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Abstract. SNOVA is a variant of a UOV-type signature scheme over a
noncommutative ring. In this article, we demonstrate that certain param-
eters provided by authors in SNOVA fail to meet the NIST security level,
and the complexities are lower than those claimed by SNOVA.
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1 Introduction

Public key cryptosystems currently used such as RSA and ECC can be broken
by a quantum computer executing Shor’s algorithm [24] in polynomial time.
Therefore, cryptosystems resistant to quantum computers are gaining increasing
importance. There are many post-quantum cryptosystems based on different
theory such as lattice theory, algebraic geometry, coding theory, and the isogeny
theory of elliptic curves.

In 2022, the U.S. National Institute for Standards and Technology (NIST)
on post-quantum cryptography (PQC) posted a call for additional digital sig-
nature proposals to be considered in the PQC standardization process. In 2023,
50 different signature schemes were submitted, including code-based signatures,
isogeny signatures, lattice-based signatures, multivariate signatures, and others.

A multivariate public key cryptosystem (MPKC) has a set of quadratic poly-
nomials over a finite field as its public key. Its security based on the difficulty
of solving a system of multivariate quadratic polynomial equations over a finite
field (MQ problem). See [9]. Garey and Johnson proved [17] that MQ problem
is NP-complete in general.

The oil and vinegar and later derived unbalanced oil and vinegar signature
schemes(UOV) [20,22], are well-known signature schemes known for their effi-
ciency and short signature. The UOV scheme has withstood attacks for more
than 20 years and is still regarded as a secure signature scheme. It is worth
mentioning that the HFE scheme [21] also withstood long-term attacks, but was
attacked by Tao et al. in [26]. Notably, the Rainbow signature scheme proposed
by Ding and Schmidt [10], a multilayer UOV variant, was selected as a third-
round finalist in the NIST PQC project. Although some parameters of Rainbow
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schemes are broken by Beullens, see [4], the structure of UOV is still safe by now.
However, both UOV and Rainbow suffer from the disadvantage of having large
public key size compared to other PQC candidates, for example, lattice-based
signature schemes.

For multivariate signature schemes, the size of public key mainly depends on
the number of variables, the number of equations, and the size of the finite
field. Depending on different influencing factors, there are different research
approaches to develop UOV variants. The first approach does not change the
original design of UOV scheme, but only changes the way of key generation. The
compression technique [23] developed by Petzoldt et al., which is based on the
fact that a part of public key can be arbitrarily chosen before generating the
secret key. This implies that a part of public key can be generated using a seed
of pseudo-random number generator and the size of public key mainly depends
on the dimension of the oil space, the number of equations and the size of the
finite field. Note that this technique can be applied to various UOV variants.
The second approach is to use polynomials defined over small field as the public
key, while the signature and message spaces are defined over the extension field,
see LUOV in [5]. But several of its parameters were broken by Ding et al. [12].
The third approach is to reduce the dimension of oil space in the KeyGen step.
In the Sign step, they use different methods to induce a new oil space from the
original oil space such that the dimension of the new oil space is greater or equal
to the number of equations, for example, QR-UOV [15], MAYO [3], SNOVA
[28]. The authors of QR-UOV [15] construct oil space over the extension field
then mapping it into the vector space over base field by trace function or tensor
product, see also [18]. The signature and message spaces are defined over the
base field. BAC-UOV [25] is similar with QR-UOV but it is broken by Furue et
al. [16]. For MAYO [3], they increase the dimension of oil space by whipping up
the oil and vinegar map P : Fn

q → Fm
q into a larger map P∗ : Fkn

q → Fm
q . The

authors of SNOVA [28] choose the noncommutative matrix R of l × l matrices
over Fq to be the coefficient ring and they construct a UOV-like scheme with
coefficients in R. Actually, we can construct oil space in the space Fnl

q and make
Kronecker product with Fl

q to map such oil space into a new oil space of Rn.

Our Contribution. In this paper, our focus is on the multivariate signature
SNOVA scheme [28]. We observe that an SNOVA(v, o, q, l) scheme over R can
be viewed as a UOV(lv, lo, q) scheme with l2o equations over Fq, rather than a
UOV(l2v, l2o, q) scheme over Fq as claimed by the authors in [28]. See Sect. 2.2.
Consequently, we demonstrate that some parameters provided by the authors
in SNOVA can’t meet the NIST security level, and the complexities are lower
than they claimed, see Table 1. Additionally, the coefficient matrices of these l2o
equations induced by the SNOVA(v, o, q, l) scheme exhibit special forms and are
not randomly generated. In most cases, we observe that the l2o equations induced
by SNOVA have more solutions than l2o random equations from a UOV scheme.
Therefore, the actual complexity of SNOVA may be lower than theoretically
estimated. Applying the same method, we find that NOVA [27] also has lower
complexities claimed by the authors in their article.
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2 SNOVA Scheme

2.1 Description of SNOVA Scheme

In [28], the authors introduce a UOV-type signature scheme over a noncommu-
tative ring, which is called SNOVA.

Let v, o, l be positive integers with v > o and Fq a finite field with q elements.
Let R be the ring of l × l matrices over the finite field Fq. Set n = v + o and
m = o, x = (x1, · · · , xn)t,u = (u1, · · · , un)t ∈ Rn, [P ], [F ] denote some n × n
matrices whose entries are elements of R. For each Q ∈ R, [ΛQ] denote the n×n
matrix in Mn×n(R) whose diagonal elements are Q.

The Space Fq[s]. We first randomly choose an l × l symmetric matrix s such
that the characteristic polynomial of s is irreducible. Set

Fq[s] =
{
a0 + · · ·+ al−1s

l−1 : a0, · · · , al−1 ∈ Fq

}
.

Note that dimFq Fq[s] = l and each nonzero element in Fq[s] is invertible and
symmetric. In particular, Fq[s] is a subfield of R.

Central Map. The central map of SNOVA scheme is F = (F1, · · · , Fm) : Rn →
Rm. Set Ω = {(j, k) : 1 ≤ j, k ≤ n}− {(j, k) : m+1 ≤ j, k ≤ n}. For each i, Fi

is the form of

Fi(x1, · · · , xn) =
l2∑

α=1

Aα ·
( ∑

(j,k)∈Ω

xt
j(Qα1Fi,jkQα2)xk

)
·Bα

=
l2∑

α=1

Aα · xt([ΛQα1 ][Fi][ΛQα2 ])x ·Bα

where Fi,jk are randomly chosen from R, Aα and Bα are invertible elements
randomly chosen from R, and Qα1, Qα2 are invertible elements randomly chosen
from Fq[s]. Indeed, [Fi] = (Fi,jk) is the form of

[Fi] =
(
F11 F12

F21 0o×o

)
∈ Mn×n(R),

with F11 ∈ Mv×v(R), F12 ∈ Mv×o(R) and F21 ∈ Mo×v(R).

Public Key and Private Key. Let T : Rn → Rn be the map corresponding
to the matrix

[T ] =
(
Iv×v Tv×o

0 Io×o

)
,

where Tv×o is a v×o matrix whose entries are chosen randomly from Fq[s]. Iv×v

and Io×o are the diagonal matrices with all entries being the identity matrix in
R.
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Let P = F ◦ T . Set x = [T ] · u and Pi = Fi ◦ T . We get

Pi(u) =
l2∑

α=1

n∑

dj=1

n∑

dk=1

Aα · ut
dj
(Qα1Pi,djdkQα2)udk ·Bα

=
l2∑

α=1

Aα · ut([ΛQα1 ][Pi][ΛQα2 ])u ·Bα

where Pi,djdk =
∑

(j,k)∈Ω tj,dj · Fi,jk · tk,dk . Note that

[Pi] = [Pi,djdk ] = [T ]t[Fi][T ], i = 1, · · · ,m.

The public key of SNOVA consists of the map P : Rn → Rm, i.e., the
corresponding matrices [Pi] for i = 1, · · · ,m, and matrices Aα, Bα, Qαk for
α = 1, · · · , l2 and k = 1, 2. The private key of SNOVA is (F, T ), i.e., the matrix
[T ] and the matrices [Fi] for i = 1, · · · ,m.

Signature. Let Message be the message to be signed. Set Hash(Message) =
y = (y1, · · · , ym)t ∈ Rm. We first choose random values a1, · · · , av ∈ R as the
vinegar variables. Then, the following equation F (a,xo) = y is a linear system
of xo ∈ Ro, and we can obtain a solution xo = (av+1, · · · , an) for the equation

F (a1, · · · , av, xv+1, · · · , xn) = y.

If there is no solution to the equation, we choose new random values a′
1, · · · , a′

v ∈
R and repeat the procedure. Set x = (a1, · · · , av, av+1, · · · , an)t. Secondly, the
signature is sign = T−1(x).

Verification. Let sign = (s1, · · · , sn) be the signature to be verified. If
Hash(Message) = P (sign), then the signature is accepted, otherwise rejected.

2.2 Structure of SNOVA

The authors assert in [28] that an SNOVA(v, o, q, l) scheme over R can be con-
sidered as a UOV(l2v, l2o, q) scheme over Fq. However, we argue that it should
only be regarded as a UOV(lv, lo, q) scheme with l2o equations over Fq. In the
second part of this section, we claim that an SNOVA(v, o, q, l) can induce a stan-
dard UOV(v, o, ql) scheme. Here standard means that the dimension of oil space
equals to the number of equations.

Claim 1. An SNOVA(v, o, q, l) scheme can be regarded as a UOV(lv, lo, q)
scheme with l2o equations over Fq.

In fact, all the matrices [Fi], [T ], and [Pi] in the SNOVA scheme can be
viewed as ln × ln matrices in Mln×ln(Fq) with

[Pi] = [T ]t · [Fi] · [T ] ∈ Mln×ln(Fq), i = 1, · · · ,m.
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Based on the design of the central map F , the lower-right lo × lo block is zero
block for each [Fi]. Therefore there exists a common oil space of [Pi] over Fq

with dimension lo for all i. Set

O1 =
{
(0, · · · , 0, alv+1, · · · , aln)t ∈ Fln

q : ai ∈ Fq

}
and O = [T ]−1(O1) ⊂ Fln

q .

Note that dimFq O = lo and for any u,v ∈ O, 0 ≤ j, k ≤ l − 1, we have

ut ·
(
[Λsj ][Pi][Λsk ]

)
· v = 0 ∈ Fq for i = 1, · · · ,m. (2.1)

That is, each [Λsj ][Pi][Λsk ] sends O into its own orthogonal complement O⊥.
Since [T ] and [Λs] are commutative and O1 is stable under [Λs], O is sta-
ble under [Λs]. Therefore an SNOVA(v, o, q, l) scheme induces a UOV(lv, lo, q)
scheme whose oil space is O with l2o equations given by (2.1).

Next, we will explain how we use the oil space O of the UOV(lv, lo, q) scheme
with l2o equations given by (2.1) obtained from a SNOVA(v, o, q, l) to recover
the oil space of SNOVA scheme. Set

O ⊗ Fl
q := {

∑

1≤i≤lo,1≤j≤l

aijui ⊗ etj ∈ Rn : ui ∈ O, ej ∈ Fl
q, aij ∈ Fq} ⊂ Rn,

where {ui}1≤i≤lo(resp. {ej}1≤j≤l) is a basis of O(resp. Fl
q) over Fq and ⊗ denotes

the Kronecker product of matrices. We have dimFq O ⊗ Fl
q = lo2 and for any

x ∈ O ⊗ Fl
q,

P (x) = 0 ∈ Rm.

Indeed, for any Qα1, Qα2 ∈ Fq[s], [ΛQα1 ][Pi][ΛQα2 ] can be written as a linear
combination of {[Λsj ][Pi][Λsk ]}0≤j,k≤l−1, and each column of x in O⊗Fl

q belongs
to O. By (2.1), we have xt([ΛQα1 ][Pi][ΛQα2 ])x = 0 ∈ R for each i. Hence P (x) =
0 ∈ Rm.

Combining with the fact that dimFq O ⊗ Fl
q = lo2, a UOV(lv, lo, q) scheme

with l2o equations over Fq obtained from a SNOVA(v, o, q, l) can easily recover
the oil space O ⊗ Fl

q of SNOVA scheme. Therefore we only need to consider the
system of Eq. (2.1), which is a UOV(lv, lo, q) scheme with l2o equations over Fq.

Claim 2. An SNOVA(v, o, q, l) scheme can induce a standard UOV(v, o, ql)
scheme.

We know that all the eigenvalues of s lie in Fql due to the characteristic
polynomial of s being irreducible. Let λ ∈ Fql be an eigenvalue of s and ξ ∈ (Fql)l
an eigenvector corresponding to λ. Let τ be the Frobenius element z )→ zq in
the Galois group Gal(Fql/Fq). For j = 0, · · · , l − 1, we have

sτ j(ξ) = τ j(λ)τ j(ξ).

Thus for each j, τ j(ξ) is an eigenvector corresponding to the eigenvalue τ j(λ).
In particular, {ξ, τ1(ξ), · · · , τ l−1(ξ)} are linear independent and so

Tr(ξ) :=
l−1∑

j=0

τ j(ξ) ∈ Fl
q − {0}.
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Lemma 2.1. With the notations above. Suppose that

O1 =
{
(0, · · · , 0, alv+1, · · · , aln)t ∈ Fln

q : ai ∈ Fq

}
and O = [T ]−1(O1) ⊂ Fln

q .

There is a subspace O2 of Fnl
ql such that

O ⊗Fq Fql = O2 ⊕ τ(O2) ⊕ · · · ⊕ τ l−1(O2) (2.2)

and dimFql
O2 = o, where τ is induced from the Frobenius element. Here we use

the same notation.

Proof. Take

O′
1 :=

{
(0, · · · , 0, av+1ξ

t, · · · , anξt)t ∈ Fln
ql : ai ∈ Fql

}
⊂ O1 ⊗Fq Fql

and
O2 := [T ]−1(O′

1) ⊂ O ⊗Fq Fql .

It is easy to know dimFql
O2 = o. We claim that such O2 is what we want. Indeed,

since each entry of [T ] belongs to Fq[s], we have O ⊗Fq Fql = [T ]−1(O1 ⊗Fq Fql)
and

[T ]−1(τk(O′
1)) = τk([T ]−1(O′

1)) = τk(O2)

for k = 1, · · · , l − 1. Thus, it is necessary to show

O1 ⊗Fq Fql = O′
1 ⊕ τ(O′

1) ⊕ · · · ⊕ τ l−1(O′
1).

Since {ξ, τ1(ξ), · · · , τ l−1(ξ)} are linear independent, we have

Fl
ql = Fql · ξ ⊕ Fql · τ(ξ) ⊕ · · · ⊕ Fql · τ l−1(ξ).

Thus

O1i : =
{
(0, · · · , 0, al(i−1)+1, · · · , ali, 0, · · · , 0)t : ali+j ∈ Fql

} ∼= Fl
ql

= O′
1i ⊕ τ(O′

1i) · · · ⊕ τ l−1(O′
1i),

where O′
1i :=

{
(0, · · · , 0, aiξt, 0, · · · , 0, · · · , 0)t : ai ∈ Fql

} ∼= Fql . Then we have

O1 ⊗Fq Fql =
n⊕

i=v+1

O1i =
n⊕

i=v+1

(
O′

1i ⊕ τ(O′
1i) ⊕ · · · ⊕ τ l−1(O′

1i)
)

=
n⊕

i=v+1

O′
1i ⊕

n⊕

i=v+1

τ(O′
1i) ⊕ · · · ⊕

n⊕

i=v+1

τ l−1(O′
1i)

= O′
1 ⊕ τ(O′

1) ⊕ · · · ⊕ τ l−1(O′
1).

,-
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Note that each element of O2 has the form of

u = (λ1ξ
t, · · · ,λvξ

t, a1ξ
t, · · · , aoξt)t ∈ Fln

ql with λi, ai ∈ Fql (2.3)

due to the fact that [T ]−1 ∈ Mn×n(Fq[s]) and ξ is a common eigenvector of the
elements of Fq[s]. We claim that many equations in (2.1) are redundant if u and
v are elements in O2. Indeed, take u,v ∈ O2, we have

ut ·
(
[Λsj ][Pi][Λsk ]

)
· v = λj+kut · [Pi] · v,

where λ is the eigenvalue corresponding to ξ. Thus ut · [Pi] · v = 0 will imply
that ut ·

(
[Λsj ][Pi][Λsk ]

)
· v = 0 for 0 ≤ j, k ≤ l − 1 and only m equations in

(2.1) are effective when u,v ∈ O2. Therefore, after linear transformation, there
is a standard UOV(v, o, ql) scheme induced by SNOVA(v, o, q, l) scheme. In fact,
take

O′
2 = {(a1, · · · , an) : (a1ξt, · · · , anξt)t ∈ O2} ⊂ Fn

ql .

It is easy to know dimO′
2 = o. Let [Pi] = [Pi,jk] be the public key of SNOVA

scheme with Pi,jk ∈ R. Set

P̃i,jk = ξt · Pi,jk · ξ, [P̃i] = (P̃i,jk) ∈ Mn×n(Fql). (2.4)

We have
ũt · [P̃i] · ṽ = (ũ ⊗ ξ)t · [Pi] · (ṽ ⊗ ξ) = 0 (2.5)

for any ũ, ṽ ∈ O′
2 and i = 1, · · · ,m. The second equality holds because ũ ⊗

ξ, ṽ ⊗ ξ ∈ O2 ⊂ O ⊗Fq Fql . Hence, the public keys of the induced UOV(v, o, ql)
scheme are given by {[P̃i]}mi=1, as defined in (2.4). The oil space of the induced
UOV scheme is O′

2, and the elements of O′
2 satisfy equation (2.5).

Remark 2.1. If there is only one subspace of Fn
ql , whose elements satisfy equation

(2.5), and the dimension of such subspace is o, it must equal to the oil space
O′

2 of the induced UOV(v, o, ql) scheme described above. Then the oil space
of SNOVA can be recovered by (2.2). Applying equivalent key attack to the
induced UOV(v, o, ql) scheme, we need solve a system of o3 quadratic equations
in vo variables over Fql . According to the parameters given in [28], o3 is always
much larger than vo. Therefore, it may be effective for us to attack SNOVA by
recovering the oil space of the induced UOV scheme. But we are not going to use
the induced UOV(v, o, ql) scheme to give specific complexity of SNOVA(v, o, q, l)
scheme.

3 Security Analysis

3.1 Complexity

Given a homogeneous multivariate quadratic map P : FN
q → FM

q , we use
MQ(N,M, q) to denote the complexity of finding a non-trivial solution u sat-
isfying P (u) = 0 if such solution exists. Several algorithms for algebraically



86 P. Li and J. Ding

solving the quadratic system by computing Gröbner basis [6] include F4 [13],
F5 [14] and XL [8]. In this paper, we estimate the complexity of solving M
homogeneous quadratic equations in N variables [7] as

3 ·
(
N − 1 + dreg

dreg

)2

·
(
N + 1

2

)

field multiplications, where dreg is equal to the degree of the first non-positive
term in the series generated by

(1 − t2)M

(1 − t)N
.

The hybrid approach [1], which randomly guesses k (k = 0, · · · , N) variables
before computing a Gröbner basis. Hence the complexity are

min
k

qk ·MQ(N − k + 1,M, q)

field multiplications.
An underdetermined system can be reduced to an overdetermined system,

then apply hybrid approach. There are many approaches listed in [28].

3.2 K-S Attack

In the UOV(v, o, q) scheme, the K-S attack [20] obtains the oil space. To obtain
the oil space, the K-S attack chooses two invertible matrices W1,W2 from the
set of linear combinations of the public keys P1, · · · , Pm of the UOV scheme.
Then, it probabilistically recovers a part of the oil space. The complexity of K-S
attack is estimated by

CompK-S UOV = qv−o

field multiplications.
In the SNOVA scheme, we have claimed that SNOVA(v, o, q, l) scheme over

R can be regarded as a UOV(lv, lo, q) scheme in Claim 1. In such case, we have

CompK-S SNOVA = qlv−lo

field multiplications.

3.3 Reconciliation Attack

The reconciliation attack [11] for UOV is similar to the K-S attack, trying to
find an element of the oil space and hence basis of oil space can be recovered.
In Sect. 2.2, we have proved that SNOVA(v, o, q, l) scheme can be regarded as
a UOV(lv, lo, q) scheme with l2o equations and the elements of oil space satisfy
equation (2.1). Therefore, the reconciliation attack can be decomposed into a
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series of steps. Firstly, we may find an element u = (u1, · · · , ulv, 0, · · · , 0, 1)t ∈
Fln
q such that

ut ·
(
[Λsj ][Pi][Λsk ]

)
· u = 0 ∈ Fq (3.1)

for i = 1, · · · , o and 0 ≤ j, k ≤ l − 1. There are l2o homogeneous quadratic
equations in lv+1 variables in (3.1). Secondly, using Eq. (2.1), we get 2·o·l2 linear
equations for the other elements of O. Hence the complexity of reconciliation
attack is mainly centered on solving Eq. (3.1). Note that in the case of vl+ 1 >
l2o, Eq. (3.1) has a lot of solutions not in the space O. Therefore, the complexity
of the reconciliation attack is evaluated by

CompReconciliation SNOVA = min qkMQ(lv + 1 − k, l2o, q), (3.2)

where max{0, lv+1−l2o} ≤ k ≤ lv is the number of fixed variables in the hybrid
approach.

Remark 3.1. We observe that finding solutions to Eq. (3.1) is easier in the exten-
sion field Fql . This phenomenon does not exist in the UOV scheme. In the follow-
ing, we will explain our observation. Indeed, applying the standard discussion of
the reconciliation attack to the induced UOV(v, o, ql) scheme in Claim 2, with
the same notations as Sect. 2.2, Eq. (3.1) will reduce to the following equation

ũt · [P̃i] · ũ = 0, ũ = (λ1, · · · ,λv, 0, · · · , 0, 1)t ∈ Fn
ql (3.3)

when we take

u = ũ ⊗ ξ = (λ1ξ
t, · · · ,λvξ

t, 0, · · · , 0, ξt)t ∈ Fln
ql

in (3.1). There are only m quadratic equations and v variables over Fql in (3.3).

Unfortunately, we only prove the fact that Eq. (3.1) is easier to find a solution
over the extension field Fql . We don’t know how to use the solution over the
extension field Fql to get the solution over the base field Fq. Thus, we will not
use the induced UOV(v, o, ql) scheme to give the specific complexity of SNOVA
scheme. Indeed, we only have the following lemma:

Lemma 3.1. Let u = (λ1ξt, · · · ,λvξt, 0, · · · , 0, ξt)t ∈ Fln
ql satisfying

ut · [Pi] · τ j(u) = 0 ∈ Fql (3.4)

for i = 1, · · · ,m and j = 0, · · · , l − 1. Set

v := Tr(u) = u+ τ(u) + · · ·+ τ l−1(u) ∈ Fln
q .

We have v .= 0 and
vt ·

(
[Λsj ][Pi][Λsk ]

)
· v = 0

for i = 1, · · · ,m and 0 ≤ j, k ≤ l − 1.
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Proof. Note that v .= 0 due to Tr(ξ) .= 0. We have

vt ·
(
[Λsj ][Pi][Λsk ]

)
· v =

∑

0≤a,b≤l−1

τa(ut) ·
(
[Λsj ][Pi][Λsk ]

)
· τ b(u)

=
∑

0≤a,b≤l−1

τa(λj)τ b(λk)τa
(
ut · [Pi] · τ b−a(u)

)

= 0.

The last equality holds because Eq. (3.4) implies that ut · [Pi] · τ c(u) = 0 for any
c ∈ Z. ,-

According to Lemma 3.1 above, if we want to get a solution over Fq from a
solution u over Fql for Eq. (3.1), maybe we need to solve Eq. (3.4). But the
equations in (3.4) are of degree 1 + qj . We could not apply the complexity
formula in §3.1 directly.

3.4 Intersection Attack

Beullens proposed a new attack against UOV called the intersection attack in
[2]. The intersection attack attempts to obtain an equivalent key by recovering
the subspace O defined in Sect. 2.2. Let M1,M2 be two invertible matrices in
the set of linear combinations of {[Λsj ][Pi][Λsk ]}1≤i≤m,0≤j,k≤l−1. By (2.1), we
know that M1O and M2O are both subspaces of O⊥. Although M1O .= M2O,
we still have

dim(M1O ∩ M2O) = dim(M1O) + dim(M2O) − dim(M1O +M2O)
≥ 2lo − dim(O⊥)
= 2lo − lv.

In the Case of 2o > v. Let x be an element in the intersection M1O ∩ M2O,
then both M−1

1 x and M−1
2 x are in O. Therefore, x is a solution to the following

system of quadratic equations





(M−1
1 x)t ·

(
[Λsj ][Pi][Λsk ]

)
· (M−1

1 x) = 0

(M−1
2 x)t ·

(
[Λsj ][Pi][Λsk ]

)
· (M−1

2 x) = 0

(M−1
1 x)t ·

(
[Λsj ][Pi][Λsk ]

)
· (M−1

2 x) = 0

(M−1
2 x)t ·

(
[Λsj ][Pi][Λsk ]

)
· (M−1

1 x) = 0

(3.5)

Note that the third and the fourth equations in (3.5) are same when [Pi] is
symmetric. [19] and [28] both pointed out that there are 2l redundant equations
in (3.5), see also [2]. Since there is a 2lo − lv dimensional subspace of solutions,
we can impose 2lo− lv affine constraints on x. Then the attack is reduced to find
a solution to the above system of 4l2o− 2l quadratic homogeneous equations in
ln − (2lo − lv − 1) = 2lv − lo+ 1 variables. Therefore the complexity is
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CompIntersection = min
k

qkMQ(2lv − lo+ 1 − k, 4l2o − 2l, q) (3.6)

field multiplications, where k is the number of fixed variables in the hybrid
approach.

In the Case of 2o ≤ v. The intersection M1O ∩ M2O may have no nontrivial
vector. If M1O and M2O are uniformly random subspaces of O⊥, then the
probability that they have non-trivial intersection is approximately q−lv+2lo−1.
Therefore, the attack becomes a probabilistic algorithm for solving the system
(3.5) with a probability of approximately q−lv+2lo−1. Therefore the complexity
is

CompIntersection = min
k

qlv−2lo+1qkMQ(ln − k + 1, 4l2o − 2l, q) (3.7)

field multiplications, where k is the number of fixed variables in the hybrid
approach.

3.5 Security

Table 1 presents the classical complexity of respective attacks against the param-
eters submitted in [28], where the number of gates required for an attack is
computed by

#gates = #field multiplications · (2 · (log2 q)2 + log2 q).

In each pair of complexities, the left one denotes the complexity using the anal-
ysis results in this article, the right one denotes the complexity given by [28],
where k is the number of fixed variables in the hybrid approach. Complexities
that do not meet the security level of the NIST PQC project are highlighted in
bold fonts. Furthermore, Table 1 also indicates that the complexity of SNOVA
is generally lower than what the authors claimed in [28].

Table 1. Table of classical complexity in log2(#gates)

SL (v, o, q, l) K-S Reconciliation Intersection
I (28, 17, 16, 2) 93/181 132/192 (k = 2) 83/275 (k = 0)

(25, 8, 16, 3) 209/617 201/231 (k = 15) 221/819 (k = 0)

(24, 5, 16, 4) 309/1221 270/286 (k = 30) 349/1439 (k = 0)

III (43, 25, 16, 2) 149/293 193/279 (k = 6) 116/439 (k = 0)

(49, 11, 16, 3) 461/1373 438/530 (k = 66) 529/1631 (k = 0)

(37, 8, 16, 4) 469/1861 388/424 (k = 45) 507/2192 (k = 0)

V (61, 33, 16, 2) 229/453 277/386 (k = 17) 166/727 (k = 0)

(66, 15, 16, 3) 617/1841 575/707 (k = 87) 690/2178 (k = 0)

(60, 10, 16, 4) 805/3205 695/812 (k = 112) 922/3602 (k = 0)
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