
Strong Existential Unforgeability and BUFF Securities
of MPC-in-the-Head Signatures

m� k� l k� �kZF
 (Mukul Kulkarni) and草川恵太 (Keita Xagawa)

Technology Innovation Institute, UAE

{mukul.kulkarni,keita.xagawa}@tii.ae

February 26, 2025

Abstract. NIST started the standardization of additional post-quantum signatures in 2022. Among 40 candi-

dates, a few showed stronger security than existential unforgeability, strong existential unforgeability, and

BUFF (beyond unforgeability features) securities. Recently, Aulbach, Düzlü, Meyer, Struck, and Weishäupl

(PQCrypto 2024) examined the BUFF securities of 17 out of 40 candidates. Unfortunately, on the so-called

MPC-in-the-Head (MPCitH) signature schemes, we have no knowledge of strong existential unforgeability

and BUFF securities.

This paper studies the strong securities of all nineMPCitH signature candidates: AIMer, Biscuit, FAEST,MIRA,

MiRitH, MQOM, PERK, RYDE, and SDitH.

We show that the MPCitH signature schemes are strongly existentially unforgeable under chosen message

attacks in the (quantum) random oracle model. To do so, we introduce a new property of the underlying

multi-pass identification, which we call non-divergency. This property can be considered as a weakened ver-

sion of the computational unique response for three-pass identification defined by Kiltz, Lyubashevsky, and

Schaffner (EUROCRYPT 2018) and its extension to multi-pass identification defined by Don, Fehr, and Ma-

jenz (CRYPTO 2020). In addition, we show that the SSH11 protocol proposed by Sakumoto, Shirai, and Hi-

watari (CRYPTO 2011) is not computational unique response, while Don et al. (CRYPTO 2020) claimed it.

We also survey BUFF securities of the nine MPCitH candidates in the quantum random oracle model. In

particular, we show that Biscuit and MiRitH do not have some of the BUFF securities.

Keywords: signature · strong existential unforgeability under chosen message attacks · BUFF securities ·

MPC-in-the-Head signature · quantum random oracle model (QROM)

Table of Contents

1 Introduction . 2

2 Preliminaries . 7

3 Unique Response and Non-Divergency . . . 8

4 Signature from Multi-Pass Identification . 11

5 FSh for Multi-Pass ID 15

6 Biscuit . 17

A Missing Definitions, Lemmas, and Proofs . 24

B Variant of FSh . 32

C MQDSS . 34

D MiRitH . 34

E PERK . 37

F AIMer . 40

G Generic MPCitH using Embedding 40

H Generic VOLEitH . 42

1 Introduction

MPC-in-the-Head signatures: To prepare post-quantum cryptography (PQC), which is expected to resist threats

of quantum machines against public-key cryptography based on factoring and discrete logarithms, NIST has

been standardizing PQC signature schemes
1
. After they selected three digital signature schemes in July 2022,

they started an additional PQC signature standardization in Septempber 2022 [NIS22].
2
NIST announced forty

additional signature candidates in July 2023.

There are several approaches in those forty round-1 signature schemes. One of the promising approaches is

MPC-in-the-Head (MPCitH)
3
signatures, which employ the combination of the Fiat-Shamir (FS) transform [FS87]

and the zero-knowledge protocol based on the MPCitH paradigm [IKOS07] (or its followers). Nine of the forty

candidates are MPCitH signatures: AIMer [KCC+
23], Biscuit [BKPV23], FAEST [BBd

+
23a], MIRA [ABB

+
23c],

MiRitH [ARV
+
23], MQOM [FR23], PERK [ABB

+
23a], RYDE [ABB

+
23b], and SDitH [AFG

+
23]. See Table 1 for the

summary of the nine MPCitH signature schemes.

Recently, NIST recently started Round 2with fourteen signature candidates in October 2024. NIST selected six

MPCitH signatures
4
for fourteen round-2 signature candidates, and this implies MPCitH is a promising approach

and worth to survey it. Because the tweaks for round-2 signature candidates are not yet open, we still consider

the round-1 MPCitH signature candidates.

Background 1: Strong existential unforgeability: The standard security notion for signature is existential unforge-
ability under chosen-message attack, EUF-CMA security in short; roughly speaking, the security states that any

efficient adversary additionally cannot forge a signature on new message while it can obtain an arbitrary sig-

nature on its chosen messages. This notion is the basic requirement for the signature schemes and suffices for

basic applications of the signature.

However, we sometimes need stronger security notions. One of such notions is strong existential unforgeabil-
ity under chosen-message attack, sEUF-CMA security in short; this security states that any efficient adversary

cannot produce a new signature on a message, while the adversary may obtain signatures on the message. This

strong security has applications such as chosen-ciphertext secure public-key encryption [DDN00, CHK04], au-

thenticated group key exchange [KY03], and unilaterally-authenticated key exchange [DF17].

Suppose that we want to employ sEUF-CMA-secure signature scheme while there are EUF-CMA-secure

ones. If we want to upgrade the security via a generic transform, we need to employ an additional cryptographic

primitive, e.g., a strongly secure one-time signature scheme by following the general transform by Huang,Wong,

and Zhao [HWZ07] or by Bellare and Shoup [BS07]. Unfortunately, those transforms make a signature longer

by adding a verification key and signature of a one-time signature scheme. Hence, it is important to show the

sEUF-CMA security of signature schemes directly.
Let us consider a signature scheme based on a three-pass identification scheme via the Fiat-Shamir transform

(with or without aborts) [FS87, Lyu09]. In order to show the sEUF-CMA security of such schemes in the random

oracle model (ROM) and in the quantum ROM (QROM), we need the underlying three-pass ID scheme to be

computational unique response (CUR) [KLS18].5 See e.g., [AFLT16, KLS18].
Often, MPCitH signature schemes are based on five/seven-pass ID schemes. El Yousfi Alaoui et al. [EDV

+
12,

DGV
+
16] and Chen et al. [CHR

+
16] formally gave the EUF-CMA proof for (2𝑛 + 1)-pass ID in the ROM. They

only considered the EUF-CMA security. Don, Fehr, and Majenz [DFM20] extended the sEUF-CMA proof for

three-pass ID into that for (2𝑛 + 1)-pass ID. Concretely speaking, they considered MQDSS [SCH
+
17], whose

underlying ID is the five-pass SSH11 protocol [SSH11]; they showed the sEUF-CMA security in the QROM by

using their extended CUR and insisted that the SSH11 protocol satisfies the extended CUR. Unfortunately, we

found that the SSH11 protocol does not satisfy the extended CUR. (See Section 3 for the details.) In addition,

it is also hard to show that the underlying ID protocols of the MPCitH signature satisfy the extended CUR in

a modular fashion. This means that the extended CUR is too strong to achieve while their sEUF-CMA security

proof is correct. Therefore, our questions are:

Are theMPCitH signature schemes sEUF-CMA secure in the (Q)ROM? How can we weaken the requirements
of the underlying protocol?

1 https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
2 https://csrc.nist.gov/Projects/pqc-dig-sig/standardization
3
MPC = Multi-Party Computation.

4 FAEST, Mirath (= MIRA + MiRitH), MQOM, PERK, RYDE, SDitH
5
Any efficient adversary cannot output two valid transcripts (𝑎, 𝑐, 𝑧) and (𝑎, 𝑐, 𝑧′) with 𝑧 ≠ 𝑧′.

2

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/pqc-dig-sig/standardization

Table 1. Security comparison of the MPCitH signature schemes in Round 1 of the NIST additional PQC signature standard-

ization. “✓” implies that there exists a security proof under appropriate assumptions. “✗” implies that there exists an attack

with a success probability larger than 2−𝜅 with a number of queries 264, where 𝜅 ∈ {128, 192, 256} is the security parameter.

“✗?” implies that the success probability depends on the parameter sets. “?” implies that showing the security is an open

problem.

Name sEUF S-CEO S-DEO M-S-UEO MBS wNR Section Ref. version

AIMer ✓ ✓ ✓ ✓ ✓ ✓ Section F [KCC
+
23] v1.0

Biscuit ✓ ✗ ✓ ✗ ✓ ✗? Section 6 [BKPV23] v1.1

FAEST ✓ ✓ ✓ ✓ ✓ ✓ Section H.1 [BBd
+
23a] v1.1

MIRA ✓ ✓ ✓ ✓ ✓ ✓ Section G.1 [ABB
+
23c] v1.0

MiRitH ✓ ✗ ✓ ✗ ✓ ? Section D [ARV
+
23] v1.0

MQOM ✓ ✓ ✓ ✓ ✓ ✓ Section G.3 [FR23] v1.0

PERK ✓ ✓ ✓ ✓ ✓ ✓ Section E [ABB
+
23a] v1.1

RYDE ✓ ✓ ✓ ✓ ✓ ✓ Section G.1 [ABB
+
23b] v1.0

SDitH ✓ ✓ ✓ ✓ ✓ ✓ Section G.2 [AFG
+
23] v1.1

Background 2: BUFF securities: We also consider more enhanced security notions, so called Beyond UnForgeabil-

ity Features (BUFF) securities, against malicious key generations; exclusive ownership [BWM99, MS04, PS05,

CDF
+
21], message-bound signatures [PS05, JCCS19, BCJZ21, CDF

+
21], and non-resignability [PS05, JCCS19,

BCJZ21, CDF
+
21]. Exclusive ownership requires that a signature is valid only under a single verification key. This

prevents an attacker makes another verification key to “hijack” the signature (and some messages).
6
Message-

bound signature (MBS) requires that a signature is valid only under a single message and prevents an attacker

from making a weak verification key that allows the verification of a signature under multiple messages.
7
Non-

resignability (NR) requires that, given a verification key and a signature on a hidden randommessage, an efficient

adversary cannot output a signature and a different valid verification key on the same message.

In their call for proposal, NIST suggested BUFF securities as desirable properties as well as side-channel-

attack resistance, security in the multi-key setting, and misuse-resistance property [NIS22, 4.B.4]. Cremers, Dü-

zlü, Fiedler, Fischlin, and Janson [CDF
+
21] studied the BUFF securities of all six round-3 candidate signature

schemes of NIST PQC standardization. Aulbach, Düzlü, Meyer, Struck, and Weishäupl [ADM
+
24] studied BUFF

securities of seventeen signature schemes based on code, isogeny, lattice, or MQ in forty Round-1 candidates of

NIST PQC additional signature standardization. To the authors’ best knowledge, there are no studies on BUFF

securities of the MPCitH signature schemes. Our second question is:

Do the MPCitH signature schemes satisfy BUFF securities?

1.1 Our Contribution

In this paper, we show that the MPCitH signature schemes are sEUF-CMA-secure in the (Q)ROM; the assump-

tions are

1. existential unforgeability under no-message attacks (EUF-NMA security) of the signature scheme in the

(Q)ROM,

2. computational honest-verifier zero-knowledge (HVZK) property of the underlying ID protocol, and

3. the non-divergency of the underlying ID protocol,

where non-divergency is the weakened version of CUR defined later.

In addition, we survey the BUFF securities of the MPCitH signature schemes and found that the two schemes,

Biscuit and MiRitH, do not satisfy some exclusive ownership properties. For comparisons, see Table 1.

6
There are three variants of exclusive ownership: Strong conservative exclusive ownership (S-CEO) requires that, given a

verification key and pairs of messages and signatures {(𝑚𝑖, 𝜎𝑖)}, it cannot output a different valid verification key on some

(𝑚𝑖, 𝜎𝑖); Strong destructive exclusive ownership (S-DEO) requires that, given a verification key and pairs of messages and

signatures {(𝑚𝑖, 𝜎𝑖)}, it cannot output a different valid verification key and different message on some 𝜎𝑖; Malicious-strong

universal exclusive ownership (M-S-UEO) requires that any efficient adversary cannot output two different verification

keys 𝑣𝑘 and 𝑣𝑘′, possibly different messages 𝜇 and 𝜇′, and a signature 𝜎 such that both (𝑣𝑘, 𝜇, 𝜎) and (𝑣𝑘′, 𝜇′, 𝜎) are valid.
M-S-UEO implies S-CEO and S-DEO while the other direction is not.

7
See example for ECDSA in [SPMS02].

3

1.2 Technical Overview

Let us briefly recall the Fiat-Shamir (FS) transform applied to a (2𝑛+1)-pass ID scheme [FS87, EDV
+
12, DGV

+
16,

CHR
+
16]: Let (𝑎1, 𝑐1, … , 𝑎𝑛, 𝑐𝑛, 𝑎𝑛+1) denote a transcript of the underlying ID scheme, where 𝑎1, … , 𝑎𝑛+1 are the

messages generated by the prover and 𝑐1, … , 𝑐𝑛 be public-coin challenges generated by the verifier. On a mes-

sage 𝜇, the signer sequentially computes the prover’s messages 𝑎1, … , 𝑎𝑛+1 by computing the challenges as

𝑐1 = H(𝜇, 𝑎1) and 𝑐𝑖 = H(𝑖, 𝑐𝑖−1, 𝑎𝑖) for 𝑖 = 2, … , 𝑛, where H is the random oracle, and outputs a signature

(𝑎1, 𝑎2, … , 𝑎𝑛+1). The verifier computes 𝑐1 = H(𝜇, 𝑎1) and 𝑐𝑖 = H(𝑖, 𝑐𝑖−1, 𝑎𝑖) for 𝑖 = 2, … , 𝑛 and verifies the transcript
(𝑎1, 𝑐1, … , 𝑎𝑛, 𝑐𝑛, 𝑎𝑛+1) via the ID’s verification algorithm.

Strong Existential Unforgeability:

Existential unforgeability for 3-pass ID via reprogramming: Let us start from the EUF-CMA security proof in

the QROM for a signature scheme obtained by applying the FS transform to a 3-pass ID by Grilo, Hövelmanns,

Hülsing, andMajenz [GHHM21], where the assumptions are the EUF-NMA security of the signature and compu-

tational HVZK property of the ID. For easiness, the reader can consider the ROM. Since an EUF-NMA adversary

has no access to the signing oracle, it should simulate the signing oracle to run an EUF-CMA adversary. Roughly

speaking, in order to modify the signing oracles, they consider the games defined as follows:

– G0: This is the original EUF-CMA game. The adversary is given 𝑣𝑘 and has access to the signing oracle. The
signing oracle on input 𝜇 computes 𝑎1, 𝑐1 ∶= H(𝜇, 𝑎1), and 𝑎2 by using the prover algorithm, and returns

(𝑎1, 𝑎2) as a signature. The adversary outputs 𝜇∗ and a signature (𝑎∗1 , 𝑎∗2). If it is valid and 𝜇∗ is new, i.e., not
queried to the signing oracle, then the adversary wins.

– G1: This is the same as G0 except for the signing oracle and random oracle. The signing oracle on input

𝜇 chooses the challenge 𝑐1 uniformly at random, computes 𝑎1 and 𝑎2 by using the prover algorithm, and

reprogramsH(𝜇, 𝑎1) by 𝑐1, that is,H(𝜇, 𝑎1) ∶= 𝑐1. This modification is justified by the adaptive reprogramming

technique [GHHM21] and the min-entropy of 𝑎1.
– G2: This is the same as G1 except for the signing oracle. The signing oracle is implemented by the HVZK

simulator; on input 𝜇, the signing oracle chooses 𝑐1 uniformly at random, generates 𝑎1 and 𝑎2 by using

the HVZK simulator on input 𝑣𝑘 and 𝑐1, reprograms H(𝜇, 𝑎1) by 𝑐1, and returns a signature (𝑎1, 𝑎2). This
modification is justified by the HVZK property of the ID protocol.

Due to the EUF-CMA security condition, the adversary should output a new message 𝜇∗ and corresponding

valid signature (𝑎∗1 , 𝑎∗2). In the verification, the challenge 𝑐∗1 is comptued as H(𝜇∗, 𝑎∗1). We note that H(𝜇∗, 𝑎∗1) in the

random oracle is never reprogrammed in the signing oracle since 𝜇∗ is new. Therefore, we can easily construct

an EUF-NMA adversary against the signature scheme using the adversary in G2. It simulates G2 by using given

𝑣𝑘 and its own H and outputs the message and signature the EUF-CMA adversary outputs.

Strong existential unforgeability for 3-pass ID via reprogramming: The situation is a bit changed when we con-

sider the sEUF-CMA security. In the game, the adversary wins if it outputs 𝜇∗ and a signature (𝑎∗1 , 𝑎∗2) such
that (𝜇∗, (𝑎∗1 , 𝑎∗2)) is not answered by the signing oracle. Therefore, the adversary can ask 𝜇∗ to the signing or-

acle. Hence, the hash value H(𝜇∗, 𝑎∗1) might be reprogrammed since 𝜇∗ can be queried to the signing oracle. To

eliminate this event, we consider an additional game G3 defined as follows:

– G3: In this game, the adversary loses if the signing oracle returned signature (𝑎∗1 , 𝑎2) with 𝑎∗2 ≠ 𝑎2 on the

query 𝜇∗.

That is, in G3, if the adversary’s signature involves the reprogrammed value, then the adversary loses. Thus, it

is easy to construct an EUF-NMA security against the signature scheme again. To treat this event, Kiltz, Lyuba-

shevsky, and Schaffner [KLS18] defined computational unique response (CUR) of ID, which states any efficient

adversary, given a verification key, cannot output (𝑎1, 𝑐1, 𝑎2, 𝑎′2) with 𝑎2 ≠ 𝑎′2 such that (𝑎1, 𝑐1, 𝑎2) and (𝑎1, 𝑐1, 𝑎′2)
are valid under the verification key.

8
It is easy to see that if CUR holds, then there is only a negligible difference

between G2 and G3.

8
Their definition is concerning honestly generated verification key.

4

Strong existential unforgeability for 5-pass ID: We need careful analysis when we consider the multi-pass ID

case. Let us consider the 5-pass ID case as an example. Let us assume that we reached to G2, in which the signing

oracle on input 𝜇 chooses two challenges 𝑐1 and 𝑐2, obtains (𝑎1, 𝑎2, 𝑎3) from the HVZK simulator, reprograms

hash values H(𝜇, 𝑎1) ∶= 𝑐1 and H(2, 𝑐1, 𝑎2) ∶= 𝑐2, and returns (𝑎1, 𝑎2, 𝑎3) as a signature. To avoid the case that

the adversary outputs a message and a signature that involves the reprogrammed values, we will define G3 and

require the CUR-like property of the underlying ID. If the adversary’s forgery (𝜇∗, (𝑎∗1 , 𝑎∗2 , 𝑎∗3)) with challenges

𝑐∗1 ∶= H(𝜇∗, 𝑎∗1) and 𝑐∗2 ∶= H(2, 𝑐∗1 , 𝑎∗2) is related to the signing oracle’s signature (𝑎1, 𝑎2, 𝑎3) with challenges 𝑐1 and
𝑐2 on a message 𝜇, then the tuple (𝜇, 𝑎1, 𝑐1, 𝑎2, 𝑐2, 𝑎3) is classified into the following three cases:

– case 1: (𝜇, 𝑎1, 𝑐1) = (𝜇∗, 𝑎∗1 , 𝑐∗1) and 𝑎2 ≠ 𝑎∗2 ;
– case 2: (𝜇, 𝑎1, 𝑐1, 𝑎2, 𝑐2) = (𝜇∗, 𝑎∗1 , 𝑐∗1 , 𝑎∗2 , 𝑐∗2) and 𝑎3 ≠ 𝑎∗3 ; or
– case 3: (𝜇, 𝑎1) ≠ (𝜇∗, 𝑎∗1) and (𝑐1, 𝑎2, 𝑐2) = (𝑐∗1 , 𝑎∗2 , 𝑐∗2).

Fortunately, the third case can be eliminated by using the collision-resistance property of H because, if so, we

have H(𝜇, 𝑎1) = 𝑐∗1 = H(𝜇∗, 𝑎∗1)with (𝜇, 𝑎1) ≠ (𝜇∗, 𝑎∗1). Therefore, we need to introduce game G3 to exclude cases 1

and 2 and to define the generalization of CUR.

CUR for (2𝑛 + 1)-pass ID: Don, Fehr, and Majenz [DFM20] defined CUR for (2𝑛 + 1)-pass ID. Their defini-

tion for 5-pass ID states that any efficient adversary cannot output two valid transcripts (𝑎1, 𝑐1, 𝑎2, 𝑐2, 𝑎3) and
(𝑎′1, 𝑐′1, 𝑎′2, 𝑐′2, 𝑎′3) (and a verification key) such that

– condition 1: (𝑎1, 𝑐1) = (𝑎′1, 𝑐′1) and 𝑎2 ≠ 𝑎′2; or
– condition 2: (𝑎1, 𝑐1, 𝑎2, 𝑐2) = (𝑎′1, 𝑐′1, 𝑎′2, 𝑐′2) and 𝑎3 ≠ 𝑎′3.

These conditions are what we want to use to eliminate cases 1 and 2. They argued that the 5-pass Sakumoto-

Shirai-Hiwatari (SSH11) protocol [SSH11] satisfies their CUR notion and MQDSS [SCH
+
19], which is obtained

by applying the FS transform to the SSH11 protocol, is sEUF-CMA-secure in the QROM under appropriate as-

sumptions.

Unfortunately, we found that the SSH11 protocol is not CUR (for the detail, see Section 3.1). Hence, we must

weaken the CUR property to rescue the sEUF-CMA security ofMQDSS. Since we can use the collision-resistance

property, we could weaken the notion while keeping the security proof by replacing condition 1 with

– condition 1′: (𝑎1, 𝑐1) = (𝑎′1, 𝑐′1), 𝑎2 ≠ 𝑎′2, and 𝑐2 ≠ 𝑐′2.

However, we can still show the SSH11 protocol does not satisfy this modified CUR property (Section 3.1).

Non-Divergency: Turning back to the proof to bound the difference between G2 and G3, we observe that one

of the two valid transcripts should be generated by the HVZK simulator. We put forth a new weakened variant

of CUR and dub it non-divergency. Roughly speaking, we say that a 5-pass ID is non-divergent if any efficient

adversary having access to the simulation oracle cannot output a valid transcript (𝑎1, 𝑐1, 𝑎2, 𝑐2, 𝑎3) and another

transcript (𝑎′1, 𝑐′1, 𝑎′2, 𝑐′2, 𝑎′3) generated by the HVZK simulator satisfying either of the conditions 1′ or 2. To treat

7-pass ID schemes and variants of the FS transform, the real conditions differ from the above. See the concrete

definition in Section 3.

In the context of MPCitH protocols, if the condition 1′ is met, then we have 𝑐2 ≠ 𝑐′2, and the adversary should
open a commitment unopened in the simulated transcript, which breaks the one-wayness of the commitment

scheme. If the condition 2 is met, then 𝑎3 ≠ 𝑎′3 implies the violation of the binding property of the commitment

or the collision-resistance property of PRG or hash functions. Therefore, we can easily show the non-divergency

of the MPCitH protocols.

Does collapsed 3-pass ID help? One might consider that the following approach solves the above problems: Let

us consider collapsed 3-pass ID ID3 as Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, and Yue [AHJ
+
23],

in which the first prover computes 𝑤 = (𝑎1, 𝑎2) by computing 𝑐1 ∶= H′(𝑣𝑘, 𝑎1) by itself, the verifier chooses a

random challenge 𝑐 = 𝑐2, the second prover computes 𝑧 = 𝑎3, and the verifier checks if V(𝑣𝑘, 𝑎1, 𝑐1, 𝑎2, 𝑐2, 𝑎3)
by computing 𝑐1 ∶= H′(𝑣𝑘, 𝑎1). Applying the Fiat-Shamir transform to ID3, we obtain the signature scheme

FS3[ID3,H], where the signer will compute 𝑤 = (𝑎1, 𝑎2), 𝑐 = H(𝜇, 𝑤) = H(𝜇, 𝑎1, 𝑎2), and 𝑧 = 𝑎3, and output

𝜎 = (𝑤, 𝑧) (or (𝑐, 𝑧)). They showed that the obtained signature scheme is EUF-CMA-secure in the QROM by

assuming that the signature is EUF-NMA-secure in the QROM and the HVZK property and the min-entropy

of the commitment of the collapsed ID according to Grilo et al. [GHHM21, Thm.3]. They then showed that the

5

Table 2. Comparison of the candidates in Round 1 of the NIST additional PQC signature standardization. 𝑣𝑘 is the verification
key and 𝜇 is the message to be signed. ℎ𝑖’s are hash values and 𝑐𝑖’s are challenges computed from the hash values. The last

message 𝑎3 or 𝑎4 contains salt.

Name #pass ℎ1 or 𝑐1 ℎ2 or 𝑐2 ℎ3 or 𝑐3 𝜎 Ref.

AIMer 5 𝜇, 𝑣𝑘, 𝑎1 ℎ1, 𝑎2 – (ℎ1, ℎ2, 𝑎3) [KCC
+
23]

Biscuit 5 salt, 𝜇, 𝑎1 salt, ℎ1, 𝑎2 – (ℎ1, ℎ2, 𝑎3) [BKPV23]

FAEST 7 salt, 𝐻(𝜇, 𝑣𝑘), 𝑎1 𝑐1, 𝑎2 𝑐2, 𝑎3 (ℎ3, 𝑎4) [BBd
+
23a]

MIRA 5 salt, 𝐻(𝜇), 𝑣𝑘, 𝑎1 salt, 𝐻(𝜇), 𝑣𝑘, ℎ1, 𝑎2 – (ℎ1, ℎ2, 𝑎3) [ABB
+
23c]

MiRitH 5 salt, 𝜇, 𝑎1 salt, 𝜇, ℎ1, 𝑎2 – (ℎ1, ℎ2, 𝑎3) [ARV
+
23]

MQOM 7 salt, 𝜇, 𝑣𝑘, 𝑎1 salt, 𝜇, ℎ1, 𝑎2 salt, 𝜇, ℎ2, 𝑎3 (ℎ1, ℎ2, ℎ3, 𝑎4) [FR23]
PERK 5 salt, 𝜇, 𝑣𝑘, 𝑎1 salt, 𝜇, 𝑣𝑘, ℎ1, 𝑎2 – (ℎ1, ℎ2, 𝑎3) [ABB

+
23a]

RYDE 5 salt, 𝐻(𝜇), 𝑣𝑘, 𝑎1 salt, 𝐻(𝜇), 𝑣𝑘, ℎ1, 𝑎2 – (ℎ1, ℎ2, 𝑎3) [ABB
+
23b]

SDitH 5 (3) salt, 𝑣𝑘, 𝑎1 salt, 𝜇, ℎ1, 𝑎2 – (ℎ2, 𝑎3) [AFG
+
23]

collapsed 3-pass ID is EUF-NMA-secure in the QROM by assuming that the underlying problem is hard. We can

also show that if the collapsed 3-pass ID is CUR additionally, then the signature scheme is also sEUF-CMA-secure

in the QROM.

While the above argument is fine, what we want to treat is the signature scheme obtained from 5-pass
ID ID5 because the proposed scheme SDitH is defined as a variant of FS5[ID5,H], where 𝑐1 = H(𝑣𝑘, 𝑎1) and
𝑐2 = H(𝜇, 𝑐1, 𝑎2) (see Table 2 and Section G.2 for the details) and there is a subtle gap on how to compute 𝑐2
(H(𝜇, 𝑎1, 𝑎2) or H(𝜇, 𝑐1, 𝑎2)). When we prove the sEUF-CMA security of the real signature as the security proof

by Grilo et al. [GHHM21, Thm.3], this subtle difference introduces the following possibility: the adversary could

output a forgery (𝑎∗1 , 𝑐1, 𝑎2, 𝑐2, 𝑎3) on 𝜇∗ while the siging oracle generates a signature (𝑎1, 𝑐1, 𝑎2, 𝑐2, 𝑎3) on 𝜇∗ and
(𝑎∗1 , 𝑐∗1) ≠ (𝑎1, 𝑐1). In this case, the forgery involves the point (𝑐1, 𝑎2) reprogrammed by the signing oracle, and

the CUR for 3-pass ID does not help us.

Hülsing, Joseph, Majenz, and Narayanan [HJMN24] recently generalized the above approach to suitable

(2𝑛+1)-pass IDs and insisted their approach can be applicable to several MPCitH signatures in particular RYDE.
We note that the above approach for the EUF-CMA security invokes the fact that the computation of 𝑐2 involves
𝜇, e.g., 𝑐2 ∶= H(𝜇, 𝑐1, 𝑎2), to exclude the event the point (𝜇∗, 𝑐∗1 , 𝑎∗2) is not reprogrammed by the signing oracle.

Hence, we will require a few arguments if 𝑐2 does not involve 𝜇 directly as AIMer and Biscuit.

BUFF securities: We also examine the BUFF securities of the nine MPCitH signatures because there are differ-

ences in the form of a signature and inputs to the hash functions. See Table 2 for the summary of differences. Very

roughly speaking, a signature contains the hash values, and it essentially uses the transforms in [PS05, CDF
+
21].

A signature of all signature schemes contains the hash values involving a message 𝜇. Hence, a weak version

of exclusive ownership (strong destructive exclusive ownership, S-DEO) and message-bound signatures (MBS)

are easily satisfied. If those hash values include a verification key 𝑣𝑘 too, then it (almost) automatically satis-

fies exclusive ownership (malicious-strong universal exclusive ownership, M-S-UEO) and another weak version

(strong conservative exclusive ownership, S-CEO). It also satisfies weak non-resignability (wNR).

AIMer, FAEST, MIRA, MQOM, PERK, RYDE, and SDitH satisfy M-S-UEO (under appropriate assumptions)

since their hash values include 𝜇 and 𝑣𝑘 as in Table 2. In addition, we can show that they also satisfy wNR under

appropriate assumptions since their hash values in a signature include 𝜇 and 𝑣𝑘 as in Table 2.

We then examine Biscuit andMiRitHwhere 𝑣𝑘 is not involved in the hash values. Curiously, we find that Biscuit
and MiRitH are vulnerable to S-CEO and M-S-UEO. Very roughly speaking, we propose an attack computing a

new verification key 𝑣𝑘′ when we can obtain many pairs of a message and a signature, say, 264 pairs. The wNR

insecurity depends on the parameter sets because we can obtain a single pair of a message and signature, while

polynomially, many pairs are obtained in the S-CEO and M-S-UEO settings.

See Table 1 for the summary of the securities.

1.3 Organization

Section 2 reviews basic notations, notions, definitions, and lemmas used in this paper. Section 3 discusses unique

response and non-divergency of ID. Section 4 gives our main theorem showing that a signature scheme from

6

multi-pass ID achieves strong unforgeability. Section 5 discusses a variant of the Fiat-Shamir transform used

in the MPCitH signature schemes. Section 6 studies Biscuit as an example of the MPCitH signature schemes.

Supplement material contains missing definitions, a variant of the FS transform, and studies of other signature

schemes. Section A contains missing definitions and proofs. Section B discusses another variant of the Fiat-

Shamir transform used in FAEST and SDitH. Section C studies sEUF-CMA security ofMQDSS. Section D studies

(in)securities of MiRitH, Section E and Section F shows the security of PERK and AIMer, respectively. Section G

treats MIRA, RYDE, SDitH, and MQOM. Finally, Section H discusses the security of the VOLEitH signature and

its instantiation FAEST.

2 Preliminaries

The security parameter is denoted by 𝜅 ∈ Z+
.We use the standard𝑂-notations. For 𝑛 ∈ Z+

, we let [𝑛] ∶= {1, … , 𝑛}.
For 𝑛1, 𝑛2 ∈ Z+

, we let [𝑛1, 𝑛2] ∶= {𝑛1, … , 𝑛2}. For a statement 𝑃 , boole(𝑃) denotes the truth value of 𝑃 . DPT, PPT,
and QPT stand for deterministic, probabilistic, and quantum polynomial time, respectively.

Let  and  be two finite sets. Func( ,) denotes a set of all functions whose domain is  and codomain

is .

For a distribution 𝐷, we often write “𝑥 ← 𝐷,” which indicates that we take a sample 𝑥 according to 𝐷. For a
finite set  , 𝑈() denotes the uniform distribution over  . We often write “𝑥 ← ” instead of “𝑥 ← 𝑈().” If inp
is a string, then “out ← A𝑂(inp)” denotes the output of algorithm A running on input inp with an access to a set

of oracles 𝑂. If A and oracles are deterministic, then out is a fixed value and we write “out ∶= A𝑂(inp).” We also

use the notation “out ∶= A(inp; 𝑟)” to make the randomness 𝑟 of A explicit.

For a function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚, a quantum access to 𝑓 is modeled as oracle access to unitary𝑂𝑓 ∶ |𝑥⟩ |𝑦⟩ ↦
|𝑥⟩ |𝑦 ⊕ 𝑓 (𝑥)⟩. By convention, we will use the notation A|𝑓 ⟩,𝑔

to stress A’s quantum and classical access to 𝑓 and 𝑔 ,
respectively. For a function 𝑓 ∶  → , we denote the procedure reprogramming 𝑓 (𝑥)with ℎ by 𝑓 ∶= 𝑓 [𝑥 ↦ ℎ].

2.1 Digital Signature

The model for digital signature schemes is summarized as follows:

Definition 1. A digital signature scheme DS consists of the following triple of PPT algorithms (Gen, Sign,Vrfy):
– Gen(1𝜅) → (𝑣𝑘, 𝑠𝑘): a key-generation algorithm that, on input 1𝜅 , where 𝜅 is the security parameter, outputs a

pair of keys (𝑣𝑘, 𝑠𝑘). 𝑣𝑘 and 𝑠𝑘 are verification and signing keys, respectively.
– Sign(𝑠𝑘, 𝜇) → 𝜎: a signing algorithm that takes as input signing key 𝑠𝑘 and message 𝜇 ∈  and outputs

signature 𝜎 ∈  .
– Vrfy(𝑣𝑘, 𝜇, 𝜎) → true/false: a verification algorithm that takes as input verification key 𝑣𝑘, message 𝜇 ∈ ,

and signature 𝜎 and outputs its decision true or false.

We require statistical correctness; that is, for any message 𝜇 ∈ , we have

Pr[(𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅), 𝜎 ← Sign(𝑠𝑘, 𝜇) ∶ Vrfy(𝑣𝑘, 𝜇, 𝜎) = true] ≥ 1 − 𝛿(𝜅)

for some negligible function 𝛿.

Security notions: We review the standard security notion, existential unforgeability against chosen-message

attack (EUF-CMA), and its variants. For BUFF security notions, see Section A.1.

We consider a weak version, existential unforgeability against no-message attack (EUF-NMA), in which the

adversary cannot access the signing oracle. We also consider a strong version, sEUF-CMA security, in which the

adversary wins if its forgery (𝜇∗, 𝜎∗) is not equal to the pairs returned by Sign. The formal definition follows:

Definition 2 (EUF-CMA, sEUF-CMA, and EUF-NMA security). Let DS = (Gen, Sign,Vrfy) be a digital signature
scheme. For any and goal ∈ {euf, seuf}, we define its goal-cma advantage against DS as

Adv
goal-cma
DS, (𝜅) ∶= Pr[Exptgoal-cma

DS, (1𝜅) = 1],

where Exptgoal-cma
DS, (1𝜅) is an experiment described in Figure 1. ForGOAL ∈ {EUF, sEUF}, we say thatDS isGOAL-CMA-

secure if Advgoal-cma
DS, (𝜅) is negligible for any QPT adversary .

For any , we define its euf-nma advantage against DS as Adveuf-nma
DS, (𝜅) ∶= Pr[Expteuf-nma

DS, (1𝜅) = 1], where
Expteuf-nma

DS, (1𝜅) is the game Expteuf-cma
DS, (1𝜅) without the signing oracle Sign. We say that DS is EUF-NMA-secure if

Adveuf-nma
DS, (𝜅) is negligible for any QPT adversary.

7

1: Expteuf-cma
DS, (1𝜅)

2: (𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
3:  ∶= ∅
4: (𝜇∗, 𝜎∗) ← Sign(𝑣𝑘)
5: if ∃𝜎 ∶ (𝜇∗, 𝜎) ∈  then
6: return false

7: return Vrfy(𝑣𝑘, 𝜇∗, 𝜎∗)

1: Exptseuf-cma
DS, (1𝜅)

2: (𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
3:  ∶= ∅;
4: (𝜇∗, 𝜎∗) ← Sign(𝑣𝑘)
5: if (𝜇∗, 𝜎∗) ∈  then
6: return false

7: return Vrfy(𝑣𝑘, 𝜇∗, 𝜎∗)

1: Sign(𝜇)
2: 𝜎 ← Sign(𝑠𝑘, 𝜇)
3:  ∶=  ∪ {(𝜇, 𝜎)}
4: return 𝜎

Fig. 1. Security games for EUF-CMA and sEUF-CMA security (left and center). Sign (right) is the signing oracle andmaintains

the list .

2.2 Multi-Pass Identification

We consider multi-pass ID schemes, where the number of passes is (2𝑛 + 1) for 𝑛 = 1, 2, 3. We only treat public-

coin ID schemes; that is, the verifier chooses 𝑖-th challenge uniformly at random from the challenge set 𝑖. The

syntax follows:

Definition 3 (Multi-pass identification). A (2𝑛 + 1)-pass identification scheme ID consists of the following tuple
of PPT algorithms (Gen, P,V):

– Gen(1𝜅) → (𝑣𝑘, 𝑠𝑘): a key-generation algorithm that takes 1𝜅 as input, where 𝜅 is the security parameter, and
outputs a pair of keys (𝑣𝑘, 𝑠𝑘). 𝑣𝑘 and 𝑠𝑘 are public verification and secret keys, respectively.

– P(𝑠𝑘, 𝑐𝑖−1, state) → (𝑎𝑖, state): a prover algorithm that, in the 𝑖-th round (𝑖 = 1, … , 𝑛 + 1), takes signing key 𝑠𝑘,
the (𝑖 − 1)-th challenge 𝑐𝑖−1, and state state as input, (we let 𝑐0 and the initial state state be ∅) and outputs the
𝑖-th message 𝑎𝑖 and state state.

– V(𝑣𝑘, 𝑎1, 𝑐1, … , 𝑎𝑛, 𝑐𝑛, 𝑎𝑛+1) → true/false: a verification algorithm that takes verification key 𝑣𝑘 and the transcript
𝑎1, 𝑐1, … , 𝑎𝑛, 𝑐𝑛, 𝑎𝑛+1 as input and outputs its decision true or false.

We assume that a verification key 𝑣𝑘 defines the challenge spaces 1, … ,𝑛. We also assume perfect correctness; a
verifier always outputs true for an arbitrary honestly-generated key and transcript.

We will review the properties, the min-entropy and honest-verifier zero-knowledge of ID schemes in Sec-

tion A.

3 Unique Response and Non-Divergency

We say that three-pass ID scheme ID has unique responses if for all 𝑎1 and 𝑐1, there exists at most one 𝑎2 satisfying
V(𝑣𝑘, 𝑎1, 𝑐1, 𝑎2) = true. Kiltz et al. [KLS18] relaxed this notion into a computational one:

Definition 4 (Computational unique response [KLS18, Def. 2.7], adapted). We say that three-pass ID scheme
ID = (Gen, P,V) has the computational unique response (CUR) property if for any QPT adversary, its advantage
defined below is negligible in 𝜅:

AdvcurID,(𝜅) ∶= Pr [
(𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅), (𝑎1, 𝑐1, 𝑎2, 𝑎′2) ← (𝑣𝑘) ∶
𝑎2 ≠ 𝑎′2 ∧ V(𝑣𝑘, 𝑎1, 𝑐1, 𝑎2) ∧ V(𝑣𝑘, 𝑎1, 𝑐1, 𝑎′2)] .

We can consider that the two transcripts (𝑎1, 𝑐1, 𝑎2) and (𝑎1, 𝑐1, 𝑎′2) breaking the CUR property branch at index 2.
Don et al. [DFM20] generalized this idea into (2𝑛 + 1)-pass ID as follows:

Definition 5 (Computational unique response [DFM20, Def. 22], adapted).We say that (2𝑛+1)-pass ID scheme
ID = (Gen, P,V) has the computational unique response (CUR) property if for any QPT adversary, its advantage
defined below is negligible in 𝜅:

AdvcurID,(𝜅) ∶= Pr [
(𝑣𝑘, trans, trans′) ← (1𝜅) ∶

BranchCheckDFM(trans, trans′) ∧ V(𝑣𝑘, trans) ∧ V(𝑣𝑘, trans′)] ,

where BranchCheckDFM(trans, trans′) is defined as follows:

8

1. Parse trans = (𝑎1, 𝑐1, … , 𝑎𝑛, 𝑐𝑛, 𝑎𝑛+1) and trans′ = (𝑎′1, 𝑐′1, … , 𝑎′𝑛, 𝑐′𝑛, 𝑎′𝑛+1).
2. If there exists 𝑘 ∈ [2, 𝑛 + 1] such that (𝑎𝑗 , 𝑐𝑗) = (𝑎′𝑗 , 𝑐′𝑗) for all 𝑗 < 𝑘 but 𝑎𝑘 ≠ 𝑎′𝑘 , then return true;
3. Otherwise, return false.

The above branch-checking algorithm BranchCheckDFM is a natural extension of the condition (𝑎1, 𝑐1) = (𝑎′1, 𝑐′1)
and 𝑎2 ≠ 𝑎′2 in Definition 4 to capture the case that the two transcripts branch at index 𝑘. Notice that, in their

definition, an adversary can know 𝑠𝑘 or use maliciously generated 𝑣𝑘. Unfortunately, their definition is too strong
for the ID schemes in the wild, as discussed in Section 3.1. Thus, we will consider a variant of the above CUR by

giving an honestly generated 𝑣𝑘 to an adversary. Again, the modified definition is still too strong to achieve as

we will see in Section 3.1.

Notice that the adversary in CUR can choose two transcripts trans and trans′ by itself. We observe that,

in the security proof of the Fiat-Shamir transform (see Section 4), one transcript should be generated by the
HVZK simulator and the adversary outputs a new branch diverged from the transcript as a forgery. Using this

observation, we define the new property, non-divergency, as follows:

Definition 6 (Non-divergency for (2𝑛 + 1)-pass ID).We say that (2𝑛 + 1)-pass ID scheme ID is 𝑞-non-divergent
with respect to Sim if for any QPT adversary , its advantage defined below is negligible in 𝜅:

Adv
𝑞-nd
ID,(𝜅) ∶= Pr

⎡
⎢
⎢
⎢
⎣

(𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅),
for 𝑖 ∈ [𝑞] trans𝑖 ← Sim(𝑣𝑘, 𝑈 (1), … , 𝑈 (𝑛)),

(𝑖, trans′) ← (𝑣𝑘, trans1, … , trans𝑞) ∶
BranchCheck(trans𝑖, trans′) ∧ V(𝑣𝑘, trans𝑖) ∧ V(𝑣𝑘, trans′)

⎤
⎥
⎥
⎥
⎦

,

where BranchCheck is defined as follows:

1. Parse trans = (𝑎1, 𝑐1, … , 𝑎𝑛, 𝑐𝑛, 𝑎𝑛+1) and trans′ = (𝑎′1, 𝑐′1, … , 𝑎′𝑛, 𝑐′𝑛, 𝑎′𝑛+1).
2. If one of the following conditions is satisfied, then return true:

(a) If there exists 𝑘 ∈ [2, 𝑛] such that (𝑎𝑗 , 𝑐𝑗) = (𝑎′𝑗 , 𝑐′𝑗) for all 𝑗 < 𝑘 but 𝑎𝑘 ≠ 𝑎′𝑘 and 𝑐𝑙 ≠ 𝑐′𝑙 for all 𝑙 ∈ [𝑘, 𝑛],
then return true;

(b) If (𝑎𝑗 , 𝑐𝑗) = (𝑎′𝑗 , 𝑐′𝑗) for all 𝑗 ≤ 𝑛 and 𝑎𝑛+1 ≠ 𝑎′𝑛+1, then return true; or
(c) If 𝑎𝑗 = 𝑎′𝑗 for all 𝑗 ∈ [𝑛 + 1] and there exists 𝑘 ∈ [2, 𝑛] such that 𝑐𝑗 = 𝑐′𝑗 for all 𝑗 < 𝑘 but 𝑐𝑙 ≠ 𝑐𝑙 for all

𝑙 ∈ [𝑘, 𝑛], then return true.
3. Otherwise, return false.

Remark 1. We explain the conditions of branch-checking algorithm BranchCheck.
Suppose that the branch occurs at index 𝑘 < 𝑛; this case is captured by condition 2.(a). Notice that we require

𝑎𝑘 ≠ 𝑎′𝑘 and 𝑐𝑘 ≠ 𝑐′𝑘 , … , 𝑐𝑛 ≠ 𝑐′𝑛 instead of requiring just 𝑎𝑘 ≠ 𝑎′𝑘 . While it seems strong, in the security proof,

𝑎𝑘 ≠ 𝑎′𝑘 and the collision-resistance property of H will induce 𝑐𝑘 ≠ 𝑐′𝑘 , … , 𝑐𝑛 ≠ 𝑐′𝑛. Jumping ahead, we will later

define strong non-divergency (Definition 7). To relate non-divergency and strong one, we will use the condition

𝑐𝑛 ≠ 𝑐′𝑛.
The second condition 2.(b) captures the case that the branch occurs at index 𝑘 = 𝑛 + 1.
The third condition 2.(c) is introduced to treat the cases where the hash value ℎ1 does not contain the infor-

mation of 𝜇.9 This condition can be ignored if we assume that ℎ1 contains the information of 𝜇.

For easiness, we define the stronger version of non-divergency by relaxing the conditions.

Definition 7 (Strong non-divergency for (2𝑛+1)-pass ID).We say that (2𝑛+1)-pass ID scheme ID is strongly 𝑞-
non-divergent with respect to Sim if for any QPT adversary, its advantage Adv𝑞-sndID, (𝜅) defined below is negligible
in 𝜅, where Adv𝑞-sndID, (𝜅) is the advantage Adv𝑞-ndID,(𝜅) with BranchCheck′ defined as follows:

1. Parse trans = (𝑎1, 𝑐1, … , 𝑎𝑛, 𝑐𝑛, 𝑎𝑛+1) and trans′ = (𝑎′1, 𝑐′1, … , 𝑎′𝑛, 𝑐′𝑛, 𝑎′𝑛+1).
2. If one of the following conditions is satisfied, then return true:

(a) If (𝑎1, 𝑐1) = (𝑎′1, 𝑐′1) and 𝑐𝑛 ≠ 𝑐′𝑛, then return true; or
(b) If (𝑎𝑗 , 𝑐𝑗) = (𝑎′𝑗 , 𝑐′𝑗) for all 𝑗 ≤ 𝑛 and 𝑎𝑛+1 ≠ 𝑎′𝑛+1, then return true.

3. Otherwise, return false.

Since the conditions are relaxed, we have the following lemma.

9
See SDitH in Table 2.

9

Lemma 1. If ID is strongly 𝑞-non-divergent with respect to Sim, then ID is 𝑞-non-divergent with respect to Sim.

Proof. We need to show that if there exists a QPT adversary nd that wins 𝑞-nd game, then it also wins 𝑞-snd
game. Thus, it is enough to show that if the two valid transcripts trans𝑖 and trans′ satisfy BranchCheck, then they

also satisfy BranchCheck′. If either condition 2.(a) or 2.(c) of BrainCheck (Definition 6) is met, then (𝑎1, 𝑐1) = (𝑎′1, 𝑐′1)
and 𝑐𝑛 ≠ 𝑐′𝑛 hold, and condition 2.(a) of BrainCheck′ (Definition 7) is also met. Since condition 2.(b) equals in both

branch-checking algorithms, this concludes the proof. ⊓⊔

3.1 Counterexample of CUR of SSH11

We briefly recall the 5-pass SSH11 protocol proposed by Sakumoto et al. [SSH11]. Let 𝐹(𝒙) = (𝑓1(𝒙), … , 𝑓𝑚(𝒙)) be
𝑚 quadratic functions in F𝑞[𝑥1, … , 𝑥𝑛], where 𝑓𝑙(𝒙) = ∑𝑖,𝑗 𝑎

(𝑙)
𝑖𝑗 𝑥𝑖𝑥𝑗 +∑𝑖 𝑏

(𝑙)
𝑖 𝑥𝑖 with 𝑎(𝑙)𝑖𝑗 , 𝑏

(𝑙)
𝑖 ∈ F𝑞 for 𝑙 ∈ [𝑚]. A prover

and a verifier have (𝐹 , 𝒗) and the prover has a witness 𝒔 ∈ F 𝑛
𝑞 satisfying 𝐹(𝒔) = 𝒗. Let Com be a commitment

scheme. Let 𝐺(𝒙, 𝒚) denote 𝐹 ’s polar form, which is defined as 𝐺(𝒙, 𝒚) ∶= 𝐹(𝒙 +𝒚)− 𝐹(𝒙)− 𝐹(𝒚).10 The protocol
is defined as follows:

1. The prover chooses 𝒓0, 𝒕0 ← F 𝑛
𝑞 and 𝒆0 ← F𝑚

𝑞 uniformly at random. It computes 𝒓1 ∶= 𝒔 − 𝒓0. It sends
com0 ∶= Com(𝒓0, 𝒕0, 𝒆0) and com1 ∶= Com(𝒓1, 𝐺(𝒕0, 𝒓1) + 𝒆0).

2. The verifier picks 𝛼 ← F𝑞 and sends it.

3. The prover sends 𝒕1 ∶= 𝛼𝒓0 − 𝒕0 and 𝒆1 ∶= 𝛼𝐹(𝒓0) − 𝒆0.
4. The verifer picks 𝑏 ← {0, 1} and sends it.

5. The prover sends 𝒓𝑏.
6. The verifier outputs the result of the check defined as follows:

– If 𝑏 = 0, then check if com0 = Com(𝒓0, 𝛼𝒓0 − 𝒕1, 𝛼𝐹(𝒓0) − 𝒆1).
– If 𝑏 = 1, then check if com1 = Com(𝒓1, 𝛼(𝒗 − 𝐹(𝒓1)) − 𝐺(𝒕1, 𝒓1) − 𝒆1).

Don et al. concluded that this protocol, denoted by ΠSSH in their paper, satisfies their CUR definition (Defi-

nition 5) as follows [DFM20]:

In ΠSSH, the honest prover’s first message consists of two commitments, and the second and final mes-

sages contain functions of the strings committed to in the first message. This structure, together with

the computational binding property (implied by the collapse binding property) of the commitments,

immediately implies that ΠSSH has computationally unique response.

Counterexample: Unfortunately, their argument is incorrect, and we can falsify it as follows: Let us construct an

adversary given 𝑣𝑘 = (𝐹 , 𝒗), while Definition 5 allows an adversary to produce 𝑣𝑘 (and corresponding 𝑠𝑘). The
adversary works as follows:

1. Set 𝑏 = 1 and pick 𝛼 ← F𝑞 .

2. Pick 𝒓0, 𝒓1, 𝒕0 ← F 𝑛
𝑞 and 𝒆0 ← F𝑚

𝑞 . Compute 𝒕1 ∶= 𝛼𝒓0 − 𝒕0 and 𝒆1 ∶= 𝛼𝐹(𝒓0) − 𝒆0.
3. Compute com0 ∶= Com(𝒓0, 𝒕0, 𝒆0) and com1 ∶= Com(𝒓1, 𝛼(𝒗 − 𝐹(𝒓1)) − 𝐺(𝒕1, 𝒓1) − 𝒆1). Compute 𝒕′1 and 𝒆′1

such that 𝐺(𝒕1, 𝒓1) + 𝒆1 = 𝐺(𝒕′1, 𝒓1) + 𝒆′1 by choosing 𝒕′1 ≠ 𝒕1 and setting 𝒆′1 ∶= 𝐺(𝒕1, 𝒓1) + 𝒆1 − 𝐺(𝒕′1, 𝒓1).
4. Output

trans1 ∶= ((com0, com1), 𝛼, (𝒕1, 𝒆1), 1, 𝒓1),

trans2 ∶= ((com0, com1), 𝛼, (𝒕′1, 𝒆
′
1), 1, 𝒓1).

The two transcripts are valid since the verifier checks if

com1 = Com(𝒓1, 𝛼(𝒗 − 𝐹(𝒓1)) − 𝐺(𝒕1, 𝒓1) − 𝒆1)
= Com(𝒓1, 𝛼(𝒗 − 𝐹(𝒓1)) − 𝐺(𝒕′1, 𝒓1) − 𝒆′1).

Since 𝑎2 = (𝒕1, 𝒆1) is not equivalent to 𝑎′2 = (𝒕′1, 𝒆′1), they satisfy the criteria of CheckDFM in Definition 5 and this

adversary breaks the CUR property.

10
We omit +𝐹(𝟎) because 𝑓𝑙 does not have constant term.

10

1: Signcmt(𝑠𝑘, 𝜇)
2: ℎ0 ∶= ∅; 𝑐0 ∶= ∅; state ∶= ∅
3: for 𝑖 = 1, … , 𝑛 do
4: (𝑎𝑖, state) ← P(𝑠𝑘, 𝑐𝑖−1, state)
5: ℎ𝑖 ∶= H(aux𝑖, ℎ𝑖−1, 𝑎𝑖)
6: 𝑐𝑖 ∶= 𝛾𝑖(ℎ𝑖)
7: 𝑎𝑛+1 ← P(𝑠𝑘, 𝑐𝑛, state)
8: return 𝜎 ∶= (𝑎1, … , 𝑎𝑛, 𝑎𝑛+1)

1: Vrfycmt(𝑣𝑘, 𝜇, 𝜎)
2: Parse 𝜎 = (𝑎1, … , 𝑎𝑛, 𝑎𝑛+1)
3: ℎ0 ∶= ∅
4: for 𝑖 = 1, … , 𝑛 do
5: ℎ𝑖 ∶= H(aux𝑖, ℎ𝑖−1, 𝑎𝑖)
6: 𝑐𝑖 ∶= 𝛾𝑖(ℎ𝑖)
7: 𝑑 ∶= V(𝑣𝑘, 𝑎1, 𝑐1, … , 𝑎𝑛, 𝑐𝑛, 𝑎𝑛+1)
8: return 𝑑

Fig. 2. Scheme FScmt[ID,H, 𝜸] = (Gen, Signcmt,Vrfycmt), where ID = (Gen, P,V), H∶ {0, 1}∗ →  is modeled as the random

oracle, and 𝛾𝑖 ∶  → 𝑖 for 𝑖 ∈ [𝑛] is also modeled as the random oracle. For ease of notation, we let aux𝑖 = aux(𝑖, 𝑣𝑘, 𝜇).

Stronger counterexample: We can modify the condition checking algorithm CheckDFM with BranchCheck. If so, an
adversary needs to output transcripts such that 𝑎2 ≠ 𝑎′2 ∧ 𝑐2 ≠ 𝑐′2 and the above attack does not work. However,

the following adversary can succeed in outputting two valid transcripts because it can know 𝑏 in advance and

generate com0 and com1 maliciously:

1. Choose 𝛼 ← F𝑞 , 𝒓0, 𝒓1, 𝒕1, 𝒕′1 ← F 𝑛
𝑞 , and 𝒆1, 𝒆′1 ← F𝑚

𝑞 such that (𝒕1, 𝒆1) ≠ (𝒕′1, 𝒆′1).
2. Compute com0 ∶= Com(𝒓0, 𝛼𝒓0 − 𝒕1, 𝛼𝐹(𝒓0) − 𝒆1) and com1 ∶= Com(𝒓1, 𝛼(𝒗 − 𝐹(𝒓1)) − 𝐺(𝒕′1, 𝒓1) − 𝒆′1).
3. Output the following two transcripts:

trans1 ∶= ((com0, com1), 𝛼, (𝒕1, 𝒆1), 0, 𝒓0),

trans2 ∶= ((com0, com1), 𝛼, (𝒕′1, 𝒆
′
1), 1, 𝒓1).

It is easy to see that those two transcripts are valid.

Non-divergency: Fortunately, we can salvageMQDSS’s sEUF-CMA security by showing that the SSH11 protocol

is strongly non-divergent with respect to a HVZK simulator. See Section C for the details.

4 Signature from Multi-Pass Identification

We review a signature scheme constructed from a (2𝑛+1)-pass identification scheme ID = (Gen, P,V) via the FS
transform [EDV

+
12, DGV

+
16, CHR

+
16]. Let H∶ {0, 1}∗ →  and 𝛾𝑖 ∶  → 𝑖 for 𝑖 ∈ [𝑛] be hash functions mod-

eled as random oracles. The FS transform converts ID into a signature scheme DS = FS[ID,H, 𝜸] by computing

𝑖-th challenge 𝑐𝑖 from a message 𝜇, previous challenge 𝑐𝑖−1, and 𝑖-th message 𝑎𝑖 and setting 𝜎 = (𝑎1, … , 𝑎𝑛, 𝑎𝑛+1).
In the original formulations [EDV

+
12, DGV

+
16, CHR

+
16], they defined 𝑐1 ∶= H(1, 𝑣𝑘, 𝜇, 𝑎1) and 𝑐𝑖 ∶= H(𝑖, 𝑐𝑖−1, 𝑎𝑖)

for 𝑖 = 2, … , 𝑛. Since almost all MPCitH signature schemes modify the input of the hash functions and use hash

values as seeds of challenges, we define the computation of the challenges as follows:

ℎ𝑖 ∶=

{
H(aux1, 𝑎1) if 𝑖 = 1
H(aux𝑖, ℎ𝑖−1, 𝑎𝑖) if 𝑖 = 2, … , 𝑛

and 𝑐𝑖 ∶= 𝛾𝑖(ℎ𝑖),

where aux𝑖 = aux(𝑖, 𝑣𝑘, 𝜇) is a value computed from 𝜇, 𝑣𝑘, and 𝑖 (and more, e.g., salt). The formal definitions are

depicted in Figure 2.

Collision resistance of aux: Later, we want to discuss the minimum index 𝜆 ∈ [𝑛] satisfying that if 𝜇 ≠ 𝜇′ then
aux(𝑖, 𝑣𝑘, 𝜇) ≠ aux(𝑖, 𝑣𝑘, 𝜇′) holds (perfectly or computationally). We also use a similar property with respect to 𝑣𝑘
to discuss the M-S-UEO property. We formalize such property as collision resistance property of aux as follows:

Definition 8 (Collision resistance property of aux).We say that aux is collision-resistant with respect to message
on index 𝜆 ∈ [𝑛] if for any QPT adversary , its advantage

Adv
cr,msg
aux, (𝜅) ∶= Pr [

(𝑣𝑘, 𝑣𝑘′, 𝜇, 𝜇′) ← (1𝜅) ∶
𝜇 ≠ 𝜇′ ∧ ∃𝑙 ∈ [𝜆, 𝑛], ∀𝑖 ∈ [1, 𝑙], aux(𝑖, 𝑣𝑘, 𝜇) = aux(𝑖, 𝑣𝑘′, 𝜇′)]

11

is negligible in the security parameter 𝜅.
We say that aux is collision-resistant with respect to verification key on index 𝜆 ∈ [𝑛] if for any QPT adversary

, its advantage

Advcr,vkaux,(𝜅) ∶= Pr [
(𝑣𝑘, 𝑣𝑘′, 𝜇, 𝜇′) ← (1𝜅) ∶

𝑣𝑘 ≠ 𝑣𝑘′ ∧ ∃𝑙 ∈ [𝜆, 𝑛], ∀𝑖 ∈ [1, 𝑙], aux(𝑖, 𝑣𝑘, 𝜇) = aux(𝑖, 𝑣𝑘′, 𝜇′)]

is negligible in the security parameter 𝜅.

4.1 sEUF-CMA Security for FS𝐜𝐦𝐭

We show the sEUF-CMA security of the signature scheme obtained by applying FScmt to (2𝑛 + 1)-pass ID as

follows.

Theorem 1 (EUF-NMA ⇒ sEUF-CMA for FScmt on (2𝑛 + 1)-pass ID). Let ID be a (2𝑛 + 1)-pass ID scheme that
has 𝛼-commitment entropy. Let H∶ {0, 1}∗ →  and 𝛾𝑖 ∶  → 𝑖 for 𝑖 ∈ [𝑛] be random oracles. Suppose that aux
is collision-resistant with respect to message on index 𝜆. Let DS ∶= FScmt[ID,H, 𝜸]. For any quantum adversary 
against the sEUF-CMA security of DS issuing at most 𝑞𝑆 classical queries to the signing oracle and at most 𝑞𝐻 and
𝑞𝑖 quantum queries to the random oracles H and 𝛾𝑖, there exist an adversary nma against the EUF-NMA security
of DS, an adversary hvzk against the 𝑞𝑆-HVZK property of ID, an adversary cr against aux’s collision-resistance
property with respect to message on index 𝜆, and an adversary nd against the 𝑞𝑆-non-divergency of ID, such that

Advseuf-cma
DS, (1𝜅)

≤ Adveuf-nma
DS,nma

(1𝜅) + Adv
𝑞𝑆-hvzk
ID,hvzk

(1𝜅) + Adv
cr,msg
aux,cr

(1𝜅) + Adv
𝑞𝑆-nd
ID,nd

(1𝜅)

+ 632 ⋅ (𝑞𝐻 + 𝑛𝑞𝑆 + 𝑛 + 1)3 ⋅ ||−1 + 632∑
𝑖∈[𝑛]

(𝑞𝑖 + 𝑞𝑆 + 2)3 ⋅ |𝑖|−1

+ ∑
𝑖∈[𝑛]

3𝑞𝑆
2
√
(𝑞𝐻 + 𝑞𝑆 + 2) ⋅ 2−𝛼𝑖 + ∑

𝑖∈[𝑛]

3𝑞𝑆
2
√
(𝑞𝑖 + 𝑞𝑆 + 2) ⋅ ||−1,

where 𝛼1 = 𝛼 and 𝛼2 = ⋯ = 𝛼𝑛 = lg(||). The running times of nma, hvzk, cr, and nd are approximately that
of.

We prove this theorem by modifying the proof of [GHHM21, Thm.3]. We define eight games G0, … ,G7 in

Figure 3. In G1, we introduce an algorithm to check a collision of H, denoted by CollCheck. In G2, we additionally

check a collision of 𝛾𝑖’s. Those two changes prohibit the adversary from converging a forgery to the signatures

signed by the signing oracle. In G3, the signing oracle chooses the hash values to produce challenges uniformly

at random and then reprograms the random oracle H as in [GHHM21, Thm.3]. In G4, the signing oracle chooses

challenges uniformly at random and then reprograms the random oracles 𝛾1, … , 𝛾𝑛. We next modify the signing

oracle to use the simulator instead of the prover algorithms in G5. In G6, we introduce AuxCheck to check if the

adversary submits a forgery diverged from the signature signed by the signing oracle by using the collision of

aux. If there is a difference, then we can break the collision-resistance property of aux. In G7, we again introduce

ForkCheck to check if the adversary submits a forgery diverged from the signature signed by the signing oracle. If

there is a difference, then we can break the non-divergency of the underlying ID. We will discuss that the forgery

does not involve the reprogrammed points, and we can reduce it to the EUF-NMA security of the signature

scheme. In what follows, we define 𝑊𝑖 as the event that the adversary wins in G𝑖.

Game G0: This is the original sEUF-CMA game. We have Pr[𝑊0] = Advseuf-cma
DS, (1𝜅).

Game G1: In this game, the challenger manages the list  that contains the hash values and challenges that the

signing oracle Sign produced. Receiving amessage 𝜇∗ and a signature (𝑎∗1 , … , 𝑎∗𝑛+1), the challenger runsCollCheck
for G1 (Figure 3) and, if it returns true, then the adversary loses.

If there is a difference between G0 and G1, CollCheck returns true. According to the definition of CollCheck for
G1, this means that there exists an entry (aux𝑖, ℎ𝑖−1, 𝑎𝑖, ℎ∗𝑖 , 𝑐∗𝑖) in  such that (aux𝑖, ℎ𝑖−1, 𝑎𝑖) ≠ (aux∗𝑖 , ℎ∗𝑖−1, 𝑎∗𝑖). This
implies a collision for H since we have (aux𝑖, ℎ𝑖−1, 𝑎𝑖) ≠ (aux∗𝑖 , ℎ∗𝑖−1, 𝑎∗𝑖) but H(aux𝑖, ℎ𝑖−1, 𝑎𝑖) = ℎ∗𝑖 = H(aux∗𝑖 , ℎ∗𝑖−1, 𝑎∗𝑖).
Since the number of queries to H is at most 𝑞𝐻 + 𝑛𝑞𝑆 + 𝑛, we have the following lemma by using Lemma 15 in

Appendix (Section A.4).

Lemma 2. We have |Pr[𝑊0] − Pr[𝑊1]| ≤ 632(𝑞𝐻 + 𝑛𝑞𝑆 + 𝑛 + 1)3 ⋅ ||−1.

12

1: G0,G1,G2,G3,G4,G5

2: (𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
3:  ∶= ∅
4:  ∶= ∅ //G1-G5

5: (𝜇∗, (𝑎∗1 , … , 𝑎∗𝑛, 𝑎∗𝑛+1)) ← Sign,|H⟩,|𝜸⟩(𝑣𝑘)
6: if (𝜇∗, (𝑎∗1 , … , 𝑎∗𝑛, 𝑎∗𝑛+1)) ∈  then
7: return false

8: ℎ∗0 ∶= ∅
9: for 𝑖 = 1, … , 𝑛 do
10: ℎ∗𝑖 ∶= H(aux∗𝑖 , ℎ∗𝑖−1, 𝑎∗𝑖)
11: 𝑐∗𝑖 ∶= 𝛾𝑖(ℎ∗𝑖)
12: if CollCheck(aux∗𝑖 , ℎ∗𝑖−1, 𝑎∗𝑖 , ℎ∗𝑖 , 𝑐∗𝑖) then //G1-G5

13: return false //G1-G5

14: return V(𝑣𝑘, 𝑎∗1 , 𝑐∗1 , … , 𝑎∗𝑛, 𝑐∗𝑛 , 𝑎∗𝑛+1)

1: Sign(𝜇) for G0–G4

2: ℎ0 ∶= ∅; 𝑐0 ∶= ∅; state ∶= ∅
3: for 𝑖 = 1, … , 𝑛 do
4: (𝑎𝑖, state) ← P(𝑠𝑘, 𝑐𝑖−1, state)
5: ℎ𝑖 ∶= H(aux𝑖, ℎ𝑖−1, 𝑎𝑖) //G0-G2

6: ℎ𝑖 ←  //G3-G4

7: H ∶= H[(aux𝑖, ℎ𝑖−1, 𝑎𝑖) ↦ ℎ𝑖] //G3-G4

8: 𝑐𝑖 ∶= 𝛾𝑖(ℎ𝑖) //G0-G3

9: 𝑐𝑖 ← 𝑖 //G4

10: 𝛾𝑖 ∶= 𝛾𝑖[ℎ𝑖 ↦ 𝑐𝑖] //G4

11:  ∶=  ∪ {(aux𝑖, ℎ𝑖−1, 𝑎𝑖, ℎ𝑖, 𝑐𝑖)} //G1-G5

12: 𝑎𝑛+1 ← P(𝑠𝑘, 𝑐𝑛, state)
13:  ∶=  ∪ {(𝜇, (𝑎1, … , 𝑎𝑛, 𝑎𝑛+1))}
14: return 𝜎 ∶= (𝑎1, … , 𝑎𝑛, 𝑎𝑛+1)

1: CollCheck(aux∗𝑖 , ℎ∗𝑖−1, 𝑎∗𝑖 , ℎ∗𝑖 , 𝑐∗𝑖) for G1

2: if ∃(aux𝑖, ℎ𝑖−1, 𝑎𝑖, ℎ∗𝑖 , 𝑐∗𝑖) ∈ : (aux𝑖, ℎ𝑖−1, 𝑎𝑖) ≠ (aux∗𝑖 , ℎ∗𝑖−1, 𝑎∗𝑖)
then

3: return true

4: else
5: return false

1: CollCheck(aux∗𝑖 , ℎ∗𝑖−1, 𝑎∗𝑖 , ℎ∗𝑖 , 𝑐∗𝑖) for G2–G7

2: if ∃(aux𝑖, ℎ𝑖−1, 𝑎𝑖, ℎ𝑖, 𝑐∗𝑖) ∈ : (aux𝑖, ℎ𝑖−1, 𝑎𝑖) ≠ (aux∗𝑖 , ℎ∗𝑖−1, 𝑎∗𝑖)
then

3: return true

4: else
5: return false

1: Sign(𝜇) for G5–G7

2: ℎ0 ∶= ∅
3: for 𝑖 = 1, … , 𝑛 do
4: ℎ𝑖 ← ; 𝑐𝑖 ← 𝑖

5: (𝑎1, … , 𝑎𝑛, 𝑎𝑛+1) ← Sim(𝑣𝑘, 𝑐1, … , 𝑐𝑛)
6: for 𝑖 = 1, … , 𝑛 do
7: H ∶= H[(aux𝑖, ℎ𝑖−1, 𝑎𝑖) ↦ ℎ𝑖]
8: 𝛾𝑖 ∶= 𝛾𝑖[ℎ𝑖 ↦ 𝑐𝑖]
9:  ∶=  ∪ {(aux𝑖, ℎ𝑖−1, 𝑎𝑖, ℎ𝑖, 𝑐𝑖)}

10:  ∶=  ∪ {(𝜇, (𝑎1, … , 𝑎𝑛, 𝑎𝑛+1))}
11: return 𝜎 ∶= (𝑎1, … , 𝑎𝑛, 𝑎𝑛+1)

1: G6 and G7

2: (𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
3:  ∶= ∅;  ∶= ∅
4: (𝜇∗, (𝑎∗1 , … , 𝑎∗𝑛+1)) ← Sign,|H⟩,|𝜸⟩(𝑣𝑘)
5: if (𝜇∗, (𝑎∗1 , … , 𝑎∗𝑛+1)) ∈  then
6: return false

7: ℎ∗0 ∶= ∅
8: for 𝑖 = 1, … , 𝑛 do
9: ℎ∗𝑖 ∶= H(aux∗𝑖 , ℎ∗𝑖−1, 𝑎∗𝑖)
10: 𝑐∗𝑖 ∶= 𝛾𝑖(ℎ∗𝑖)
11: if CollCheck(aux∗𝑖 , ℎ∗𝑖−1, 𝑎∗𝑖 , ℎ∗𝑖 , 𝑐∗𝑖) then
12: return false

13: if AuxCheck(𝜇∗) then
14: return false

15: if ForkCheck(𝜇∗, 𝑎∗1 , … , 𝑎∗𝑛+1) then //G7

16: return false //G7

17: return V(𝑣𝑘, 𝑎∗1 , 𝑐∗1 , … , 𝑎∗𝑛, 𝑐∗𝑛 , 𝑎∗𝑛+1)

1: AuxCheck(𝜇∗) for G6, G7

2: if ∃(𝜇, ∗) ∈ :
𝜇 ≠ 𝜇∗ ∧ (∃𝑙 ∈ [𝜆, 𝑛], ∀𝑖 ∈ [1, 𝑙] ∶ aux𝑖 = aux∗𝑖) then

3: return true

4: return false

1: ForkCheck(𝜇∗, 𝑎∗1 , … , 𝑎∗𝑛, 𝑎∗𝑛+1) for G7

2: forall (𝜇, (𝑎1, 𝑎2, … , 𝑎𝑛, 𝑎𝑛+1)) ∈  do
3: if ∃𝑘 ≥ 2: 𝑎𝑗 = 𝑎∗𝑗 for 𝑗 < 𝑘 but 𝑎𝑘 ≠ 𝑎∗𝑘 then
4: return true

5: if ∃𝑘 ≥ 2: 𝑐𝑗 = 𝑐∗𝑗 for 𝑗 < 𝑘 but 𝑐𝑗 ≠ 𝑐∗𝑗 for 𝑗 ∈ [𝑘, 𝑛]
and 𝑎𝑖 = 𝑎∗𝑖 for all 𝑖 ∈ [𝑛 + 1] then

6: return true

7: return false

Fig. 3. Games G0–G7 for sEUF-CMA security proof of FScmt.

13

Game G2: In this game, receiving the forgery 𝜇∗ and (𝑎∗1 , … , 𝑎∗𝑛+1), the challenger runs CollCheck for G2–G7 and,

if it returns true, then the adversary loses.

Notice that the difference between those twoCollChecks, ∃(aux𝑖, ℎ𝑖−1, 𝑎𝑖, ℎ∗𝑖 , 𝑐∗𝑖) ∈  inG1 and ∃(aux𝑖, ℎ𝑖−1, 𝑎𝑖, ℎ𝑖, 𝑐∗𝑖) ∈
 in G2. Thus, if there is a difference between G1 and G2, then there exists (aux𝑖, ℎ𝑖−1, 𝑎𝑖, ℎ𝑖, 𝑐∗𝑖) in  such that

(aux𝑖, ℎ𝑖−1, 𝑎𝑖) ≠ (aux∗𝑖 , ℎ∗𝑖−1, 𝑎∗𝑖) and ℎ𝑖 ≠ ℎ∗𝑖 . This implies a collision for 𝛾𝑖 since we have ℎ𝑖 ≠ ℎ∗𝑖 but 𝛾𝑖(ℎ𝑖) = 𝑐∗𝑖 =
𝛾𝑖(ℎ∗𝑖). Since the number of queries to 𝛾𝑖 is 𝑞𝑖 + 𝑞𝑆 + 1, applying Lemma 15 to 𝛾1, … , 𝛾𝑛, we have the following

lemma:

Lemma 3. We have |Pr[𝑊1] − Pr[𝑊2]| ≤ ∑𝑖∈[𝑛] 632(𝑞𝑖 + 𝑞𝑆 + 2)3 ⋅ |𝑖|−1.

Game G3: In this game, the signing oracle reprograms the random oracle H by choosing ℎ𝑖 ←  as in L.6–7 of

Sign. Applying Lemma 16 in Appendix (Section A.4), we have the following lemma:

Lemma 4. We have |Pr[𝑊2] − Pr[𝑊3]| ≤ ∑𝑖∈[𝑛]
3𝑞𝑆
2

√
(𝑞𝐻 + 𝑞𝑆 + 1)/2𝛼𝑖 .

The proof is the same as that of [GHHM21, Thm.3], and we omit it.

Game G4: In this game, the signing oracle reprograms the random oracles 𝛾𝑖 for 𝑖 ∈ [𝑛] by choosing 𝑐𝑖 ← 𝑖 as

in L.9–10 of Sign. Applying Lemma 16, we have the following lemma:

Lemma 5. We have |Pr[𝑊3] − Pr[𝑊4]| ≤ ∑𝑖∈[𝑛]
3𝑞𝑆
2

√
(𝑞𝑖 + 𝑞𝑆 + 1)/||.

The proof is the same as that of [GHHM21, Thm.3], and we omit it.

Game G5: We then replace P with Sim in the signing oracle as Sign for G5 and G6. The HVZK property justifies

this replacement.

Lemma 6. There exists an adversary hvzk against the 𝑞𝑆-HVZK property of ID such that |Pr[𝑊4] − Pr[𝑊5]| ≤
Adv

𝑞𝑆-hvzk
ID,hvzk

(1𝜅). The running time of hvzk is approximately that of.

The proof is the same as that of [GHHM21, Thm.3], and we omit it.

Game G6: In this game, the challenger runs AuxCheck and, if the result is true, then the adversary loses.

Lemma 7. There exists an adversary cr against aux’s collision-resistance property of with respect to message on
index 𝜆 such that |Pr[𝑊5] − Pr[𝑊6]| ≤ Adv

cr,msg
aux,cr

(1𝜅). The running time of cr is approximately that of.

Proof. The difference betweenG5 andG6 occurs if the adversary submits a valid pair of a message and a signature

(𝜇∗, (𝑎∗1 , … , 𝑎∗𝑛, 𝑎∗𝑛+1)) such that (𝜇∗, (𝑎∗1 , … , 𝑎∗𝑛, 𝑎∗𝑛+1)) ∉ , CollCheck outputs false, and AuxCheck outputs true.

The last condition AuxCheck(𝜇∗) = true implies that we have two messages 𝜇 ≠ 𝜇∗ such that there exists

an index 𝑙 ∈ [𝜆, 𝑛] such that aux𝑖 = aux∗𝑖 for all 𝑖 ∈ [1, 𝑙], where aux𝑖 = aux(𝑖, 𝑣𝑘, 𝜇) and aux∗𝑖 = aux(𝑖, 𝑣𝑘, 𝜇∗).
This breaks the collision resistance property of aux with respect to the message on index 𝜆, and we can easily

construct a reduction. ⊓⊔

Game G7: In this game, the challenger runs ForkCheck and, if the result is true, then the adversary loses. We

have the following two lemmas:

Lemma 8. There exists an adversarynd against the non-divergency of ID such that |Pr[𝑊6] − Pr[𝑊7]| ≤ Adv
𝑞𝑆-nd
ID,nd

(1𝜅).
The running time ofnd is approximately that of.

Proof. The difference between G6 and G7 happens if the adversary submits a valid pair of message and signature

(𝜇∗, (𝑎∗1 , … , 𝑎∗𝑛, 𝑎∗𝑛+1)) such that (𝜇∗, (𝑎∗1 , … , 𝑎∗𝑛, 𝑎∗𝑛+1)) ∉ , CollCheck outputs false, AuxCheck outputs false, and
ForkCheck outputs true.

If the last check by ForkCheck is true, then we have two valid transcripts (𝜇∗, 𝑎∗1 , 𝑐∗1 , … , 𝑎∗𝑘−1, 𝑐∗𝑘−1, 𝑎∗𝑘 , 𝑐∗𝑘 , … ,
𝑎∗𝑛, 𝑐∗𝑛 , 𝑎∗𝑛+1) generated by the adversary and

– (𝜇, 𝑎∗1 , 𝑐∗1 , … , 𝑎∗𝑘−1, 𝑐∗𝑘−1, 𝑎𝑘 , 𝑐𝑘 , … , 𝑎𝑛, 𝑐𝑛, 𝑎𝑛+1) generated by the signing oracle, where 𝑘 ∈ [2, 𝑛 + 1] satisfying
𝑎𝑘 ≠ 𝑎∗𝑘 ; or,

– (𝜇, 𝑎∗1 , 𝑐∗1 , … , 𝑎∗𝑘−1, 𝑐∗𝑘−1, 𝑎∗𝑘 , 𝑐𝑘 , … , 𝑎∗𝑛, 𝑐𝑛, 𝑎∗𝑛+1) generated by the signing oracle, where 𝑘 ∈ [2, 𝑛] satisfying 𝑐𝑙 ≠ 𝑐∗𝑙
for all 𝑙 ∈ [𝑘, 𝑛].

14

Notice that, on the former condition, if 𝑘 ≤ 𝑛, then the collision checks force 𝑐𝑙 ≠ 𝑐∗𝑙 for all 𝑙 ∈ [𝑘, 𝑛]. Hence,
the former condition covers the conditions (a) and (b) of BranchCheck in Definition 6. The latter condition is

equivalent to the condition (c) of it. Therefore, the two valid transcripts violate 𝑞𝑆-non-divergency of ID, and we
can easily construct a reduction. ⊓⊔

Lemma 9. There exists an adversarynma against the EUF-NMA security of DS such that

Pr[𝑊7] ≤ Adveuf-nma
DS,nma

(1𝜅).

The running time ofnma is approximately that of.

Proof. We show that, towin inG7, the adversary should submit a valid pair ofmessage and signature (𝜇∗, (𝑎∗1 , … , 𝑎∗𝑛+1)) ∉
 such that the values on (aux∗𝑖 , ℎ∗𝑖−1, 𝑎∗𝑖) for H and ℎ∗𝑖 for 𝛾𝑖 are not reprogrammed by Sign.

If not, there exists at least one index 𝑖 ∈ [𝑛] such that H is reprogrammed on input (aux∗𝑖 , ℎ∗𝑖−1, 𝑎∗𝑖) or 𝛾𝑖 is
reprogrammed on input ℎ∗𝑖 . Let 𝓁 ∈ [𝑛] be the minimum of the indices of the reprogrammed points.

– If H is reprogrammed on input (aux∗𝓁 , ℎ∗𝓁−1, 𝑎∗𝓁), then the simulator generates a transcript (𝑎1, 𝑐1, … , 𝑎𝑛, 𝑐𝑛, 𝑎𝑛+1)
in the computation of Sign(𝜇) for some 𝜇 satisfying (aux𝓁, ℎ𝓁−1, 𝑎𝓁) = (aux∗𝓁 , ℎ∗𝓁−1, 𝑎∗𝓁) and ℎ𝓁 = ℎ∗𝓁 . Due to the

collision check, ℎ𝓁−1 = ℎ∗𝓁−1 implies (aux𝓁−1, ℎ𝓁−2, 𝑎𝓁−1) = (aux∗𝓁−1, ℎ∗𝓁−2, 𝑎∗𝓁−1), and so on. Thus, we have

(aux𝑗 , 𝑎𝑗 , ℎ𝑗 , 𝑐𝑗) = (aux∗𝑗 , 𝑎
∗
𝑗 , ℎ

∗
𝑗 , 𝑐

∗
𝑗) for 𝑗 = 1, … , 𝓁, (1)

which implies that H is reprogrammed for the indices 1, … , 𝓁. Since the index 𝓁 is theminimum of the indices

of the reprogrammed points, Eq. (1) implies that 𝓁 = 1.
We also note that, since ForkCheck on input (𝜇∗, 𝑎∗1 , … , 𝑎∗𝑛+1) returns false, 𝑎1 = 𝑎∗1 implies that (𝑎2, … , 𝑎𝑛+1) =
(𝑎∗2 , … , 𝑎∗𝑛+1).11 Since we have 𝑎𝑖 = 𝑎∗𝑖 for all 𝑖 ∈ [𝑛 + 1], 𝜇 must be distinct from 𝜇∗ due to the check in L.5 of

G7.

We then consider two subcases on 𝜆, the index of the collision resistance property of aux with respect to

messages:

∙ Suppose that 𝜆 = 1. Since 𝜇 ≠ 𝜇∗, we have aux1 ≠ aux∗1 due to AuxCheck. However, this contradicts
aux1 = aux∗1 from Eq. (1) with 𝓁 = 1.

∙ Next, suppose that 1 < 𝜆 ≤ 𝑛. Since AuxCheck returns false, we have for all 𝑙 ∈ [𝜆, 𝑛], there exists at
least one index 𝑖 ∈ [1, 𝑙] such that aux𝑖 ≠ aux∗𝑖 . Let us fix 𝑙 = 𝜆 and take the minimum index 𝑚 ∈ [1, 𝑙]
satisfying aux𝑚 ≠ aux∗𝑚. If 𝑚 = 1, we already see this leads to the contradiction above. Thus, we assume

that 𝑚 > 1. We note that this implies aux𝑖 = aux∗𝑖 for 𝑖 = 1, … ,𝑚 − 1 since 𝑚 is the minimum. Since

(aux𝑗 , ℎ𝑗−1, 𝑎𝑗) = (aux∗𝑗 , ℎ∗𝑗−1, 𝑎∗𝑗) implies (ℎ𝑗 , 𝑐𝑗) = (ℎ∗𝑗 , 𝑐∗𝑗) for 𝑗 = 1, … ,𝑚 − 1 by induction, we have

(ℎ𝑚−1, 𝑐𝑚−1) = (ℎ∗𝑚−1, 𝑐∗𝑚−1).
Now, in the computation of ℎ𝑚 and ℎ∗𝑚, aux𝑚 ≠ aux∗𝑚 while ℎ𝑚−1 = ℎ∗𝑚−1 and 𝑎𝑚 = 𝑎∗𝑚. Due to the collision
check, we have ℎ𝑚 ≠ ℎ∗𝑚 and 𝑐𝑚 ≠ 𝑐∗𝑚, which yields 𝑐𝑖 ≠ 𝑐∗𝑖 for all 𝑖 > 𝑚. Thus, we have two different

transcripts (𝑎1, 𝑐1, … , 𝑎𝑛+1) and (𝑎∗1 , 𝑐∗1 , … , 𝑎∗𝑛+1) satisfying 𝑎𝑖 = 𝑎∗𝑖 for all 𝑖 ∈ [𝑛+1], 𝑐𝑖 = 𝑐∗𝑖 for all 𝑖 ∈ [𝑚−1],
and 𝑐𝑖 ≠ 𝑐∗𝑖 for all 𝑖 ∈ [𝑚, 𝑛]. But, this case is already eliminated by L.5 of ForkCheck, and this leads to

the contradiction.

– If 𝛾𝑖 is reprogrammed on input ℎ∗𝑖 , then the simulator generates a transcript (𝑎1, 𝑐1, … , 𝑎𝑛, 𝑐𝑛, 𝑎𝑛+1) such that

ℎ∗𝑖 = ℎ𝑖 and 𝑐∗𝑖 = 𝑐𝑖. Due to the collision check, ℎ∗𝑖 = ℎ𝑖 implies (aux𝑖, ℎ𝑖−1, 𝑎𝑖) = (aux∗𝑖 , ℎ∗𝑖−1, 𝑎∗𝑖), and so on.

Thus, we again have Eq. (1). The following argument is the same as the above case, and we omit it.

In both cases, we arrive at the contradiction, and the adversary’s forgery never involves the reprogramming.

Since the adversary submits a valid pair (𝜇∗, (𝑎∗1 , … , 𝑎∗𝑛, 𝑎∗𝑛+1)) ∉  that causes no reprogramming, we can

easily construct nma against the EUF-NMA security of DS. ⊓⊔

Remark 2. If 𝛾𝑖 is the identity function, then we can skip a part of G2 because the identity function is perfectly

collision-resistant. We can also skip a part of G4 since we do not need to reprogram 𝛾𝑖.

5 FS𝐡 for Multi-Pass ID

This section discusses a variant of the Fiat-Shamir transform whose signature contains hash values because the

MPCitH signatures often adopt this variant. If one can reproduce 𝑎1, … , 𝑎𝑛 from the challenges 𝑐1, … , 𝑐𝑛 and last

11
and more by the second condition of ForkCheck.

15

1: Signh(𝑠𝑘, 𝜇)
2: ℎ0 ∶= ∅; 𝑐0 ∶= ∅; state ∶= ∅
3: for 𝑖 = 1, … , 𝑛 do
4: (𝑎𝑖, state) ← P(𝑠𝑘, 𝑐𝑖−1, state)
5: ℎ𝑖 ∶= H(aux𝑖, ℎ𝑖−1, 𝑎𝑖)
6: 𝑐𝑖 ∶= 𝛾𝑖(ℎ𝑖)
7: 𝑎𝑛+1 ← P(𝑠𝑘, 𝑐𝑛, state)
8: return 𝜎 ∶= (ℎ1, … , ℎ𝑛, 𝑎𝑛+1)

1: Vrfyh(𝑣𝑘, 𝜇, 𝜎)
2: Parse 𝜎 = (ℎ1, … , ℎ𝑛, 𝑎𝑛+1)
3: 𝑐0 ∶= ∅; ℎ0 ∶= ∅
4: for 𝑖 ∈ [𝑛]: 𝑐𝑖 ∶= 𝛾𝑖(ℎ𝑖)
5: (𝑎1, … , 𝑎𝑛) ∶= Rep(𝑣𝑘, 𝑐1, … , 𝑐𝑛, 𝑎𝑛+1)
6: if (𝑎1, … , 𝑎𝑛) = ⊥ then return false

7: for 𝑖 = 1, … , 𝑛: ℎ̄𝑖 ∶= H(aux𝑖, ℎ𝑖−1, 𝑎𝑖)
8: return boole(∀𝑖 ∈ [𝑛] ∶ ℎ𝑖 = ℎ̄𝑖)

Fig. 4. Scheme FSh[ID,H, 𝜸] = (Gen, Signh,Vrfyh), where ID = (Gen, P,V), H∶ {0, 1}∗ →  is modeled as the random oracle,

and 𝛾𝑖 ∶  → 𝑖 for 𝑖 ∈ [𝑛] is also modeled as the random oracle. For ease of notation, we let aux𝑖 = aux(𝑖, 𝑣𝑘, 𝜇).

1: ExptsoundID,𝜸,(1𝜅)
2: (𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
3: (ℎ1, ℎ2, … , ℎ𝑛, 𝑎𝑛+1) ← |𝜸⟩(𝑣𝑘)
4: forall 𝑖 ∈ [𝑛]: 𝑐𝑖 ∶= 𝛾𝑖(ℎ𝑖)
5: (𝑎1, … , 𝑎𝑛) ∶= Rep(𝑣𝑘, 𝑐1, … , 𝑐𝑛, 𝑎𝑛+1)
6: 𝑑 ← Vrfy(𝑣𝑘, 𝑎1, 𝑐1, … , 𝑎𝑛, 𝑐𝑛, 𝑎𝑛+1)
7: return 𝑑 ∧ boole((𝑎1, … , 𝑎𝑛) ≠ ⊥)

Fig. 5. ExptsoundID,𝜸,(1𝜅).

message 𝑎𝑛+1, then we have a chance to replace 𝑎1, … , 𝑎𝑛 in the signature with the hash values ℎ1, … , ℎ𝑛. This
replacement drastically shortens a signature because the prover’s messages 𝑎1, … , 𝑎𝑛 are much longer than the

hash values ℎ1, … , ℎ𝑛. We call this variant of the FS transform as FSh. We adopt the notation and notions for

three-pass ID by Backendal, Bellare, Sorrell, and Sun [BBSS18], who studied the variants of the FS transform for

three-pass ID.

To define FSh, we first define the commitment-reproducing algorithm Rep of ID.

Definition 9 (Commitment-reproducing algorithm [BBSS18], adapted). A commitment-reproducing alglorithm
Rep is a DPT algorithm that takes (𝑣𝑘, 𝑐1, … , 𝑐𝑛, 𝑎𝑛+1) as input and outputs messages (𝑎1, … , 𝑎𝑛), whichmight be⊥. We
require completeness defined as follows: for honestly generated keys (𝑣𝑘, 𝑠𝑘) byGen and transcript (𝑎1, 𝑐1, … , 𝑎𝑛, 𝑐𝑛, 𝑎𝑛+1),
if the transcript is valid, then (𝑎1, … , 𝑎𝑛) = Rep(𝑣𝑘, 𝑐1, … , 𝑐𝑛, 𝑎𝑛+1).

The signature scheme obtained by FSh is summarized in Figure 4.

In order to consider the security of FSh, we review the soundness of ID defined in [BBSS18]. This is the notion

that one cannot output a part of the transcript (𝑐1, 𝑐2, … , 𝑐𝑛, 𝑎𝑛+1) such that if we reproduce non-⊥ messages

(𝑎1, … , 𝑎𝑛) by Rep, then the transcript (𝑎1, 𝑐1, … , 𝑐𝑛, 𝑎𝑛+1) is valid. Since we want to consider FSh, we replace

𝑐1, … , 𝑐𝑛 with ℎ1, … , ℎ𝑛 as follows:

Definition 10 (Soundness of ID [BBSS18, Sec.3], extended for FSh). A commitment-reproducible ID scheme ID is
said to be computationally sound if, for any QPT adversary, its advantage is negligible in the security parameter,
where the advantage is defined as AdvsoundID,𝜸,(1𝜅) ∶= Pr[ExptsoundID,𝜸,(1𝜅) = true], and ExptsoundID,𝜸,(1𝜅) is defined in
Figure 5.

If the advantage is 0 for any unbounded adversary, we say that the scheme is perfectly sound.

It is easy to check that if a verification algorithm internally uses Rep and checks whether the given messages

are equivalent to the reproduced messages or not, then the ID scheme is perfectly sound.

Lemma 10 (Special verifier means perfect soundness, extended for FSh). Suppose that, on input (𝑣𝑘, 𝑎1, 𝑐1, … ,
𝑐𝑛, 𝑎𝑛+1), the verification algorithm V outputs boole(Rep(𝑣𝑘, 𝑐1, … , 𝑐𝑛, 𝑎𝑛+1) = (𝑎1, … , 𝑎𝑛)). Then, the identification
scheme ID is perfectly sound.

We show the following theorem as [BBSS18]. The proof is in Section A.

Theorem 2 (FScmt ⇒ FSh). Suppose that ID is computationally sound. If FScmt[ID,H, 𝜸] is EUF-CMA/sEUF-CMA-
secure, then FSh[ID,H, 𝜸] is also, respectively.

16

5.1 S-DEO, S-CEO, M-S-UEO, MBS, and wNR of FS𝐡

FSh has another advantage on the BUFF securities since a signature inherently includes hash values. Intuitively

speaking, the adversary should exploit a collision of H or aux to break S-DEO, S-CEO, MBS, and M-S-UEO secu-

rities.

We give an intuitive argument and defer the proof to Section A.6. If the adversary breaks the MBS security

by outputting 𝑣𝑘, 𝜇 ≠ 𝜇′, and 𝜎 = (ℎ1, … , ℎ𝑛, 𝑎𝑛+1), then we have a collision of aux𝑖 for some 𝑖 with respect to

message or a collision of H. If the adversary breaks the S-DEO security by outputting a different 𝑣𝑘′ and different
𝜇′, then we have a collision of aux𝑖 for some 𝑖with respect to either message or verification key or a collision of H.
In addition, if the adversary breaks the M-S-UEO security by outputting 𝑣𝑘 ≠ 𝑣𝑘′, 𝜇, 𝜇′, and 𝜎 = (ℎ1, … , ℎ𝑛, 𝑎𝑛+1),
then such values yield a collision of aux𝑖 for some 𝑖 with respect to the verification key or a collision of H.

Lemma 11. Let ID be a (2𝑛 + 1)-pass ID scheme. Let H∶ {0, 1}∗ →  be a hash function. Let DS ∶= FSh[ID,H, 𝜸].
Assume that H is collision-resistant.

– If aux is collision-resistant with respect to message on index 𝜆, then DS satisfies S-DEO and MBS.
– If aux is also collision-resistant with respect to the verification key on index 𝜆′, thenDS further satisfiesM-S-UEO.

Thus, it also satisfies S-CEO and S-DEO.

Furthermore, we can show wNR security of FSh in the (Q)ROM.

Lemma 12. Let H be a random oracle. Suppose that aux is collision-resistant with respect to the verification key on
index 𝜆 and there exists index 𝜁 ∈ [𝜆, 𝑛] such that aux𝜁 can be written as (𝜇, 𝜂𝜁) for some 𝜂𝜁 . Then DS = FSh[ID,H, 𝜸]
satisfies wNR in the (Q)ROM.

The proof is in Section A.7.

Remark 3. See Table 2. AIMer, MQOM, and PERK satisfy the condition of Lemma 12. The hash values in MIRA
and RYDE involve 𝐻(𝜇) instead of 𝜇. The proof is obtained similarly by inserting one game. We will require an

additional argument to show wNR security of FAEST and SDitH because their signature consists of ℎ𝑛 and 𝑎𝑛+1.
See Section B, Section G.2, and Section H.1 for the details.

6 Biscuit

We briefly review Biscuit v1.112, which is an MPCitH signature based on a variant of the multivariate quadratic-

equations problem.

The signing key is 𝒔 ← F 𝑛
𝑞 . The verification key consists of seedF ∈ {0, 1}𝜅 and 𝒕 ∈ F𝑚

𝑞 ; seedF produces a

sequence of random elements in F𝑞 and generates 𝒇 = (𝑓1, … , 𝑓𝑚) ∈ F𝑞[𝑥1, … , 𝑥𝑛]𝑚 with 𝑓𝑘 = 𝐴𝑘,0 + 𝐴𝑘,1 ⋅ 𝐴𝑘,2 for

𝑘 ∈ [𝑚], where 𝐴𝑘,𝑗 (𝑥1, … , 𝑥𝑛) = 𝑎(𝑘,𝑗)0 +∑𝑖∈[𝑛] 𝑎
(𝑘,𝑗)
𝑖 𝑥𝑖 ∈ F𝑞[𝑥1, … , 𝑥𝑛] is a random Affine form; and 𝒕 is 𝒇(𝒔).

For two vectors 𝒂, 𝒃 ∈ F𝑚
𝑞 , 𝒂 ⊙𝒃 is defined as component-wise multiplication. For a vector 𝒂 ∈ F 𝑘

𝑞 , we denote

shares of 𝒂 via an (𝑁 , 𝑁)-additive secret share as J𝒂K = (J𝒂K1, … , J𝒂K𝑁) ∈ (F 𝑘
𝑞)𝑁 .

In nutshell, the signer will show the relation that 𝒛 = 𝒕 − 𝐴0(𝒔) = 𝒙 ⊙ 𝒚, where 𝒙 = 𝐴1(𝒔) and 𝒚 = 𝐴2(𝒔) via
an MPCitH protocol.

We modify the underlying MPCitH protocol IDBiscuit, P = (P1, P2, P3) and V with Rep, as depicted in Figure 6

to fit their scheme in our framework. The algorithms in the protocol are summarized as follows:

– TreePRG computes 𝑁 pseudorandom seeds by using a binary tree structure.

– Path computes log2(𝑁) values, which will be used in Reconst below.

– Reconst computes 𝑁 − 1 seeds for 𝑖 ≠ 𝑖∗𝑒 by using the path of log2(𝑁) values.
– MakeShares generates pseudorandom shares from the seed seed(𝑒)𝑖 .

– LinearCircuit computes shares of 𝒙, 𝒚, and 𝒛 from a share of 𝒔 as defined in Figure 6.

Notice that Rep computes J𝒗K𝑖∗ ∶= −∑𝑖≠𝑖∗J𝒗K𝑖. Thus, the verifier V checks if∑𝑖J𝒗K𝑖 = 𝟎 as the MPC’s result. For

the details, see the original specification [BKPV23].

The signature scheme Biscuit = FSh[IDBiscuit,H, 𝜸] is defined by aux1 = (0x01, salt, 𝜇) and aux2 = (0x02, salt).

12
Version 1.1 is available at https://www.biscuit-pqc.org/

17

1: P1(𝑠𝑘) for Biscuit
2: Extract seedF, 𝒔, 𝒕, 𝒚 from 𝑠𝑘
3: Re-compute 𝒇 from seedF

4: Choose rnd uniformly at random

//Setup MPC

5: (salt, (seed(𝑒))𝑒∈[𝜏]) ∶= PRF(rnd, (𝑠𝑘, 𝜇))
//Run in 𝜏 parallel. We omit (𝑒).
//The original doesn’t have 𝜌𝑖

6: (seed𝑖, 𝜌𝑖)𝑖∈[𝑁] ∶= TreePRG(seed, (salt, 𝑒))
7: for 𝑖 ∈ [𝑁] do
8: com𝑖 ∶= Com((salt, 𝑒, 𝑖, seed𝑖); 𝜌𝑖)
9: (J𝒔K𝑖, J𝒂K𝑖, J𝒄K𝑖) ∶= MakeShares(seed𝑖, (salt, 𝑒, 𝑖))

10: 𝜟𝒔 ∶= 𝒔 − ∑𝑖∈[𝑁]J𝒔K𝑖
11: 𝜟𝒄 ∶= 𝒚 ⊙∑𝑖∈[𝑁]J𝒂K𝑖 −∑𝑖∈[𝑁]J𝒄K𝑖
12: J𝒔K1 ∶= J𝒔K1 + 𝜟𝒔
13: J𝒄K1 ∶= J𝒄K1 + 𝜟𝒄 //𝒄 = 𝒚 ⊙ 𝒂
14: for 𝑖 ∈ [𝑁] do
15: (J𝒙K𝑖, J𝒚K𝑖, J𝒛K𝑖) ∶= LinearCircuit(J𝒔K𝑖, 𝑖, 𝒕, 𝒇)
16: 𝑎1 ∶= ((com𝑖)𝑖∈[𝑁], 𝜟𝒔, 𝜟𝒄)𝑒∈[𝜏]
17: state ∶= (salt,

(seed, (com𝑖)𝑖∈[𝑁], 𝜟𝒔, 𝜟𝒄, J𝒙K, J𝒚K, J𝒛K)𝑒∈[𝜏])
18: return 𝑎1 and state

1: P2(𝑠𝑘, 𝑐2, state) for Biscuit
2: Parse 𝑐2 = (𝜺(1), … , 𝜺(𝜏))

//Simulate MPC
//Run in 𝜏 parallel. We omit (𝑒).

3: forall 𝑖 ∈ [𝑁]: J𝜶K𝑖 ∶= J𝒙K𝑖 ⊙ 𝜺 + J𝒂K𝑖
4: 𝜶 ∶= ∑𝑖∈[𝑁]J𝜶K𝑖
5: forall 𝑖 ∈ [𝑁]: J𝒗K𝑖 ∶= J𝒚K𝑖 ⊙ 𝜶 − J𝒛K𝑖 ⊙ 𝜺 − J𝒄K𝑖
6: 𝑎2 ∶= ((J𝜶K𝑖, J𝒗K𝑖)𝑖∈[𝑁])𝑒∈[𝜏]
7: state ∶= (salt, (seed, (com𝑖)𝑖∈[𝑁], 𝜟𝒔, 𝜟𝒄, J𝜶K)𝑒∈[𝜏])
8: return 𝑎2 and state

1: P3(𝑠𝑘, 𝑐3, state) for Biscuit
2: Parse 𝑐3 = (𝑖∗1 , … , 𝑖∗𝜏)

//Run in 𝜏 parallel. We omit (𝑒) and 𝑒.
3: path ∶= Path(𝑖∗, seed, (salt, 𝑒))
4: 𝑎3 ∶= (salt, (path, 𝜟𝒔, 𝜟𝒄, com𝑖∗ , J𝜶K𝑖∗)𝑒∈[𝜏])
5: return 𝑎3

1: Rep(𝑣𝑘, 𝑐1, 𝑐2, 𝑎3) for Biscuit
2: Parse 𝑣𝑘 = (seedF, 𝒕)
3: Re-compute 𝒇 from seedF

4: Parse 𝑐1 = (𝜺(1), … , 𝜺(𝜏))
5: Parse 𝑐2 = (𝑖∗1 , … , 𝑖∗𝜏)
6: Parse 𝑎3 = (salt, (path, 𝜟𝒔, 𝜟𝒄, com𝑖∗ , J𝜶K𝑖∗)𝑒∈[𝜏])

//Reconstruct 𝑎1.
//Run in 𝜏 parallel. We omit (𝑒) and 𝑒.

7: (seed𝑖, 𝜌𝑖)𝑖≠𝑖∗ ∶= Reconst(path, 𝑖∗, (salt, 𝑒))
8: forall 𝑖 ∈ [𝑁] ⧵ {𝑖∗𝑒 } do
9: com𝑖 ∶= Com((salt, 𝑒, 𝑖, seed𝑖); 𝜌𝑖)

10: (J𝒔K𝑖, J𝒂K𝑖, J𝒄K𝑖) ∶= MakeShares(seed𝑖, (salt, 𝑒, 𝑖))
11: if 𝑖 = 1 then
12: J𝒔K1 ∶= J𝒔K1 + 𝜟𝒔
13: J𝒄K1 ∶= J𝒄K1 + 𝜟𝒄
14: (J𝒙K𝑖, J𝒚K𝑖, J𝒛K𝑖) ∶= LinearCircuit(J𝒔K𝑖, 𝑖, 𝒕, 𝒇)
15: 𝑎̄1 ∶= ((com𝑖)𝑖∈[𝑁], 𝜟𝒔, 𝜟𝒄)𝑒∈[𝜏]

//Reconstruct 𝑎2.
//Run in 𝜏 parallel. We omit (𝑒) and 𝑒.

16: forall 𝑖 ∈ [𝑁] ⧵ {𝑖∗}: J𝜶K𝑖 ∶= J𝒙K𝑖 ⊙ 𝜺 + J𝒂K𝑖
17: 𝜶 ∶= ∑𝑖J𝜶K𝑖
18: forall 𝑖 ∈ [𝑁] ⧵ {𝑖∗}: J𝒗K𝑖 ∶= J𝒚K𝑖 ⊙𝜶 − J𝒛K𝑖 ⊙𝜺− J𝒄K𝑖
19: J𝒗K𝑖∗ ∶= −∑𝑖≠𝑖∗J𝒗K𝑖
20: 𝑎̄2 ∶= ((J𝜶K𝑖, J𝒗K𝑖)𝑖∈[𝑁])𝑒∈[𝜏]
21: return 𝑎̄1 and 𝑎̄2

1: V(𝑣𝑘, 𝑎1, 𝑐1, 𝑎2, 𝑐2, 𝑎3)
2: Compute (𝑎̄1, 𝑎̄2) ∶= Rep(𝑣𝑘, 𝑐1, 𝑐2, 𝑎3)
3: return boole((𝑎̄1, 𝑎̄2) = (𝑎1, 𝑎2))

1: LinearCircuit(𝒔, idx, 𝒕, 𝒇)
2: Parse 𝒇 = (𝑓1, … , 𝑓𝑚)
3: Parse 𝑓𝑘 = 𝐴𝑘,0 + 𝐴𝑘,1 ⋅ 𝐴𝑘,2 for 𝑘 ∈ [𝑚]
4: Let 𝑎(𝑘,𝑗)0 be a constant term of 𝐴𝑘,𝑗

5: if idx = 1 then
6: 𝐴′

𝑘,𝑗 ∶= 𝐴𝑘,𝑗

7: else
8: 𝐴′

𝑘,𝑗 ∶= 𝐴𝑘,𝑗 − 𝑎(𝑘,𝑗)0

9: 𝒙 ∶= (𝐴′
1,1(𝒔), … , 𝐴′

𝑚,1(𝒔))
10: 𝒚 ∶= (𝐴′

1,2(𝒔), … , 𝐴′
𝑚,2(𝒔))

11: if idx = 1 then
12: 𝒛 ∶= −(𝐴′

1,0(𝒔), … , 𝐴′
𝑚,0(𝒔))

13: else
14: 𝒛 ∶= 𝒕 − (𝐴′

1,0(𝒔), … , 𝐴′
𝑚,0(𝒔))

15: return 𝒙, 𝒚, 𝒛

Fig. 6. Prover, reconstruction, and verification algorithms of IDBiscuit.

18

1: SimBiscuit(𝑣𝑘, 𝑐1, 𝑐2) for Biscuit
2: Parse 𝑣𝑘 = (seedF, 𝒕)
3: Re-compute 𝒇 from seedF

4: Parse 𝑐1 = (𝜺(1), … , 𝜺(𝜏))
5: Parse 𝑐2 = (𝑖∗1 , … , 𝑖∗𝜏)

//Simulate MPC’s setup

6: Choose salt, seed(1), … , seed(𝜏) uniformly at random

//Run in 𝜏 parallel. We omit (𝑒) and 𝑒.
7: (seed𝑖, 𝜌𝑖)𝑖∈[𝑁] ∶= TreePRG(seed, (salt, 𝑒))
8: forall 𝑖 ∈ [𝑁] ⧵ {𝑖∗} do
9: com𝑖 ∶= Com((salt, 𝑒, 𝑖, seed𝑖); 𝜌𝑖)
10: (J𝒔K𝑖, J𝒂K𝑖, J𝒄K𝑖) ∶= MakeShares(seed𝑖, (salt, 𝑒, 𝑖))
11: Choose com𝑖∗ uniformly at random

12: 𝜟𝒔 ← F 𝑛
𝑞 , 𝜟𝒄 ← F 𝑚

𝑞

13: 𝑎1 ∶= ((com𝑖)𝑖∈[𝑁], 𝜟𝒔, 𝜟𝒄)𝑒∈[𝜏]

//Simulate MPC’s execution
//Run in 𝜏 parallel. We omit (𝑒) and 𝑒.

14: for 𝑒 ∈ [𝜏] do
15: forall 𝑖 ∈ [𝑁] ⧵ {𝑖∗}: J𝜶K𝑖 ∶= J𝒙K𝑖 ⊙ 𝜺 + J𝒂K𝑖
16: J𝜶K𝑖∗ ← F 𝑚

𝑞

17: 𝜶 ∶= ∑𝑖J𝜶K𝑖
18: forall 𝑖 ∈ [𝑁] ⧵ {𝑖∗}:

J𝒗K𝑖 ∶= J𝒚K𝑖 ⊙ 𝜶 − J𝒛K𝑖 ⊙ 𝜺 − J𝒄K𝑖
19: J𝒗K𝑖∗ ∶= −∑𝑖≠𝑖∗J𝒗K𝑖
20: 𝑎2 ∶= ((J𝜶K𝑖, J𝒗K𝑖)𝑖∈[𝑁])𝑒∈[𝜏]

//Simulate response
21: path ∶= GetPath(𝑖∗, seed, (salt, 𝑒))
22: 𝑎3 ∶= (salt, (path, 𝜟𝒔, 𝜟𝒄, com𝑖∗ , J𝜶K𝑖∗)𝑒∈[𝜏])
23: return 𝑎1, 𝑎2, and 𝑎3

Fig. 7. Simulation algorithm for IDBiscuit.

6.1 Security

sEUF-CMA security: To show the sEUF-CMA security, we discuss the protocol’s HVZK property and non-

divergency. For the definitions of primitives, see Section A.

The HVZK property of IDBiscuit is shown in their specification document by following the HVZK proof

in [FJR22], but we modify the proof to consider the real protocol as possible. For the proof sketch, see Sec-

tion A.8.

Lemma 13 (𝑞𝑆-HVZK). Suppose that PRF is secure, TreePRG andMakeShares are pseudorandom, andCom is hiding.
Let 𝑞𝑆 be a polynomial of 1𝜅 . Then, IDBiscuit with simulator SimBiscuit in Figure 7 is 𝑞𝑆-HVZK.
We next show that IDBiscuit is strongly non-divergent.

Lemma 14 (Strong non-divergency). Suppose that Com is non-invertible and collision-resistant and Reconst is
collision-resistant. Then, IDBiscuit for Biscuit is strongly non-divergent with respect to SimBiscuit.

Proof. For simplicity, we ignore parallelness 𝜏. Suppose that the adversary declares a valid transcript trans𝑖 =
(𝑎1, 𝑐1, 𝑎2, 𝑐2, 𝑎3) generated by the simulator and outputs a valid transcript trans′ = (𝑎1, 𝑐1, 𝑎′2, 𝑐′2, 𝑎′3). We parse

them as 𝑎1 = (com1, … , com𝑁 , 𝜟𝒔, 𝜟𝒄) and 𝑐1 = 𝜺.
If condition (a) of BranchCheck′ in Definition 7 is met, then we have 𝑐2 ≠ 𝑐′2: We parse 𝑐2 = 𝑖∗, 𝑐′2 = 𝑖+,

and 𝑎′3 = (salt′, path′, 𝜟𝒔′, 𝜟𝒄′, com′
𝑖+ , J𝜶 ′K𝑖+). In this case, the adversary opens com𝑖∗ in 𝑎1 as (salt′, 𝑖∗, seed′𝑖∗ , 𝜌′𝑖∗)

computed from path′ and 𝑖+ since 𝑖∗ ≠ 𝑖+ and the transcript (𝑎1, 𝑐1, 𝑎′2, 𝑐′2, 𝑎′3) is valid. Thus, we have com𝑖∗ =
Com(salt′, 𝑖∗, seed′𝑖∗ ; 𝜌′𝑖∗). Since com𝑖∗ is chosen uniformly at random in L.11 of the simulator SimBiscuit in Figure 7,

this violates the non-invertibility of Com.
If condition (b) of BranchCheck′ is met, then we have (𝑎2, 𝑐2) = (𝑎′2, 𝑐′2) and 𝑎3 ≠ 𝑎′3. We then parse 𝑎2 =

(J𝜶K𝑖, J𝒗K𝑖)𝑖∈[𝑁], 𝑐2 = 𝑖∗, 𝑎3 = (salt, path, 𝜟𝒔, 𝜟𝒄, com𝑖∗ , J𝜶K𝑖∗), and 𝑎′3 = (salt′, path′, 𝜟𝒔′, 𝜟𝒄′, com′
𝑖∗ , J𝜶 ′K𝑖∗).

We have the following cases:

– If salt ≠ salt′, then we have a collision for Com.
– If path ≠ path′:

∙ If (seed𝑖, 𝜌𝑖)𝑖≠𝑖∗ = (seed′𝑖 , 𝜌′𝑖)𝑖≠𝑖∗ , then it implies the collision for Reconst.
∙ If (seed𝑖, 𝜌𝑖)𝑖≠𝑖∗ ≠ (seed′𝑖 , 𝜌′𝑖)𝑖≠𝑖∗ , then we have at least one index 𝑖 satisfying (seed𝑖, 𝜌𝑖) ≠ (seed′𝑖 , 𝜌𝑖). Since
the two transcripts are valid, we have a collision as com𝑖 = Com(salt, 𝑖, seed𝑖; 𝜌𝑖) = Com(salt, 𝑖, seed′𝑖 , 𝜌′𝑖).

– If (𝜟𝒔, 𝜟𝒄, com𝑖∗ , J𝜶K𝑖∗) ≠ (𝜟𝒔′, 𝜟𝒄′, com′
𝑖∗ , J𝜶K𝑖∗), then at least one of two transcripts are invalid because of

inconsistency with 𝑎1 and 𝑎2, and this never happens.

Using those observations, we can construct reductions easily. ⊓⊔

Since the scheme is (strongly) non-divergent and HVZK, we have the following theorem:

Theorem 3 (Biscuit’s sEUF-CMA security). Suppose that Biscuit = FSh[IDBiscuit,H, 𝜸] is EUF-NMA-secure in the
(Q)ROM, PRF, TreePRG, and MakeShares are pseudorandom, Com is hiding, non-invertible, binding, and collision-
resistant, and Reconst is collision-resistant. Then, Biscuit is sEUF-CMA-secure in the (Q)ROM.

19

Table 3. Parameter sets in Biscuit’s specification v1.1 and success probabitliy 𝑝𝑄 of S-CEO attack with 𝑄 = 264 signing queries.

name 𝑞 𝑛 𝑚 𝜏 𝑁 𝑝1 𝑝𝑄
biscuit128f 16 64 67 34 16 ≈ 2−129.934 ≈ 2−65.934
biscuit128s 16 64 67 18 256 ≈ 2−65.934 ≈ 0.230
biscuit192f 16 87 90 55 16 ≈ 2−213.508 ≈ 2−149.508
biscuit192s 16 87 90 31 256 ≈ 2−117.508 ≈ 2−53.508
biscuit256f 16 118 121 74 16 ≈ 2−289.081 ≈ 2−225.081
biscuit256s 16 118 121 42 256 ≈ 2−161.081 ≈ 2−97.081

S-DEO and MBS security: Biscuit employs FSh with aux1 = (0x01, salt, 𝜇) and aux2 = (0x02, salt). Therefore, ℎ1
in the signature includes the information of 𝜇. Since aux is perfectly collision-resistant with respect to message

on index 1, according to Lemma 11, Biscuit satisfies S-DEO and MBS if H is collision-resistant.

6.2 S-CEO and wNR Insecurity

Since aux1 and aux2 have no information on 𝑣𝑘, Biscuitmay be S-CEO insecure. We indeed show Biscuit is S-CEO
and wNR insecure in some parameter sets.

S-CEO insecurity: To break S-CEO security, an adversary needs to output a new verification key 𝑣𝑘′ on which a

message 𝜇 and a signature 𝜎 is valid, while the adversary obtains (𝜇, 𝜎) from the signing oracle Sign(𝑠𝑘, ⋅) many

times as in the CMA setting.

We notice that, in the verification procedure, 𝒕 appears only J𝒛K𝑖 ∶= 𝒕 − (𝐴′
1,0(J𝒔K𝑖), … , 𝐴′

𝑚,0(J𝒔K𝑖)) for 𝑖 ≠ 1
(L.14 of LinearCircuit).13 In addition, the direct computation involving J𝒛K is J𝒛K𝑖 ⊙ 𝜺 in L.18 of Rep.

Exploiting 𝜺 ∈ F𝑚
𝑞 , we can consider the following attack: Suppose that we have a signature such that 𝜀(1)𝑗 =

⋯ = 𝜀(𝜏)𝑗 = 0 for some 𝑗 ∈ [𝑚]. We then replace 𝒕 with 𝒕′ ∶= 𝒕 + 𝒆𝑗 while keeping seedF, where 𝒆𝑗 is the 𝑗-th unit

vector in F𝑚
𝑞 .

This attack is justified as follows: When we consider the computation of J𝒛K′𝑖 in LinearCircuit on this modified

𝒕′, we have J𝒛K′𝑖 = J𝒛K𝑖 for 𝑖 = 1 and J𝒛K𝑖 + 𝒆𝑗 for 𝑖 = 2, … , 𝑁 . If 𝜀(𝑒)𝑗 = 0 for all 𝑒 ∈ [𝜏] holds, then we have

J𝒗K′𝑖 = J𝒗K𝑖 in the verification algorithm, since J𝒛K′𝑖 ⊙𝜺 = J𝒛K𝑖⊙𝜺 for any 𝑖 ∈ [𝑁]. Thus, the verification is passed

on 𝜇, 𝜎, and the shifted verification key (seedF, 𝒕 + 𝒆𝑗).
This attack succeeds if we have a signature and an index 𝑗 ∈ [𝑚] such that 𝜀(1)𝑗 = ⋯ = 𝜀(𝜏)𝑗 = 0. Assuming that

𝛾1 is the random oracle, each signature satisfies this condition with probability 𝑝1 defined as 𝑝1 ∶= 1−(1−𝑞−𝜏)𝑚.
After 𝑄 signing queries, there is at least one signature satisfying the condition with probability 𝑝𝑄 ∶= 1 − (1 −
𝑝1)𝑄 = 1 − (1 − 𝑞−𝜏)𝑚𝑄 .

Table 3 summarizes the parameter sets of Biscuit and the success probability of the above S-CEO attack with

𝑄 = 264,14 where, for small 𝑎 and large 𝑏, we use approximations 1− (1− 𝑎)𝑏 ≈ 𝑎𝑏 for 𝑎𝑏 ≪ 1 and ≈ 1− exp(−𝑎𝑏)
otherwise. Since every 𝑝𝑄 is larger that 2−𝜅 , Biscuit is S-CEO-insecure.

wNR insecurity: The above attack for S-CEO insecurity can be used to mount wNR attack. In the wNR game, we

are given 𝑣𝑘 and 𝜎 on 𝜇 and need to produce 𝑣𝑘′ ≠ 𝑣𝑘 and 𝜎′
such that (𝑣𝑘′, 𝜇, 𝜎′) is valid while we cannot see 𝜇.

Notice that the above attack does not use the information of 𝜇 and “hijacks” a given signature. Hence, the above

S-CEO adversary works as the wNR attack. In the wNR security game, the adversary is given a single signature

instead of 𝑄 signatures. Thus, the success probability is 𝑝1 in Table 3. Since 𝑝1 for parameter sets end with s is
larger than 2−𝜅 , Biscuit is wNR-insecure depending on the parameter sets. We leave an open problem to find a

more sophisticated wNR attack against Biscuit.

Acknowledgements

We thank anonymous reviewers for ASIACRYPT 2024 and PKC 2025 for their valuable comments.

13
One might wonder why 𝒕 is added for all 𝑖 ≠ 1, instead of only for 𝑖 = 1. We can use these offsets since 𝑞 = 16.

14
“For the purpose of estimating security strengths, it may be assumed that the attacker has access to signatures for no more

than 264 chosen messages” [NIS22, 4.B.2].

20

References

ABB
+
23a. Najwa Aaraj, Slim Bettaieb, Loïc Bidoux, Alessandro Budroni, Victor Dyseryn, Andre Esser, Philippe Gaborit,

Mukul Kulkarni, Victor Mateu, Marco Palumbi, Lucas Perin, and Jean-Pierre Tillich. PERK. Technical report,

National Institute of Standards and Technology, 2023. 2, 3, 6, 37, 38

ABB
+
23b. Nicolas Aragon, Magali Bardet, Loïc Bidoux, Jesús-Javier Chi-Domínguez, Victor Dyseryn, Thibauld Feneuil,

Philippe Gaborit, Antoine Joux, Matthieu Rivain, Jean-Pierre Tillich, and Adrien Vinçotte. RYDE. Technical

report, National Institute of Standards and Technology, 2023. 2, 3, 6, 40

ABB
+
23c. Nicolas Aragon, Magali Bardet, Loïc Bidoux, Jesús-Javier Chi-Domínguez, Victor Dyseryn, Thibauld Feneuil,

Philippe Gaborit, Romaric Neveu, Matthieu Rivain, and Jean-Pierre Tillich. MIRA. Technical report, National

Institute of Standards and Technology, 2023. 2, 3, 6, 40

ADM
+
24. Thomas Aulbach, Samed Düzlü, Michael Meyer, Patrick Struck, and Maximiliane Weishäupl. Hash your keys

before signing - BUFF security of the additional NIST PQC signatures. In Markku-Juhani Saarinen and Daniel

Smith-Tone, editors, Post-Quantum Cryptography - 15th International Workshop, PQCrypto 2024, Part II, pages 301–
335. Springer, Cham, June 2024. 3, 24

AFG
+
23. Carlos Aguilar-Melchor, Thibauld Feneuil, Nicolas Gama, Shay Gueron, James Howe, David Joseph, Antoine Joux,

Edoardo Persichetti, TovoheryH. Randrianarisoa, Matthieu Rivain, andDongze Yue. SDitH— SyndromeDecoding

in the Head. Technical report, National Institute of Standards and Technology, 2023. 2, 3, 6, 41

AFLT16. Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi. Tightly secure signatures from

lossy identification schemes. Journal of Cryptology, 29(3):597–631, July 2016. 2

AGH
+
23. Carlos Aguilar-Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David Joseph, and Dongze Yue. The return

of the SDitH. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of LNCS, pages
564–596. Springer, Cham, April 2023. 40

AHJ
+
23. Carlos Aguilar Melchor, Andreas Hülsing, David Joseph, Christian Majenz, Eyal Ronen, and Dongze Yue. SDitH

in the QROM. In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part VII, volume 14444 of LNCS, pages
317–350. Springer, Singapore, December 2023. 5, 32, 42

AHU19. Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs using semi-classical oracles.

In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages
269–295. Springer, Cham, August 2019. 29

ARV
+
23. Gora Adj, Luis Rivera-Zamarripa, Javier Verbel, Emanuele Bellini, Stefano Barbero, Andre Esser, Carlo Sanna,

and Floyd Zweydinger. MiRitH — MinRank in the Head. Technical report, National Institute of Standards and

Technology, 2023. 2, 3, 6, 34, 36

BBd
+
23a. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Christian Majenz, Shibam

Mukherjee, Emmanuela Orsini, Sebastian Ramacher, Christian Rechberger, Lawrence Roy, and Peter Scholl.

FAEST. Technical report, National Institute of Standards and Technology, 2023. 2, 3, 6, 43

BBD
+
23b. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Emmanuela Orsini, Lawrence

Roy, and Peter Scholl. Publicly verifiable zero-knowledge and post-quantum signatures from VOLE-in-the-head.

In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085 of LNCS, pages 581–
615. Springer, Cham, August 2023. 42

BBSS18. Matilda Backendal, Mihir Bellare, Jessica Sorrell, and Jiahao Sun. The Fiat-Shamir zoo: Relating the security of

different signature. In Nils Gruschka, editor, NordSec 2018, volume 11252 of LNCS, pages 154–170. Springer, 2018.
See also https://eprint.iacr.org/2018/775. 16

BCJZ21. Jacqueline Brendel, Cas Cremers, Dennis Jackson, and Mang Zhao. The provable security of Ed25519: Theory and

practice. In 2021 IEEE Symposium on Security and Privacy, pages 1659–1676. IEEE Computer Society Press, May

2021. 3

BKPV23. Luk Bettale, Delaram Kahrobaei, Ludovic Perret, and Javier Verbel. Biscuit. Technical report, National Institute

of Standards and Technology, 2023. 2, 3, 6, 17

BS07. Mihir Bellare and Sarah Shoup. Two-tier signatures, strongly unforgeable signatures, and Fiat-Shamir without

random oracles. In Tatsuaki Okamoto and XiaoyunWang, editors, PKC 2007, volume 4450 of LNCS, pages 201–216.
Springer, Berlin, Heidelberg, April 2007. 2

BWM99. Simon Blake-Wilson and Alfred Menezes. Unknown key-share attacks on the station-to-station (STS) protocol. In

Hideki Imai and Yuliang Zheng, editors, PKC’99, volume 1560 of LNCS, pages 154–170. Springer, Berlin, Heidelberg,
March 1999. 3

CDF
+
21. Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and Christian Janson. BUFFing signature schemes beyond

unforgeability and the case of post-quantum signatures. In 2021 IEEE Symposium on Security and Privacy, pages
1696–1714. IEEE Computer Society Press, May 2021. 3, 6, 24

CHK04. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryption. In

Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 207–222. Springer,
Berlin, Heidelberg, May 2004. 2

CHR
+
16. Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe. From 5-pass MQ-

based identification to MQ-based signatures. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016,
Part II, volume 10032 of LNCS, pages 135–165. Springer, Berlin, Heidelberg, December 2016. 2, 4, 11

21

https://eprint.iacr.org/2018/775

DDN00. Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM Journal on Computing,
30(2):391–437, 2000. 2

DF17. Yevgeniy Dodis and Dario Fiore. Unilaterally-authenticated key exchange. In Aggelos Kiayias, editor, FC 2017,
volume 10322 of LNCS, pages 542–560. Springer, Cham, April 2017. 2

DFH
+
24. Jelle Don, Serge Fehr, Yu-HsuanHuang, Jyun-Jie Liao, and Patrick Struck. Hide-and-seek and the non-resignability

of the BUFF transform. In Elette Boyle and Mohammad Mahmoody, editors, TCC 2024, Part III, volume 15366 of

LNCS, pages 347–370. Springer, Cham, December 2024. 24, 29

DFHS24. Jelle Don, Serge Fehr, Yu-Hsuan Huang, and Patrick Struck. On the (in)security of the BUFF transform. In Leonid

Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part I, volume 14920 of LNCS, pages 246–275. Springer, Cham,

August 2024. 24, 29

DFM20. Jelle Don, Serge Fehr, and Christian Majenz. The measure-and-reprogram technique 2.0: Multi-round fiat-shamir

and more. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS,
pages 602–631. Springer, Cham, August 2020. 2, 5, 8, 10, 34

DGV
+
16. Özgür Dagdelen, David Galindo, Pascal Véron, Sidi Mohamed El Yousfi Alaoui, and Pierre-Louis Cayrel. Extended

security arguments for signature schemes. DCC, 78(2):441–461, 2016. 2, 4, 11
DHSY24. Sanjay Deshpande, James Howe, Jakub Szefer, and Dongze Yue. SDitH in hardware. IACR TCHES, 2024(2):215–251,

2024. 32

EDV
+
12. Sidi Mohamed El Yousfi Alaoui, Özgür Dagdelen, Pascal Véron, David Galindo, and Pierre-Louis Cayrel. Extended

security arguments for signature schemes. In Aikaterini Mitrokotsa and Serge Vaudenay, editors, AFRICACRYPT
12, volume 7374 of LNCS, pages 19–34. Springer, Berlin, Heidelberg, July 2012. 2, 4, 11

EGM90. Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital schemes. In Gilles Brassard, editor,

CRYPTO’89, volume 435 of LNCS, pages 263–275. Springer, New York, August 1990. 32

FJR22. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding in the head: Shorter signatures from

zero-knowledge proofs. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508

of LNCS, pages 541–572. Springer, Cham, August 2022. 19, 32, 34, 36, 38, 40

FR23. Thibauld Feneuil and Matthieu Rivain. MQOM — MQ on my Mind. Technical report, National Institute of Stan-

dards and Technology, 2023. 2, 3, 6, 42

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature problems. In

AndrewM. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Berlin, Heidelberg, August
1987. 2, 4

GHHM21. Alex B. Grilo, Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz. Tight adaptive reprogramming in

the QROM. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part I, volume 13090 of LNCS,
pages 637–667. Springer, Cham, December 2021. 4, 5, 6, 12, 14, 25, 26, 42

HJMN24. Andreas Hülsing, David Joseph, Christian Majenz, and Anand Kumar Narayanan. On round elimination for

special-sound multi-round identification and the generality of the hypercube for MPCitH. In Leonid Reyzin and

Douglas Stebila, editors, CRYPTO 2024, Part I, volume 14920 of LNCS, pages 373–408. Springer, Cham, August 2024.

6

HWZ07. Qiong Huang, Duncan S. Wong, and Yiming Zhao. Generic transformation to strongly unforgeable signatures.

In Jonathan Katz and Moti Yung, editors, ACNS 07International Conference on Applied Cryptography and Network
Security, volume 4521 of LNCS, pages 1–17. Springer, Berlin, Heidelberg, June 2007. 2

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty com-

putation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press, June 2007.

2

JCCS19. Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon, and Ralf Sasse. Seems legit: Automated analysis of subtle

attacks on protocols that use signatures. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan

Katz, editors, ACM CCS 2019, pages 2165–2180. ACM Press, November 2019. 3

KCC
+
23. Seongkwang Kim, Jihoon Cho, Mingyu Cho, Jincheol Ha, Jihoon Kwon, Byeonghak Lee, Joohee Lee, Jooyoung

Lee, Sangyub Lee, Dukjae Moon, Mincheol Son, and Hyojin Yoon. AIMer. Technical report, National Institute of

Standards and Technology, 2023. 2, 3, 6, 40

KLS18. Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of Fiat-Shamir signatures in the

quantum random-oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III,
volume 10822 of LNCS, pages 552–586. Springer, Cham, April / May 2018. 2, 4, 8, 24, 42

KY03. Jonathan Katz and Moti Yung. Scalable protocols for authenticated group key exchange. In Dan Boneh, editor,

CRYPTO 2003, volume 2729 of LNCS, pages 110–125. Springer, Berlin, Heidelberg, August 2003. 2
KZ22. Daniel Kales and Greg Zaverucha. Efficient lifting for shorter zero-knowledge proofs and post-quantum signa-

tures. Cryptology ePrint Archive, Report 2022/588, 2022. 40

Lyu09. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In Mitsuru

Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 598–616. Springer, Berlin, Heidelberg, December

2009. 2

MS04. Alfred Menezes and Nigel P. Smart. Security of signature schemes in a multi-user setting. DCC, 33(3):261–274,
2004. 3

22

NIS22. NIST. Call for additional digital signature schemes for the post-quantum cryptography standardization process,

October 2022. 2, 3, 20

PS05. Thomas Pornin and Julien P. Stern. Digital signatures do not guarantee exclusive ownership. In John Ioanni-

dis, Angelos Keromytis, and Moti Yung, editors, ACNS 05International Conference on Applied Cryptography and
Network Security, volume 3531 of LNCS, pages 138–150. Springer, Berlin, Heidelberg, June 2005. 3, 6

Roy22. Lawrence Roy. SoftSpokenOT: Quieter OT extension from small-field silent VOLE in the minicrypt model. In

Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages 657–687.
Springer, Cham, August 2022. 43

SCH
+
17. Simona Samardjiska, Ming-Shing Chen, Andreas Hulsing, Joost Rijneveld, and Peter Schwabe. MQDSS. Technical

report, National Institute of Standards and Technology, 2017. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions. 2

SCH
+
19. Simona Samardjiska, Ming-Shing Chen, Andreas Hulsing, Joost Rijneveld, and Peter Schwabe. MQDSS. Technical

report, National Institute of Standards and Technology, 2019. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions. 5

SPMS02. Jacques Stern, David Pointcheval, John Malone-Lee, and Nigel P. Smart. Flaws in applying proof methodologies

to signature schemes. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 93–110. Springer, Berlin,
Heidelberg, August 2002. 3

SSH11. Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. Public-key identification schemes based on multivariate

quadratic polynomials. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 706–723. Springer,
Berlin, Heidelberg, August 2011. 2, 5, 10

YSWW21. Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver: Efficient and affordable zero-knowledge

proofs for circuits and polynomials over any field. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021,
pages 2986–3001. ACM Press, November 2021. 43

Zha12. Mark Zhandry. How to construct quantum random functions. In 53rd FOCS, pages 679–687. IEEE Computer

Society Press, October 2012. 26, 28

Zha15. Mark Zhandry. A note on the quantum collision and set equality problems. Quantum Info. Comput.,
15(7–8):557–567, May 2015. 26, 28

23

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions

1: Expts-ceoDS,(1𝜅)
2: (𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
3:  ∶= ∅;
4: (𝑣𝑘′, 𝜇∗, 𝜎∗) ← Sign(𝑣𝑘)
5: 𝑑1 ∶= V(𝑣𝑘′, 𝜇∗, 𝜎∗)
6: 𝑑2 ∶= boole((𝜇∗, 𝜎∗) ∈ )
7: 𝑑𝑘 ∶= boole(𝑣𝑘 ≠ 𝑣𝑘′)
8: return 𝑑1 ∧ 𝑑2 ∧ 𝑑𝑘

1: Expts-deoDS,(1𝜅)
2: (𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
3:  ∶= ∅;
4: (𝑣𝑘′, 𝜇∗, 𝜎∗) ← Sign(𝑣𝑘)
5: 𝑑1 ∶= V(𝑣𝑘′, 𝜇∗, 𝜎∗)
6: 𝑑2 ∶= boole(∃𝜇 ≠ 𝜇∗ ∶ (𝜇, 𝜎∗) ∈ )
7: 𝑑𝑘 ∶= boole(𝑣𝑘 ≠ 𝑣𝑘′)
8: return 𝑑1 ∧ 𝑑2 ∧ 𝑑𝑘

1: Sign(𝜇)
2: 𝜎 ← Sign(𝑠𝑘, 𝜇)
3:  ∶=  ∪ {(𝜇, 𝜎)}
4: return 𝜎

1: Exptm-s-ueo
DS, (1𝜅)

2: (𝑣𝑘, 𝑣𝑘′, 𝜇, 𝜇′, 𝜎) ← (1𝜅)
3: 𝑑1 ∶= Vrfy(𝑣𝑘, 𝜇, 𝜎)
4: 𝑑2 ∶= Vrfy(𝑣𝑘′, 𝜇′, 𝜎)
5: 𝑑𝑘 ∶= boole(𝑣𝑘 ≠ 𝑣𝑘′)
6: return 𝑑1 ∧ 𝑑2 ∧ 𝑑𝑘

1: Exptmbs
DS,(1𝜅)

2: (𝑣𝑘, 𝜇, 𝜇′, 𝜎) ← (1𝜅)
3: 𝑑1 ∶= Vrfy(𝑣𝑘, 𝜇, 𝜎)
4: 𝑑2 ∶= Vrfy(𝑣𝑘, 𝜇′, 𝜎)
5: 𝑑𝑚 ∶= boole(𝜇 ≠ 𝜇′)
6: return 𝑑1 ∧ 𝑑2 ∧ 𝑑𝑚

1: ExptwnrDS,,(1𝜅)
2: (𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
3: 𝜇 ← 
4: 𝜎 ← Sign(𝑠𝑘, 𝜇)
5: (𝜎′, 𝑣𝑘′) ← (𝑣𝑘, 𝜎)
6: 𝑑 ∶= Vrfy(𝑣𝑘′, 𝜇, 𝜎′)
7: 𝑑𝑘 ∶= boole(𝑣𝑘 ≠ 𝑣𝑘′)
8: return 𝑑 ∧ 𝑑𝑘

Fig. 8. S-CEO, S-DEO, M-S-UEO, MBS, and wNR.

.

A Missing Definitions, Lemmas, and Proofs

A.1 Missing Definitions for Signature

BUFF security notions: We review the definitions of exclusive ownership in Cremers et al. [CDF
+
21], strong con-

servative exclusive ownership (S-CEO), strong destructive exclusive ownership (S-DEO), and malicious-strong

universal exclusive ownership (M-S-UEO). Strong conservative exclusive ownership (S-CEO) requires that, given

a verification key 𝑣𝑘 and signatures 𝜎𝑖’s on chosen messages𝑚𝑖’s, it cannot output a different verification key 𝑣𝑘′

and some (𝑚𝑖, 𝜎𝑖) such that V(𝑣𝑘′, 𝑚𝑖, 𝜎𝑖) = true. Strong destructive exclusive ownership (S-DEO) requires that,

given a verification key and signatures 𝜎𝑖’s on chosen messages 𝑚𝑖’s, it cannot output a different verification

key 𝑣𝑘′, a different message 𝑚′
, and some 𝜎𝑖 such that V(𝑣𝑘′, 𝑚′, 𝜎𝑖) = true. Malicious-strong universal exclusive

ownership (M-S-UEO) requires that any efficient adversary cannot output two different verification keys 𝑣𝑘 and
𝑣𝑘′, possibly different messages 𝜇 and 𝜇′, and a signature 𝜎 such that both (𝑣𝑘, 𝜇, 𝜎) and (𝑣𝑘′, 𝜇′, 𝜎) are valid. We

note that M-S-UEO implies S-CEO and S-DEO while the other direction is not.

We also review the definition of message-bounding signatures (MBS) in [CDF
+
21].

As one of the advanced security notions, Cremers et al. [CDF
+
21] defined non-resignability (NR). Unfortu-

nately, the original notion is unachievable, as Don, Fehr, Huang, and Struck showed [DFHS24]. We here adopt

a very weak version of NR, a weak non-resignability (wNR) defined by Aulbach et al. [ADM
+
24]. For stronger

definitions, see [CDF
+
21, DFHS24, DFH

+
24].

Definition 11 (S-CEO, S-DEO, M-S-UEO, MBS, and wNR). Let DS = (Gen, Sign,Vrfy) be a digital signature
scheme. For any, we define its goal advantage for goal ∈ {s-ceo, s-deo,m-s-ueo,mbs, wnr} as

Adv
goal
DS,(𝜅) ∶= Pr[ExptgoalDS,(1

𝜅) = 1],

where Expt
goal
DS,(1

𝜅) is experiments described in Figure 8 We say that DS is GOAL-secure for GOAL ∈ {S-CEO,
S-DEO,M-S-UEO,MBS,wNR} if AdvgoalDS,(𝜅) is negligible for any QPT adversary .

A.2 Missing Definitions for ID

We review the property of ID schemes. The first one is the min-entropy of the first message of an ID scheme:

Definition 12 (Commitment entropy [KLS18, Def. 2.6], adapted). We say that (2𝑛 + 1)-pass ID scheme ID has
𝛼-commitment entropy if for any (𝑣𝑘, 𝑠𝑘) generated by Gen(1𝜅), 𝐻∞(𝑎1 ∣ (𝑎1, state) ← P(𝑠𝑘, ∅, ∅)) ≥ 𝛼.

24

1: Expt
𝑞-hvzk,0
ID, (1𝜅)

2: (𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
3: for 𝑖 ∈ [𝑞] do
4: trans𝑖 ← ⟨P(𝑣𝑘, 𝑠𝑘),V(𝑣𝑘)⟩
5: 𝑏′ ← (𝑣𝑘, (trans1, … , trans𝑞))
6: return 𝑏′

1: Expt
𝑞-hvzk,1
ID, (1𝜅)

2: (𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
3: for 𝑖 ∈ [𝑞] do
4: (𝑐1, … , 𝑐𝑛) ← 1 × ⋯ × 𝑛

5: trans𝑖 ← Sim(𝑣𝑘, 𝑐1, … , 𝑐𝑛)
6: 𝑏′ ← (𝑣𝑘, (trans1, … , trans𝑞))
7: return 𝑏′

Fig. 9. The experiments for computational multi-HVZK.

We next review honest-verifier zero knowledge for multiple transcripts.

Definition 13 (Special simulator). Let (𝑣𝑘, 𝑠𝑘) be a key pair generated by Gen(1𝜅). A special simulator is an al-
gorithm Sim that takes a public verification key 𝑣𝑘 and series of challenges 𝑐1, … , 𝑐𝑛 and outputs a transcript (𝑎1, 𝑐1,
… , 𝑎𝑛, 𝑐𝑛, 𝑎𝑛+1).

Definition 14 (Honest-verifier zero knowledge for multiple transcripts [GHHM21], adapted). Let ID be an ID
scheme with a PPT special simulator Sim. For a polynomial 𝑞 = 𝑞(𝜅) and an adversary , we define its 𝑞-HVZK
advantage as follows:

Adv
𝑞-hvzk
ID, (𝜅) ∶= |||Pr[Expt

𝑞-hvzk,0
ID, (1𝜅) = 1] − Pr[Expt𝑞-hvzk,1ID, (1𝜅) = 1]||| ,

where Expt
𝑞-hvzk,𝑏
ID, (1𝜅) is defined in Figure 9. We say that ID is 𝑞-HVZK if Adv𝑞-hvzkID, (𝜅) is negligible for any QPT

adversary.

A.3 Missing Definitions for Primitives

Definition 15 (Pseudorandom Functions (PRF)). We say that pseudorandom function PRF∶ {0, 1}𝜅 × {0, 1}⋆ →
{0, 1}𝑝(𝜅) is secure if for any QPT adversary , its advantage

||||
Pr[|RF(⋅)⟩(1𝜅) = 1] − Pr

seed←{0,1}𝜅
[|PRF(seed,⋅)⟩(1𝜅) = 1]

||||

is negligible in the security parameter, where RF∶ {0, 1}⋆ → {0, 1}𝑝(𝜅) is a random function.

Definition 16 (PseudorandomGenerator (PRG)).We say that pseudorandom generator PRG∶ {0, 1}𝜅 → {0, 1}𝑝(𝜅)
is secure if for any QPT adversary , its advantage

||||
Pr

𝑠←{0,1}𝑝(𝜅)
[(𝑠) = 1] − Pr

seed←{0,1}𝜅
[(PRG(seed)) = 1]

||||

is negligible in the security parameter.

Definition 17 (Tree PRG). A tree PRG scheme consists of the following three DPT algorithms, which might take an
auxiliary information aux as input:

– TreePRG(seed, aux) → (𝑟1, … , 𝑟𝑁): the tree-PRG algorithm takes seed ∈ {0, 1}𝜅 as input and outputs (𝑟1, … , 𝑟𝑁) ∈
({0, 1}𝑝(𝜅))𝑁 .

– GetPath(𝑖∗, seed, aux) → path: the path finding algorithm takes index 𝑖∗ ∈ [𝑁] and seed ∈ {0, 1}𝜅 as input and
outputs a path information path.

– Reconst(𝑖∗, path, aux) → (𝑟𝑖)𝑖≠𝑖∗ : the reconstruction algorithm takes path and index 𝑖∗ as input and outputs
(𝑟𝑖)𝑖≠𝑖∗ ∈ ({0, 1}𝑝(𝜅))𝑁−1.

For correctness, we require that for any seed ∈ {0, 1}𝜅 , 𝑖∗ ∈ [𝑁], and aux ∈ {0, 1}∗, we have 𝑟𝑖 = 𝑟 ′𝑖 for all 𝑖 ≠ 𝑖∗, where
(𝑟𝑖)𝑖∈[𝑁] ∶= TreePRG(seed, aux), path ∶= GetPath(𝑖∗, seed, aux), and (𝑟 ′𝑖)𝑖≠𝑖∗ ∶= Reconst(𝑖∗, path, aux).

25

We say that a tree PRG scheme is secure if for any QPT adversary, for any 𝑖∗ ∈ [𝑁], (and for any aux ∈ {0, 1}∗,)
its advantage

||||||||

Pr [
seed ← {0, 1}𝜅 , (𝑟𝑖)𝑖∈[𝑁] ∶= TreePRG(seed, aux) ∶

((𝑟𝑖)𝑖≠𝑖∗ , 𝑟𝑖∗ ,GetPath(𝑖∗, seed, aux)) = 1]

− Pr [
seed ← {0, 1}𝜅 , (𝑟𝑖)𝑖∈[𝑁] ∶= TreePRG(seed, aux), 𝑠 ← {0, 1}𝑝(𝜅) ∶

((𝑟𝑖)𝑖≠𝑖∗ , 𝑠,GetPath(𝑖∗, seed, aux)) = 1]

||||||||
is negligible in the security parameter.

Definition 18 (Collision-resistance of Reconst). We say that Reconst is collision-resistant if for any QPT adver-
sary, 𝑖∗ ∈ [𝑁], and aux ∈ {0, 1}∗, its advantage

Pr [
(path, path′) ← (1𝜅) ∶

path ≠ path′ ∧ Reconst(𝑖∗, path, aux) = Reconst(𝑖∗, path′, aux)]

is negligible in 𝜅.

Definition 19 (Commitment).We say that a commitment scheme Com∶ {0, 1}∗ × {0, 1}𝜅 → {0, 1}𝜅 is

– non-invertible if for any QPT adversary , its advantage

Pr[com ← {0, 1}𝜅 , (𝑥, 𝜌) ← (com) ∶ Com(𝑥; 𝜌) = com]

is negligible in the security parameter;
– binding if for any QPT adversary , its advantage

Pr[(𝑥, 𝜌, 𝑥′, 𝜌′) ← (1𝜅) ∶ 𝑥 ≠ 𝑥′ ∧ Com(𝑥; 𝜌) = Com(𝑥′; 𝜌′)]

is negligible in the security parameter;
– collision-resistant if for any QPT adversary , its advantage

Pr[(𝑥, 𝜌, 𝑥′, 𝜌′) ← (1𝜅) ∶ (𝑥, 𝜌) ≠ (𝑥′, 𝜌′) ∧ Com(𝑥; 𝜌) = Com(𝑥′; 𝜌′)]

is negligible in the security parameter;
– hiding if for any QPT adversary  and for any 𝑥 ∈ {0, 1}∗, its advantage

||||
Pr

com←{0,1}𝜅
[(com) = 1] − Pr

𝜌←{0,1}𝜅
[(Com(𝑥; 𝜌)) = 1]

||||

is negligible in the security parameter.

A.4 Lemmas on Quantum Random Oracles

We use the following two lemmas on quantum random oracles.

Zhandry [Zha15] showed the following lemma on the collision resistance of quantum random oracle.

Lemma 15 ([Zha15, Thm.3.1] and [Zha12, Cor.7.5]). Let H∶  →  be a random function. Then any algorithm
that makes 𝑞 quantum queries to H outputs a collision for H with probability at most 632(𝑞 + 1)3/| |. 15

Grilo et al. showed that one cannot distinguish whether the random oracle is reprogrammed or not if the min-

entropy of the reprogrammed point is sufficiently high [GHHM21].

Lemma 16 ([GHHM21, Prop.1]). Let 1, 2, and  be finite sets. Let  be an adversary that makes 𝑅 queries to
Reprogram and 𝑞 quantum queries to |O𝑏⟩. Then, the distinguishing advantage of  is bounded by

|Pr[Repro0 = 1] − Pr[Repro1 = 1]| ≤
3𝑅
2
√
𝑞/|1|,

where Repro𝑏 and Reprogram is defined in Figure 10.

26

1: Game Repro𝑏
2: O0 ← Func(1 × 2,)
3: O1 ∶= O0

4: 𝑏′ ← |O𝑏⟩,Reprogram()
5: return 𝑏′

1: Reprogram(𝑥2)
2: 𝑥1 ← 1

3: 𝑦 ← 
4: O1 ∶= O1[(𝑥1, 𝑥2) ↦ 𝑦]
5: return 𝑥1

Fig. 10. Adaptive reprogramming games Repro𝑏 for bit 𝑏 ∈ {0, 1} and Reprogram.

1: G0,G𝑇 ,G𝐹

2: (𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅);  ∶= ∅
3: (𝜇∗, (ℎ∗1 , … , ℎ∗𝑛, 𝑎∗𝑛+1)) ← Sign,|H⟩,|𝜸⟩(𝑣𝑘)
4: if (𝜇∗, (ℎ∗1 , … , ℎ∗𝑛, 𝑎∗𝑛+1)) ∈  then
5: return false

6: for 𝑖 ∈ [𝑛]: 𝑐∗𝑖 ∶= 𝛾𝑖(ℎ∗𝑖)
7: (𝑎∗1 , … , 𝑎∗𝑛) ∶= Rep(𝑣𝑘, 𝑐∗1 , … , 𝑐∗𝑛 , 𝑎∗𝑛+1)
8: if (𝑎∗1 , … , 𝑎∗𝑛) = ⊥ then return false

9: ℎ∗0 ∶= ∅
10: for 𝑖 ∈ [𝑛]: ℎ̄𝑖 ∶= H(aux∗𝑖 , ℎ∗𝑖−1, 𝑎∗𝑖)
11: 𝑑 ∶= V(𝑣𝑘, 𝑎∗1 , 𝑐∗1 , … , 𝑎∗𝑛, 𝑐∗𝑛 , 𝑎∗𝑛+1) //G𝑇, G𝐹

12: return boole(∀𝑖 ∈ [𝑛] ∶ ℎ∗𝑖 = ℎ̄𝑖) //G0

13: return 𝑑 ∧ boole(∀𝑖 ∈ [𝑛] ∶ ℎ∗𝑖 = ℎ̄𝑖) //G𝑇

14: return ¬𝑑 ∧ boole(∀𝑖 ∈ [𝑛] ∶ ℎ∗𝑖 = ℎ̄𝑖) //G𝐹

1: Sign(𝜇)
2: ℎ0 ∶= ∅; state ∶= ∅
3: for 𝑖 ∈ [𝑛] do
4: (𝑎𝑖, state) ← P(𝑠𝑘, 𝑐𝑖−1, state)
5: ℎ𝑖 ∶= H(aux𝑖, ℎ𝑖−1, 𝑎𝑖)
6: 𝑐𝑖 ∶= 𝛾𝑖(ℎ𝑖)
7: 𝑎𝑛+1 ← P(𝑠𝑘, 𝑐𝑛, state)
8:  ∶=  ∪ {(𝜇, (ℎ1, … , ℎ𝑛, 𝑎𝑛+1))}
9: return 𝜎 ∶= (ℎ1, … , ℎ𝑛, 𝑎𝑛+1)

1: Sign
′ ,|H⟩,|𝜸⟩

FScmt (𝑣𝑘) against FScmt[ID,H, 𝜸]
2: (𝜇∗, (ℎ∗1 , … , ℎ∗𝑛, 𝑎∗𝑛+1)) ← Sign,|H⟩,|𝜸⟩(𝑣𝑘)
3: for 𝑖 ∈ [𝑛]: 𝑐∗𝑖 ∶= 𝛾𝑖(ℎ∗𝑖)
4: (𝑎∗1 , … , 𝑎∗𝑛) ∶= Rep(𝑣𝑘, 𝑐∗1 , … , 𝑐∗𝑛 , 𝑎∗𝑛+1)
5: return (𝜇∗, (𝑎∗1 , … , 𝑎∗𝑛, 𝑎∗𝑛+1))

1: FScmt ’s simulation of Sign(𝜇)
2: (𝑎1, … , 𝑎𝑛, 𝑎𝑛+1) ← Sign

′(𝜇)
3: ℎ0 ∶= ∅
4: for 𝑖 ∈ [𝑛] do
5: ℎ𝑖 ∶= H(aux𝑖, ℎ𝑖−1, 𝑎𝑖)
6: return 𝜎 ∶= (ℎ1, … , ℎ𝑛, 𝑎𝑛+1)

Fig. 11. Games G0, G𝑇 , and G𝐹 and an adversaryFScmt for sEUF-CMA security proof of FSh.

27

A.5 (Strong) Existential Unforgeability of FS𝐡

Proof (of Theorem 2).We only consider sEUF-CMA security since the proof for EUF-CMA security is essentially

the same.

We consider the following games:

– G0: This is the original sEUF-CMA game as in Figure 11. The challenger checks if ℎ∗𝑖 = ℎ̄𝑖 for all 𝑖 ∈ [𝑛] (See
L.12).

– G𝑇 : In this game, the challenger checks if ℎ∗𝑖 = ℎ̄𝑖 for all 𝑖 ∈ [𝑛] and V(𝑣𝑘, 𝑎∗1 , 𝑐∗1 , … , 𝑎∗𝑛+1) = true (See L.13).
– G𝐹 : In this game, the challenger checks if ℎ∗𝑖 = ℎ̄𝑖 for all 𝑖 ∈ [𝑛] and V(𝑣𝑘, 𝑎∗1 , 𝑐∗1 , … , 𝑎∗𝑛+1) = false (See L.14).

Apparently, we have Advseuf-cma
FSh[ID,H,𝜸](1

𝜅) = Pr[𝑊0] ≤ Pr[𝑊𝑇] + Pr[𝑊𝐹].
On G𝑇 , we can construct an adversary FScmt against FScmt[ID,H, 𝜸] that simulates Sign as in Figure 11.

We argue that if’s output (𝜇∗, (ℎ∗1 , … , ℎ∗𝑛, 𝑎∗𝑛+1)) is fresh thenFScmt ’s output (𝜇∗, (𝑎∗1 , … , 𝑎∗𝑛+1)) is also fresh.
Suppose thatFScmt ’s output (𝜇∗, (𝑎∗1 , … , 𝑎∗𝑛+1)), which is produced from’s output (𝜇∗, (ℎ∗1 , … , ℎ∗𝑛, 𝑎∗𝑛+1)), is in the
list. This means that 𝜇∗ is queried by , FScmt receives (𝑎∗1 , … , 𝑎∗𝑛+1) from its sigining oracle Sign

′
, FScmt com-

putes ℎ∗𝑖 ∶= H(aux𝑖, ℎ∗𝑖−1, 𝑎∗𝑖) for 𝑖 = 1, … , 𝑛, and returns (ℎ∗1 , … , ℎ∗𝑛, 𝑎∗𝑛+1) to. Thus,’s output (𝜇∗, (ℎ∗1 , … , ℎ∗𝑛, 𝑎∗𝑛+1))
also should be in the list.

Hence, if  wins, thenFScmt also wins. We have

Pr[𝑊𝑇] ≤ Advseuf-cma
FScmt[ID,H,𝜸],FScmt

(1𝜅).

On G𝐹 , if non-⊥ (𝑎∗1 , … , 𝑎∗𝑛) is produced by Rep in L.7, then V(𝑣𝑘, 𝑎∗1 , 𝑐∗1 , … , 𝑐∗𝑛 , 𝑎∗𝑛+1) should be true since ID is

computationally sound. In other words, if it is violated, we can construct an adversarysnd against ID by using

 against FSh such that

Pr[𝑊𝐹] ≤ AdvsoundID,𝜸,snd
(1𝜅).

This completes the proof. ⊓⊔

A.6 S-DEO, MBS, and M-S-UEO securities of FS𝐡

We show Lemma 11.

– MBS security: Suppose that, on input 𝑣𝑘, against theMBS security outputs (𝑣𝑘, 𝜇, 𝜇′, 𝜎) satisfyingVh(𝑣𝑘, 𝜇, 𝜎) =
Vh(𝑣𝑘, 𝜇′, 𝜎) = true and 𝜇 ≠ 𝜇′, where 𝜎 = (ℎ1, … , ℎ𝑛, 𝑎𝑛+1). In both verifications, the computations of 𝑎𝑖’s
and 𝑐𝑖’s are the same. Let aux𝑖 and aux′𝑖 be the auxiliary values in the verification process of 𝜇 and 𝜇′ in Vh
(Figure 4), respectively. Since both verifications output true, we have

ℎ𝑖 = H(aux𝑖, ℎ𝑖−1, 𝑎𝑖) = H(aux′𝑖 , ℎ𝑖−1, 𝑎𝑖) for all 𝑖 ∈ [𝑛].

Suppose that for all 𝑙 ≤ 𝜆, we have aux𝑙 = aux′𝑙 . This violates the condition in the collision resistance property
with respect to message on index 𝜆 (Definition 8). Otherwise, there is an index 𝑙 ≤ 𝜆 satisfying aux𝑙 ≠ aux′𝑙
and we find a collision (aux𝑙 , ℎ𝑙−1, 𝑎𝑙) ≠ (aux′𝑙 , ℎ𝑙−1, 𝑎𝑙) for H. The reductions are easy and we omit them.

– S-DEO security: Suppose that, on input 𝑣𝑘,  outputs (𝑣𝑘′, 𝜇∗, 𝜎∗) satisfying Vh(𝑣𝑘′, 𝜇∗, 𝜎∗) = true, there
exists 𝜇 ≠ 𝜇∗ such that (𝜇, 𝜎∗) is contained in the list , and 𝑣𝑘 ≠ 𝑣𝑘′, where 𝜎∗ = (ℎ∗1 , … , ℎ∗𝑛, 𝑎∗𝑛+1). We

notice that we have Vh(𝑣𝑘′, 𝜇∗, 𝜎∗) = Vh(𝑣𝑘, 𝜇, 𝜎∗) = true with 𝜇 ≠ 𝜇∗ due to the correctness of the signature
scheme. Thus the situation is the same as the MBS security, and we will find a collision for aux with respect

to message or H.
– M-S-UEO security: The proof is very similar to that for MBS security. Suppose that, on input 𝑣𝑘,  against

the MBS security outputs (𝑣𝑘, 𝑣𝑘′, 𝜇, 𝜇′, 𝜎) satisfying Vh(𝑣𝑘, 𝜇, 𝜎) = Vh(𝑣𝑘′, 𝜇′, 𝜎) = true and 𝑣𝑘 ≠ 𝑣𝑘′, where
𝜎 = (ℎ1, … , ℎ𝑛, 𝑎𝑛+1). In both verifications, the computations of 𝑎𝑖’s and 𝑐𝑖’s are the same. Let aux𝑖 and aux′𝑖
be the auxiliary values in the verification process of 𝜇 with 𝑣𝑘 and 𝜇′ with 𝑣𝑘′ in Vh (Figure 4), respectively.

Since both verifications output true, we have

ℎ𝑖 = H(aux𝑖, ℎ𝑖−1, 𝑎𝑖) = H(aux′𝑖 , ℎ𝑖−1, 𝑎𝑖) for all 𝑖 ∈ [𝑛].

Suppose that for all 𝑙 ≤ 𝜆, we have aux𝑙 = aux′𝑙 . This violates the condition in the collision resistance property
with respect to verification key on index 𝜆 (Definition 8). Otherwise, there is an index 𝑙 ≤ 𝜆 satisfying

aux𝑙 ≠ aux′𝑙 and we find a collision (aux𝑙 , ℎ𝑙−1, 𝑎𝑙) ≠ (aux′𝑙 , ℎ𝑙−1, 𝑎𝑙) for H. The reductions are easy and we omit

them.

15
The constant 632 > 24 ⋅𝜋223/3 is taken from 𝐶 = 24𝐶′

in the proof of [Zha15, Thm.3.1] for general  and with # > #
and 𝐶′ = 𝜋223/3 in [Zha12, Cor.7.5].

28

A.7 Weak Non-Resignability of FS𝐡
In this subsection, we show Lemma 12.

In order to treat multi-point reprogramming, we review the one-way-to-hiding (O2H) lemma in [AHU19,

Thm.3] stated as follows:

Lemma 17 (One-way-to-Hiding Lemma, Revisited [AHU19, Thm.3], adapted). Let  ⊆  be random. Let
𝐺, 𝐻 ∶  →  be random functions satisfying ∀𝑥 ∉  , 𝐺(𝑥) = 𝐻(𝑥). Let 𝑧 be a random string. Note that  , 𝐺, 𝐻 , 𝑧
may have arbitrary joint distribution.

Let be a 𝑞-query oracle algorithm. Let|𝐺⟩ be an algorithm that on input 𝑧 chooses 𝑖 ← [𝑞], runs|𝐺⟩(𝑧) until
the 𝑖-th query, then measure all query input registers in the computational basis and outputs an element 𝑠 ∈  of
measurement outcomes. Let

𝑃𝑙 ∶= Pr[𝑏 ← |𝐻⟩(𝑧) ∶ 𝑏 = 1],

𝑃𝑟 ∶= Pr[𝑏 ← |𝐺⟩(𝑧) ∶ 𝑏 = 1],

𝑃𝑔 ∶= Pr[𝑠 ← |𝐺⟩(𝑧) ∶ 𝑠 ∈ ].

Then, we have
|𝑃𝑙 − 𝑃𝑟 | ≤ 2𝑞

√
𝑃𝑔 and

|||
√
𝑃𝑙 −

√
𝑃𝑟
||| ≤ 2𝑞

√
𝑃𝑔 .

If 𝑧 and  are independent, the bound can be 4𝑞 ⋅ max𝑥∈ Pr[𝑥 ∈ ]. But, in our context, 𝑧 and  are correlated.

Don, Fehr, Huang, and Struck [DFHS24] showed that the BUFF conversion with salt ($-BUFF),16 satisfies

their revised non-resignability in the (Q)ROM, where the adversary is given auxiliary information AUX(𝜇, 𝑣𝑘)
independent of Hwhose statistical entropy is sufficiently high. The proof below can be considered as a simplified

version of their QROM proof adapted to the case for FSh without salt. Very recently, Don, Fehr, Huang, Liao, and
Struck [DFH

+
24] showed that the standard BUFF conversion is enough in the QROM for somewhat stronger

non-resignability where the adversary can get AUX(𝜇, 𝑠𝑘) whose computational entropy is sufficiently high.

Proof (of Lemma 12). We consider the following games defined in Figure 12 and Figure 13.

– G0: This is the original wNR security game.  is given 𝑣𝑘 and 𝜎, which is produced on a message 𝜇 ← ,

and outputs 𝑣𝑘′ and 𝜎′
. If 𝑣𝑘 ≠ 𝑣𝑘′ and Vrfy

H,𝜸
h (𝑣𝑘′, 𝜇, 𝜎′) = true, then the adversary wins.

– G1: In this game, we introduce a collision-check procedure for aux as follows: Receiving 𝑣𝑘′ ≠ 𝑣𝑘 and 𝜎′
, the

challenger computes aux′𝑖 ∶= aux(𝑖, 𝑣𝑘′, 𝜇) for all 𝑖 ∈ [𝑛]. If, there exists 𝑙 ∈ [𝜆, 𝑛] such that aux𝑖 = aux′𝑖 for all
𝑖 ∈ [1, 𝑙], then the adversary loses. This modification is justified by the collision-resistance property of aux
with respect to the verification key on index 𝜆.

– G2: In this game, we introduce a collision-check procedure for H as follows: Receiving 𝑣𝑘′ ≠ 𝑣𝑘 and 𝜎′
,

the challenger checks if H(aux𝑗 , ℎ𝑗−1, 𝑎𝑗) = H(aux′𝑗 , ℎ′𝑗−1, 𝑎′𝑗) while (aux𝑗 , ℎ𝑗−1, 𝑎𝑗) ≠ (aux′𝑗 , ℎ′𝑗−1, 𝑎′𝑗) for some

𝑗 ∈ [𝑛], where aux′𝑗 , ℎ′𝑗 , 𝑎′𝑗 are values in the verification of 𝑣𝑘′, 𝜇, 𝜎′
. If such a pair is found, then the adversary

loses. This modification is justified by the collision-resistance property of H.
Notice that the adversary should output 𝑣𝑘′ and 𝜎′

such that (aux𝑗 , ℎ𝑗−1) ≠ (aux′𝑗 , ℎ′𝑗−1) for all 𝑗 ∈ [𝑛]. Let 𝜁
be a minimum index in [𝑛] such that aux𝜁 = (𝜇, 𝜂𝜁). Now, H should be asked at least one point (𝜇, 𝜂′𝜁 , ℎ′𝜁−1, 𝑎′𝜁)
to compute ℎ′𝜁 in the verification of (𝑣𝑘′, 𝜇, 𝜎′), while this point is not asked in the signing/verification of

(𝑣𝑘, 𝜇, 𝜎).
– G3: In this game, after obtaining 𝜎 = (ℎ1, … , ℎ𝑛, 𝑎𝑛+1), we reprogram the points related to 𝜇 with random

values.

Due to the O2H theorem (Lemma 17), the difference between the two games G2 and G3 is upper-bounded by

2𝑞
√
Pr[G𝑔,3 ⇒ 1], where G𝑔,3 is defined in Figure 13.

Notice that the problem G𝑔,3 in our context is boiled down to an unstructured database search since  is

given no information of G(𝜇, ⋅) via 𝑧 = (𝑣𝑘, 𝜎). Therefore, the probability Pr[G𝑔,3 ⇒ 1] is at most 1/||.
– G4: Next, the challenger gives a filtered randomoracleH′

, which returns⊥ if the input is (𝜇, ⋅) to the adversary.
Notice that in this game, the adversary has no information of the hash valueH(𝜇, 𝜂′𝜁 , ℎ′𝜁−1, 𝑎′𝜁), while it outputs
ℎ′𝜁 in the signature. Therefore, the winning probability in this game is at most 1/||.
The difference between the two games G3 and G4 is bounded by the O2H and we have 2𝑞

√
Pr[G𝑔,4 ⇒ 1],

where game G𝑔,4 is defined in Figure 13. Again, since  is given no information of G(𝜇, ⋅) via 𝑧 = (𝑣𝑘, 𝜎), the
probability Pr[G𝑔,4 ⇒ 1] is at most 1/||.

This completes the proof. ⊓⊔
16
The signer first chooses salt salt, computes 𝑦 = 𝐹(𝑣𝑘, 𝜇, salt), and generates a signature 𝜎 ← Sign(𝑠𝑘, 𝜇), and outputs

(𝜎, 𝑦, salt), where 𝐹 is the random oracle.

29

1: G0

2: (𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
3: 𝜇 ← 
4: 𝜎 ← Sign

H,𝜸
h (𝑠𝑘, 𝜇)

5: (𝜎′, 𝑣𝑘′) ← |H⟩,|𝜸⟩(𝑣𝑘, 𝜎)
6: if 𝑣𝑘 = 𝑣𝑘′ then return false

7: return Vrfy
H,𝜸
h (𝑣𝑘′, 𝜇, 𝜎′)

1: Sign
H,𝜸
h (𝑠𝑘, 𝜇)

2: ℎ0 ∶= ∅; state ∶= ∅
3: for 𝑖 ∈ [𝑛] do
4: (𝑎𝑖, state) ← P(𝑠𝑘, 𝑐𝑖−1, state)
5: ℎ𝑖 ∶= H(aux𝑖, ℎ𝑖−1, 𝑎𝑖)
6: 𝑐𝑖 ∶= 𝛾𝑖(ℎ𝑖)
7: 𝑎𝑛+1 ← P(𝑠𝑘, 𝑐𝑛, state)
8: return 𝜎 ∶= (ℎ1, … , ℎ𝑛, 𝑎𝑛+1)

1: G1 and G2

2: (𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
3: 𝜇 ← 
4: 𝜎 ← Sign

H,𝜸
h (𝑠𝑘, 𝜇)

5: (𝜎′, 𝑣𝑘′) ← |H⟩,|𝜸⟩(𝑣𝑘, 𝜎)
6: if 𝑣𝑘 = 𝑣𝑘′ then return false

7: parse 𝜎′ = (ℎ′1, … , ℎ′𝑛, 𝑎′𝑛+1)
8: for 𝑖 ∈ [𝑛]: 𝑐′𝑖 ∶= 𝛾𝑖(ℎ′𝑖)
9: (𝑎′1, … , 𝑎′𝑛) ∶= Rep(𝑣𝑘, 𝑐′1, … , 𝑐′𝑛, 𝑎′𝑛+1)
10: if (𝑎′1, … , 𝑎′𝑛) = ⊥ then return false

11: if ∃𝑙 ∈ [𝜆, 𝑛], ∀𝑖 ∈ [1, 𝑙], aux𝑖 = aux′𝑖 then return false //G1-
12: ℎ′0 ∶= ∅
13: for 𝑖 ∈ [𝑛]: ℎ̄𝑖 ∶= H(aux′𝑖 , ℎ′𝑖−1, 𝑎′𝑖)
14: for 𝑖 ∈ [𝑛] do //G2-
15: if (aux𝑖, ℎ𝑖−1, 𝑎𝑖) ≠ (aux′𝑖 , ℎ′𝑖−1, 𝑎′𝑖) and ℎ𝑖 = ℎ̄𝑖 then return false

//G2-

16: return boole(∀𝑖 ∈ [𝑛] ∶ ℎ′𝑖 = ℎ̄𝑖)

Fig. 12. Games G0, G1, and G2 for the wNR security proof of FSh.

30

1: G3

2: H ← Func({0, 1}∗,)
3: G ∶= H

4: (𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
5: 𝜇 ← 
6: 𝜎 ← Sign

H,𝜸
h (𝑠𝑘, 𝜇)

7:  ∶= {(aux𝑖, ℎ𝑖−1, 𝑎𝑖) ∶ aux𝑖 contains 𝜇}
8: for (aux𝑖, ℎ𝑖−1, 𝑎𝑖) ∈  do
9: ℎ̂𝑖 ← 
10: G ∶= G[(aux𝑖, ℎ𝑖−1, 𝑎𝑖) ↦ ℎ̂𝑖]
11: (𝜎′, 𝑣𝑘′) ← |G⟩,|𝜸⟩(𝑣𝑘, 𝜎)
12: if 𝑣𝑘 = 𝑣𝑘′ then return false

13: parse 𝜎′ = (ℎ′1, … , ℎ′𝑛, 𝑎′𝑛+1)
14: for 𝑖 ∈ [𝑛]: 𝑐′𝑖 ∶= 𝛾𝑖(ℎ′𝑖)
15: (𝑎′1, … , 𝑎′𝑛) ∶= Rep(𝑣𝑘, 𝑐′1, … , 𝑐′𝑛, 𝑎′𝑛+1)
16: if (𝑎′1, … , 𝑎′𝑛) = ⊥ then return false

17: if ∃𝑙 ∈ [𝜆, 𝑛], ∀𝑖 ∈ [1, 𝑙], aux𝑖 = aux′𝑖 then
18: return false

19: ℎ′0 ∶= ∅
20: for 𝑖 ∈ [𝑛]: ℎ̄𝑖 ∶= H(aux′𝑖 , ℎ′𝑖−1, 𝑎′𝑖)
21: for 𝑖 ∈ [𝑛] do
22: if (aux𝑖, ℎ𝑖−1, 𝑎𝑖) ≠ (aux′𝑖 , ℎ′𝑖−1, 𝑎′𝑖) and ℎ𝑖 = ℎ̄𝑖 then

return false
23: return boole(∀𝑖 ∈ [𝑛] ∶ ℎ′𝑖 = ℎ̄𝑖)

1: G4

2: H ← Func({0, 1}∗,)
3: G ∶= H

4: (𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
5: 𝜇 ← 
6: 𝜎 ← Sign

H,𝜸
h (𝑠𝑘, 𝜇)

7:  ∶= {(𝜇, ⋅)}
8: for (𝜇, 𝑥) ∈  do
9: G ∶= G[(𝜇, 𝑥) ↦ ⊥]

10: (𝜎′, 𝑣𝑘′) ← |G⟩,|𝜸⟩(𝑣𝑘, 𝜎)
11: if 𝑣𝑘 = 𝑣𝑘′ then return false

12: parse 𝜎′ = (ℎ′1, … , ℎ′𝑛, 𝑎′𝑛+1)
13: for 𝑖 ∈ [𝑛]: 𝑐′𝑖 ∶= 𝛾𝑖(ℎ′𝑖)
14: (𝑎′1, … , 𝑎′𝑛) ∶= Rep(𝑣𝑘, 𝑐′1, … , 𝑐′𝑛, 𝑎′𝑛+1)
15: if (𝑎′1, … , 𝑎′𝑛) = ⊥ then return false

16: if ∃𝑙 ∈ [𝜆, 𝑛], ∀𝑖 ∈ [1, 𝑙], aux𝑖 = aux′𝑖 then
17: return false

18: ℎ′0 ∶= ∅
19: for 𝑖 ∈ [𝑛]: ℎ̄𝑖 ∶= H(aux′𝑖 , ℎ′𝑖−1, 𝑎′𝑖)
20: for 𝑖 ∈ [𝑛] do
21: if (aux𝑖, ℎ𝑖−1, 𝑎𝑖) ≠ (aux′𝑖 , ℎ′𝑖−1, 𝑎′𝑖) and ℎ𝑖 = ℎ̄𝑖 then

return false
22: return boole(∀𝑖 ∈ [𝑛] ∶ ℎ′𝑖 = ℎ̄𝑖)

1: G𝑔,3

2: H ← Func({0, 1}∗,)
3: G ∶= H

4: (𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
5: 𝜇 ← 
6: 𝜎 ← Sign

H,𝜸
h (𝑠𝑘, 𝜇)

7:  ∶= {(aux𝑖, ℎ𝑖−1, 𝑎𝑖) ∶ aux𝑖 contains 𝜇}
8: for (aux𝑖, ℎ𝑖−1, 𝑎𝑖) ∈  do
9: ℎ̂𝑖 ← 
10: G ∶= G[(aux𝑖, ℎ𝑖−1, 𝑎𝑖) ↦ ℎ̂𝑖]
11: 𝑧 ∶= (𝑣𝑘, 𝜎)
12: 𝑠 ← |G⟩,|𝜸⟩(𝑣𝑘, 𝜎)
13: return boole(𝑠 ∈ )

1: G𝑔,4

2: F ← Func({0, 1}∗,)
3: H ∶= F

4: (𝑣𝑘, 𝑠𝑘) ← Gen(1𝜅)
5: 𝜇 ← 
6: 𝜎 ← Sign

F,𝜸
h (𝑠𝑘, 𝜇)

7: 3 ∶= {(aux𝑖, ℎ𝑖−1, 𝑎𝑖) ∶ aux𝑖 contains 𝜇}
8: for (aux𝑖, ℎ𝑖−1, 𝑎𝑖) ∈ 3 do
9: ℎ̂𝑖 ← 

10: H ∶= H[(aux𝑖, ℎ𝑖−1, 𝑎𝑖) ↦ ℎ̂𝑖]
11: G ∶= H

12:  ∶= {(𝜇, ⋅)}
13: for (𝜇, 𝑥) ∈  do
14: G ∶= G[(𝜇, 𝑥) ↦ ⊥]
15: 𝑧 ∶= (𝑣𝑘, 𝜎)
16: 𝑠 ← |G⟩,|𝜸⟩(𝑣𝑘, 𝜎)
17: return boole(𝑠 ∈ )

Fig. 13. Games G3 and G4 for the wNR security proof of FSh.

31

1: Signh,last(𝑠𝑘, 𝜇)
2: ℎ0 ∶= ∅; 𝑐0 ∶= ∅; state ∶= ∅
3: for 𝑖 = 1, … , 𝑛 do
4: (𝑎𝑖, state) ← P(𝑠𝑘, 𝑐𝑖−1, state)
5: ℎ𝑖 ∶= H(aux𝑖, ℎ𝑖−1, 𝑎𝑖)
6: 𝑐𝑖 ∶= 𝛾𝑖(ℎ𝑖)
7: 𝑎𝑛+1 ← P(𝑠𝑘, 𝑐𝑛, state)
8: return 𝜎 ∶= (ℎ𝑛, 𝑎𝑛+1)

1: Vrfyh,last(𝑣𝑘, 𝜇, 𝜎)
2: Parse 𝜎 = (ℎ𝑛, 𝑎𝑛+1)
3: ℎ̂0 ∶= ∅; state ∶= ∅
4: 𝑐𝑛 ∶= 𝛾𝑛(ℎ𝑛)
5: for 𝑖 = 1, … , 𝑛 do
6: (𝑎𝑖, state) ∶= Rep𝑖(𝑣𝑘, (𝑎𝑗 , 𝑐𝑗)𝑗∈[𝑖−1], 𝑐𝑛, 𝑎𝑛+1, state)
7: if 𝑎𝑖 = ⊥ then
8: return ⊥
9: ℎ̂𝑖 ∶= H(aux𝑖, ℎ̂𝑖−1, 𝑎𝑖)

10: 𝑐𝑖 ∶= 𝛾𝑖(ℎ̂𝑖)
11: return boole(ℎ𝑛 = ℎ̂𝑖)

Fig. 14. Scheme FSh,last[ID,H, 𝜸] = (Gen, Signh,last,Vrfyh,last), where ID = (Gen, P,V), H∶ {0, 1}∗ →  is modeled as the random

oracle, and 𝛾𝑖 ∶  → 𝑖 for 𝑖 ∈ [𝑛] is also modeled as the random oracle. For ease of notation, we let aux𝑖 = aux(𝑖, 𝑣𝑘, 𝜇).

A.8 Proof Sketch of HVZK Property of Biscuit

Proof (sketch of Lemma 13). The proof in [FJR22] considered four games G0, … ,G3. However, we consider seven

games defined as follows:

– G0: In this game, the adversary can obtain the transcript generated by the real prover and verifier.

– G1: In this game, the challenger first chooses challenges 𝑐1 and 𝑐2 and then runs the prover using those

challenges. Since ID is public-coin, this modification is conceptual.

– G2: In this game, the prover chooses (salt, (seed(𝑒))𝑒∈[𝜏]) uniformly at random. This modification is justified

by the security of PRF.

– G3: Next, the prover chooses seed
(𝑒)
𝑖∗𝑒 and 𝜌(𝑒)𝑖∗𝑒 for 𝑒 ∈ [𝜏] uniformly at random. This modification is justified

by the security of TreePRG.

– G4: Next, we make the prover choose (J𝒔K(𝑒)𝑖∗𝑒 , J𝒂K(𝑒)𝑖∗𝑒 , J𝒄K
(𝑒)
𝑖∗𝑒) uniformly at random. This modification is justified

by the security of MakeShares used for those shares.

– G5: In this game, the prover is modified to choose com(𝑒)
𝑖∗𝑒 uniformly at random. This modification is justified

by the hiding property of the commitment scheme Com.

– G6: Next, wemake the prover compute J𝒗K(𝑒)𝑖∗𝑒
∶= −∑𝑖≠𝑖∗𝑒 J𝒗K

(𝑒)
𝑖 . Thismodification is justified by the correctness

of the MPCitH protocol.

– G7: Finally, the prover chooses 𝜟𝒔(𝑒), 𝜟𝒄(𝑒), and J𝜶K(𝑒)𝑖∗𝑒 uniformly at random and now the modified prover is

equivalent to the simulator.

Let us show that the distributions of the output of the prover in G6 and G7 are equivalent: For simplicity of

notation, we omit 𝑒: We note that the shares for party 𝑖 ≠ 𝑖∗ are the same in both games. However, since

J𝒔K𝑖∗ , J𝒄K𝑖∗ , and J𝒂K𝑖∗ are hidden from the adversary, they mask the distribution of 𝜟𝒔, 𝜟𝒄, and J𝜶K𝑖∗ in G6.

Thus, the distributions of the views from the adversary are the same in both games.

B Variant of FS𝐡

We notice that FAEST (in our formulation in Section H.1) and SDitH put only the last hash value ℎ𝑛 in a signature;
we call this transform FSh,last defined later. If ℎ1, … , ℎ𝑛−1 are independent of amessage and only the last ℎ𝑛 involves
a message, then we can treat such signature schemes as online/offline signature [EGM90] as Deshpande, Howe,

Szefer, and Yue [DHSY24] pointed out. From practical views, we can store several pre-signature values by using

P1, … , P𝑛 since ℎ1, … , ℎ𝑛−1 are independent of a message and, receiving a message 𝜇 to be signed, then pick up

informations to produce 𝑎𝑛+1. While this nature came from the collapsed three-pass ID protocol [AHJ
+
23], we

can show its security without considering the collapsed one.

To eliminate ℎ1, … , ℎ𝑛−1, the commitment-reproducing algorithm Rep should be able to reproduce 𝑎1, … , 𝑎𝑛
from the last challenge 𝑐𝑛 = 𝛾𝑛(ℎ𝑛) and the last message 𝑎𝑛+1. In typical MPCitH protocol, Rep can be decomposed

into 𝑛 algorithms as follows:

32

1: Sign
′ ,|H⟩,|𝜸⟩

FSh
(𝑣𝑘) against FSh[ID,H, 𝜸]

2: (𝜇∗, (ℎ∗𝑛, 𝑎∗𝑛+1)) ← Sign,|H⟩,|𝜸⟩(𝑣𝑘)
3: ℎ̂0 ∶= ∅; state ∶= ∅
4: 𝑐∗𝑛 ∶= 𝛾𝑛(ℎ∗𝑛)
5: for 𝑖 = 1, … , 𝑛 do
6: (𝑎∗𝑖 , state) ∶= Rep𝑖(𝑣𝑘, (𝑎∗𝑗 , 𝑐∗𝑗)𝑗∈[𝑖−1], 𝑐∗𝑛 , 𝑎∗𝑛+1, state)
7: if 𝑎∗𝑖 = ⊥ then return false

8: ℎ̂∗𝑖 ∶= H(aux∗𝑖 , ℎ̂∗𝑖−1, 𝑎∗𝑖)
9: 𝑐∗𝑖 ∶= 𝛾𝑖(ℎ̂∗𝑖)

10: return (𝜇∗, (ℎ̂∗1 , … , ℎ̂∗𝑛−1, ℎ∗𝑛, 𝑎∗𝑛+1))

1: FSh ’s simulation of Sign(𝜇)
2: (ℎ1, … , ℎ𝑛, 𝑎𝑛+1) ← Sign

′(𝜇)
3: return 𝜎 ∶= (ℎ𝑛, 𝑎𝑛+1)

Fig. 15. An adversary FSh for sEUF-CMA security proof of FSh,last.

Definition 20 (Decomposable commitment-reproducing algorithm). Assume that there exists a commitment-
reproducing alglorithm Rep that takes (𝑣𝑘, 𝑐1, … , 𝑐𝑛, 𝑎𝑛+1) as input and outputs messages (𝑎1, … , 𝑎𝑛), which may be
⊥. We say that Rep is decomposable if there exist DPT algorithms Rep1, … ,Rep𝑛 such that Rep is written as follows:

1: Rep(𝑣𝑘, 𝑐1, 𝑐2, … , 𝑐𝑛, 𝑎𝑛+1) //Ignore 𝑐1, … , 𝑐𝑛−1
2: ℎ̂0 ∶= ∅; state ∶= ∅
3: for 𝑖 = 1, … , 𝑛 do
4: (𝑎𝑖, state) ∶= Rep𝑖(𝑣𝑘, (𝑎𝑗 , 𝑐𝑗)𝑗∈[𝑖−1], 𝑐𝑛, 𝑎𝑛+1, state)
5: if 𝑎𝑖 = ⊥ then
6: return ⊥
7: ℎ̂𝑖 ∶= H(aux𝑖, ℎ̂𝑖−1, 𝑎𝑖)
8: 𝑐𝑖 ∶= 𝛾𝑖(ℎ̂𝑖) //Overwite 𝑐𝑖
9: return (𝑎1, … , 𝑎𝑛)

If Rep is decomposable, then we can consider the signature scheme FSh,last as the variant of FSh, defined in Fig-

ure 14.

We have the following theorem:

Theorem 4 (FSh ⇒ FSh,last). Suppose that Rep is decomposable. If FSh[ID,H, 𝜸] is EUF-CMA/sEUF-CMA-secure,
then FSh,last[ID,H, 𝜸] is also, respectively.

Combined with Theorem 2, we obtain the following corollary.

Corollary 1 (FScmt ⇒ FSh,last). Suppose that ID is computationally sound andRep is decomposable. If FScmt[ID,H, 𝜸]
is EUF-CMA/sEUF-CMA-secure, then FSh,last[ID,H, 𝜸] is also, respectively.

Proof (of Theorem 4).We only consider sEUF-CMA security since the proof for EUF-CMA security is essentially

the same.

Let us consider the reduction algorithmFSh as in Figure 15. Apparently, the simulation of the signing oracle

is perfect. We show that if’s output is valid for FSh,last, then the output of FSh is also valid for FSh.

Let (𝜇∗, (ℎ∗𝑛, 𝑎∗𝑛+1)) be’s output and let (𝜇∗, (ℎ̂∗1 , … , ℎ̂∗𝑛−1, ℎ∗𝑛, 𝑎∗𝑛+1) beFSh ’s output. Since’s output is valid,

we have ℎ∗𝑛 = ℎ̂∗𝑛. We next check how to compute the hash values in the verification algorithm Vrfyh (see

Figure 4). Let ℎ̄∗1 , … , ℎ̄∗𝑛 be hash values computed in L.7 of the verification algorithm Vrfyh on input 𝑣𝑘, 𝜇∗,
and 𝜎∗ = (ℎ̂∗1 , … , ℎ̂∗𝑛−1, ℎ̂∗𝑛, 𝑎∗𝑛+1). To compute them by Rep, we first compute 𝑐𝑛 = 𝛾𝑖(ℎ̂𝑛); We then compute for

𝑖 = 1, … , 𝑛, (𝑎∗𝑖 , state) ∶= Rep𝑖(𝑣𝑘, (𝑎∗𝑗 , 𝑐∗𝑗)𝑗∈[𝑖−1], 𝑐∗𝑛 , 𝑎∗𝑛+1, state) (and reject if 𝑎∗𝑖 = ⊥), ℎ̂∗𝑖 ∶= H(aux∗𝑖 , ℎ̂∗𝑖−1, 𝑎∗𝑖), and
𝑐∗𝑖 ∶= 𝛾𝑖(ℎ̂∗𝑖); After the recomputation of 𝑎∗1 , … , 𝑎∗𝑛 by this procedure, we compute ℎ̄∗𝑖 as H(aux∗𝑖 , ℎ̂∗𝑖−1, 𝑎∗𝑖). Thus, we
have ℎ̂∗𝑖 = ℎ̄∗𝑖 for all 𝑖 ∈ [𝑛] and the pair (𝜇∗, (ℎ̂∗1 , … , ℎ̂∗𝑛−1, ℎ∗𝑛, 𝑎∗𝑛+1) is also valid for FSh.

Finally, if (𝜇∗, (ℎ∗𝑛, 𝑎∗𝑛+1)) is new, then the converted signature is also new. This completes the proof. ⊓⊔

We also note that the above proof can be used to show wNR security.

Corollary 2 (FScmt ⇒ FSh,last). Suppose thatRep is decomposable. If FSh[ID,H, 𝜸] iswNR-secure, then FSh,last[ID,H, 𝜸]
is also.

33

C MQDSS

To discuss HVZK and non-divergency, we propose a new simulator for the SSH11 protocol SSH11. The simulator

SimSSH11 is defined as follows, where we omit the randomness for Com for brevity.

1. Receive input 𝑣𝑘 = (𝐹 , 𝒗), 𝑐1 = 𝛼 ∈ F𝑞 , and 𝑐2 = 𝑏 ∈ {0, 1}.
2. Compute messages as follows:

– If 𝑏 = 0, then pick 𝒓0, 𝒕0 ← F 𝑛
𝑞 and 𝒆0 ← F𝑚

𝑞 , compute com0 ∶= Com(𝒓0, 𝒕0, 𝒆0), pick a random com1 ←
{0, 1}𝜅 , compute 𝑎2 = (𝒕1, 𝒆1) = (𝛼𝒓0 − 𝒕0, 𝛼𝐹(𝒓0) − 𝒆0), and set 𝑎3 = 𝒓0.

– If 𝑏 = 1, then pick 𝒓1, 𝒕1 ← F 𝑛
𝑞 and 𝒆1 ← F𝑚

𝑞 , compute com1 ∶= Com(𝒓1, 𝛼(𝒗 − 𝐹(𝒓1)) − 𝐺(𝒕1, 𝒓1) − 𝒆1),
pick a random com0 ← {0, 1}𝜅 , set 𝑎2 ∶= (𝒕1, 𝒆1), and set 𝑎3 ∶= 𝒓1.

3. Output (𝑎1 = (com0, com1), 𝑎2, 𝑎3).

It is easy to show that SSH11 is 𝑞-HVZK, assuming Com is hiding.

It is also easy to that SSH11 is strongly non-divergent: If the condition (a) is met, then the adversary should

break the non-invertibility of Com. If the condition (b) is met, then the adversary should break the binding

property of Com. Hence, assuming Com’s security, the protocol is strongly non-divergent.

Those properties are easily extended to the 𝜏-parallel version of SSH11.
By using those properties, we can salvage the sEUF-CMA security of MQDSS in [DFM20, Cor.24] by using

the EUF-NMA security of MQDSS in [DFM20].

D MiRitH

We briefly review MiRitH. The signing key is 𝜶 ∈ F 𝑘
𝑞 and 𝐾 ∈ F

𝑟×(𝑛−𝑟)
𝑞 . The verification key consists of a seed

seed𝑣𝑘 , which produces 𝑀1, … ,𝑀𝑘 ∈ F𝑚×𝑛
𝑞 via a PRG, and a matrix 𝑀0 ∈ F𝑚×𝑛

𝑞 such that 𝑀𝜶 [𝐼𝑛−𝑟
−𝐾] = 𝑂, where

𝑀𝜶 ∶= 𝑀0 +∑𝑖 𝛼𝑖𝑀𝑖. The condition means that the rank of the matrix 𝑀𝜶 is at most 𝑟 .
We modify the underlying MPCitH protocol IDMiRitH, P = (P1, P2, P3) and Vwith Rep, as depicted in Figure 16.

– The first challenge 𝑅 is chosen from F 𝑠×𝑚
𝑞 , where 𝑠 < 𝑚.

– For 𝑀 ∈ F𝑚×𝑛
𝑞 , 𝑀𝑅 ∈ F𝑚×𝑟

𝑞 and 𝑀𝐿 ∈ F
𝑚×(𝑛−𝑟)
𝑞 denotes the matrices consisting of the first 𝑟 columns of 𝑀 and

the last (𝑛 − 𝑟) columns of 𝑀 , respectively.

– MakeShares generates pseudorandom shares from the seed and an auxiliary information (salt, 𝑖).
– The specification sheet just says that “The parties locally compute J𝑀𝜶,𝐿K and J𝑀𝜶,𝑅K” in P2. In the reference

implementation, 𝑀0,𝐿 and 𝑀0,𝑅 are added in a single index, and we let this index be 𝑖 = 1.
– In P3, 𝑎3 contains all 𝑁 − 1 state informations. But, this can be made compact by using GetPath.

For the details, see the original specification [ARV
+
23]. The signature scheme MiRitH = FSh[IDMiRitH,H, 𝜸] is

defined by aux1 = (salt, 𝜇) and aux2 = (salt, 𝜇). They used implicit domain separation of H for ℎ1 and ℎ2 [ARV+
23,

Sec.6.5], because the lengthes of 𝑎1 and (ℎ1, 𝑎2) differ.

D.1 Security

sEUF-CMA security:

Lemma 18 (𝑞𝑆-HVZK). Suppose that TreePRG andMakeShares are pseudorandom and Com is hiding. Then, IDMiRitH

is 𝑞𝑆-HVZK.

Proof (sketch). Following the proofs in [ARV
+
23, Sec.9.3] and [FJR22, Sec.E of ePrint], we give a sketch of the

proof:

– G0: In this game, the transcripts are generated by the real prover.

– G1: In this game, the challenger chooses challenges 𝑐1 and 𝑐2 and runs the prover using those challenges.

This change is just conceptual.

– G2: In this game, the prover chooses seed𝑖∗ and 𝜌𝑖∗ uniformly at random. This modification is justified by the

security of TreePRG.
– G3: Next, the prover chooses J𝐴K𝑖∗ (and J𝛼K𝑖∗ , J𝐾K𝑖∗ , and J𝐶K𝑖∗ if 𝑖∗ ≠ 𝑁) uniformly at random. This modifi-

cation is justified by the pseudorandomness of MakeShares.

34

1: P1(𝑠𝑘) for MiRitH

2: Choose salt at random

//Setup MPC
//Run the following procedure in parallel

3: Choose seed at random

//The original doesn’t have 𝜌𝑖
4: (seed𝑖, 𝜌𝑖)𝑖∈[𝑁] ∶= TreePRG(seed, salt)
5: for 𝑖 = 1 to 𝑁 − 1 do
6: (J𝐴K𝑖, J𝜶K𝑖, J𝐶K𝑖, J𝐾K𝑖) ∶= MakeShares(seed𝑖, salt)
7: state𝑖 ∶= seed𝑖

//The first part only for 𝑖 = 𝑁
8: J𝐴K𝑁 ∶= MakeShares(seed𝑁 , salt)
9: 𝐴 ∶= ∑𝑖J𝐴K𝑖
10: J𝜶K𝑁 ∶= 𝜶 − ∑𝑖∈[𝑁−1]J𝜶K𝑖
11: J𝐾K𝑁 ∶= 𝐾 − ∑𝑖∈[𝑁−1]J𝐾K𝑖
12: J𝐶K𝑁 ∶= 𝐴𝐾 −∑𝑖∈[𝑁−1]J𝐶K𝑖
13: state𝑁 ∶= (state𝑖, J𝜶K𝑁 , J𝐾K𝑁 , J𝐶K𝑁)

//Commit the input of MPC
14: forall 𝑖 ∈ [𝑁]: com𝑖 ∶= Com((salt, 𝑖, state𝑖); 𝜌𝑖)
15: 𝑎1 ∶= (com1, … , com𝑁)𝑒∈[𝜏]
16: state ∶= (salt, (state𝑖, 𝜌𝑖)𝑖∈[𝑁], (com𝑖)𝑖∈[𝑁],

(J𝐴K𝑖, J𝜶K𝑖, J𝐾K𝑖, J𝐶K𝑖)𝑖∈[𝑁])
17: return 𝑎1 and state

1: P2(𝑠𝑘, 𝑅, state) for MiRitH

//Simulate MPC
//The offset follows the reference
implementation

2: J𝑀𝜶,𝐿K1 ∶= 𝑀0,𝐿 +∑𝑗∈[𝑘]J𝛼𝑗K1𝑀𝑗 ,𝐿

3: forall 𝑖 ∈ [2, 𝑁]: J𝑀𝜶,𝐿K𝑖 ∶= ∑𝑗∈[𝑘]J𝛼𝑗K𝑖𝑀𝑗 ,𝐿

4: J𝑀𝜶,𝑅K𝑖 ∶= 𝑀0,𝑅 +∑𝑗∈[𝑘]J𝛼𝑗K𝑖𝑀𝑗 ,𝑅

5: forall 𝑖 ∈ [2, 𝑁]: J𝑀𝜶,𝑅K𝑖 ∶= ∑𝑗∈[𝑘]J𝛼𝑗K𝑖𝑀𝑗 ,𝑅

6: forall 𝑖 ∈ [𝑁]: J𝑆K𝑖 ∶= 𝑅 ⋅ J𝑀𝜶,𝑅K𝑖 + J𝐴K𝑖
7: 𝑆 ∶= ∑𝑖∈[𝑁]J𝑆K𝑖
8: forall 𝑖 ∈ [𝑁]: J𝑉 K𝑖 ∶= 𝑆 ⋅ J𝐾K𝑖 − 𝑅 ⋅ J𝑀𝜶,𝐿K𝑖 − J𝐶K𝑖
9: 𝑎2 ∶= (J𝑆K𝑖, J𝑉 K𝑖)𝑖∈[𝑁]

10: state ∶= (salt, (state𝑖, 𝜌𝑖)𝑖∈[𝑁], (com𝑖)𝑖∈[𝑁], (J𝑆K𝑖)𝑖∈[𝑁])
11: return 𝑎2 and state

1: P3(𝑠𝑘, 𝑖∗, state) for MiRitH

2: Parse state = (salt, (state𝑖, 𝜌𝑖)𝑖∈[𝑁],
(com𝑖)𝑖∈[𝑁], (J𝑆K𝑖)𝑖∈[𝑁])

3: 𝑎3 ∶= (salt, (state𝑖, 𝜌𝑖)𝑖≠𝑖∗ , com𝑖∗ , J𝑆K𝑖∗)
4: return 𝑎3

1: Rep(𝑣𝑘, 𝑐1, 𝑐2, 𝑎3) for MiRitH

2: Parse 𝑐1 = 𝑅 and 𝑐2 = 𝑖∗
3: Parse 𝑎3 = (salt, (state𝑖, 𝜌𝑖)𝑖≠𝑖∗ , com𝑖∗ , J𝑆K𝑖∗)

//Setup MPC
4: forall 𝑖 ∈ [𝑁] ⧵ {𝑖∗} do
5: if 𝑖 ≠ 𝑁 then
6: Parse state𝑖 = seed𝑖
7: Compute J𝐴K𝑖, J𝜶K𝑖, J𝐶K𝑖, J𝐾K𝑖 from salt and

seed𝑖
8: else
9: Parse state𝑁 = (seed𝑁 , J𝜶K𝑁 , J𝐾K𝑁 , J𝐶K𝑁)
10: Compute J𝐴K𝑁 from salt and seed𝑁
11: Compute com𝑖 ∶= Com((salt, 𝑖, state𝑖); 𝜌𝑖) ;
12: 𝑎̄1 ∶= (com𝑖)𝑖∈[𝑁]

//Run MPC except 𝑖∗
13: forall 𝑖 ∈ [𝑁] ⧵ {𝑖∗}: Compute J𝑀𝜶,𝐿K𝑖 and J𝑀𝜶,𝑅K𝑖

from 𝑣𝑘 and J𝜶K𝑖
14: forall 𝑖 ∈ [𝑁] ⧵ {𝑖∗}: J𝑆K𝑖 ∶= 𝑅 ⋅ J𝑀𝜶,𝑅K𝑖 + J𝐴K𝑖
15: 𝑆 ∶= ∑𝑖J𝑆K𝑖
16: forall 𝑖 ∈ [𝑁] ⧵ {𝑖∗}:

J𝑉 K𝑖 ∶= 𝑆 ⋅ J𝐾K𝑖 − 𝑅 ⋅ J𝑀𝜶,𝐿K𝑖 − J𝐶K𝑖
17: J𝑉 K𝑖∗ ∶= −∑𝑖≠𝑖∗J𝑉 K𝑖
18: 𝑎̄2 ∶= (J𝑆K𝑖, J𝑉 K𝑖)𝑖∈[𝑁]

19: return 𝑎̄1 and 𝑎̄2

1: V(𝑣𝑘, 𝑎1, 𝑐1, 𝑎2, 𝑐2, 𝑎3) for MiRitH

2: Compute (𝑎̄1, 𝑎̄2) ∶= Rep(𝑣𝑘, 𝑐1, 𝑐2, 𝑎3)
3: return boole((𝑎̄1, 𝑎̄2) = (𝑎1, 𝑎2))

1: SimMiRitH(𝑣𝑘, 𝑐1, 𝑐2) for MiRitH

2: Choose salt at random

//Run the following procedure in parallel
3: Parse 𝑐1 = 𝑅 and 𝑐2 = 𝑖∗

//Simulate MPC’s setup
4: Choose seed at random

5: (seed𝑖, 𝜌𝑖)𝑖∈[𝑁] ∶= TreePRG(seed, salt)
6: forall 𝑖 ∈ [𝑁] ⧵ {𝑖∗} do
7: if 𝑖 ≠ 𝑁 then
8: Compute J𝐴K𝑖, J𝜶K𝑖, J𝐶K𝑖, J𝐾K𝑖 from salt and

seed𝑖
9: state𝑖 ∶= seed𝑖

10: else
11: Compute J𝐴K𝑁 from salt and seed𝑁
12: Choose J𝜶K𝑁 , J𝐾K𝑁 , J𝐶K𝑁 at random

13: state𝑁 ∶= (seed𝑁 , J𝜶K𝑁 , J𝐾K𝑁 , J𝐶K𝑁)
14: com𝑖 ∶= Com((𝑖, state𝑖); 𝜌𝑖) ;
15: Choose com𝑖∗ at random

//Simulate MPC’s execution
16: forall 𝑖 ∈ [𝑁] ⧵ {𝑖∗}: compute J𝑀𝜶,𝐿K and J𝑀𝜶,𝑅K

from 𝑣𝑘 and J𝜶K𝑖
17: forall 𝑖 ∈ [𝑁] ⧵ {𝑖∗}: J𝑆K𝑖 ∶= 𝑅 ⋅ J𝑀𝜶,𝑅K𝑖 + J𝐴K𝑖
18: Choose J𝑆K𝑖∗ at random
19: 𝑆 ∶= ∑𝑖J𝑆K𝑖
20: forall 𝑖 ∈ [𝑁] ⧵ {𝑖∗}:

J𝑉 K𝑖 ∶= 𝑆 ⋅ J𝐾K𝑖 − 𝑅 ⋅ J𝑀𝜶,𝐿K𝑖 − J𝐶K𝑖
21: J𝑉 K𝑖∗ ∶= −∑𝑖≠𝑖∗J𝑉 K𝑖
22: 𝑎2 ∶= (J𝑆K𝑖, J𝑉 K𝑖)𝑖∈[𝑁]

//Simulate response
23: 𝑎3 ∶= (salt, (state𝑖, 𝜌𝑖)𝑖≠𝑖∗ , com𝑖∗ , J𝑆K𝑖∗)
24: return 𝑎1, 𝑎2, and 𝑎3

Fig. 16. Prover, reconstruction, verification, and simulation algorithms of IDMiRitH. We run the protocol in 𝜏-parallel way
sharing salt.

35

– G4: Next, the prover chooses J𝛼K𝑁 , J𝐾K𝑁 , and J𝐶K𝑁 uniformly at random and computes J𝑉 K𝑖∗ ∶= −∑𝑖≠𝑖∗J𝑉 K𝑖.
The distributions of G3 and G4 are equivalent as discussed in [ARV

+
23, Sec.9.3] and [FJR22, Sec.E of ePrint].

– G5: Finally, the prover generates J𝑆K𝑖∗ and com𝑖∗ uniformly at random. Now, the prover is the equivalent to

Sim. This modification is justified by the hiding property of Com and pseudorandomness of PRG.

⊓⊔

Lemma 19 (Strong non-divergency). Suppose that Com is non-invertible and collision-resistant. Then, IDMiRitH for
MiRitH is strongly non-divergent with respect to SimMiRitH.

Proof. For simplicity, we ignore parallelness 𝜏. Suppose that the adversary declines a valid transcript trans𝑖 =
(𝑎1, 𝑐1, 𝑎2, 𝑐2, 𝑎3) generated by the simulator and outputs a valid transcript trans′ = (𝑎1, 𝑐1, 𝑎′2, 𝑐′2, 𝑎′3). Note that

they are valid and share 𝑎1 and 𝑐1. We parse them as 𝑎1 = (com1, … , com𝑁) and 𝑐1 = 𝑅.
If the condition (a) is met, then we have 𝑐2 ≠ 𝑐′2: We parse 𝑎2 = (J𝑆K𝑖, J𝑉 K𝑖)𝑖∈[𝑁], 𝑐2 = 𝑖∗, 𝑐′2 = 𝑖+, and

𝑎′3 = (salt′, (state′𝑖 , 𝜌′𝑖)𝑖≠𝑖+ , com′
𝑖+ , J𝑆′K𝑖+). Since the adversary opens com𝑖∗ as (salt′, state′𝑖∗ , 𝜌′𝑖∗) in the valid transcript

(𝑎1, 𝑐1, 𝑎′2, 𝑐′2, 𝑎′3), this breaks the non-invertibility of Com.

If the conditon (b) is met, then we have (𝑎2, 𝑐2) = (𝑎′2, 𝑐′2) and 𝑎3 ≠ 𝑎′3. We then parse 𝑎2 = (J𝑆K𝑖, J𝑉 K𝑖)𝑖∈[𝑁],

𝑐2 = 𝑖∗, 𝑎3 = (salt, (state𝑖, 𝜌𝑖)𝑖≠𝑖∗ , com𝑖∗ , J𝑆K𝑖∗), and 𝑎′3 = (salt′, (state′𝑖 , 𝜌′𝑖)𝑖≠𝑖∗ , com′
𝑖∗ , J𝑆′K𝑖∗).

We have the following cases:

– If salt ≠ salt′, then we have a collision for Com.

– If (state𝑖, 𝜌𝑖)𝑖≠𝑖∗ ≠ (state′𝑖 , 𝜌′𝑖)𝑖≠𝑖∗ , then we have at least one index 𝑖 satisfying (state𝑖, 𝜌𝑖) ≠ (state′𝑖 , 𝜌𝑖). Since the
two transcripts are valid, we have com𝑖 = Com(salt, state𝑖; 𝜌𝑖) = Com(salt, state′𝑖 ; 𝜌′𝑖). This implies a collision

for Com.

– If (com𝑖∗ , J𝑆K𝑖∗) ≠ (com′
𝑖∗ , J𝑆′K𝑖∗), then at least one of two transcripts is invalid and this never happens.

Using those observations, we can construct reductions easily. ⊓⊔

Due to the definitions of V and Rep, the underlying ID scheme is perfectly sound.

Lemma 20 (Perfect soundness). IDMiRitH is perfectly sound.

Since the scheme is (strongly) non-divergent and HVZK, we have the following theorem:

Theorem 5 (MiRitH’s sEUF-CMA security). Suppose that MiRitH = FSh[IDMiRitH,H, 𝜸] is EUF-NMA-secure in
the (Q)ROM, TreePRG, and MakeShares are pseudorandom, Com is hiding, non-invertible, binding, and collision-
resistant. Then, MiRitH is sEUF-CMA-secure in the (Q)ROM. (If P3 employs GetPath, then we need the collision-
resistance property of Reconst.)

S-DEO and MBS security: MiRitH employs FSh with aux1 = (salt, 𝜇) and aux2 = (salt, 𝜇). Therefore, ℎ1 and ℎ2 in
the signature include the information of 𝜇. Since aux is perfectly collision-resistant with respect to message on

index 1, according to Lemma 11, MiRitH satisfies S-DEO and MBS if H is collision-resistant.

D.2 S-CEO and wNR Insecurity

We examine the similar strategy of the S-CEO attack against Biscuit in Section 6.

Suppose that we are given 𝑣𝑘 = (seed𝑣𝑘 , 𝑀0) and seed𝑣𝑘 produces 𝑀1, … ,𝑀𝑘 . As the attack against Biscuit, we
keep seed𝑣𝑘 andmodify𝑀0 into𝑀 ′

0. If the signature is fixed, then on the secondmessage 𝑎2 = ((J𝑆K𝑖, J𝑉 K𝑖)𝑖∈[𝑁])𝑒∈[𝜏],
we have J𝑆K𝑖 = 𝑅⋅J𝑀𝜶,𝑅K𝑖+J𝐴K𝑖 = 𝑅⋅J𝑀 ′

𝜶,𝑅K𝑖+J𝐴K𝑖 and J𝑉 K𝑖 = 𝑆⋅J𝐾K𝑖−𝑅⋅J𝑀𝜶,𝐿K𝑖+J𝐶K𝑖 = 𝑆⋅J𝐾K𝑖−𝑅⋅J𝑀 ′
𝜶,𝐿K𝑖+J𝐶K𝑖

for 𝑖 ∈ [𝑁] ⧵ {𝑖∗𝑒 }, which implies

𝑅 ⋅ (J𝑀𝜶K𝑖 − J𝑀 ′
𝜶K𝑖) = 𝑂, (2)

where J𝑀𝜶K𝑖 ∈ F𝑚×𝑛
𝑞 is the concatenation of J𝑀𝜶,𝑅K𝑖 and J𝑀𝜶,𝐿K𝑖. Due to the computation of J𝑀𝜶K𝑖, Equation 2

holds for any 𝑖 ≠ 1. Therefore, if, for 𝑒 ∈ [𝜏], 𝑖∗𝑒 ≠ 1 and 𝑅(𝑒) ⋅ (𝑀0 − 𝑀 ′
0) = 𝑂 hold, then Equation 2 and the

signature is valid for modified 𝑣𝑘′ = (seed𝑣𝑘 , 𝑀 ′
0). In other words, if we can find such good (𝑅(1), … , 𝑅(𝜏)) = 𝛾2(ℎ1)

with 𝑀 ′
0, we can mount S-CEO and M-S-UEO attacks.

Let us calculate a probability 𝑝1 that the above holds for random signature. Let 𝑇 be the set of indices satisfying
𝑖∗𝑒 = 1, that is, 𝑇 = {𝑒 ∈ [𝜏] ∶ 𝑖∗𝑒 = 1} and let 𝜏′ be the number of such indices. We can find 𝑀 ′

0 by taking a non-

trivial vector 𝒂 from the intersection of kernels ⋂𝑒∈[𝜏]⧵𝑇 ker(𝑅(𝑒)) and setting 𝑀 ′
0 = 𝑀0 + [𝒂, 𝟎, … , 𝟎] if and only

36

Table 4. Parameter sets in MiRitH’s specification v1.0 and success probability with 𝑄 = 264.

name 𝑞 𝑚 𝑛 𝑘 𝑟 𝑠 𝑁 𝜏 𝑝1 𝑝𝑄
Ia-f 16 15 15 78 6 5 16 39 > 2−134.920 > 2−70.921
Ia-s 16 15 15 78 6 9 256 19 > 2−132.591 > 2−68.591

IIIa-f 16 19 19 142 4 5 16 55 > 2−192.739 > 2−128.739
IIIa-s 16 19 19 142 6 9 256 29 > 2−207.346 > 2−143.346
Va-f 16 21 21 189 7 7 16 74 > 2−272.148 > 2−208.148
Va-s 16 21 21 189 7 10 256 38 > 2−278.478 > 2−214.478

if ⋂𝑒∈[𝜏]⧵𝑇 ker(𝑅(𝑒)) ≠ {𝟎}. The condition can be written as rank([𝑅(𝑖1); … ; 𝑅(𝑖𝜏−𝜏′)]) < 𝑚, where, for 𝐴 ∈ F 𝑛×𝑚
𝑞 and

𝐵 ∈ F 𝑛′×𝑚
𝑞 , [𝐴; 𝐵] denotes the block matrix (𝐴𝐵) ∈ F

(𝑛+𝑛′)×𝑚
𝑞 . Using this argument, we can compute 𝑝1 as

𝑝1 ∶= ∑
𝜏′∈{0,…,𝜏}

𝑝num,𝜏′ ⋅ 𝑝rank,𝜏′ ,

where 𝑝num,𝜏′ ∶= Pr𝑖∗1 ,…,𝑖∗𝜏←[𝑁][#{𝑗 ∈ [𝜏] ∶ 𝑖∗𝑗 = 1} = 𝜏′] and 𝑝rank,𝜏′ ∶= Pr𝑅1 ,…,𝑅𝜏−𝜏′←F 𝑠×𝑚
𝑞
[rank([𝑅1; … ; 𝑅𝜏−𝜏′]) < 𝑚] =

Pr𝑅′←F
𝑠(𝜏−𝜏′)×𝑚
𝑞

[rank(𝑅′) < 𝑚]. By routine calculation, we have

𝑝num,𝜏′ = ((
𝜏
𝜏′)

(𝑁 − 1)𝜏−𝜏
′
/𝑁 𝜏

) ,

𝑝rank,𝜏′ =

{
1 if 𝑠(𝜏 − 𝜏′) < 𝑚,
1 −∏𝑠(𝜏−𝜏′)

𝑗=𝑠(𝜏−𝜏′)−𝑚+1(1 − 𝑞−𝑗) otherwise.

We note that 1−∏𝑠(𝜏−𝜏′)
𝑗=𝑠(𝜏−𝜏′)−𝑚+1(1−𝑞−𝑗) ≤ 2𝑚𝑞−(𝑠(𝜏−𝜏′)−𝑚+1). Thus, if 𝑠(𝜏−𝜏′) is larger than𝑚, then the probability

converges to 0 rapidly. After 𝑄 (≈ 264) signing queries, we will have a chance with probability 𝑝𝑄 defined by

𝑝𝑄 ∶= 1 − (1 − 𝑝1)𝑄 ,

whose approximation is 𝑄 ⋅ 𝑝1 if 𝑄 ⋅ 𝑝1 ≪ 1 and 1 − exp(−𝑄 ⋅ 𝑝1) otherwise.
The parameter sets of MiRitH are summarized in Table 4.

– Ia-f: We have 𝑚 = 15, 𝑠 = 5, 𝑁 = 16, and 𝜏 = 39. Adding up the probability for 𝜏′ = 36, 37, 38, 39, we have
𝑝1 ≥ 2−134.92079... and 𝑝𝑄 ≥ 1 − (1 − 2−134.92079...)264 ≈ 2−134.92079+64 = 2−70.92079....

– Ia-s: We have 𝑚 = 15, 𝑠 = 9, 𝑁 = 256, and 𝜏 = 19. Adding up the probability for 𝜏′ = 17, 18, 19, we have
𝑝1 ≥ 2−132.59069... and 𝑝𝑄 ≥ 1 − (1 − 𝑝1)2

64 ≈ 2−132.59069...+64 = 2−68.59069....
– IIIa-f: We have 𝑚 = 19, 𝑠 = 5, 𝑁 = 16, and 𝜏 = 55. Summing up the probability for 𝜏′ ∈ 51, 52, 53, 54, 55, we

have 𝑝1 ≥ 2−192.73929... and 𝑝𝑄 ≥ 1 − (1 − 𝑝1)2
64 ≈ 2−192.73929...+64 = 2−128.73929....

– IIIa-s: We have 𝑚 = 19, 𝑠 = 9, 𝑁 = 256, and 𝜏 = 29. Adding up the probability for 𝜏′ = 26, 27, 28, 29, we have
𝑝1 ≥ 2−207.34555... and 𝑝𝑄 ≥ 1 − (1 − 𝑝1)2

64 ≈ 2−207.34555...+64 = 2−143.34555....
– Va-f: We have 𝑚 = 21, 𝑠 = 7, 𝑁 = 16, and 𝜏 = 74. Summing up the probability for 𝜏′ = 71, 72, 73, 74, we have

𝑝1 ≥ 2−272.14842... and 𝑝𝑄 ≥ 1 − (1 − 𝑝1)2
64 ≈ 2−272.14842...+64 = 2−208.14842....

– Va-s: We have 𝑚 = 21, 𝑠 = 10, 𝑁 = 256, and 𝜏 = 38. Adding up the probability for 𝜏′ = 36, 37, 38, 39, we have
𝑝1 ≥ 2−278.47767... and 𝑝𝑄 ≥ 1 − (1 − 𝑝1)2

64 ≈ 2−278.47767...+64 = 2−214.47767....

We note that 𝑝𝑄 ’s in Table 4 are larger than 2−𝜅 , and the above attack for S-CEO is effective. Since 𝑝1 is
smaller than 2−𝜅 , we cannot say that MiRitH is vulnerable to wNR. We leave to determine MiRitH is wNR or not

as an open problem.

E PERK

We next examine the candidates from PERK v1.1 [ABB
+
23a].

17
The signing key is a random permutation 𝜋 ∈ 𝑛.

The verification key consists of pk_seed and 𝒚1, … , 𝒚𝑡 ∈ F 𝑛
𝑞 ; pk_seed produces a sequence of random elements in

F𝑞 to construct random 𝐻 ∈ F𝑚×𝑛
𝑞 and 𝒙1, … , 𝒙𝑡 ∈ F 𝑛

𝑞 ; and 𝒚𝑗 = 𝐻 ⋅ 𝜋(𝒙𝑗) for all 𝑗 = 1, … , 𝑡.

17
The version 1.1 is available at https://pqc-perk.org/.

37

https://pqc-perk.org/

1: P1(𝑠𝑘) for PERK
2: Choose salt and mseed uniformly at random

3: (seed(1), … , seed(𝜏)) ∶= PRG(salt,mseed)
//Run the following procedure in parallel

for 𝑒 ∈ [𝜏]
4: (seed𝑖, 𝜌𝑖)𝑖∈[𝑁] ∶= TreePRG(seed, salt)
5: for 𝑖 = 𝑁 to 2 do
6: (𝜋𝑖, 𝒗𝑖) ∶= MakeShares(seed𝑖, salt)
7: state𝑖 ∶= seed𝑖

//The second part only for 𝑖 = 1
8: 𝒗1 ∶= MakeShares(seed1, salt)
9: 𝜋1 ∶= 𝜋−1

2 ◦ ⋯ ◦ 𝜋−1
𝑁 ◦ 𝜋

10: state1 ∶= (𝜋1, seed1)
11: forall 𝑖 ∈ [𝑁]: com1,𝑖 ∶= Com((salt, 𝑒, 𝑖, state𝑖); 𝜌𝑖)
12: 𝒗 ∶= 𝒗𝑁 +∑𝑖∈[𝑁−1] 𝜋𝑁 ◦ ⋯ ◦ 𝜋𝑖+1(𝒗𝑖)
13: com1 ∶= H0(salt, 𝑒, 𝐻𝒗)
14: 𝑎1 ∶= (com1, (com1,𝑖)𝑖∈[𝑁])
15: state ∶= (salt, (state𝑖, 𝜌𝑖)𝑖∈[𝑁], (com1,𝑖)𝑖∈[𝑁])
16: return 𝑎1 and state

1: P2(𝑠𝑘, 𝜿, state) for PERK
2: parse state = (salt, (state𝑖, 𝜌𝑖)𝑖∈[𝑁], (com1,𝑖)𝑖∈[𝑁])
3: 𝒔0 ∶= ∑𝑗∈[𝑡] 𝜅𝑗𝒙𝑗

4: forall 𝑖 ∈ [𝑁] do
5: 𝒔𝑖 ∶= 𝜋𝑖(𝒔𝑖−1) + 𝒗𝑖
6: 𝑎2 ∶= (𝒔𝑖)𝑖∈[𝑁])
7: state ∶= (salt, (state𝑖, 𝜌𝑖)𝑖∈[𝑁], (com1,𝑖)𝑖∈[𝑁], (𝒔𝑖)𝑖∈[𝑁])
8: return 𝑎2 and state

1: P3(𝑠𝑘, 𝑖∗, state) for PERK
2: parse state = (salt,

(state𝑖, 𝜌𝑖)𝑖∈[𝑁], (com1,𝑖)𝑖∈[𝑁], (𝒔𝑖)𝑖∈[𝑁])
3: 𝑎3 ∶= (salt, (state𝑖, 𝜌𝑖)𝑖≠𝑖∗ , com1,𝑖∗ , 𝒔𝑖∗)
4: return 𝑎3

1: Rep(𝑣𝑘, 𝑐1, 𝑐2, 𝑎3) for PERK
2: Parse 𝑐1 = 𝜿 = (𝜅1, … , 𝜅𝑡)
3: Parse 𝑐2 = 𝑖∗
4: Parse 𝑎3 = (salt, (state𝑖, 𝜌̄𝑖)𝑖≠𝑖∗ , com1,𝑖∗ , 𝒔̄𝑖∗)

//Setup MPC
5: forall 𝑖 ∈ [𝑁] ⧵ {𝑖∗} do
6: if 𝑖 ≠ 1 then
7: Parse state𝑖 = seed𝑖
8: Compute (𝜋̄𝑖, 𝒗̄𝑖) from salt and seed𝑖
9: else
10: Parse state1 = (𝜋̄1, seed1)
11: Compute 𝒗̄1 from salt and seed1
12: com1,𝑖 ∶= Com((salt, 𝑒, 𝑖, state𝑖); 𝜌𝑖)

//Run MPC except 𝑖∗
13: 𝒔̄0 ∶= ∑𝑗∈[𝑡] 𝜅𝑗𝒙𝑗

14: forall 𝑖 ∈ [𝑁] ⧵ {𝑖∗} do
15: 𝒔̄𝑖 = 𝜋̄𝑖(𝒔̄𝑖−1) + 𝒗̄𝑖

//Wrap up

16: com1 ∶= H0(salt, 𝑒, 𝐻 𝒔̄𝑁 −∑𝑗∈[𝑡] 𝜅𝑗𝒚𝑗)
17: 𝑎̄1 = (com1, (com1,𝑖)𝑖∈[𝑁])
18: 𝑎̄2 ∶= (𝒔̄𝑖)𝑖∈[𝑁]

19: return 𝑎̄1 and 𝑎̄2

1: V(𝑣𝑘, 𝑎1, 𝑐1, 𝑎2, 𝑐2, 𝑎3) for PERK
2: (𝑎̄1, 𝑎̄2) ∶= Rep(𝑣𝑘, 𝑐1, 𝑐2, 𝑎3)
3: return boole((𝑎1, 𝑎2) = (𝑎̄1, 𝑎̄2))

Fig. 17. Prover, reconstruction, and verification algorithms for IDPERK. We run the protocol in 𝜏-parallel way sharing salt.

Intuitively speaking, the signer will show the relation between 𝒚𝑗 and 𝒙𝑗 . We modify the underlying MPCitH

protocol IDPERK, P and V with Rep, as described in Figure 17.

– MakeShares generates pseudorandom shares (𝜋(𝑒)
𝑖 , 𝒗(𝑒)𝑖) from the seed seed(𝑒)𝑖 with an auxiliary information

salt, where 𝜋(𝑒)
𝑖 ∈ 𝑛 and 𝒗(𝑒)𝑖 ∈ F 𝑛

𝑞 .

– In P3, 𝑎3 contains all 𝑁 − 1 state informations. This can be made compact by using GetPath.

For the details, see the original specification [ABB
+
23a]. The signature scheme PERK = FSh[IDPERK,H, 𝜸] is

defined by aux1 = (0x01, salt, 𝜇, 𝑣𝑘) and aux2 = (0x02, salt, 𝜇).

E.1 Security

sEUF-CMA security: Since we modify the protocol, we need to modify the simulator, which is described in Fig-

ure 18. The HVZK property of IDPERK is shown in their specification document by following the HVZK proof

in [FJR22], but we modify the proof to consider the real protocol as possible. It is easy to check the above simu-

lator Sim yields 𝑞-HVZK for polynomial 𝑞 = 𝑞(1𝜅) as in the proof for Lemma 13 and Lemma 18 by following the

original proofs in [FJR22] and [ABB
+
23a, Thm.3.3].

Lemma 21 (𝑞𝑆-HVZK). Suppose that PRG, TreePRG, and MakeShares are pseudorandom and Com is hiding. Then,
IDPERK with simulator SimPERK in Figure 18 is 𝑞𝑆-HVZK.

38

1: SimPERK(𝑣𝑘, 𝑐1, 𝑐2) for PERK
2: Choose salt uniformly at random

//Run the following procedure in parallel
for 𝑒 ∈ [𝜏]

3: Parse 𝑐1 = 𝜅 = (𝜅1, … , 𝜅𝑡) and 𝑐2 = 𝑖∗
4: Choose seed uniformly at random

5: (seed𝑖, 𝜌𝑖)𝑖∈[𝑁] ∶= TreePRG(salt, seed)
//Simulate MPC’s setup

6: forall 𝑖 ∈ [𝑁] ⧵ {𝑖∗} do
7: if 𝑖 ≠ 1 then
8: (𝜋𝑖, 𝒗𝑖) ∶= MakeShares(seed𝑖, salt)
9: state𝑖 ∶= seed𝑖

10: else
//The second part only for 𝑖 = 1

11: 𝒗1 ∶= MakeShares(seed𝑖, salt)
12: Choose 𝜋1 at random

13: state1 ∶= (𝜋1, seed1)
14: com1,𝑖 ∶= Com((salt, 𝑒, 𝑖, state𝑖); 𝜌𝑖)
15: Choose 𝜋𝑖∗ , 𝒗𝑖∗ , and com1,𝑖∗ uniformly at random

16: 𝒗 ∶= 𝒗𝑁 +∑𝑖∈[𝑁−1] 𝜋𝑁 ◦ ⋯ ◦ 𝜋𝑖+1(𝒗𝑖)
17: com1 ∶= H0(salt, 𝑒, 𝐻𝒗)
18: 𝑎1 ∶= (com1, (com1,𝑖)𝑖∈[𝑁])

//Simulate MPC’s execution
19: 𝜋̃ ∶= 𝜋𝑁 ◦ ⋯ ◦ 𝜋1

20: Compute 𝒙̃ s.t. 𝐻𝒙̃ = ∑𝑗 𝜅𝑗𝒚𝑗

21: 𝒔0 ∶= ∑𝑗 𝜅𝑗𝒙𝑗

22: foreach 𝑖 ∈ {1, … , 𝑖∗ − 1}: 𝒔𝑖 ∶= 𝜋𝑖(𝒔𝑖−1) + 𝒗𝑖
23: 𝒔𝑖∗ ∶= 𝜋𝑖∗ (𝒔𝑖∗−1) + 𝒗𝑖∗ + 𝜋−1

𝑖∗+1 ◦ ⋯ ◦ 𝜋−1
𝑁 (𝒙̃ − 𝜋̃(𝒔0))

24: foreach 𝑖 ∈ {𝑖∗ + 1,… , 𝑁 }: compute

𝒔𝑖 ∶= 𝜋𝑖(𝒔𝑖−1) + 𝒗𝑖
25: 𝑎2 ∶= (𝒔𝑖)𝑖∈[𝑁]

//Simulate response
26: 𝑎3 ∶= (salt, (state𝑖, 𝜌𝑖)𝑖≠𝑖∗ , com1,𝑖∗ , 𝒔𝑖∗)
27: return 𝑎1, 𝑎2, and 𝑎3

Fig. 18. Simulation algorithm for IDPERK. We run the protocol in 𝜏-parallel way sharing salt.

Lemma 22 (Strong non-divergency). Suppose that H0 is collision-resistant. Com is non-invertible and collision-
resistant. Then, IDPERK is 𝑞𝑆-non-divergent with respect to SimPERK.

Proof. For simplicity, we ignore parallelness 𝜏. Suppose that the adversary declines a valid transcript trans𝑖 =
(𝑎1, 𝑐1, 𝑎2, 𝑐2, 𝑎3) generated by the simulator and outputs a valid transcript trans′ = (𝑎1, 𝑐1, 𝑎′2, 𝑐′2, 𝑎′3). Note that

they are valid and share 𝑎1 and 𝑐1. We parse them as 𝑎1 = (com1, com1,1, … , com1,𝑁) and 𝑐1 = 𝜿.
If the condition (a) ismet, thenwe have 𝑐2 ≠ 𝑐′2.We parse 𝑐2 = 𝑖∗, 𝑐′2 = 𝑖+, and 𝑎′3 = (salt′, (state′𝑖 , 𝜌′𝑖)𝑖≠𝑖+ , com′

1,𝑖+ , 𝒔′𝑖+).
Notice that the adversary opens com1,𝑖∗ as (salt′, 𝑒∗, 𝑖∗, state′𝑖∗ , 𝜌′𝑖∗) due to the validity of the transcript (𝑎1, 𝑐1, 𝑎′2, 𝑐′2, 𝑎′3).
Thus, we have com1,𝑖∗ = Com((salt′, 𝑒∗, 𝑖∗, state′𝑖∗); 𝜌′𝑖∗). Since com1,𝑖∗ is chosen uniformly at random by the simu-

lator, this violates the non-invertibility of Com.

If the condition (b) is met, then we have (𝑎2, 𝑐2) = (𝑎′2, 𝑐′2) and 𝑎3 ≠ 𝑎′3. We parse 𝑎2 = (𝒔𝑖)𝑖∈[𝑁], 𝑐2 = 𝑖∗,
𝑎3 = (salt, (state𝑖, 𝜌𝑖)𝑖≠𝑖∗ , com1,𝑖∗ , 𝒔𝑖∗), and 𝑎′3 = (salt′, (state′𝑖 , 𝜌′𝑖)𝑖≠𝑖∗ , com′

1,𝑖∗ , 𝒔′𝑖∗). We have the following cases:

– If salt ≠ salt′, then we have a collision H0 and break the binding property of Com.

– If (state𝑖, 𝜌𝑖)𝑖≠𝑖∗ ≠ (state′𝑖 , 𝜌′𝑖)𝑖≠𝑖∗ , then we have at least one index 𝑖 satisfying (state𝑖, 𝜌𝑖) ≠ (state′𝑖 , 𝜌′𝑖). Since the
two transcripts are valid, we have com1,𝑖 = Com(salt, 𝑒, 𝑖, state𝑖; 𝜌𝑖) = Com(salt, 𝑒, 𝑖, state′𝑖 ; 𝜌′𝑖). This implies a

break of the collision-resistance property of Com.

– If com1,𝑖∗ ≠ com′
1,𝑖∗ , then this contradicts with 𝑎1 and the validity of the transcripts.

– If 𝒔𝑖∗ ≠ 𝒔′𝑖∗ , then this contradicts with 𝑎2 and the validity of the transcripts.

Using those observations, we can construct reductions easily. ⊓⊔

Due to the definitions of V and Rep, the underlying ID scheme is perfectly sound.

Lemma 23 (Perfect soundness). IDPERK is perfectly sound.

Since the scheme is (strongly) non-divergent and HVZK, we have the following theorem:

Theorem 6 (PERK’s sEUF-CMA security). Suppose that PERK = FSh[IDPERK,H, 𝜸] is EUF-NMA-secure in the
(Q)ROM, PRG, TreePRG, andMakeShares are pseudorandom, H0 is collision-resistant, Com is hiding, non-invertible,
and collision-resistant. Then, PERK is sEUF-CMA-secure in the (Q)ROM. (If P3 employs GetPath, then we need the
collision-resistance property of Reconst.)

39

BUFF security: Recall that aux1 = (0x01, salt, 𝜇, 𝑣𝑘) and aux2 = (0x02, salt, 𝜇) in PERK. It is obvious that aux is

perfectly collision-resistant with respect to the message on index 1. Thus, applying Lemma 11, PERK sasifies

MBS and M-S-UEO. In addition, aux is perfectly collision-resistant with respect to the verification key on index

1, and both aux1 and aux2 can be written as (𝜇, 𝜂1) and (𝜇, 𝜂2), respectively. Hence, PERK satisfies wNR due to

Lemma 12.

Theorem 7. Assume that H is collision-resistant. Then, PERK = FSh[IDPERK,H, 𝜸] satisfies MBS and M-S-UEO. If
H is a random oracle, then PERK satisfies wNR.

F AIMer

We briefly review AIMer [KCC+
23].

Let AIM∶ {0, 1}𝜅 × F2𝜅 → F2𝜅 be a tweakable one-way function defined in [KCC
+
23]. The signing key is

pt ∈ F2𝜅 . The verification key is (iv, ct) such thatAIM(iv, pt) = ct. The abstract structure of the underlyingMPCitH

protocol IDAIMer is very similar to that in Biscuit, and we do not give the full details of AIMer. (Their MPCitH

protocol is based on BN++ proposed by Kales and Zaverucha [KZ22].) In AIMer, the signature is computed as

follows:

– Compute 𝑎1, ℎ1 ∶= H(0x01, 𝜇, 𝑣𝑘, salt, 𝑎1), and 𝑐1 ∶= 𝛾1(ℎ1).
– Compute 𝑎2, ℎ2 ∶= H(0x02, salt, ℎ1, 𝑎2), and 𝑐2 ∶= 𝛾2(ℎ2).
– Compute 𝑎3, which includes salt, and output 𝜎 ∶= (ℎ1, ℎ2, 𝑎3).

The verifier verifies a signature as follows:

– Compute 𝑐1 ∶= 𝛾1(ℎ1) and 𝑐2 ∶= 𝛾2(ℎ2).
– Reconstruct 𝑎̄1 and 𝑎̄2 from 𝑐1, 𝑐2, 𝑎3.
– Compute ℎ̄1 ∶= H(0x01, 𝜇, 𝑣𝑘, salt, 𝑎̄1) and ℎ̄2 ∶= (0x02, salt, ℎ1, 𝑎̄2)
– Output boole(ℎ1 = ℎ̄1 ∧ ℎ2 = ℎ̄2).

We can consider AIMer as FSh[IDAIMer,H, 𝜸]with aux1 = (0x01, 𝜇, 𝑣𝑘, salt) and aux2 = (0x02, salt). aux is perfectly
collision-resistant with respect to the message and verification key on index 1.

It is easy to check the underlying protocol is HVZK and strongly non-divergent under appropriate as-

sumptions on the primitives used in the protocol. Therefore, AIMer is sEUF-CMA-secure in the (Q)ROM if it

is EUF-NMA-secure in the (Q)ROM and used primitives are secure.

Since aux is collision-resistant with respect to the message and verification key on index 1, AIMer enjoys
M-S-UEO and MBS securities if H is collision-resistant. In addition, aux1 an be written as (𝜇, 𝜂1). Hence, AIMer
is wNR-secure if H is the random oracle.

G Generic MPCitH using Embedding

This section treatsMIRA, RYDE, SDitH, andMQOM. Essentially speaking, the signer of those schemes shows the

relation between the verification key and the signing key over F𝑞 via MPC using polynomials and the extension

field F𝑞𝜂 by using the framework proposed by Feneuil, Joux, and Rivain [FJR22]. They also used the Hypercube-

in-the-Head techniques proposed by Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, and Yue [AGH
+
23].

Aguilar-Melchor et al. [AGH
+
23] showed the 1-HVZK property of the underlying 5-pass MPCitH protocol.

It is easy to check the underlying protocol is also 𝑞-HVZK by tracing their proof. It is also easy to check the

protocol is strongly non-divergent under appropriate assumptions on the primitives used in the protocol.

G.1 MIRA and RYDE

We briefly review MIRA [ABB
+
23c] and RYDE [ABB

+
23b], which share the framework. Since the difference of

RYDE from MIRA is only the underlying problem, we here review MIRA. Let IDMIRA be the underlying 5-pass
MPCitH protocol. Let DS_1,DS_2,DS_M ∈ {0, 1}𝜅 be domain separators for the random oracle H. In MIRA, the
signature is computed as follows:

1. Let md ∶= H𝑚(𝜇), where H𝑚(𝜇) = H(DS_M, 𝜇).
2. Compute 𝑎1, ℎ1 ∶= H(DS_1, salt, 𝑣𝑘,md, 𝑎1), and 𝑐1 ∶= 𝛾1(ℎ1)

40

3. Compute 𝑎2, ℎ2 ∶= H(DS_2, salt, 𝑣𝑘,md, ℎ1, 𝑎2), and 𝑐2 ∶= 𝛾2(ℎ2)
4. Compute 𝑎3, which includes salt, and output 𝜎 ∶= (ℎ1, ℎ2, 𝑎3)

The verification algorithm verifies a signature as follows:

1. Let md ∶= H𝑚(𝜇).
2. Compute 𝑐1 ∶= 𝛾1(ℎ1) and 𝑐2 ∶= 𝛾2(ℎ2).
3. Reconstruct 𝑎̄1 and 𝑎̄2 from 𝑐1, 𝑐2, 𝑎3.
4. Compute ℎ̄1 ∶= H(DS_1, salt, 𝑣𝑘,md, 𝑎̄1) and ℎ̄2 ∶= H(DS_2, salt, 𝑣𝑘,md, ℎ1, 𝑎̄2).
5. Output boole(ℎ1 = ℎ̄1 ∧ ℎ2 = ℎ̄2).

Thus, we can consider MIRA as FSh[IDMIRA,H, 𝜸] with aux1 = (DS_1, salt, 𝑣𝑘,md) and aux2 = (DS_2, salt, 𝑣𝑘,md),
where md = H(DS_M, 𝜇). aux is collision-resistant with respect to the message and verification key on index 1 if
H is collision-resistant.

It is easy to check the underlying protocol is HVZK and strongly non-divergent under appropriate as-

sumptions on the primitives used in the protocol. Therefore, MIRA is sEUF-CMA-secure in the (Q)ROM if it is

EUF-NMA-secure in the (Q)ROM and used primitives are secure. Since aux is collision-resistant with respect to

the message and verification key on index 1,MIRA enjoys M-S-UEO andMBS securities if H is collision-resistant.

By replacing 𝜇 with md, we can apply Lemma 12 and show that MIRA is wNR-secure if H is the random oracle.

G.2 SDitH – SDitH-HC

We briefly review SDitH v.1.1 [AFG
+
23].

18
Here, we only consider the hypercubic MPCitH version, which we call

SDitH-HC. Let IDSDitH-HC be the underlying 5-pass MPCitH protocol. In SDitH-HC, the signature is computed as

follows:

1. Compute 𝑎1, ℎ1 ∶= H(0x01, salt, 𝑣𝑘, 𝑎1), and 𝑐1 ∶= 𝛾1(ℎ1).
2. Compute 𝑎2, ℎ2 ∶= H(0x02, salt, 𝜇, ℎ1, 𝑎2), and 𝑐2 ∶= 𝛾2(ℎ2).
3. Compute 𝑎3, which includes salt, and output 𝜎 ∶= (ℎ2, 𝑎3).

The verification algorithm verifies a signature as follows:

1. Compute 𝑐2 ∶= 𝛾2(ℎ2).
2. Reconstruct 𝑎̄1 from 𝑐2 and 𝑎3.
3. Compute ℎ̄1 ∶= H(0x01, salt, 𝑣𝑘, 𝑎̄1) and 𝑐1 ∶= 𝛾1(ℎ̄1).
4. Reconstruct 𝑎̄2 from 𝑐1 and so on. and ℎ̄2 ∶= H(0x02, salt, 𝜇, ℎ1, 𝑎̄2).
5. Output boole(ℎ2 = ℎ̄2).

Thus, we can consider SDitH-HC as FSh,last[IDSDitH-HC,H, 𝜸] with aux1 = (0x01, salt, 𝑣𝑘) and aux2 = (0x02, salt, 𝜇).
aux is collision-resistant with respect to message on index 2 and collision-resistant with respect to verification

key on index 1.
Since aux is collision-resistant with respect to message on index 2 and ℎ2 is included in the signature,

SDitH-HC is MBS-secure.

To show M-S-UEO security, we need a short (routine) discussion since ℎ1 is not in the signature. If there

is an adversary against the M-S-UEO security, then its output contains two different verification keys 𝑣𝑘 and

𝑣𝑘′, two messages 𝜇 and 𝜇′, and a signature 𝜎 = (ℎ2, 𝑎3), where 𝑎3 contains salt. Let 𝑎1 (or 𝑎′1, resp.) be the first
messages reconstructed from 𝑣𝑘 (or 𝑣𝑘′, resp.), 𝑎3, and 𝑐2 = 𝛾2(ℎ2). We then let ℎ̂1 = H(0x01, salt, 𝑣𝑘, 𝑎1) and
ℎ̂′1 = H(0x01, salt, 𝑣𝑘′, 𝑎′1).

– If ℎ̂1 = ℎ̂′1, then we find a collision of H.

– Otherwise, we let ℎ̂2 = H(0x02, salt, 𝜇, ℎ̂1, 𝑎1) and ℎ̂′2 = H(0x02, salt, 𝜇, ℎ̂′1, 𝑎′1). Since the signature is valid for

both messages and verification keys, we have ℎ̂2 = ℎ2 = ℎ̂′2 and find a collision of H.

Thus, if H is collision-resistant, then SDitH-HC is M-S-UEO-secure.

If we consider SDitH-HC′ ∶= FSh[IDSDitH-HC,H, 𝜸], then we can apply Lemma 12 and SDitH-HC′
is wNR-

secure if H is the random oracle since aux1 is collision-resistant with respect to verification key on index 1 and
aux2 can be written as (𝜇, 𝜂2). Corollary 2 states that if FSh[ID,H, 𝜸] is wNR-secure, then FSh,last[ID,H, 𝜸] is also
wNR-secure. Hence, SDitH-HC is also wNR-secure if H is the random oracle.

18
Version 1.1 is available at https://sdith.org/resources.html.

41

https://sdith.org/resources.html

Remark 4. Aguilar-Melchor et al. [AHJ
+
23] treat the underlying ID protocol as collapsed 3-pass ID protocol,

where the prover computes (𝑎1, 𝑎2) by computing ℎ1 and 𝑐1 by itself, the verifier sends a random challenge 𝑐2, and
the prover sends 𝑎3. They then apply the FS transform and show the obtained signature SDitH-HC is EUF-CMA-

secure in the QROM as Grilo et al. [GHHM21]. We can show the collapsed 3-pass ID protocol is CUR [KLS18]

and extend their proof into the sEUF-CMA security proof.

G.3 MQOM

Webriefly reviewMQOM [FR23]. Let IDMQOM be the underlying 7-passMPCitH protocol. InMQOM, the signature

is computed as follows:
19

1. Compute 𝑎1, ℎ1 ∶= H(0x01, salt, 𝑣𝑘, 𝜇, 𝑎1), and 𝑐1 ∶= 𝛾1(ℎ1).
2. Compute 𝑎2, ℎ2 ∶= H(0x02, salt, 𝜇, ℎ1, 𝑎2), and 𝑐2 ∶= 𝛾2(ℎ2).
3. Compute 𝑎3, ℎ3 ∶= H(0x03, salt, 𝜇, ℎ2, 𝑎3), and 𝑐3 ∶= 𝛾3(ℎ3).
4. Compute 𝑎4, which includes salt, and output 𝜎 ∶= (ℎ1, ℎ2, ℎ3, 𝑎4).

The verification algorithm verifies a signature as follows:

1. Compute 𝑐1 ∶= 𝛾1(ℎ1), 𝑐2 ∶= 𝛾2(ℎ2), and 𝑐3 ∶= 𝛾3(ℎ3).
2. Reconstruct (𝑎̄1, 𝑎̄2, 𝑎̄3) from 𝑐1, 𝑐2, 𝑐3, 𝑎4.
3. Compute ℎ̄1 ∶= H(0x01, salt, 𝑣𝑘, 𝜇, 𝑎̄1), ℎ̄2 ∶= H(0x02, salt, 𝜇, ℎ1, 𝑎̄2), and ℎ̄3 ∶= H(0x03, salt, 𝜇, ℎ2, 𝑎̄3)
4. Output boole(ℎ1 = ℎ̄1 ∧ ℎ2 = ℎ̄2 ∧ ℎ3 = ℎ̄3).

Thus, we can consider MQOM as FSh[IDMQOM,H, 𝜸] with aux1 = (0x01, salt, 𝑣𝑘, 𝜇), aux2 = (0x02, salt, 𝜇), and
aux3 = (0x03, salt, 𝜇). aux is perfectly collision-resistant with respect to the message and verification key on

index 1.
We can routinely show IDMQOM’s HVZK and strong non-divergency under appropriate assumptions. There-

fore, MQOM is sEUF-CMA-secure in the (Q)ROM if it is EUF-NMA-secure in the (Q)ROM and used primitives

are secure. Since aux is collision-resistant with respect to the message and verification key on index 1,MQOM is

M-S-UEO and MBS securities if H is collision-resistant. In addition, aux1 can be written as (𝜇, 𝜂1). Thus, MQOM
is wNR-secure if H is the random oracle (Lemma 12).

H Generic VOLEitH

Recently, a close variant of MPCitH-type signatures called VOLE-in-the-Head 20 or VOLEitH type signature was

introduced [BBD
+
23b] to design FAEST signature scheme based on symmetric key primitives (block ciphers). In

this approach, one begins by proving knowledge of a witness (such as secret key of block cipher) with the help

of zero-knowledge proof of knowledge system based on VOLE correlations and then convert this ZKPoK into

signature scheme via Fiat-Shamir transformation. In spirit this is similar to constructing MPCitH-type ZKPoK

with only 2 parties (prover and verifier) using correlated randomness.

H.1 FAEST

We review FAEST v1.1
21
briefly below. The signing key is the secret key 𝑠𝑘 of a block cipher (from here onward

we will consider AES as the underlying block cipher) where as the verification key consists of plaintext 𝒙 and

ciphertext 𝒚 such that 𝒚 ∶= Enc𝑠𝑘 (𝒙). Additionally, the prover (signer) and verifier interact with an ideal func-

tionality VOLE which generates correlated random values 𝑢, 𝑣, 𝛥, 𝑞 such that 𝑞 = 𝑢 ⋅ 𝛥 + 𝑣 and sends (𝑢, 𝑣) to
the prover and (𝛥, 𝑞) to the verifier. This ideal functionality is implemented using puncturable PRF by building

a GGM tree from a length-doubling secure pseudorandom generator PRG. The protocol proceeds as follows:

19
On the input of hash functions, we adopt the definitions in the implementation (mqrom_cat1_gf31_fast in reference im-

plementations), since there is an inconsistency between high-level description (Figures 2 and 3) and low-level description

(Algorithms 8, 9, 10, and 11) in the specification documents [FR23].

20
VOLE is abbreviation of Vector Oblivious Linear Evaluation.

21
Version 1.1 is available at https://faest.info/

42

https://faest.info/

1. Prover embeds the witness 𝑤 corresponding to the secret 𝑠𝑘 in the VOLE correlation such that 𝑞 = 𝑤 ⋅ 𝛥+ 𝑣.
Specifically, prover computes 𝑑 ∶= 𝑤 − 𝑢 and sends 𝑑 to the verifier. Since verifier does not know 𝑢 sending
𝑑 does not leak anything about the witness 𝑤. The verifier can then locally update 𝑞 as 𝑞 ∶= 𝑞 + 𝑑 ⋅ 𝛥 which

corresponds to the VOLE correlation with respect to the witness as 𝑞 = 𝑤 ⋅ 𝛥 + 𝑣 and since the mask 𝑣 is
known only to the prover updated 𝑞 does not leak any information about the witness.

2. The prover and verifier then run the QuickSilver protocol [YSWW21] with the help of VOLE correlation

𝑞 = 𝑤 ⋅ 𝛥 + 𝑣, to check that on the input witness 𝑤 and verification key (𝒙, 𝒚) the AES circuit evaluates to 1.

In order to achieve the desired security level (such as 128-bit security) the above protocol is repeated 𝜏 times with

independent VOLE correlations (𝑢𝑖, 𝑣𝑖, 𝑞𝑖, 𝛥𝑖) for 𝑖 ∈ [𝜏]. We present the underlying VOLEitH protocol (which is

implicit in FAEST signature specification) as IDFAEST, P = (P1, P2, P3, P4) and V with Rep, as depicted in Figure 19

and Figure 20 to fit their scheme in our framework.

As stated earlier, the ideal VOLE functionality VOLE is implemented by constructing GGM tree using a

secure length-doubling pseudorandom generator PRG. The prover gets values 𝑢, 𝑣 by scaling and adding all the

(𝑁) leaves of the GGM tree. Whereas, the verifier is given all-but-one leaves of the GGM tree (this can be done

efficiently since GGM tree is a puncturable PRF). The verifier can then compute the value 𝑞 by scaling and adding
(𝑁 − 1) leaves, while the index 𝑖∗ serves as 𝛥. Since scaling and adding is a linear operation, this method results

in prover and verifier obtaining the desired VOLE correlation.

In practice, the GGM tree is created by the prover and verifier selects the index 𝑖∗ which serves as 𝛥. The
prover then sends the relevant seeds (path from GGM tree) to the verifier so that it receives all the leaves except

the 𝑖∗-th leaf, from which the verifier can compute 𝑞. Note that since this reveals the value 𝛥 to the prover, this

step is only done after the prover has computed and committed to VOLE correlations proving the AES circuit.

Another optimization used by FAEST facilitates the AES proof part using only single VOLE correlation (say

𝑢1) instead of 𝜏 correlations, however this requires the prover to prove the consistency of this proof with remain-

ing 𝜏 − 1 correlations. This requirement of proving that all the 𝜏 indepedent VOLE correlations are generated

honestly using the GGM trees and they are consistent with each other requires an additional round in the proof

system, therefore the protocol is a 7-round protocol.

Following algorithms are used in the protocol:

– UniversalHash: Used to prove the consistency of the 𝜏 VOLE instances efficiently.

– ExtendWitness: Extends the secret key 𝑠𝑘 to VOLE witness 𝑤.
– Lines 5 to 18 of P3 in Figure 19 computes the AES proof using the QuickSilver protocol. The universal hash

ZKHashmasks the information related to the AES circuit when providing extra information required to prove

the computation of multiplication gates in the circuit.

– PartialOpen: This refers to opening all-but-one leaves of the GGM tree.

– VOLEReconstruct: Reconstructs the value 𝑞 from masked witness 𝑑 sent by the prover and random challenge

𝑐ℎ3 generated by the verifier after receiving all-but-one leaves of the GGM tree. Specifically, the values 𝛥
and 𝑞 are generated by running all deterministic operations such as computing hash functions and PRG on

the inputs.

– VOLECorrect: Used to check the consistency of all 𝜏 VOLE correlations.

– AESVerify: Runs the verification steps of QuickSilver protocol to check the computation of AES circuit.

For details, refer to the original specification [BBd
+
23a].

Security of FAEST Signature

Lemma 24 (𝑞𝑆-HVZK). Suppose that PRG is a length-doubling secure PRG and H1 is a hash function modelled as
random oracle. Let 𝑞𝑆 be a polynomial of 1𝜅 . Then, IDFAEST with simulator SimFAEST in Figure 20 is 𝑞𝑆-HVZK.

Proof. The length-doubling PRG PRG is used to implement the ideal functionality VOLE using the GGM trees.

The rest of the proof follows from the proof for the malicious verifier case from SoftSpoken [Roy22] and Quick-

Silver [YSWW21] protocols, as explained in [?].

Lemma 25 (Strong Non-divergency). Suppose that hash functions H0 and H1 are collision resistant. Then, IDFAEST

is strongly-non-divergent with respect to SimFAEST.

Proof. Let a legitimate transcript be (𝑎1, 𝑐ℎ1, 𝑎2, 𝑐ℎ2, 𝑎3, 𝑐ℎ3, 𝑎4) and let the adversary’s transcript be (𝑎1, 𝑐ℎ1, 𝑎′2, 𝑐ℎ′2, 𝑎′3, 𝑐ℎ′3, 𝑎′4).
Recalling the conditions from Definition 7, we have following cases

1. 𝑐ℎ3 ≠ 𝑐ℎ′3 (condition (2𝑎) of Definition 7.)

2. (𝑎1, 𝑐ℎ1, 𝑎2, 𝑐ℎ2, 𝑎3, 𝑐ℎ3) = (𝑎1, 𝑐ℎ1, 𝑎′2, 𝑐ℎ′2, 𝑎′3, 𝑐ℎ′3) and 𝑎4 ≠ 𝑎′4 (condition (2𝑏) of Definition 7.)

43

1: P1(𝑠𝑘) for FAEST
2: Choose salt,mseed at random

3: Sample (seed𝑖)𝑖∈[𝜏] ∶= PRG1(salt,mseed)
//Generate VOLE secrets and tags

4: for 𝑖 = 1 to 𝜏 do
5: Compute (com𝑖, 𝑑𝑒𝑐𝑖, 𝑢𝑖, 𝑉𝑖,) from salt and seed𝑖

using length-doubling PRG

6: 𝑉 ∶= [𝑉0 𝑉1 ⋯ 𝑉𝜏]
7: 𝑢 ∶= 𝑢1
8: for 𝑖 = 1 to 𝜏 − 1 do
9: Compute 𝑐𝑖+1 ∶= 𝑢 ⊕ 𝑢𝑖

//Commit to VOLE secrets, tags, and
commitments

10: ℎcom ∶= H1(com1‖com2‖ ⋯ ‖com𝜏)
11: 𝑎1 ∶= (ℎcom, (𝑐𝑖+1)𝑖∈[𝜏−1])
12: state1 ∶= (salt, ℎcom, (𝑐𝑖+1)𝑖∈[𝜏−1], (𝑑𝑒𝑐𝑖)𝑖∈[𝜏], 𝑢, 𝑉)
13: state ∶= (state1)
14: return 𝑎1 and state

1: P2(𝑠𝑘, 𝑐ℎ1, state) for FAEST
2: parse state = (state1)
3: parse state1 = (salt, ℎcom, (𝑐𝑖+1)𝑖∈[𝜏−1], (𝑑𝑒𝑐𝑖)𝑖∈[𝜏], 𝑢, 𝑉)

//Universal hash for VOLE consistency
4: 𝑢̃ ∶= UniversalHash(𝑐ℎ1, 𝑢)
5: 𝑉̃ ∶= UniversalHash(𝑐ℎ1, 𝑉)
6: ℎ𝑉 ∶= H1(𝑉̃)

//Mask witness and generate VOLE MACs for 𝑤
7: 𝑤 ∶= ExtendWitness(𝑠𝑘)
8: 𝑑 ∶= 𝑤 ⊕ 𝑢
9: 𝑎2 ∶= (𝑢̃, ℎ𝑉 , 𝑑)
10: state2 ∶= (𝑤, 𝑢̃, 𝑑)
11: state ∶= (state1, state2)
12: return 𝑎2 and state

1: P3(𝑠𝑘, 𝑐ℎ2, state) for FAEST
2: parse state = (state1, state2)
3: parse state1 =

(salt, ℎcom, (𝑐𝑖+1)𝑖∈[𝜏−1], (𝑑𝑒𝑐𝑖)𝑖∈[𝜏], 𝑢, 𝑉)
4: parse state2 = (𝑤, 𝑢̃, 𝑑)

//Prove 𝐶(𝑤) = 1 for AES circuit 𝐶
using 𝑢, 𝑉 , 𝑤

5: for each gate 𝑔 ∈ 𝐶 do
//𝑤𝜃 , 𝑤𝜙 are input wires and 𝑤𝜂 is
the output

6: if 𝑔 is linear then
//𝑝, 𝑞, 𝑟 are coefficients of the

linear function
7: 𝑤𝜂 ∶= 𝑝 ⋅ 𝑤𝜃 ⊕ 𝑞 ⋅ 𝑤𝜙 ⊕ 𝑟
8: 𝑣𝜂 ∶= 𝑝 ⋅ 𝑣𝜃 ⊕ 𝑞 ⋅ 𝑣𝜙
9: if 𝑔 is multiplicative then

//𝑚𝑔 be unique identifier for 𝑔
10: 𝑤𝜂 ∶= 𝑤𝜃 ⋅ 𝑤𝜙

11: 𝑑𝑚𝑔 ∶= 𝑤𝜂 ⊕ 𝑢𝑚𝑔

//Generate multiplication
checking tags

12: 𝑎𝑚𝑔 ∶= 𝑣𝜃 ⋅ 𝑣𝜙
13: 𝑏𝑚𝑔 ∶= 𝑤𝜃 ⋅ 𝑣𝜙 ⊕ 𝑤𝜙 ⋅ 𝑣𝜃 ⊕ 𝑣𝜂

//Compress multiplication check tags
in ZK

14: 𝑎̂ ∶= { 𝑎𝑚𝑔 }
15: 𝑏̂ ∶= { 𝑏𝑚𝑔 }
16: 𝑎̃ ∶= ZKHash(𝑐ℎ2, 𝑎̂)
17: 𝑏̃ ∶= ZKHash(𝑐ℎ2, 𝑏̂)
18: 𝑎3 ∶= (𝑎̃, 𝑏̃)
19: state3 ∶= (𝑎̃)
20: state ∶= (state1, state2, state3)
21: return 𝑎3 and state

1: P4(𝑠𝑘, 𝑐ℎ3, state) for FAEST
2: parse state = (state1, state2, state3)
3: parse state1 =

(salt, ℎcom, (𝑐𝑖+1)𝑖∈[𝜏−1], (𝑑𝑒𝑐𝑖)𝑖∈[𝜏], 𝑢, 𝑉)
4: parse state2 = (𝑤, 𝑢̃, 𝑑)
5: parse state3 = (𝑎̃)

//Generate partial decommitments for
VOLE

6: for 𝑖 = 1 to 𝜏 do
7: 𝑝𝑑𝑒𝑐𝑖 ∶= PartialOpen(𝑐ℎ3, 𝑑𝑒𝑐𝑖)
8: 𝑎4 ∶= ((𝑐𝑖+1)𝑖∈[𝜏−1], 𝑢̃, 𝑑, 𝑎̃, (𝑝𝑑𝑒𝑐𝑖)𝑖∈[𝜏], salt)
9: return 𝑎4

Fig. 19. Prover algorithms for IDFAEST.

44

1: Rep(𝑣𝑘, 𝑐ℎ1, 𝑐ℎ2, 𝑐ℎ3, 𝑎4)
2: Parse 𝑎4 = ((𝑐𝑖+1)𝑖∈[𝜏−1], 𝑢̃, 𝑑, 𝑎̃, (𝑝𝑑𝑒𝑐𝑖)𝑖∈[𝜏], salt)

//Reconstruct VOLE correlations

3: Compute (ℎcom, 𝑄′) ∶=
VOLEReconstruct(𝑐ℎ3, (𝑝𝑑𝑒𝑐𝑖)𝑖∈[𝜏], salt)

4: 𝑎1 ∶= (ℎcom, (𝑐𝑖+1)𝑖∈[𝜏−1])
//Apply VOLE corrections

5: (𝑄, 𝐷) ∶= VOLECorrect (𝑐ℎ3, 𝑢̃, (𝑐𝑖+1)𝑖∈[𝜏−1], 𝑄′)
6: 𝑄 ∶= UniversalHash(𝑐ℎ1, 𝑄)
7: ℎ𝑉 ∶= H1 (𝑄 ⊕ 𝐷)
8: 𝑎2 ∶= (𝑢̃, ℎ𝑉 , 𝑑)

//Verify AES relation

9: 𝑏 ∶= AESVerify(𝑑, 𝑄, 𝑐ℎ2, 𝑐ℎ3, 𝑎̃, 𝑣𝑘)
10: 𝑎3 ∶= (𝑎̃, 𝑏)
11: return (𝑎1, 𝑎2, 𝑎3)

1: V(𝑣𝑘, 𝑎1, 𝑐ℎ1, 𝑎2, 𝑐ℎ2, 𝑎3, 𝑐ℎ3, 𝑎4)
2: Compute (𝑎1, 𝑎2, 𝑎3) ∶= Rep(𝑣𝑘, 𝑐ℎ1, 𝑐ℎ2, 𝑐ℎ3, 𝑎4)
3: return boole((𝑎1, 𝑎2, 𝑎3) = (𝑎1, 𝑎2, 𝑎3))

1: SimFAEST(𝑣𝑘, 𝑐ℎ1, 𝑐ℎ2, 𝑐ℎ3)
2: Choose salt,mseed at random

3: Sample (seed𝑖)𝑖∈[𝜏] ∶= PRG1(salt,mseed)
//Generate VOLE secrets and tags

4: for 𝑖 = 1 to 𝜏 do
5: Compute (com𝑖, 𝑑𝑒𝑐𝑖, 𝑢𝑖, 𝑉𝑖,) from salt and seed𝑖

using length-doubling PRG

6: 𝑉 ∶= [𝑉0 𝑉1 ⋯ 𝑉𝜏]
7: 𝑢 ∶= 𝑢1
8: for 𝑖 = 1 to 𝜏 − 1 do
9: Compute 𝑐𝑖+1 ∶= 𝑢 ⊕ 𝑢𝑖

//Commit to VOLE secrets, tags, and
commitments

10: ℎcom ∶= H1(com1‖com2‖ ⋯ ‖com𝜏)
11: 𝑎1 ∶= (ℎcom, (𝑐𝑖+1)𝑖∈[𝜏−1])
12: Choose 𝑑 uniform randomly

13: Set 𝑤 ∶= 𝑑 ⊕ 𝑢
14: Compute 𝛥 from 𝑐ℎ3
15: Set 𝑉 ∶= 𝑉 + 𝑑𝛥

//Universal hash for VOLE consistency
16: 𝑢̃ ∶= UniversalHash(𝑐ℎ1, 𝑢)
17: 𝑉̃ ∶= UniversalHash(𝑐ℎ1, 𝑉)
18: ℎ𝑉 ∶= H1(𝑉̃)
19: 𝑎2 ∶= (𝑢̃, ℎ𝑉 , 𝑑)
20: Prove 𝐶(𝑤) = 1 using 𝑢, 𝑉 , 𝑤 as in P3

21: 𝑎3 ∶= (𝑎̃, 𝑏̃)
//Generate partial decommitments for VOLE

22: for 𝑖 = 1 to 𝜏 do
23: 𝑝𝑑𝑒𝑐𝑖 ∶= PartialOpen(𝑐ℎ3, 𝑑𝑒𝑐𝑖)

24: 𝑎4 ∶= ((𝑐𝑖+1)𝑖∈[𝜏−1], 𝑢̃, 𝑑, 𝑎̃, (𝑝𝑑𝑒𝑐𝑖)𝑖∈[𝜏], salt)
25: return 𝑎1, 𝑎2, 𝑎3 and 𝑎4

Fig. 20. Reconstruction, verification, and simulation algorithms for IDFAEST.

45

When 𝑐ℎ3 ≠ 𝑐ℎ′3: In this case, let ℎcom and ℎ′com be the values recovered by running VOLEReconstruct with
inputs 𝑐ℎ3 and 𝑐ℎ′3 respectively. Then if ℎcom = ℎ′com, we have found a collision (during internal computation of

VOLEReconstruct) for the hash function H1. Otherwise, there is a contradiction since 𝑎1 ≠ 𝑎′1.

When 𝑎4 ≠ 𝑎′4: Note that, in this case (𝑎1, 𝑎2, 𝑎3) = (𝑎1, 𝑎′2, 𝑎′3) therefore the only possible case is ((𝑝𝑑𝑒𝑐𝑖)𝑖∈[𝜏], salt) ≠
((𝑝𝑑𝑒𝑐′𝑖)𝑖∈[𝜏], salt′). If (𝑝𝑑𝑒𝑐𝑖)𝑖∈[𝜏] ≠ (𝑝𝑑𝑒𝑐′𝑖)𝑖∈[𝜏], then again during computation of ℎcom and ℎ′com fromVOLEReconstruct

with inputs (𝑝𝑑𝑒𝑐𝑖)𝑖∈[𝜏] and (𝑝𝑑𝑒𝑐′𝑖)𝑖∈[𝜏] respectively we can find a collision (during the internal computation of

VOLEReconstruct) for either the hash function H1 or H0. Similarly, when salt ≠ salt′ we can find a collision for the

hash function H0 while computing ℎcom and ℎ′com from VOLEReconstruct with inputs salt and salt′ respectively.
⊓⊔

Since Rep is decomposable, we can obtain signature scheme FAEST = FSh,last[IDFAEST,H, 𝜸] as follows: 22

– Let H be a random oracle.

– Let 𝜸 ∶= (𝛾1, 𝛾2, 𝛾3), where 𝛾𝑖 is identity function for 𝑖 ∈ { 1, 2, 3 }.
– For message 𝜇, compute 𝑀 ∶= H(0x01, 𝑣𝑘, 𝜇).
– Set aux1 ∶= (0x02, 0x01, 𝑀, salt) and ℎ1 ∶= H(aux1, 𝑎1).
– Set aux2 ∶= (0x02, 0x02) and ℎ2 ∶= H(aux2, ℎ1, 𝑎2).
– Set aux3 ∶= (0x02, 0x03) and ℎ3 ∶= H(aux3, ℎ2, 𝑎3).

As the scheme is HVZK and strongly non-divergent, we get the following theorem:

Theorem 8. Suppose that FAEST = FSh,last[IDFAEST,H, 𝜸] is EUF-NMA-secure in the (Q)ROM, PRG is length-
doubling PRG,UniversalHash, ZKHash are hiding universal hashes Then, FAEST is sEUF-CMA-secure in the (Q)ROM.

Assuming that H is a random oracle (and therefore collision-resistant) we get that aux is also collision-

resistant with respect to the message and verification key on index 1, therefore FAEST is M-S-UEO secure and

MBS secure following Lemma 11.

Let us discuss the wNR security of FAEST. Because of Corollary 2, it is enough to show that a variant

FAEST′ ∶= FSh[IDFAEST,H, 𝜸] is wNR-secure if H is the random oracle. We can show this by modifying the

wNR security proof for FSh in Section A.7 as follows.

– G0: This is the original wNR game with FAEST′
.

– G1: In this game, if the adversary outputs 𝑣𝑘′ ≠ 𝑣𝑘 such that 𝑀 = H(0x01, 𝑣𝑘, 𝜇) = H(0x01, 𝑣𝑘′, 𝜇), then the

adversary loses. Since we have a collision (0x01, 𝑣𝑘, 𝜇) ≠ (0x01, 𝑣𝑘′, 𝜇) for H, this modification is justified by

the fact that random oracle H is collision resistant.

– G2: We skip this game.

– G3: Before giving 𝑣𝑘 and 𝜎 to the adversary, we reprogram the point (0x01, 𝑣𝑘, 𝜇) with random value 𝑀 . As

in the wNR security proof in Section A.7, we can invoke the O2H lemma and the difference is at most 1/||.
– G4: Next, we filter the random oracle H by reprogramming the values on the points (0x01, ⋅, 𝜇) with ⊥.

Since the adversary cannot obtain any information of the hash value 𝑀 ′ = H(0x01, 𝑣𝑘′, 𝜇), the winning

probability is at most 1/||. As in the wNR security proof in Section A.7, we can invoke the O2H lemma

and the difference between G3 and G4 is at most 1/||.

22
We introduce 0x01, 0x02, 0x03 in the computation of ℎ𝑖 values to split domains while the original specification implicitly

did it by the length of inputs and outputs.

46

	Introduction
	Preliminaries
	Unique Response and Non-Divergency
	Signature from Multi-Pass Identification
	FSh for Multi-Pass ID
	Biscuit
	Missing Definitions, Lemmas, and Proofs
	Variant of FSh
	MQDSS
	MiRitH
	PERK
	AIMer
	Generic MPCitH using Embedding
	Generic VOLEitH

