
TASSLE: LASSO FOR THE COMMITMENT-PHOBIC

DANIEL DORE
THE LITA FOUNDATION

Abstract. We present TaSSLE, a new lookup argument for decompos-
able tables with minimal commitment costs. The construction generalizes
techniques introduced in Lasso [9] which take advantage of the internal
structure present in such tables to avoid the need for any party to need
to commit to, or even construct, the entire table. This allows the use
of lookups against very large tables, with applications including new
design strategies for “zero-knowledge virtual machines”. We show that
these techniques may be combined in a generic way with any existing
lookup argument to achieve similar results. We then give a construction
of TaSSLE by applying this observation to a recent lookup argument,
introduced in [7], which combines logarithmic derivatives with the GKR
protocol to achieve a lookup argument with minimal commitment costs.

1. Introduction

Lasso[9] is a recent lookup argument with the attractive feature that, for
structured lookup tables, avoids the need to commit to the entire lookup table
at any stage (pre-processed or otherwise). However, it has the drawback of
requiring the prover to commit to several vectors of metadata, whose length
is the same as the vector of looked-up values. While these metadata vectors
have entries of small bit-length, lowering commitment costs when using
commitments requiring operations in a prime-order group whose discrete
logarithm is hard, this benefit matters less when using commitments based
on hash functions or error-correcting codes.

In this note, we present a variant of Lasso, called TaSSLE (Tensors and
Sumcheck for Structured Lookup Efficiency), that avoids the need to commit
to these metadata vectors at all: indeed, the set of committed vectors is a
strict subset of those committed to in Lasso. We achieve this by replacing
the product argument in Lasso with a more flexible logarithmic derivative
argument. As in Lasso, we use a version of the GKR protocol[7] to avoid
needing to commit to any intermediate values used in the computation of
this logarithmic derivative. The costs for running this protocol are much
the same as in Lasso’s product argument, so we expect the resulting lookup
protocol to be strictly faster than Lasso with similarly sized proofs.

The lookup tables with the structure needed to apply TaSSLE, as in Lasso,
are called decomposable. Loosely, these are tables T of size N which can be

Date: July 1, 2024.

1

2 DANIEL DORE THE LITA FOUNDATION

“built up from” smaller tables T1, . . . , Tα each of size O(N1/c). Jolt[1] shows
how a number of lookup tables arising in the context of a zero-knowledge
virtual machine (zk-VM) can be realized as decomposable tables.

The rest of this note is structured as follows: in Section 3, we present an
abstracted version of the “tensor-product argument” used in Lasso. This
argument demonstrates how to reduce lookup into a “decomposable” table
T into α separate lookup instances into its sub-tables Tj : we show that
this works with any lookup argument for the sub-tables and any IOP for
polynomial constraints.

Then, in Section 5, we show how to instantiate this general argument
using sumcheck, logarithmic derivatives, and GKR to obtain TaSSLE. As
another application of the general result in 3, we show how to obtain a lookup
argument in the univariate context which still has the property that the
prover does not need to construct or commit to the table T or any vectors
of length N .

1.1. Acknowledgements. This work would not be possible without the
support of the whole team at the Lita Foundation, especially Hadas Zeilberger,
Ventali Tan, and Morgan Thomas. I’d also like to thank Psi Vesely for their
helpful comments and ongoing mentorship. Finally, this work, as with much
of my life, is dedicated to Extra for diligently keeping me company through
the long hours of writing and coding.

2. Preliminaries

2.1. Lookups and decomposable tables.

Problem 2.1 (The lookup relation). Let v = (v1, . . . , vk) be k vectors
of length L and T = (t1, . . . , tk) k vectors (the “lookup table”) of length
N = 2n. The (vector-valued) lookup relation Lookupk,N,L consists of all such
pairs (T, v) such that for every j ∈ [L], there is some n ∈ [N] such that
(v1[j], v2[j], . . . , vk[j]) = (t1[n], t2[n], . . . , tk[n]). Write LookupN,L for the case
k = 1, i.e. the case of scalar-valued lookups.

Our argument provides a solution to this problem in the special case that
T is decomposable:

Definition 2.2. Let T = (t1, . . . , tk) be a lookup table with k columns
ti consisting of N = 2n scalar entries. Fix some c, α > 0, and set m =
n/c,M = 2m = N1/c. Let T1, . . . , Tα be tables consisting of M entries each.
Let g = (g1, . . . , gk) : F

α → Fk be a polynomial function, and let d be the
maximum total degree of the polynomials gi.

We say that T is decomposable with roots T1, . . . , Tα if the entries of
T, T1, . . . , Tα may be ordered in such a way that, for some 1 ≤ k1 ≤ k2 ≤
· · · ≤ kc = α:

(1) T [r] = g(T1[r1], . . . , Tk1 [r1], Tk1+1[r2], . . . , Tk2 [r2], . . . , Tkc [rc])

TASSLE: LASSO FOR THE COMMITMENT-PHOBIC 3

for all r ∈ [N]. Here, r = r1+2mr2+ . . .+2(c−1)mrc for ri ∈ {0, . . . , 2m− 1},
i.e. the ri’s are the result of splitting the binary decomposition of r into c
groups of m digits. Note that both sides of (1) are vectors of length k.

Note 2.3. This definition of a decomposable table is a slight generalization
of the definition given in [9]: there, the definition requires the number of
roots Ti depending on a given rj in (1) to be the same for all j. Equivalently,
this requirement states that there is some k such that ki = i ∗ k for all i.
This restriction appears to be for convenience only, and the construction in
[9] readily extends to this case.

In addition, we allow the table T to be vector-valued, where [9] only
discusses the case of scalar-valued lookup tables. We include this straightfor-
ward generalization only because the extension to vector-valued tables is not
the usual reduction from vector-valued to scalar-valued lookups.

An example of a decomposable table, justifying the ‘T’ in TaSSLE, is
a tensor product table T = ⊗c

i=1Ti: here, the polynomial g is just the
product X1 · · ·Xc. Another example is a range check table, with T [r] = r

and Ti[r] = ri. Then g(T1, . . . , Tc) = T1 + 2mT2 + . . .+ 2(c−1)mTc.

2.2. Polynomials. We recall some algebra facts and constructions which we
will use throughout this note. A core fact from algebra, upon which many
cryptographic constructions rest, is the following:

Lemma 2.4 (Schwartz-Zippel Lemma). Let f ∈ F[X1, . . . , Xk] be a non-zero
polynomial of total degree d in k variables over a finite field F. Then for any
set S ⊆ F, the probability that f(s) = 0 for s drawn uniformly at random
from S is

ϵSZ ≤ dk

|S|
.

This follows by a straightforward induction from the well-known univariate
case, i.e. the statement that a univariate polynomial of degree d has at most
d zeroes.

Definition 2.5. A polynomial f(X1, . . . , Xk) ∈ F[X1, . . . , Xk] is multilinear
if it is of the form

(2) f(X1, . . . , Xk) =
∑

α∈{0,1}k
cα

k∏
i=1

Xαi
i

for some coefficients cα ∈ F. In other words, it must have degree at most
one in each variable separately. We write Mk for the set of multilinear
polynomials in k variables.

As is immediate from (2), the set Mk of multilinear polynomials in k
variables is a vector space over F of dimension 2k. They are determined
by their values on the boolean hypercube Bk = {0, 1}k, whose size is 2k.

4 DANIEL DORE THE LITA FOUNDATION

Throughout, we identify Bk with [2k], the set of integers from 0 to 2k − 1, in
the natural way: j ∈ [2k] corresponds to (j1, . . . , jk) ∈ Bk if and only if

(3) j = j1 + 2j2 + . . .+ 2k−1jk.

Reflecting this, an alternative basis for Mk is:

Definition 2.6 (The Multilinear Lagrange Kernel). Themultilinear Lagrange
kernel consists of the basis elements
(4)

Lb(X1, . . . , Xk) =

k∏
j=1

(biXi + (1− bi)(1−Xi)) , b = (b1, . . . , bk) ∈ Bk

The crucial property of the multilinear Lagrange kernel is that if b, b′ ∈ Bk:

Lb(b
′) =

{
1 if b = b′

0 otherwise

Thus, the multilinear Lagrange kernel defines an isomorphism LF : FBk
∼−→

Mk, where FBk is the set of F-valued functions on Bk.
Explicitly, this isomorphism is:

(5) LF : FBk
∼−→ Mk : FBk ∋ f 7→ f̃ :=

∑
b∈Bk

f(b)Lb.

We call f̃ ∈ Mk the multilinear extension of the function f .

2.3. Sumcheck. The sumcheck protocol is an IOP for the following relation:

Definition 2.7. Let v = (v1, . . . , vk) be k vectors of length L = 2ℓ, σ ∈ F,
and g a polynomial in k variables of maximum total degree d. We say that
(σ, g; v) is in the sum relation Sumd,ℓ,k if

(6)
∑
j∈[L]

g(v1[j], . . . , vk[j]) = σ.

Now, we give the sumcheck protocol, introduced in [6]:

Protocol 2.8 (Sumcheck). There is an IOP to prove the relation

(σ, g; v1, . . . , vk) ∈ Sumd,ℓ,k

whose communication costs are:

• ℓ prover messages of length d,
• one prover message of length k,
• ℓ verifier challenges ri ∈ F,
• k polynomial oracles for v1, . . . , vk, and
• one multilinear evaluation query to each of these k oracles.

The complexity for the prover and verifier is:

• The prover performs O(d(k + b)L) field operations, where b is the
number of monomials in g, and

TASSLE: LASSO FOR THE COMMITMENT-PHOBIC 5

• the verifier performs O(dℓ) field operations plus one evaluation of g,

and the soundness error of the protocol is

ϵsumcheck ≤ dℓ

|F|

Proof. Identifying [L] with Bℓ using (3), we define multilinear polynomial
oracles ṽi by applying (5) to the vectors vi.

• First, the prover sends multilinear polynomial oracles for ṽ1, . . . , ṽk
to the verifier.

Define a polynomial function G ∈ F[X1, . . . , Xℓ] by:

(7) G(X1, . . . , Xℓ) = g(ṽ1(X1, . . . , Xℓ), . . . , ṽk(X1, . . . , Xℓ))

Note that the degree of G is at most d in each variable separately. Rewriting
the sum in (6) as a sum over Bℓ, our claim is that:

(8)
∑
b∈Bℓ

G(b) = σ.

Define a univariate polynomial g(1) ∈ F[X1] by

(9) g(1)(X1) =
∑

b∈Bℓ−1

G((X1, b)).

Supposing that (9) is true, the claim (8) is equivalent to the requirement

(10) g(1)(0) + g(1)(1) = σ(0) := σ

• The prover sends the verifier the d scalars

(11) m(1) = {g(1)(0), g(1)(2), . . . , g(1)(d)}.
• The verifier responds with a challenge r1 ∈ F, drawn uniformly at
random.

Note that the d scalars in (11) along with the requirement (10) uniquely

determine the degree-d polynomial g(1). The verifier need not check (10),
since it is true a fortiori.

Now, the goal is to prove that g(1) satisfies (9), where both sides are
degree-d polynomials in X1. By the univariate Schwartz-Zippel Lemma 2.4,
except with probability

ϵ(1) ≤ d

|F|
,

if g(1) satisfies (9) after evaluating both sides at the random r(1) ∈ F, then

g(1) satisfies (9) in F[X1]. This is

(12) g(1)(r(1)) =
∑

b∈Bℓ−1

G((r(1), b)).

• The verifier computes σ(1) = g(1)(r(1)) by interpolating the values

(11), applying (10) to obtain g(1)(1).

6 DANIEL DORE THE LITA FOUNDATION

• The prover computes functions v
(1)
1 , . . . , v

(1)
k ∈ FBℓ−1 by

v
(1)
i (b2, . . . , bℓ) = ṽi(r

(1), b2, . . . , bℓ).

We have now reduced the original claim (σ, g; v1, . . . , vk) ∈ Sumd,ℓ,k to the

claim (σ(1), g; v
(1)
1 , . . . , v

(1)
k) ∈ Sumd,ℓ−1,1. We may now iterate this process ℓ

times to obtain the desired result. At the end, we are left with:

• a random point r = (r(1), . . . , r(ℓ)) ∈ Fℓ,

• ℓ prover messages m(i) of length d,
• a total soundness error of

ϵsumcheck ≤ ϵ(1) + · · ·+ ϵ(ℓ) ≤ dℓ

|F|
,

• the final claim

(13) σ(ℓ) = G(r) = g(ṽ1(r), . . . , ṽk(r))

Finally, we prove (13) with one multilinear evaluation query to each of
ṽ1, . . . , ṽk.

In each round, the verifier needs to perform O(d) field operations to

compute the interpolation g(i)(r(i)) from m(i) and σ(i−1), and at the end
the verifier needs to evaluate the degree-d polynomial g(X1, . . . , Xk) given
X1, . . . , Xk. Thus, the verifier sends ℓ messages in total and the verifier’s
work consists of O(dℓ) field operations plus the cost of evaluating g.

In each round, the prover must compute the functions

(14) v
(i)
j (b) = v

(i−1)
j ((r(i), b))

for b ∈ Bℓ−i as well as the sums

g(i)(j) =
∑

b∈Bℓ−i

G((r1, . . . , ri−1, j, b))(15)

=
∑

b∈Bℓ−i

g
(
ṽ
(i−1)
1 ((j, b)), . . . , ṽ

(i−1)
k ((j, b))

)
(16)

for j ∈ {0, . . . , d}. Since the v
(i−1)
j (X, b) are linear in X, the prover may

compute the d+ 2 values

v
(i−1)
j ((x, b)), x ∈ {r(i), 0, 1, . . . , d}

by linear interpolation from v
(i−1)
j (0, b), v

(i−1)
j (1, b), which have been com-

puted in the prior step. Thus, the prover may compute all of these values
in O(2ℓ−i ∗ (d+ 2) ∗ k) = O(d ∗ k ∗ 2ℓ−i) field operations. Additionally, the
prover must compute (16) from these values, which amounts to evaluating
the degree-d polynomial g at 2ℓ−i points. This amounts to O(d∗b∗2ℓ−i) field
operations. Thus, the total prover work in the ith round is O(d(b+ k) ∗ 2ℓ−i).
Summing these up, the total prover work is:

O(d(b+ k) ∗ (1 + 2 + . . .+ 2ℓ−1)) = O(d(b+ k)L).

TASSLE: LASSO FOR THE COMMITMENT-PHOBIC 7

□

2.4. Interactive Oracle Proofs. We describe TaSSLE as an interactive
oracle proof (IOP), built from smaller IOPs as sub-protocols.

Definition 2.9 (IOP). An interactive oracle proof (IOP) is an interactive
argument between a prover and a verifier, in which the prover is allowed to
send the verifier polynomial oracles.

• Such an oracle uniquely represents a polynomial f over some finite
field F, and the verifier may later query the oracle at any point x in
the domain of f to obtain f(x).

• We say that the IOP is univariate if the oracles f represent polyno-
mials in a single variable.

• Likewise, the IOP is multilinear if the oracles f represent multilinear
polynomials, polynomials in multiple variables with degree at most
one in each variable.

• At the end of the protocol, the verifier accepts or rejects.
• We say that the IOP proves a relation R ⊆ {0, 1}∗ if it constitutes
an argument of knowledge for R.

2.5. Polynomial evaluation IOPs. In addition to the Lookup relation, we
will need the following relation:

Definition 2.10. Let w1, . . . , wk be vectors of length L and g = (g1, . . . , gκ)
a collection of polynomials in k variables of maximum total degree d. We say
that (g;w1, . . . , wk) is in the polynomial constraint relation PolyConk,κ,d,L if
for each i ∈ [L], j ∈ [κ], gj(w1[i], . . . , wk[i]) = 0.

The PolyCon relation is the “core” of the relation consisting of witnesses for
the AIR constraint system (as well as a major component of the relation for
the Plonkish constraint system). As such, the IOPs used to create SNARKs
for those constraint systems readily specialize to IOPs for PolyCon. One
major example of such is the following, used as a component in e.g. [2] and
[8]:

Protocol 2.11 (Sumcheck IOP for PolyCon). We obtain an IOP to prove
(g;w1, . . . , wk) ∈ PolyConk,κ,d,L for L = 2ℓ whose costs are:

• k multilinear polynomial oracles for w1, . . . , wk, each in ℓ variables,
• verifier challenges α ∈ F, τ ∈ Fℓ,
• one evaluation query to each of these k oracles at the same point
τ ∈ Fℓ,

• the costs of running the sumcheck protocol on an instance of Sumd+1,ℓ,k:
– O(dℓ+ k) total prover communication,
– O(d(ℓ+ b)) total verifier work, where b is the total number of
monomials among g1, . . . , gκ,

– ℓ verifier challenges ri ∈ F,
– O(d(k + b)L) prover work,

8 DANIEL DORE THE LITA FOUNDATION

– a soundness error ϵsumcheck ≤ (d+1)ℓ
|F| = O

(
(d+κ)ℓ
|F|

)
.

The total soundness error is

ϵpolycon ≤ (2d+ κ+ 1)ℓ

|F|
.

Proof. Identify [L] with Bℓ as in (3), and define multilinear polynomial
oracles w̃i by applying (5) to the vectors wi. Define a polynomial Gi in ℓ
variables with degree at most d in each variable by:

(17) Gi(X1, . . . , Xℓ) = gi(w̃1(X1, . . . , Xℓ), . . . , w̃k(X1, . . . , Xℓ)),

and define g̃i ∈ Mℓ as the multilinear extension of Gi, i.e.

(18) g̃i(X1, . . . , Xℓ) =
∑
b∈Bℓ

Gi(b)Lb(X1, . . . , Xℓ).

We may rephrase the claim to be proven, (g;w1, . . . , wk) ∈ PolyConk,d,L,
as:

(19) Gi(b) = 0 for all b ∈ Bℓ,

for all i ∈ [κ]. By (18), this is equivalent to the requirement that g̃i = 0 in
Mℓ.

First, we batch the κ constraints g1, . . . , gκ:

• The verifier sends random challenges α ∈ F, τ ∈ Fℓ.

Define a combined constraint polynomial G by:

(20) G(X0, X1, . . . , Xℓ) =

κ∑
i=1

Xi
0 ∗ g̃i(X1, . . . , Xℓ),

and a combined multilinear extension g̃ ∈ Mℓ by:

(21) g̃(X1, . . . , Xℓ) =

κ∑
i=1

αi ∗ g̃i(X1, . . . , Xℓ).

By the Schwartz-Zippel Lemma 2.4, if each g̃i is not uniformly 0, then

the probability that G(α, τ) = g̃(τ) = 0 is at most (κ+d)ℓ
|F| . (Note that by the

definition (17) of the Gi in terms of multilinear extensions, the condition
that Gi is uniformly 0 on Bℓ is the same as the condition that Gi = 0 in
F[X1, . . . , Xℓ].)

TASSLE: LASSO FOR THE COMMITMENT-PHOBIC 9

Now, we will use Protocol 2.8 (sumcheck), to prove g̃(τ) = 0. Since g̃ is
multilinear, applying (5) tells us

g̃(τ) =
∑
b∈Bℓ

g̃(b)Lb(τ)

=
∑
b∈Bℓ

κ−1∑
j=0

αjGj(b)Lb(τ)

=
∑
b∈Bℓ

κ−1∑
j=0

αjGj(v1[b], . . . , vk[b])Lb(τ).(22)

We define a polynomial h ∈ F[X1, . . . , Xk] of total degree at most d+ 1
in each variable by:

(23) h(X0, X1, . . . , Xk) =
κ−1∑
j=0

αjgj(X1, . . . , Xk) ∗X0.

Letting v0 ∈ FBℓ be the function b 7→ Lb(τ), we may rewrite (22) as:

(24) 0 =
∑
b∈Bℓ

h(v0[b], v1[b], . . . , vk[b]),

which is an instance of Sumd+1,ℓ,k with σ = 0.
Now, we run the sumcheck protocol to reduce this claim to a single

multilinear evaluation query to each of the k oracles at the random point
r ∈ Fℓ sampled in the course of the sumcheck protocol.

The total soundness error follows from a union bound among the soundness
error of the sumcheck protocol and the soundness error of the application of
the Schwartz-Zippel Lemma above:

ϵpolycon ≤ ϵsumcheck +
(κ+ d)ℓ

|F|
=

(2d+ κ+ 1)ℓ

|F|
.

□

3. Abstracting Lasso’s tensor-product argument

Protocol 3.1. Let T be a decomposable table of length N = 2n and width
κ with roots T1, . . . , Tα of length M = 2m = N1/c. Let d be the maximum
degree of the polynomials gi as in Definition 2.2. Suppose we are given:

• an IOP for the relation PolyConα+1,d,L, and
• an IOP for the relations Lookupki−ki−1,M,L for i = 1, . . . , c.

From these, we obtain an IOP for the relation Lookupκ,N,L. The costs are
the same as:

• those of applying the lookup IOP to c instances, Lookupki−ki−1,M,L

for i = 1, . . . , c,
• and one instance of the IOP for PolyConα+1,d,L,
• with the addition of α polynomial oracles of size L.

10 DANIEL DORE THE LITA FOUNDATION

The soundness error is at most the sum of the soundness errors of the
subprotocols.

Proof. Define vectors vi, i = 1, . . . , α of length L as follows: if v[j] = T [r],
then

(25) vi[j] := Ti[rι],

where ι is such that kι−1 ≤ i ≤ kι. Here, r = r1 +2mr2 + . . .+2(c−1)mrc and
1 = k0 ≤ k1 ≤ · · · ≤ kc = α are as in Definition 2.2. Then, (T, v) is in the
lookup relation LookupN,L if and only if:

(i) (h; v, v1, . . . , vα) is in the polynomial constraint relation PolyConα+1,d,L.
Here

h(X0, X1, . . . , Xα) = g(X1, . . . , Xα)−X0

(ii) ((Tki−1+1, . . . , Tki), (vki−1+1, . . . , vkι)) is in the vector-valued lookup
relation Lookupki−ki−1,M,L for each i ∈ {0, . . . , c− 1}, and

For the forward direction, assume (T, v) ∈ LookupN,L. Then for each j ∈ [L],
there is some r ∈ [N] such that v[j] = T [r]. By Definition 2.2, if r1, . . . , rc
are such that r = r1 + 2mr2 + . . .+ 2(c−1)mrc, then

v[j] = T [r] = g(T1[r1], . . . , Tκ1 [r1], Tκ1+1[r2], . . . , Tκc [rc]).

Since vi[j] = Ti[rι] by construction, we have v[j] = g(v1[j], . . . , vα[j]), so
(h; v, v1, . . . , vα) ∈ PolyConα+1,d,L, so we have (i). Moreover, for each i ∈
{1, . . . , c},

(vki−1+1[j], . . . , vki [j]) = (Tki−1−1[ri], . . . , Tki [ri])

by construction, giving (ii).
For the reverse direction, let j ∈ [L] be arbitrary: we want to show that

there is some r ∈ [N] such that v[j] = T [r]. By (i), we first see that

0 = h(v[j], v1[j], . . . , vα[j]) = g(v1[j], . . . , vα[j])− v[j]

or v[j] = g(v1[j], . . . , vα[j]). Now, (ii) tells us that for each i ∈ {1, . . . , c},
there is some ri ∈ [M] such that

(vki−1+1[j], . . . , vki [j]) = (Tki−1+1[ri], . . . , Tki [ri]).

Now, setting r = r1 + 2mr2 + . . .+ 2(c−1)mrc, we have by the definition of a
decomposable table:

v[j] = g(v1[j], . . . , vα[j]) = g(T1[r1], . . . , Tk1 [r1], Tk1+1[r2], . . . , Tkc [rc]) = T [r],

as desired.
Therefore, given IOPs for PolyConα+1,d,L and Lookupki−ki−1,M,L, we obtain

an IOP for LookupN,L as follows:

• The prover sends the verifier polynomial oracles for v, v1, . . . , vα.
• The prover and verifier engage in the IOP for PolyConα+1,d,L, applied
to the α+1 oracles v, v1, . . . , vα and the polynomial h(X0, X1, . . . , Xα) =
g(X1, . . . , Xα) − X0. Note that the degree of h is equal to d, the
degree of g.

TASSLE: LASSO FOR THE COMMITMENT-PHOBIC 11

• The prover and verifier engage in c independent instances of the IOP
for Lookupki−ki−1,M,L, i = 1, . . . , c, applied to the pairs

((Tki−1+1, . . . , Tki), (vki−1+1, . . . , vki))

for i ∈ {1, . . . , c}.
– If the IOP for Lookupk,M,L used allows batching, the cost of

applying it to c instances independently may be less than c
times the cost of applying it to a single instance.

□

4. Avoiding commitments with sumcheck

Now, we describe an IOP for the relation LookupM,L which uses the GKR
protocol to avoid the need to provide oracles for any auxiliary polynomials
of length L.

4.1. Logarithmic derivative argument. It is based on a logarithmic
derivative argument, introduced in [3] and [5], which uses the following:

Lemma 4.1. Let f : F → F be any function. Then

Lf (X) :=
∑
α∈F

f(α)

X + α
= 0

in the field F(X) of rational functions over F if and only if f(α) = 0 for all
α ∈ F.

The reason for the terminology “logarithmic derivative” is that, if f takes
values in {0, . . . , p − 1} where p is the characteristic of F, then the sum

Lf (X) above is the logarithmic derivative π′(X)
π(X) of the monic polynomial

π(X) =
∏
α∈F

(X + α)f(α).

Proof. Since F(X) is a field, the sum Lf (X) is zero in F(X) if and only if
the sum

(26)
∑
α∈F

f(α) ·
∏
β ̸=α

(X + β) = 0

in the ring F[X] of polynomials.
If f(α) = 0 for all α ∈ F, (26) is clearly equal to 0. In the other direction,

supposing (26) is equal to 0, in particular the result of evaluating it at any
−α ∈ F is 0. On the other hand, this evaluation is equal to

f(α) ·
∏
β ̸=α

(β − α).

This is 0 if and only if f(α) = 0, as desired. □

Using this, we show how to construct an IOP to interactively reduce the
relation LookupM,L to the following:

12 DANIEL DORE THE LITA FOUNDATION

Definition 4.2 (Rational sumcheck relation). Let p, q ∈ FL be two vectors
and σ ∈ F a scalar. We say that (σ; p, q) is in the rational sumcheck relation
RatSumL if and only if ∑

[L]

p[j]

q[j]
= σ

Protocol 4.3 (Generic LogUp IOP). Let L be smaller than the characteristic
of the finite field F. Given an IOP for RatSum, we obtain an IOP for
Lookupk,M,L whose costs are:

• Those of an instance of RatSumL omitting the cost, if present, of
sending oracles for p, q,

• those of an instance of RatSumM , omitting the cost, if present, of
sending oracles for p, q,

• k polynomial oracles of size L for the vectors v1, . . . , vk of lookups,
• k polynomial oracles of size M for the lookup table t = (t1, . . . , tk),
• 1 polynomial oracle of size M of “multiplicities”, with all entries in
{0, . . . , L},

• one query to each of these oracles,
• one additional scalar prover message, and
• two additional verifier challenges.

The soundness error is at most the sum of the soundness errors of the RatSum
protocols plus

ϵlogup ≤ k + L+M

|F|
.

Proof. First, we show how to reduce Lookupk,M,L to LookupM,L (this reduc-
tion is general and works for any lookup argument, not just LogUp): we want
to show that for every j ∈ [L] there is some r ∈ [M] such that vi[j] = ti[r]
for each i ∈ [k]. We simply batch these k claims into a single claim:

• The verifier sends a “batching” challenge α ∈ F.

The prover sets t =
∑k

i=1 α
i−1ti and v =

∑k
i=1 α

i−1vi. Now, we must prove
the claim that (t, v) ∈ LookupM,L, i.e. that for all j ∈ [L], there is some
r ∈ [M] such that v[j] = t[r]. For such j, r, if it is not the case that
vi[j] = ti[r] for all i ∈ [k], then by the Schwartz-Zippel Lemma 2.4, the
probability that v[j] = t[r] is at most

ϵbatch ≤ k

|F|
.

Thus, it suffices to prove (t, v) ∈ LookupM,L, i.e. that for all j ∈ [L], there
is some r ∈ [M] such that v[j] = t[r]. Observe that this is equivalent to the
requirement that the prover knows some vector m of size M such that for
all α ∈ F, the following equation holds in F:

(27)
∑
j∈[L]
v[j]=α

1 =
∑
r∈[M]
t[r]=α

m[r].

TASSLE: LASSO FOR THE COMMITMENT-PHOBIC 13

Indeed, if v[j] = φ for some j ∈ [L], then by the assumption that L is less
than the characteristic of F, the left-hand side of (27) is nonzero. Thus, if the
prover knows some m making (27) true for all α, in particular the right-hand
side is nonzero for α = φ, so there is some r ∈ [M] such that t[r] = φ = v[j].

Conversely, the prover computes m as follows: if r ∈ [M] is such that
t[r] ̸= t[r′] for any r′ < r, set

m[r] =
∑
j∈[L]

v[j]=t[r]

1,

and otherwise set m[r] = 0. Then, for all α ∈ F, the right-hand side of (27)
is equal to m[r] where r is the first index in [M] such that t[r] = α, and this
is equal to the left-hand side of (27) by construction.

Now, given a vector m ∈ FM , define a function fm : F → F by subtracting
the two sides of (27):

(28) fm(α) =
∑
j∈[L]
v[j]=α

1−
∑
r∈[M]
t[r]=α

m[r].

We have seen that the prover knows some vector m such that fm(α) = 0
for all α ∈ F if and only if (t, v) ∈ LookupM,L. By Lemma 4.1, we see that
fm(α) = 0 for all α ∈ F if and only if

(29) 0 =
∑
α∈F

fm(α)

X + α
=

∑
j∈[L]

1

X + v[j]
−

∑
r∈[M]

m[r]

X + t[r]

in the field F(X). With this observation, we construct our IOP as a proof of
knowledge of vectors m, v, t satisfying (29):

• Given (t, v) ∈ LookupM,L, the prover computes a “multiplicity” vector
m of size M , where

m[r] = #{j ∈ [L] | v[j] = t[r]}.

Note that m[r] ∈ {0, L} for all r ∈ [M].
• The prover sends the verifier polynomial oracles for m, v1, . . . , vk,
and t1, . . . , tk.

• The verifier sends a challenge β ∈ F.
• The prover sends a claimed sum σ ∈ F.
• The prover and verifier engage in the IOP for RatSumL, applied to
the pair

p[j] ≡ 1, q[j] = β + v[j]

and sum σ, i.e. proving that∑
j∈[L]

1

β + v[j]
= σ.

14 DANIEL DORE THE LITA FOUNDATION

– Note that the verifier can compute evaluation queries to p and q
given α, β and the oracles for v1, . . . , vk, so the prover does not
need to send oracles for p and q separately.

• The prover and verifier engage in the IOP for RatSumM , applied to
the pair

p[r] = m[r], q[r] = β + t[r]

and sum σ, i.e. proving that∑
r∈[M]

m[r]

β + t[r]
= σ.

– Note that the verifier can compute evaluation queries to p and
q using α, β and the oracles for m, t1, . . . , tk, so the prover does
not need to send oracles for p and q separately.

The IOPs for RatSumM and RatSumL prove that

(30)
∑
j∈[L]

1

β + v[j]
−

∑
r∈[M]

m[r]

β + t[r]
= 0,

which is (29) evaluated at the random point X = β. By the Schwartz-Zippel
Lemma 2.4 (applied to the polynomial of degree at most L+M obtained
by multiplying the left-hand side of (29) by the least common multiple of
the denominators), the probability that (30) holds but (29) does not hold in
F(X) is at most

ϵSZ ≤ L+M

|F|
.

As we have seen, this suffices to prove ((t1, . . . , tk), (v1, . . . , vk)) ∈ Lookupk,M,L.
The total soundness error is at most the sum of the soundness errors of the
IOPs for RatSumM and RatSumL plus

ϵlogup ≤ ϵbatch + ϵSZ ≤ k +M + L

|F|
.

□

4.1.1. Batching multiple lookup columns with the same table. A further
attractive feature of the LogUp protocol is the ability to efficiently handle
multiple lookup columns with the same table, i.e. the claim that v1, . . . , vC
are vectors1 such that (t, vi) ∈ LookupM,L for i = 1, . . . , C. Rather than
running Protocol 4.3 C times independently, we can batch the lookups
together as follows:

• The prover sends oracles for v1, . . . , vC and t,
• the prover sends one multiplicity vector m of size M , where m[r] is
the number of (i, j) ∈ [C]× [L] such that vi[j] = t[r],

1This works just as well for vector-valued lookups: we stick to the scalar case here just
for notational convenience.

TASSLE: LASSO FOR THE COMMITMENT-PHOBIC 15

• instead of evaluating C different rational sums of length L as in
Protocol 4.3, the prover and verifier engage in the IOP for RatSumCL

to compute the sum

C∑
i=1

∑
j∈[L]

1

β + vi[j]
.

See [5] for a detailed treatment of this point.

4.2. The GKR protocol for the rational sumcheck relation. The
GKR protocol [4] is a general IOP for proving satisfiability of layered circuits.
These are arithmetic circuits consisting of a series of layers, with the outputs
from each layer fed into the inputs of the next layer. In each layer, a single
inner circuit is repeated some number of times in parallel.

It is based on the sumcheck protocol of Proposition 2.8, and has the
attractive feature that the prover only needs to send oracles for the inputs
at the first layer and the outputs at the last layer, not for any intermediate
values.

Following [7], we describe how to use the GKR protocol to prove the
rational sumcheck relation. The layered circuit in question computes the
sum

(31)
∑
j∈[L]

p[j]

q[j]

using a binary tree of depth ℓ := log(L).
The inner circuit computes the sum of two fractions p1

q1
+ p2

q2
using “pro-

jective coordinates”:

(32) (p1, q1, p2, q2) 7→ (p1q2 + p2q1, q1q2).

Protocol 4.4 (GKR for the rational sumcheck relation). We construct an
IOP for the relation (σ; p, q) ∈ RatSumL with L = 2ℓ whose costs are:

• 2 multilinear polynomial oracles of size L for the vectors p, q,
• one multilinear evaluation query at some ρ ∈ Fℓ to each of these
oracles,

• O(ℓ2) total communication,
• additional prover work consisting of O(L) field operations.

The soundness error is at most

ϵGKR ≤ 3ℓ(ℓ+ 5)

2|F|
Proof. We label the layers of the circuit computing (31) from ℓ to 1, with layer
ℓ as the input layer. Each layer i takes as input two multilinear polynomials
p(i) and q(i) in i variables, with

(p(ℓ)[r], q(ℓ)[r])r∈{0,1}ℓ := (p[r], q[r]),

identifying {0, 1}ℓ with [L] with (3).

16 DANIEL DORE THE LITA FOUNDATION

Layer i has as outputs two multilinear polynomials p(i−1), q(i−1) in i− 1
variables, which are computed from the inputs by applying (32) 2i−1 times
in parallel:

p(i−1)[r] := p(i)[(0, r)] ∗ q(i)[(1, r)] + p(i)[(1, r)] ∗ q(i)[(0, r)],(33)

q(i−1)[r] := q(i)[(0, r)] ∗ q(i)[(1, r)],

where r ∈ {0, 1}i−1. These outputs are then identified used as the inputs
to layer i− 1. In other words, each (p, q) pair among the outputs of layer i
gives the projective coordinates of the fractional sum of two adjacent (p, q)
pairs from the inputs to layer i:

(34)
p(i−1)[r]

q(i−1)[r]
=

p(i)[(0, r)]

q(i)[(0, r)]
+

p(i)[(1, r)]

q(i)[(1, r)]
.

Layer 1 has 2 outputs labeled p(0), q(0), and p(0)

q(0)
is the sum (31).

Next, we will apply Protocol 2.8 once for each layer, reducing the com-
putation of a multilinear evaluation query to the oracles for p(i−1), q(i−1) to
multilinear evaluation queries to the oracles for p(i), q(i), as follows:

• The prover starts the protocol by sending multilinear polynomial
oracles for p(ℓ) = p̃, q(ℓ) = q̃.

Now, we recursively define multilinear polynomial oracles p(i) for i =
1, . . . , ℓ − 1 by applying (33) to the oracles for p(i+1), q(i+1), starting with

p(ℓ), q(ℓ).
The initial claim is that

p(0)

q(0)
= σ.

Applying (33) once, we have

(35) p(0) = p(1)[0] ∗ q(1)[1] + p(1)[1] ∗ q(1)[0], q(0) = q(1)[0] ∗ q(1)[1]

• The prover sends the four claimed values

(36) m(1) := (p
(1)
0 , p

(1)
1 , q

(1)
0 , q

(1)
1) ∈ F4.

If the prover is honest, then these satisfy:

(37) p
(1)
b = p(1)[b], q

(1)
b = q(1)[b], for b ∈ {0, 1}.

• The verifier computes p(0), q(0) using (35) and the claimed values

m(1), then checks whether p(0)/q(0) = σ, aborting otherwise.

It now suffices to prove the claim that (37) holds.
This is the form of the claim that will be convenient for induction. Namely,

for each i, the prover and verifier will compute four values

m(i) = (m
(i)
p,0,m

(i)
p,1,m

(i)
q,0,m

(i)
q,1) ∈ F4.

TASSLE: LASSO FOR THE COMMITMENT-PHOBIC 17

If i > 1, they will also compute a challenge value r(i) ∈ Fi−1. The inductive
claims will be:

m
(i)
p,0 = p(i)[(0, r(i))], m

(i)
p,1 = p(i)[(1, r(i))],(38)

m
(i)
q,0 = q(i)[(0, r(i))], m

(i)
q,1 = q(i)[(1, r(i))].

First, we batch these into two claims using a random challenge:

• The verifier sends a challenge ρ(i) ∈ F.

Now, note that because p(i) and q(i) are multilinear, they are in particular
degree one polynomial (or ‘affine’) functions of their first variable when the
other variables are fixed. This implies:

p(i)(ρ(i), r(i)) = (1− ρ(i)) ∗ p(i)[(0, r(i))] + ρ(i) ∗ p(i)[(1, r(i))],(39)

q(i)(ρ(i), r(i)) = (1− ρ(i)) ∗ q(i)[(0, r(i))] + ρ(i) ∗ q(i)[(1, r(i))].

We define r(i) = (ρ(i), r(i)) ∈ Fi. Using (39), we batch the claims in (38) as:

p(i)(r(i)) = e(i)p := (1− ρ(i)) ∗m(i)
p,0 + ρ(i) ∗m(i)

p,1,(40)

q(i)(r(i)) = e(i)q := (1− ρ(i)) ∗m(i)
q,0 + ρ(i) ∗m(i)

q,1.

Note that the verifier can compute the claimed evaluations e
(i)
p and e

(i)
q from

m(i) using a constant number of field operations (four multiplications and
three additions).

Now, we will use the sumcheck protocol to reduce (40) to (38) for i+ 1.
First, we expand (40) using (5):

(41) e(i)p =
∑
b∈Bi

p(i)[b] ∗ Lb(r
(i)), e(i)q =

∑
b∈Bi

q(i)[b] ∗ Lb(r
(i)).

Then, we expand this further using (33):

e(i)p =
∑
b∈Bi

(
p(i+1)[(0, b)] ∗ q(i+1)[(1, b)] + p(i+1)[(1, b)] ∗ q(i+1)[(0, b)]

)
∗ Lb(r

(i)),

(42)

e(i)q =
∑
b∈Bi

q(i+1)[(0, b)] ∗ q(i+1)[(1, b)] ∗ Lb(r
(i)).

These claims are instances of the sumcheck relation Sum3,i,5 and Sum3,i,3

respectively, each with degree 3 and in i variables. More precisely, we define

oracles p
(i+1)
0 , p

(i+1)
1 , q

(i+1)
0 , q

(i+1)
1 for multilinear polynomials in i variables

by:

p
(i+1)
0 [r] = p(i+1)[(0, r)], p

(i+1)
1 [r] = p(i+1)[(1, r)],(43)

q
(i+1)
0 [r] = q(i+1)[(0, r)], q

(i+1)
1 [r] = q(i+1)[(1, r)].

18 DANIEL DORE THE LITA FOUNDATION

We also have an oracle for the polynomial ℓ(i) which is the multilinear
extension of

(44) b 7→ Lb(r
(i)).

The verifier may compute queries to this oracle explicitly with i multiplica-
tions using the following formula:

(45) ℓ(i)(X1, . . . , Xi) =
i∏

j=1

(Xj ∗ rj − (1−Xj) ∗ (1− rj)) .

To see that this formula provides the multilinear extension of (44), note that
(45) defines a multilinear polynomial in Mi, and that if b = (b1, . . . , bi) ∈ Bi,

then evaluating (45) at b gives exactly the definition (4) of Lb(r
(i)).

Defining

gp(X1, X2, X3, X4, X5) = (X1 ∗X4 +X2 ∗X3) ∗X5(46)

gq(X1, X2, X3) = X1 ∗X2 ∗X3,

we rephrase (42) as(
e(i)p , gp; p

(i+1)
0 , q

(i+1)
0 , p

(i+1)
1 , q

(i+1)
1 , ℓ(i)

)
∈ Sum3,i,5,(47) (

e(i)q , gq; q
(i+1)
0 , q

(i+1)
1 , ℓ(i)

)
∈ Sum3,i,3.

We batch the two claims in (47) into a single claim, and then use the
sumcheck protocol:

• The verifier sends a challenge λ(i) ∈ F.
• The prover and verifier engage in the sumcheck protocol applied to
the claim

(48) (e(i)p + λ(i)e(i)q , gp + λ(i)gq; p
(i+1)
0 , q

(i+1)
0 , p

(i+1)
1 , q

(i+1)
1 , ℓ(i)) ∈ Sum3,i,5

Applying Protocol 2.8 to (48), we obtain the following:

• A random point r(i+1) ∈ Fi,
• A 4-tuple of claims

m(i+1) = (m
(i+1)
p,0 ,m

(i+1)
p,1 ,m

(i+1)
q,0 ,m

(i+1)
q,1) ∈ F4

for each of p
(i+1)
0 , q

(i+1)
1 , p

(i+1)
1 , q

(i+1)
0 , evaluated at r(i+1).

By the soundness of Protocol 2.8, except with probability ϵ
(i)
sumcheck ≤ 3i

|F|
over the choice of the random value r(i+1), (47) is true if and only if:

m
(i+1)
p,0 = p(i+1)[(0, r(i+1))], m

(i+1)
p,1 = p(i+1)[(1, r(i+1)),

m
(i+1)
q,0 = q(i+1)[(0, r(i+1))], m

(i+1)
q,1 = q(i+1)[(1, r(i+1))],

which is the inductive claim (38).

TASSLE: LASSO FOR THE COMMITMENT-PHOBIC 19

At the end of the induction, we are left with claims:

m
(ℓ)
p,0 = p(ℓ)[(0, r(ℓ))], m

(ℓ)
p,1 = p(ℓ)[(1, r(ℓ)),

m
(ℓ)
q,0 = q(ℓ)[(0, r(ℓ))], m

(ℓ)
q,1 = q(ℓ)[(1, r(ℓ))],

We use one final verifier challenge ρ(ℓ) ∈ F to batch these into two claims
as in (40), setting r(ℓ) = (ρ, r(ℓ)):

p(ℓ)(r(ℓ)) = e(ℓ)p := ρ ∗m(ℓ)
p,0 + (1− ρ) ∗m(ℓ)

p,1,

q(ℓ)(r(ℓ)) = e(ℓ)q := ρ ∗m(ℓ)
q,0 + (1− ρ) ∗m(ℓ)

q,1.

• Finally, the verifier makes evaluation queries to the oracles p(ℓ) = p̃,
q(ℓ) = q̃ at the point r(ℓ).

To tally up the costs, we note that there are ℓ sumcheck instances, each
proving the relation Sum3,i,5 for i = 1, . . . , ℓ. The cost of running Protocol
2.8 for Sum3,i,5 is:

• i prover messages, each of length 3,
• a final prover message of length 4 consisting of evaluation claims for

the oracles p
(i)
0 , p

(i)
1 , q

(i)
0 , q

(i)
1 ,

– An evaluation claim for the fifth oracle ℓ(i) is not needed, as the
verifier may evaluate this polynomial directly using (45).

• i verifier challenges, each of length 1,
• verifier work consisting of ≈ 4i field scalar multiplications,
• prover work consisting of O(2i) field operations,
• a soundness error of size

ϵ
(i)
sumcheck ≤ 3i

|F|
Adding these up, the total costs of the ℓ sumcheck instances are:

• 1 + 2 + · · · + ℓ = ℓ(ℓ+1)
2 prover messages of length 3 and ℓ prover

messages of length 4, for O(ℓ2) total prover communication,

• 1 + 2 + · · ·+ ℓ = ℓ(ℓ+1)
2 = O(ℓ2) verifier challenges,

• 4 + 8 + · · ·+ 4ℓ = 4 ℓ(ℓ+1)
2 = O(ℓ2) verifier work,

• O(2 + 4 + · · ·+ 2ℓ) = O(2ℓ+1) = O(L) prover work,
• a soundness error of size

ϵsumcheck,tot ≤
3

|F|
(1 + 2 + · · ·+ ℓ) =

3ℓ(ℓ+ 1)

2|F|
= O

(
ℓ2

|F|

)
.

The additional costs for each round, coming from batching the claims at
the end of each sumcheck, are:

• two additional verifier challenges ρ(i), λ(i),

• an additional soundness error of size ϵ
(i)
batch ≤ 2

|F| ,

– this additional error comes from the choices of ρ(i) and λ(i): each
is used to batch the claims for the values of two scalars together,

20 DANIEL DORE THE LITA FOUNDATION

so by the linear univariate case of the Schwartz-Zippel lemma
2.4, the probability that the original claims are false while the
batched claims are true is at most 2

|F| .

Finally, we note that the only oracles the prover needs to send over the course
of the protocol are those for p, q, and the verifier makes a single evaluation
query to each of these oracles at the end of the protocol.

Adding together the soundness errors for each round, we obtain the total
soundness error of the protocol:

ϵGKR ≤
ℓ∑

i=1

ϵ
(i)
batch + ϵ

(i)
sumcheck ≤ 3ℓ(ℓ+ 5)

2|F|
.

For a more detailed accounting of the costs for this protocol, see [7]. □

4.2.1. Batched variant. It is possible to reduce the number of rounds of
sumcheck in this protocol by using a tree of arity κ > 2 and lower depth to
compute the sum: i.e. by using an inner circuit which adds up κ fractions at
a time. The tradeoff is that the degree of the sumcheck polynomials is κ+ 1
rather than 3, so the prover work and communication costs of each sumcheck
instance increase linearly with κ. For more discussion of this point, see [5]
and [7].

5. Putting it all together: TaSSLE

Now, we describe the TaSSLE protocol in full: we apply Protocol 3.1, using
a combination of Protocols 4.4 and 4.3 for the lookup argument and Protocol
2.11 for the polynomial constraint argument:

Protocol 5.1. Let T be a decomposable table of length N = 2n and width
κ with roots T1, . . . , Tα of length M = 2m = N1/c. Let d be the maximum
degree of the polynomials gi as in Definition 2.2. We construct an IOP for
the relation (g;T, v) ∈ Lookupκ,N,L. The total costs are

• κ multilinear oracles for vectors of length L: these are the columns
of the table v subject to lookup,

• one query to each of these oracles at some τ ∈ Fℓ,
• α multilinear oracles2 for vectors of length M : these are the “root”
vectors Ti from which T is built as in Definition 2.2,

• one query to each of these oracles at some r ∈ Fm,
• α multilinear oracles for vectors of length L: the entries of these
vectors belong to the root vectors Ti, so they will be small values if
the entries of Ti are,

• two queries to each of these oracles: one at τ and one at some r′ ∈ Fℓ,

2For some decomposable lookup tables T of interest, the Ti have the additional useful
property of being “MLE-structured”, meaning that the verifier may compute multilinear
evaluation queries to the Ti directly from a public succinct description in time logarithmic
in M . If this is the case, then we do not need the prover to send oracles for the Ti.

TASSLE: LASSO FOR THE COMMITMENT-PHOBIC 21

• α multilinear oracles for vectors of length M for the “multiplicity
vectors” multi: the entries of these vectors lie in [L],

• one query to each of these oracles at r,
• the costs of running the sumcheck protocol for Sumd+1,k+α,L,
• the costs of running the sumcheck protocol for Sum3,4c+1,2i for i =
1, . . . , ℓ− 1,

• total oracle cost of κ+ α length-L oracles and 2α length-M oracles
• total communication of O(ℓ2 + dℓ+ κ+ α) scalars,
• total prover work of O(d(κ+ α+ b)L) field operations, where b is the
total number of monomials among the κ polynomials gi comprising g,
and

• total verifier work of O(ℓ2 + dℓ + b) field operations and sampling
O(ℓ2) random scalars.

The total soundness error is at most

ϵTaSSLE ≤ 3ℓ(ℓ+ 4c+ 1)

2|F|
+
3m(m+ 4c+ 1)

2|F|
+
(2d+ κ+ 3)ℓ

|F|
+
α+ c(L+M)

|F|
;

in particular,

ϵTaSSLE = O

(
(d+ κ) log(L) + c(L+M)

|F|

)
These claims on soundness and costs follow immediately from the claims

proven in Protocols 2.11, 3.1, 4.3, and 4.4. For convenience, we describe the
protocol in full:

• The prover sends multilinear oracles for the κ columns v(1), . . . , v(κ)

of the matrix v ∈ Fκ×L subject to the vector-valued lookup relation
Lookupκ,N,L.

• The prover sends α multilinear oracles for the “root” vectors Ti of
length M = N1/c.

• The prover sends α multilinear oracles for the vectors v1, . . . , vα of
length L defined by

(49) (vki−1+1, . . . , vki)[j] = (Tki−1+1, . . . , Tki)[ri]

for i = 1, . . . , c, where the ki are as in Definition 2.2.

The prover and verifier now engage in Protocol 2.11 to show

(50) v(i)[j] = gi(v1[j], . . . , vα[j])

for all i ∈ [κ], j ∈ [L].

• The verifier sends a random challenge λ ∈ F, used to combine the κ
polynomial equations in (50) into a single claim

(51) h(v(1), . . . , v(κ), v1, . . . , vα)[j] = 0

for all j ∈ [L].
• The verifier sends a challenge point τ ∈ Fℓ.

22 DANIEL DORE THE LITA FOUNDATION

• The prover and verifier engage in one round of sumcheck for Sumd+1,κ+α,L

to prove that h̃(τ) = 0.

• The verifier makes queries to each of the κ+ α oracles v(i) and vj at
the same point r, sampled in the course of the sumcheck protocol.

Now, it remains to show (49) holds, which amounts to instances of the
vector-valued lookup relation Lookupki−ki−1,M,L for i = 1, . . . , c.

First, we use Protocol 4.3 to reduce this claim to the computation of a
rational sum:

• The prover computes “multiplicity” vectors multi of length M for
i = 1, . . . , α, counting the number of times each row of Ti appears as
(vki−1+1[j], . . . , vki [j]) for some j ∈ [L].

• The prover sends the verifier oracles for these multiplicity vectors.
• The verifier sends a random challenge α ∈ F, used to reduce the
length-(ki−ki−1) vector lookup claims in (49) to scalar lookup claims.

• The verifier sends a random challenge β ∈ F at which to evaluate
the logarithmic derivatives arising in Protocol 4.3.

• The prover sends claimed sums σi ∈ F, i = 1, . . . , c

At this point, it remains to prove the following sums:

(52) σi =
∑
j∈[L]

pvi [j]

qvi [j]
, σi =

∑
r∈[M]

pti[r]

qti [r]

for i = 1, . . . , c, where

(53) pvi [j] ≡ 1, pti[r] = multi[r]

and
(54)

qvi [j] = β +

ki−ki−1∑
s=1

αs−1vki−1+s[j], qti [r] = β +

ki−ki−1∑
s=1

αs−1Tki−1+s[r].

We do this by applying a batched version of Protocol 4.4 twice, once for
the sums of length L and once for the sums of length M .

For ease of notation, we describe just the first of these, writing pi for p
v
i ,

qi for q
v
i .

• First, the prover computes “partial sum” oracles p
(s)
i , q

(s)
i ∈ Ms for

s = ℓ, . . . , 1 by applying the recursive formula (33) to the oracles
pi, qi.

Then, for s = 1, . . . , ℓ− 1:

• For each i = 1, . . . , c, the prover sends a vector m
(s)
i ∈ F4 consisting

of claimed values for p
(s)
i [(b, r(s))] and q

(s)
i [(b, r(s))] for b = 0, 1.

– For s = 1, there is no r(s). For s > 1, it will have been computed
in the prior step.

• The verifier sends c challenges ρ
(s)
i ∈ F, i = 1, . . . , c.

TASSLE: LASSO FOR THE COMMITMENT-PHOBIC 23

• Using the ρ
(s)
i , the prover and verifier batch these into two claims for

each i as in (40), setting r
(s)
i = (ρ

(s)
i , r

(s)
i):

(55) p
(s)
i (r(s)) = e

(s)
p,i , q

(s)
i (r(s)) = e

(s)
q,i .

• We rewrite these as instances of the Sum3,s,5 relation in terms of the

p
(s+1)
i , q

(s+1)
i as in (42):

e
(s)
p,i =

∑
b∈Bi

(
p
(s+1)
i [(0, b)] ∗ q(s+1)

i [(1, b)] + p
(s+1)
i [(1, b)] ∗ q(s+1)

i [(0, b)]
)
∗ Lb(r

(s)),

e
(s)
q,i =

∑
b∈Bi

q
(s+1)
i [(0, b)] ∗ q(s+1)

i [(1, b)] ∗ Lb(r
(s)).

• The verifier sends a challenge λ(s) ∈ F, used to batch the 2c Sum3,s,5

claims in (55) into a single Sum3,s,4c+1 claim

(56) e(s) =
∑
b∈Bi

φ(s)
(
(p

(s+1)
i,b , q

(s+1)
i,b)b∈{0,1},i∈[c], ℓ

(s)
)

where

φ(s)((Xi,b, Yi,b)b∈{0,1},i∈[c], Z) = Z∗
c∑

i=1

(λ(s))i−1∗
(
Xi,0Yi,1 +Xi,1Yi,0 + (λ(s))cYi,0Yi,1

)
,

e(s) =
c∑

i=1

(λ(s))i−1 ∗
(
e
(s)
p,i + (λ(s))ce

(s)
q,i

)
,

and ℓ(s) is the multilinear extension of the function b 7→ Lb(r
(s)) as

in (44):

ℓ(s)(X1, . . . , Xs) =
s∏

j=1

(
Xj ∗ r(s)j + (1−Xj) ∗ (1− r

(s)
j)

)
• The verifier computes e(s).
• The prover and verifier engage in Protocol 2.8 to prove (56), yielding
the claim for the next round:

– A random point r(s+1) ∈ Fs,

– For i = 1, . . . , c, a 4-tuple of claims m
(s+1)
i ∈ F4 for each of

p
(s+1)
i [(b, r(s+1))], q

(s+1)
i [(b, r(s+1))], b = 0, 1.

At the end of the round for s = ℓ−1, we are left with claims for pi[(b, r
(ℓ))],

qi[(b, r
(ℓ))] for b = 0, 1 and i = 1, . . . , c. Finally:

• The verifier sends a last challenge ρ(ℓ) ∈ F and sets r(ℓ) = (ρ(ℓ), r(ℓ)).

• We batch the final claims using ρ(ℓ) as in (40) to obtain 2c claims for

the values of pi(r
(ℓ)), qi(r

(ℓ)), i = 1, . . . , c.
• The verifier checks these claims by making evaluation queries to the
α oracles v1, . . . , vα sent by the prover earlier and applying (53) and
(54).

24 DANIEL DORE THE LITA FOUNDATION

– This is the only part of the application of Protocol 4.4 that
differs between the length-L and length-M sums: for the lat-
ter, the verifier makes evaluation queries to the 2α oracles
T1, . . . , Tα,mult1, . . . ,multα instead.

5.1. Comparison with Lasso. Finally, we discuss how the TaSSLE protocol
compares with the Lasso protocol of [9]. Like TaSSLE, the Lasso protocol
essentially is the result of combining the general argument of Protocol 3.1
with the sumcheck IOP of Protocol 2.11 and a lookup argument. However,
the lookup argument used there is different: it is a novel protocol, based
on offline memory checking and the sparse polynomial commitment scheme
in [8]. Rather than a rational sum, the lookup argument presented there
reduces the lookup claim to the evaluation of a product. Then, similarly to
Protocol 4.4, this product is computed without any further commitments
using the GKR protocol.

A key benefit of working with logarithmic derivatives is the ability to
use the multiplicities of the rows of the lookup table in the argument very
directly: to include a fraction 1

q in the sum m times, we need only multiply

the term 1
q by m. On the other hand, including a factor π in a product m

times requires computing πm, which cannot be expressed as directly in terms
of polynomial constraints in π and m. As such, lookup arguments based on
products require more complex constructions.

In Lasso, the committed vectors are:

• the column3 v of length L subject to lookup,
• the α “root” vectors Ti of length M ,

– These are not included in the statements of the main theorems
of [9], as Lasso works throughout with the assumption that the
Ti are MLE-structured.

• α vectors of length L, giving the vectors of lookups into the Ti which
we denote v1, . . . , vα above,

• α vectors of length L giving the indices of the lookups of the vi into
the Ti, with all entries in [M].

• α vectors of length L giving “read-timestamps” for the lookups of
the vi into the Ti, with all entries in [L].

• α vectors of length M giving the “final timestamps” for the lookups
of the vi into the Ti, with all entries in [L].

– These are precisely the vectors multi used in the TaSSLE protocol.

Thus, we see that the committed vectors in TaSSLE are a strict subset
of those in Lasso: instead of 3α + 1 vectors of length L and 2α vectors of
length M , we have α + 1 vectors of length L and 2α vectors of length M ,
omitting the 2α vectors of indices and read-timestamps.

3As [9] only treats the case of scalar-valued lookups, we restrict ourselves to that case
here as well.

TASSLE: LASSO FOR THE COMMITMENT-PHOBIC 25

References

[1] Arasu Arun, Srinath Setty, and Justin Thaler. Jolt: Snarks for virtual machines
via lookups. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 3–33. Springer, 2024.

[2] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. Hyperplonk: Plonk with
linear-time prover and high-degree custom gates. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 499–530. Springer,
2023.

[3] Liam Eagen, Sanket Kanjalkar, Tim Ruffing, and Jonas Nick. Bulletproofs++: next
generation confidential transactions via reciprocal set membership arguments. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
pages 249–279. Springer, 2024.

[4] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating computation:
interactive proofs for muggles. Journal of the ACM (JACM), 62(4):1–64, 2015.

[5] Ulrich Haböck. Multivariate lookups based on logarithmic derivatives. Cryptology ePrint
Archive, 2022.

[6] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. Journal of the ACM (JACM), 39(4):859–868, 1992.

[7] Shahar Papini and Ulrich Haböck. Improving logarithmic derivative lookups using gkr.
Cryptology ePrint Archive, 2023.

[8] Srinath Setty. Spartan: Efficient and general-purpose zksnarks without trusted setup.
In Annual International Cryptology Conference, pages 704–737. Springer, 2020.

[9] Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup singularity
with lasso. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 180–209. Springer, 2024.

Email address: dorebell@gmail.com

	1. Introduction
	1.1. Acknowledgements

	2. Preliminaries
	2.1. Lookups and decomposable tables
	2.2. Polynomials
	2.3. Sumcheck
	2.4. Interactive Oracle Proofs
	2.5. Polynomial evaluation IOPs

	3. Abstracting Lasso's tensor-product argument
	4. Avoiding commitments with sumcheck
	4.1. Logarithmic derivative argument
	4.2. The GKR protocol for the rational sumcheck relation

	5. Putting it all together: TaSSLE
	5.1. Comparison with Lasso

	References

