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Abstract
Spectre attacks void the guarantees of constant-time cryp-
tographic code by leaking secrets during speculative execu-
tion. Recent research shows that such code can be protected
from Spectre-v1 attacks with minimal overhead, but leaves
open the question of protecting against other Spectre vari-
ants.

In this work, we design, validate, implement, and verify
a new approach to protect cryptographic code against all
known classes of Spectre attacks, in particular Spectre-RSB.
Our approach combines a new value-dependent informa-
tion-flow type system that ensures that no secrets leak even
under speculative execution and a compiler transformation
that enables it on the generated low-level code.

We first prove the soundness of the type system and the
correctness of the compiler transformation using the Coq
proof assistant. We then implement our approach in the Jas-
min framework for high-assurance cryptography and de-
monstrate that the overhead incurred by all Spectre pro-
tections is below 2% for most cryptographic primitives and
reaches only about 5–7% for the more complex post-quan-
tum key-encapsulation mechanism Kyber.

∗Part of this work was done while the author was affiliated with the Uni-
versity of Melbourne.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

CCS Concepts: • Security and privacy→ Formal secu-
rity models; Logic and verification.

Keywords: Spectre-RSB, Type system, Compiler, Specula-
tive execution, Coq

1 Introduction
In this paper, we present techniques to systematically pro-
tect high-performance cryptographic software against all
known classes of Spectre attacks. Our work draws from the
computer-aided cryptography paradigm [11], i.e., we em-
ploy methodologies and tools from formal methods to build
efficient and formally verified cryptographic software. More
specifically, we build our solution as part of Jasmin [1, 4], a
programming language and framework that has been used
to produce highly optimized and machine-checked imple-
mentations of symmetric cryptography [4], elliptic-curve
cryptography [1], hash functions [5] and recently also post-
quantum cryptography [3]. The Jasmin compiler is proven
inCoq to preserve semantics, and offers tools to ensure prop-
erties relating to implementation security such as memory
safety, thread safety, and absence of branches and memory
accesses dependent on secrets. It furthermore offers an in-
terface to the EasyCrypt [23] proof assistant to prove func-
tional correctness of implementations, that can be further
connected to computer-verified reductionist cryptographic
proofs of security, as, for instance, in [6, 12, 13].
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An S&P 2023 paper [9] made an important first step to-
ward integrating systematic protections against Spectre at-
tacks into Jasmin. In short, that paper proposes a type sys-
tem to ensure that typable programs are protected against
Spectre-v1 attacks, i.e., attacks exploitingmisspeculated con-
ditional branches. Furthermore, it presents extensions to the
Jasmin language to protect programs (and thus make them
typable). These protections mostly consist of selectively em-
ploying speculative load hardening (SLH) [20] as proposed
in [38], incurring a remarkably small overhead of (typically)
below 1%.

However, as that paper addresses only one class of Spec-
tre attacks, the conclusion hopes that the work “will be a
starting point to upgrade the gold standard of constant-time
cryptography, and will help deliver new post-quantum imple-
mentations that are not only protected against attacks by fu-
ture large quantum computers, but also against the most com-
mon classes of speculative attacks.”

Contributions. In this paper, we first show that Jasmin
programs are very easily, even naturally, protected against
most other classes of Spectre attacks. We identify one major
remaining challenge in protecting against all known classes
of Spectre attacks: Spectre-RSB [29, 31], i.e., attacks exploit-
ing the return stack buffer.

We then present the main contribution of our paper: ef-
ficient and systematic protections against Spectre-RSB and
their integration into the Jasmin framework. Our solution is
a hybrid approach that combines selective speculative load
hardening (selSLH) [9] with program transformation. First,
we propose language constructs to enforce selSLH on a pro-
gramming language with calls and returns. Second, we pro-
pose a program transformation that replaces calls and re-
turns by conditional direct jumps, which we call return-table
insertion. This transformation, which is inspired from prior
work on return-oriented programming (ROP) [35], removes
all Spectre-RSB gadgets. The combination of program trans-
formation and selective speculative load hardening guaran-
tees that transformed programs do not leak secrets through
timing even during speculative execution. Prior work refers
to this property as speculative constant-time [22]. Compared
to previous work, we complete this property by considering
all known Spectre attacks. We provide a precise definition
of speculative constant-time in Section 5.
The next step is to check that programs are correctly in-

strumented. For this purpose, we define an information-flow
type system for source programs in the spirit of the approach
taken for Spectre-v1 in [9]. Being cognizant that source pro-
grams will be transformed, the type system can check that
program instrumentation will be sufficient to track misspec-
ulation and guide the programmer to systematically protect
the code against speculative leakage. We use the Coq proof
assistant to formalize our approach for a core language: we
define the source language and its speculative operational

semantics, the return-table insertion, and the type system.
Our main result is a proof that the compilation of a well-
typed program is speculative constant-time.
Next, we integrate our approach into the Jasmin frame-

work. We extend the Jasmin language with an annotation
for function calls and we modify the existing speculative
constant-time type system from [9] so that inserting return
tables in well-typed programs yields programs that leak no
secrets even under speculation. Our implementation addres-
ses practical issues omitted by our core language in the set-
ting of a full-blown programming language. Last, we extend
the Jasmin compiler with a new return-table insertion pass;
we consider different variants, allowing for instance return
addresses to be stored in MMX registers or on the stack.
Finally, we perform an in-depth evaluation of the impact

of our approach on cryptographic software. The evaluation
is carried out on a set of Jasmin implementations of cryp-
tographic algorithms from libjade,1 that had already been
protected against Spectre-v1 in [9]. We use these routines
to measure the overhead of our approach, both in terms
of programmer effort and performance overhead. We show
that the overhead for full Spectre protections is below 2% for
most primitives and reaches only about 5–7% for the more
complex post-quantum scheme Kyber [17].

Artifacts. We produce three artifacts: the Coq formaliza-
tion, a new version of the Jasmin framework, and the pro-
tected version of libjade. These artifacts are available from
https://doi.org/10.5281/zenodo.14773254.The items that can
be found in the Coq formalization are marked with . In
this work, we make several simplifications and restrictions
for clarity of presentation—which we point out in the text—
that are not present in our Coq development or Jasmin.

Supplementary Material. We provide formal definitions
of the semantics and compilation scheme, proof statements
for soundness and correctness of the approach, and an illus-
trative example of the proof method in the appendices of the
extended version of this paper https://eprint.iacr.org/2024/
1070.

2 Background
In this section, we first introduce the constant-time (CT) par-
adigm and how Spectre attacks challenge it. Then, we in-
troduce how Jasmin enforces the CT paradigm and tackles
three out of four variants of Spectre attacks.

CT Paradigm. The CT paradigm requires that no secrets
flow into memory addresses or branch conditions under se-
quential execution. It is widely regarded as a standard base-
line defense mechanism against timing attacks [27], as it
defeats most traditional timing attacks, where the attacker

1See https://github.com/formosa-crypto/libjade.
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knows the trace of all accessed memory locations and the
complete control flow of the program.

Spectre Attacks. The CT paradigm protects cryptographic
code under the assumption that instructions are executed
sequentially. However, the performance of modern CPUs
relies heavily on speculative execution, which predicts the
instructions to be executed next and speculatively executes
them. Speculative execution is problematic for protecting
cryptographic code from timing attacks, as an attacker could
force a misprediction and speculatively forward data from
secrets to memory indexes or branch conditions. Attacks
that exploit speculative execution are known as Spectre at-
tacks [28], and have four general variants:

• Spectre-v1 [28, Sec. IV] attacks mistrain the condi-
tional branch predictor and capitalize on speculative
execution following a mispredicted conditional jump.
• Spectre-v2 [28, Sec. V] manipulates the prediction of
indirect branches to speculatively jump to almost any-
where in the victim memory space.
• Spectre-v4 exploits load instructions that target spec-
ulative data. This can happen when a load operation
reads from an address that has unresolved store op-
erations [28, Sec. VI], or because the CPU wrongly
predicted a store-to-load forward [7].
• Spectre-RSB [29, 31, 39] attacks exploit the RSB (Re-
turn Stack Buffer) to mispredict the address of return
instructions. Similar to Spectre-v2 attacks, an attacker
could speculatively jump to almost anywhere in the
victim’s memory space.

Jasmin. In Jasmin, the constant-time paradigm is enforced
through an information-flow type system at source level. In
short, all variables are typed as either secret or public and
the type system enforces that operations taking secret in-
puts produce secret outputs. Memory addresses and branch
conditions have to be public. Compiler preservation of the
constant-time property has been formally proven in [14].
Since the Jasmin language does not support indirect bran-

ches, Jasmin programs are naturally protected from Spectre-
v2 attacks. Furthermore, Spectre-v4 attacks are prevented
by setting the SSBD (Speculative Store Bypass Disable) flag
on Intel and AMD processors. As we will see in Section 9,
the performance impact of setting this flag on cryptographic
code is very small.

To protect against Spectre-v1 attacks, recent work [9] pro-
poses to extend the current type system by adding an addi-
tional security level, transient, for variables that are always
public in sequential execution but may contain secret data
in speculative execution after a mispredicted branch. Vari-
ables typed as transient are not allowed to influence memory
addresses or branch conditions, but they can be lowered to

public through one of two mechanisms: terminating specu-
lative execution by inserting an lfence instruction; or mask-
ing the variable with a misspeculation flag that is updated
through arithmetic instructions at each branch. This second
technique is selective speculative load hardening [38]. It is
supported in Jasmin through three instructions:
• init_msf() inserts an lfence instruction and sets a
special register msf to the neutral value of masking
NOMASK. This register is used to track speculation
and we call it the misspeculation flag (MSF).2
• update_msf(𝑒) conditionally updates the misspecu-
lation flag msf to MASK, depending on the boolean
expression 𝑒; it is essentiallymsf = 𝑒 ? msf : MASK,
implemented as a conditional move instruction (e.g.,
CMOV in x86) that takes the value of the expression 𝑒 ,
updates the msf atomically, and does not speculate.
We insert this instruction after branches to compare
with the prediction.
• 𝑥 = protect(𝑦) protects register 𝑦 conditioned on
the value of msf . Specifically, if the value of msf is
NOMASK, register 𝑥 receives the value of 𝑦, but if
it is MASK, it gets the default value of the masking
MASK. This instruction is used to lower the type of
𝑦 from transient to public.

3 Threat Model
We assume the OS is fully patched with the latest microcode
updates, and sets the SSBD flag to disable Spectre-v4 attacks.
Since we aim to protect cryptographic code against all

Spectre attacks, we assume a strong attacker who cannot
compromise the OS, but can perform all known variants of
Spectre attacks. That is, the attacker can manipulate the pre-
diction of conditional branches [28], indirect branches [28],
and return instructions [29]. We remark that this attacker is
stronger than in previous work [9], which focuses only on
Spectre-v1 attacks and thus assumes an attacker who can
only manipulate the prediction of conditional branches.

In terms of the attacker’s ability tomonitor the victim pro-
gram, we share the assumptions of previous work. Specifi-
cally, we assume the attacker can observe the addresses of
all memory accesses and control-flow under sequential exe-
cution, which alignswith the CT paradigm [2]. Furthermore,
we assume the attacker also has the same ability under spec-
ulative execution. This assumption is consistent with exist-
ing work on protecting cryptographic code against Spectre-
v1 [9].

4 Design Overview
Our countermeasure against Spectre-RSB comprises two in-
gredients: first, the developer instruments the programwith
2We will, for simplicity of presentation, assume thatmsf is a distinguished
variable that does not occur in the program.This restriction is unnecessary
and not present in our Coq development or the Jasmin language.
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protections resembling the ones for Spectre-v1 [9], and then
the compiler replaces function calls with direct jumps and
returns with return tables, implemented as nested condi-
tional direct jumps.

To understand the instrumentation expected from pro-
grammers, let us first consider the transformation: Figure 1a
shows a source program, and Figure 1b shows its compila-
tion. The transformed program is trivially protected against
Spectre-RSB attacks, as there are no RET instructions. How-
ever, after the transformation, the program is vulnerable to
Spectre-v1 attacks because the branch in id might be mis-
predicted, and speculative execution after the second invo-
cation of id might proceed from the first call site and thus
leak sec. Nevertheless, the transformation greatly reduces
the attack surface of a program that would otherwise have a
RET instruction: it ensures that speculative execution can no
longer be directed to an arbitrary location; instead, it can
only be directed to a well-defined, known set of possible
locations: the set of all call sites of the function we are re-
turning from. The idea of compiling RET instructions to a
sequence of direct conditional jumps is not new; it was men-
tioned in [15, Sec. 7] as a potential Spectre-RSB countermea-
sure, but not implemented. Figure 1c shows our program
with selSLH protections, protecting it against all attacks in
our threat model. For a high-level description of selSLH and
its implementation in Jasmin, see Section 2.
We combine these two ingredients in a way that inte-

grates well with the Jasmin workflow and is, in spirit, simi-
lar to the type system presented in [9]. We perform security
typing at the source level, i.e., with function returns. After-
wards, during compilation, we apply the transform from RET

instructions to nested conditional jumps. This means that
the speculative semantics and the type system from [9] are
insufficient to capture all effects of speculative execution.

Therefore, the structure of this work is as follows. First,
we define a language featuring calls and returns in addition
to conditional statements and loops, together with a specu-
lative semantics that captures at the source level the protec-
tions offered by return tables (Section 5). We then present a
type system that enforces speculative constant-time under
these semantics (Section 6) and a compilation scheme that
realizes them and preserves leakage (Section 7). Finally, Sec-
tion 8 discusses how we implement this type system and
compilation scheme in Jasmin, and Section 9 how we use
that to protect libjade with little overhead.

5 Language
In this sectionwe introduce a core imperative languagewith
function calls and returns and primitives for selective specu-
lative load hardening. This language allows us to define our
security model and notion of speculative constant-time.

We denote the booleans true and false as⊤ and⊥. Given a
function 𝑓 : 𝑋 → 𝑌 , we denote 𝑓 [𝑥 ← 𝑦] the function that

maps 𝑥 to𝑦 and every other 𝑥 ′ to 𝑓 (𝑥 ′). Given two functions
𝑓 , 𝑔 : 𝑋 → 𝑌 and a relation ≤ ⊆ 𝑌 × 𝑌 , wewrite 𝑓 ≤ 𝑔when
𝑓 (𝑥) ≤ 𝑔(𝑥) for each 𝑥 .
A program is a set of pairs of function names and code,

where there is one distinguished pair that is the entry point.
The entry point has no callers, and execution halts after
reaching its return.

For simplicity, we consider function calls without local
variables, arguments, or return values. The syntax for in-
structions and code is as follows, where 𝑒 is an expression
(either an integer, a boolean, a register variable, or an oper-
ation between expressions), 𝑥 a register variable, 𝑎 an array
variable, 𝑓 a function name, and 𝑏 a boolean:

𝐼 F 𝑥 = 𝑒 | 𝑥 = 𝑎[𝑒] | 𝑎[𝑒] = 𝑥

| if 𝑒 then 𝑐 else 𝑐 | while 𝑒 do 𝑐 | call𝑏 𝑓

| init_msf() | update_msf(𝑒) | 𝑥 = protect(𝑥)
𝑐 F [] | 𝐼 ; 𝑐 .

We assume that each array comes with its size |𝑎 |. The defi-
nitions are standard, except for the call instruction and the
selSLH instructions (which are described in Section 2). The
call⊤ 𝑓 instruction calls 𝑓 and performs an MSF update on
the registermsf upon return. On the other hand, the instruc-
tion call⊥ 𝑓 is a usual assembly CALL f instruction, which
does not update the misspeculation flag. The programmer
annotates call instructions with a boolean 𝑏 because we will
compile returns to tables of conditional jumps, which may
trigger misspeculation. Instead of interleaving several MSF
updates in the table, as is usual in SLH, we can perform just
one at the return site.

Semantics. To formalize our security model, we define for
every function 𝑓 its set of continuations C(𝑓 ), consisting
of triples (𝑐, 𝑔, 𝑏), where 𝑐 is the code—potentially many in-
structions—that remains to be executed after returning from
a call to 𝑓 , and 𝑔 is the caller, i.e., the function that contains
the instruction call𝑏 𝑓 . As an illustration, let 𝑐′ be the body
of function g in Figure 2. There are two continuations of f

in 𝑐′: the first one is (x = x + 1; 𝑐′, g, ⊤), i.e., when returning
from f to the first call site we need to finish executing the
loop body and then reenter the loop; and the second one
is (x = 0, g, ⊥), i.e., when returning from f to the second call
site we only need to execute the last assignment to x.

We define directives, using continuations, to model the at-
tacker’s power to influence execution as follows:

Dir F step | force 𝑏 | mem 𝑎 𝑖 | return 𝑐 𝑓 𝑏.

The directive step is a usual sequential step, force 𝑏 takes the
𝑏 branch of a conditional, mem 𝑎 𝑖 forces an unsafe memory
access to read from or write to the address (𝑎, 𝑖) instead, and
return 𝑐 𝑓 𝑏 forces the function to return to a continuation
(𝑐, 𝑓 , 𝑏). On the other hand, observations model execution
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1 id {
2 return
3 }
4
5 main {
6 x = pub
7 call id
8 leak(x)
9 x = sec
10 call id
11 … // do not leak x
12 }

(a)

1 id:
2 if ra = 0 jump ℓ0
3 jump ℓ1
4
5 main:
6 x = pub
7 ra = 0
8 jump id
9 ℓ0: leak(x)
10 x = sec
11 ra = 1
12 jump id
13 ℓ1: … // do not leak x

(b)

1 id:
2 if ra = 0 jump ℓ0
3 jump ℓ1
4
5 main:
6 init_msf()
7 x = pub
8 ra = 0
9 jump id
10 ℓ0: update_msf(ra = 0)
11 x = protect(x)
12 leak(x)
13 x = sec
14 ra = 1
15 jump id
16 ℓ1: … // do not leak x

(c)

Figure 1. (a) This program leaks sec speculatively: an attacker can force the second call to id to return to the leak(x) instruction,
thus leaking xwhich holds the value sec. (b) Compiled program using return tables.This program does not use RET instructions.
The second time the id block executes, when x gets a secret value, an attacker can mistrain the conditional jump predictor
to predict that the jump to ℓ0 will be taken, and speculatively leak x. (c) Compiled program with selSLH protections. This
program is protected because the value of x is masked before leaking it. If the attacker mounts the attack discussed in the
previous snippet, only a default masked value gets leaked.

1 g {
2 while (x < 10) do {
3 call⊤ f
4 x = x + 1
5 }
6 call⊥ f
7 x = 0
8 }

Figure 2. The function 𝑔 has two continuations of 𝑓 , one
after each call site.

leakage from control flow and memory accesses, and are de-
fined as follows:

Obs F • | branch 𝑏 | addr 𝑎 𝑖 .

The observation • corresponds to no observation, branch 𝑏
indicates that the condition of a conditional evaluated to 𝑏,
and addr 𝑎 𝑖 that a memory access to array 𝑎 in position 𝑖
occurred. We model addresses as pairs (𝑎, 𝑖) where the first
element indicates the base pointer of array 𝑎 and the second
the offset 𝑖 .

We define the single-step semantics of our language as
an indexed relation between states. The indices are direc-
tives and observations: 𝑠 𝑜−→

𝑑
𝑠′ expresses that the directive 𝑑

makes a state 𝑠 step to another state 𝑠′ and produce an obser-
vation 𝑜 . A state is a 6-tuple ⟨𝑐, 𝑓 , cs, 𝜌, 𝜇, ms⟩ that consists
of the code being executed 𝑐 , the name of the function being
executed 𝑓 , the call stack cs, the register map 𝜌 , the mem-
ory 𝜇, and the misspeculation statusms. A call stack is a list

of pairs of code and function names, a register map maps
register names to values, a memory maps arrays and valid
indices to values, and amisspeculation status is a boolean in-
dicating whether there has (ever) been misspeculation. The
only instructions that push elements to the call stack are of
the form call𝑏 𝑓 , which means that call stack elements are
continuations of 𝑓 .

Figure 3 presents selected rules of the semantics for our
language.The n-load rule correspond to a safe memory load.
It requires that the offset 𝑒 evaluates to an integer 𝑖 , which
is in bounds of the array 𝑎. It leaks the address of the load,
producing the observation addr 𝑎 𝑖 . Since the step is safe, it
ignores its directive. On the other hand, the s-load corre-
sponds to an unsafe load, i.e., one where the offset is out-of-
bounds. Since out-of-bounds accesses may access different
regions of memory at different times, we give the attacker
the power to choose any address for the load, through the
directive mem 𝑎′ 𝑗 . The observation is as before.
The call rule states that a function call fetches the body

𝑐𝑔 and name 𝑔 of the callee from the program 𝑝 , places them
as the code and function name under execution, and pushes
the caller’s code and function name to the call stack.

The n-Ret rule represents a normal return, during which
execution is transferred to the caller, i.e., the top of the call
stack. The s-Ret rule forces execution to continue to a con-
tinuation (𝑐, 𝑔, 𝑏) of 𝑓 (of the adversary’s choosing, different
from the top of the call stack), sets the misspeculation sta-
tus to ⊤, and, if 𝑏 is ⊤, setsmsf to MASK. Note that the call
stack plays no role during speculative execution and hence
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n-loadJ 𝑒 K𝜌 = 𝑖 𝑖 ∈ [0, |𝑎 |) 𝜌 ′ = 𝜌 [𝑥 ← 𝜇 (𝑎, 𝑖)]

⟨𝑥 = 𝑎[𝑒]; 𝑐, 𝑓 , cs, 𝜌, 𝜇, ms⟩ addr 𝑎 𝑖−−−−−−−→
mem 𝑎′ 𝑗

⟨𝑐, 𝑓 , cs, 𝜌 ′, 𝜇, ms⟩

s-load
𝑖 ∉ [0, |𝑎 |)J 𝑒 K𝜌 = 𝑖 𝑗 ∈ [0, |𝑎′ |) 𝜌 ′ = 𝜌 [𝑥 ← 𝜇 (𝑎′, 𝑗)]

⟨𝑥 = 𝑎[𝑒]; 𝑐, 𝑓 , cs, 𝜌, 𝜇, ⊤⟩ addr 𝑎 𝑖−−−−−−−→
mem 𝑎′ 𝑗

⟨𝑐, 𝑓 , cs, 𝜌 ′, 𝜇, ⊤⟩

call
(𝑔, 𝑐𝑔) ∈ 𝑝

⟨call𝑏 𝑔; 𝑐, 𝑓 , cs, 𝜌, 𝜇, ms⟩ •−−−→
step
⟨𝑐𝑔, 𝑔, (𝑐, 𝑓 ) :: cs, 𝜌, 𝜇, ms⟩

n-Ret

⟨[], 𝑓 , (𝑐, 𝑔) :: cs, 𝜌, 𝜇, ms⟩ •−−−−−−−−−→
return 𝑐 𝑔 𝑏

⟨𝑐, 𝑔, cs, 𝜌, 𝜇, ms⟩

s-Ret
(𝑐, 𝑔, 𝑏) ∈ C(𝑓 ) cs ≠ (𝑐, 𝑔) :: cs′ 𝜌 ′ = if 𝑏 then 𝜌 [msf ← MASK] else 𝜌

⟨[], 𝑓 , cs, 𝜌, 𝜇, ms⟩ •−−−−−−−−−→
return 𝑐 𝑔 𝑏

⟨𝑐, 𝑔, [], 𝜌 ′, 𝜇, ⊤⟩

Figure 3. Selected rules of the small step operational semantics.

is discarded. This rule captures a misspeculation in the re-
turn table of a compiled function.

The multi-step semantics 𝑠 𝑂−→
𝐷
→ 𝑠′ represents |𝐷 | steps of

execution, under a sequence of directives 𝐷 , starting from
state 𝑠 and ending in state 𝑠′, producing the sequence of
observations 𝑂 . It is the reflexive transitive closure of the
single-step semantics, accumulating directives and observa-
tions—it follows that |𝐷 | = |𝑂 |. We provide the rest of the
rules, which are standard, in the supplementary material.

We now have all the ingredients to rigorously define spec-
ulative constant-time. The definition is parameterized by a
relation on states, which determines which data is public. It
is meaningful when it requires that the code, function name,
call stack and misspeculation status of the states coincide,
and puts restrictions on the register map and memory. For
example, if a program expects a public nonce in register 𝑛
and a secret key in register 𝑘 , an appropriate relation would
be that the states coincide on 𝑛, i.e., 𝜌1 (𝑛) = 𝜌2 (𝑛). It should
not restrict the value of 𝑘 since, as a secret, it can vary be-
tween runs and should not produce an observable difference.
An arbitrary relation is more flexible than classifying vari-
ables as secret or public, since it can capture fine grained re-
lations such as “𝑛 contains a public nonce with a Hamming
weight of eight.”

Definition 1 (Speculative constant-time, 𝜙-SCT). Given 𝜙
a relation on states, a program 𝑝 is speculative constant-time
w.r.t. 𝜙 , denoted 𝜙-SCT, if and only if executions starting from
𝜙-related states produce the same observations under any di-
rectives. That is, for any 𝐷 , 𝑂1, 𝑂2, 𝑠1, 𝑠2, 𝑠′1, and 𝑠

′
2,

𝑠1 𝜙 𝑠2 ∧ 𝑠1
𝑂1−−→
𝐷
→ 𝑠′1 ∧ 𝑠2

𝑂2−−→
𝐷
→ 𝑠′2 =⇒ 𝑂1 = 𝑂2.

This definition captures our intuition of resistance against
Spectre attacks since it ensures that executions starting from
the same public data, and under any adversarially controlled
prediction behavior (modeled by 𝐷), produce no observable

difference in the measurements the attacker can perform
(modeled by 𝑂1 and 𝑂2). The sequence of directives 𝐷 cap-
tures predictions from both the branch predictor and the
RSB. The same sequence of directives guides both runs as is
standard in non-interference definitions.

The definition of SCT states that both related states must
step under the same directives. At first sight, if one of the
states steps but the other one gets stuck, it is not guaran-
teed that leakage is independent from secrets.We prove that
this is impossible: if a typable state can step under directives
𝐷 , then all indistinguishable states can step under the same
directives . More precisely, we show that if the program is
well typed, we have that

𝑠1 𝜙 𝑠2 ∧ 𝑠1
𝑂1−−→
𝐷
→ 𝑠′1 =⇒ ∃𝑂2 𝑠

′
2 . 𝑠2

𝑂2−−→
𝐷
→ 𝑠′2.

6 Type System
In this section, we introduce a type system for speculative
constant-time. We then prove that all initial states of a well-
typed program that coincide in their public parts produce
the same observations under all sequences of adversarial
directives .
Our type system uses security types to track the confi-

dentiality of data and detect possible violations, both under
sequential and speculative execution. Concretely, we attach
security levels to data (in our case, a confidentiality lattice
{P, S} with P ≤ S, corresponding to public and secret data)
and define types as either a level or a type variable 𝛼 (this is
the case when the same register or memory location is used
to hold data of different levels at different times).3 Finally,
registers and memory locations get security types, which
consist of a type (that represents the confidentiality of the
data under sequential execution) and a level (that represents
3In our artifact, we implement types as either S or a set of type variables.
The empty set corresponds to P and {𝛼, 𝛽, . . .} to the maximum of 𝛼, 𝛽, . . .
(thus, the type 𝛼 is encoded as {𝛼 }).
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the maximum confidentiality of the data under all possible
speculative executions), as follows:

levelF S | P
typeF level | 𝛼
stypeF ⟨type, level⟩.

Given a security type 𝜏 , we write 𝜏𝑛 to refer to the first com-
ponent (called nominal or sequential), and 𝜏𝑠 for the second
component (called speculative). Thus, a public variable has
security type ⟨P,P⟩, a secret one ⟨S, S⟩, and a transient one
⟨P, S⟩. A speculatively public (resp. secret) variable is one
where the speculative component of its type is P (resp. S).
Allowing polymorphism in the speculative component of a
security type makes the type system unsound, as we discuss
next.

Polymorphism. Our type system has polymorphism over
security types to allow function calls in contexts where vari-
ables have different security types. It is critical in our model
where variables andmemory are global since it is unrealistic
that calling a function requires that all registers and mem-
ory locations have some fixed security type. Nevertheless,
we need some care when a function call occurs in differ-
ent contexts because we do not know to which call site it
will return. We need to distinguish between sequential and
speculative types, as we do not want to allow instantiating
as public a register that may, due to misspeculation, contain
secret data.

Recall the example in Figure 1a. If we assigned a type such
as {𝑥 : ⟨𝛼, 𝛽⟩} → {𝑥 : ⟨𝛼, 𝛽⟩} to id, with a polymorphic vari-
able in the speculative component, then we would be able
to type this program (choosing 𝜃 such that 𝜃 (𝛼) = 𝜃 (𝛽) = P
for the first call site, and 𝜃 ′ such that 𝜃 ′ (𝛼) = 𝜃 ′ (𝛽) = S for
the second). We need to ensure that under speculation, the
output type of the function is the maximum of all possible
instantiations we need for the program: ⟨𝛼,max𝜃 ∈𝑝 {𝜃 (𝛽)}⟩.
Since we only have two levels, this restriction means that
if at any call site we need to instantiate 𝑥 as speculatively
secret, we need to assume that it could be secret in all re-
turn sites. Conversely, if we guarantee that at all call sites
𝑥 is speculatively public, we can assume this at every re-
turn site. In this way, the example is no longer typable: the
type must be of the form {𝑥 : ⟨𝛼, 𝑡⟩} → {𝑥 : ⟨𝛼 ′, 𝑡 ′⟩} where
𝛼 ≤ 𝛼 ′ and 𝑡 ≤ 𝑡 ′. We need 𝑡 ′ to be P for the first call site
to be typable since we leak 𝑥 after it, but we need 𝑡 ′ to be
S for the second call site to be typable since it is after the
assignment of a secret value to 𝑥 . There is no way of typing
this example . We can type this example where we protect
𝑥 after the first call site because of subtyping: we can choose
⟨𝛼, S⟩ → ⟨𝛼, S⟩ as the type of id and instantiate first with P
and then with S . Doing so means that 𝑥 is speculatively
S after the first call site, but the protect ensures we do not
leak any secrets.

FV(Σ) ≜
{

FV(𝑒) if Σ is outdated(𝑒),
∅ otherwise,

to_lvl(𝑡) ≜
{

P if 𝑡 is P,
S otherwise,

Σ|𝑒 ≜
{

outdated(𝑒) if Σ is updated,
unknown otherwise

Σ ⊑ Σ′ ≜ Σ = unknown ∨ Σ = Σ′

Figure 4. Auxiliary definitions for type rules. The free vari-
ables of an MSF type are the free variables of its condition
if it is outdated, and empty otherwise. The order for MSF
types is flat with unknown as the bottom element.

Misspeculation Flag Type. Our type system also needs to
keep track of the misspeculation flag to detect whether pro-
tections will be effective. For this, we define the MSF type

Σ F unknown | updated | outdated(𝑒).
TheMSF type unknown expresses that the program does not
know whether the state is misspeculating. The MSF type
updated means that the variablemsf accurately tracks spec-
ulation:msf holds the valueNOMASK if execution has been
sequential, andMASK if there has beenmisspeculation. Per-
forming an init_msf() takes us to updated since this in-
struction executes a speculation fence. Lastly, the MSF type
outdated(𝑒) expresses that msf holds a value that can be
updated to track speculation accurately. After a conditional
jump on 𝑒 in state updated, the MSF type transitions to
outdated(𝑒), and we need to execute an update_msf(𝑒) to
recover the MSF.4

Typing Rules. We use the typing judgment Σ, Γ ⊢ 𝑐 : Σ′, Γ′,
where Γ and Γ′ are mappings from register and array vari-
ables to security types (which have a sequential and a spec-
ulative component), Σ and Σ′ are MSF types, and 𝑐 is code.
Figure 5 presents the typing rules, with some auxiliary def-
initions in Figure 4.

Type checking requires a static signature for all functions
of the program, which associates each function name 𝑓 with
a signature Σ𝑓 , Γ𝑓 → Σ′

𝑓
, Γ′

𝑓
of input and output MSF types

and contexts. Signatures may contain type variables that get
instantiated at each call site. The purpose of the signature is
to fix the type of each function, as functions may be typable
with different types; they also allow modular verification.

Thefirst three rules are straightforward. Firstly, the assign
rule assigns to 𝑥 the type of the expression 𝑒 . We must en-
sure that the assigned variable does not occur in Σ to be
4For clarity, we depart from the notation in [9]: what that work denotes ms
we write as updated, and for ms |e we write outdated(𝑒 ) . Furthermore,
in our artifact the MSF type carries one more piece of information: the
location of the MSF, i.e., which register it is in.
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assign
Γ ⊢ 𝑒 : 𝜏 𝑥 ∉ FV(Σ)
Σ, Γ ⊢ 𝑥 = 𝑒 : Σ, Γ [𝑥 ← 𝜏]

load
Γ ⊢ 𝑒 : P 𝑥 ∉ FV(Σ)

Σ, Γ ⊢ 𝑥 = 𝑎[𝑒] : Σ, Γ [𝑥 ← ⟨Γ(𝑎)𝑛, S⟩]

stoRe
Γ ≤ Γ′ Γ ⊢ 𝑒 : P

Γ(𝑥) ≤ Γ′ (𝑎) ∀𝑎′ ≠ 𝑎. Γ(𝑥)𝑠 ≤ Γ′ (𝑎′)𝑠
Σ, Γ ⊢ 𝑎[𝑒] = 𝑥 : Σ, Γ′

while
Γ ⊢ 𝑒 : P Σ|𝑒 , Γ ⊢ 𝑐 : Σ, Γ
Σ, Γ ⊢ while 𝑒 do 𝑐 : Σ|!𝑒 , Γ

init-msf
Γ′ (𝑣) = ⟨Γ(𝑣)𝑛, to_lvl(Γ(𝑣)𝑛)⟩ for each 𝑣 ∈ Var

Σ, Γ ⊢ init_msf() : updated, Γ′

seq
Σ, Γ ⊢ 𝐼 : Σ′, Γ′

Σ′, Γ′ ⊢ 𝑐 : Σ′′, Γ′′

Σ, Γ ⊢ 𝐼 ; 𝑐 : Σ′′, Γ′′

update-msf

outdated(𝑒), Γ ⊢ update_msf(𝑒) : updated, Γ

pRotect
𝜏 = ⟨Γ(𝑥)𝑛, to_lvl(Γ(𝑥)𝑛)⟩

updated, Γ ⊢ 𝑦 = protect(𝑥) : updated, Γ [𝑦 ← 𝜏]

cond
Γ ⊢ 𝑒 : P Σ|𝑒 , Γ ⊢ 𝑐⊤ : Σ′, Γ′ Σ|!𝑒 , Γ ⊢ 𝑐⊥ : Σ′, Γ′

Σ, Γ ⊢ if 𝑒 then 𝑐⊤ else 𝑐⊥ : Σ′, Γ′

weaK
Σ0, Γ0 ⊢ 𝑐 : Σ′0, Γ′0

Σ0 ⊑ Σ Σ′ ⊑ Σ′0 Γ ≤ Γ0 Γ′0 ≤ Γ′

Σ, Γ ⊢ 𝑐 : Σ′, Γ′

call-⊥
𝑆𝑖𝑔(𝑓 ) = Σ𝑓 , Γ𝑓 → Σ′𝑓 , Γ

′
𝑓

Σ𝑓 , 𝜃 (Γ𝑓 ) ⊢ call⊥ 𝑓 : unknown, 𝜃 (Γ′𝑓 )

call-⊤
𝑆𝑖𝑔(𝑓 ) = Σ𝑓 , Γ𝑓 → updated, Γ′𝑓

Σ𝑓 , 𝜃 (Γ𝑓 ) ⊢ call⊤ 𝑓 : updated, 𝜃 (Γ′𝑓 )

nil

Σ, Γ ⊢ [] : Σ, Γ

Figure 5. Type system. Here 𝜃 : typeVar→ level is an instantiation of type variables and 𝑆𝑖𝑔 is the signature for functions of
the program.

able to accurately update the MSF later on; however, if we
do not want to update the MSF, we can always choose to
weaken Σ to unknown with the weaK rule and make this re-
striction vacuous. Secondly, the load rule ensures that the
array index is public, even speculatively. Variable 𝑥 gets its
sequential type from the array (recall that Γ(𝑎)𝑛 is the first
component of the type of 𝑎), but since the index might be
speculatively out of bounds, we need to overapproximate
the speculative type as S. Lastly, the stoRe rule also ensures
that the index is public, and we update the type of the ar-
ray to the that of 𝑥 . Similarly to the case for load, the index
might be out of bounds, so we need to update the specula-
tive types of all other arrays (recall that Γ(𝑎)𝑠 is the second
component of the type of 𝑎).

Next come the rules for selSLH instructions. The init-msf
rule sets the MSF type to updated, and sets the type of each
register and array variable to its sequential component, over-
approximating polymorphic type variables with S: that is,
⟨P, 𝑡⟩ goes to ⟨P,P⟩, ⟨S, 𝑡⟩ goes to ⟨S, S⟩, and ⟨𝛼, 𝑡⟩ goes
to ⟨𝛼, S⟩. We define this to_lvl(·) overapproximation in Fig-
ure 4. This instruction is the only way of exiting the state
unknown. Secondly, the update-msf rule expects the MSF
type to be outdated (which occurs when we enter a condi-
tional or a loop) and updates it if the condition is the same.
Lastly, the pRotect rule requires that the MSF is updated,
and sets the security type of 𝑦 to the sequential counterpart

of the one for 𝑥 , similarly to the init-msf rule but for one
variable only.

The cond rule ensures that the condition of an if instruc-
tion is public, and that each branch is typable with an out-
dated MSF type w.r.t. the appropriate condition. We define
this, denoted Σ|𝑒 , in Figure 4. Thus, the then-branch will
need to perform an MSF update with respect to 𝑒 if it needs
to use protect, and similarly for the else-branch with !𝑒 . The
while rule is analogous.
The call-⊥ and call-⊤ rules ensure that before every call

site of 𝑓 , the current MSF type and context are what 𝑓 ex-
pects them to be, according to its signature. The resulting
MSF type depends on the boolean parameter of the instruc-
tion: if the programmerwants the output type to be updated,
they choose the 𝑏 parameter to be⊤ and ensure that the out-
put MSF type of the function is updated. This rule allows
instantiating the type variables in Γ with an instantiation
𝜃—inferred by the type checker—that assigns a level to type
variables.

The weaK rule allows to compose typing judgments by
weakening them, and the nil and seq rules chain judgments
in the usual way. Finally, a program is well-typed if the body
of each function is typable with its signature.

Soundness. Our soundness theorem states that executions
of a typable program depend only on public data. Recall that
the definition of SCT is parameterized by a relation. The re-
lation we need is indistinguishability of states, which holds
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when two states coincide on their public values. More specif-
ically, we say that two states are indistinguishable if

1. their code, function name, call stack, and misspecula-
tion status are the same;

2. their registers and memory coincide on speculatively
public variables (i.e., if 𝜏𝑠 is P, where 𝜏 is the type of
a variable 𝑣 , the states coincide on 𝑣); and

3. if they are not misspeculating, the registers and mem-
ories coincide also on sequentially public variables.

This definition depends, therefore, on a typing context.

Theorem 1 (Soundness ). If a program is safe and typable,
and the initial type for its entry point is (unknown, Γ), then ev-
ery pair of indistinguishable initial states (i.e., that coincide on
their public parts and their misspeculation statuses) produce,
under a given list of directives, the same observations.

Informally, the notion of safety is that any reachable state
(starting from an initial state of the program) is either mis-
speculating, final, or there is a directive that allows a step
of execution. The notion imposes the usual conditions only
when the reached state is not misspeculating, i.e., under se-
quential execution. More precisely, a state 𝑠′ is reachable
from another state 𝑠 if there exist directives and observa-
tions such that 𝑠 𝑂−→

𝐷
→ 𝑠′. A state ismisspeculating if and only

if its misspeculation status is ⊤, and it is final if its code and
call stack are empty.

The proof of the soundness theorem needs an important
lemma, for single-step execution soundness. It says that if
a state is well-typed, which intuitively means that the code
being executed and the contents of the call stack are typable,
the resulting state after one execution step is alsowell-typed
and the observations are the same for all indistinguishable
states. Naturally we also need to show that initial states are
well-typed.

7 Return-Table Insertion
In this section, we present return-table insertion and show
that it preserves speculative constant-time. We compile our
structured source language into an unstructured linear lan-
guage with the same base instructions (assignments, loads,
stores, and selSLH instructions) but without the control flow
primitives (i.e., if statements, while loops, and function calls).
The linear language has only two control flow constructs,
conditional and unconditional direct jumps, and programs
are lists of labeled instructions.

Linear states are similar to source ones, but instead of
code being executed we have a program counter, which is a
label pointing to an instruction in the program. We denote
𝑡𝑝𝑐 to the program counter of 𝑡 . The operational semantics
of this language is standard, with similar directive and ob-
servation behavior as the source.

L call⊤ 𝑓 M ≜ 𝑟𝑎𝑓 = ℓ𝑟𝑒𝑡
jump 𝑓

ℓ𝑟𝑒𝑡 : update_msf(𝑟𝑎𝑓 = ℓ𝑟𝑒𝑡 )

L {ℓ𝑟 } M𝑓rettbl ≜ jump ℓ𝑟L {ℓ𝑟 } ∪ ℓ∗ M𝑓rettbl ≜ if 𝑟𝑎𝑓 = ℓ𝑟 jump ℓ𝑟 ; L ℓ∗ M𝑓rettbl

Figure 6. Compilation of function calls and return tables.
We write L 𝑐 M for the compilation of 𝑐 , and L ℓ∗ M𝑓rettbl for the
compilation of the return table of 𝑓 whose entries are ℓ∗.
We omit the labels of instructions that do not need them.
The register 𝑟𝑎𝑓 is where the function 𝑓 expects its return
address.

Figure 6 presents the case of non-recursive function calls
in our compilation scheme. Compiling assignments, mem-
ory and selSLH instructions is trivial since the languages
coincide on these constructs. We compile conditionals and
loops in the standard way with a conditional jump. For a
non-recursive function 𝑓 , we pass its return address in a ded-
icated return address register 𝑟𝑎𝑓 ; we discuss this restriction
in Section 8.

Figure 6 also shows the compilation of return tables as a
sequence of conditional direct jumps, given a non-empty set
of return labels. If the set has only one return label, we gener-
ate a direct jump to it. Otherwise, we generate conditional
branches comparing return addresses with each return la-
bel.
Compiling a program 𝑝 , denoted L𝑝 M, entails compiling

for each function 𝑓 its body at a distinguished label ℓ𝑓 , fol-
lowed by its return table at ℓ𝑟𝑒𝑡𝑓 . We derive the set of return
labels of a function from its set of continuations, that is, the
program points following a call to it. As mentioned in Sec-
tion 5, the entry point has no callers, and thus no return
table. The last instruction of the code of the entry points to
a distinguished, invalid label, indicating program termina-
tion.

Preservation of SCT. We use a definition of SCT similar
to Definition 1 for linear programs, and define a similar in-
distinguishability relation between states. Our compilation
scheme ensures that the compilation of a typable program
is not vulnerable to Spectre attacks.

Theorem 2 (Preservation of SCT ). If 𝑝 is typable thenL𝑝 M is SCT.
We prove this theorem by showing that the leakage of an

execution depends only on the public part of the initial state
and a corresponding source execution. In order to do this,
we define a directive transformer, which computes source
directives given the program counter and a target directive,
and a leakage transformer, which computes target leakage
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given the program counter and source leakage:
𝑇Dir : label × Dir→ Dir∗, 𝑇Obs : label × Obs∗ → Obs.

The proof is a standard simulation, where the key lemma is
as follows:

Lemma 1 (Single-step leakage transformation ). For all
single-step executions 𝑡

𝑜𝑡−→
𝑑

𝑡 ′, if there exists a typable source

state 𝑠 ∼ 𝑡 , then there exists a state 𝑠′ and observations𝑂𝑠 such

that 𝑠
𝑂𝑠−−−−−−−−→

𝑇Dir (𝑡𝑝𝑐 ,𝑑 )
→ 𝑠′, 𝑇Obs (𝑡𝑝𝑐 ,𝑂𝑠 ) = 𝑜𝑡 , and 𝑠′ ∼ 𝑡 ′.

Here the relation 𝑠 ∼ 𝑡 indicates that the linear state 𝑡 is
the compilation of the source state 𝑠 . Note that the source di-
rectives 𝑇Dir (𝑡𝑝𝑐 , 𝑑) can be empty, corresponding to a silent
step (in the source). It is usual that backward simulations for
compiler correctness proofs require showing that there are
a finite number of silent steps, but for security proofs like
ours this is not needed—silent steps do not leak secrets.

We give a formalization of the target language and the
trivial compilation cases, together with details on the proof
of single-step leakage transformation and an intuition for
these transformers in the supplementary material.

8 Implementation in the Jasmin Compiler
In this section, we describe how we implemented, within
the Jasmin compiler [1, 4], the type system and compilation
scheme presented in Sections 6 and 7.

Changes to the SCT Checker. Jasmin provides an auto-
matic checker for Spectre-v1 vulnerabilities that takes into
account selSLH instructions. We extend this checker to con-
sider also Spectre-RSB, following the type system from Sec-
tion 6. We must now bridge the gap between the model pre-
sented in this work and Jasmin. Firstly, function calls in our
model are nothing more than a transfer of control to the
body of the function, while in Jasmin, functions have local
variables, arguments, and results. Since, at the source level,
we do not know which variables of the callers of a function
will be allocated to which registers, we need to be coarser
than in Section 6 and consider that, after a function call, all
public variables become transient. Secondly, we introduce
an annotation #update_after_call for function calls, correspond-
ing to the boolean parameter of call instructions. Using this
annotation corresponds to setting the 𝑏 parameter of call in-
structions to ⊤, and omitting it corresponds to ⊥. Thus, we
have that

call⊥ f is x = f(y); call⊤ f is #update_after_call

x, msf = f(y, msf);

Recall that, the MSF variable is explicit in Jasmin, as men-
tioned in Section 2. Keeping the MSF in different locations
(registers or MMX registers) allows us to spill it when regis-
ter pressure is high. Finally, we modify the type system so
that only public data flows into MMX registers, even specu-
latively. This is not strictly necessary, but proved extremely

1 callee:
2 …
3 CMP ra, ℓ
4 JMPeq ℓ
5 JMPlt LT_branch
6 // GT_branch

1 caller:
2 …
3 MOV ℓ , ra
4 JMP callee
5 ℓ : MOV MASK, tmp
6 CMOVne tmp, msf

Figure 7. A return table implemented as a tree and a return
site that reuses the comparison made in the table.

convenient, since it frees us from keeping an MSF in cases
when we have only a few values to protect. We expand on
this below.

Changes to the Compiler. We adapt the Jasmin compiler
to use direct jumps instead of CALL and RET instructions. As
discussed in Section 7, we compile unannotated function
calls as two instructions (to save the return address and per-
form a direct jump). In contrast, calls annotated with #up-

date_after_call issue a third one, an MSF update.
We implement return tables as trees, which means that

the number of comparisons is logarithmic in the number of
callers of a function. Moreover, at return sites, in most cases,
the MSF update can reuse the flags that we set in the last
comparison before jumping. The most frequent instance of
this is the one depicted in Figure 7, where at the return site
ℓ we have an MSF update with condition ra = ℓ . We need
not introduce a CMP instruction for this update, since the
flags set before jumping correctly reflect the condition (in
this case EQ).
The compiler is flexible in passing return addresses in dif-

ferent ways. For libjade, using MMX registers was the best
option, as cryptographic implementations seldom use these
registers. By modifying the type checker to ensure that all
writes to MMX registers are public, even speculatively, we
never need to protect them. This restriction is also benefi-
cial when we only need to protect a few values because we
can place them in MMX registers and thus avoid keeping
an MSF. Since using these registers can be expensive and
register pressure can be high in some of the programs in
libjade, the compiler also allows passing return addresses
on the stack or in general-purpose registers. This, however,
requires some care: when passing them in an arbitrary lo-
cation, we need to be mindful of speculative writes to this
location.
Figure 8 shows how naively passing the return address

is insecure. Note how a return table leaks its return address
since it performs conditional branches on it. In this example,
the problem is that the return table in f leaks the secret that
evil puts into the register raf . The function g cannot modify
register raf because one of its callers, f, uses it. However, a
different caller, evil, can put a secret there, and when it calls
g, the attacker can force g to return to f. The return table in
f then leaks raf as remarked.
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1 f:
2 …
3 rag = f0
4 jump g
5 f0: …
6 if raf = ℓ jump ℓ
7 jump ℓ ′

1 g:
2 …
3 if rag = f0 jump f0
4 jump evil0

1 evil:
2 raf = secret
3 rag = evil0
4 jump g
5 evil0: …

Figure 8. How a secret may leak as a return tag.

Protecting the return address using an MSF mitigates the
problem: the leaked comparisons will be against a default
value instead of a secret. Note that there is no risk of a spec-
ulative write to the return address forcing execution to an
invalid program point since the table will perform compar-
isons on it, but the targets of all jumps are hard coded valid
labels. We can pass the return address on the stack for re-
cursive functions, but this is unnecessary for Jasmin as it
does not support them. The drawback of protecting return
addresses is that we need an MSF at each return site that
needs the protection. This entails keeping an MSF updated,
which means more instructions and data dependencies, and,
therefore, a greater overhead. Fortunately, MMX registers
are free from this drawback.

9 Evaluation
Now we overview the changes to libjade and evaluates the
computational cost of Spectre-RSB countermeasures. libjade
is a high-assurance cryptographic library written in Jasmin
and extended by [9] to be Spectre-v1 protected. The present
work uses the artifact from [9] as our starting point, which
contains the constant-time implementations (with no coun-
termeasures against Spectre attacks) and the corresponding
Spectre-v1 protected implementations.

9.1 Modifications to libjade
We started by updating these implementations to be com-
patible with recent versions of the Jasmin compiler and then
added RSB protections to the Spectre-v1 protected version.
The primitive that required the largest amount of changes
was Kyber [17]; in particular, no other primitive required the
#update_after_call annotation. Kyber512 and Kyber768 share a
significant part of the code, which is generic on the algo-
rithm’s parameters. We needed to annotate 49 out of 51 call
sites in Kyber512 with #update_after_call, and 56 out of 58 in
Kyber768. A rejection-sampling routine is the main reason
for the difference in the number of call sites between Ky-
ber512 and Kyber768 (it accounts for six call sites).

Sometimes, we can avoid keeping an MSF by applying
one of four different strategies when protecting our code;
the libjade implementations of Kyber have examples of all

four. First, we inline function calls if the code size penalty is
minor; this is the case for two function calls in Kyber. Sec-
ond, we spill public values toMMX registers—these are guar-
anteed to remain public—when the performance penalty al-
lows; this is the case for all calls to SHAKE in Kyber. Third,
we enforce that some function arguments are always public,
since, in some cases, the type system (soundly) generalizes
too much and gives false positives. An example of this is the
id function in Figure 1a: the type system will greedily assign
a polymorphic type to this function, 𝛼 → 𝛼 , and thus will
we need to protect its result after calling it. If in our pro-
gram we notice that we only call it with public arguments,
we can annotate this function as id(#public x) -> #public, which
is a more restrictive type, but frees us from having to pro-
tect its result after calling it. To justify the fourth and last
strategy, let us remark that if a function does not modify a
particular register, which is guaranteed to be public at every
call site of the function, we can safely assume that it is pub-
lic at each return site—this is an extension of the third strat-
egy. We can capitalize on this realization at the Jasmin level
by making such functions take extra arguments, annotating
them as public, and returning them unmodified. In this way,
the type system will enforce that these variables are always
public at every call site, even speculatively, and register al-
location will force these variables to the same architectural
register since they are an argument to a function.

The keypair and enc functions of Kyber each use a call to
an external randombytes function that serves as a wrapper
around a getrandom system call. These calls to external func-
tions (with actual RETinstructions) violate the assumptions
of our security arguments; they are currently being replaced
by a re-implementation of randombytes for an upcoming Jas-
min release. We expect no significant performance differ-
ence from this upcoming change to Jasmin.

9.2 Performance of libjade
Table 1 reports benchmarks of highly optimized implemen-
tations of various cryptographic primitives in libjade with
different Spectre protections. The benchmarks in the table
are the median cycle count of 10000 executions on a single
core of an Intel Core i7 11700K (Rocket Lake) CPU running
at 3600MHzwith TurboBoost and hyper-threading disabled.
The benchmarking state is running Debian 6.1.76, and we
compiled our benchmarking code using GCC 12.2.
In addition to the implementations of libjade, we include

results for alternative cryptographic libraries for compari-
son purposes (column “Alt.”). For each Jasmin primitive, the
leftmost column (“plain”) cycle count is the baseline CT im-
plementation with no Spectre protections. As a first step
(“+SSBD”), we set the SSBDCPUflag to protect against Spec-
tre v4 attacks. In a next step (“+SSBD+v1”), we additionally
add the selSLH protections against Spectre-v1 as described
in [9]. Finally, we report cycle counts with the full protec-
tions described in this paper (“+SSBD+v1+RSB”).
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Table 1. libjade benchmarks on Intel Core i7 11700K (most optimized implementation of each primitive). “Alt.”: cycles of alter-
native cryptographic libraries; “plain”: cycles without any Spectre protections; “+SSBD”: with SSBDCPU flag set; “+SSBD+v1”:
with SSBD CPU flag set and v1 countermeasures from [9]; “+SSBD+v1+RSB”: with full Spectre protection as described in this
paper; “increase”: relative increase in CPU cycles between unprotected (“plain”) and fully protected (+SSBD+v1+RSB).

Primitive Impl. Operation Alt. plain +SSBD +SSBD+v1 +SSBD+v1+RSB increase (%)
ChaCha20 avx2 1KiB - 1198 1202 1244 1246 4.01

1 KiB xor 1230 1208 1212 1248 1250 3.48
16 KiB - 19040 19052 19066 19068 0.15
16 KiB xor 18960 19070 19086 19096 19110 0.21

Poly1305 avx2 1KiB 704 670 672 720 718 7.16
1 KiB verif - 674 676 726 724 7.42
16 KiB 8590 8942 8948 8990 8986 0.49
16 KiB verif - 8942 8984 8984 8984 0.47

XSalsa20Poly1305 avx2 128 B 1834 1206 1212 1250 1246 3.32
128 B open 2698 1964 1970 2044 2046 4.18
1 KiB 5956 3140 3142 3190 3188 1.53
1 KiB open 6858 3900 3904 3988 3988 2.26
16 KiB 82642 32598 32574 32604 32602 0.01
16 KiB open 83582 33292 33274 33358 33362 0.21

X25519 mulx smult 121730 102848 104150 104424 104428 1.54
Kyber512 avx2 keypair 28802 27676 28106 28040 28090 1.50

enc 31032 37050 38332 38876 38792 4.70
dec 38816 29302 30444 30590 30714 4.82

Kyber768 avx2 keypair 48036 43432 45708 45860 46548 7.17
enc 49016 57006 59316 60028 60674 6.43
dec 60682 46138 48418 48532 49294 6.84

The alternative implementations of ChaCha20, Poly1305,
and X25519 are taken from OpenSSL 3.4.0. For ChaCha20
and Poly1305, we omit the data corresponding to the pro-
duction of a stream (ChaCha20) and, for Poly1305, MAC ver-
ification. This is because OpenSSL provide no interface that
corresponds directly to these operations. We developed an
interface for compatibility with our benchmarking frame-
work, and omit this data as it is not part of OpenSSL. We
report the cycle counts for XSalsa20Poly1305 (not available
in OpenSSL) from libsodium 1.0.20. The fastest implementa-
tion of this primitive in libsodium is not avx2 (although it
uses 128-bit vectorization instructions); hence, the leftmost
label avx2 (256-bit vectorization) applies only to the Jasmin
implementations. OpenSSL 3.4.0 does not implement Kyber,
so we include cycles from mlkem-native, which provides
updated and optimized implementations of ML-KEM. ML-
KEM differs slightly from Kyber, but these algorithmic dif-
ferences do not significantly affect the presented data.

We see that for the symmetric primitives, i.e., ChaCha20,
Poly1305, and XSalsa20Poly1305, the overhead for full Spec-
tre protection is solidly below 1% when processing suffi-
ciently long messages. The rather large overhead for short

messages is due to the fixed cost of the initial lfence; this is
consistent with the observations reported in [9].

For X25519 [16], an elliptic-curve Diffie-Hellman key ex-
change, we see a slightly larger overhead, which is almost
entirely due to Spectre-v4 protections, i.e., setting the SSBD
flag. This is not surprising, because the active data set in the
speed-critical main loop of X25519 is considerably larger
than in the symmetric primitives. The main loop thus in-
volves more loads and stores that potentially benefit from
speculative store bypass and may thus be slowed down by
SSBD.

The most interesting measurement results are those for
Kyber512 and Kyber768. Kyber is the most complex scheme
in our benchmarks in terms of code size, number of function
calls, and size of the active data set throughout the speed-
critical computations. Consequently, it is not surprising to
see a slightly higher overhead from Spectre protections in
Kyber than, e.g., X25519. Given that the generation of the
3×3matrix in Kyber768 does not vectorize as well as for the
2 × 2 one in Kyber512, it is also expected that the overhead
for the former is higher. The results for the keypair operation
are surprising: it has the smallest overhead in Kyber512 but
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the largest in Kyber768. We will continue to investigate the
reasons for this behavior.

10 Related Work
Return Tables as Compiler Optimizations. Calder and
Grunwald [18] show that return tables can improve perfor-
mance in object-oriented programs. Yang, Cooprider, and
Regehr show that return tables can reduce RAM usage in
embedded code [40]. Both transformations keep some indi-
rect jumps, since their goal is efficiency, and thus are inade-
quate as mitigations against Spectre.

ROPCountermeasures. Return-oriented programming is
an exploitation technique that targets return instructions
to force program execution to jump to arbitrary program
points [36]. In contrast to Spectre-RSB, ROP does not ex-
ploit speculative execution. There are many ROP counter-
measures; our work is closely related to countermeasures
that remove calls and returns [30, 34] and replace themwith
indirect jumps. Arthur et al. [10] is the closest since it in-
troduces only direct branches. The main difference with our
work is that we make this transformation resistant to specu-
lative execution attacks and compatible with selective spec-
ulative load hardening. Other countermeasures harden re-
turn instructions by using return indirection or randomiz-
ing return addresses. Unfortunately, these transformations
are ineffective in our scenario.

Spectre Countermeasures. There is a large body of work
that proposes countermeasures and verification approaches
against Spectre. We refer the reader to two recent surveys
for background [19, 21] and focus on closely related work.

Swivel [33] is a software-only compiler framework (with
a hardware-assisted variant) for WebAssembly that tackles
Spectre-v1, v2, and RSB. Similarly to Venkman [37], Swivel
enforces coarse-grained control-flow integrity (CFI) under
speculation by starting from a clean branch target buffer
(BTB) and RSB and restricting jumps to the beginning of
basic blocks. It implements various mitigations on top of
this, including disjoint memory regions for blocks (enforced
bymasking), a Spectre-protected shadow stack (using either
guard pages or Intel CET), masking of addresses, and flushes
of the BTB (on every transition into and out of the sandbox).
In contrast to our work, Swivel incurs significant overhead
and lacks formal guarantees.

Serberus [32] is a comprehensive approach to protect pro-
grams against all known Spectre attacks. Serberus uses CFI
protections to constrain the attacker’s power over specula-
tive control flow, and a sequence of program transforma-
tions to eliminate speculative leakage. One main difference
with our approach is that Serberus requires hardware and
operating system support. Specifically, Serberus derives its
CFI protection from Intel’s CET [24] and DOIT [25], and
requires the operating system to perform RSB stuffing on

context switches. Another main difference is that Serberus
needs to use fences and to spill all function arguments as
its primary protection mechanisms against speculative leak-
age, rather than selective speculative load hardening. This
is reflected in the experimental evaluation, which reports a
21.3% overhead. In contrast, the overhead of our approach is
minimal, and it uses hardware support only for Spectre-v4,
for precisely this reason.

Retpoline [26] is an early software-based countermeasure
against Spectre-v2—and some variants of Spectre-RSB—that
replaces indirect jumps by return instructions. This mitiga-
tion leverages knowledge of how the RSB is implemented—
as a LIFO buffer—to insert fences at the points where exe-
cution would continue if the predictor is wrong. Unfortu-
nately, Wikner and Razavi [39] show that the assumptions
that retpoline relies on are incorrect. JumpSwitches [8] im-
proves the performance of retpolines by generating partial
tables of return targets. Switchpoline [15] builds on that to
produce a software-based countermeasure that replaces in-
direct jumps with tables of direct ones. It instruments them
with a JIT compiler that generates new entries (i.e., new
direct jumps) at runtime for the targets that were not in-
ferred statically. Although Switchpoline targets Spectre-v2
in ARM, the transformation is very similar to ours. A critical
difference between Switchpoline and our approach is that
the former does not consider how to combine its transfor-
mation with efficient countermeasures to protect programs.
In particular, our proof shows that return tables introduce
leakage, which needs mitigation.

11 Limitations
One limitation of our approach is that it applies only to full
programs because an (unprotected) external function call
can exploit the RSB to bypass protections. This limitation is
common to other approaches, such as Serberus [32], Switch-
poline [15], Swivel [33], and Venkman [37]. In particular,
our approach does not allow separate compilation of pro-
grams, which is not supported in Jasmin, since the compiler
must statically construct return tables.Thus, even if our type
system and transformation, as well as selSLH, are general
and could apply to mainstream languages, for the former to
be secure, wewould need to give up on certain features such
as function pointers and separate compilation.
Another limitation of our approach is that it does not ac-

count for declassification. We are confident that our results
extend with declassification, at the cost of switching from
speculative constant-time to relative speculative constant-
time. In the future, we hope to leverage a formalization of
the type system in Coq to extend our results to declassifica-
tion.
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12 Conclusion
We have proposed an approach to protect against all known
forms of Spectre attacks. Our approach consists of an en-
riched set of program primitives and a compiler pass. We
provide a machine-checked proof of the correctness of our
approach in Coq, implement it in the Jasmin compiler, and
evaluate the impact on the library of cryptographic primi-
tives libjade.

Our implementation is currently limited to Jasmin pro-
grams. A pragmatic solution to carry the essence of our tech-
niques to mainstream languages would be to instrument ex-
isting compilers with a pass for return table instructions and
to develop assembly-level type systems for checking specu-
lative constant-timeness.
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A Artifact Appendix
A.1 Abstract
This is the artifact for the paper “Protecting Cryptographic
Code Against Spectre-RSB.” It contains a Coq formalization
of the approach presented in the paper, a version of the Jas-
min compiler that protects programs against Spectre-RSB,
a version of the libjade crypto library protected against all
known Spectre variants, and benchmarks for the updated
version of libjade.Themain contributions in this artifact are
a new SCT type system for Jasmin that checks for Spectre-
RSB, the Coq formalization and proof of our approach, and
high-assurance crypto implementations protected against
all known Spectre variants.
To build the Coq formalization and the Jasmin compiler,

we provide instructions using nix-shell. In addition, we pro-
vide a Docker image with the Jasmin compiler already in-
stalled. To run the benchmarks, we provide standard Make-
files (that require the Jasmin compiler).
The result of building this artifact is high confidence on

the security of our approach and evidence of its overhead
being minimal.

A.2 Artifact check-list (meta-information)
• Program: Benchmarks are included.
• Compilation: The Jasmin compiler is included.
• Transformations: The “protect calls” pass in the Jasmin

compiler is included.
• Run-time environment: Not specific. Requires nix-shell

or Docker.
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• Hardware: A modern Intel laptop with a firmware update
to enable SSBD.

• Metrics: CPU cycle counts.
• Output:Console output for the formalization, type checker,

and library. Assembly code for the compiler. PDF tables for
the benchmarks.

• Howmuch disk space required (approximately)?: 5GB
• How much time is needed to prepare workflow (ap-

proximately)?: One hour.
• How much time is needed to complete experiments

(approximately)?: One hour.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: MIT.
• Workflow framework used?: Nix, Dune, Docker, GNU

Makefile.
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

14773254

A.3 Description
A.3.1 How to access. Download from https://doi.org/10.
5281/zenodo.14773254 (compressed ∼5MB).

A.3.2 Software dependencies. A recent version of Docker,
or, alternatively, nix-shell, make, and GCC.

A.4 Installation And Basic Tests
The README.md at the top level of our artifact contains
instructions with useful details. We recommend that for an
easier and customized build. It also contains instructions for
doing all of these steps inside Docker, which we omit here.
This artifact contains the following directories:

1. formalization, a contribution of this work: a formal-
ization in Coq of the source and target speculative se-
mantics, the type system, the compilation using jump
table for return, and of the theorem 1 and 2 of the pa-
per.

2. jasmin, a contribution of this work: an improved ver-
sion of the Jasmin compiler and SCT checker.

3. sslh_rsb, a contribution of thiswork: a fully protected
version of libjade.

4. scripts, bash scripts to perform several utility tasks
such as preparing or running the benchmarks.

Coq Formalization. The recommended way to build the
modified Jasmin compiler is using nix. To build the formal-
ization and test it works, run the following in the formaliza-
tion directory:
$ nix-shell
$ dune build

Jasmin. To build Jasmin using nix, run the following com-
mands in the jasmin directory:
$ nix-shell
$ make
$ export JASMIN=$PWD/compiler/jasminc
To perform a basic test, run
$ $JASMIN -help

libjade. To build and perform a basic test, run
$ make -C sslh_rsb/src -j$(nproc) libjade.a
You can now use the library, sslh_rsb/src/libjade.a, and
the corresponding header file, sslh_rsb/src/libjade.h in your
projects.

A.5 Experiment workflow
Before running the benchmarks, ensure that the machine is
configured for this purpose to get stable results. Run:
$ ./scripts/bench-prepare
To run the complete benchmark setup, run
$ cd bench-prepared/
$ ./bench-run

A.6 Evaluation and expected results
To include the benchmark results into the tables/main.pdf
file (where CPU is the name of your CPU):
$ cp -r results/ ../tables/data/raw/CPU
$ make -C ../tables/ all
Note: the chosen namewill be used in a \label{(...)CPU(...)}
LATEX command for the generated table, characters restric-
tions must be considered (e.g., avoid special characters).
The main.pdf file should now contain the new tables.
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