedures.
The PKE is otherwise accessed through oracle calls as before. In Sections 5-6:

5. We show that any secure black-box AE in this model can be compiled into
a secure black-box AE not using iO/NIZK. In particular, all negative results
above relative to (plain) AE extend to this setting.

6. We realize Fully Asymmetric AE [CGM24a] with semi-adaptive security from
iO. We remark that this is implied to be impossible in the black-box setting
(without iO) by point 4.

We provide a summary of our results in Table 1. The notion of fully asymmet-
ric AE [CGM24a] mentioned above informally considers an asymmetric variant
of the original AE definition. Alice now generates two covert keys (dk, tk) (as
opposed to dk only). dk is shared with the sender(s) and acts as the encryption
key for anamorphic messages. tk is instead kept private and used for decryption.
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Black-Box Black-Box + iO/NIZK
Possible? |M̂ | Possible? |M̂ |

Stateless AE ✗ − ✗ −
Stateful AE ✓ ≤ poly(λ) ✓ ≤ poly(λ)

SA-AE ✓ ≤ poly(λ) ✓ ≤ poly(λ)

Fully-Asym. + AE ✗ − ✗ −
Fully-Asym. + SA-AE ✗ − ✓ ≤ poly(λ)

Table 1. SA-AE is Semi-Adaptive AE, Fully-Asym. is short for Fully Asymmetric.
Black-Box refers to triplets using the underlying PKE only through oracle calls. Black-
Box + iO/NIKZ allows obfuscating and proving statements about circuits with PKE
operation gates. |M̂ | is the anamorphic message space size. λ is the security parameter.

1.2 Technical Overview

In what follows we discuss the intuitions and technical challenges underlying our
results, simplifying where necessary to aid intuition. Throughout this section,
Σ = (AT.Gen,AT.Enc,AT.Dec) will be an anamorphic triplet turning any PKE
into an AE.

Revisiting rejection sampling AE. Our first step is to construct an artificial PKE
which, in spite of being IND-CPA and correct, does not give rise to a secure
AE when RS (presented earlier) is applied to it. The main idea is to introduce
an hard to find weak message, with few associated ciphertexts. We start with
a PKE (E.Gen,E.Dec,E.Dec) with exponential message space M , an injective
OWF F : M → {0, 1}∗ and a small set B disjoint from the PKE ciphertext
space.

Our weakened PKE (E.Gen∗,E.Enc∗,E.Dec∗) works as follows. E.Gen∗ first
runs E.Gen to get pk, sk, then it samples a random message m∗ from M and sets
y∗ ← F (m∗). The public key pk∗ is (pk, y∗) and the secret key sk∗ is (sk,m∗).
E.Enc∗ is as E.Enc for all messages m except if F (m) = y∗, in which case it
outputs a random string in B. Finally, E.Dec∗ runs as E.Dec for all ciphertexts
not in B, while in this latter case it outputs m∗.

It is easy to show that, given that M is exponentially large, the scheme is
IND-CPA if so is the underlying PKE. However regular and anamorphic modes
are easily distinguished. Indeed, an adversary holding ask could query the chal-
lenge oracle for encryptions of (m∗, 0) and (m∗, 1), respectively c0, c1. In regular
mode, both ciphertexts will collide with probability 1/|B|, which is significant.
In anamorphic mode instead, collisions almost never happen due to correctness,
as fk(c0) = 0 and fk(c1) = 1.

Impossibility of stateless black-box AE. Building from the counterexample illus-
trated above, we prove that black-box Anamorphic Encryption is impossible to
realize. This improves upon a recent result by Catalano et al. [CGM24b] that

6



shows that any such conversion can at best produce an AE with small (anamor-
phic) message space.

Our proof follows the same general approach of [CGM24b]: we start by de-
scribing an ideal public key encryption Π = (E.Gen,E.Enc,E.Dec), based on truly
random permutations specifying the key generation and encryption/decryption
behavior. In our case, this is further augmented with a mechanism to (artifi-
cially) introduce weak messages given the secret key, i.e. with few associated
ciphertext as before. The resulting scheme is provably IND-CPA. Therefore, a
black-box AE has to be secure when applied to it.

To reach a contradiction then, it suffices to provide an attack against the
resulting scheme. We proceed as before. Given a “weak” message m∗, the at-
tacker asks (several) encryptions for (m∗, 0) and (m∗, 1). As before, these have
a significant chance of colliding when using the regular encryption scheme. In
anamorphic mode, on the other hand, correctness of AT.Enc and the fact that it
is stateless implies that a collision occurs with significantly lower probability.

In order for this simple argument to go through, however, one has to make
sure that the anamorphic encryption procedure does not realize m∗ to be weak4.
A crucial step in our proof consists in showing that, when there are sufficiently
many (but still polynomially many) ciphertexts associated to m∗, AT.Enc cannot
distinguish weak messages from regular ones too often.

Finally, note the above attack only works against stateless anamorphic schemes.
In such cases indeed correctness should prevent encryptions of (m∗, 0) and (m∗, 1)
to collide. This is remarkably not the case for stateful constructions. Indeed in
that case the two ciphertexts would be allowed to collide, as they will later be
decrypted with different states. This is the reason why the generic construction
in [BGH+24] does not contradicts our result.

Achievable security for stateless black-box AE. Having established that (state-
less) AE cannot be realized generically, the natural question becomes either what
security notion can be achieved, or what class of PKEs do we need to exclude
to circumvent the above barrier.

Regarding the latter, we show a sufficient condition to be high min-entropy
ciphertexts. That is, for any valid key and message, each ciphertexts has Ω(λ)
bits of min-entropy. In this case we can prove RS to be secure as all produced
ciphertexts c are distinct up to negligible probability and the bits fk(c) are
computationally close to uniformly and independently distributed.

About the former, on the other hand, we propose a new definition called semi-
adaptive AE. Informally, this modifies the original notion by letting the adversary
access the secret key only after all the encryption queries are made5. Even though
we don’t have any compelling case use for semi-adaptive AE we believe it could
4 In principle, AT.Enc could try to encrypt m∗ several times looking for collisions.

If this occurs, it could then ignore the covert message and simply output a (regu-
lar) encryption of m∗. Such a behavior, while affecting correctness, would fool our
distinguisher.

5 The semi-adaptive name comes from the fact that encryption queries can be asked
adaptively after having seen the public key but cannot depend on explicit knowl-
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be used to model security in contexts where an adversary/dictator having the
power to force users to surrender their secret key still cannot check their behavior
before some point in time (e.g. before her/his rise to power).

Extensions to non-black box techniques. Next we consider the question of whether
powerful non-black-box techniques such as NIZKs, garbling or iO can be used to
overcome our results so far.

Our first answer for (semi-adaptive) AE is negative. We show that a large
class of general non-black-box techniques would not be useful here. Towards this
goal we begin by targeting a very powerful primitive, called Verifiable Virtual
Black Box Obfuscation (VO), which is an extension of verifiable obfuscation
from [BGJS16] and subsumes all the above techniques. Informally, this, along
with regular obfuscation, further allows verifying a given predicate P of the
obfuscated circuit C, with P chosen by the obfuscator.

Next, we study anamorphic triplet defined relative to PKE oracles and to
ideal VO oracles. We take this route because, informally, we cannot "obfuscate
the PKE oracles". In other words, obfuscation does not relativize. Our ideal VO,
instead, can take as input circuits with PKE gates, obfuscate them by simply
assigning random labels, and later evaluate them through the PKE oracles. This
is a well-known approach, an example can be found in [GHMM18, Section 4] to
model garbling relative to an ideal OWF.

Finally, we show that relative to those PKE and VO oracles, any AE triplet
can be compiled into one that never accesses VO while preserving (semi-adaptive)
security. This is done by letting sender and receiver (relative to the PKE only!)
share a PRP key k and simulate the obfuscator with fk(C). Among themselves
they can easily evaluate and verify by just inverting fk. Given an adversary A
relative to PKE it can be lifted to one relative to the PKE and VO by simply
not making any VO query. The result follows by proving that in the two worlds
(i.e. with the ideal VO or with the simulated one) the views are computationally
close. Thus obfuscation, as well as NIZK and garbling, is of no help here.

Fully-Asymmetric AE from obfuscation. An interesting aspect of the compiler
discussed above is that it requires sender and receiver to cooperate. This is
acceptable for the standard notion of AE, where dk is treated as a symmetric
key. It is however not acceptable for stronger notions such as fully-asymmetric
AE, where the receiver has private key information that wishes not to share with
the sender. Hence the above result does not extend to the case fully-asymmetric
AE.

Interestingly, we show that this is no coincidence and indeed we prove that
using iO it is possible to build Fully-Asymmetric AEs (with small anamorphic
message space) generically from any IND-CPA secure PKE. The usage of iO

edge of the secret key. This is reminiscent of semi-adaptive security for functional
encryption [CW14] where the adversary is allowed to ask the challenge query after
having seen the public key but before making key derivation queries.
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thus allows to bypass the (extended) result6 from [CGM24b] which proved fully-
asymmetric black-box (semi-adaptive) AE to be impossible. We give two such
constructions, both building upon the Sahai-Waters [SW14] realization of public
key encryption from iO.

The basic idea is to interpret the rejection sampling scheme from [PPY22]
as a secret-key encryption scheme and turn it into an asymmetric one exactly as
done in [SW14]. Our first construction closely follows Sahai-Waters and inherits
their exponential security loss arising from their PRG usage. Recall, that the
Sahai-Waters scheme uses a PRG G, that takes a seed of size λ/2, to produce
the random coins needed to encrypt. Typically such a loss is acceptable as it
only means that larger λ have to be chosen in case of need. For the case of
Anamorphic Encryption however this might be problematic as the concrete value
for λ might be fixed by the adversary so that breaking the PKE is unfeasible,
but distinguishing regular from anamorphic ciphertexts becomes doable.

Our second construction avoids this issue by removing the PRG altogether
but assuming perfect correctness of the underlying PKE instead. Very infor-
mally, the idea is as follows. We modify the obfuscated circuit used to encrypt
by adding an "unreachable" condition for which a fixed output is returned.
Specifically, the condition is that, on input (m, r), one checks whether m = m∗

1

and E.Enc(pk,m, r) = c∗ where m∗
1, c

∗ are hard-coded in the circuit and c∗ is
an encryption of a message m∗

0 ̸= m∗
1. Here is where perfect correctness comes

into play: it allows to rule out the possibility that c∗ could be obtained as the
encryption of an a m ̸= m∗

1, making such condition unreachable. Later, using the
IND-CPA security, we set c∗ as the encryption of m∗

1, thus making the condition
reachable.

As a final note, we remark that, as we adapt the rejection sampling con-
struction, both scheme still either requires the underlying PKE to produce high
min-entropy ciphertexts, or only achieve semi-adaptive security. This is however
in line with our previous results. Indeed, achieving plain AE in the black-box
+ iO model when the underlying PKE is assumed to guarantee only correctness
and IND-CPA security was shown to be impossible.

1.3 Other related work

Anamorphic Encryption shares similarities with previously studied notions, such
as key-escrow (e.g. [Mic93, Bla94, FY95]), deniable encryption (e.g. [CDNO97]),
kleptography (e.g. [YY96, YY97]) and public key steganography (e.g. [vH04]).
We refer to the work of Persiano et al. [PPY22] for an in-depth comparison
among these notions.

In [KPP+23b, CGM24a] the notion of receiver AE has been further refined
by requiring privacy for the normal and covert messages to hold even when
knowing dk. In [BGH+24] the notion of robust AE and Anamorphic Extension
have been introduced. Later on in [WCHY23] the notion of robustness has been
extended and adapted also to the case of sender AE. In [KPP+23a] the notion

6 Here by extended we mean reinterpreted in light of the results in this paper.
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of Anamorphic Signatures has been introduced in order to deal with a more ex-
treme scenario where all communications must pass through a central authority
under the adversary’s control. In this context, the usage of encryption channels
becomes even more complicated, thus, in order to get around it, they rely on au-
thenticated channels (i.e., using digital signatures) to be able to establish secure
communications between parties.

The study of black-box separations started from the seminal work of Impagli-
azzo and Rudich [IR89], which gave rise to a fruitful and active area of research
[Sim98, KST99, GT00, GKM+00, GMR01, GGK03]. All these works however
only rule out black-box constructions that use the underlying primitive as an
oracle (i.e. not all possible constructions).

2 Preliminaries

2.1 Notation

By [n] we denote the set {1, . . . , n}. λ ∈ N is the security parameter. A function
f : N→ R+ is negligible if it vanishes faster than the inverse of any polynomial.
negl(λ) denotes a generic negligible function. Given a probabilistic Turing Ma-
chine A we denote y ← A(x; r) its output on input x and random tape r. The
notation y ←$ A(x) is short for y ← A(x; r) with r being a uniformly sampled
tape. With PPT we denote probabilistic polynomial time. With ≈ and p= we
denote respectively the computationally and perfect indistinguishability. Given
a set S we denote by x ←$ S the uniformly random sampling of an element x
from the set S. We further write x ∼ U(S) to indicate that x is a uniformly
distributed random variable over S.

Unless otherwise specified, we assume adversaries in security definitions to be
stateful, and procedures in a given scheme (e.g. a PKE) to be stateless. Also, we
may omit the game in the adversary’s advantage Adv when clear from context.

2.2 Public Key Encryption

We denote with (E.Gen,E.Enc,E.Dec) a PKE scheme with message space M .
Along with the standard properties of correctness and IND-CPA, we consider
the following one, requiring ciphertexts to have high min-entropy for any key
and message choice.

Definition 1. A PKE scheme has high min-entropy ciphertexts if, for any (pk, sk)
in the range of E.Gen, and for any message m ∈M it holds that

H∞(E.Enc(pk,m)) = Ω(λ).

2.3 Anamorphic Encryption

The definition of (receiver) Anamorphic Encryption that we use in this paper is
the one from [CGM24a], which is a generalization of the original one by Persiano
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et al. [PPY22]. The receiver is allowed to generate its own public and secret key
apk, ask in anamorphic mode, exchange secretly with the sender a double key dk,
and store a trapdoor key tk to decrypt anamorphic messages from the sender.

Definition 2 (Anamorphic Triplet). Formally, an anamorphic triplet Σ =
(AT.Gen,AT.Enc,AT.Dec) is a triplet of efficient algorithms such that

– AT.Gen(λ) $→(apk, ask, dk, tk) with apk, ask being the anamorphic public and
secret keys while dk, tk are the double and (a possibly empty) trapdoor key.

– AT.Enc(apk, dk,m, m̂) $→c, with m ∈ M and m̂ ∈ M̂ being respectively the
standard and anamorphic messages encrypted in c.

– AT.Dec(ask, tk, c)→ m̂/⊥, with m̂ being the anamorphic message encrypted
in c.

For ease of notation, in the definition above we do not explicitly provide
apk, dk as part of AT.Dec input, as we implicitly assume them to be contained
in ask and tk respectively. Moreover, we may omit tk when empty.

Definition 3 (Anamorphic Encryption). A PKE Π = (E.Gen,E.Enc,E.Dec)
is an Anamorphic Encryption scheme if it is IND-CPA secure and there exists an
anamorphic triplet Σ = (AT.Gen,AT.Enc,AT.Dec) such that any PPT adversary
A has negligible advantage, defined as

AdvAnamA,Π,Σ(λ) := |Pr [RealGΠ(λ,A) = 1]− Pr [AnamorphicGΣ(λ,A) = 1]|

where RealGΠ and AnamorphicGΣ are described in Figure 1.

RealGΠ(λ,A)

1 : (pk, sk)←$ E.Gen(λ)

2 : return AOreal(pk, sk)

Oreal(m, m̂)

1 : Sample a random r

2 : return E.Enc(pk,m; r)

AnamorphicGΣ(λ,A)

1 : (apk, ask, dk, tk)←$ AT.Gen(λ)

2 : return AOanam(apk, ask)

Oanam(m, m̂)

1 : Sample a random r

2 : return AT.Enc(apk, dk,m, m̂; r)

Fig. 1. Anamorphic Encryption security game.

Regarding correctness we recall the game-based definition provided by [BGH+24]
in the Appendix, Section A.2. For the sake of generality however we will mainly
refer to a weaker notion, correctness on average, holding only for uniformly sam-
pled messages (and correct keys).

Definition 4. An anamorphic triplet is ε-correct on average if, for a negligible
ε, sampling (apk, ask, dk, tk) ←$ AT.Gen(λ) and a random message m ←$ M

from the regular message space, then for all m̂ ∈ M̂ it holds that

Pr [AT.Dec(ask, tk,AT.Enc(apk, dk,m, m̂)) ̸= m̂] ≤ ε(λ).

11



Finally, as the focus of our investigation is on black-box constructions, we
proceed to formally define them as done in [CGM24b].

Definition 5 (Black-Box Anamorphic Triplet). A triplet Σ = (AT.Gen,
AT.Enc,AT.Dec) is said to be a black-box anamorphic triplet (for any PKE Π) if
every algorithm in Σ can access the procedures in Π only through oracle access,
i.e. providing input and random coins to these procedures and obtaining only
the output of such procedures call in return.

We remark that we may informally refer to a Black-Box Anamorphic Triplet
as a Black-Box Anamorphic Encryption.

2.4 Fully-Asymmetric AE

Let Π be a PKE scheme equipped with an Anamorphic Triplet Σ = (AT.Gen,
AT.Enc,AT.Dec). The Fully-Asymmetric game, for b ∈ {0, 1} and A a PPT ad-
versary, is defined in Figure 2.

FAsyAnam-IND-CPAΣ(λ,A)

1 : (apk, ask, dk, tk)←$ AT.Gen(λ)

2 : b←$ {0, 1}

3 : (m0,m1, m̂0, m̂1)←$ A(apk, dk)

4 : c←$ AT.Enc(apk, dk,mb, m̂b)

5 : b′ ←$ A(c)
6 : return b == b′

Fig. 2. Fully-Asymmetric Anamorphic Encryption game.

We define the advantage of A against the Fully-Asymmetric property as

AdvFAsy-AnamA,Σ (λ) = 2 · |1/2− Pr [FAsyAnam-IND-CPAΣ(λ,A) = 1]| .

Notice that the adversary does not receive any (additional) encryption oracle
as having both apk and dk it can create both regular and anamorphic ciphertexts
on its own.

Definition 6 (Fully-Asymmetric AE). An Anamorphic Encryption scheme
Π equipped with Anamorphic Triplet Σ is said to be Fully-Asymmetric if for
every PPT adversary A it holds that

AdvFAsy-AnamA,Σ (λ) ≤ negl(λ).
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3 Impossibility of Stateless Black-Box AE

3.1 Counterexample to Rejection Sampling

In [PPY22], along with the definition of Anamorphic Encryption, a supposedly
generic stateless construction based on rejection sampling was proposed. In this
section we recall their construction, and show it to be insecure when applied to
an artificially weakened (but still IND-CPA) encryption scheme.

Given any PKE with public and secret keys (pk, sk), sender and receiver
of [PPY22]’s AE initially exchange a PRF key k acting as the double key. To
communicate a bit m̂, the sender produces many ciphertexts c1, . . . , cϑ for the
regular message m, and eventually sends the first ci such that fk(ci) = m̂. This
mildly deviates from the original, which does not prescribe an exit condition
if a proper c is never found. In particular it only runs (at best) in expected
polynomial time7. Here instead we bound the attempts to ϑ and eventually send
a new c ←$ E.Enc(apk,m) if no desired ci was found, giving up on correctness.
A full description of the triplet RS is given in Figure 3.

RS.Gen(λ)

1 : (apk, ask)←$ E.Gen(λ)

2 : k ←$ PRF.Gen(λ)

3 : dk← k

4 : return (apk, ask, dk)

RS.Enc(apk, dk,m, m̂)

1 : for i ∈ {1, . . . , ϑ}:
2 : ci ←$ E.Enc(apk,m)

3 : if fk(ci) = m̂: return ci

4 : return E.Enc(apk,m)

RS.Dec(ask, dk, c)

1 : return fk(c)

Fig. 3. Anamorphic Triplet RS with ϑ = poly(λ) repetitions.

A key requirement for RS to work is the existence of many distinct cipher-
texts linked to m. In other words, E.Enc(pk,m; r) needs to have high min-entropy
given pk andm. To see why, assume that only poly(λ) ciphertexts can be obtained
encrypting a given m. Then the probability that two regular encryptions of m
collide is noticeable. However, two anamorphic ciphertexts of m with anamor-
phic messages 0 and 1 collide with negligible probability due to anamorphic
correctness. Hence the two modes would be readily distinguishable.

The issue above should not occur when m is chosen by an adversary who only
knows pk, as such m would allow breaking IND-CPA. However IND-CPA alone
cannot prevent to find it given both pk and sk. This is exactly the setting of the
anamorphic security game. A counterexample can therefore be built as follows:
given any PKE with exponential message space, we artificially weaken a random
message m∗. The public key is extended to contain F (m∗) with F an injective
one-way function, and sk is extended with m∗. Encryption is the same, except
7 Even worse, on some input, the encryption algorithm may never terminate. Looking

ahead, setting |B| = 1 in our counterexample implies this to happen for some message
pair (m∗, m̂).
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for m∗ where a ciphertext is a random element from a polynomially small set B
disjoint from the given PKE’s ciphertext space. Decryption runs either the old
decryption or, if c ∈ B, returns m∗. A detailed description is given in Figure 4,
while proof for the next Proposition appears in Appendix D.1.

E.Gen∗(λ)

1 : pk, sk←$ E.Gen(λ)

2 : m∗ ←$ M, y∗ ← F (m∗)

3 : pk∗ ← (pk, y∗), sk∗ ← (sk,m∗)

4 : return (pk∗, sk∗)

E.Enc∗(pk∗,m)

1 : Parse pk∗ = (pk, y∗)

2 : if F (m) = y∗:
3 : return c←$ B

4 : else :
5 : return c←$ E.Enc(pk,m)

E.Dec∗(sk∗, c)

1 : Parse sk∗ = (sk,m∗)

2 : if c ∈ B: return m∗

3 : else : return E.Dec(sk, c)

Fig. 4. Weakened PKE from any PKE (E.Gen,E.Enc,E.Dec) with message space M .
F : M → {0, 1}∗ is an injective OWF and B a set of size |B| = poly(λ) disjoint from
the given PKE’s ciphertext space.

Proposition 1. Given a correct and IND-CPA encryption (E.Gen,E.Enc,E.Dec)
with |M | = Ω(2λ) and F injective OWF, then the scheme presented in figure 4
is correct and IND-CPA secure.

Proposition 2. The triplet RS defined in Figure 3 is not a secure anamorphic
triplet with respect to the PKE described in Figure 4 when |B| ≥ 4ϑ.

Proof of Proposition 2. We describe an adversary A breaking anamorphic secu-
rity in Figure 5. Initially it extracts m∗ from ask, which RS computes correctly
by construction. Then uses m∗ to produce two ciphertexts, supposedly encrypt-
ing the anamorphic bit 0 and 1. Finally, it returns 1 only if the two ciphertexts
collide.

It is immediate to see that in the real game A returns 1 with probability
1/|B| as c0, c1 are uniformly and independently sampled from B. To study the
anamorphic game, let Fail0,Fail1 the events in which line 4 is executed when
RS.Enc encrypts respectively (m∗, 0) and (m∗, 1). We then claim those events to
occur with probability far from 1. A proof appears in the Appendix, Section D.2.

Claim 1. Pr [Fail] ≤ 1/2 + negl(λ), where Fail = Fail0 ∨ Fail1.

Next, if ¬Fail, either c0 or c1 is a regular ciphertext, and therefore a collision
occurs with probability 1/|B|. Conversely, fk(c0) = 0 and fk(c1) = 1 implies
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AO(apk, ask) :

1 : Parse ask = (sk∗,m∗)

2 : Query c0 ←$ O(m∗, 0) and c1 ←$ O(m∗, 1)

3 : return c0 = c1

Fig. 5. Adversary breaking security of the RS triplet applied to the weak PKE in
Figure 4. O is the encryption oracle provided in the anamorphic security game 1.

that no collision can occur and so c0 ̸= c1. We then conclude that, calling c′0, c′1
the ciphertexts obtained in the real game, the advantage of A is lower-bounded
by

Adv(A) ≥ Pr [c′0 = c′1]− Pr [c0 = c1] = Pr [c′0 = c′1]− Pr [c0 = c1 |Fail] Pr [Fail]

=
1

4ϑ
− 1

4ϑ

(
1

2
+ negl(λ)

)
=

1

8ϑ
− negl(λ).

Remark 1. Modifying the rejection sampling triplet to avoid this attack is trivial.
We can define RS.Enc to behave as E.Enc∗ when asked to encrypt (m∗, ·)8. Our
goal indeed is not to show that the weak PKE above does not admit anamorphic
triplets, but rather that the rejection sampling construction does not apply to
all PKEs.

3.2 Ideal Weak PKE

The counterexample proposed against the rejection sampling triplet (Figure 3)
can be generalized to show that black-box Anamorphic Encryption is not possi-
ble. Following the same general approach of [CGM24b], we begin describing an
ideal public key encryption, but this time with artificially weakened messages.
Then, we prove this ideal PKE, in spite of being IND-CPA secure and correct,
cannot admit a secure stateless anamorphic triplet. Hence building stateless
black-box triplets assuming the underlying PKE scheme to only be correct and
IND-CPA secure is impossible.

Our PKE is informally defined by two random functions ϕ, ψ roughly describ-
ing the key generation and encryption. Moreover, to introduce weak messages,
the scheme is further defined by m∗

1, . . . ,m
∗
λ random functions (taking as in-

put elements from SK) and τ . The latter is a function acting on the encryption
random coins that on a good message is the identity, whereas on a weak one
is (extremely) compressing to ensure many collisions. More precisely, we denote
PK,SK the public and secret key space, while {0, 1}µ, {0, 1}ρ, {0, 1}ℓ are respec-
tively the messages, encryption’s coins, and ciphertexts space. Then ϕ, ψ, τ and
m∗

i are sampled uniformly satisfying the following constraints:

1. ϕ : SK→ PK is a bijection.
8 Although correctness is unavoidably lost with respect to the anamorphic message.
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2. ψ : PK× {0, 1}µ × {0, 1}ρ → {0, 1}ℓ such that ψ(pk, ·, ·) is injective.

3. m∗
i : SK→ {0, 1}µ.

4. τ(ϕ(sk),m, r) = r if m is not weak, i.e. m /∈ {m∗
i (sk)}λi=1.

5. |Im (τ(pk,m, · ))| ≤ 2i if m is the i-th weak message, i.e. pk = ϕ(sk) and
m = m∗

i (sk).

Looking ahead, we impose m∗
i to have at most 2i ciphertexts to later let our

adversary choose the right i for its attack to succeed. For ease of notation we
will denote ψτ (pk,m, r) = ψ(pk,m, τ(pk,m, r)). Moreover, as in [CGM24b], we
fix parameters so that ρ = Ω(λ) and ℓ− (ρ+ µ) = Ω(λ). Next, given ϕ, ψ, τ,m∗

i

distributed as above, our ideal weak PKE is presented in Figure 6.

E.Gen(λ; sk) :

1 : return (ϕ(sk), sk)

E.Enc(pk,m; r) :

1 : return ψτ (pk,m, r)

E.Find(sk, i) :

1 : return m∗
i (sk)

E.Dec(sk, c) :

1 : if there exists (m, r) such that c = ψτ (ϕ(sk),m, r):
2 : return m

3 : else : return ⊥

Fig. 6. Ideal Weak PKE. ϕ : SK → PK and ψ : PK × {0, 1}µ × {0, 1}ρ → {0, 1}ℓ are
distributed as above. ρ = Ω(λ) and ℓ = ρ+ µ+Ω(λ).

In order to claim that a black-box anamorphic triplet should be required to
work for the above PKE, we first need to show it to be efficiently simulatable9,
correct and IND-CPA secure. This is addressed in the following Lemma, whose
proof appears in Appendix D.3.

Lemma 1. Relative to the ideal weak PKE (E.Gen,E.Enc,E.Dec,E.Find) pre-
sented in Figure 6, there exists a PKE defined by the triplet (E.Gen,E.Enc,E.Dec)
that is perfectly correct and IND-CPA secure. Moreover the ideal weak PKE can
be simulated efficiently.

3.3 Impossibility Result

Toward contradiction let (AT.Gen,AT.Enc,AT.Dec) be a black-box stateless anamor-
phic tuple, i.e. which accesses the underlying PKE only through oracle calls. By
definition, as long as the given PKE is correct and IND-CPA, such a tuple is
required to be secure according to the security notion in Definition 3. To show
9 This requirement is actually to avoid the PKE oracle to provide help in solving

problems that would be hard in PPT time.
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such a tuple cannot exist, in this section we provide an efficient adversary break-
ing the anamorphism game when we apply the given tuple to the ideal weak
PKE presented in Figure 6.

Our adversary is similar to the one presented for the rejection sampling
triplet. Initially it finds a weak message m∗ and then it queries (several) ci-
phertexts encrypting (m∗, 0) and (m∗, 1). These have a significant chance of
colliding in the real game, whereas in anamorphic mode a collision should only
occur with small probability due to correctness and the lack of state. As opposed
to the rejection sampling case however, more care has to be taken in those argu-
ments. Indeed, if AT.Enc understands m∗ to be a weak message10, it could give
up any attempt to encrypt the anamorphic message and simply return a regular
ciphertext. To avoid this, AT.Enc’s view when asked to encrypt m∗ has to be
almost the same as with a random message.

Crucially, the latter is only possible as we study black-box anamorphic triplets.
Recall these access the underlying PKE through oracle calls and have to be cor-
rect and secure relative to any PKE. In particular, relative to the four oracle
(E.Gen,E.Enc,E.Dec,E.Find), a generic triplet for the PKE defined by the first
three procedures cannot query E.Find, as not every PKE admits such procedure.
This will be the main reason why the underlying anamorphic triplet, in spite of
having access to sk, is almost unable to distinguish weak messages from regular
ones.

Aϑ,ν(pk, sk) :

1 : Get the weak message m∗ ← E.Find(sk, log2 ν)

2 : for i ∈ {1, . . . , ϑ}:
3 : Query c0,i ←$ O(m∗, 0) and c1,i ←$ O(m∗, 1)

4 : if ∄i, j such that c0,i = c1,j :

5 : return 0 // The real PKE is likely to have collisions

6 : else : return 1

Fig. 7. Adversary breaking a black-box anamorphic tuple (AT.Gen,AT.Enc,AT.Dec)
applied to the ideal weak PKE relative to oracles (E.Gen,E.Enc,E.Dec,E.Find). A is
parametrized by ϑ, ν = poly(λ). O is the encryption oracle in the anamorphism game.

Theorem 1. For any (AT.Gen,AT.Enc,AT.Dec) black-box anamorphic triplet ε-
correct on average, where each procedures performs at most q = poly(λ) queries,
when applied to the ideal PKE (E.Gen,E.Enc,E.Dec,E.Find) in Figure 6 there
exists a PPT adversary Aϑ,ν (Figure 7) such that

ν ≥ λ2q4, ϑ =
√
ν/2 ⇒ Adv(Aϑ,ν) = Ω(1).

10 e.g. by finding a collision while producing many fresh encryptions of m∗, which for
an average message should almost never occur.
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Proof. We begin computing the probability that A returns 1 when executed in
the real game. In this case c0,i and c1,i are 2ϑ ciphertexts computed with ran-
domness r0,i, r1,i. Regarding the check in Line 4, two encryptions of the same
messages collides only if their actual random coins (returned by τ , see Sec-
tion 3.2) do. To simplify notation, let us call τ∗(·) = τ(pk,m∗, ·). Then, we claim
that a collision with respect to τ∗ is likely.

Claim 2. With the previous notation

Pr [∃i, j : τ∗(r0,i) = τ∗(r1,i)] ≥
1

2
− 1

2
exp

(
−2ϑ2

ν

)
− negl(λ).

This concludes the first half of the proof as Pr [Aϑ,ν → 1 |RealG] =

= Pr [∃i, j : c0,i = c0,j ]

= Pr [∃i, j : ψτ (pk,m
∗, r0,i) = ψτ (pk,m

∗, r1,j)]

= Pr [∃i, j : τ∗(r0,i) = τ∗(r1,j)] ≥ (1− e−1)/2.

Regarding the behavior of A in AnamorphicG we will prove it returns 1 with
probability bounded by o(λ−1). We do so first showing that the view of AT.Enc
on input m∗ is not statistically far from its view on a random message m. Then
use ε-correctness on average to prove ciphertexts rarely collide. We recall that
q = poly(λ) is the number of queries made by each algorithm of the black-box
anamorphic triplet. For the first step we require the following claim:

Claim 3. Let Viewb and View∗
b be the joint views11 of E.Gen(λ) $→(apk, ask, dk, tk)

and respectively of AT.Enc(apk, dk,m, b) and AT.Enc(apk, dk,m∗, b) with m a ran-
dom message. Then ∆(Viewb,View

∗
b) ≤

q2

2ν + negl(λ).

Let c′0,i, c′1,j be ciphertexts obtained encrypting a random message m instead
of m∗ during the execution of A. The probability of A returning 1 can then be
bounded by

Pr [Aϑ,ν → 1 |AnamorphicG] = Pr [∃i, j : c0,i = c1,j ]

≤ Pr [∃b, i : AT.Dec(ask, tk, cb,i) ̸= b]

≤
∑

b,i
Pr [AT.Dec(ask, tk, cb,i) ̸= b]

≤
∑

b,i

(
Pr
[
AT.Dec(ask, tk, c′b,i) ̸= b

]
+
q2

2ν
+ negl(λ)

)
≤ ϑq2

ν
+ 2ϑε+ negl(λ).

The first inequality follows as any collision of the given type yields a ciphertext
that decrypts incorrectly. The second is a union bound. The third is Claim 3
and the last uses ε-average correctness as mentioned.
11 i.e. the joint distribution of inputs, random coins, and oracle replies.
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Combining the two halves, and recalling ν = λ2q4, ϑ =
√
ν/2, a bound on the

advantage of A can be derived as

Adv(Aϑ,ν) ≥
1− e−1

2
− 1

λ ·
√
2
− negl(λ) = Ω(1)− o(λ−1).

Proof of Claim 2. First of all, to simplify notation, we call R0 the set of r0,i,
R1 the set of r1,i and R their union. We begin with a general result, that is,
assuming all entries in R to be distinct, given a random function f : R→ S and
calling for simplicity n = |R|, nb = |Rb| and Coll(f,R0, R1) the event in which
there exists x0 ∈ R0 and x1 ∈ R1 colliding w.r.t. f , then

Pr [Coll(f,R0, R1)] ≥
2n0n1
n(n− 1)

· Pr [|f(R)| < |R|] .

To show this let F be the set of all functions from R to S, F ∗ the set of functions
with a collision, and π : R→ R a random permutation. Then

Pr [Coll(f,R0, R1)] = Pr [Coll(f ◦ π,R0, R1)]

=
∑

f0∈F
Pr [Coll(f0 ◦ π,R0, R1)] Pr [f = f0]

=
∑

f0∈F∗
Pr [Coll(f0 ◦ π,R0, R1)] Pr [f = f0] .

The first equality follows as f and f ◦ π have the same distribution, while the
last as when f0 /∈ F ∗ then there is no collision at all. Next, given f0 ∈ F ∗, let
x, y ∈ R two points that collide. Then we observe that there are 2n0n1(n − 2)!
permutation mapping x in R0 and y to R1 or vice versa. As this condition would
imply Coll(f0 ◦ π,R0, R1) we have

≥
∑

f0∈F∗

2n0n1(n− 2)!

n!
· Pr [f = f0]

=
2n0n1
n(n− 1)

∑
f0∈F∗

Pr [f = f0] =
2n0n1
n(n− 1)

Pr [|f(R)| < |R|]

Where the last equality follows by our definition of F ∗. This concludes the first
part of the proof.

Returning now to our original problem, let Diff be the event that all rb,i
are different, i.e. |R| = 2ϑ. Note Pr [¬Diff] ≤ ϑ2 · 2−ρ, which is negligible. Note
this does not occur with probability smaller than ϑ22−ρ that is negligible. Then,
conditioning on Diff we can derive from the first part that

Pr [∃i, j τ∗(r0,i) = τ∗(r1,i) |Diff] ≥
2ϑ2

2ϑ(2ϑ− 1)
· Pr [|τ∗(R)| < 2ϑ |Diff]

≥ ϑ

2ϑ− 1
·
(
1− exp

(
− (2ϑ)2

2ν

))
≥ 1

2
·
(
1− exp

(
−2ϑ2

ν

))
where the second inequality is the birthday paradox lower bound as τ∗ has range
of size ν. This completes the proof as we observed Pr [¬Diff] ≤ negl(λ).
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Proof of Claim 3. Define Viewb = (vgen, r,m, v1, . . . , vq) and View∗
b = (vgen, r,m

∗,
v∗1 , . . . , v

∗
q ) the two views, where vgen is the view of E.Gen, r is the random tape

of AT.Enc, and vi, v∗i are the oracle responses.
First we show m∗ is observed (i.e. is involved in a decryption/encryption

query) with negligible probability. Indeed, calling m1, . . . ,mq the observed mes-
sages (at most one per query), as m∗ is uniformly distributed since AT.Gen
performs no query to E.Find, we have that Pr [m∗ ∈ {m1, . . . ,mq}] ≤ q/2µ.

Next, conditioning on vgen = v0 such that m∗ is not observed, we have that
m is uniformly distributed by construction, whereas m∗ is uniform over the set
of non-observed messages. Thus

∆(m|vgen=v0 , m
∗
|vgen=v0

) ≤ q

2µ
⇒ ∆((vgen, r,m), (vgen, r,m

∗)) ≤ 2q

2µ

where the implication follows from the inductive hypothesis and Lemma 3. Next
we show by induction on h ∈ {1, . . . , q} that the statistical distance between the
given view until the h-th query of AT.Enc is

∆((vgen, r,m, v1, . . . , vh), (vgen, r,m
∗, v∗1 , . . . , v

∗
h)) ≤

h2

2ν
+

(q + h)2λ

2µ+1
+

2q

2µ

Let v,v∗ be the two vectors limited to the first h−1 queries. First of all we bound
the probability that AT.Enc and AT.Gen observe a weak message, excluding the
input message m. Calling m1, . . . ,mq+h−1 the observed messages, indeed, m∗

i :=
m∗

i (sk), for i ∈ {1, . . . , λ}, are uniformly distributed (until correctly guessed).
Thus

Pr [∃i, j : m ̸= m∗
i (sk) = mj ] ≤

(q + h)λ

2µ
.

next, conditioning on v = v0 = v∗ for which the above does not happen, we
study the statistical distance of vh, v∗h. According to the type of the h-th query,
three cases have to be considered.

– E.Gen(sk′): The reply ϕ(sk′) is equally distributed in both views.
– E.Dec(sk′, c′): If sk′ ̸= sk the reply is the same in both cases. If c′ was

previously obtained as the encryption of m′, the reply is consistent (i.e.
it is m′) in both views. Finally, if c′ was not previously observed, then in
both views the probability that c′ is not decrypted to ⊥ is smaller than
2µ+ρ/(2ℓ − (h+ q)). Thus in this case

∆(vh|v=v0
, v∗h|v∗=v0

) ≤ 2µ+ρ

2ℓ − 2q
≤ h

ν
.

The last inequality holds for sufficiently large λ as ℓ− (µ+ ρ) = Ω(λ).
– E.Enc(pk′,m′; r′): If the query was already performed the result is consistent.

If pk ̸= pk′ the response’s distribution is the same. If m′ ̸= m0 (where m0

is the third entry of v0, defined above) and the query was not performed,
let C be the set of observed ciphertexts. Then in both cases c is uniformly
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distributed over {0, 1}ℓ \ C. Note this is also true as we assumed that weak
messages (other than m0) were not queried before.
Finally, if the query is E.Enc(pk,m0; r

′), let C0 be the ciphertext obtained
so far as encryptions of m0. Then in the first distribution c is uniform over
{0, 1}ℓ \ C. In the second one instead c collides with a previously observed
encryption of m0 with probability 1/ν and is otherwise uniformly distributed
over {0, 1}ℓ \ C. More precisely

c0 ∈ C0 ⇒ Pr [c = c0 |v∗ = v0] =
1

v
c0 ∈ C \ C0 ⇒ Pr [c = c0 |v∗ = v0] = 0

c0 ∈ {0, 1}ℓ \ C ⇒ Pr [c = c0 |v∗ = v0] =

(
1− |C0|

ν

)
· 1

2ℓ − |C|
.

We thus conclude that in this case ∆(vh|v=v0
, v∗h|v∗=v0

) ≤ |C0|/ν ≤ h/ν.

Combining this with the inductive hypothesis yields the thesis (by Lemma 3).
Finally, this proves the inductive statement to hold for h = q which is our thesis
up to observing that the other two terms are negligible as µ = Ω(λ).

Remark 2. Our result can actually be strengthened to show (stateless) black-box
triplet with ε-correctness on average cannot exist, where ε = o(1/q2). We leave it
as an intriguing open problem to understand whether secure constructions with
polynomial error Ω(1/q2) exist.

4 Positive Results for Stateless Black-Box Triplets

Having shown that no stateless black-box anamorphic triplet can be secure for
all PKE schemes, in this section we consider the following two questions:

1. What (mildly) weaker security notion can still be satisfied?
2. Under what condition on the PKE can plain anamorphic security be achieved?

The first one is answered providing a relaxation of the definition in [PPY22]
which we call semi-adaptive security. We answer the second one instead restrict-
ing to PKEs with high min-entropy ciphertexts (see Definition 1). This suffices
to rule out pathological cases (e.g. Figure 4). Although these restrictions al-
low bypassing Theorem 1, we finally show that bounds and negative results
in [CGM24b] extend to these settings.

4.1 Semi-Adaptive AE

The core issue exploited in the proof of Theorem 1 is that the adversary can
access in the query phase both public and private keys. To avoid such class
of attacks, we now discuss a relaxation of Definition 3. The only difference we
introduce is that ask is provided at the end of the query phase instead of the
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beginning. We call this new definition semi-adaptive AE. The name indeed is
reminiscent of semi-adaptive security for Functional Encryption [CW14], where
challenge queries are performed before observing (functional) secret keys.

Formally, let Π = (E.Gen,E.Enc,E.Dec) be a PKE scheme equipped with an
Anamorphic Triplet Σ = (AT.Gen,AT.Enc,AT.Dec). The Semi-Adaptive Anamor-
phism game, for A a PPT adversary, is defined in Figure 8. We define the ad-
vantage of an adversary A in breaking the Semi-Adaptive property as

AdvSA-Anam
A,Π,Σ (λ) = |Pr [SA-RealGΠ(λ,A) = 1]− Pr [SA-AnamGΣ(λ,A) = 1]| .

SA-RealGΠ(λ,A)

1 : (pk, sk)←$ E.Gen(λ)

2 : Run A(pk)
3 : for i = 1, . . . , poly(λ):
4 : (mi, m̂i)←$ A
5 : ci ←$ E.Enc(pk,mi)

6 : Give ci to A
7 : Give sk to A
8 : return A’s output

SA-AnamGΣ(λ,A)

1 : (apk, ask, dk, tk)←$ AT.Gen(λ)

2 : Run A(apk)
3 : for i = 1, . . . , poly(λ):
4 : (mi, m̂i)←$ A
5 : ci ←$ AT.Enc(apk, dk,mi, m̂i)

6 : Give ci to A
7 : Give ask to A
8 : return A’s output

Fig. 8. Semi-Adaptive Anamorphic Encryption game.

Definition 7 (Semi-Adaptive AE). A PKE Π equipped with an Anamorphic
Triplet Σ is said to be Semi-Adaptive Anamorphic if for every PPT adversary A
it holds that

AdvSA-Anam
A,Π,Σ (λ) ≤ negl(λ).

4.2 Rejection-Sampling Security

Having formally defined a weaker security notion for Anamorphic Encryption,
our next step is proving RS to achieve it generically. This will provide an answer
to the first question asked at the beginning of this section, as RS is stateless,
black-box, and we show security to hold for any PKE. As mentioned, contrived
schemes such as the counter-example in Section 3.1, should not affect the proof
anymore. Indeed, according to our new notion, an adversary can only query
messages that depend on the public key, thus excluding adversaries such as the
one in Figure 7. This formally leads to the following Theorem, proven in the
Appendix, Section D.5.

Theorem 2. The rejection sampling triplet RS described in Figure 3 when ap-
plied to an IND-CPA secure PKE, yields a black-box Semi-Adaptive Anamorphic
Encryption scheme.
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Alternatively, in order to achieve plain anamorphic security with black-box
construction, some restrictions have to be imposed on the class of PKEs the
triplet is proven secure with. In this direction, answering our second question,
we show RS to be secure if the underlying PKE has high min-entropy ciphertexts
(Definition 1). This offers a trade-off between security levels and generality. The
first theorem indeed captures all PKE but provides weaker guarantees. The
second one only applies to a (broad) class of PKEs, but guarantees stronger
security. A proof for this second theorem appears in the Appendix, Section D.5.

Theorem 3. The triplet RS when applied to an IND-CPA PKE with high min-
entropy ciphertexts yields a black-box Anamorphic Encryption scheme.

4.3 Extension of Negative Results

To conclude this section, we show how the negative results in [CGM24b] can
be extended to our new definition. More precisely, in [CGM24b] the RS tuple
was claimed to be optimal regarding covert bits per ciphertext, as no black-
box AE can have super-polynomial message space, and stronger notions such
as Fully-Asymmetric security [CGM24a] cannot be achieved altogether. Both
results are technically surpassed by our new impossibility in Section 3, based
on the observation that RS does not attain the claimed generality. As we have
shown before however, RS can still be proven secure either

– According to our weaker notion (Definition 7) for any PKE that is correct
and IND-CPA.

– According to the original anamorphism notion (Definition 3) for those PKE
that are correct, IND-CPA and have high min-entropy ciphertexts.

This leaves open the question on whether RS is optimal in both contexts. We
show this to be the case by extending the message-space upper bound and the
impossibility of Fully-Asymmetric AE to both cases. This is formally stated in
the following corollary.

Corollary 1. Let (AT.Gen,AT.Enc,AT.Dec) be a black-box anamorphic triplet
achieving Semi-Adaptive AE and ε-correctness on average, for the class of PKEs
that are correct, IND-CPA and have high min-entropy ciphertexts. Then

1. Its message space M must satisfy |M | = poly(λ).
2. There exists a PPT adversary breaking weak asymmetric security [CGM24b]

(see Appendix A.3).

Proof of Corollary 1. Regarding the limitation to PKEs with high min-entropy
ciphertexts it suffices to observe that the ideal encryption scheme proposed in
[CGM24b, Sec. 3.1] has high min-entropy ciphertexts. This is true as, given a
message m, a public key pk and fixing a PKE oracle, the encryption is defined
as ψ(pk,m, r) for a random string r ∈ {0, 1}ρ where ρ = Ω(λ) and ψ is a (fixed)
injective function. Thus

H∞(E.Enc(pk,m)) = H∞(ψ(pk,m, r)) = H∞(r) = ρ = Ω(λ).
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Regarding the Semi-Adaptive notion we assume the triplet to achieve, we need
to show that Lemmas 1, 2 and 3 (the latter being referred as the ciphertext-
selection lemma) in [CGM24b] works even in this case. The Lemmas are restated
in Appendix C as Lemma 5, Lemma 6 and Lemma 7 respectively.

– Lemma 5 still applies as the adversary makes no encryption query, and is
therefore also a valid adversary for the game in Definition 7.

– Lemma 6 still applies because the adversary (see [CGM24b, Fig. 5]) makes
no usage of the secret key. Thus it is also a valid reduction to Definition 7.

– Lemma 7 still applies since the adversary (see [CGM24b, Fig. 6]) only uses
the secret key after performing all its encryption queries. It is then a valid
reduction also to Definition 7 up to syntactical adaptations.

In particular, given the ciphertext selection lemma, the message space upper
bound follows through an information theoretic argument. Analogously, the ad-
versary breaking weak-asymmetric anamorphic security’s advantage is proven
to be significant only through the ciphertext selection lemma and information-
theoretic arguments. This concludes the proof of our Corollary.

5 Extensions to Non-Black-Box Techniques

In this and the following section we study whether known non-black-box tools
could be used to bypass our negative results. Recall that for plain Anamor-
phic Encryption these include the impossibility in Theorem 1 and the bound in
Corollary 1 (first part). For Fully-Asymmetric Anamorphic Encryption instead
only Corollary 1 (second part) applies. Regarding non-black-box techniques, we
specifically focus on the usage of NIZKs [BFM88], garbling [Yao86] and obfus-
cation [BGI+01].

This section is devoted to plain Anamorphic Encryption, providing evidence
suggesting that those tools would not be helpful. Section 6 instead addresses the
case of Fully-Asymmetric anamorphism. In particular, we show how it can be
generically realized (albeit with small message space) from obfuscation.

5.1 Verifiable Obfuscation

In order to address the above question, we begin introducing a (strong) prim-
itive that subsumes NIZK, garbling and obfuscation. We target Virtual-Black-
Box Verifiable Obfuscation (VO), a natural extension of the notion presented in
[BGJS16]. Informally, VO enhances plain obfuscation by allowing to obfuscate a
circuit C along with a (public) predicate P . Everyone can then later verify that
P (C) = 1 given only P and an obfuscation of C.

Next, we need to adjust our model. Note that assuming powerful tools such
as VO relative to a PKE oracle is not sufficient to bypass our negative results.
The issue is that obfuscation-like techniques do not relativize, or informally, we
cannot obfuscate oracles12. To address this, we study black-box constructions
12 see for instance the discussion in [HJK+16].
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relative to the given PKE oracles and an ideal obfuscator. To obfuscate, it simply
assigns a random label and to evaluate, it retrieves the circuit associated to said
label and evaluates it13. The advantage is that circuits with oracle-call gates to
the PKE can now be obfuscated. More in detail, our ideal obfuscator is defined
by a length-preserving random permutation ξ : {0, 1}∗ → {0, 1}∗, i.e. such that
ξ : {0, 1}n → {0, 1}n is a random permutation for all n. A full description is
provided in Figure 9. Is easy to see ideal VO implies the aforementioned tools.
This is formally stated in the following Lemma. A proof appears in the Appendix,
Section D.6.

VO.Obf(C,P ) :

1 : Sample r ←$ {0, 1}λ

2 : C̃ ← ξ(C,P, r)

3 : return C̃

VO.Eval(C̃, x) :

1 : (C,P, r) = ξ−1(C̃)

2 : return C(x)

VO.Vfy(C̃, P ) :

1 : (C,P ′, r) = ξ−1(C̃)

2 : if P ̸= P ′: return 0

3 : else : return P (C)

Fig. 9. Ideal Verifiable Obfuscator. ξ : {0, 1}∗ → {0, 1}∗ is a length-preserving truly
random permutation. A representation of C may contain oracle calls/gates to the PKE.

Lemma 2. Relative to a PKE oracle and the ideal VO in Figure 9, there exist:

– NIZKs for all NP relations R relative to the given PKE oracles, i.e. such
that R may depend on the PKE input/output relations.

– Virtual Black-Box emulation, and in particular indistinguishability obfus-
cation and garbling, for circuits C of polynomial size relative to the PKE
oracles, i.e. which may contain PKE gates.

5.2 Compiling Out Verifiable Obfuscation

We now show that our negative results, as well as those presented in [CGM24b],
regarding plain Anamorphic Encryption holds even relative to an ideal VO. We
do so proving that any black-box anamorphic triplet defined relative to the PKE
oracle and the ideal VO, can be compiled into a new triplet that does not make
use of verifiable obfuscation, but is still secure.

The idea is that sender and receiver do not need to hide anything from
each other. Hence the sender could safely share the random coins he used to
generate the public parameters with the sender, rendering NIZK or obfuscation
useless. More formally, assume (AT.Gen,AT.Enc,AT.Dec) to be a black-box PKE
relative to a verifiable obfuscation oracle (Figure 9). We then produce a new
scheme (AT.Gen∗,AT.Enc∗,AT.Dec∗) that does not access the VO oracle and is
as secure as the initial triplet. This is presented in Figure 10.

13 this approach is not new, see for instance [GHMM18, Section 4] for ideal garbling.
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AT.Gen∗(λ)

1 : Sample a PRP key k
2 : (apk, ask, dk)←$ AT.GenVOk (λ)

3 : dk∗ ← (dk, k)

4 : return (apk, ask, dk∗)

AT.Dec∗(ask, dk∗, c)

1 : Parse dk∗ = (dk, k)

2 : m̂← AT.DecVOk (ask, dk, c)

3 : return m̂

VO.Evalk(C̃, x)

1 : (C,P, r)← f−1
k (C̃)

2 : return C(x)

AT.Enc∗(apk, dk∗,m, m̂)

1 : Parse dk∗ = (dk, k)

2 : c←$ AT.EncVOk (apk, dk,m, m̂)

3 : return c

VO.Obfk(C,P )

1 : Sample r ←$ {0, 1}λ

2 : C̃ ← fk(C,P, r)

3 : return C̃

VO.Vfyk(C̃, P
′)

1 : (C,P, r)← f−1
k (C̃)

2 : return (P = P ′) ∧ P (C)

Fig. 10. Compiler from black-box AE relative to a verifiable obfuscation oracle. fk is
a length-preserving PRP. VOk = (VO.Obfk,VO.Evalk,VO.Vfyk).

Theorem 4. Let (AT.Gen,AT.Enc,AT.Dec) be a [Semi-Adaptive] black-box anamor-
phic triplet relative to a verifiable obfuscation oracle. If f is a length-preserving
strong PRP, then (AT.Gen∗,AT.Enc∗,AT.Dec∗) is a secure [Semi-Adaptive] black-
box anamorphic triplet.

A proof of the above theorem appears in Appendix D.7.

Remark 3. The compiler presented in Figure 10 only preserves anamorphic se-
curity (or weaker variants thereof). Stronger notions such as Fully-Asymmetric
security are not preserved. In particular, this does not violate negative results in
[CGM24b] (and our extension in Corollary 1) regarding the plain impossibility
of Fully-Asymmetric AE.

6 Generic Fully-Asymmetric AE

In this section we keep studying whether our impossibility results could be by-
passed through non-black-box techniques, focusing now on Fully-Asymmetric
AE. In such case, we show constructions are possible from obfuscation. Specifi-
cally, we prove two adaptations of the Sahai-Waters encryption to achieve gener-
ically14:

– Semi-Adaptive Anamorphic Security 7.
– Fully-Asymmetric Security 6.

14 i.e. regardless of the underlying PKE.
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The first one applies to any secure PKE, but suffers an exponential security
loss (as in [SW14]). The second one instead only suffers a polynomial loss in its
reductions, but requires the PKE to be perfectly correct. As RS, both are also
anamorphic extensions [BGH+24].

6.1 From Obfuscation

Our first construction informally follows by interpreting the RS triplet as a secret-
key encryption scheme, and turning it into a public-key one using the same
strategy of [SW14]. In details, we modify RS (see Figure 3) as follows: First,
the PRF is replaced with a puncturable PRF. Next, given a PRG G, we set the
double key as C̃, i.e. the obfuscation of a program that, on input m and a seed
s, returns the evaluation of the PRF on the encryption of m with random coins
G(s). In this way, in order to encrypt (m, m̂) the sender looks for a seed such that
C̃(m, s) = m̂ and eventually returns an encryption of m with randomness G(s).
The PRF key k is instead kept as the trapdoor key, and decryption is performed
computing m̂ = fk(c). A full description of the circuit used for obfuscation is
presented in Figure 11 while the resulting scheme is illustrated in Figure 12. For
now on, we use κ to refer to the value H∞(E.Enc(pk,m)).

Cpk,k(m, s)

1 : Encrypt c← E.Enc(pk,m;G(s))

2 : Return fk(c)

Fig. 11. Circuit used in the Anamorphic Encryption procedure.

Theorem 5. If (E.Gen,E.Enc,E.Dec) is an IND-CPA public key encryption sat-
isfying Definition 1, G : {0, 1}σ → {0, 1}ρ is a PRG with σ = κ/2, f is a punc-
turable PRF, and iO is a secure obfuscator. Then the Anamorphic Triplet in
Figure 12 yields a Fully-Asymmetric Anamorphic Encryption.

A proof of the above theorem appears in Appendix D.8. We remark that,
as for the case of RS, the assumption on the PKE having high min-entropy
ciphertexts could be removed, although in such case the scheme achieves only
semi-adaptive anamorphic security.

6.2 From Obfuscation and Perfect Correctness

Our first construction, obtained by adapting Sahai-Waters’ scheme, inherits an
exponential loss in the security parameter. While in general such a loss is ac-
ceptable, as it only means that a higher λ has to be chosen, in the context of
Anamorphic Encryption this might not be the case. Indeed it could be possible
to choose a concrete λ so that breaking the PKE is unfeasible, but distinguishing
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AT.Gen(λ)

1 : Sample apk, ask←$ E.Gen(λ)

2 : Generate k a PRF key for f

3 : Obfuscate C̃ ←$ iO(Capk,k)

4 : dk← C̃, tk← k

5 : return (apk, ask, dk, tk)

AT.Enc(apk, dk,m, m̂)

1 : for ϑ times:
2 : Sample s←$ {0, 1}σ

3 : if C̃(m, s) = m̂: // C̃ = dk.

4 : return c← E.Enc(apk,m;G(s))

5 : // After ϑ failed attempts

6 : return E.Enc(apk,m)

AT.Dec(ask, tk, c)

1 : Parse tk = k the PRF key
2 : return fk(c)

Fig. 12. Fully-Asymmetric Anamorphic Encryption from iO. G : {0, 1}σ → {0, 1}ρ is
a PRG with {0, 1}ρ being the random coins space of E.Enc.

regular from anamorphic ciphertexts is not hard. For this reason we propose an
alternative construction avoiding the above issue.

From a technical perspective, the security loss mentioned above comes from
the PRG G usage. This is used to ensure that the set of ciphertexts reachable
via E.Enc(pk,m;G(s)) is sparse in the set of all ciphertexts, which later means
that puncturing fk on the challenge ciphertext yields a functionally equivalent
program. This is necessary to then rely on iO.

We address the issue removing G. For the proof we use a different strategy,
assuming the PKE to achieve perfect correctness. First, we modify the obfuscated
program adding an unsatisfiable branch in which a fixed output is returned.
Such condition in our case is that on input (m, r), the obfuscated program C̃
checks whether m = m∗

1 and E.Enc(apk,m; r) = c∗, where m∗
1, c

∗ are hard-coded
in C̃ and c∗ is an encryption of m∗

0, i.e., a message different from m∗
1. Then,

using IND-CPA of the PKE we make this branch reachable by setting c∗ as an
encryption of m∗

1. Note that perfect correctness is essential as otherwise it may
be possible to find m′ ̸= m and r such that c∗ = E.Enc(apk,m′; r).

Formally, the new scheme is obtained setting Cpk,k(m, r) as the circuit re-
turning fk(c) with c ← E.Enc(pk,m; r), and modifying AT.Enc in Figure 12 by
sampling r ←$ {0, 1}ρ and if C̃(m, r) = m̂ return E.Enc(apk,m; r).

Theorem 6. If (E.Gen,E.Enc,E.Dec) is a perfectly correct IND-CPA secure en-
cryption scheme with high min-entropy ciphertexts (Definition 1), f is a punc-
turable PRF and iO a secure obfuscator, then the Anamorphic Triplet described
above yields a Fully-Asymmetric Anamorphic Encryption scheme. Namely, for
any PPT distinguisher D1 that distinguishes RealG from AnamorphicG there ex-
ists an adversary B1 such that

Adv(D1) ≤ AdvPRF(B1) + q2ϑ2 · 2−κ
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and, for any PPT adversary D2 that wins the game FAsyAnam-IND-CPA there
exist adversaries B2,B3,B4 such that

Adv(D2) ≤ 2(ϑ+ 1)AdvIND-CPA(B2) + 2AdviO(B3) + AdvPRF(B4) + 3ϑ2 · 2−κ.

Where q = poly(λ) is the number of queries asked by a distinguisher and ϑ =
poly(λ) is the number of attempts that AT.Enc does to anamorphically encrypt.

A proof of the above theorem appears in Appendix D.9. Again removing the
assumption on the PKE having high min-entropy ciphertexts still allows proving
the scheme satisfies semi-adaptive anamorphic security, along with the regular
Fully-Asymmetric notion.
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A Supplementary Definitions

A.1 Pseudorandom Permutations

Definition 8 (PRP). Let f : {0, 1}s×{0, 1}n → {0, 1}n, where s, n = poly(λ),
then f is a Pseudorandom Permutation (PRP) if for every PPT distinguisher D∣∣∣Pr [Df∗

(λ)→ 1
]
− Pr

[
Dfk(λ)→ 1

]∣∣∣ ≤ negl(λ)

where f∗ is a truly random permutation, and the key k is random and uniformly
sampled from {0, 1}s.

If the above condition hold when D has access to both fk and f−1
k , we say f

to be a strong PRP [LR88]. For PRP taking values over a set of variable length
strings, the notion length-preserving PRF/PRP [BR99] will come in handy.

Definition 9 (Length-Preserving PRP). Given S ⊆ {0, 1}∗, a PRP f :
{0, 1}s×S → {0, 1}∗ is length-preserving if, for all k ∈ {0, 1}s and for all x ∈ S,
it holds that |fk(x)| = |x|.

If f is also a strong PRP then f is a strong length-preserving PRP.

A.2 Correctness of Anamorphic Encryption

Let Π be a PKE scheme equipped with an Anamorphic Triplet Σ = (AT.Gen,
AT.Enc,AT.Dec). The correctness game, for b ∈ {0, 1} and A a PPT adversary,
is defined in Figure 13.
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CorbΠ,Σ,m(A)

1 : (apk, ask, dk, tk)←$ AT.Gen(λ)

2 : return AOb(apk,ask,dk,tk,·)(apk, ask) where

3 : O0(apk, ask, dk, tk, m̂) = AT.Dec(ask, tk,AT.Enc(apk, dk,m, m̂))

4 : O1(apk, ask, dk, tk, m̂) = m̂

Fig. 13. Anamorphic Encryption correctness game.

And we define the advantage of an adversary A in breaking the correctness
property as

AdvcorA,Π,Σ,m(λ) =
∣∣Pr [Cor0Π,Σ,m(A) = 1

]
− Pr

[
Cor1Π,Σ,m(A) = 1

]∣∣ .
Definition 10 (δ-Correctness). An Anamorphic Encryption scheme Π equipped
with Anamorphic Triplet Σ is said to be δ-correct for a negligible δ(λ) if for an
arbitrary m ∈M and for all PPT adversary A it holds that

AdvcorA,Π,Σ,m(λ) ≤ δ(λ).

A.3 Weak Asymmetric Anamorphic Encryption

Let D be a PPT adversary, b ∈ {0, 1} and Σ = (E.Gen,E.Enc,E.Dec) be an
Anamorphic Triplet. The Weak Asymmetric AE security game is then detailed
in Figure 14. The advantage of a distinguisher D for such game is defined as

AdvWeak-Asy-Anam
D,Σ (λ) :=

∣∣Pr [Weak-AsyAnam-IND-CPA0
Σ(λ,D) = 1

]
−Pr

[
Weak-AsyAnam-IND-CPA1

Σ(λ,D) = 1
]∣∣ .

Weak-AsyAnam-IND-CPAb
Σ(λ,D)

1 : (apk, ask, dk, tk)←$ E.Gen(λ)

2 : (m, m̂0, m̂1)←$ D(apk, dk)

3 : c←$ E.Enc(apk, dk,m, m̂b)

4 : return D(c)

Fig. 14. Weak Asymmetric Anamorphic Encryption security game.

Definition 11 (Weak Asymmetric Anamorphic Encryption). An Anamor-
phic Encryption scheme Π equipped with an anamorphic triplet Σ is a Weak
Asymmetric Anamorphic Encryption scheme if for every PPT distinguisher D

AdvWeak-Asy-Anam
D,Σ (λ) ≤ negl(λ).

33



A.4 Indistinguishability Obfuscator and Puncturable PRFs

We briefly recall the definitions of Indistinguishability Obfuscator [BGI+01] and
Puncturable PRFs [BW13, KPTZ13, BGI14], taking notation from [SW14].

Definition 12 (Indistinguishability Obfuscator). A uniform PPT algorithm
iO is called an Indistinguishability Obfuscator for a circuit class {Cλ} if:

– For all λ ∈ N, for all C ∈ Cλ, for all inputs x, it holds that

Pr
[
C ′(x) = C(x) : C ′ ←$ iO(λ,C)

]
= 1.

– For any PPT adversaries S,D, there exists a negligible ε such that, given
(C0, C1, σ)←$ S(λ), if Pr [∀x,C0(x) = C1(x)] > 1− ε(λ), then it holds that

|Pr [D(σ, iO(λ,C0)) = 1]− Pr [D(σ, iO(λ,C1)) = 1]| ≤ ε(λ).

Definition 13 (Puncturable PRF). A triplet of algorithm (PRF.Gen,PRF.Eval,
PRF.Puncture) is said to be a Puncturable PRF if, given n(λ),m(λ) two com-
putable functions, the two following requirements are satisfied:

– For every PPT adversary A such that A(λ) outputs a set S ⊆ {0, 1}n, then
for all x ∈ {0, 1}n \ S, it holds that

Pr [PRF.Eval(k, x) =PRF.Eval(kS , x) :

k ←$ PRF.Gen(λ), kS ← PRF.Puncture(k, S)
]
= 1.

– For every PPT adversary (A1,A2) such that A1(λ) outputs a set S ⊆ {0, 1}n
and a state σ, given k ←$ PRF.Gen(λ), kS ← PRF.Puncture(k, S), it holds
that

|Pr [A2(σ, kS , S,PRF.Eval(k, S)) = 1]

−Pr [A2(σ, kS , S, U(m(λ) · |S|)) = 1]| = negl(λ).

Where PRF.Eval(k, S), for S = {x1, . . . , xl}, denotes the concatenation of
PRF.Eval(k, x1), . . . ,PRF.Eval(k, xl) and U(ℓ) denotes the uniform distribu-
tion over ℓ bits.

B Supplementary Lemmas

B.1 Statistical Distance

Given two discrete random variables x, y distributed over a set S, we define their
statistical distance (or total-variation or ℓ1) as

∆(x, y) =
1

2

∑
a∈S

Pr [x = a]− Pr [y = a] .

The following lemma will come in handy to inductively study the statistical
distance of two tuples of random variables.
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Lemma 3. Given four random variables x1, x2 ∼ X, y1, y2 ∼ Y and setting
X+ = {a ∈ X : Pr [xi = a] > 0, i ∈ [2]}, if there exists A ⊆ X such that

P (x1 ∈ A) ≤ ε1, ∆(x1, x2) ≤ ε2, ∆(y1|x1=x, y2|x2=x) ≤ ε3 ∀x ∈ X+ \A,

for positive real numbers ε1, ε2, ε3 ∈ R+, then ∆((x1, y1), (x2, y2)) ≤ ε1+ε2+ε3.

B.2 Rejection Sampling

The following Lemma shows that performing rejection sampling with a predicate
that is independent from the candidate output does not alter the distribution.
This represents a common step in the security proof of RS as well as our con-
struction in Section 6.

Lemma 4. Given probability density p over X , c1, . . . , cϑ+1 independently sam-
pled from this distribution and b1, . . . , bϑ ∼ {0, 1}, let c be equal to ci for the
smallest i such that bi = 1, or cϑ+1 if no such i exists.

If b1, . . . , bϑ are distributed uniformly and independently from each others
and from c1, . . . , cϑ+1, then c is distributed over X with probability density p.

Proof. For any c0 ∈ X , we proceed computing Pr [c = c0] =

=

ϑ∑
i=1

Pr

[
ci = c0

∣∣∣∣ b1 = . . . = bi−1 = 0

bi = 1

]
· Pr

[
b1 = . . . = bi−1 = 0

bi = 1

]
+

+ Pr [cϑ+1 = c0 | b1 = . . . = bϑ = 0] · Pr [b1 = . . . = bϑ = 0]

=

ϑ∑
i=1

p(c0) ·
1

2i
+ p(c0) ·

1

2ϑ
= p(c0).

The second equality follows as the bits bi are independently distributed and
uniform over {0, 1}, and the fact that Pr [ci = c0] = p(c0) as we assumed ci to
follow the distribution defined by p. The thesis follows.

C Lemmas from [CGM24b]

Lemma 5. If Σ = (AT.Gen,AT.Enc,AT.Dec) is an anamorphic triplet for the
ideal PKE Π, then there exists a negligible ε such that

(apk, ask, dk, tk)←$ AT.Gen(λ) ⇒ Pr [ϕ(ask) ̸= apk] ≤ ε(λ).

Lemma 6. Given Σ = (AT.Gen,AT.Enc,AT.Dec) a black-box anamorphic triplet
and uniformly sampled s, r and messages m, m̂, let

(apk, ask, dk, tk)← AT.Gen(λ; s), c← AT.Enc(apk, dk,m, m̂; r).

For any set S independent from r, with |S| ≤ poly(λ) then Pr [c ∈ S] ≤ negl(λ).
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Definition 14. Given a black-box anamorphic triplet Σ we define EEnc
in to be

the set of tuples (pk,m, r, c) such that AT.Enc on input in = (apk, ask,m, m̂, r)
eventually query c = E.Enc(pk,m; r).

Definition 15. Given input in = (apk, ask,m, m̂, r) the set of valid ciphertexts
queried by AT.Enc is CEnc

in = {c : (apk,m, · , c) ∈ EEnc
in }.

Lemma 7. Given Σ = (AT.Gen,AT.Enc,AT.Dec) a black-box anamorphic triplet,
let r, s be uniform random coins and m, m̂ uniformly sampled messages. Setting

(apk, ask, dk, tk) ← AT.Gen(λ; s), in = (apk, dk,m, m̂, r), c← AT.Enc(in),

if ρ = Ω(λ) and ℓ− ρ = Ω(λ), then Pr
[
c /∈ CEnc

in

]
≤ negl(λ).

D Postponed Proof

D.1 IND-CPA of the Counterexample PKE

Proof of Proposition 1. Correctness follows as F is injective, B is disjoint from
the original PKE’s ciphertext space, and because of the initial PKE’s correctness.

Regarding IND-CPA, let A be an adversary for the weakened scheme. We
design B breaking the original PKE. Informally, on input pk, B samples a random
message m∗, computes y∗ = F (m∗) and runs A(pk, y∗). Once A returns m0,m1,
it either aborts if one of them equals m∗, or sends them to its oracle otherwise.
Upon receiving c, it forwards the reply to A and eventually returns the same bit
A outputs upon halting. A detailed description of B is given in Figure 15.

BO(pk) :

1 : m∗ ←$ M

2 : y∗ = F (m∗)

3 : Run A(pk, y∗)
4 : (m0,m1)←$ A
5 : if m0 = m∗ ∨m1 = m∗ then

6 : abort

7 : c←$ O(m0,m1)

8 : Give c to A
9 : return A’s output

Fig. 15. Adversary B for the IND-CPA of the original PKE from adversary A for the
IND-CPA of the weakened PKE. O is the encryption oracle for the IND-CPA game
provided to B.

Define Abort as the event in which B aborts before making its oracle query,
i.e., the event in which m0 or m1 is a preimage of y∗. Using the security of
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F we show it to occur with negligible probability. Let C be the following ad-
versary attempting to invert F : on input y∗ it generates (pk, sk) with E.Gen,
runs A(pk, y∗) and, once it returns (m0,m1), checks whether F (m0) = y∗ or
F (m1) = y∗. Clearly, C simulates perfectly the view of A executed by B and it
successfully inverts F if and only if B aborts. Thus Pr [Abort] = Adv(C) which is
negligible because F is an injective OWF.

Finally, if ¬Abort, B perfectly simulates the encryption oracle because E.Enc∗

behaves as E.Enc on all messages but m∗. We thus conclude that Adv(A) ≤
Adv(B) + Pr [Abort] ≤ negl(λ).

D.2 Counterexample to Rejection Sampling

Before providing the proof of Claim 1, we recall the Markov lower-bound. Let
X be a real random-variable with 0 ≤ X ≤ t and µ = E[X]. Then

Pr [X ≤ α] ≤ t− µ
t− α

.

Proof of Claim 1. Without loss of generality, assume RS.Enc first computes ϑ
ciphertexts, and later select the correct one if possible. Let C0, C1 be the sets of
those ϑ ciphertexts15 RS.Enc computed by RS.Enc when encrypting (m∗, 0) and
(m∗, 1). We will show that up to probability 1/4, each set has size at least ϑ/2
through a Markov argument. Indeed, as |B| = 4ϑ, on expectation

E[|Cβ |] = 4ϑ

(
1−

(
1− 1

4ϑ

)ϑ
)
≥ ϑ · 4

(
1− 1

4
√
e

)
≥ ϑ · 7

8

where the first equality is taken summing the indicators c ∈ Cβ for c ∈ B, and
the last can be verified numerically and is only used for notational convenience.
Using Markov lower bound, as 0 ≤ |Cβ | ≤ ϑ, we have that

Pr [|Cβ | ≤ ϑ/2] ≤
ϑ− (7/8)ϑ

ϑ− (1/2)ϑ
=

1

4
.

Up to probability 1/2 we can then assume |C0| ≥ ϑ/2 and |C1| ≥ ϑ/2. Finally,
under such condition, Failβ only occurs if fk assumes value 1−β for all elements
in Cβ . As this occurs with negligible probability for a truly random function,
because ϑ/2 = Ω(λ), it also occurs with negligible probability for fk. We thus
conclude that

Pr [Fail] ≤ Pr [Fail0] + Pr [Fail1]

≤ Pr [Fail0 | |C0| > ϑ/2] + Pr [|C0| ≤ ϑ/2]
+ Pr [Fail1 | |C1| > ϑ/2] + Pr [|C1| ≤ ϑ/2]

≤ 1/2 + negl(λ).

15 These sets may not be distinct.
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D.3 IND-CPA of the Ideal PKE

Proof of Lemma 1. Perfect correctness immediately follows by the definition of
ψ. Regarding IND-CPA, let A be a PPT adversary with oracle access to the
four procedures in Figure 6. To fix notation let A(pk) → (m0,m1), and c∗ ←$

E.Enc(pk,mb) the challenge ciphertext sent, where b is the challenge bit and
pk = ϕ(sk). We assume A to perform at most q = poly(λ) oracle calls. Then we
define three bad events. The first one BK captures A finding sk. The second one
BM occurs when m0 or m1 is weak with respect to pk. The third one BC says
that A find (pk,m, r) whose encryption yields c∗. Formally

– BK: A queries E.Gen, E.Dec or E.Find on sk.
– BM: mβ ∈ {m∗

i (sk)}λi=1 for some β ∈ {0, 1}.
– BC: A queries c∗ ← E.Enc(pk,m; r).

We claim these to be negligible.

Claim 4. Let Bad = BK ∨ BM ∨ BC. Then Pr [Bad] ≤ negl(λ).

Let v the view16 of A. Then we show that, for all v0 satisfying ¬Bad, A
has almost no information on b, i.e., conditioning on v = v0 then b is almost
uniformly distributed from the point of view of A. Toward this goal, let R0 and
R1 be random coins not figuring in A’s encryption queries respectively for m0

andm1 with public key pk. Further let us call fb(·) = E.Enc(pk,mb; ·). Then, from
¬BK, c∗ is uniformly distributed over f0(R0)∪f1(R1) conditioning on v = v0, as
it was never decrypted and never obtained through encryption queries. Moreover,
as m0,m1 are not weak, |fγ(Rβ)| = |Rβ | (for γ, β ∈ {0, 1}). Since b = 0 if and
only if c∗ ∈ f0(R0) we have

Pr [b = 0 | v = v0] = Pr [c∗ ∈ f0(R0) | v = v0] =
|f0(R0)|

|f0(R0) ∪ f1(R1)|
=

|R0|
|R0|+ |R1|

Finally, as 2ρ ≥ |Rβ | ≥ 2ρ − q, we have that

1

2
− q

2ρ+1
≤ |R0|
|R0|+ |R1|

≤ 1

2
+

q

2ρ+2 − 2q
.

Note that the same bounds for b = 1 and that the second term of the sum
is negligible for ρ = Ω(λ). We can thus conclude that, calling b′ the final bit
guessed by A

1

2
· Adv(A) =

∣∣∣∣Pr [b = b′]− 1

2

∣∣∣∣
≤
∣∣∣∣Pr [b = b′,¬Bad]− 1

2

∣∣∣∣+ Pr [Bad]

≤ negl(λ).

16 i.e. the joint distribution of A’s input, random coins and oracle replies.
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Proof of Claim 4. Regarding BK, let sk1, . . . , skq the secret keys queried. As
ϕ : SK → PK is a random bijection, we have that sk = ϕ−1(pk) is uniformly
distributed among the keys not-yet-queried until correctly guessed. Hence

Pr [∃j : skj = sk] ≤
∑q

j=1
Pr [skj = sk | sk /∈ {sk1, . . . , skj−1}]

≤
∑q

j=1

1

|SK| − (j − 1)
≤ q

|SK| − q

which is negligible as |SK| = Ω(2λ).
Next we study BM∧¬BK. Let m1, . . . ,mq′ the messages involved in any query of
A. In order to include also the two challenge messages let q = q′ +2. As we con-
dition on ¬BK, m∗

i (sk) is uniformly distributed among the non-yet queried mes-
sages (pessimistically assuming that each query involving a message immediately
reveals whether it is weak or not). For ease of notation let M∗ = {m∗

i (sk)}λi=1.
Then

Pr [∃j : mj ∈M∗, ¬BK] =
∑q

j=1
Pr [mj ∈M∗, ¬BK |m1, . . . ,mj−1 /∈M∗]

=
∑q

j=1

λ

2µ − (j − 1)
≤ qλ

2µ − q

that is negligible as we assumed µ = Ω(λ).
Finally we study BC ∧ ¬BK ∧ ¬BM. In this case c∗ is never decrypted and mb

is not a weak message (as neither m0 or m1 are). Thus, calling r∗ the random
coins used, we have that an encryption query for (m, r) returns c∗ if

ψτ (pk,m, r) = ψτ (pk,mb, r
∗) = ψ(pk,mb, r

∗) ⇐⇒ m = mb, r = r∗.

Finally, as r∗ is uniformly random among the random tapes not yet queried
due to the definition of ψ, we conclude that, calling r1, . . . , rq the randomness
appearing in all A’s queries

Pr [∃j : rj = r∗, ¬BK,¬BM] =
∑q

j=1
Pr
[
rj = r∗, ¬BK,¬BM

∣∣∣ r∗ /∈ {ri}j−1
i=1

]
=
∑q

j=1

1

2ρ − (j − 1)
≤ q

2ρ − q
.

This is negligible as ρ = Ω(λ).
Combining the three inequalities we get

Pr [Bad] ≤ q

|SK| − q
+

qλ

2µ − q
+

q

2ρ − q
= negl(λ).

D.4 Rejection-Sampling is Semi-Adaptive AE

Proof of Theorem 2. We proceed through a sequence of hybrids starting from the
anamorphic game. First we replace the PRF in RS with a truly random function,
and later substitute each of those function invocations with the sampling of a
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fresh random value. Finally we conclude by showing the last game’s ciphertexts
to follow the right distribution, i.e. that of freshly generated ones, information-
theoretically.

H0: The real Anamorphic Encryption game AnamorphicG.
H1: As in H0 but the PRF is substituted by a truly random function f∗.
H2: As in H1 but instead of invoking f∗, sample a fresh random bit.
H3: The real encryption game RealG.

H0 ≈ H1 follows directly from the PRF security and the efficient simulatability
of the PKE oracles. Indeed, if f is a PRF, then the advantage between the two
games for an adversary A is negl(λ).

H1 ≈ H2. Let D be a q queries distinguisher executed in G1+b for a uniformly
random bit b←$ {0, 1}. To fix notation, let (mi, m̂i) be the message involved in
its q encryption queries, and ci,j for j ∈ {1, . . . , ϑ + 1} the regular ciphertexts
computed by the challenger to produce an Anamorphic Encryption of (mi, m̂i)
though rejection sampling. Then we define Coll the event that a collision occurs
among those ciphertexts. If ¬Coll, the random function f∗ is always evaluated on
distinct points, and thus computing f∗(ci,j) is equivalent to sampling a random
bit. Thus D has no advantage in this case and in particular Adv(D) ≤ Pr [Coll].

Next, we bound Pr [Coll] using the PKE’s security. Let A(pk) be the follow-
ing IND-CPA adversary: initially it runs D(pk) and chooses a random pair of
(distinct) indices α, β ∈ [q]× [ϑ+ 1]. Next, it simulates D’s game. However when
producing the α-th regular ciphertext it either encrypts m or 0 (according to
the IND-CPA encryption oracle) with m the regular message requested by D.
Similarly, for the β-th ciphertext it either encrypts m or 1. Finally, it returns
1 if the α-th and β-th ciphertexts collided. A full description is presented in
Figure 16.

Let b′ be the IND-CPA’s challenge bit, i.e. when b′ = 0 the first message is
encrypted, whereas the opposite occurs with b′ = 1. Then it is immediate to see
that when b′ = 0, A perfectly simulates D’s game until its last query. Indeed pk
sampled from E.Gen matches the distribution of apk and all ciphertexts ci,j are
computed as E.Enc(pk,mi). Finally, D has no information of α, β. Thus, setting
q̂ = q(ϑ + 1) the total number of encryption calls performed by A, and χ a
random variable denoting the number of ciphertexts couples colliding, then

Pr [A → 1 | b′ = 0] = Pr [cα = cβ | b′ = 0]

=
∑
k

Pr [cα = cβ | b′ = 0, χ = k] Pr [χ = k]

=
∑
k≥1

k ·
(
q̂

2

)−1

· Pr [χ = k] ≥
(
q̂

2

)−1

·
∑
k≥1

Pr [χ = k]

=

(
q̂

2

)−1

· Pr [χ > 0] =

(
q̂

2

)−1

· Pr [Coll] .
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A(pk) :

1 : Sample α, β ←$ [q]× [ϑ+ 1] distinct couples, and b←$ {0, 1}
2 : Run D(pk)
3 : when it queries (mi, m̂i):
4 : for j ∈ [ϑ+ 1]: // Generate ciphertexts

5 : if (i, j) = α: ci,j ←$ O(mi, 0)

6 : elseif (i, j) = β: ci,j ←$ O(mi, 1)

7 : else : ci,j ←$ E.Enc(pk,mi)

8 : for j ∈ [ϑ]: // Rejection sampling

9 : if b = 0: bi,j ← f∗(ci,j)

10 : if b = 1: bi,j ←$ {0, 1}
11 : if bi,j = m̂i: Reply with ci,j and break

12 : // If no ciphertext was chosen through rejection sampling

13 : Reply with ci,ϑ+1

14 : // The execution of D is interrupted after the last query

15 : return cα == cβ

Fig. 16. Adversary A for IND-CPA from D distinguishing G1 from G2. O is the
IND-CPA oracle encrypting either the first or the second message according to its
challenge bit. f∗ is a (lazily maintained) random function to {0, 1}.

The third equality follows as (α, β) is a uniformly distributed couple. The first
inequality uses k ≥ 1, while the last equality follows as χ > 0 is the same event
as Coll.

Conversely, when b′ = 1, the two ciphertexts collide only if an encryption
error occurs. Indeed, as decryption is stateless and deterministic, when cα = cβ
either E.Dec(sk, cα) ̸= 0 or E.Dec(sk, cβ) ̸= 1. Using the scheme’s correctness
then

Pr [A → 1 | b′ = 1] ≤ Pr [E.Dec(sk, cα) ̸= 0 ∨ E.Dec(sk, cβ) ̸= 1]

≤ Pr [E.Dec(sk, cα) ̸= 0] + Pr [E.Dec(sk, cβ) ̸= 1] ≤ negl(λ).

Combining both part we finally get a bound which proves Coll only occurs with
negligible probability, due to the PKE’s IND-CPA security.

Pr [Coll] ≤
(
q̂

2

)
· Adv(A) + negl(λ) ⇒ Adv(D) ≤ Pr [Coll] ≤ negl(λ).

G2
p= G3. We argue the two games to be equivalent, as rejection sampling in G2

is performed on freshly sampled bits distributed independently from previously
observed values, and upon failure a correctly generated ciphertext is returned.
This is formally stated and proved in Lemma 4.

41



D.5 Overcoming impossibility

Proof of Theorem 3. We proceed through a sequence of hybrids, relying first on
the PRF security used in the rejection sampling construction (Figure 3), then
we show an upper bound on the biased ciphertexts distribution.

H0: The real Anamorphic Encryption game AnamorphicG.
H1: As in H0 but the PRF is substituted by a truly random function f∗.
H2: As in H1 but instead of invoking f∗, sample a fresh random bit.
H3: The real encryption game RealG.

H0 ≈ H1 follows directly from the PRF security, and the efficient simulatabil-
ity of the PKE oracles. Indeed, if the function used is a PRF, then the advantage
in distinguishing the two games for an adversary A is negl(λ).

Proof of H1 ≈ H2. The only way to distinguish the two games is by distinguish-
ing the distribution of the ciphertexts they produce. In both games (possibly)
many ciphertexts are produced before choosing one of them. The only difference
between the two games is that in the case of H1 the choice of the ciphertext to
return is biased from the output of the random function f∗, while in the case of
H2 the choice is biased from a uniformly sampled random bit.

Let CollG1 be the event that in H1 two encryption queries to E.Enc are an-
swered with the same ciphertext at least one time, i.e., the probability that
the encryption oracle returns two ciphertexts that collide on different messages.
Given the fact that the PKE satisfies Definition 1, that AT.Enc tries ϑ times to
find the right ciphertext, and that at most q = poly(λ) messages are queried, it
holds that

Pr [CollG1] ≤
(
qϑ

2

)
· 2−H∞(E.Enc) ≤ q2ϑ2 · 2−H∞(E.Enc) ≤ negl(λ).

A similar bound holds for the event CollG2, which is the same event as CollG1
but defined regarding H2. For the same argument above, it holds that

Pr [CollG2] ≤
(
qϑ

2

)
· 2−H∞(E.Enc) ≤ q2ϑ2 · 2−H∞(E.Enc) ≤ negl(λ).

Now, we can bound the advantage of an adversary distinguishing the two
games as:

|Pr [H1 = 1]− Pr [H2 = 1]| = |Pr [H1 = 1 |CollG1] Pr [CollG1]
+ Pr [H1 = 1 | ¬CollG1] Pr [¬CollG1]
− Pr [H2 = 1 |CollG2] Pr [CollG2]
−Pr [H2 = 1 | ¬CollG2] Pr [¬CollG2]|

= |Pr [H1 = 1 |CollG1] Pr [CollG1]
−Pr [H2 = 1 |CollG2] Pr [CollG2] + negl(λ)|

≤ |Pr [CollG1]− Pr [CollG2] + negl(λ)| = negl(λ).
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where the second equality follows from the fact that, conditioning on not having
collisions in both games, since in H1 the value f∗(ci) = m̂i is independent from
ci and the same happens for H2 regarding the uniformly sampled bit, the two
distributions of ciphertexts are exactly the same and Pr [¬CollG1] ≈ Pr [¬CollG2].

We can conclude that the two games are indistinguishable.

H2
p= H3. We argue the two game to be equivalent, as rejection sampling in H2

is performed on freshly sampled bits distributed independently from previously
observed values, and upon failure a correctly generated ciphertext is returned.
This is formally stated and proved in Lemma 4.

D.6 Verifiable Obfuscation implications

First, we recall the definition of NIZK argument and VBB. Next, we prove the
Lemma 2.

Definition 16 (NIZK argument [BFM88, BCC88]). A Non Interactive
Zero Knowledge (NIZK) argument for an NP relation R is a tuple of three algo-
rithms (NIZK.S,NIZK.P,NIZK.V), called prover and verifier, where

– NIZK.S(λ) $→crs on input the security parameter λ outputs a common ref-
erence string crs.

– NIZK.P(crs, x, w) $→π on input the common reference string crs, a statement
x and a witness w outputs a proof π that (x,w) ∈ R.

– NIZK.V(crs, x, π)→ b on input the common reference string crs, a statement
x and a proof π accept or reject the proof, i.e., output the bit 1 if it is a valid
proof, else 0.

and such that the following properties are satisfied

Perfect Completeness: For all (x,w) ∈ R it holds that

Pr
[
NIZK.V(crs, x, π)→ 1

∣∣∣π ←$ NIZK.P(crs, x, w)
]
= 1.

Computational Soundness: For every x for which does not exists w such that
(x,w) ∈ R, and for every PPT adversaries A, it holds that

Pr
[
NIZK.V(crs, x, π)→ 1

∣∣∣π ←$ A(x)
]
≤ negl(λ).

Computational Zero Knowledge: There exists a PPT simulator S = (S1,S2)
such that, up to a negligible function negl(λ), for every (x,w) ∈ R, for every
PPT adversaries A it holds that∣∣∣Pr [A(crs0, π0)→ 1

∣∣∣π0 ←$ NIZK.P(crs0, x, w)
]
−

−Pr
[
A(crs1, π1)→ 1

∣∣∣π1 ←$ S2(crs1, x)
]∣∣∣ ≤ negl(λ).

where crs0 ←$ NIZK.S(λ) and crs1 ←$ S1(λ).
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Definition 17 (VBB [BGI+12]). A uniform PPT algorithm O is called a
Virtual Black-Box Obfuscator (VBB) for a circuit class Cλ if the three following
conditions are satisfied:

– For all λ ∈ N, for all C ∈ Cλ, for all inputs x, it holds that

Pr
[
C ′(x) = C(x) : C ′ ←$ O(λ,C)

]
= 1.

– There exists a polynomial p such that for all C ∈ Cλ, it holds that

|O(C)| ≤ p(|C|).

– For any PPT adversaries A, there exists a simulator S and a negligible ε
such that for all λ ∈ N and for all circuits C ∈ Cλ then it holds that

Pr [A(O(C))→ 1]− Pr
[
SC(1|C|)→ 1

]
≤ ε(|C|).

Proof of Lemma 2. We provide constructions for the two primitives separately.

NIZK. Let R be an NP relation relative to PKE oracles, and D a circuit relative
to the same PKE oracles such that (x,w) ∈ R if and only if D(x,w) = 1. For a
given x, let Cx,w be a constant circuit that returns D(x,w) on any input, and
Px(C) the predicate that is true if C = Cx,w for some w. Note that as w is
plainly hard-coded in Cx,w, P is efficiently computable. We can then define a
NIZK argument as follows:

– NIZK.S(λ) : Return the empty string ϵ.
– NIZK.P(x,w) : Return C̃ ←$ VO.Obf(Cx,w, Px).
– NIZK.V(x, C̃): Accept only if VO.Vfy(C̃, Px)→ 1 and VO.Eval(C̃,⊥)→ 1.

Correctness follows as on input (x,w) ∈ R, Cx,w always returns 1. Perfect sound-
ness hold as, given C̃, if VO.Vfy(C̃, Px) → 1 then there exists w such that
C̃ = VO.Obf(Cx,w, Px). Moreover, VO.Eval(C̃,⊥) → 1 means that D(x,w) = 1,
and in particular (x,w) ∈ R. Finally, to show computational zero-knowledge,
we present a straight-line simulator S relative to the PKE interacting with a
malicious verifier V∗. S handles PKE queries forwarding them, and to VO ones
by lazily maintaining a random length-preserving permutation ξ. In order to
simulate a proof for x, it computes C̃∗ ← VO.Obf(C∗, Px) = ξ(r, C∗, Px) where
r is a random λ-bit long string and C∗ is the constant circuit always return-
ing 1. Evaluations are carried out as prescribed by the oracles, while queries
to VO.Vfy(C̃∗, Px) are answered with 1. The view S produces follows the same
distribution observed with NIZK.P(x,w), as long as V∗ never queries VO.Obf on
an input that returns C̃∗, the received proof. The latter case however occurs
with probability at most 2−λ for each query in both worlds. Calling q the total
number of queries performed by V∗ then, the statistical distance between the
real and simulated view is smaller than q · 2−λ.
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VBB. 17 This is simply realized by obfuscating a program along with the pred-
icate ⊥ that is always false. Formally OVO(C) = VO.Obf(C,⊥). To show this is
a VBB we provide a simulator S relative to PKE oracles for a given adversary
A. As before, S will lazily maintain a length-preserving random permutation.
Initially, given 1ℓ with ℓ = |C|, it sets C̃ = ξ(r, 0ℓ,⊥) and executes A(C̃). When
A queries the PKE oracles, S forwards them and their replies. When A queries
to VO are replied honestly with the exception of VO.Eval(C̃, x). In this case S
queries y = C(x) (recall S has oracle access to C) and returns y. Finally, S
output the same bit as A.

It is immediate to see that unless A obtains C̃ from an oracle call, its view
interacting with S is the same as when it interacts with the real VO oracles. As
the first event occurs with probability q · 2λ with q being the total number of
queries, we have that∣∣∣Pr [AVO(OVO(C))→ 1

]
− Pr

[
SC(1|C|)→ 1

]∣∣∣ ≤ q · 2−λ = negl(λ).

D.7 Compiling out Verifiable Obfuscation

Proof of Theorem 4. The only difference between the given triplet, and the one
defined in Figure 10 lies in the inner verifiable obfuscation oracle. In particular
the given scheme uses a truly random permutation ξ, whereas our compiler relies
on a PRP with key k embedded in the double key.

In the following, we only prove that our compiler preserves regular anamor-
phic security, as the case of Semi-Adaptive AE is analogous. Relative to any
efficiently simulatable PKE oracle, we define two hybrid games: H0, that is
the anamorphic game with (AT.Gen∗,AT.Enc∗,AT.Dec∗), and H1 that is the
anamorphic game with (AT.Gen,AT.Dec,AT.Enc). Given a distinguisher D we
describe B against the PRP security. At a high level, B executes D(apk, ask) and
(AT.Gen,AT.Enc,AT.Dec) simulating the PKE oracles, which we assumed to be
efficiently simulatable. To emulates the VO calls, it behaves as the ideal VO de-
scribed in Figure 9, except that to evaluate ξ and ξ−1 it invokes the PRP oracles
for f and f−1. Note apk, ask are generated via AT.Gen and can be computed as
they do not depend on k (as opposed to dk∗ in H1).

It is immediate to observe that in the ideal world B perfectly emulates H1

as the PRP oracles behave as a truly random length-preserving permutation f∗.
Conversely, the PRP oracles gives access to fk and f−1

k meaning that B replies
to VO queries as for VOk described in Figure 10. Thus in this case it perfectly
emulates H0 and in particular Adv(D) = Adv(B) = negl(λ).

This concludes the proof as distinguishing the real game with the given PKE
in Definition 3 from the anamorphic one, i.e. H1, is computationally hard ac-
cording to our hypothesis.

17 See [MMN16] for an in-depth discussion of VBB in idealized models.
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D.8 First Construction from Obfuscation

Proof of Theorem 5. The proof is divided into two parts. First we show the basic
anamorphism and next we prove Fully-Asymmetric security.

Basic Anamorphic Security. We proceed with a sequence of hybrids H0, . . . ,H4.

H0: The anamorphic game AnamorphicG. Public parameters (apk, ask, dk, tk) are
generated through AT.Gen(λ). Encryption queries (m, m̂) are answered with
a ciphertext c←$ AT.Enc(apk, dk,m, m̂).

H1: As H0 but replacing G(s) with a random sampled r ∈ {0, 1}ρ.
H2: As H1 but when executing AT.Enc, replace the check in Line 3 with fk(c) = m̂

where c← E.Enc(apk,m; r).
H3: As H2 but fk(·) is replaced with a truly random function f∗.
H4: As H3 but encryption queries (m, m̂) are answered with c←$ E.Enc(apk,m).

Trivially, H4 corresponds to the real game RealG as apk, ask are sampled with
E.Gen(λ). H0 ≈ H1 follows from the PRG security. H1 ≈ H2 follows from correct-
ness of obfuscation. H2 ≈ H3 as fk is pseudorandom. Note in both experiments a
distinguisher only observes apk, ask, both of which are generated independently
from k, and evaluations of fk, which are obtainable through oracle queries in
the pseudorandomness game. Toward proving H3 ≈ H4 let c1, . . . , cqϑ be the
ciphertexts AT.Enc computes in H2 to answer the q queries performed by a dis-
tinguisher. Then, as we assumed the PKE to satisfy Definition 1, the probability
for a given pair of those ciphertexts to be equal is smaller than 2−κ. Thus, calling
Coll the event ci = cj for some i ̸= j, a union bound yields Pr [Coll] ≤ q2ϑ2 · 2−κ.
Conditioning on ¬Coll, as all ciphertexts are different, the bits f∗(c1), . . . , f∗(cqϑ)
are uniformly and independently distributed. Thus AT.Enc’s choice of the result-
ing ciphertext does not depend on those observed during its execution, meaning
that its distribution is identical to the prescribed one.

Fully-Asymmetric Security. We proceed through a sequence of hybrids. To fix the
notation, we recall the game syntax. Initially the adversary A receives (apk, dk),
where dk = C̃ in our case, outputs (m0, m̂0,m1, m̂1) and receive c∗ the Anamor-
phic Encryption of (mb, m̂b) for a uniformly sampled challenge bit b.
H0: The FAsyAnam-IND-CPA game with challenge bit b.
H1: As H0 but c∗ is computed as AT.Enc∗(apk, k,mb, m̂b), see Figure 17.
H2: As H1 but c∗ is set to AT.Enc∗(apk, k,m∗, m̂b) for a uniformly sampled m∗.
H3: As H2 but c∗ is computed as AT.Enc∗(apk, k,m∗, b).
H4: As H3 but c∗ is computed in the setup after (apk, ask, k) are generated.
H5: As H4 but, calling c1, . . . , cϑ+1 the intermediate ciphertexts computed by

AT.Enc∗, set k∗ ← PRF.Puncture(k, c1, . . . , cϑ+1) and C̃ ←$ iO(C∗
apk,k∗).

H6: As H5 but c∗ is computed as E.Enc(apk,m∗).

Guessing b in H6 is information-theoretically hard. H3 = H4 as only the order
of operations is changed. We will show H2 and H3 to be equally hard, and the
remaining hybrids to be indistinguishable.
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AT.Enc∗(apk, k,m, m̂)

1 : for i ∈ {1, . . . , ϑ}: Encrypt ci ←$ E.Enc(apk,m)

2 : for i ∈ {1, . . . , ϑ}: if fk(ci) = m̂: return ci

3 : return cϑ+1

Fig. 17. Alternative encryption used in the proof of Theorem 5.

H0 ≈ H1. We reduce to the PRG security for (ϑ + 1) instances. Given a dis-
tinguisher D for the two games, let B be an adversary for the above problem.
On input r1, . . . , rϑ+1, it generates apk, ask, k, C̃ as in H0, get (m0, m̂0,m1, m̂1)
from D and computes ci ← E.Enc(apk,mb; ri) with b being a uniformly sampled
random challenge. Then, it set c∗ as the first ciphertext ci such that fk(ci) = m̂b,
or to cϑ+1 if not such ciphertext exists. Finally it sends c∗ to D and eventually
return the same bit returned by D.

Clearly, if ri = G(si) for independently sampled si, then B perfectly simu-
lates H0, also thanks to iO’s perfect correctness. Conversely, if ri are uniformly
random, B perfectly simulates H1. Thus Adv(B) = Adv(D).

H1 ≈ H2. Let D be a distinguisher for the two games. Then we define an ad-
versary B breaking IND-CPA of the given scheme. On input pk it sets apk = pk
and generates k, C̃ as in H2. Once D(apk, C̃) → (m0, m̂0,m1, m̂1), it samples a
random bit b and computes, using its oracle, ci as the encryption of either mb

or m∗ for a uniformly sampled m∗. The challenge ciphertext c∗ is then chosen
among c1, . . . , cϑ+1 as the first ciphertexts such that fk(ci) = m̂b or cϑ+1 if none
satisfy this condition. Finally, when D outputs a bit and halts, B returns the
same bit.

It is immediate to see B perfectly emulates H1 and H2 when its oracle encrypts
respectively the first or the second component of each query. Note this holds as
in H1 the ciphertexts ci are computed using random coins that are uniformly
sampled – as opposed as being generated through the PRG. Thus Adv(B) =
Adv(D).

H2 is harder than H3. Given an adversary A for H2, we define B guessing
b in H3. On input (apk, dk), it simply runs A(apk, dk) $→(m0, m̂0,m1, m̂1). If
m̂0 = m̂1, it aborts returning 0. Otherwise, it queries the encryption oracle with
(m0, m̂0,m1, m̂1) obtaining c∗ and sends it to A. Once A returns b′, B returns
m̂0 ⊕ b′.

Let Equal be the event A(apk, dk) returns m̂0 = m̂1. Then conditioning on
Equal, the advantage of A is 0 as it obtains no information on its challenge bit,
which we call β. Hence, upper-bounding Pr [¬Equal] ≤ 1,

Adv(A) = |Pr [A → 1 |β = 0]− Pr [A → 1 |β = 1]|
≥ |Pr [A → 1 |β = 0, ¬Equal]− Pr [A → 1 |β = 1, ¬Equal]|
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Conversely, conditioning on ¬Equal, we have m̂β = m̂0 ⊕ β = fk(c
∗) = b. In

particular B perfectly simulates the view of A given ¬Equal and challenge bit
β = m̂0 ⊕ b. Thus

Adv(B) = |Pr [B → 1 | b = 0]− Pr [B → 1 | b = 1]|
= |Pr [A → m̂1 |β = m̂0, ¬Equal]− Pr [B → m̂1 |β = m̂1, ¬Equal]|
= |Pr [A → 1 |β = 0, ¬Equal]− Pr [B → 1 |β = 1, ¬Equal]|
≤ Adv(A).

Where the third equality follows conditioning each term on m̂0 = 0 and m̂1 = 1,
taking the negative event where necessary to always haveA → 1 and rearranging.

H4 ≈ H5. We begin by showing that, since each ci is computed with real random
coins, it is unlikely for them to be reachable by the circuit C(m, s). More precisely
we claim that

Claim 5. Given apk, ask←$ AT.Gen(λ), a uniformly sampled message m∗, and
c← E.Enc(apk,m∗; r) with uniformly sampled coins r, then

Pr [∃(m, s) : c = E.Enc(apk,m;G(s))] ≤ negl(λ).

Given the claim, let Badi the event that ∃(m, s) such that ci = E.Enc(apk,m;G(s))
and Bad the disjunction of Bad1, . . . ,Badϑ+1. Then through a union bound we
have that Pr [Bad] ≤ (ϑ + 1)negl(λ). Finally, due to puncturing correctness we
have that Capk,k and Capk,k∗ agree on all inputs (m, s) such that E.Enc(apk,m;G(s)) /∈
{c1, . . . , cϑ+1}. Conditioning on ¬Bad this is never the case. Security of the ob-
fuscator can thus be invoked in this case. More specifically, calling D a distin-
guisher for the two games, simulating either H4 or H5 by obfuscating respectively
Capk,k or Capk,k∗ , and computing correctly the other responses, and calling B an
adversary against the obfuscation security, we can conclude that

Adv(B) ≥ Adv(D)− 2Pr [Bad] ⇒ Adv(D) ≤ negl(λ).

Proof of Claim 5. At a high level, c = E.Enc(apk,m;G(s)) can happen for three
reasons:

1. c is an incorrect ciphertext for m∗, i.e. E.Dec(ask, c) ̸= m∗.
2. c is correct and correctly reachable, i.e. c = E.Enc(apk,m∗;G(s)).
3. c is correct but incorrectly reachable, i.e. c = E.Enc(apk,m;G(s)) for some
m ̸= m∗.

The first case occurs with negligible probability from ε-correctness. The sec-
ond one too as there are at most 2σ = 2κ/2 ≥ 2λ/2 ciphertexts of the form
E.Enc(apk,m∗;G(s)) for fixed apk and m∗, but κ = H∞(c) ≥ λ as we assumed
Definition 1 to hold. Regarding the third we use a Markov argument.

To fix notation, let p(m0,m1), S(m0,m1) and B(m0,m1) be respectively the
probability that an encryption (using G to generate the random coins) of m0
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yields a ciphertext decrypting to m1, the set of seeds for which this happens and
the set of bad ciphertexts obtained. Formally

p(m0,m1) = Pr [E.Dec(ask,E.Enc(apk,m0;G(s))) = m1]

S(m0,m1) = {s0 ∈ {0, 1}σ : E.Dec(ask,E.Enc(apk,m0;G(s0))) = m1}
B(m0,m1) = {E.Enc(apk,m0;G(s0)) : s0 ∈ S(m0,m1)}

Intuitively, this defines a weighted graph among messages, and our goal is to
argue that an average vertex has low weighted in-degree. We define such weighted
in-degrees as:

p+(m1) =
∑

m0:m0 ̸=m1

p(m0,m1)

S+(m1) =
⋃

m0:m0 ̸=m1

S(m0,m1) B+(m1) =
⋃

m0:m0 ̸=m1

B(m0,m1)

First of all we claim that E.Enc remains correct when using a PRG to sample
its random coins on average. Formally that for a random message m and seed s

Pr [E.Dec(ask,E.Enc(apk,m;G(s))) ̸= m] ≤ ε′(λ)

for a negligible ε′. This is proven by studying an adversary for the PRG which
generates apk, ask, samples a random message, and given r that is either G(s) or
random, checks the above condition to be true. Given this bound, we can study
the expectation of p+(m∗):

ε′ ≥ Pr [E.Dec(ask,E.Enc(apk,m;G(s))) ̸= m]

=
∑

m0

Pr [E.Dec(ask,E.Enc(apk,m0;G(s))) ̸= m0] ·
1

|M |

=
1

|M |
·
∑

m0

∑
m1:m1 ̸=m0

p(m0,m1) =
1

|M |
·
∑

m1 ̸=m0

p(m0,m1)

=
1

|M |
·
∑

m1

p+(m1) = E
[
p+(m∗)

]
.

Let now T be the set of those (apk0, ask0,m
∗
0) such that p+(m∗

0) ≤ 1. Then
Markov inequality implies that Pr [(apk, ask,m∗) /∈ T ] ≤ ε′. Conversely assuming
(apk, ask,m∗) ∈ T , i.e. p+(m∗) ≤ 1, we give an upper bound on the number of
"bad ciphertexts" |B+(m∗)|. Indeed

|B+(m∗)| ≤
∑

m0:m0 ̸=m∗

|B+(m0,m
∗)| ≤

∑
m0:m0 ̸=m∗

|S+(m0,m
∗)|

≤
∑

m0:m0 ̸=m∗

2σ · p(m0,m
∗) ≤ 2κ/2 · p+(m∗) ≤ 2κ/2.

We are now ready to formally conclude our argument. For ease of notation,
let R(m∗) be the set of reachable ciphertexts from m∗, i.e. those c such that c =
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E.Enc(apk,m∗;G(s)). Moreover we set Bad1 the event that (apk, ask,m∗) /∈ T ,
where T was defined above, and Bad2 the event that c is an incorrect encryption
of m∗ and Bad their logical disjunction. Then

Pr [∃(m, s) : c = E.Enc(apk,m;G(s))]

≤ Pr [∃(m, s) : c = E.Enc(apk,m;G(s)) ∧ ¬Bad] + Pr [Bad]

≤ Pr
[(
c ∈ B+(m∗) ∨ c ∈ R(m∗)

)
∧ ¬Bad

]
+ Pr [Bad]

≤ Pr
[
c ∈ B+(m∗) ∧ ¬Bad

]
+ Pr [c ∈ R(m∗)] + Pr [Bad]

≤ |B
+(m∗)|
2κ

+
|R(m∗)|

2κ
+ ε+ ε′ ≤ 2

2κ/2
+ ε+ ε′.

H5 ≈ H6. We reduce any distinguisher D to B against the punctured pseudo-
randomness of the given PRF. Initially B generates (apk, ask) through E.Gen,
samples a random message m∗, a challenge bit b and computes c1, . . . , cϑ+1

as encryptions of m∗. Then it queries a key k∗ punctured over c1, . . . , cϑ+1,
and waits for the values y1, . . . , yϑ+1. Next it sets c∗ as the first ciphertexts ci
such that yi = b, or to cϑ+1 if no such ciphertext exists. It finally obfuscates
C̃ ←$ iO(Capk,k∗) and runs D(apk, C̃, c∗), eventually returning the same bit as
D.

It is immediate to see that is yi = fk(ci) then B simulates H5 perfectly. Con-
versely, call Coll the event in which there exists a collision among c1, . . . , cϑ+1.
We have that conditioning on ¬Coll, if the values yi are uniformly random then
the condition b = yi is independent from ci. Thus the rejection sampling even-
tually returns a ciphertext following the right distribution and in particular B
perfectly simulates H6. Because Pr [Coll] ≤ ϑ2 ·2−κ, which follows as we assumed
each ciphertext to have min-entropy greater than λ, we can conclude that

Adv(B) ≥ Adv(D)− 2Pr [Coll] ⇒ Adv(D) ≤ Adv(B)− ϑ2

2κ
.

D.9 Second Construction from Obfuscation

Proof of Theorem 6. The proof is divided into two parts. First we show the basic
anamorphism and next we prove Fully-Asymmetric security.

Basic Anamorphic Security. We proceed with a sequence of hybrids H0, . . . ,H3.

H0: The anamorphic game AnamorphicG. Public parameters (apk, ask, dk, tk) are
generated through AT.Gen(λ). Encryption queries (m, m̂) are answered with
a ciphertext c←$ AT.Enc(apk, dk,m, m̂).

H1: As H0 but when executing AT.Enc, replace the check in Line 3 with fk(c) = m̂
where c← E.Enc(apk,m; r).
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H2: As H1 but fk(·) is replaced with a truly random function f∗.
H3: As H2 but encryption queries (m, m̂) are answered with c←$ E.Enc(apk,m).

Trivially, H3 corresponds to the real game RealG as apk, ask are sampled with
E.Gen(λ). H0 ≈ H1 follows from correctness of obfuscation. H1 ≈ H2 as fk is pseu-
dorandom. Note in both experiments a distinguisher only observes apk, ask, both
of which are generated independently from k, and evaluations of fk, which are
obtainable through oracle queries in the pseudorandomness game. Toward prov-
ing H2 ≈ H3 let c1, . . . , cqϑ be the ciphertexts AT.Enc computes in H2 to answer
the q queries performed by a distinguisher. Then, as we assumed the PKE to
satisfy Definition 1, the probability for a given pair of those ciphertexts to be
equal is smaller than 2−κ. Thus, calling Coll the event ci = cj for some i ̸= j, a
union bound yields Pr [Coll] ≤ q2ϑ2 · 2−κ. Conditioning on ¬Coll, as all cipher-
texts are different, the bits f∗(c1), . . . , f∗(cqϑ) are uniformly and independently
distributed. Thus AT.Enc’s choice of the resulting ciphertext does not depend on
those observed during its execution, meaning that its distribution is identical to
the prescribed one.

Fully-Asymmetric Security. We recall the game syntax. The adversary A, on
input (apk, dk) generated via AT.Gen(λ), queries (m0, m̂0), (m1, m̂1). The chal-
lenger then replies with c∗ ←$ AT.Enc(apk, dk,mb, m̂b) for a randomly chosen
challenge bit b ∈ {0, 1}. We prove the game to be hard through a sequence of
hybrids. In the following we denote with m∗

0,m
∗
1 two distinct messages18.

H0: The FAsyAnam-IND-CPA game with challenge bit b.
H1: As H0 but c∗ is computed as AT.Enc∗(apk, k,mb, m̂b), see Figure 18.
H2: As H1 but c∗ is computed as AT.Enc∗(apk, k,m∗

0, m̂b).
H3: As H2 but c∗ is computed as AT.Enc∗(apk, k,m∗

0, b).
H4: As H3 but c∗ is computed during the setup after (apk, ask, k) are generated.
H5: As H4 but, calling c = (c1, . . . , cϑ+1) the ciphertexts produced by AT.Enc∗

to output c∗, then C̃ ← iO(C∗
apk,k,c) where C∗ is described in Figure 18.

H6: As H5, but c∗ is computed as AT.Enc∗(apk, k,m∗
1, b).

H7: As H6, but during the setup compute k∗ ← PRF.Puncture(k, c1, . . . , cϑ+1)

and obfuscate C̃ ←$ iO(C∗
apk,k∗,c).

H8: As H7, but c∗ is computed as E.Enc(apk,m∗
1).

Guessing b in H8 is information-theoretically hard. Moreover H0 ≈ H1 due
to the obfuscator’s correctness and H3 = H4 as only the order of operations is
changed19. To conclude we prove the remaining hybrids to be indistinguishable,
with the exception of (H2,H3), where we show that guessing b is equally hard.

18 We only require m∗
0 ̸= m∗

1, but they could potentially match the messages m0, m1

chosen by the adversary.
19 Note this is possible as c∗ does not depend on dk = C̃, nor on the challenge messages.
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AT.Enc∗(apk, k,m, m̂)

1 : for i ∈ {1, . . . , ϑ}:
2 : Encrypt ci ←$ E.Enc(apk,m)

3 : for i ∈ {1, . . . , ϑ}:
4 : if fk(ci) = m̂: return ci

5 : return cϑ+1

C∗
pk,k,c(m, r) :

1 : Parse c = (c1, . . . , cϑ, cϑ+1)

2 : Encrypt c← E.Enc(pk,m; r)

3 : if c = ci for some i and m = m∗
1:

4 : return 0

5 : else : return fk(c)

Fig. 18. Alternative encryption (left) and circuit (right) used in the proof of Theorem 6.

H1 ≈ H2. Any distinguisher D can be reduced to B breaking the IND-CPA
security of the underlying scheme in ϑ+1 encryption queries. It initially generates
k, C̃ honestly and runs D. When D returns (m0, m̂0,m1, m̂1), it uses its own
encryption oracle to produce ϑ+1 ciphertexts either encryptingmb (for a random
b chosen by B) or m∗

0. A full description is given in Figure 19.

B(pk) :

1 : Sample a PRF key k, C̃ ←$ iO(Cpk,k) and run D(pk, C̃)→ (m0, m̂0,m1, m̂1)

2 : Sample a random bit b←$ {0, 1}
3 : for ϑ times:
4 : Query (mb,m

∗
0) to the challenger and wait for c

5 : if fk(c) = m̂b: Set c∗ ← c and break

6 : if c∗ was not defined in the previous loop:
7 : Query (mb,m

∗
0) to the challenger and set c∗ to the response.

8 : Reply c∗ to D
9 : when D returns b′: return b′

Fig. 19. Reduction B of a distinguisher D for H1, H2 to IND-CPA.

It is immediate to see B perfectly simulates H1 and H2 respectively when its
challenger encrypts the first or the second message in each queried couple. Thus
Adv(D) = Adv(B), which is negligible.

H2 is harder than H3. The proof is identical to the one presented in the proof
of Theorem 5.

H4 ≈ H5. We reduce to the obfuscator security. Indeed for any (m, r) the
circuits Capk,k and C∗

apk,k,c evaluate to fk(c) with c = E.Enc(apk,m; r) unless
c ∈ {c1, . . . , cϑ+1} and m = m∗

1. However, each ci is the encryption of m∗
0 ̸= m∗

1.
Thus, from perfect correctness, the above condition is impossible and the two
circuits are functionally equivalent.
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H5 ≈ H6. We again reduce any distinguisher D to B breaking IND-CPA for the
underlying PKE. The strategy is analogous to that for H1 ≈ H2: in this case B
initially generates the PRF key k and queries ϑ+1 ciphertexts ci that are either
the encryption of m∗

0 or m∗
1. It then chooses the first ci such that fk(ci) = b for

a randomly chosen bit b, and obfuscate C̃ = iO(C∗
apk,k,c) with c = (c1, . . . , cϑ+1).

As B perfectly simulates respectively H5,H6 according to its challenge bit, we
conclude Adv(D) = Adv(B).

H6 ≈ H7. Again we reduce to the obfuscator security. Indeed, from Definition 13
(specifically, the first point) the two circuits are identical on (m, r) such that
E.Enc(apk,m; r) /∈ {c1, . . . , cϑ+1}. Conversely, when E.Enc(apk,m; r) lies in the
above set, from perfect correctness of the given PKE, this means m = m∗

1 as
each ci is an encryption of m∗

1 and in particular both circuits return 0.

H7 ≈ H8. We reduce a distinguisher D to an adversary B for the pseudoran-
domness of the punctured PRF. Initially it generates a random challenge bit
b ∈ {0, 1}, keys apk, ask, and ϑ + 1 ciphertexts c1, . . . , cϑ+1 as E.Enc(apk,m∗

1)
(each with fresh random coins). Then it queries a key punctured in those ci-
phertexts. Upon receiving k∗ and the values y1, . . . , yϑ+1 from the challenger, it
computes c∗ as the first ci such that yi = b or cϑ+1 if the y1 = . . . = yϑ ̸= b. Fi-
nally, it obfuscates C̃ = iO(C∗

apk,k∗,c), runs D(apk, C̃, c∗) and eventually returns
D’s output. It is immediate to see that if yi = fk(ci) then B perfectly simulates
H7. Conversely, in the ideal experiment y1, . . . , yϑ+1 are uniformly and indepen-
dent bits assuming no collisions among the ciphertexts. In this case performing
rejection sampling on the condition b = yi does not alter the distribution of c∗
as both b and yi are independent from ci. Thus c∗ is distributed as a correct
encryption of m∗

1 and in particular, B perfectly simulates H8. Finally, calling
Coll the event in which any two ciphertexts collide, as we assume Definition 1
to apply to the given PKE, Pr [Coll] ≤ ϑ22−κ. Calling β the challenge bit for B
(i.e. when β = 1 then yi = fk(c

∗
i )), we conclude that Adv(B) =

= |Pr [B → 1 |β = 1]− Pr [B → 1 |β = 0]|
≥ Pr [¬Coll] |Pr [B → 1 |β = 1,¬Coll]− Pr [B → 1 |β = 0,¬Coll]| − Pr [Coll]

= Pr [¬Coll] |Pr [D → 1 |H7,¬Coll]− Pr [D → 1 |H8,¬Coll]| − Pr [Coll]

= |Pr [D → 1,¬Coll |H7]− Pr [D → 1,¬Coll |H8]| − Pr [Coll]

≥ |Pr [D → 1 |H7]− Pr [D → 1 |H8]| − 3Pr [Coll]

≥ Adv(D)− 3ϑ2/2κ

where the second to last step follows adding and subtracting Pr [D → 1 |H7],
using inverse triangular inequality20 and observing that the remaining terms are
smaller than Pr [Coll] (which is the same in H7 and H8).

20 |x+ y| ≥ |x| − |y| for all reals.
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