
Structural Lower Bounds on Black-Box Constructions of

Pseudorandom Functions

Amos Beimel ∗ Tal Malkin † Noam Mazor ‡

July 10, 2024

Abstract

We address the black-box complexity of constructing pseudorandom functions (PRF) from
pseudorandom generators (PRG). The celebrated GGM construction of Goldreich, Goldwasser,
and Micali (Crypto 1984) provides such a construction, which (even when combined with Levin’s
domain-extension trick) has super-logarithmic depth. Despite many years and much effort, this
remains essentially the best construction we have to date. On the negative side, one step is
provided by the work of Miles and Viola (TCC 2011), which shows that a black-box construction
which just calls the PRG once and outputs one of its output bits, cannot be a PRF.

In this work, we make significant further progress: we rule out black-box constructions of
PRF from PRG that follow certain structural constraints, but may call the PRG adaptively
polynomially many times. In particular, we define “tree constructions” which generalize the
GGM structure: they apply the PRG G along a tree path, but allow for different choices of
functions to compute the children of a node on the tree and to compute the next node on the
computation path down the tree. We prove that a tree construction of logarithmic depth cannot
be a PRF (while GGM is a tree construction of super-logarithmic depth). We also show several
other results and discuss the special case of one-call constructions.

Our main results in fact rule out even weak PRF constructions with one output bit. We
use the oracle separation methodology introduced by Gertner, Malkin, and Reingold (FOCS
2001), and show that for any candidate black-box construction FG from G, there exists an
oracle relative to which G is a PRG, but FG is not a PRF.

1 Introduction

Pseudorandom Functions (PRF) constitute one of the most important primitives in cryptography,
used in almost every application of cryptography in theory and in practice, and with deep con-
nections to complexity theory and learning theory. Classic results in cryptography prove that the
existence of PRFs is equivalent to the existence of many other fundamental primitives such as one-
way functions (OWF), pseudorandom generators (PRG), signatures, private key encryption, and

∗Ben Gurion University. E-mail: amos.beimel@gmail.com. Part of this work was done while visiting the Simons
Institute. Research partly supported by ISF grant 391/21.

†Columbia University. E-mail: tal@cs.columbia.edu. Part of this work was done while visiting the Simons
Institute. Research supported by NSF CCF-2312242 and an Amazon Research Award.

‡Tel Aviv University. E-mail: noammaz@gmail.com. Part of this work was done while at Cornell Tech and while
visiting the Simons Institute. Research partly supported by NSF CNS-2149305 and DARPA under Agreement No.
HR00110C0086.

1

many others, where equivalence is defined by the existence of a polynomial time reduction. How-
ever, these primitives are not all created equal, as the reductions often incur significant efficiency
cost, for various notions of efficiency. For example, given a PRF it is easy to construct a PRG
with similar parallel-time complexity, but the other direction is not known. There is also a wide
gap between the efficiency of theoretical constructions of PRF and the corresponding designs used
in practice (block ciphers such as AES). An important and intensively studied goal is to minimize
the complexity of PRF constructions from minimal assumptions. In this paper, we focus on the
complexity of constructing PRFs from PRGs.

The seminal result of Goldreich, Goldwasser, and Micali [GGM86] (referred to as the GGM con-
struction hereafter) showed how PRFs can be constructed from PRG in a black box way. In particu-

lar, given a PRGG : {0, 1}n → {0, 1}2n they construct a PRF F =
{
fG
k : {0, 1}m(n) → {0, 1}n

}
k∈{0,1}n

for any polynomial input length m(n). To evaluate fG
k (x), the construction sequentially applies

G adaptively |x| times (once per each bit of x) along a tree path. This results in a construction
of depth linear in the length of the input – highly non-parallel. This can be improved to ω(log n)
depth by using Levin’s domain extension technique [Lev87], a generic transformation which ap-
plies a pairwise independent function to the input before running it through the construction.
This allows to start from a polynomial length input, shorten it to a super-logarithmic length in-
put, and then run the construction (in our case GGM) on the shorter input. In more detail, if

H =
{
h : {0, 1}m

′
→ {0, 1}m

}
is a family of pairwise independent functions, and F =

{
fG
k

}
is a

PRF, it is not hard to see that the family F ′ =
{
f ′Gk,h

}
where f ′Gk,h(x) = fG

k (h(x)) is also a PRF.

In the decades since the GGM construction was introduced, much effort was dedicated to trying
to improve it (e.g., [NR99; NRR00; NR04; LW09; BMR10; BPR12; AR16]), including some results
achieving PRFs in NC1 (logarithmic depth circuits) from concrete assumptions like DDH [NR99]
and LWR [BPR12]. Despite this, the above construction remains the best one we have to date
from PRG. In terms of lower bounds, it is known via connections to learning and the natural proofs
barrier, that PRFs cannot be constructed in certain low circuit complexity classes such as AC0[2]
(c.f. [Val84; LMN93; PW88; RR94]), but there are no known lower bounds on the required depth
(or parallel efficiency) of a PRF constructed from PRG.

Indeed, the following question remains open (and stated as an open problem already by Naor
and Reingold [NR99]): Is there a black-box construction of PRF from PRG with logarithmic depth?
We can start by asking a much more basic question: Is there a black-box construction of PRF from
PRG that calls the PRG just one time? Miles and Viola [MV11] make a step towards addressing
this question, by ruling out such one-call constructions that consist of a projection, namely call the
PRG once and just output one of its output bits.1 Beyond this, even this basic question remains
open.

Our goal is to address this large gap between the known positive results (black-box constructions
of super-logarithmic depth and number of calls to the PRG), and the known negative results (only
a very partial impossibility of a black-box construction with a single call). We provide some
explanation to this state of affairs, by giving black-box separations ruling out a large class of
black-box constructions. In particular, for any candidate construction FG =

{
fG
k

}
in this class,

we show an oracle O relative to which there is a PRG G, but FG is not a PRF: there exists

1Miles and Viola [MV11] considered the task of stretching the output of PRGs, but as noted in [MV15] their lower
bound implies a lower bound on PRF constructions. The results in [MV15] additionally rules out, in our terminology,
PRF constructions with non-adaptive calls and AC0 post-processing.

2

an efficient algorithm BreakO that can distinguish a randomly chosen function in FG from a truly
random function. This follows the oracle separation methodology of Gertner, Malkin, and Reingold
[GMR01], and rules out so-called fully-black-box constructions ([RTV04]), but does not rule out
all relativizing reductions, since the adversary Break we design is specific for the given candidate
construction.

1.1 Our Results

We start with a high level overview, followed by more details. We consider (purported) black-box
constructions of a PRF from a PRG, where the PRF has super-logarithmic input length and one-bit
output. Since we are showing negative results, this implies the same results hold for PRF with
many output bits. Our results hold even when the given PRG has super-polynomial stretch.

We rule out black-box constructions of a PRF F = {fk} from a PRG G that satisfy some
structural conditions. Our main results rule out constructions of the form

fG
k (x) = AQk,x(k, x),

where the oracle Qk,x implements a function that calls G and depends on the input x, k in some
constrained way, while the algorithm A is an arbitrary oracle aided algorithm (it can call the oracle
adaptively, any number of times, and on any input, without restriction). We have two main results
with different constraints on Q.

Our first main result generalizes a result by Miles and Viola [MV11]. In our terminology, they
rule out constructions where Qk,x(s) applies G(s) and returns one of its output bits (which one
depends on k, x), and where A can only call Qk,x once and return the same output bit (namely
the PRF applies a projection on the output of the PRG). In contrast, we rule out any construction
where Qk,x(s) applies G(s) and then returns a longer “digest” (depending also on k, x), and where
A is an arbitrary oracle-aided algorithm that can call Qk,x adaptively and apply arbitrary post-
processing. We require that the digest function applied by the oracle in every call does not use too
many bits of x, k (at most logarithmically many), and that its output is not too long (bounded away
from the security parameter by more than a logarithmic amount). We show that these requirements
are necessary (so our result is tight in this sense).

Our second main result allows Qk,x to apply what we call a tree construction, which generalizes
a logarithmic-depth GGM structure, applying G at each level, but allowing different choices for the
functions computing the children of a node at each level of the tree, and for the function computing
the next node on the computation path for a given input. Thus, we show that even if you can
call such a log-depth tree oracle Q polynomially many times on different root values, the resulting
construction is not a PRF. In this sense this result is tight with GGM, which can be viewed as a
single call to such a tree oracle Q with super-logarithmic depth.

Considering the special case of constructions that call the PRG just one time, our first result
immediately rules out any such construction that calls G on some arbitrary function of x, k, then
applies some digest on the output of G and on logarithmically many bits of x, k, and then applies
arbitrary post-processing using the digest (which is not too long) and the input x, k. Here our
constraints do not seem tight; completely ruling out any construction that calls the PRG one time
remains an intriguing open problem.

3

We note that all the results above in fact rule out even constructions of weak PRF, which
are PRF that should be indistinguishable from random functions by adversaries who get random
(input,output) pairs (rather than being able to ask queries).

Finally, we show that any black-box construction of PRF {fk} from a PRG G cannot have the
key k be much shorter than the length of the inputs that it calls G on: if G is called on n-bit inputs,
k must be of length at least n− O(log n). Note that the first step in GGM applies G(k), so there
k is exactly the length of the input to G.

We provide more details on each of our results below. In the following, for a security parameter
n ∈ N, let

F =
{
fk : {0, 1}m(n) → {0, 1}

}
k∈{0,1}λ(n)

be a candidate PRF construction with domain {0, 1}m(n) of super-polynomial size and with a key
of polynomial length λ(n). For simplicity of presentation, here we assume that all calls to G in the
construction are always on inputs of length n (the security parameter). In Appendix B we show
how to generalize the proof for constructions that can call G on different input lengths.

1.1.1 Warmup: Projection Functions

Miles and Viola [MV11] showed that there is no black-box construction of a PRF from PRG such
that fG

k (x) = G(s(k, x))i(k,x), where i(k, x) ∈ [|G(s(k, x))|] is some index of a bit in the output of
G (we call this a projection function).2 Our first theorem makes this result stronger by allowing to
add arbitrary post-processing.

Let Gi(k,x) be the function defined by Gi(k,x)(s) = G(s)i(k,x). Miles and Viola [MV11] showed

that there is no PRF construction such that fG
k (x) makes one call to Gi(k,x) and outputs the result.

We show that there is no black-box PRF construction such that fG
k (x) = AGi(k,x) , where A is an

arbitrary oracle-aided algorithm. That is, here A is allowed to make arbitrary number of (adaptive)
calls to Gi(k,x), and to apply arbitrary functions on the outputs.

Theorem 1.1. For a function G : {0, 1}n → {0, 1}n+r(n) and an index i ∈ [n + r(n)], let Gi(s) =

G(s)i. Let i : {0, 1}λ(n) × {0, 1}m(n) → [n+ r(n)] be a function.
Then for any polynomial r there is no black-box PRF construction F = {fk} from r(n)-bit

stretch PRG, such that
fG
k (x) = AGi(k,x)(k, x)

for any algorithm A.

1.1.2 First Main Result: Digest Functions

Our result is actually even stronger, as we can replace the function Gi(k,x) (“projection”) with
any function Qk,x(s) = P (G(s), L(k, x)), as long as |L(k, x)| ∈ O(log n) and |P (G(s), L(k, x))| ≤
n − ω(log n) (a “digest” function). Note that projection functions are a special case of digest
functions, as Gi(k,x)(s) can be written as P (G(s), L(k, x)) for L(k, x) = i(k, x) and P (z, i) = zi.

2Their paper, and its journal version [MV15], has other results as well, in particular about increasing PRG stretch
in a black box way; we focus here on the result relevant to our paper.

4

Theorem 1.2. Let G : {0, 1}n → {0, 1}n+r(n). Let L and P be functions such that for every k, x
and s, |L(k, x)| ∈ O(log n) and |P (G(s), L(k, x))| ≤ n−ω(log r). Let QL(k,x)(s) = P (G(s), L(k, x)).
Then there is no black-box PRF construction F = {fk} from a PRG, such that

fG
k (x) = AQL(k,x)(k, x)

for any algorithm A.

Tightness. Note that if we allow the stretch of the PRG to be super-polynomial, there is a simple
black-box projection construction that uses the output of the PRG as the truth-table of the PRF,
namely fG

k (x) = G(k)x for x ∈ [|G(k)|]. Thus, for both the original [MV11] and our generalization
in Theorem 1.1, we need to require the index function to be have output of logarithmic length
(which in turn implies the stretch must be polynomial). Our more general result in Theorem 1.2
does not impose any restriction on the stretch of the PRG, but still requires the output of the
function L to be of logarithmic length. This restriction is necessary, to avoid the same simple
truth-table construction.

The restriction on the output length of the digest P is also necessary for our structural lower
bound. Observe that when the output of P is allowed to be n + 1 bits, there exists a PRF
construction fG

k (x) = AQ(k, x) where Q(s) simply returns P (G(s)) = G(s)≤n+1,
3 and A runs the

standard black-box construction of a PRF from a PRG with 1-bit stretch (first using the oracle to
get a length doubling PRG, and then running the GGM construction). In fact, using the Goldreich-
Levin theorem, such a construction exists even if we set P (G(s)) = G(s)≤n−logn, as we can add
logarithmically many hard core bits.

1.1.3 Second Main Result: Tree Constructions

The GGM construction has the following structure. For every key k and input x, fG
k (x) is defined

by
fG
k (x) = S(G(. . . G(S(G(k), x1)) . . .), xn)1,

where S(z, b) = zb for z = z0||z1 with |z0| = |z1|.
This construction can be seen as a binary tree, where each node is labeled with an n bit string:

the root is labeled by with the key k, and to compute the label of a child of a node v, we query the
PRG on the label of v, and then apply some function S(G(v), 0) and S(G(v), 1) to get the labels
of the two children. To compute the function, we start from the root, and use x to determine the
path to a leaf we take on the tree. The output is just the label of the leaf.

We generalize the above structure and define tree constructions of PRFs.

Definition 1.3. We say that a black-box construction of a PRF F = {fk} from a PRG G is a
(t, c)-Tree construction, if there exist functions L1, . . . , Lt and S0, . . . , St such that for every key k
and input x, |Li(k, x)| ≤ c, and,

fG
k (x) = St(G(. . . S2(G(S1(G(S0(k, x)), L1(k, x))), L2(k, x)), . . .), Lt(k, x))1.

Note that a tree construction generalizes GGM in several ways:

3Here x≤i denotes the first i bits of x.

5

1. We allow trees with larger degree (2c), as long as the degree is a constant. (GGM uses a binary
tree, with c = 1.)

2. We allow the label of the root of the tree to be an arbitrary function S0 of k and x. (In GGM
it is S0(k, x) = k.)

3. We allow the function Si that chooses the label of the children of a node labeled by y based on
the value of G(y) to be arbitrary function. Moreover, we allow it to be different in each level i
of the tree. (In GGM Si(z, b) = S(z, b) = zb for every level.)

4. We use an arbitrary function Li(k, x) to select which child to choose as the next node on the
path down the tree at level i. (In GGM it is Li(k, x) = xi.)

Thus, the GGM construction is a (t = n, c = 1) tree construction, with the functions L1, . . . , Lt,
S0, . . . St specified above, and if we use Levin’s domain extension together with GGM, it becomes
a (t = ω(log n), c = 1) tree construction.

We prove that for every choice of the functions Li, Si, there is no (log n,O(1)) tree construction.

Theorem 1.4 (Tree constructions). Let c ∈ N be a constant. Then there is no (t, c)-tree black-box
PRF construction from r(n)-bit stretch PRG, with t(n) ≤ log n− log logn− ω(1).

We then significantly generalize this result to rule out an arbitrary oracle-aided algorithm that
can call such a (logn,O(1)) tree construction adaptively, and apply arbitrary post-processing.

Definition 1.5. We say that a function family Q = {Qk,x} is a (t, c)-Tree oracle, if there exist
functions L1, . . . , Lt and S0, . . . , St such that for every key k and input x, |Li(k, x)| ≤ c, and,

Qk,x(s) = St(G(. . . S2(G(S1(G(s), L1(k, x))), L2(k, x)), . . .), Lt(k, x))1.

That is, Qk,x(s) is the above tree construction, when replacing the root S0(k, x) with the input s.

Theorem 1.6. Let G : {0, 1}n → {0, 1}n+r(n), c ∈ N be a constant, and t(n) ≤ log n−log logn−ω(1)
be a function. Let Q be a (t, c) tree oracle. Then there is no black-box PRF construction F = {fk}
from a PRG, such that

fG
k (x) = AQk,x(k, x)

for any algorithm A.

Tightness. Theorem 1.4 is tight both in terms of c and t:

• For any t = ω(log n), there exists a (t, 1)-tree PRF construction {fk}k∈{0,1}λ(n) from n-bits stretch

PRG, with λ(n) = n. This is the GGM construction with Levin’s domain extension (note that
applying the domain extension to a tree construction still results in a tree construction).

• For any c = c(n) = ω(1), there exists a (log n, 2c)-tree PRF construction {fk}k∈{0,1}λ(n) from

(2c ·n)-bits stretch PRG, with λ(n) = n. This can be shown by considering a shallow 2c-ary tree
instead of the binary tree in the GGM construction.

6

1.1.4 Special Case for One-Call Constructions

We say that a black-box PRF construction is a one-call construction, if in order to evaluate fG
k

on a point x we only need to call the PRG G once. In other words, a one-call construction is a
construction of the form

fG
k (x) = P (G(S(k, x)), k, x),

where the function S selects the query to the PRG and the function P computes some arbitrary
function of the key k, input x, and the output of the PRG.

Each of our two main results gives some lower bound on a restricted type of such constructions
as a special case. In particular, each of these results implies that there is no construction of a PRF
fG
k such that

fG
k (x) = P (G(S(k, x)), L(k, x))

where |L(k, x)| ∈ O(log n) (notice that here the output of P is one bit).
In fact, Theorem 1.2 implies something stronger: that there is no PRF construction of the form

fG
k (x) = P2(P1(G(S(k, x)), L(k, x)), k, x) where here P2 can be dependent arbitrarily on k and x,
as long as the output of P1 is at most n− ω(log r) bits, and |L(k, x)| ∈ O(log n):

Corollary 1.7. Let G : {0, 1}n → {0, 1}n+r(n). Let L,P1, and P2 be functions such that for every
k, x and s, |L(k, x)| ∈ O(log n) and |P1(G(s), L(k, x))| ≤ n− ω(log r). Then there is no black-box
PRF construction F = {fk} from a PRG, such that

fG
k (x) = P2(P1(G(s), L(k, x)), k, x).

Does there exist a one-call black-box construction of PRF from PRG? While intuitively the
answer seems to be no, we do not know how to prove it in general. We leave this as a fascinating
(and elusive) open problem.

1.1.5 Lower Bound on the Key Length

Our last result shows that in any black-box PRF construction, the key length must be roughly
equal to the input length for the PRG. That is, the length of the key cannot be much shorter than
n (unless the domain is of polynomial size).

Theorem 1.8 (Lower bound on the key-length). There is no black-box PRF construction from

PRG G : {0, 1}n → {0, 1}n+r(n) such that λ(n) ≤ n− ω(log n).

2 Proof Overview

We now give some overview of the proof. We start with explaining the proof for a special case of
one-call constructions: black-box constructions FG =

{
fG
k

}
k∈λ(n) of the form

fG
k (x) = P (G(S(k, x)), L(k, x)),

where |S(k, x)| = n, |L(k, x)| = O(log n) and |P (G(S(k, x)), L(k, x))| = 1. We then explain how
to generalize the proof to get our lower bound for tree constructions. For simplicity, assume that
FG is a PRF construction from a length-doubling PRG G : {0, 1}n → {0, 1}2n. Our goal is to

7

construct an oracle O, with respect to there exists such a PRG G, and an efficient (with respect to
O) algorithm Break that breaks the security of FG. That is, Break distinguishes a truly random
function from a function sampled from the family FG =

{
fG
k

}
k∈λ(n), but cannot be used to break

the security of G.

Eliminating L. We start by using the technique of Miles and Viola [MV11] to eliminate the
function L. Intuitively, their technique shows that when the output of L is short, and for some
type of distinguishers Break, it is enough to consider constructions of the form

fG
k (x) = P ′(G(S(k, x))).

In more detail, since the output length of L is O(log n), there exists some value z such that
L(k, x) = z with noticeable probability. Fix such z, and assume that we can show that there exists
some class G of PRGs, and a function f̂ , such that for every key k and input x, and for every PRG
G ∈ G, it holds that P (G(S(k, x)), z) = f̂(k, x). That is, fG

k (x) can be evaluated on every input for
which L(k, x) = z without calling to G. Then, we can consider a simple distinguisher Break that
breaks the security of FG:

1. Sample x1, . . . , xℓ ← {0, 1}n for ℓ≫ 2L(k,x)|k|

2. Query x1, . . . , xℓ to get y1 = f(x1), . . . , yℓ = f(xℓ).

3. Breakf outputs 1 if there exists k such that:

(a) There are at least 2|k| i’s such that L(k, xi) = z.

(b) f̂(k, xi) = yi for every i ∈ [ℓ] with L(k, xi) = z.

Otherwise, Breakf outputs 0.

It is not hard to show that for a random function f , Breakf outputs 1 with negligible probability,
while it outputs 1 on fG

k with 1/poly probability, for every PRG G from the class G and over a
randomly chosen key k.

The hope now is that the class G is large enough such that it contains a PRG that is secure
against attackers with oracle access to Break. In our construction we will choose G such that we will
be able to convert any PRG G into a PRG G′ ∈ G, in a black-box way. That is, if Break can be used
to break the security of G′, then it is possible to break the security of G. The proof now follows by
the fact that a random function is a PRG with respect to any oracle with high probability [Imp11;
GGKT05] (and thus there exists an oracle which is a secure PRG against Break).

Constructing f̂ . To summarize, so far we showed that if we can prove that for some function f̂ ,
and for every PRG G from a large enough class of PRGs G, it holds that

P ′(G(S(k, x)), z) = f̂(k, x),

then it follows that there is no black-box PRG construction of the form

fG
k (x) = P (G(S(k, x)), L(k, x)).

8

In the following, let P ′(G(S(k, x))) = P (G(S(k, x)), z). While it is enough for us to consider P ′

with an output of one bit, we explain how to construct such f̂ with f̂(k, x) = P ′(G(S(k, x)))
for any function P ′ with an output of at most n/2 bits, as this will be useful for us later.4 Fix

such a function P ′ : {0, 1}2n → {0, 1}n/2. As a first step, assume that P ′ can be completed to a
permutation. That is, assume that there exists some permutation R : {0, 1}2n → {0, 1}2n, such that
P ′(y) = R(y)≤n/2 for every y ∈ {0, 1}2n. In this case, we claim it is easy to construct the function

f̂ and the class G.
Indeed, consider the permutation π = R−1. For every PRG G, the function G′ = π ◦G (namely,

G′(s) = π(G(s))) is still a PRG.5 More importantly, for every such G′ we get that

P ′(G′(S(k, x))) = R(G′(S(k, x)))≤n/2 = R(π(G(S(k, x))))≤n/2 = G(S(k, x))≤n/2.

That is, the output of P ′ is the first n/2 output bits of G. We can now choose a PRG G such that
G(s)≤n/2 = sn/2, and we get that

P ′(G′(S(k, x))) = S(k, x)≤n/2 (1)

which implies what we wanted to show, by taking f̂(k, x) = S(k, x)≤n/2. We remark that Equa-
tion (1) holds for any PRG G′ such that G′(s) = π(s≤n/2||G(s>n/2), and that G′ is a PRG if G
is, as we wanted to show. This concludes the proof for the case that P ′ can be completed to a
permutation.

Dealing with an arbitrary function P ′. We are left to deal with the case in which P ′ cannot
be completed to a permutation. Recall that by choosing π to be the inverse of the function P ′ (or
actually the inverse of the permutation R), we were able to show that P ′(π(y)) = yn/2 for every y.
This allowed us to compute the output of P ′ only using the first n/2 bits of y. While we cannot
find such an inverse π for any function P ′, we show it is possible to find a “pseudo-inverse” – a
function π which is close to being a permutation, such that the first i bits of the output of P ′(π(y))
can be computed by roughly the first i bits of y. This is stated in the following lemma.

Lemma 2.1 (Pseudo-inverse lemma). Let n ∈ N be a number, w = ω(log n) and f : {0, 1}n →
{0, 1}n be a function. Then there exists a function π : {0, 1}n → {0, 1}n, and functions {fi}i∈[n−w]

such that:

1. SD(Un, π(Un)) ≤ neg(n)

2. For every i ∈ [n− w], f(π(x))≤i = fi(x<i+w).

We remark that by the first condition above, π ◦G is a PRG for any PRG G. For simplicity of
this presentation, in the following we assume (the generally false assumption) that the above claim
holds when setting w to be 0.

Back to our lower bound, by taking π to be the pseudo-inverse of P ′, we can finish the proof.
Consider the same class of PRGs G, and let f̂(k, x) = fn/2(S0(k, x)≤n/2), when fn/2 is the function
promised by Lemma 2.1 for i = n/2. We get that

P ′(G′(S0(k, x)) = P ′(π(S0(k, x)≤n/2||G(S0(k, x)>n/2)) = fn/2(S0(k, x)≤n/2) = f̂(k, x)

4In the actual proof we show how to do it for outputs of length n− ω(logn)
5We assume here that G is secure against adversaries with oracle access to π. We can construct such oracle PRG

using [Imp11; GGKT05]

9

which concludes the proof. We explain how we prove Lemma 2.1 in Section 2.2. In the following,
we explain how to use Lemma 2.1 to generalize the above proof to work for tree constructions.

2.1 Tree construction.

We now explain how to use the same techniques as described above to prove our lower bound for
tree constructions.

Fix functions S0, . . . , St and L1 . . . , Lt as in the definition of tree construction. As discussed
above, since the total length of L1(k, x)|| . . . ||Lt(k, x) is at most t = O(log n), we can fix its value.
It is thus enough to show that there exists a function f̂ such that

f̂(k, x) = St(G(. . . S1(G(S0(k, x))) . . .))

for every PRG G from some large class G.
We first observe that when all of the functions Si are equal (St = · · · = S1 = S for some

function S) then this is easy to show. Indeed, set P ′ = S. Then our proof above shows that for
the right choice of G, the first n/2 bits of the output of S(G(S0(k, x))) are only dependent on the
first n/2 bits of S0(k, x).

6 More generally, it holds that S(G(y))≤n/2 = τ(yn/2) for some function
τ . Applying S ◦G again, we get that

S(G(S(G(y))))≤n/2) = τ(S(G(y))≤n/2) = τ(τ(y≤n/2)).

More generally, the output of such depth t tree-construction is equal to τ t(S0(k, x)≤n/2), and thus
can be computed without calling to G.

Of course, this is not the case when the functions S1, . . . , St are not all equal. Yet, we can use
a similar idea. First, we observe that the same proof works also when the function τ is different
in each level. That is, if we can show that for any PRG G ∈ G, and for every i ∈ [t], there
exists τi such that Si(G(y))≤n/2 = τi(yn/2). Then we will get what we wanted by considering

f̂(k, x) = τt(τt−1(. . . τ1(S(k, x)≤n/2) . . .)).
7

But this is still too much to ask for. Indeed, consider the concatenation of the prefixes of the
functions S1, . . . , St

S(y) := S1(y)≤n/2|| . . . ||St(y)≤n/2.

Then it can be the case that S(y)≤2n = y. In this case we cannot hope to compute S(G(z)) only
from the first n/2 bits of z, or without calling to G. Thus such τ1, . . . , τt cannot exists.

However, the above requirement is still stronger than what we really need. Recall that we want
to show that we can find f̂ such that

f̂(k, x) = St(G(. . . S1(G(S0(k, x))) . . .)),

and where the output of St is only one bit long. Assume that for every i, we can show that there
exists τi such that Si(G(y))≤2t−i = τi(y≤2·2t−i). That is, the first bit of the output of St only

6Actually, n/2 + ω(logn), but we ignore it for this presentation.
7This is already enough to get some lower bound. As Tianqi Yang commented to us, if we assume that the PRF

construction is secure even when using different PRG in each one of the levels, we can construct each one of the
functions τi by applying the pseudo-inverse lemma separately for each Si. Specifically, letting πi be the pseudo-
inverse of Si, and taking the PRG Gi to be πi ◦G, we can get that St(Gt(St−1(Gt−1(. . . S0(k, x) . . .)))) = f̂(k, x) for

some function f̂ (and for any t ∈ o(n/ logn)). Interestingly, the GGM construction has this type of security.

10

depends on the first two bits of the output of St−1, which in turn only depends on the first 4 output
bits of St−2 and so on. The point is that when t ≤ log n/4, we get that the output of f̂ can be
computed from the first n/2 bits of S0(k, x), which is exactly what we wanted to show.

So we now want to find an (almost) permutation π such that for every i ∈ [t]

Si(π(y))≤2t−i = τi(y≤2·2t−i)

for some function τi. We can do it again using the pseudo-inverse lemma. Assume that t ≤ log n/4,
and consider the function

P ′(z) = St(z)1||St−1(z)≤2||St−2(z)≤4|| . . . ||S2(z)≤n/8(z)||S1(z)≤n/4(z).

Let π be the function promised by the psuedo-inverse. The crux of this choice is that, by the
pseudo-inverse lemma, for every z, it holds that P ′(π(z))≤i only depends on the first i bits of z.
By our construction of P ′, we get that for every i, St−i(π(z))≤2i is only a function of the first∣∣St(z)1||St−1(z)≤2|| . . . ||St−i(z)≤2i(z)

∣∣ = ∑
t≥j≥t−i

2t−j =
∑

0≤j≤i
2j ≤ 2i+1

bits of z, as we wanted to get.

2.2 Pseudo-Inverse Lemma Proof Overview

We now give some intuition for how to prove Lemma 2.1. In the formal proof (Section 6) we take a
different and more direct path, and define π more explicitly. Yet, the general approach is the same.

As explained above, in the special case in which f is a permutation, we can take π = f−1.
In this case f(π(x)) = x, and thus f(π(x))≤i = x≤i. We now show how to generalize it for any
function.

We start with some notations. For every i ∈ [n] and every prefix a ∈ {0, 1}i of an image of f ,
let f−1(a) be the set of all inputs x such that f(x)≤i = a. We will construct π together with a set
of inputs Sa ⊆ {0, 1}n for every such a, such that for every z ∈ Sa it will hold that f(π(z))≤i = a.
In other words, we construct π such that π(Sa) ⊆ f−1(a). Moreover, we will construct Sa in a way
that allows us to determine for any z whether z ∈ Sa only by the first |a|+ w first bits of z. This
will promise that the second property of Lemma 2.1 holds.

Since we want the above to hold for any prefix a ∈ {0, 1}∗, it must hold for every such a
that Sa = Sa0 ∪ Sa1, and that Sa0 and Sa1 are disjoint. Thus, Sa0 and Sa1 are a partition of
Sa. In the following we construct such sets inductively: we start with the construction of the set
Sϵ = {0, 1}n, and for every prefix a explain how to split the set Sa into the sets Sa0 and Sa1. If
by this construction we will be able to show that for every image y ∈ {0, 1}n of f , the set Sy is of
the same size as f−1(y), then we can construct a permutation π that fulfills the second property of
Lemma 2.1. Indeed, we can choose such π that maps arbitrarily between elements in Sy to f−1(y)
for every y. By the sizes of these sets we get that π is a permutation. By construction we also have
that we can compute f(π(z))≤i by checking for which sets {Sa}a∈{0,1}i z belongs. By construction
again, this can be done by only considering the first i+ w bits of z.

Constructing the sets Sa. To finish the proof we need to explain how to construct such sets.
For simplicity, in the following we assume that for every i and a ∈ {0, 1}i, it holds that

∣∣f−1(a)∣∣ =
11

ca · 2n−i−w for some integer ca ∈ N. That is, the number of inputs that f maps to a prefix a of
length i is a multiplication of 2n−i−w. Observe that if f is a permutation, then

∣∣f−1(a)∣∣ = 2n−i,
and this condition holds.

We will show that we can construct Sa such that |Sa| =
∣∣f−1(a)∣∣ = ca · 2n−i−w for every a.

Since the same holds for any image y, this finishes the proof for this simplified case. We show the
above in induction on the length of the prefix. First notice that Sϵ = {0, 1}n = f−1(ϵ). Fix i and
a ∈ {0, 1}i. Let Sa be a set of size ca · 2n−i−w. We show how to construct Sa0 and Sa1.

First, since the membership in Sa can be determined by the first i+w bits of z, for every z ∈ Sa
there are 2n−i−w strings z′ such that z′≤i+w = z≤i+w and z′ ∈ Sa. This means that Sa can be

partitioned into ca sets Sqa, indexed by q ∈ {0, 1}i+w, such that Sqa is a set of size 2n−i−w of all the
strings in {0, 1}n with prefix q. Furthermore, we can partition each such Sqa into equal size sets Sq0a
and Sq1a , of all the strings with prefix q0 and q1 respectively. We get 2ca such sets, of size exactly
2n−i−1−w each. Moreover, membership in each such set can be determined by a i + 1 + w-length
prefix.

Next, By assumption, for every b ∈ {0, 1},
∣∣f−1(ab)∣∣ = cab · 2n−i−1−w, where ca0 + ca1 = 2ca

(since
∣∣f−1(a0)∣∣ + ∣∣f−1(a1)∣∣ = ∣∣f−1(a)∣∣). We can thus simply take the set Sa0 to be the union

of ca0 of the sets Sqba , and the set Sa1 to be the union of the rest. It is not hard to see that this
construction fulfills the requirements we wanted to have.

2.3 Using Arbitrary Oracle-Aided Post-Processing

We now briefly explain how to generalize the above proofs to get Theorems 1.2 and 1.6. Specifically,
in Theorems 1.2 and 1.6 the PRF construction has the form fG

k (x) = AQL(k,x) , which allows making
arbitrary number of calls to the oracle and to apply arbitrary post-processing. Yet, by the same
proof we presented above, we can show that (for some value of L(k, x) = z), the answer to each
query to the oracle QL(k,x) can be simulated without querying G. Thus, we can replace the oracle
QL(k,x) with an alternative oracle that is independent of the choice of the PRG G. As explained in
the above proof, this implies that we can break the PRF security without breaking the PRG.

2.4 Limitation of Our Methods

We next discuss some limitations of our proof technique. In all of the above results we can only
deal with digest function L that outputs O(log n) bits (in the tree construction this corresponds to
the total length of L1(k, x)|| . . . ||Lt(k, x)). Below we give two reasons for this barrier.

The first reason is that our lower bounds hold even if the PRG has super-polynomial stretch
r(n). As discussed above, it is easy to construct a PRF from such a PRG, by making one call and
using a digest function L that outputs log r(n) = ω(log n) bits. Specifically, fG

k (x) = G(k)x is a
PRF.

The second reason is related to the choice of the attacker Break. In our proof Break is chosen
before the PRG G, and Break does not make any direct calls to G. Moreover, G is chosen from a
large family of function G. We observe that for such attacker Break (and even when Break makes
polynomial many calls to G), and when G is “large” enough, there is a PRF construction that fools
Break, even when the stretch of the PRG is small. Specifically, assume that over a random choice
of G from the family G, it holds that the min-entropy of G(x) is large given the entire truth table
of G except for G(x). Namely, assume that H∞(G(x) | G({0, 1}n \ {x})) ≥ ω(log n). Then Break

12

cannot distinguish between
fG
k1,k2(x) = Ext(G(k1 ⊕ x), k2)

to a random function, where Ext is a strong seeded extractor with seed of length |k2| ∈ ω(log n)
(and such extractors exists [Vad+12]), and when G is uniformly sampled from the family G. This
holds since the answer Ext(G(k1⊕x), k2) for every query of Break is (almost) uniformly distributed,
even given the entire view of Break so far.

A similar (and more general) barrier was shown by Miles and Viola [MV11]. Roughly speaking,
[MV11] showed that when one-way functions do not exist, a function that is hard to invert (and in
particular any PRG candidate), must be a function that is hard to compute. Then, [MV11] showed
it is possible to use the Nisan and Wigderson [NW94] PRG construction, to get a PRF with a
simple structure that is secure against any adversary Break that does not have oracle access to the
PRG G. On the other hand, when one-way functions exist, there is a PRF construction that does
not use the oracle to the PRG G at all. Back to our proof, when the family G is large enough, it
will contain a function that is hard to compute, and thus there exists a PRG in the family G which
can be used to construct a PRF.

2.5 Lower Bound on the Key Length

We finally explain how to prove our lower bound on the key-length. Fix a black-box PRF con-
struction F with a key of length λ(n) ≤ n − ω(log n), and let Ω ⊆ {0, 1}m(n) be an arbitrary set
of n elements from the domain of F . We will construct a PRG G and an efficient algorithm that
breaks FG by querying all the elements in Ω. Toward this, let Z : {0, 1}n → {0, 1}n+r(n) be the
zero function. That is Z(q) = 0n+r(n) for every q ∈ N. Let S be the set of all queries made by
fZ
k (x) for any possible key and for every x ∈ Ω. Namely,

S =
{
q : fZ

k (x) queries Z(q) on some x ∈ Ωn, k ∈ {0, 1}λ(n)
}
.

The idea is that for any PRG G such that G(q) = 0n+r(n) for every q ∈ S, it holds that
fG
k (x) = fZ

k (x). Thus, for every such PRG and for every x ∈ Ω we can compute fG
k (x) without

calling to G, and therefore we can distinguish fG
k from a random function.

On the other hand, it holds that the size of S is at most poly(n) · |Ω| · 2λ(n) = 2n · neg(n). This
implies that given a PRG G, we can construct a new PRG G′, such that G′(q) = 0n+r(n) if q ∈ S
or G′(q) = G(q) otherwise. By the negligible size of S we get that G′ is secure if G is.

3 Preliminaries

3.1 Notations

All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. For n ∈ N, let [n] :=
{1, . . . , n}. Given a vector v ∈ Σn, let vi denote its ith entry, let v<i = (v1, . . . , vi−1) and v≤i =
(v1, . . . , vi). For x, y ∈ {0, 1}∗, we let xy and x||y denote the concatenation of the strings x an y.

Let poly stand for the set of all polynomials. Let ppt stand for probabilistic poly-time. We say
that an oracle-aided algorithm is q-query algorithm if it makes at most q(n) queries to the oracle
on any input of length n.

13

3.2 Distributions and Random Variables

When unambiguous, we will naturally view a random variable as its marginal distribution. The
support of a finite distribution P is defined by Supp(P) := {x : PrP [x] > 0}. For a (discrete) dis-
tribution P, let x← P denote that x was sampled according to P. Similarly, for a set S, let x← S
denote that x is drawn uniformly from S. We use Un to denote the uniform distribution over {0, 1}n.
The statistical distance (also known as, variation distance) of two distributions P and Q over a
discrete domain X is defined by SD(P,Q) := maxS⊆X |P(S)−Q(S)| = 1

2

∑
x∈S |P(x)−Q(x)|. We

use P ≈ϵ Q to denote that SD(P,Q) ≤ ϵ.
We will make use of the following two inequalities.

Fact 3.1 (Chernoff bound). Let A1, ..., An be independent random variables s.t. Ai ∈ {0, 1}. Let

Â = Σn
i=1Ai and µ = E

[
Â
]
. For every ϵ ∈ [0, 1] It holds that:

Pr
[∣∣∣Â− µ

∣∣∣ ≥ ϵ · µ
]
≤ 2 · e−ϵ2·µ/3.

Claim 3.2. Let S be a set of size at least k, and let X1, . . . , Xt ← S be t independent, uniformly
distributed, random variables over S. Then

Pr[|{X1, . . . , Xt}| < k] ≤ k · (1/2)t/k

Proof. First, notice that for every fixed t, the probability of interest is smaller when |S| is larger.
Thus, we can assume without loss of generality that S = [k]. For every j ∈ [k] let χj be the
indicator that Xi = j for some i ∈ [t]. Then

Pr[|{X1, . . . , Xt}| < k] = Pr[∃j ∈ [k] s.t. χj = 0].

By observing that
Pr[χ1 = 0] = (1− 1/k)t ≤ (1/2)t/k,

we get that
Pr[|{X1, . . . , Xt}| < k] ≤ k · (1/2)t/k

as we wanted to show. □

3.3 Pseudorandom Generators and Functions

We next define pseudorandom generators.

Definition 3.3 (Pseudorandom generator (PRG)). An efficiently computable function G is an
r(n)-bit stretch PRG if for every n ∈ N and x ∈ {0, 1}∗, |G(x)| = |x| + r(|x|), and for every
efficient algorithm A, there exists a negligible function ν such that∣∣∣Prx←{0,1}n [A(1n, G(x)) = 1]− Pr

y←{0,1}n+r(n) [A(1n, y) = 1]
∣∣∣ ≤ ν(n).

Let Fm,1 be the family of all functions from {0, 1}m to {0, 1}. In this work we show lower
bounds on (semi) black-box constructions of pseudorandom functions from PRGs. We now define
such black-box constructions.

14

Definition 3.4 (Black-Box PRF construction). An efficient oracle-aided function family

F =
{
f
(·)
k : {0, 1}m(n) → {0, 1}

}
n∈N,k∈{0,1}λ(n)

is a black-box PRF construction from r(n)-bit stretch PRG if for every G =
{
Gn : {0, 1}n → {0, 1}n+r(n)

}
n∈N

,

every q ∈ poly, every q-query oracle-aided algorithm Break and every constant c ∈ N such that∣∣∣Prk←{0,1}λ(n)

[
Breakf

G
k (1n) = 1

]
− Prf←Fm(n),1

[
Breakf (1n) = 1

]∣∣∣ ≥ 1/nc

for infinitely many n’s, there exists a PPT oracle-aided TM A and a constant c′ ∈ N such that∣∣∣Prx←{0,1}n[ABreak,G(1n, G(x)) = 1
]
− Pr

y←{0,1}n+r(n)

[
ABreak,G(1n, y) = 1

]∣∣∣ ≥ 1/nc′

for infinitely many n’s.
F is a Black-Box weak PRF construction if the same holds for all algorithms Break that query

i.i.d. uniform queries to the oracle f .

In our proof we will use the following well-known lemma, which states that there exists an oracle
with respect to which PRGs exist.

Lemma 3.5. Let f = {fn : {0, 1}n → {0, 1}n}n∈N, w : N→ N and r : N→ N be functions such that

n+r(n) ∈ 2o(w(n)). Then there exists a (possibly inefficient) function G =
{
Gn : {0, 1}w(n) → {0, 1}n+r(n)

}
n∈N

such that the following holds. For every PPT oracle-aided TM A, there exists a negligible function
ν such that∣∣∣Prx←{0,1}w(n)

[
Af,G(1n, G(1n, x)) = 1

]
− Pr

y←{0,1}n+r(n)

[
Af,G(1n, y) = 1

]∣∣∣ ≤ ν(n).

The proof of Lemma 3.5, which is given in Appendix A follows easily from the work of Gennaro,
Gertner, Katz, and Trevisan [GGKT05] (see also [MV11; HHRS07]).

4 Structural Lower Bounds on PRF Constructions

In this part we present our structural lower bound on black-box PRF constructions, and derive
our main lower bounds on Tree constructions and one-call constructions. For simplicity, in the
following we assume that on security parameter n, the PRF construction queries the PRG G only
on inputs with length n. In Appendix B we generalize our results to get rid of this assumption.

To state our lower bound, we start with defining sequential oracles. Roughly speaking, a
collection of functions {Qz}z∈{0,1}∗ is a sequential oracle if for some functions P1, . . . , Pt,

Qz(s) = Pt(G(. . . G(P1(G(s), z)) . . .), z).

In other words, {Qz}z∈{0,1}∗ is a sequential oracle if for p0(s, z) = s and pi(s, z) = Pi(G(pi−1), z)
it holds that Qz(s) = pt(s, z). In the definition below we let t be the depth of the function (that
is, the number of adaptive calls to G), and v the length of the output of Pt. For simplicity we let
P (i, y, z) = Pi(y, z).

15

Definition 4.1 (Sequential oracle). Let t = t(n), ℓ = ℓ(n), v = v(n) and r = r(n) be functions. A
collection of oracles {Qn,z}n∈N,z∈{0,1}ℓ(n) is a (t(n), v(n))-sequential oracle if for every n ∈ N there

exists a function P : [t(n)] × {0, 1}n+r(n) × {0, 1}ℓ(n) → {0, 1}n such that the following holds for

every function G : {0, 1}n → {0, 1}n+r(n) and for every n ∈ N.
For z ∈ {0, 1}ℓ(n) and s ∈ {0, 1}n, let pG0 (s, z) = s, and for every i ∈ [t(n)], let pGi (s, z) =

P (i, G(pGi−1(s, z)), z). Then

QG
n,z(s) = pGt(n)(s, z)≤v(n).

For example, a tree construction can be written as fG
k (x) = QG

n,L(k,x)(S(k, x)) for some functions
L and S. Our goal is to show that when t and ℓ are not too large, there is no such tree construction.
We actually show something stronger - that for every choice of function L, the function QG

n,L(k,x)

alone is useless to construct PRF. That is, there is no PRF construction that only uses QG
n,L(k,x)

as an oracle.

Theorem 4.2. Let c ∈ N be a constant, and let w,m, λ, r, ℓ, v, t : N → N be functions, such that
w(n) ∈ ω(log n+ log r(n)), λ ∈ poly, ℓ(n) ≤ c log n,

m(n) ≥ ℓ(n) + log(λ(n) + ℓ(n) + 10) + 1

and

t(n) ≤ log(1 +
n− w(n)

max{v(n), w(n)}
).

Then, for every (t(n), v(n))-sequential oracle {Qn,z}n∈N,z∈ℓ(n), every function family

L =
{
Ln : {0, 1}λ(n) × {0, 1}m(n) → {0, 1}n

}
n∈N

and for every oracle-aided algorithm A, there is no Black-Box (weak) PRF construction

F =
{
fk : {0, 1}m(n) → {0, 1}

}
k∈{0,1}λ(n)

from r(n)-bit stretch PRG, such that for all k, x,

fG
k (x) = A

QG
n,L(k,x)(1n, k, x).

We prove Theorem 4.2 in Section 5, but first we use it to derive lower bounds on two extreme
cases of sequential oracles: Tree and depth-one oracles.

4.1 Tree constructions

A tree construction is a black-box construction with sequential calls to the PRG, in which every
call is only dependent on the output of the previous call, together with some small number of bits
from the input and key. This type of construction is formally defined below.

Definition 4.3 (Tree construction). A black-box construction of a PRF

F =
{
fk : {0, 1}m(n) → {0, 1}

}
k∈{0,1}λ(n)

16

from r(n)-bit stretch PRG is a (t, c)-Tree construction, if for every n ∈ N, there exist functions

S0 : {0, 1}λ(n) × {0, 1}m(n) → {0, 1}n, S : [t(n)]× {0, 1}n+r(n) × {0, 1}c(n) → {0, 1}n and L : [t(n)]×
{0, 1}λ(n) × {0, 1}m(n) → {0, 1}c(n) such that the following holds for every x ∈ {0, 1}m(n), k ∈
{0, 1}λ(n) and G : {0, 1}n → {0, 1}n+r(n).

Let s0 = S0(k, x), and for every i ∈ [t(n)], let si = S(i, G(si−1), L(i, k, x)) it holds that f
G
k (x) =

(st(n))≤1.

As a direct corollary of Theorem 4.2 we get a lower bound on the depth of every tree construction.

Corollary 4.4 (Lower bound for tree constructions – Theorem 1.4, restated). Let c ∈ N be a
constant, and let λ ∈ poly, r : N→ N, and m(n) ≥ c · log n+log(λ(n)+c log n+10)+1 be functions.

Then there is no (t, c)-Tree (weak) PRF construction F =
{
fk : {0, 1}m(n) → {0, 1}

}
k∈{0,1}λ(n)

from

r(n)-bit stretch PRG, with t(n) ≤ log n− log(log n+ log r(n))− ω(1).

Proof. The proof is by showing the (c, t)-Tree construction with constant c and t(n) ≤ log n −
log(log n+log r(n))−α(n), for α(n) = ω(1) can be implemented with one call to a (1, t(n))-sequential
oracle. Specifically, let w(n) = 2α(n) · (log n + log r(n)), L′(k, x) = L(1, k, x)|| . . . ||L(t(n), k, x),
and let ℓ(n) = |L′(k, x)| = c · t(n) ≤ c log n. Let P (i, y, z) = S(i, y, zci+1,...,c(i+1)), so that
P (i, G(si−1), L

′(k, x)) = S(i, G(si−1), Li(k, x)) for every i.
Moreover, the algorithm A that given k, x calls to QG

L′(k,x) with S0(k, x) and output the first

bit of PG
t(n)(s, L

′(k, x)), implements F . □

A similar proof shows that there is no PRF construction even given an oracle to the tree
construction.

Corollary 4.5 (Theorem 1.6, restated). Let c,m, λ, r, ℓ be as in Theorem 4.2. Then, for every
(log n− log(log n+log r(n))−ω(1), 1)-sequential oracle {Qn,z}n∈N,z∈ℓ(n), and for every oracle-aided

algorithm A, there is no Black-Box (weak) PRF construction

F =
{
fk : {0, 1}m(n) → {0, 1}

}
k∈{0,1}λ(n)

from r(n)-bit stretch PRG, such that for all k, x,

fG
k (x) = A

QG
n,L(k,x)(1n, k, x).

4.2 Digest functions

Directly from Theorem 4.2 we get the following theorem, which implies our result for one-call
constructions.

Corollary 4.6 (Theorem 1.2, restated). Let c,m, λ, r, ℓ be as in Theorem 4.2. Then, for every
(1, n − ω(log n + log r(n))-sequential oracle {Qn,z}n∈N,z∈ℓ(n), and for every oracle-aided algorithm

A, there is no Black-Box (weak) PRF construction

F =
{
fk : {0, 1}m(n) → {0, 1}

}
k∈{0,1}λ(n)

from r(n)-bit stretch PRG, such that for all k, x,

fG
k (x) = A

QG
n,L(k,x)(1n, k, x).

17

And as a special case we get the corollary for projection functions.

Corollary 4.7 (Theorem 1.1, restated). Let c,m, λ be as in Theorem 4.2, and let r ∈ poly. Let

i =
{
in : {0, 1}λ(n) × {0, 1}m(n) → [n+ r(n)]

}
, and let QG

n,in(k,x)
(s) = G(s)in(k,x). Then, for every

oracle-aided algorithm A, there is no Black-Box (weak) PRF construction

F =
{
fk : {0, 1}m(n) → {0, 1}

}
k∈{0,1}λ(n)

from r(n)-bit stretch PRG, such that for all k, x,

fG
k (x) = A

QG
n,in(k,x)(1n, k, x).

5 Proving Theorem 4.2

In this section we prove Theorem 4.2. We actually prove a stronger statement, with respect to a
slightly stronger oracle, defined next.

Definition 5.1 (Augmented sequential oracle). Let t = t(n), ℓ = ℓ(n) and r = r(n) be functions,
and v = v(n) = (vn1 , . . . , v

n
t(n)) ∈ Nt(n) be a vector. A collection of oracles {Qn,z}n∈N,z∈{0,1}ℓ(n) is a

v-sequential oracle if for every n ∈ N there exists a function P : [t(n)]× {0, 1}n+r(n) × {0, 1}ℓ(n) →
{0, 1}n such that the following holds for every function G : {0, 1}n → {0, 1}n+r(n). For z ∈ {0, 1}ℓ(n)
and s ∈ {0, 1}n, let pG0 (s, z) = s, and for every i ∈ [t(n)], let pGi (s, z) = P (i, G(pGi−1(s, z)), z). Then

QG
n,z(s) = pG1 (s, z)≤v1 || . . . ||pGt(n)(s, z)≤vt(n)

.

That is, in augmented sequential oracles, we also output some inner values computed during
the computation of the output of the sequential oracle. We prove the following lemma.

Lemma 5.2. Let c, w,m, λ, r, ℓ and t be as in Theorem 4.2. For every n ∈ N, let v(n) =
(vn1 , . . . , v

n
t(n)) ∈ Nt(n) be numbers such that

vni ≥ w(n) +
∑

t(n)≥j>i

vnj , and,
∑

i∈[t(n)]

vni ≤ n− w(n),

and let Ln : {0, 1}λ(n) × {0, 1}m(n) → {0, 1}ℓ(n). Then, for every sequential oracle {Qn,z}n∈N,z∈ℓ(n),
and for every oracle-aided algorithm A, there is no Black-Box (weak) PRF construction

F =
{
fk : {0, 1}m(n) → {0, 1}

}
k∈{0,1}λ(n)

from r(n)-bit stretch PRG, such that for all k, x,

fG
k (x) = A

QG
n,Ln(k,x)(1n, k, x).

Theorem 4.2 follows from Lemma 5.2 simply by choosing the right parameters.

18

Proof of Theorem 4.2. Let w′(n) = max{v(n), w(n)}, and observe that w′(n) ∈ ω(log n+ log r(n)).
For every n ∈ N, i ∈ [t(n)], let vni = w′(n) · 2t(n)−i. It follows that

vni = w′(n) · 2t(n)−i = w′(n) · (1 +
∑

t(n)≥j>i

2t(n)−j) = w′(n) +
∑

t(n)≥j>i

vnj ≥ w(n) +
∑

t(n)≥j>i

vnj

and that
∑

i∈[t(n)] v
n
i = w′(n)(2t(n) − 1). Thus, v(n) = (vn1 , . . . , v

n
t(n)) satisfies the conditions of

Lemma 5.2, as long as
w′(n)(2t(n) − 1) ≤ n− w(n)

which holds for

t(n) ≤ log(1 +
n− w(n)

w′(n)
) = log(1 +

n− w(n)

max{v(n), w(n)}
).

Moreover, the v-augmented sequential oracle contains the first v(n) bits of pGt(n)(s, z), which is

the output of the (t(n), v(n))-sequential oracle which is defined by the same function P . Thus, the
v-augmented sequential oracle is strictly stronger than the t(n)-sequential oracle. □

5.1 Proving Lemma 5.2

We now prove Lemma 5.2. Assume toward a contradiction that there exists a black-box PRF

construction F =
{
f
(·)
k : {0, 1}m(n) → {0, 1}

}
k∈λ(n)

from r(n)-bit stretch PRG with the structure

described in Lemma 5.2.
To prove Lemma 5.2, we will show that there exists an oracle O, such that with respect to the

oracle, there exists a PRG G, but FG is not a PRF. In more detail, we will show that for some
zn ∈ {0, 1}ℓ(n), and for some PRG G, QG

zn can be computed on every input without calling to G.
It follows that an adversary that only attempts to break the security of the PRF F on keys and
inputs for which L(k, x) = zn cannot be used to break the security of G. We construct such an
adversary below.

We next describe the distinguisher that breaks the security of F . Let c, w,m, λ, r, ℓ, t, v be as
in Lemma 5.2. Let {Qz}n∈N,z∈{0,1}ℓ(n) be the v-sequential oracle used by F , and for every n ∈ N,
let Pn be the function given by the definition of sequential oracle. Let A and Ln be the algorithm

and function such that fG
k (x) = A

QG
n,Ln(k,x)(1n, k, x) for every G, k and x. In the following, when n

is clear from the context, we use L,P and Qz to denote Ln, Pn and Qn,z.
We start with the following simple claim, which states that there exists some value z such that

L(k, x) is equal to z with a good probability, over a random choice of the key k and the input x.
Our distingusher will try to break the security of F on inputs k, x for which L(k, x) = z.

Claim 5.3. For every n ∈ N, there exists zn ∈ {0, 1}ℓ(n) such that

Pr
k←{0,1}λ(n)

[
Pr

x←{0,1}m(n) [L(k, x) = zn] ≥ 2−ℓ(n)−1
]
≥ 2−ℓ(n)−1.

The claim follows directly from the assumption that the output of L(k, x) is short.

Proof. Let z ∈ {0, 1}ℓ(n) be the value that maximize Pr
k←{0,1}λ(n),x←{0,1}m(n) [L(k, x) = z]. Then

Pr
k←{0,1}λ(n),x←{0,1}m(n) [L(k, x) = z] ≥ 2−ℓ(n).

19

We get that

2−ℓ ≤ Pr
k←{0,1}λ(n),x←{0,1}m(n) [L(k, x) = z]

= E
k←{0,1}λ(n)

[
Pr

x←{0,1}m(n) [L(k, x) = z]
]

≤ Pr
k←{0,1}λ(n)

[
Pr

x←{0,1}m(n) [L(k, x) = z] ≥ 2−ℓ(n)−1
]
· 1

+ Pr
k←{0,1}λ(n)

[
Pr

x←{0,1}m(n) [L(k, x) = z] < 2−ℓ(n)−1
]
· 2−ℓ(n)−1

≤ Pr
k←{0,1}λ(n)

[
Pr

x←{0,1}m(n) [L(k, x) = z] ≥ 2−ℓ(n)−1
]
+ 2−ℓ(n)−1

which implies the claim. □

In the following, for every n ∈ N let zn be the value promised by Claim 5.3. The following
lemma is the main crux of the proof.

Lemma 5.4. There exist a function family π =
{
πn : {0, 1}n+r(n) → {0, 1}n+r(n)

}
n∈N

and a func-

tion Q̂ such that the following holds for every function G : {0, 1}n → {0, 1}n+r(n) with G(s)≤n−w(n) =
s≤n−w(n), and for every n ∈ N.

1. SD(Un+r(n), πn(Un+r(n))) ≤ 2 · 2−w(n), and

2. Qπn◦G
zn (s) = Q̂(s) for every s ∈ {0, 1}n.

As we will show later, the first property promises that for every PRG G (which is secure against
adversaries with oracle access to π), π◦G is also a PRG. The second property promises that for any
PRG G that outputs the first n−nϵ bits of its seed, the output of the oracle QG′

zn can be computed
without evaluating G′ when using G′ = π ◦G as the black-box PRG. These two properties together
allow us to break the security of any PRF construction that uses QG′

zn without breaking the security
of G.

Lemma 5.4 is proven in Section 5.3, but first let us use Lemma 5.4 to define the distinguisher
that breaks the security of the PRF. Let π and Q̂ be the function families promised by Lemma 5.4.
We next define the distinguisher.

Algorithm 5.5 (Break).

Input: 1n

Oracle: f : {0, 1}m(n) → {0, 1}
Operation:

1. Randomly choose p(n) = 2ℓ(n)+10 · (λ(n) + ℓ(n) + 10)3 points x1, . . . , xp(n) ← {0, 1}m(n).

2. Computes yi = f(xi) for every i ∈ [p(n)].

3. For every k ∈ {0, 1}λ(n), let Gk = {xi : L(k, xi) = zn}.

4. If for some k ∈ {0, 1}λ(n), it holds that |Gk| > λ(n) + ℓ(n) + 10, and f(x) is equal to AQ̂(k, x)
for every x ∈ Gk, return 1. Otherwise return 0.

20

. .

Lemma 5.2 follows from the following two claims. The first states that Break breaks the security
of the PRF F , when using a certain type of PRGs.

Lemma 5.6. Let G : {0, 1}n → {0, 1}n+r(n) be a function such that for every n ∈ N and s ∈ {0, 1}n,
it holds that Gn(s)≤n−w(n) = s≤n−w(n). Let G′ : {0, 1}n → {0, 1}n+r(n) be the function defined by
G′(s) = πn(G(s)) for s ∈ {0, 1}n. Then,∣∣∣Prf←FG′

[
Breakf (1n) = 1

]
− Prf←Fm(n),1

[
Breakf (1n) = 1

]∣∣∣ ≥ 2−ℓ(n)−10.

The second lemma states that there is some oracle O with respect to Break is efficiently com-
putable and there exists a PRG of the form needed in Lemma 5.6 with respect to O.

Lemma 5.7. There exists a function G =
{
Gn : {0, 1}w(n) → {0, 1}w(n)+r(n)

}
n∈N

such that G is a

PRG with respect to the oracle O = (π,Break, G).

Proof of Lemma 5.7. Immediate by Lemma 3.5. □

Lemma 5.6 is proven below, but first we use them to prove Lemma 5.2.

Proof of Lemma 5.2. For every n ∈ N, let zn be the value promised by Claim 5.3 and π = {πn}n∈N
be the function promised by Lemma 5.4. Let O = (π,Break, G) be the oracle promised by
Lemma 5.7.

Let Ĝ : {0, 1}n → {0, 1}n+r(n) be the function family defined by

Ĝn(s) = s≤n−nϵ ||G(s>n−nϵ).

Clearly, Ĝ is a PRG if G is, Moreover, since π = {πn}nN
is efficiently computable with respect

to O, G′ = π ◦ Ĝ is a PRG. Indeed, otherwise let D be a distinguisher that breaks the security of
G′. We claim that D′ = D ◦ πn breaks the security of Ĝ. To see this, observe that

Pry←{0,1}n
[
D′(Ĝ(y)) = 1

]
= Pry←{0,1}n

[
D(πn(Ĝ(y))) = 1

]
= Pry←{0,1}n

[
D(G′(y)) = 1

]
and that, since πn is close to be a permutation,

Pr
y←{0,1}n+r(n)

[
D′(y) = 1

]
= Pr

y←{0,1}n+r(n) [D(πn(y) = 1] = Pr
y←{0,1}n+r(n) [D(y) = 1]± neg(n).

Thus D′ breaks Ĝ with roughly the same advantage of D breaking G′, and therefore the advantage
must be negligible.

Since G′ is a PRG with respect to the oracle O = (π,Break, G), it is also a PRG with respect
to the (weaker) oracle O′ = (Break, G′).

On the other hand, Break is efficiently computable with respect to O′, and by Lemma 5.6, Break
breaks the security of F when using G′ as the oracle PRG. Thus, F is not a black-box construction
of a PRF. □

21

5.2 Proving Lemma 5.6

Lemma 5.6 follows directly by the following two claims.

Claim 5.8.
Prf←Fm(n),1

[
Breakf (1n) = 1

]
≤ 2−ℓ(n)−10

Proof. Let f̂k(x) = AQ̂L(k,x)(k, x). The probability that a random function agrees with f̂k on
λ(n) + ℓ(n) + 10 inputs, for any fixed k, is at most 2−λ(n)−ℓ(n)−10. The claim thus follows by the
union bound over all possible 2λ(n) keys. □

Claim 5.9. Let G′ be as in Lemma 5.6. Then

Pr
k←{0,1}λ(n)

[
Breakf

G′
k (1n) = 1

]
≥ 2−ℓ(n)−5

Proof. By Lemma 5.4, for every k and x with L(k, x) = zn, it holds that fG′
k (x) = AQ̂L(k,x)(k, x).

Thus, it is enough to show that with good probability over the choice of the key k, the size of the
set Gk is larger than λ(n) + ℓ(n) + 10 with a good probability. That is,

Pr
k←{0,1}λ(n),x1,...,xp(n)←{0,1}m(n) [|Gk| ≥ λ(n) + ℓ(n) + 10] ≥ 2−ℓ(n)−5. (2)

By Claim 5.3, with probability at least 2−ℓ(n)−1 over the choice of k, the probability that for a
random x it is the case that L(k, x) = zn is at least 2−ℓ(n)−1. It is thus enough to show that for
every such k, the size of Gk is at least λ(n) + ℓ(n) + 10 with probability at least 2−4.

Fix such k, and let X1, . . . , Xp(n) be the random variables taking the value of the queries made

by Break in a random execution. Let GX =
{
x ∈ {0, 1}m(n) : L(k, x) = zn

}
be the set of all x’s

such that L(k, x) = zn, and let GI = {i ∈ [p(n)] : Xi ∈ GX} be the (random) set of all indexes such
that Xi ∈ Gk in the execution of Break.

By our assumption on k and a simple use of Chernoff, |GI| ≥ (λ(n)+ℓ(n)+10)2 with probability
at least 1/2. Moreover, for every i ∈ [p(n)], given the event that i ∈ GI, Xi uniformly distributed
over the set GX . We thus get that for q(n) = (λ(n) + ℓ(n) + 10)2,

Pr[|Gk| ≥ λ(n) + ℓ(n) + 10] = Pr[|{Xi : i ∈ GI}| ≥ λ(n) + ℓ(n) + 10]

≥ Pr[|{Xi : i ∈ GI}| ≥ λ(n) + ℓ(n) + 10 ∧ |GI| ≥ q(n)]

≥ Pr[|{Xi : i ∈ GI}| ≥ λ(n) + ℓ(n) + 10 | |GI| ≥ q(n)] · 1/2
≥ 1/2 · PrY1,...,Yq(n)←GX

[∣∣{Y1, . . . , Yq(n)}∣∣ ≥ λ(n) + ℓ(n) + 10
]

≥ 1/4

where the last inequality follows by Claim 3.2, since by our bound on m(n) and our assumption on
k, |GX | ≥ 2m(n) · 2−ℓ(n)−1 ≥ λ(n) + ℓ(n) + 10. □

We are now ready to prove Lemma 5.6.

Proof of Lemma 5.6. Immediate from Claim 5.8 and Claim 5.9. □

22

5.3 Proving Lemma 5.4

In this part we prove Lemma 5.4. We will make use in the following lemma.

Lemma 5.10 (Pseudo-inverse lemma). Let n,w ∈ N be numbers and f : {0, 1}n → {0, 1}n−w be a
function. Then there exists a function π : {0, 1}n → {0, 1}n, and functions {fi}i∈[n−w] such that:

1. SD(Un, π(Un)) ≤ 2 · 2−w

2. For every i ∈ [n− w], f(π(x))≤i = fi(x<i+w).

Lemma 5.10 is proven in Section 6. In the following we use Lemma 5.10 to prove Lemma 5.4.

Proof of Lemma 5.4. We start with the construction of π. Fix n and for every i ∈ [t(n)], and

y ∈ {0, 1}n+r(n), let Si(y) = P (i, y, zn). Let S
′
i be the function defined by S′i(y) = Si(y)≤vi . Finally,

let S = S′t(n)||S
′
t(n)−1|| . . . ||S

′
1.

By Lemma 5.10 with respect to f = S and w = w(n), there exists a function πn : {0, 1}r(n) →
{0, 1}r(n) such that

SD(Ur(n), πn(Ur(n))) ≤ 2 · 2−w(n),

and, S′t(n)(πn(x)), . . . , S
′
i(πn(x)) can be computed by the first w(n) +

∑
i≤j≤t(n) vj ≤ vi−1 bits of x.

That is, there exist functions Ŝ1, . . . , Ŝt(n) such that S′i(πn(x)) = Ŝi(x≤vi−1) for every i ∈ [t(n)].

We next use Ŝ1, . . . , Ŝt(n) to construct the function Q̂. Let p̂πn◦G
0 (s) = s, and for every i ∈ [t(n)],

let p̂πn◦G
i (s) = Ŝi(p̂

G
i−1(s)). Define

Q̂(s) := p̂πn◦G
1 (s)|| . . . ||p̂πn◦G

t(n) (s).

Next, let pπn◦G
0 (s) = s, and for every i ∈ [t(n)], let pπn◦G

i (s) = Si(πn(G(pπn◦G
i−1 (s)))). To finish

the proof of the lemma, we need to show that for any G : {0, 1}n → {0, 1}r(n) with G(s)≤n−w(n) =
s≤n−w(n), and for every s, it holds that

Q̂(s) = Qπn◦G
zn (s),

or more explicitly, we need to show that

p̂πn◦G
1 (s)|| . . . ||p̂πn◦G

t(n) (s) = pπn◦G
1 (s)≤v1 || . . . ||p

πn◦G
t(n) (s)≤vt(n)

. (3)

To establish Equation (3), in the following we prove with induction on 0 ≤ i ≤ t(n) that p̂πn◦G
i (s) =

pπn◦G
i (s)≤vi .

For i = 0 the above holds trivially, as by definition p̂πn◦G
0 (s) = s = pπn◦G

0 (s). Next, assume that
the above holds for i− 1. We get that

pπn◦G
i (s)≤vi = Si(πn(G(pπn◦G

i−1 (s))))≤vi = Ŝi(G(pπn◦G
i−1 (s))≤vi−1) = Ŝi((p

πn◦G
i−1 (s))≤vi−1), (4)

where the first equality holds by the definition of pπn◦G
i (s), the second by the definition of Ŝi,

and the last equality holds since by our choice of G it holds that G(s)≤vi−1 = s≤vi−1 (recall that
vi−1 ≤ n− w(n)). Next, by the induction hypothesis we get that

Ŝi((p
πn◦G
i−1 (s))≤vi−1) = Ŝi((p̂

πn◦G
i−1 (s)) = p̂πn◦G

i (s), (5)

where the last equality holds by the definition of p̂πn◦G
i (s). We now get the claim by combining

Equations (4) and (5). □

23

6 Proving the Pseudo-Inverse Lemma

In this section we prove Lemma 5.10, restated below.

Lemma 6.1 (Pseudo-inverse lemma, restated). Let n,w ∈ N be numbers and f : {0, 1}n →
{0, 1}n−w be a function. Then there exists a function π : {0, 1}n → {0, 1}n, and functions {fi}i∈[n−w]

such that:

1. SD(Un, π(Un)) ≤ 2 · 2−w

2. For every i ∈ [n− w], f(π(x))≤i = fi(x<i+w).

Proof of Lemma 5.10. We start with the construction of π. Fix n and w, and let ϵ = n · 2−w.
In the following we construct functions π1, π2 : {0, 1}n → {0, 1}n, and take π = π1 ◦ π2 (namely,
π(x) = π1(π2(x))). We will construct π1 and π2 such that π1 will be a (perfect) permutation, while
π2 will only be close to a permutation, in the sense that

SD(Un, π2(Un)) ≤ ϵ.

This will be enough to get that

Un = π2(Un) ≈ϵ π2(π1(Un)) = π(Un)

as stated in the lemma.
We will construct π1 such that f ′ := f ◦ π1 will be a monotone function. That is, for every

x1 ≤ x2 it holds that f ′(x1) ≤ f ′(x2), where here ≤ is with respect to the lexicographic order.
We will then construct π2 that fulfils both of the requirements of the lemma, with respect to this
monotone function f ′.

Constructing π1 such that f ◦ π1 is monotone is straightforward. Let y1 ≤ · · · ≤ yr be all of
the images of f in a lexicographic order. Define π1 as follows: map the first

∣∣f−1(y1)∣∣ elements
in {0, 1}n (according to the lexicographic order) to the set f−1(y1). Then map the next

∣∣f−1(y1)∣∣
elements of {0, 1}n to f−1(y2), and so on. In the last step, map the last

∣∣f−1(yr)∣∣ elements of
{0, 1}n to f−1(yr). It is not hard to see that π1 is a permutation and that f ′ = f ◦ π1 is monotone.

We next define π2. To do so, for every x, let i(x) be the minimal index i such that

f ′(xi+w||0n−i−w)≤i ̸= f ′(xi+w||1n−i−w)≤i.

or i(x) = ⊥ if not such index exists. That is, i(x) (if not ⊥) is the first index such that we cannot
predict the first i bits of f ′(x) from the first i + w bits of x (recall that since f ′ is monotone,
if f ′(xi+w||0n−i−w)≤i = f ′(xi+w||1n−i−w)≤i, then f ′(xi+w||0n−i−w)≤i = f ′(xi+w||z)≤i for any z ∈
{0, 1}n−w−i). We now define π2 as follows: for any x such that i(x) = ⊥, let π2(x) = x. Otherwise,
let π2(x) = x≤i(x)+w||0n−i(x)−w.

To finish the proof of the lemma, we need to show that (1), π2 is close to be a permutation, and
(2), that there are functions {fi} such that f(π(x))≤i = f ′(π2(x))≤i = fi(x≤i+w). To show that π2
is a permutation, it is enough to prove that the number of x ∈ {0, 1}n such that π2(x) ̸= x is at
most 2n · ϵ. That is, it is enough to show that there are at most 2n · ϵ strings x ∈ {0, 1}n such that
i(x) ̸= ⊥.

To see the above, observe that by the monotonicity of f ′, for any i ∈ [n−w], and for any prefix
a ∈ {0, 1}i, there is at most one z ∈ {0, 1}i+w such that f(z||0n−i−w)≤i = a but f(z||1n−i−w)≤i ̸= a.

24

Indeed, take the minimal such z. If f(z||0n−i−w)≤i = a but f(z||1n−i−w)≤i ̸= a then it must hold
that f(z||1n−i−w)≤i > a, which means that f(z′||0n−i−w)≤i > a for any z′ > z.

Using the above observation, we get that there are at most 2i strings z ∈ {0, 1}i+w for which
f(z||0n−i−w)≤i ̸= f(z||1n−i−w)≤i. This implies, by definition of i(x), that there are at most 2i

strings x ∈ {0, 1}n such that i(x) = i. Summing over all possible values of i ∈ [n−w], we get that
there are at most

∑
i≤n−w 2i = 2n−w+1 = ϵ · 2n strings x with i(x) ̸= ⊥, which implies that π2 is

indeed close to be a permutation.
Finally, we need to construct the functions {fi}i∈[n−w]. For every i ∈ [n−w], and z ∈ {0, 1}i+w

let fi(z) be defined as follows. If z is a prefix of some string x ∈ {0, 1}n such that i(x) ≤ i, then
let fi(z) = f ′(z≤i(x)+w||0n−i(x)−w). Otherwise, let fi(z) = f ′(z||0n−i−w).

Now observe that by the definition of i(·), we can determine if i(x) ≤ i by looking on the first i+w
bits of x. Moreover, if i(x) ≤ i, then we can determine the value of i(x) by looking on the same first
i+w bits of x. Thus, if i(x) ≤ i then fi(x≤i+w) = f ′(x≤i(x)+w||0n−i(x)−w) = f ′(π2(x)). On the other
hand, when i(x) ≥ i or i(x) = ⊥, we have again that fi(x≤i+w) = f ′(x≤i+w||0n−i−w) = f ′(π2(x)),
which concludes the proof.

□

7 Lower Bound on the Key Length

In this part we prove our lower bound on the key-length of a Black-Box PRF construction. As in
Section 4, in the following we assume that on security parameter n, the PRF construction queries
the PRG G only on inputs with length n. In Appendix B.1 we generalize our results to get rid of
this assumption.

Theorem 7.1 (Lower bound on the key-length). Let m,λ, r : N → N be functions such that
λ ∈ poly, m(n) ≥ λ(n) + 1, r(n) ∈ 2o(n) and n − λ(n) ∈ ω(log n). Then there is no black-box

PRF construction F =
{
fk : {0, 1}m(n) → {0, 1}

}
k∈λ(n)

from r(n)-bit stretch PRG G such that on

security parameter n, fk(x) only queries G on inputs of length n.

That is, the key length in every such construction must be at least n−O(log n).
To prove Theorem 7.1, assume toward a contradiction that the lower-bound does not hold, and

fix a PRF construction F that contradicts the lower bound. let q be a constant such that nq is
an upper bound on the number of queries F makes to G on security parameter n. Let c be a
constant such that λ(n) ≤ nc. Let Ωn be the set of the first λ(n)+1 elements in {0, 1}m(n), and let

Z : {0, 1}n → {0, 1}n+r(n) be the function that returns 0n+r(n) on every input of length n. Finally,
let

Sn =
{
w : fZ

k (x) queries Z on w on some x ∈ Ωn, k ∈ {0, 1}λ(n)
}
.

We observe that |Sn| ≤ 2λ(n)|Ωn| ·nq = 2λ(n) · (nc+1)nq. In the following, we will construct a PRG
G that outputs 0r(n) on every input from Sn. Consider the following distinguisher.

Algorithm 7.2 (Break).

Input: 1n

Oracle: f : {0, 1}m(n) → {0, 1}
Operation:

25

1. Query f(x) for every x ∈ Ωn.

2. If for some k ∈ {0, 1}λ(n), it holds that f(x) = fZ
k (x) for all x ∈ Ω(n), return 1. Otherwise

return 0.
. .

Theorem 7.1 follows from the following two claims. The first states that Break breaks the
security of the PRF F , when using a certain type of PRGs.

Lemma 7.3. Let G =
{
Gn : {0, 1}n → {0, 1}n+r(n)

}
n∈N

be a function such that for every n ∈ N

and w ∈ Sn, G(w) = 0|w|+r(|w|). Then,∣∣∣Prf←FG′

[
Breakf (1n) = 1

]
− Prf←Fm(n),1

[
Breakf (1n) = 1

]∣∣∣ ≥ 1/2.

Proof of Lemma 7.3. For every function G such that G(w) = 0|w|+r(|w|) for any w ∈ Sn, it holds
that fG

k (x) = fZ
k (x) for every x ∈ Ωn. Thus, Break output 1 with probability one on f ∈ FG.

On the other hand, for every k, the probability that a random function f agree on fZ
k on every

x ∈ Ωn is 2−|Ωn| = 2−λ(n)−1. By taking union bound over all of the possible keys, we get that the
probability that a random function agrees with any f ∈ FZ is at most 1/2. □

The second lemma states that there is some oracle with respect to Breakn is efficiently com-
putable, and there exists a PRG of the form needed in Lemma 5.6

Lemma 7.4. There exists a function family G =
{
Gn : {0, 1}n → {0, 1}n+r(n)

}
such that G is a

PRG with respect to the oracle O = ({χSn}n∈N,Breakn, G).

Proof of Lemma 7.4. Immediate by Lemma 3.5. □

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. Let G be the function promised by Lemma 7.4. Let G′ be the function
defined by

G′(x) =

{
0|x|+r(|x|) x ∈ S|x|
G(x) x /∈ S|x|

Since G′ can be efficiently computed given O, and |Sn| = neg(n) · 2n, G′ is a PRG. By Lemma 7.3,
FG′

is not a PRF. □

Acknowledgment

We thank Yanyi Liu, Tamer Mour, and Tianqi Yang for very useful discussions.

26

References

[AR16] Benny Applebaum and Pavel Raykov. “Fast pseudorandom functions based on ex-
pander graphs”. In: Theory of Cryptography: 14th International Conference, TCC
2016-B, Beijing, China, October 31-November 3, 2016, Proceedings, Part I 14. Springer.
2016, pp. 27–56 (cit. on p. 2).

[BMR10] Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. “Algebraic pseu-
dorandom functions with improved efficiency from the augmented cascade”. In: Pro-
ceedings of the 17th ACM conference on Computer and communications security. 2010,
pp. 131–140 (cit. on p. 2).

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. “Pseudorandom functions and lat-
tices”. In: Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer. 2012, pp. 719–737 (cit. on p. 2).

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. “Bounds on the
Efficiency of Generic Cryptographic Constructions”. In: SIAM Journal on Computing
35.1 (2005), pp. 217–246 (cit. on pp. 8, 9, 15).

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to construct random func-
tions”. In: Journal of the ACM (JACM) 33.4 (1986), pp. 792–807 (cit. on p. 2).

[GMR01] Yael Gertner, Tal Malkin, and Omer Reingold. “On the impossibility of basing trap-
door functions on trapdoor predicates”. In: Proceedings 42nd IEEE Symposium on
Foundations of Computer Science. IEEE. 2001, pp. 126–135 (cit. on p. 3).

[HHRS07] Iftach Haitner, Jonathan J Hoch, Omer Reingold, and Gil Segev. “Finding collisions
in interactive protocols-a tight lower bound on the round complexity of statistically-
hiding commitments”. In: 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’07). IEEE. 2007, pp. 669–679 (cit. on p. 15).

[Imp11] Russell Impagliazzo. “Relativized separations of worst-case and average-case complex-
ities for NP”. In: 2011 IEEE 26th Annual Conference on Computational Complexity.
IEEE. 2011, pp. 104–114 (cit. on pp. 8, 9).

[Lev87] Leonid A Levin. “One way functions and pseudorandom generators”. In: Combinator-
ica 7.4 (1987), pp. 357–363 (cit. on p. 2).

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. “Constant depth circuits, Fourier
transform, and learnability”. In: Journal of the ACM (JACM) 40.3 (1993), pp. 607–
620 (cit. on p. 2).

[LW09] Allison B Lewko and Brent Waters. “Efficient pseudorandom functions from the deci-
sional linear assumption and weaker variants”. In: Proceedings of the 16th ACM con-
ference on Computer and communications security. 2009, pp. 112–120 (cit. on p. 2).

[MV11] Eric Miles and Emanuele Viola. “On the complexity of non-adaptively increasing
the stretch of pseudorandom generators”. In: Theory of Cryptography Conference.
Springer. 2011, pp. 522–539 (cit. on pp. 2–5, 8, 13, 15, 29).

[MV15] Eric Miles and Emanuele Viola. “On the complexity of constructing pseudorandom
functions (especially when they don’t exist)”. In: Journal of Cryptology 28.3 (2015),
pp. 509–532 (cit. on pp. 2, 4).

27

[NR04] Moni Naor and Omer Reingold. “Number-theoretic constructions of efficient pseudo-
random functions”. In: Journal of the ACM (JACM) 51.2 (2004), pp. 231–262 (cit. on
p. 2).

[NR99] Moni Naor and Omer Reingold. “Synthesizers and their application to the parallel con-
struction of pseudo-random functions”. In: Journal of Computer and System Sciences
58.2 (1999), pp. 336–375 (cit. on p. 2).

[NRR00] Moni Naor, Omer Reingold, and Alon Rosen. “Pseudo-random functions and fac-
toring”. In: Proceedings of the thirty-second annual ACM symposium on Theory of
computing. 2000, pp. 11–20 (cit. on p. 2).

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs randomness”. In: Journal of computer
and System Sciences 49.2 (1994), pp. 149–167 (cit. on p. 13).

[PW88] Leonard Pitt and Manfred K Warmuth. “Reductions among prediction problems: on
the difficulty of predicting automata”. In: 1988 Structure in Complexity Theory Third
Annual Conference. IEEE Computer Society. 1988, pp. 60–61 (cit. on p. 2).

[RR94] Alexander A Razborov and Steven Rudich. “Natural proofs”. In: Proceedings of the
twenty-sixth annual ACM symposium on Theory of computing. 1994, pp. 204–213 (cit.
on p. 2).

[RTV04] Omer Reingold, Luca Trevisan, and Salil Vadhan. “Notions of reducibility between
cryptographic primitives”. In: Theory of Cryptography Conference. Springer. 2004,
pp. 1–20 (cit. on p. 3).

[Vad+12] Salil P Vadhan et al. “Pseudorandomness”. In: Foundations and Trends® in Theoret-
ical Computer Science 7.1–3 (2012), pp. 1–336 (cit. on p. 13).

[Val84] Leslie G Valiant. “A theory of the learnable”. In: Communications of the ACM 27.11
(1984), pp. 1134–1142 (cit. on p. 2).

28

A Proving Lemma 3.5

In this part we sketch the proof of Lemma 3.5, restated below.

Lemma A.1 (Lemma 3.5, restated). Let f = {fn : {0, 1}n → {0, 1}n}n∈N, w : N→ N and r : N→ N
be functions such that n + r(n) ∈ 2o(w(n)). Then there exists a (possibly inefficient) function

G =
{
Gn : {0, 1}w(n) → {0, 1}n+r(n)

}
n∈N

such that the following holds. For every PPT oracle-

aided TM A, there exists a negligible function ν such that∣∣∣Prx←{0,1}w(n)

[
Af,G(1n, G(1n, x)) = 1

]
− Pr

y←{0,1}n+r(n)

[
Af,G(1n, y) = 1

]∣∣∣ ≤ ν(n).

Our starting point is the following theorem, proven implicitly in [MV11] (Theorem 4.2).

Theorem A.2. The following holds for any large enough d ∈ N and for any function f . Let
πd : {0, 1}d → {0, 1}d be a random permutation. Then, with probability 1 − 2−2

d/4
there is no

oracle-aided circuit of size 2d/5 such that

Prx←{0,1}d
[
Cf,πd(πd(x)) = x

]
> 2−d/5

Using the Borel–Cantelli lemma, we get the following corollary.

Corollary A.3. The following holds for any function f . There exists a permutation family π ={
πd : {0, 1}d → {0, 1}d

}
d∈N

such that for every large enough d ∈ N and for every oracle-aided circuit

C of size at most 2d/5, it holds that

Prx←{0,1}d
[
Cf,π(πd(x)) = x

]
≤ 2−d/5.

And using Goldreich-Levin we get the following lemma.

Lemma A.4. The following holds for any function f . There exists a function family G ={
Gd : {0, 1}2d → {0, 1}2d+1

}
such that for any large enough d ∈ N and any oracle-aided circuit

of size at most 2d/30, it holds that∣∣∣Pr[Cf,G(Gd(U2d)) = 1
]
− Pr

[
Cf,G(U2d+1) = 1

]∣∣∣ ≤ 2−d/30

Proof sketch. The proof follows by taking Gd(x, r) = r||πd(x)||⟨x, r⟩ and the Goldreich-Levin
theorem. □

We are now ready to prove Lemma 3.5.

Proof of Lemma 3.5. Fix f, w, r, and letG′ =
{
G′d : {0, 1}

2d → {0, 1}2d+1
}
be the function promised

by Lemma A.4 with respect to the oracle f ′ = (f, w, r). For simplicity, we assume in the fol-
lowing that w(n) is even for any n (otherwise let w(n) = w(n) − 1). For every n ∈ N, let

Gn : {1n} × {0, 1}w(n) → {0, 1}n+r(n) be the function defined by iterating G′w(n)/2 over its suffix

n+ r(n)− w(n) times. That is, let G0
n(x) = x, and for every i > 0, let

Gi
n(x) = Gi−1

n (x)<i||G′n(Gi−1
n (x)≥i).

29

Finally, let Gn(1
n, x) = G

n+r(n)−w(n)
n (x). It is not hard to see in induction that

∣∣Gi
n(x)

∣∣ = w(n)+ i,

and thus |Gn(1
n, x)| = n+r(n). Moreover, for every i and x ∈ {0, 1}w(n), it holds thatGn(1

n, x)<i =
Gi(x)<i. Let G = {Gn}n∈N.

For security, observe that any TM that runs in time polynomial in n+ r(n), can only read the
first poly(n+ r(n)) bits of any query it makes to the oracle G (that is, even if it query G on longer
input lengths). Since by construction the first poly(n + r(n)) bits of G can be computed using
poly(n+ r(n)) call to G′, we can assume without loss of generality (with a polynomial blow-up in
the running time) that the distinguisher has oracle to G′ and not to G.

Next, we will show that G is secure against poly-size circuits (and thus also against poly-time
TM) with oracle gades to f,G′. Than is, for every constant c ∈ N and every large enough n, there
is no oracle-aided circuit of size (n + r(n))c that distinguishes Gn(1

n, Uw(n)) from uniform with
advantage 1/nc. Assume toward a contradiction that this is not the case. We will construct a
circuit Ĉ that contradicts the security of G′.

Indeed, by a simple hybrid argument, there exists some i ∈ [n+ r(n)] such that C distinguishes
with advantage at least 1/(n+ r(n)) · 1/(n+ r(n))c between

Ui||Gr(n)+n−w(n)−i(Uw(n))

and

Ui−1||Gr(n)+n−w(n)−i+1(Uw(n)) = Ui−1||G′w(n)(Uw(n))1||Gr(n)+n−w(n)−i(G′w(n)(Uw(n))>1)||.

Now we can easily construct a circuit of size |C|+ r(n)+n that distinguishes between Uw(n)+1 and
the output of G′w(n) by applying G′ iteratively r(n) + n + w(n) − i times on its input. Using an

oracle to G′, r, w this can be done efficiently. We conclude the proof since for large enough n it
holds that (r(n) + n)c+1 < 2−w(n)/30. □

B Dealing with Different Input Lengths

We now explain how to generalize the proof for the case that the construction makes queries to the
PRG G on different input lengths. We start with modifying the definition of augmented sequential
oracles to allow P to choose queries of any length.

Definition B.1 (Augmented Sequential Oracle). Let t = t(n), ℓ = ℓ(n) and r = r(n) be functions,
and v = v(n) = (vn1 , . . . , v

n
t(n)) ∈ Nt(n) be a vector. A collection of oracles {Qn,z}n∈N,z∈{0,1}ℓ(n) is a v-

sequential oracle if for every n ∈ N there exists a function Pn : [t(n)]×{0, 1}∗×{0, 1}ℓ(n) → {0, 1}∗
such that the following holds for every function G : {0, 1}∗ → {0, 1}∗ with |G(x)| = |x| + r(|x|).
For z ∈ {0, 1}ℓ(n) and s ∈ {0, 1}∗, let pG0 (s, z) = s, and for every i ∈ [t(n)], let pGi (s, z) =
P (i, G(pGi−1(s, z)), z). Then

QG
n,z(s) = pG1 (s, z)≤v1 || . . . ||pGt(n)(s, z)≤vt(n)

.

We define sequential oracle similarly. We say that such an oracle is (α, β)-bounded if for every

G : {0, 1}∗ → {0, 1}∗, every n ∈ N, any z ∈ {0, 1}ℓ(n) and every s ∈ {0, 1}∗, QG
n,z(s) only makes

queries to G with inputs of length at least α(n) and at most β(n). In other words, the length of
the input s to QG

n,z, and the length of the output of Pn are always in the range [α(n), β(n)] We now
restate Lemma 5.2.

30

Lemma B.2. Let c ∈ N be a constant, and let w,m, λ, r, ℓ, t, α, β : N → N be functions, such
that w(n) ∈ ω(log n + log r(n)) is a monotone function, ℓ(n) ≤ c log n, λ ∈ poly and m(n) ≥
ℓ(n) + log(λ(n) + ℓ(n) + 10) + 1. For every n ∈ N, let v(n) = (vn1 , . . . , v

n
t(n)) ∈ Nt(n) be numbers

such that

vni ≥ w(β(n)) +
∑

t(n)≥j>i

vnj , and,
∑

i∈[t(n)]

vni ≤ α(n)− w(β(n)).

Let L : {0, 1}λ(n) × {0, 1}m(n) → {0, 1}ℓ(n). Then, for every (α(n), β(n))-bounded v-augmented
sequential oracle {Qn,z}n∈N,z∈ℓ(n), and for every oracle-aided algorithm A, there is no Black-Box

(weak) PRF construction

F =
{
fk : {0, 1}m(n) → {0, 1}

}
k∈{0,1}λ(n)

from r(n)-bit stretch PRG, such that for all k, x,

fG
k (x) = A

QG
n,L(k,x)(1n, k, x).

We remark that when A is efficient, β(n) is bounded by a polynomial. In this case, ω(log β(n)) ∈
ω(log n).

We prove Lemma B.2 below, but first we derive our lower bounds. Similarly to the proof of
Theorem 4.2, Lemma B.2 yields the following corollary.

Theorem B.3. Let c be a constant, and let w,m, λ, r, ℓ, v, t, α, β : N → N be functions, such that
w(n) ∈ ω(log n + log r(n)), w and v are monotone functions, ℓ(n) ≤ c log n, λ ∈ poly, m(n) ≥
ℓ(n) + log(λ(n) + ℓ(n) + 10) + 1 and

t(n) ≤ log(1 +
α(n)− w(β(n))

max{v(n), w(β(n))}
).

Then, for every (α(n), β(n))-bounded (t(n), v(n))-sequential oracle {Qn,z}n∈N,z∈ℓ(n), and for every

oracle-aided algorithm A, there is no Black-Box (weak) PRF construction

F =
{
fk : {0, 1}m(n) → {0, 1}

}
k∈{0,1}λ(n)

from r(n)-bit stretch PRG, such that for all k, x,

fG
k (x) = A

QG
n,L(k,x)(1n, k, x).

From Theorem B.3 we get the following two lower bounds.

Corollary B.4 (Tree constructions). Let c ∈ N be a constant, and let λ ∈ poly, r : N → N, and
m(n) ≥ c · log n+log(λ(n)+c log n+10)+1 be functions. Then there is no (α, β)-bounded (t, c)-Tree

(weak) PRF construction F =
{
fk : {0, 1}m(n) → {0, 1}

}
k∈{0,1}λ(n)

from r(n)-bit stretch PRG, with

t(n) ≤ logα(n)− log(log β(n) + log r(β(n)))− ω(1).

31

Corollary B.5. Let c,m, λ, r and ℓ be as in Theorem B.3. Then, for every (α, β)-bounded (1, α(n)−
ω(log β(n)+log r(β(n)))-sequential oracle {Qn,z}n∈N,z∈ℓ(n), and for every oracle-aided algorithm A,

there is no Black-Box (weak) PRF construction

F =
{
fk : {0, 1}m(n) → {0, 1}

}
k∈{0,1}λ(n)

from r(n)-bit stretch PRG, such that for all k, x,

fG
k (x) = A

QG
n,L(k,x)(1n, k, x).

We now explain how to modify the proof of Lemma 5.2 to get Lemma B.2. Observe that we
can assume that α(n) > log n for any large enough n, as otherwise the two conditions on vn1 in
Lemma B.2 cannot hold together.

To prove Lemma B.2, we will follow a similar path as in the proof of Lemma 5.2, in which
we constructed a PRG G′ such that QG′

n,z can be computed without querying G′. The reason the
proof of Lemma B.2 does not follow directly is that the definition of G′ in the proof of Lemma 5.2
is dependent on the function Pn which is given by the definition of augmented sequential oracles.
However, the function Pn depends on the security parameter n. In the proof of Lemma 5.2 this is
not a problem, as QG′

n,z makes only queries of length n to G′, and thus we can define G′ for every
input length separately. To deal with oracles that can make arbitrary calls to G′, we need to make
sure that we can define G′ in a consistent way (that is, G′ needs to return the same answer to a
query q, no matter which oracle Qn,z asked it). To solve this issue, we will only try to break the
security of F on an (infinite) subset of security parameters n.

In more detail, for some infinite set I ⊆ N, we will break the security of F on any security
parameter n ∈ I. The idea is to choose I such that for every input length n′ ∈ N for G, there is
at most one security parameter n ∈ I, on which FG queries G with queries of length n′. The next
claim shows that it is possible to choose such a set.

Claim B.6. There exists an infinite set I and a function σ : N→ I ∪{⊥}, such that the following
holds.

1. For every n ∈ I and n′ with α(n) ≤ n′ ≤ β(n) it holds that σ(n′) = n, and,

2. For every n ∈ N and n′ ≤ α(n) or n′ ≥ β(n) it holds that σ(n′) ̸= n.

That is, σ maps each input length n′ of G to a unique security parameter n ∈ I on which FG

is allowed to query G on this input length.

Proof. We choose I = {n1, n2, . . . } greedily, where n1 = 1 and ni is the first number such that
ni > 2ni−1 and α(ni) > ni−1. For each ni and α(ni) ≤ n′ ≤ 2ni we set σ(n′) = ni. Finally for every
n′ that for which didn’t set a value yet, we set σ(n′) = ⊥. □

Let I be the set promised by Claim B.6. We make the following change to Lemma 5.4.

Lemma B.7. There exist a function family π =
{
πn : {0, 1}n+r(n) → {0, 1}n+r(n)

}
n∈N

and a func-

tion Q̂ such that the following holds for every function G =
{
Gn : {0, 1}n → {0, 1}n+r(n)

}
n∈N

with

Gn(s)≤|s|−|s|ϵ = s|s|−≤|s|ϵ.

32

1. For every large enough n ∈ N, SD(Un+r(n), πn(Un+r(n))) ≤ n · 2−w(n)/2, and

2. for every n ∈ I Qπn◦G
zn (s) = Q̂(s) for every s ∈ {0, 1}≥α(n).

That is, the second condition is now only required to hold for n ∈ I. By changing Algorithm 5.5
such that it will only try to distinguish when the security parameter n is in I, we get the following
lemma by the same lines of the proof of Lemma 5.6.

Lemma B.8. Let G =
{
Gn : {0, 1}n → {0, 1}n+r(n)

}
n∈N

be a function such that for every n ∈ I

and s ∈ {0, 1}n, it holds that Gn(s)≤n−nϵ = s≤n−nϵ. Let G′ =
{
G′n : {0, 1}

n → {0, 1}n+r(n)
}
n∈N

be

the function defined by G′n(s) = πn(G(s)) for s ∈ {0, 1}n. Then,∣∣∣Prf←FG′

[
Breakf (1n) = 1

]
− Prf←Fm(n),1

[
Breakf (1n) = 1

]∣∣∣ ≥ 2−ℓ(n)−10.

Using Lemmas 5.7 and B.8 we get the proof of Lemma B.2. We thus left to prove Lemma B.7.

Proof of Lemma B.7. We make the following changes to the proof of Lemma 5.4. We start with
the definition of πn′ for every n′ ∈ N. If σ(n′) = ⊥, we let πn′ be the identity function. Otherwise,

to define πn′ , we let n = σ(n′), and set Si(y) = Pn(i, y, zn) for any y ∈ {0, 1}n
′+r(n′). We let

S′i(y) = ⟨|Si(y)|⟩||Si(y)≤vi , where ⟨|Si(y)|⟩ is the ⌈log β(n)⌉-bits length binary representation of
|Si(y)|.

We define Sn′
= S′t(n)|| . . . ||S

′
1. We then take πn′ to be the function promised by Lemma 5.10

with respect to f = Sn′
and w′(n′) = w(β(n)) − β(n) + 1 ≥ w(n′)/2, where the inequality holds

for large enough n. We now get that for any i, both the length and the first vi bits of the output
of Pn(i, πn′(y), zn) are determined by the first w(n) +

∑
i≤j≤t(n) vj ≤ vi−1 bit of y. That is, there

exists functions Ŝn′
1 , . . . Ŝn′

t(n) and Rn′
1 , . . . , Rn′

t(n), such that Rn′
i (y≤vi−1) = |Pn(i, πn′(y), zn)| and

Ŝn′
i (y≤vi−1) = Pn(i, πn′(y), zn)≤vi .
The proof now follows by a similar induction to the one that appears in the proof of Lemma 5.4,

where we observe that given pGi (s, z)≤vi and
∣∣pGi (s, z)∣∣, we can compute pGi+1(s, z)vi+1 and

∣∣pGi+1(s, z)
∣∣.

Indeed,

pGi+1(s, z)vi+1 = Pn(i+ 1, π(G(pGi (s, z))), zn)vi+1 = Ŝ
|pGi (s,z)|
i+1 (pGi (s, z)≤vi),

and ∣∣pGi+1(s, z)
∣∣ = ∣∣Pn(i+ 1, π(G(pGi (s, z))), zn)

∣∣ = R
|pGi (s,z)|
i+1 (pGi (s, z)≤vi).

□

B.1 Lower Bound on the Key Length

In this part we generalize our lower bound on the key-length of a Black-Box PRF constructions.
As before, we say that a PRF construction is (α, β)-bounded if on security parameter n, it only
makes queries q of length α(n) ≤ |q| ≤ β(n) to the PRG G.

Theorem B.9 (Lower Bound on the Key-Length). Let m,λ, r, α, β : N→ N be functions such that
λ ∈ poly, m(n) ≥ λ(n) + 1, r(n) ∈ 2o(n) and α(n) − λ(n) ∈ ω(log(n + α(n))). Then there is

no black-box (α, β)-bounded PRF construction F =
{
fk : {0, 1}m(n) → {0, 1}

}
k∈λ(n)

from r(n)-bit

stretch PRG G.

33

We sketch the proof of Theorem B.9 below. As in the proof of Theorem B.3, we will use
Claim B.6 and only try to break the PRF on subset of security parameters, such that each input
length of the PRG will only be called when evaluating fG

k (x) on a single security parameter.

Proof. Let I be as promised by Claim B.6. For any n ∈ N, let

Sn =
{
w : fZ

k (x) queries Z(w) on some n′ ∈ I, x ∈ Ωn′ , k ∈ {0, 1}λ(n
′)
}
.

That is, Sn is the set of all queries made by fk(x) on some security parameter n′ ∈ I and some
x ∈ Ωn′ .

Since for any n ∈ N there is at most one security parameter n′ such that a query from Sn′ is
asked when evaluating fG

k (x) on k ∈ λ(n′), we get that the size of Sn′ is again at most poly(n′) ·
(λ(n′) + 1) · 2λ(n′) ≤ 2n · neg(n). We can now continue the proof as in Theorem 7.1. □

34

