
VerITAS: Verifying Image Transformations at Scale

Trisha Datta, Binyi Chen, Dan Boneh
Stanford University

Abstract—Verifying image provenance has become an impor-
tant topic, especially in the realm of news media. To address
this issue, the Coalition for Content Provenance and Authen-
ticity (C2PA) developed a standard to verify image provenance
that relies on digital signatures produced by cameras. How-
ever, photos are usually edited before being published, and a
signature on an original photo cannot be verified given only the
published edited image. In this work, we describe VerITAS, a
system that uses zero-knowledge proofs (zk-SNARKs) to prove
that only certain edits have been applied to a signed photo.
While past work has created image editing proofs for photos,
VerITAS is the first to do so for realistically large images
(30 megapixels). Our key innovation enabling this leap is the
design of a new proof system that enables proving knowledge
of a valid signature on a large amount of witness data. We
run experiments on realistically large images that are more
than an order of magnitude larger than those tested in prior
work. In the case of a computationally weak signer, such as a
camera, we are able to generate a proof of valid edits for a 90
MB image in just over thirteen minutes, costing about $0.54
on AWS per image. In the case of a more powerful signer,
we are able to generate a proof of valid edits for a 90 MB
image in just over three minutes, costing only $0.13 on AWS
per image. Either way, proof verification time is less than a
second. Our techniques apply broadly whenever there is a need
to prove that an efficient transformation was applied correctly
to a large amount of signed private data.

1. Introduction

Verifying where and when a digital image was taken has
become increasingly difficult. After Russia invaded Ukraine
in February 2022, several photographs and videos [1], [2],
[3] circulated online that falsely claimed to show the con-
flict. In one instance, a BBC program showed footage
of what was supposedly the Russian invasion of Ukraine,
but was actually footage of a Russian military parade re-
hearsal [4]. The fact that even reputable news organizations
like the BBC can make these mistakes demonstrates that
there is much room for improvement in current image
provenance verification processes.

The Coalition for Content Provenance and Authenticity
(C2PA) has developed a standard [5] to verify image prove-
nance that relies on digital signatures. This standard pro-
poses that cameras digitally sign every photo they take along
with the photo’s metadata (e.g., location, timestamp, focal
length, exposure time, etc.). Leica, Sony, and Nikon have all

Camera

(signer)

Newsroom Editor

(prover)

Client

(verifier)

Figure 1: Image editing pipeline

developed cameras with such signing capabilities [6], [7].
Leica has even developed an on-camera trusted execution
environment (TEE) to protect the signing key. More recently,
AI companies, such as OpenAI, have also begun issuing
C2PA attestations on images that they generate to ensure
that they are not falsely blamed for content that they did
not generate. In Section 3 we discuss the threat model that
the C2PA is designed to address.

Users could in theory verify the provenance of a photo
in a news article by verifying the accompanying C2PA
signature. However, photos are rarely published as is. Before
being posted in a news story, they are often cropped, some
faces and objects may be blurred to protect privacy, images
are resized to save bandwidth, and in some cases they are
converted to grayscale. The Associated Press published a
list of acceptable edits [8] that do not fundamentally alter
the content of the photo. See Figure 1 for an overview of
the image editing pipeline.

Publishing edited photos presents a problem because the
C2PA signature on the original image cannot be verified
given only the edited image. To address this, the C2PA
proposes that all edits be performed by a C2PA-enabled (and
approved) editing application that maintains a secret sign-
ing key and signs the processed photo. These application-
generated signatures will then be verified by the reader to
validate the metadata of the photo. A major problem with
this approach is that it changes the trust model and breaks
end-to-end security. The end user must now trust the editing
application and the security of its signing key. Moreover, it
is not at all clear how open-source photo editing tools will
be used in this context. These tools typically have no way
to protect a signing key.

We therefore need a method for editing a signed photo
such that a news consumer who only has the published
edited photo can be assured that (i) the original unedited

https://help.openai.com/en/articles/8912793-c2pa-in-dall-e-3

photo was properly signed by a C2PA camera, (ii) only
permissible edits, such as cropping, blurring, resizing, and
grayscale, were made to the signed photo, and (iii) the
metadata of the edited photo is equal to the metadata of
the original photo. The scheme should preserve end-to-
end security, from the camera to the user’s screen, without
requiring the user to trust some editing software, the article’s
publisher, or a third-party fact-checker. We call this property
glass-to-glass security.

Our contributions. In this paper, we present VerITAS
(Verifying Image Transformations At Scale), a system that
uses succinct zero-knowledge arguments (zk-SNARKs) [9]
to prove the provenance of edited photos. A zero-knowledge
proof is a statement about a secret witness that can be
verified by anyone without revealing anything about the
witness other than the validity of the statement. These proofs
are complete, meaning that verification will succeed for
honestly generated proofs, and knowledge sound, meaning
that verification will fail if the prover does not have a
valid witness. These properties entail that the verifier need
not trust the prover, which solves the trust problem posed
by the C2PA protocol. Moreover, these proofs are zero-
knowledge, meaning that the proof reveals nothing about
elements that were removed from the original photo; this
is vital when sensitive information is cropped or blurred.
VerITAS uses succinct zero-knowledge arguments to enable
the editor to make modifications to a captured C2PA image,
and replace the signature with a zk-SNARK that the edited
image was derived from a properly signed C2PA image
via an authorized transformation. The resulting proofs are
succinct, meaning that they are “short” and “fast” to verify.
Proof verification can be done in the client application,
which could automatically detect and verify these proofs
in news articles.

In 2016, Naveh and Tromer [10] implemented Photo-
Proof, a system for producing zero-knowledge proofs for
simple photo edits. While this work demonstrated the feasi-
bility of creating zk-SNARKs for image edits, their proving
time was too large to be practical. In concurrent work with
ours, Kang et al. [11] developed a library that achieved
a 100x speed-up over PhotoProof. However, the largest
photo used in their experiments is 720p, or 900 kilopixels
(KP). The pictures produced by the Sony and Leica cameras
mentioned above are about 33 megapixels (MP), which is an
order of magnitude larger than any photo used in previous
work. VerITAS is the first system to produce ZK proofs
of image edits for photos on the order of 30 MP or more.
This paper is the full version of our work presented in [12]
and [13].

We describe VerITAS as a protocol between a prover (a
newsroom editor) and a verifier (a news consumer). Given a
public edited image x (e.g., a photo in a news article) and a
public editing function f , a prover convinces a verifier of the
provenance of the published photo by proving that it knows
a secret witness that comprises a photo w and a signature σ,
such that (i) σ is a valid signature on w under a public
verification key vk, and (ii) applying f to the witness photo

w results in the public photo x. In other words, we need a
zk-SNARK for the following instance-witness relation:

R :=
{(

(vk,f, x) ; (w, σ)
)
:

f(w) = x ∧ SigVerify(vk, w, σ) = 1
} (1)

The witness (w, σ) provided as input to the zero-knowledge
prover contains the original 30 megapixel (MP) image,
which is about 90 MB, along with a signature on this image.
Hence, in our settings, the prover must build a proof using
an unusually large witness.

The main bottleneck in systems that use zk-SNARKs
to prove simple photo edits is building a zk-SNARK for a
circuit that verifies that the original image is properly signed.
The difficult step is the first step of signature verification:
proving that a 90 MB witness was hashed correctly with a
collision resistant hash. Doing so using SHA256 is vastly
inefficient because SHA256 employs many non-linear oper-
ations, which are expensive inside of a zk-SNARK circuit.
Even proving knowledge of SNARK-friendly hashes like
Poseidon, which is what Kang et al. [11] use, is too costly
for hashing a 30 MP photo in a SNARK circuit, as discussed
in Section 7.1.

Efficiently proving knowledge of a signature. VerITAS
solves this problem by introducing two modes for proving
knowledge of (w, σ) such that σ is a valid signature on w.
One mode is designed for a computationally-limited signer
(such as a camera); the other mode is designed for a
more powerful signer (such an OpenAI). The former has
a lightweight signing procedure but slower editing proof
generation time. The latter has a more heavyweight signing
procedure but a much faster editing proof generation time.

Mode 1. To accommodate a computationally limited signer
(such as a camera), the VerITAS C2PA signer hashes the
captured image using a lattice-based collision resistant hash
to obtain a 1 KB digest. It then hashes that digest down to
32 bytes using Poseidon and signs the resulting hash value
using its secret key. As observed in [14] and [15], the benefit
of the lattice hash is that it uses only linear operations over
a finite field. This makes the lattice hash far more amenable
to being proved in a SNARK circuit than other collision
resistant hash algorithms, especially for a large amount of
data (such as a 90MB photo). We design a custom SNARK
to show that a lattice hash has been computed correctly (see
Section 5). We emphasize that no prior work has been able
to create hashing proofs for 30 MP images, and has thus
been limited to proving edits on photos that are an order
of magnitude smaller than the size of photos captured by
modern cameras.

To use our scheme, the C2PA camera would use our
hash function to hash the captured image and then sign
the computed hash using a standard signature scheme such
as ECDSA. When editing the image, the newsroom would
produce a proof that the original image is signed correctly
by verifying the hash in the zk-SNARK circuit. This design
may be of independent interest for anyone looking to create
proofs for SNARK circuits that hash a large amount of data.

Mode 2. When the C2PA signer is computationally powerful
(e.g., OpenAI), VerITAS uses a more heavyweight signing
algorithm. Here the C2PA signer first computes a polyno-
mial commitment to the captured photo and then signs the
short polynomial commitment using, say, ECDSA. Comput-
ing a polynomial commitment takes more time and memory
than computing a simple hash (we give detailed numbers in
the evaluation section). The benefit is that now VerITAS
can greatly reduce the time to generate a proof of valid
edit. In particular, we modify how the zk-SNARK prover
operates so that now the SNARK circuit only needs to verify
the photo edits, but does not need to verify the signature
or the polynomial commitment. Hence, by modifying the
underlying proof system we obtain a massive savings for
the newsroom editor when generating a proof of a valid
edit. The details are provided in Section 4.1.

Implementation. We split our implementation of VerITAS
into two parts: proving knowledge of a valid signature on
the original photo and proving a valid edit of the original
photo. We implement the former using the FRI [16] poly-
nomial commitment scheme (PCS) implementation from
Plonky2 [17], and we implement the latter by directly
proving circuits with Plonky2. We report results for proof
generation time, proof verification time, and peak memory
usage. Our experiments show that proving knowledge of a
signature using our Lattice-Poseidon hash for realistically-
sized images is much faster compared to using a Poseidon
hash alone. In fact, our machine could not prove knowledge
of a Poseidon hash of even a one megapixel (1 MP) photo.
If a photo is signed by a more powerful signer, as in mode 2,
then an editor avoids proving knowledge of a signature
altogether, and can just prove validity of the image edits,
which takes less than ten minutes. However, for the signer,
computing a polynomial commitment of a 30 MP photo
requires more memory and computational power than a
camera might have, which means that cameras will likely
opt for the lattice hash method (mode 1).

To summarize, our contributions are threefold:

• VerITAS is the first system, to our knowledge, that can
produce editing proofs for 30 MP signed images (all other
work has been limited to proving edits on photos over an
order of magnitude smaller);

• A custom proof system for computationally weak signers
that can prove that the hash of a very large amount of
witness data was computed correctly;

• A custom proof system for more powerful signers that
enables editors to produce editing proofs without verify-
ing a signature on the witness in the SNARK circuit. This
greatly reduces the time to produce an editing proof.

Our techniques apply more broadly than images. They
apply whenever there is a need to prove that an efficient
transformation was applied correctly to a large amount of
signed witness data. Some examples include signed financial
or health records. However, our focus in this paper in on
transformations applied to signed images.

Alternate designs. While VerITAS uses zk-SNARKs to
support editing signed images, a very different approach is
to use redactable signatures [18], [19], or more generally,
homomorphic signatures [20], [21]. Homomorphic signa-
tures enable anyone to transform a message-signature pair
(m,σ) into another message-signature pair

((
f(m), f

)
, σ′),

where σ′ is a valid signature on
(
f(m), f

)
. In other words,

σ′ is a signature on the transformed message m, and a
description of the transformation function f . When f is
a simple redaction operation, such as cropping, this can
be implemented very efficiently using redactable signatures.
However, more complicated transformations, such as blur-
ring and resizing algorithms in image processing packages,
cannot be reduced to redaction. For example, VerITAS pro-
vides a proof of correct resizing using the bilinear resiz-
ing algorithm [22], a standard resizing method in Adobe
Photoshop, which uses linear transformations and cannot
be reduced to redaction. Many other standard edits, such
as brightness, contrast adjustments, tinting, dodging, and
burning, can be proven in zero knowledge as in VerITAS, but
cannot be done using redactable signatures. One could try to
use homomorphic signatures [20], [21], but for these image
transformations, the best homomorphic signatures that do
not rely on SNARKs are impractical. We also note that for
resizing, the camera does not know the resizing dimensions
ahead of time and therefore cannot simply pre-sign a resized
image.

2. Preliminaries

We use [n] to denote the set {0, . . . , n − 1} and use
[a, b] to denote the set {a, . . . , b}. We use Fq to denote a
finite field of size q. Let r ←$ S denote drawing a random
value from the finite set S. We let ω denote a primitive nth

root of unity in F, so that the set Ω := {1, ω, ..., ωn−1}
has size n. We use ZΩ ∈ F[X] to denote the vanishing
polynomial on Ω. This ZΩ is the lowest-degree polynomial
such that ZΩ(x) = 0 for all x in Ω. It has the form
ZΩ(X) = Xn − 1, which can be evaluated using at most
2 log2 n field multiplications. We use F<d[X] to denote the
set of all univariate polynomials of degree less than d over
the field F.

We use bold-faced lowercase letters for vectors. For
a vector v ∈ Fm, we denote the elements of v as
(v0, ..., vm−1). We write the concatenation of two vectors
as v∥w. We denote matrices with bold-faced capital letters
(e.g., A ∈ Fn×m). We denote the columns of a matrix
A ∈ Fn×m as a0, ..., am−1 ∈ Fn. We denote element j
of row i in matrix A as Ai,j (e.g., the second element in
the topmost row of A is A0,1). We assume access to a hash
function H : F∗ → F that can take as input any (finite)
number of field elements as input.

2.1. Digital Signatures

A digital signature scheme S is a triple of efficient
algorithms (KGen,Sign,Vf) such that:

• KGen(1λ)→ (sk, vk), where sk is the secret signing key
and vk is the public verification key.

• Sign(sk,m)→ σ, where σ is a signature on message m.
• Vf(vk,m, σ) → 0/1, where 0 implies rejection and 1

implies acceptance.
We say that a signature scheme is secure if it is existentially
unforgeable under a chosen message attack [23] (see Ap-
pendix A.1 for the definition). Digital signatures in practice
are implemented as a two step process: first hash the data
using a collision-resistant hash and then sign the hash.

2.2. Commitment Schemes

A commitment scheme enables a party to commit to
a value x ∈ X by producing a commitment string com.
The commitment should be hiding and binding (see Ap-
pendix A.2 for definitions). More precisely, a commitment
scheme C = (setup, commit) is a pair of PPT algorithms:
• setup(1λ)→ pp, where pp are public parameters for the

scheme
• commit(pp, x, r)→ com, where com is a commitment to

a message x ∈ X with randomness r ∈ RC

To open the commitment com, the committer reveals x and
r and the verifier accepts if commit(pp, x, r) = com. In
some cases the setup algorithm is trivial in which case
we say that the commitment scheme is just the algorithm
commit(x, r)→ com.

Polynomial commitments. A polynomial commitment
scheme [24] lets a prover commit to a polynomial f ∈ F[X]
of bounded degree d. Additionally, the committer can pro-
vide an evaluation proof for the committed polynomial
at any point x ∈ F. More precisely, a polynomial com-
mitment scheme C is a tuple of four efficient algorithms
C = (setup, commit, open,Vf) such that:
• setup(1λ, d) → pp, where pp are public parameters to

commit to a polynomial of degree at most d.
• commit(pp, f, r) → com, where com is a commitment

to a polynomial f ∈ F[X] of degree at most d using
randomness r ∈ RC.

• open(pp, f, x, r) → (π, y), where π is an opening proof
that proves that f(x) = y.

• Vf(pp, com, x, y, π) → 0/1, where 0 implies rejection
and 1 implies acceptance.

A polynomial commitment scheme must be correct, evalu-
tion binding, and optionally hiding. We defer these defini-
tions to Appendix A.2. The polynomial commitment scheme
used in our implementation is built from the Fast Reed
Solomon IOP of Proximity (FRI IOPP) protocol [16] using
a collision resistant hash function.

2.3. zk-SNARKs: Zero-Knowledge Succinct Argu-
ments of Knowledge

Zero-knowledge succinct non-interactive arguments of
knowledge (zk-SNARKs) are efficiently verifiable state-
ments about a secret witness. A zk-SNARK Π for an

instance-witness relation R is a tuple of PPT algorithms
Π = (setup, prove,Vf) such that for (x,w) ∈ R:
• setup(1λ)→ pp, where pp are public parameters.
• prove(pp, x, w) → π, where, on input instance x and

witness w, the proof π shows that (x,w) ∈ R.
• Vf(pp, x, π) → 0/1, where 0 implies rejection and 1

implies acceptance.
The zk-SNARK must be complete, knowledge sound, zero-
knowledge, non-interactive, and succinct (see Appendix A.3
for definitions).

zk-SNARKs can be designed to prove a specific rela-
tion, or prove a general NP relation (e.g., Groth16 [25],
PLONK [26]). We use both types in our system: we design
a custom zk-SNARK for our lattice hash and use a general-
purpose zk-SNARK for proving Poseidon hashes and photo
transformations. Plonky2 [17] is a system that allows users
to write constraints in the form of circuits that can then
be proven and verified by the PLONK [26] polynomial
interactive oracle proof (Poly-IOP) . We utilize PLONK to
produce proofs for photo editing. For our scheme involving
a computationally powerful signer, we make non-black-box
use of PLONK.

2.3.1. Lookup Table Arguments. A lookup argument is
a relation-specific zk-SNARK. Given a table T ∈ Ft, a
prover can use a lookup argument to show that all elements
of some (committed) vector v ∈ Fm are contained in T .
Plookup [27], Baloo [28], cq [29], and Lasso [30] are state-
of-the-art lookup arguments. Baloo and cq’s prover com-
plexity is sublinear in the table size t. However, compared to
Plookup, their prover time grows faster in m (the dimension
of v). In our use of lookup tables we have t≪ m, and we
therefore use a Plookup-based approach.

2.3.2. The Schwartz-Zippel Lemma. Let f be a non-zero
ℓ-variate polynomial over a finite field F, where the total
degree of f is d. The Schwartz-Zippel Lemma [31], [32]
says that for random elements α1, . . . αℓ ←$ F we have

Pr
[
f(α1, . . . , αℓ) = 0

]
≤ d/|F|

We will use the this lemma to prove equality of polynomials.

2.3.3. Fiat-Shamir Transform. A public-coin interactive
protocol can be made non-interactive using the Fiat-Shamir
transform [33], which replaces verifier challenges with
hashes of the transcript up until that point. For a protocol
that has special soundness, applying the Fiat-Shamir trans-
form retains its soundness properties [34].

2.3.4. PLONK. PLONK [26] is a zk-SNARK for proving
correct evaluation of an arithmetic circuit. Figure 2 shows
the (simplified) PLONK system design. For our photo edit-
ing proof that requires a computationally powerful signer,
we modify the permutation argument in PLONK.

Let us briefly describe PLONK and its permutation ar-
gument. To prove correct evaluation of an arithmetic circuit
we first build a table representing the computation trace

Figure 2: This figure illustrates how a circuit trace (left)
is encoded as a polynomial T (x) (right). The circled pairs
on the right represent copy constraints (there are copy
constraints between all cells of the same color); the PLONK
prover must prove that the edge-connected cells have the
same value and that the values of cells in each row satisfy
the gate constraint. Recall that ω is a primitive n-th root of
unity in F, for a sufficiently large n.

(the left hand side of Figure 2). Every row of the trace
corresponds to a single gate in the circuit. Each gate has two
input wires In0, In1, one output wire Out, and an associated
operation Op (here, either addition or multiplication). We
require that Op(In0, In1) = Out for all gates. This is called
the gate constraint. Additionally, some input/output wires
over different gates may be required to share the same
values. This captures the wiring structure of the circuit
and is called a copy constraint. For example, in the left
hand side of Figure 2, the cells with same color must have
identical values. Copy constraints are determined by the
structure of the circuit and not by the wire values assigned
by the prover. We categorize the set of wire values into
three types: the public instance x, the secret witness w,
and the internal wires y. For example, in our application,
x is the published edited photo, w is the original signed
image (e.g. by the camera), and y is the intermediate values
computed during the transformation from the original image
w to the published image x. In Figure 2, the public instance
is x := (x0, x1), the secret witness is w := (w0, w1), and
the internal wires are y := (y0, y1, y2). Given a public
instance x, the prover needs to prove that it knows w and y
that satisfy all the gate constraints and copy constraints.

PLONK uses a permutation argument to prove copy
constraints. Let T (x) be the polynomial that interpolates
the trace values, i.e., for gate number i we have

T (ω3i) = Ini,0, T (ω3i+1) = Ini,1, T (ω3i+2) = Outi,

where (Ini,0, Ini,1,Outi) are the wire values for gate i.
Let τ : Ω → Ω be a permutation such that for every
copy constraint T (s1) = T (s2) = . . . = T (sℓ) where
s1, . . . , sℓ ∈ Ω, we have

τ(s1) = s2, τ(s2) = s3, . . . , τ(sℓ) = s1.

We can represent τ as a polynomial of degree n = |Ω|. It
is clear that the copy constraints are satisfied if and only if

T (s) = T (τ(s)) for all s ∈ Ω. The public statement in the
PLONK permutation argument is a commitment to the poly-
nomials T and τ . The argument proves that T (s) = T (τ(s))
for all s ∈ Ω. Moreover, the permutation argument supports
proving permutation relations across multiple polynomials.
That is, suppose we have polynomials T0, . . . , Tn−1 and a
permutation τ : [n] × Ω → [n] × Ω. Then, we can use the
permutation argument to prove that Ti(s) = Tj(t) for all
s ∈ Ω, i ∈ [n] where τ(i, s) = (j, t). This will be important
in our photo editing proofs, as explained in Section 4.3. The
details of the permutation argument can be found in [26],
and several optimizations were proposed in [35], [36].

2.4. Short Integer Solution (SIS) and Lattice Hash

The Short Integer Solution (SIS) problem [37] is defined
as follows. Fix some parameters n,m, q, b ∈ N where n <
m and q is a prime. An instance of the problem is specified
by a random matrix A ←$ Fn×m

q . To solve the given SIS
instance, the adversary must find a non-zero vector v ∈ Zm

such that Av = 0 (mod q) and ∥v∥∞ ≤ b (i.e., v is short).
For a sufficiently large n ∈ N, solving SIS is conjectured
to be hard for any choice of m, q, b ∈ N whenever q >
b · poly(n) and m > n log2 q.

We next describe a hash function whose collision resis-
tance follows from the hardness of SIS [37], [38]. We repre-
sent the data to be hashed as a low-norm vector v ∈ Zm

q . For
a random matrix A ∈ Fn×m

q , the hash function is defined as

HA(v) := Av (mod q) (2)

To see why this function is collision-resistant suppose to-
wards a contradiction that there is an adversary A(A)
that can find a collision for HA, when A is sampled as
A ←$ Fn×m

q . Then A(A) will output low-norm distinct
vectors v and v′ in Zm, such that Av = Av′ in Fq. But
then A(v− v′) = 0, and since v and v′ are low-norm, so is
their difference. Hence, A can solve SIS. We stress that this
shows that (2) is collision resistant only when v is low-norm.

3. Threat Model

In the C2PA setting, every camera is equipped with
an embedded certified signing key for a secure signature
scheme. The secret signing key is generated on camera and
certified by a C2PA certificate authority at manufacturing
time. Every time a camera takes a photo, it signs the raw
RGB values of the photo’s pixels and relevant metadata (e.g.,
location, timestamp, exposure time). We assume that the
adversary has access to the camera and the camera’s public
key. However, the C2PA assumes that the attacker cannot
extract the signing key from the camera, nor can the attacker
cause the camera to sign an image that was not captured by
the camera’s optical hardware. In our settings, the only root
of trust is the camera and its signing key. The editor of a
photo is not trusted in any way. The verifier wants to ensure
that the received edited photo is the result of applying an
acceptable transformation [8] to a C2PA signed image.

Non threats. While C2PA is an important step towards
image provenance, it is by no means a complete solution and
must be combined with other defenses. Specific attacks on
the C2PA are out of scope for this paper because our primary
focus is on securing the image editing pipeline (Figure 1).
Nevertheless, for completeness, we describe a few potential
attacks on C2PA and how they might be addressed. These
attacks are considered in the C2PA documentation.

First, the adversary might extract the C2PA signing key
from some deployed camera. The Leica camera implements
a hardware trusted execution environment (TEE) to protect
the key and make extraction harder (but not impossible).
Moreover, if a key is extracted, the standard includes a
revocation mechanism that alerts all verifiers to revoke a
compromised C2PA certificate.

Second, an attacker might try a picture-of-picture attack:
it displays an AI-generated picture on a laptop screen and
takes a picture of the screen using a C2PA camera. The
result is a properly signed image of a fake event. This is a
known challenge for the C2PA. One way to defend against
this is to require the verifying client to run a picture-of-
picture detector. For example, the focal length in the signed
image metadata will be that of a camera taking a picture of
a screen, and that is likely to be very different from the focal
length needed to take a picture of the real-world portrayed
event. Several other detection strategies have been suggested
by C2PA, but this may turn into a cat-and-mouse game.

Third, the list of allowed transformations by the Associ-
ated Press may change the semantic meaning of the image.
For instance, if presented with a photo of Alice and Bob,
an adversary could crop out Alice and claim that Bob was
alone when the photo was taken.

Fourth, C2PA may pose a privacy risk in that the signa-
ture on a photo can identify the camera that took it. This can
be mitigated by having the camera sign photos using a group
signature [39], [40]. We discuss this further in Section 9.

As explained above, these attacks are out of scope for
this paper. Here we operate within the threat model that
C2PA is designed to defend against — which excludes
the attacks mentioned above — and focus on securing the
editing pipeline.

4. The Design of VerITAS

We present VerITAS as an interaction between a news
organization (prover) and a client reader (verifier). Every
photo displayed in a news article should be accompanied
by its metadata (location, timestamp, focal length, etc.),
a description of the edits that were made to the original
photo, and a succinct zero knowledge proof. The public
statement consists of the published edited photo (x), the
edits performed to the original photo (f), and the camera’s
public key (vk). The secret witness is the original photo
(w) and the camera’s signature (σ) on the original photo w.
Recall that, abtractly, our goal is to design an efficient proof

system for the instance-witness relation

R :=
{(

(vk,f, x) ; (w, σ)
)

:

f(w) = x ∧ Vf(vk, w, σ) = 1
} (3)

While (3) places vk in the public statement, we could protect
the photographer’s identity by moving vk and its certificate
to the secret witness, and leaving only the CA public key in
the public statement. To simplify the presentation we will
use the relation (3) and discuss the more private variant in
Section 9.

A client will only accept a photo’s provenance if the
photo x is accompanied by a triple (π, vk, f) where π is
a valid ZK proof for R, vk is a properly certified C2PA
verification key, and the function f , which encodes the list
of edits, is “acceptable,” as defined by the Associated Press.
We can thus think of VerITAS as enforcing a whitelist of
allowable edits.

VerITAS relies on all the properties of a zk-SNARK.
Completeness and knowledge-soundness of the zk-SNARK
mean that the client does not need to trust the editor, preserv-
ing end-to-end security of the signature. Non-interactivity
means that the news organization does not need to interact
with any client and can instead publish a single proof along
with the news article that any verifier can check. Zero-
knowledge ensures that the proof does not reveal infor-
mation that was cropped or blurred in the original photo.
Succinctness ensures that the proof can be quickly verified
by the client within a few seconds.

We next turn to designing a proof system for the rela-
tion R from (3). The proof has two parts:
• First, a proof that f(w) = x, for an image transformation

function f . We come back to building such a proof in
Section 6.2.

• Second, a proof that σ is a valid signature on w. This
is more complicated, and we present our approach in
Section 4.1.

We also need to ensure that the secret witness w used
to generate both proofs are identical. We discuss how to
achieve this in Section 6.1.2.

4.1. Proving Knowledge of a Valid Signature

When verifying a signature σ on some data w, the
verifier: (i) computes h ← H(w), where H is a collision
resistant hash function, and (ii) verifies that σ is a valid
signature on h. When the data being verified is large, as in
the case of a photo, most of the time is spent on computing
the hash h in step (i). The same is true when proving
knowledge of a valid signature. The challenge is to design
an efficient SNARK circuit that can verify that the hash h
of a large amount of data w is computed correctly. Once the
verifier has a valid hash h, proving knowledge of an ECDSA
signature on h can be done using existing circuits [41].

Ideally, we would like to use a standard hash function
like SHA256. Unfortunately, proving that we have hon-
estly applied SHA256 to a 30 megapixel (MP) witness is

practically infeasible. This is because SHA256 consists of
mainly non-algebraic operations (e.g. logical operations),
and proving non-algebraic constraints in a zk-SNARK is
time-consuming. There are SNARK-friendly hash functions
like Poseidon [42], but proving that we have honestly ap-
plied Poseidon to a 30 MP witness is also challenging in
practice, as discussed in Section 7.1.

Our approach. We propose two solutions to this problem.
Our first solution, presented in Section 4.2, is to design a
collision resistant hash function H for which there is an
especially efficient way to provide a SNARK proof for the
instance-witness relation

Rhash :=
{(

h;w
)

: h = H(w)
}

(4)

even when w is a large string. To do so we use a composition
of a lattice-based hash function (see Section 2.4) and the
Poseidon hash function. Using this hash function, in the
context of a SNARK, is of independent interest.

Our second solution, presented in Section 4.3, uses a
polynomial commitment scheme as the collision resistant
hash H. Computing this hash function on the image w
takes more computing resources than in our first solution.
However, once the hash value is computed, incorporating it
into a SNARK proof requires no additional work. Hence,
this approach is suitable when the original photo signer has
enough computing power to compute a polynomial com-
mitment to the original photo. If so, then the editor’s work
to produce the proof-of-valid-edit completely eliminates the
expensive step of producing a proof for the relation Rhash.

4.2. Lattice + Poseidon Hash Function

The hash function used in our first solution is a sequen-
tial composition of the lattice hash from Section 2.4 and a
Poseidon hash. We represent the photo w being hashed as
three low-norm vectors, each containing either the R, G, or
B (all 8 bits long) values for every pixel. This means that
if a photo has m pixels, we transform it into three vectors
vr, vg, vb of length m whose values are all in [0, 255]. We
hash these three vectors separately. We set q to be the prime
field of the SNARK system used to prove knowledge of the
signature (e.g., a 64 bit prime for a FRI-based SNARK).
We then generate a random matrix A ∈ Fn×m

q , where in
our settings m is about thirty million and n is 128. Let
Poseidon(x) be the function that applies the Poseidon hash
function defined over Fq to the input x. We define our hash
function H on input v ∈ Fm

q as:

H(v) := Poseidon(A · v mod q) (5)

as shown in Figure 3. We compute the Poseidon hash of the
lattice hash because Av is still fairly large (1024 bytes) and
the Poseidon hash is much smaller (32 bytes). The function
in (5) is collision resistant because the composition of two
collision resistant hash functions is also collision resistant.

The point is that computing H(v) requires mostly linear
operations over Fq. In particular, the large matrix-vector
product is all linear, and by choosing q to be compatible

𝐴
Poseidon

̇ =

𝑙𝑎
𝑡𝑡

𝑖𝑐
𝑒

 ℎ
𝑎

𝑠ℎ

o
ri

gi
n

al
 p

h
o

to

1024
bytes

32
bytes

Figure 3: Our Lattice + Poseidon Hash Construction

with the SNARK field, we can prove these linear operations
very efficiently in a zk-SNARK. The major challenge of
this approach is that the lattice-based hash is only collision-
resistant when the input is a low-norm vector, so the prover
must additionally prove that v is low-norm. In other words,
we need a proof system for the following relation:

RVH :=
{(

(A,h, b) ; v
)

: A ∈ Fn×m, b ∈ N,
h = Poseidon(A · v), ∥v∥∞ < b

} (6)

where b is a norm bound needed for collision resistance of
the lattice hash (as in Section 2.4). This relation implies
that (i) the prover has honestly calculated the product of the
public matrix A and the secret vector v, (ii) this vector v is
low-norm, and (iii) the prover has honestly applied Poseidon
to this product. To prove (iii), we can use an available
Groth16 circuit for Poseidon [43]. Proving (i) and (ii) is
the focus of Section 5.

4.3. A Polynomial Commitment Hash

We next describe our second approach for proving (3)
that is designed for a signer that has more compute power
(such as the owner of a generative AI model). Again, let us
encode the original image w as three vectors vr, vg, vb ∈
[0, 255]m. For simplicity, in this section we only consider
one such vector, denoted by v, which can be thought of as
any of the three vectors. In our second approach (mode 2)
the signer interpolates a univariate polynomial W , of degree
at most m− 1, such that W (ωi) = vi for i = 1, . . . ,m. We
denote this polynomial by poly(w), namely

W := poly(w).

Next, the signer computes a succinct polynomial commit-
ment to W (X) as

com← PCS.commit(pp,W, r)

where r is the commitment randomness chosen by the
signer. The signer signs com to obtain a signature σ on
com. It sends the image w along with (vk, com, σ, r) to the
news editor, where vk is the signer’s certified public key.

The news editor will create an edited image x := f(w).
Because the polynomial commitment is binding, it suffices

for the editor to construct a zk-SNARK proof π for the
following instance-witness relation

Rsimple :=
{(

(pp,f, x, com) ; (w, r)
)

: f(w) = x ∧
com = PCS.commit(pp, poly(w), r)

}
The editor then proves (3) by sending (vk, f, x) to the
verifier along with the proof π′ := (com, σ, π). The verifier
checks that
• Vf(vk, com, σ) accepts (σ is a valid sig on com), and
• π is a valid proof that (pp, f, x, com) is a Rsimple instance.
This proof system for (3) is knowledge sound and zero
knowledge. Knowledge soundness follows because the proof
system for Rsimple is a zk-SNARK, which means we can
extract a witness for Rsimple. This witness is by definition
also a witness for (3). The proof system is zero-knowledge if
we allow the simulator to take the public statement (vk, f, x)
along with the signing key as input. The simulator then
simulates the proof π′ := (com, σ, π) using the simulator for
the proof system for Rsimple and the hiding propery of the
polynomial commitment. Note that providing the simulator
with the signing key does not leak information about the
witness w because it is chosen before w. Alternatively, we
can construct a simulator that only takes the public statement
as input (without the signing key) by modifying the proof π′

above to contain a zk-SNARK proof of a valid signature σ
instead of the signature σ itself; see Section 9 for details.

The proof system. It remains to design a proof system for
Rsimple. A naive way to do that is to have the SNARK circuit
verify both that f(w) = x and that com is a polynomial
commitment to poly(w). However, proving the latter would
be far more expensive than proving that the editor has
correctly hashed w, as we did in Section 4.2.

Instead, the key insight is that for the PLONK proof
system, building a proof for Rsimple is no more work for the
editor than simply proving that f(w) = x. This means that
the SNARK circuit never needs to hash w, which greatly
reduces the work for the editor. To achieve this reduction in
work, VerITAS modifies PLONK’s permutation argument.
Let us see how.

Let C(x,w) be a circuit that outputs 0 iff f(w) = x.
Remarkably, if an editor wants to build a proof for Rsimple,
it suffices to use PLONK to prove knowledge of a valid
witness for C; there is no need to expand C to also check
that com is a polynomial commitment to poly(w). Instead,
we modify the PLONK prover to indirectly prove that com
is a valid commitment to poly(w). First, the editor builds
the computation trace T (X) for C(x,w) just as the standard
PLONK prover would. The standard PLONK prover would
then construct a proof π that T (X) is a valid computation
with respect to the gate constraints and copy constraints
specified by C. Our editor must additionally prove that com
is a valid commitment to poly(w). Recall that some entries
in T (Ω) correspond to the witness w (see Figure 4 for an
example). Thus, proving that com is a valid commitment
to poly(w) = W (X) is equivalent to proving that the
witness elements represented by entries of W (Ω) are equal

to the corresponding witness entries in T (Ω). The editor can
prove this equality by extending the PLONK permutation
argument.

Recall that the permutation argument proves that the
vector T (Ω) is equal to the vector T (τ(Ω)), where τ is
a polynomial that implements a permutation of Ω. The
standard PLONK prover defines τ to capture copy con-
straints within the circuit C and then uses the permutation
argument to prove that the computation trace respects the
circuit wiring. In our scheme, the editor extends the PLONK
permutation argument to prove that all the entries in T (Ω)
that correspond to a witness element are equal to the cor-
responding witness element in W (Ω). More specifically, it
extends τ to a new permutation τ ′ that captures additional
copy constraints between T (X) and W (X). The right side
of Figure 4 gives an example where the black edges repre-
sent the standard PLONK copy constraints, and the thick red
edges represent the extended copy constraints between T (Ω)
and W (Ω). In other words, we use the PLONK permutation
argument to prove copy constraints across two different
polynomials: T (X) and W (X). The permutation argument
can be adapted to this task, as was already shown in the
original PLONK paper [44, §5.1].

The news editor can use this to efficiently construct a
proof that C(x,w) = 0 and that com is a valid commitment
to poly(w). It uses both T (X) and W (X) to build a PLONK
proof with respect to the permutation τ ′ which includes the
new copy constraints shown in Figure 4. The result is a
proof π that (pp, f, x, com) is a valid instance of Rsimple, as
required.

Augmenting the permutation argument to operate over
two polynomial T and W in this way does not change the
proving time much over simply proving that f(w) = x for a
public value x and witness w. This is because the additional
copy constraints are by far fewer than the copy constraints
required for the circuit C.

Summary. This method results in a massive reduction in
work for the editor, because the zk-SNARK circuit is now
much simpler than the circuit in Section 4.2. In particular,
the circuit does not need to hash the large original image w.
While this saves work for the editor, it creates more work
for the signer because computing a polynomial commitment
to w is more costly than computing a lattice hash of w. We
quantify these tradeoffs in Section 7.

5. A Proof System for the Lattice Hash

In this section, we describe the custom proof system
that VerITAS uses to prove that the hash function in (5)
was computed correctly. Specifically, we construct a proof
system for the following instance-witness relation

RLH :=
{(

(A,h, b) ; v
)

: A ∈ Fn×m, b ∈ N,
h = A · v, ∥v∥∞ < b

} (7)

That is, the prover shows that it knows a low-norm vector
v ∈ Fm such that h = A · v.

Figure 4: This figure illustrates the additional copy con-
straints (thick red lines) that the prover must prove in our
polynomial commitment-based signing scheme. If W (X)
is the witness polynomial, then the prover must show that
evaluations of W are the same as the corresponding witness
cells in the circuit trace.

First, to prove that ∥v∥∞ < b it suffices to prove that all
the elements of v are in the set* [0, b−1]. We can implement
this range proof with a lookup argument using the table
T := [0, b − 1]. The lookup argument proves that every
element of v ∈ Fm is in T . In VerITAS, we set b = 28 and
m = 30, 000, 000 (30 MP), so that b≪ m. In these settings
a simplified Plookup-based lookup argument [45] minimizes
prover work. Briefly, the argument works as follows: the
prover commits to a vector u ∈ Fb, which is a list of the b
values in [0, b− 1], and another vector z ∈ Fm+b, which is
the sorted concatenation of v and u. The prover then builds
a zk-SNARK proof that (i) z is a permutation of v∥u, and
(ii) that the difference between consecutive elements in z is
either 0 or 1. Together, (i) and (ii) imply that all the elements
of v lie in [0, b − 1], and the range proof is complete. We
explain how to do this in Section 5.3.

Second, to prove h = A · v we use the classic Freivalds’
algorithm [46]. That is, we use the observation that to prove
that h = A · v it suffices to prove that r⊺h = (r⊺A)v
holds for a random vector r ←$ Fn chosen by the verifier.
This collapses the matrix-vector product check to simply
testing that the dot-product of (r⊺A) with v is equal to the
public scalar r⊺h ∈ F. This can be proved via the sum-
check protocol, as observed by Thaler [47]. In our case we
use a univariate sum-check proof introduced in the Aurora
system [48]. We give the details in Section 5.4.

5.1. Polynomial Representation of Vectors

All of our subsequent proof systems prove statements
about a witness vector v ∈ Fm. These protocols encode
the vector v as a polynomial, and then prove the required
statement about the polynomial. To do so, let us define
the polynomial encoding for a vector v to be the unique

*Technically, we need to prove that the elements are in (−b, b), but
since v only contains values in [0, b), we can ignore the negative part.

polynomial v(X) ∈ F<m[X] where ∀i ∈ [m], v(ωi) = vi.
This means:

v = (v0, ..., vm−1) =
(
v(1), ..., v(ωm−1)

)
∈ Fm.

We let poly : Fm → F<m[X] be the function that maps
a vector v to a polynomial v(X). This function can be
implemented with any polynomial interpolation method.

5.2. Zero, Sum, and Permutation Check Proofs

In what follows we will be using proof systems for
three well-known instance-witness relations: ZeroCheck,
SumCheck, and PermutationCheck. As usual, let Ωm :=
{1, ω, ω2, . . . , ωm−1} ⊆ F, and let d > m be some degree
bound.
• The ZeroCheck relation:

RZC,m :=
{(

(pp,comu) ; (u, r)
)

: u ∈ F<d[X],

∀ω ∈ Ωm : u(ω) = 0,

commit(pp, u, r) = comu

}
• The Univariate SumCheck relation:

RSC,m :=
{(

(pp,comu, s) ; (u, r)
)

: u ∈ F<d[X],∑
ω∈Ωm

u(ω) = s,

commit(pp, u, r) = comu

}
• The PermCheck relation: Let u ∈ F<b[X], v ∈ F<m[X],

and z ∈ F<b+m[X] be three committed polynomials. A
permutation check convinces the verifier that the vector
z(Ωb+m) is a permutation of the vector u(Ωb)∥v(Ωm).
More precisely, it is a proof for the following relation

RPC :=
{(

(pp, comu, comv, comz) ; (u, v, z, ru, rv, rz)
)

:

u ∈ F<b[X], v ∈ F<m[X], z ∈ F<b+m[X],∏
α∈Ωb+m

(
X − z(α)

)
=

∏
β∈Ωb

(
X − u(β)

) ∏
γ∈Ωm

(
X − v(γ)

)
,

commit(pp, u, ru) = comu,

commit(pp, v, rv) = comv,

commit(pp, z, rz) = comz

}
The equality on the third line is an equality of univariate
polynomials in the indeterminate X . The equality holds
if and only if z is a permutation of u∥v.

A zk-SNARK for the ZeroCheck relation works by (i) having
the prover first commit to the quotient polynomial q(X) :=
u(X)/ZΩm(X) and then (ii) proving that the polynomial
equality q(X) = u(X) · ZΩm(X) holds, by proving that it
holds at a random point in F.

The Aurora proof system [48] gives a zk-SNARK for
the SumCheck relation, and the Plonk system [26] gives zk-
SNARK for the PermCheck relation.

We denote these three proof systems by (PZC,VZC),
(PSC,VSC), and (PPC,VPC) respectively. All three proof
systems produce proofs whose length is independent of
the degree of the witness. Haböck [35] recently gave an

improved argument for PermCheck, by replacing the product
by a sum of rational functions. PermCheck can also be
proved efficiently using the GKR proof system [49].

5.3. The Range Proof

Next, we explain how to prove that all elements of a
vector v ∈ Fm are in a given set T := [0, b− 1]. This range
proof is inspired by the Plookup lookup table protocol [45].
Define the vector ub := (0, 1, ..., b − 1). A range proof
amounts to proving that all elements of v are in ub.

We will work with the polynomial representation of
these vectors, namely v := poly(v) and u := poly(ub).
The verifier has the statement (pp, comv). The prover has
the same statement along with a witness (v, rv) such that
commit(pp, v, rv) = comv and v ∈ F<m[X]. The range
check proof system is described in Algorithms 1 and 2.

The public parameters pp for the proof system are
generated using a one-time (possibly trusted) setup. These
parameters are the public parameters for the zk-SNARKs
(PZC,VZC) and (PPC,VPC), which include the public pa-
rameters for a polynomial commitment scheme (PCS). The
degree bound d for the PCS is set to m+b, which is in turn
determined by the size of the photos being processed.

Algorithm 1 RangeCheckProver(pp, b, comv; v, rv)

z← poly(sort(v||ub))
comz ← commit(pp, poly(z), rz)
comu ← commit(pp, poly(ub), 0)

// Do the permutation check on z and u, v.

πPC ← PPC(pp, comu, comv, comz;u, v, z, 0, rv, rz)
// Compute a polynomial f that is zero on Ωm+b whenever

// the gap between consecutive elements of z is either 0 or 1.

λ(X)←
∏

a∈Ωm+b, a ̸=1(X−a)∏
a∈Ωm+b, a ̸=1(1−a) // Lagrange polynomial

µ(X)← 1− λ(X) // µ(Ωm+b) = 1 except that µ(1) = 0.

f(X)← µ(X) ·
(
z(ωX)− z(X)

)
·
(
z(ωX)− z(X)− 1

)
// The commitment comz implies a commitment comf to f meaning that:

// opening f(X) at x can be done by opening z(X) at x and ωx.

// Prove that f is zero on Ωm+b.

πZC ← PZC,m+b(pp, comf ; f, rf)
Output π ← (comz, πPC, πZC)

Algorithm 2 RangeCheckVerifier(pp, b, comv;π)

parse (comz, πPC, πZC)← π
// The commitment comz implies a commitment comf to f as in Alg. 1.

comu ← commit(pp, poly(ub), 0)
accept if VPC(pp, comu, comv, comz;πPC)

and VZC,m+b(pp, comf ;πZC) both accept

The following theorem states the security property of this
proof system.
Theorem 5.1. Suppose that (PZC,VZC) and (PPC,VPC) are

zk-SNARKs for RZC and RPC respectively. Further,
suppose that the polynomial commitment scheme used

is secure and unconditionally hiding. Then the proof
system in Algorithms 1 and 2 is a zk-SNARK for the
relation

RRP :=
{(

(pp,b, comv) ; (v, rv)
)

:

v ∈ F<m[X], b ∈ [d−m],

∀ω ∈ Ωm : v(ω) ∈ [0, b− 1],

comv = commit(pp, v, rv)
}

where d is the degree bound used when generating pp.

Completeness is immediate. We briefly outline the ar-
gument for why the proof system is zero-knowledge and
knowledge soundness.

Zero-Knowledge: We construct a PPT simulator simRC
that simulates an accepting transcript for all x in the lan-
guage specified by RRP. Let simZC and simPC be the simu-
lators for (PZC,VZC) and (PPC,VPC) respectively.

simRC takes as input pp and x = (b, comv). It com-
putes comu ← commit(pp, poly(ub), 0) and sets comz

to be a commitment to the zero polynomial using some
randomness r. By the unconditional hiding property of
the PCS, comz is sampled from a statistically close dis-
tribution to the real commitment to z. Next simRC runs
simPC(pp, (comu, comv, comz)) to get π′

PC. By the zero-
knowledge property of (PPC,VPC), π′

PC will be indistinguish-
able from a proof produced by an honest prover. Similarly,
the simulator runs simZC(pp, comf) and obtains πZC. By
the zero-knowledge property of (PZC,VZC), the proof πZC
is indistinguishable from a proof produced by an honest
prover. Putting it all together, the proof (comz, πPC, πZC) is
indistinguishable from a proof produced by an honest prover.

Knowledge Soundness: Let A be a prover that outputs a
valid proof π = (comz, πPC, πZC) given pp and the statement
x = (b, comv) as input. We construct an extractor ERP
that outputs a valid RRP witness (v, rv) for x. Our ERP
first computes comu ← commit(pp, poly(ub), 0). It then
runs the extractor EAPC(pp, (comu, comv, comz)) to extract
(u′, v′, z′, 0, rv′ , rz′). By the definition of RPC, comz is a
commitment to z′. As noted in Algorithm 1, this means
that ERP can derive a commitment comf to f(X) =
µ(X) ·

(
z′(ωX) − z′(X)

)
·
(
z′(ωX) − z′(X) − 1

)
such

that VZC,m+b(pp, comf ;πZC) accepts. ERP can therefore run
EAZC(pp, (comf)) to extract (f ′, rf ′). By the definition of
RZC, comf is a commitment to f ′, so f ′ = f , or we have
broken the binding property of the commitment scheme.

We claim that (x, (v′, rv′)) ∈ RRP. By the definition
of RPC, comv = commit(pp, v′, rv′). We must additionally
show that ∀ω ∈ Ωm, v′(ω) ∈ [0, b − 1]. We explained in
the introduction to this section that this is equivalent to
showing that (i) the vector z′(Ωb+m) is a permutation of the
vector u′(Ωb)∥v′(Ωm) and that (ii) the difference between
consecutive elements of z′(Ωb+m) is either 0 or 1. (i) is
true from the definition of RPC. We now show that (ii) also
holds. By the definition of RZC, f ′(ω) = f(ω) = 0 for
all ω ∈ Ωb+m. Examining the definition of f , we see that
this directly implies that all z′(ωx)− z′(x) ∈ {0, 1} for all
x ∈ Ωb+m \ {1}, which means that the difference between
consecutive elements of z′(Ωb+m) is either 0 or 1.

5.4. The Lattice Hash Proof

Finally, we show a proof system that lets the prover
show that, given a lattice hash h ∈ Fn, it knows a low-
norm preimage v ∈ Fm. That is, we provide a proof system
for the relation RLH from (7), as required.

First, we augment the relation RLH as follows

R′
LH :=

{(
(A,h, b, pp, comv) ; (v, rv)

)
:

A ∈ Fn×m, v ∈ Fm, b ∈ [d−m],

h = A · v, ∥v∥∞ < b,

comv = commit(pp, poly(v), rv)
} (8)

This relation is the same as RLH except that we force the
prover to send to the verifier a commitment comv to v. Ob-
serve that the only difference between this relation and the
relation RRP from Theorem 5.1 is the additional constraint
that h = A · v. We explained at the beginning of Section 5
that this constraint can be reduced to checking a single dot-
product by taking a random linear combination of the rows
of A. The random linear combination is provided by the
public coin of the verifier, and the protocol can be made
non-interactive using the Fiat-Shamir transform. Finally, this
single dot-product is exactly a univariate SumCheck relation,
and can be verified by a single univariate SumCheck proof.
Hence, a proof system for R′

LH uses the proof system from
Section 5.3 along with a univariate SumCheck proof.

The lattice hash proof system is described in Algo-
rithms 3 and 4. We preset the non-interactive versions of
the protocols by using a random oracle H in place of the
verifier’s public coin.

Algorithm 3 LatticeHashProver(A,h, b, pp, comv; v, rv)
// Do the range proof on v using Section 5.3.

πRP ← PRP(pp, b, comv; poly(z), rv)
// Compute the challenge using a Fiat-Shamir random oracle H

r← H(A,h, pp, comv, πRP) ∈ Fn

// Prove r⊺h = (r⊺A)v holds for the challenge vector r
vA,r ←

(
(r⊺a0)v0, . . . , (r⊺am−1)vm−1

)
∈ Fm

vA,r(X)← poly(vA,r)
h← r⊺h ∈ F

// A, r, and comv imply a commitment comvA,r
to vA,r(X)

// Compute a SumCheck proof on vA,r(X)

πSC ← PSC,m(pp, comvA,r
, h)

Output π ← (πRP, πSC)

Algorithm 4 LatticeHashVerifier(A,h, b, pp, comv;π)

parse (πRP, πSC)← π
r← H(A,h, pp, comv, πRP) ∈ Fn

h← r⊺h ∈ F
// A, r, and comv imply a commitment comvA,r

to vA,r(X)

accept if VRP(pp, b, comv;πRP)
and VSC,m(pp, comvA,r

, h;πSC) both accept

Theorem 5.2. Suppose that (PRP,VRP) and (PSC,VSC) are
zk-SNARKs for RRP and RSC respectively. Then the

proof system in Algorithms 3 and 4 is a zk-SNARK for
the relation R′

LH.

Completeness is immediate. Knowledge soundness follows
from the knowledge soundness of (PRP,VRP), (PSC,VSC),
and Freivalds’ algorithm. Zero-knowledge follows from the
zero-knowledge of (PRP,VRP) and (PSC,VSC) and from the
fact that we can program the random oracle H.

6. VerITAS Implementation Details

We implement the two components of VerITAS sep-
arately: we use the FRI-PCS from the Plonky2 [17] li-
brary to generate proofs of correct hashing (for the relation
RVH from (6)), and we use Plonky2 to generate the photo
editing proofs.† In addition, the editor would generate a
proof of knowledge of a valid ECDSA signature on the
Lattice+Poseidon hash using an existing signature checking
circuit [41] on top of our proof system, which only adds 45
seconds to proof generation time.

6.1. Implementing a Proof System for RVH

To implement our proof system for the relation RVH
from (6), we use the FRI-based polynomial commitment
scheme [16] implementation in the Plonky2 library [17].
This implementation allows us to batch commit to poly-
nomials and to batch open these commitments at multiple
points.

To prevent the prover and verifier from having to store all
the elements in the (large) hashing matrix A, we generate the
entries of A using the upper 32 bits of a linear congruential
generator [50] with a 64-bit modulus q′. For our SIS param-
eters, we set n = 128, and b = 256. As discussed in Section
4.2, the choice of q depends on the polynomial commitment
scheme used. FRI uses a 64 bit prime. If q is 64 bits, the SIS
lattice estimator calculator for these parameters gives 192
bits of security [51]. The prover generates the random Fiat-
Shamir challenge for the permutation argument by taking
the hash of the transcript thus far. In addition to proving
knowledge of a lattice hash Av as described in Section 5, the
VerITAS prover must also prove that applying a Poseidon
hash to this lattice hash results in the final public hash h.
This can be done using another Plonky2 circuit.

6.1.1. Optimized (r⊺A) Derivation. Recall that in Sec-
tion 5, we use the Freivalds’ algorithm to reduce the check-
ing of the matrix vector product h = A ·v to the dot-product
of (r⊺A) with v, where r is a random vector. The most
time-intensive part for the verifier is to rederive r⊺A—the
random linear combination of A’s rows. To reduce verifying
time, we implement opt-VeriTAS where we assume the
existence of public trusted commitments to the rows of A.
These commitments can be generated in a preprocessing
phase and used for every proof thereafter. Given the trusted
(polynomial) commitments, the prover provides an opening

†Our code available at https://github.com/zk-VerITAS/VerITAS

proof for each row polynomial at a random point α. The
verifier can then get the evaluation of poly(r⊺A) at α and
verify the proof. The cost is a roughly a factor of two
increase in prover time, and a factor of six increase in proof
size, for a roughly 20 times reduction in the verifier’s time.

6.1.2. Consistency with Photo Editing Proofs. Both the
SNARK circuits for the hash proof and the photo editing
proof take the original photo w as part of the secret witness.
However, a malicious prover might assign different values
for the original photo in these two circuits. To prevent
this, we leverage the fact that both proofs use polynomial
commitments. The idea is to require the prover to provide a
polynomial commitment com to the original photo. Then by
the technique described in Section 4.3, we can ensure that
the vector committed in com is consistent with the partial
witness used in both the hash and the photo editing circuits.

6.2. Photo Editing Proof Implementation

We generate the photo editing proofs using Plonky2 [17],
a Rust-based general-purpose zk-SNARK system. Plonky2
lets developers specify a circuit, and use PLONK to prove
that, given some public instance and private witness as input,
the circuit output equals a certain value. For every edit we
want to prove, we construct a circuit that applies the edit
on the private witness (the original photo) and outputs the
result. The verifier can then check that this output is the
same as the public instance (the published edited photo).

Our cropping circuit computes the cropped photo by
outputting the RGB values of the original photo in the
cropped range.

Our grayscale circuit applies the standard grayscale for-
mula used by Adobe Photoshop [52] to the RGB values
of the original photo. This formula obtains the gray value
gray for a pixel in the edited image by taking a weighted
linear combination of the RGB values in the original image:
gray = round(0.30R + 0.59G+ 0.11B). We perform this
transformation using fixed-point arithmetic. This means that
we scale the RGB values by a factor of 100, calculate the
weighted linear combination from above, and then round to
the nearest multiple of 100 to get the value for gray. We
represent this transformation with the following equation:
100 · gray = 30R + 59G + 11B + rem where rem is the
remainder from rounding, which is required to be in the
range of [−49, 50]. Thus, the prover must prove knowledge
of some rem ∈ [−49, 50] such that the second equation
holds for the original RGB values and the gray value in the
edited photo. Because the purpose of grayscale conversion
is not to conceal some part of the photo, the remainders do
not leak any additional information, so our prover includes
the remainders associated with the rounding calculations as
part of the statement. The verifier can check them manually.

Our resizing circuit implements bilinear resizing, which
is one of the standard resizing options offered in Adobe
Photoshop [22]. Bilinear resizing calculates the RGB values
for every pixel in the resized image by taking a weighted
linear combination of the RGB values of four pixels in the

original image. Just as with the grayscale circuit, we ac-
commodate floating point arithmetic by passing remainders
to the verifier. Just as with grayscale conversion, the prover
uses fixed-point arithmetic and includes the remainders in-
volved in rounding calculations as part of the statement.

Our blur circuit implements a box blur, which is one of
the standard blur options offered in Adobe Photoshop [53].
A box blur calculates the RGB values for a pixel at position
(i, j) by averaging the RGB values of the pixels in the
3x3 “box” in the original image where pixel (i, j) is at the
center. Just as in the grayscale and resizing circuits, the box
blur calculation involves fixed-point arithmetic. However,
because the purpose of blurring is to obscure information,
including remainders for the blurred region in the statement
may potentially leak sensitive information to the verifier.
Instead, we check within the photo editing circuit that
the remainders are in the range [0, 8]. These range proofs
cause the longer proving times for blurring compared to the
proving times for other edits.

7. Experimental Results

We report proof generation time, verification time, and
proof size for the hash relation RVH from (6) and for
the image editing relations. We report generation times for
both non-ZK and ZK proof generation. We ran our timing
experiments on randomly-generated RGB channels on a
virtual machine with 131 GB of RAM and 12 CPU cores.
When considering what is a reasonable amount of time to
generate and verify proofs, it is important to remember that
proof generation only needs to happen once per photo, while
proof verification needs to be performed by every client that
accesses the article. This means that while proof generation
needs to be fast, proof verification needs to be very fast.
Given peak memory usage and running time, we estimate
that generating a non-ZK proof for the hash relation for
a single RGB channel would cost about $0.41 on AWS
per image for VerITAS and $1.46 for opt-VerITAS, and
generating a ZK proof for the hash relation would cost about
$0.82 on AWS per image for VerITAS and $1.80 for opt-
VerITAS. Non-ZK proofs for the editing relations would add
a maximum of $0.13 per edit for to the cost, while ZK proofs
for the editing relations would add a maximum of $0.18 per
edit to the cost. Recall that the polynomial commitment hash
method described in Section 4.3 only needs a proof for the
editing relation; there is no need to prove the hash relation.

7.1. RVH Proof Generation Results

Figure 5 compares the proving times for proving knowl-
edge of a Poseidon hash using the arkworks [54] Rust library
and proving knowledge of a lattice hash using our FRI-
PCS implementations of VerITAS and opt-VerITAS. The
FRI-PCS has both blinding and non-blinding implementa-
tions; we report timing results using both modes. Because
Plonky2 has not been optimized for zero-knowledge, the
blinding mode numbers are pessimistic. We assume that the
hashes for the RGB vectors vr, vg, and vb are generated in

parallel. For a 30 MP photo, the time to generate a proof
of knowledge for our Lattice + Poseidon hash construction
in both VerITAS (10.25 min with non-blinding FRI-PCS
and 20.29 min with blinding FRI-PCS) and opt-VerITAS
(37.67 min with non-blinding FRI-PCS and 48.29 min with
blinding FRI-PCS) is less than the time to generate a proof
of knowledge for a Poseidon hash. In fact, when we tried
to generate a proof of knowledge of a Poseidon hash for
a picture of >1 MP, our machine ran out of memory and
aborted the process (the 10 MP point at 34 min and 30 MP
point at 103 min shown for Poseidon are projected points).
With parallelism, the opt-VerITAS proving time could be
cut down to 15 minutes with non-blinding FRI-PCS and
to about 31 minutes with blinding FRI-PCS (which, again,
would be a once-per-image cost). It takes less than a second
to generate the Plonky2 proof that proves that applying
Poseidon to the lattice hash results in the final public hash.

Figure 5: Graph showing proof generation time for gener-
ating a proof of a Poseidon hash and generating a proof of
a Lattice hash (our construction) in both VerITAS and opt-
VerITAS with both the non-blinding and blinding FRI-PCS.
The dashed part of the Poseidon line refers to extrapolated
values for sizes that exceeded the prover’s capacity.

We report peak memory usage and verification time for
our lattice hash proof generation using the non-blinding FRI-
PCS in Table 1, and we report the same metrics using the
blinding FRI-PCS in Table 2. For 30 MP images, verification
time is about 15 seconds for VerITAS and about 0.8 seconds
for opt-VerITAS. Proof size is about 530 KB for VerITAS
and 2 MB for opt-VerITAS for a 30 MP image. Since these
proofs are sent along with a 90 MB image, these sizes are
reasonable.

7.2. Photo Edit Proof Generation Results

To demonstrate the practicality of our Plonky2 imple-
mentations, we report setup and proof generation timing

Image Size
(KiloPixel)

Peak
Memory

(GB)

Verify
Time
(sec)

Opt Peak
Memory

(GB)

Opt Verify
Time (sec)

1 3.33 0.004 3.39 0.013
10 3.40 0.009 3.35 0.017
100 3.55 0.058 3.55 0.022

1,000 5.08 0.502 6.12 0.045
10,000 37.99 6.70 62.79 0.435
30,000 75.60 15.32 119.52 0.783

TABLE 1: Prover memory needs and Verifier time for
Lattice hash generation for VerITAS and opt-VerITAS with

non-blinding FRI-PCS.

Image Size
(KiloPixel)

Peak
Memory

(GB)

Verify
Time
(sec)

Opt Peak
Memory

(GB)

Opt Verify
Time (sec)

1 3.33 0.005 3.39 0.013
10 3.40 0.011 3.40 0.019
100 3.55 0.054 3.55 0.022

1,000 5.08 0.49 6.12 0.047
10,000 45.04 5.87 65.33 0.47
30,000 87.82 16.38 127.14 0.763

TABLE 2: Prover memory needs and Verifier time for
Lattice+Poseidon hash generation for VerITAS and

opt-VerITAS with blinding FRI-PCS.

results for “realistic” image sizes. The signature-producing
Sony camera mentioned earlier is a 33 MP camera. The
edited photo size depends on clients. E.g., photos on The
New York Times are resized to 2048 x 1365 pixels. Thus,
in our experiments, for the editing operations that involve
changing image dimensions (resizing and cropping), we
report the times associated with resizing a 33 MP photo
to the standard New York Times size. For operations that
do not involve changing dimensions (grayscale conversion,
blurring), we report the times associated with editing a
photo of the standard New York Times size. For blurring, we
report results for blurring 10% of the pixels. For operations
where the RGB values in the new photo are calculated
independently (cropping, resizing, and blurring), we report
the time to generate a proof for a single RGB channel.
Because the values for each channel are independent, proofs
for these edits can be generated in parallel.

Table 3a shows the timing results for cropping proof
generation for a single color channel. Table 3b shows the
timing results for resizing proof generation for a single color
channel. Table 3c shows the timing results for grayscale
proof generation. Table 3d shows the timing results for blur
proof generation for a single color channel. We include
timing results for generating both zero-knowledge proofs
and non-zero-knowledge proofs for each edit. Generating
non-zero-knowledge proofs is faster than generating zero-
knowledge proofs, so for edits whose purpose is not to hide
sensitive information (e.g., grayscale conversion and resiz-
ing), editors may choose to generate non-zero-knowledge
proofs to reduce proof generation time. For edits whose
purpose is to hide sensitive information (e.g., cropping and

(a) Timing Results for Cropping

Original
Size

(pixels)

Reduced
Size

(pixels)

Setup
Time
(min)

Proof
Gen
Time
(min)

ZK
Setup
Time
(min)

ZK
Proof
Gen
Time
(min)

6632 x
4976

2048 x
1365 1.17 0.64 1.15 0.93

(b) Timing Results for Resizing

Original
Size

(pixels)

Reduced
Size

(pixels)

Setup
Time
(min)

Proof
Gen
Time
(min)

ZK
Setup
Time
(min)

ZK
Proof
Gen
Time
(min)

6632 x
4976

2048 x
1365 5.94 3.15 6.06 4.41

(c) Timing Results for Grayscale Conversion

Photo Size
(pixels)

Setup
Time
(min)

Proof Gen
Time
(min)

ZK Setup
Time
(min)

ZK Proof
Gen Time

(min)
2048 x
1365 1.99 1.38 5.04 3.67

(d) Timing Results for Blurring

Original
Size

(pixels)

Blur
Region

Size
(pixels)

Setup
Time
(min-
utes)

Proof
Gen
Time
(min-
utes)

ZK
Setup
Time
(min)

ZK
Proof
Gen
Time
(min)

2048 x
1365

529 x
529 1.74 1.36 4.47 4.20

TABLE 3: The time to generate a photo edit proof

blurring), editors can choose to generate zero-knowledge
proofs.

Overall, setup and proof generation take just a few
minutes. Because proofs only need to be generated once
by the news organization, these times are suitable for prac-
tical implementation. Verification time less than a second.
Plonky2 proofs are about 100-200 KB, which is reasonable
compared to edited photos on the order of 8 MB. Moreover,
Plonky2 proofs can be further compressed via a constant-
sized zkSNARK (e.g., Groth16 or PLONK) that proves the
correctness of Plonky2 proof verification.

7.3. Comparing the Two Signing Schemes

Table 4 compares how long it takes to calculate a
SHA256 hash, a lattice hash, and a FRI polynomial com-
mitment (as in Plonky2), of a 30 MP picture. We assume the
photo is read in as a stream. In practice, we expect C2PA
to use an FRI-based proof system, so we report lattice hash
timings with a 64 bit prime q. As in our other experiments,
we performed these experiments on a virtual machine with
131 GB of RAM and 12 CPU cores.

We first discuss the feasibility of computing a lattice
hash on a camera. The VM on which we ran these ex-
periments is much more powerful than a CPU-constrained
camera, so instead of focusing on absolute time, we high-

Hashing Scheme Time (s) Memory (GB)
SHA256 1.71 0.003

Lattice (64 bit) 4.24 0.003
FRI-PCS 19.84 18.90

TABLE 4: Timing comparison for different hashing
schemes of a 30 MP image. Hashing using FRI-PCS takes
much longer and requires more resources than the first two

hash functions.

light the relative difference in time between calculating a
SHA256 hash and lattice hash. Calculating a lattice hash
is about twice as slow as calculating a SHA256 hash.
Because several commercial cameras implementing photo
signing using SHA256 hashing, increasing hash calculation
time twofold seems reasonable. Hashing can also be made
faster than SHA256 using a hardware hashing engine and
parallelization. Table 4 shows that it takes much longer
to compute a polynomial commitment of an image than a
simple hash (using either SHA256 or lattice hash), making
it much more feasible for a computationally-limited signer
like a camera to sign a lattice hash rather than a polynomial
commitment. Furthermore, FRI-PCS requires access to a
large amount of memory to efficiently perform FFTs. Our
experiments, for instance, required about 20 GB of RAM,
which is far above than what a camera would have. Thus, in
practice, computationally-limited signers, such as cameras,
would most likely use our lattice-based signature scheme.

8. Related Work

One cryptographic tool proposed for image authenti-
cation is perceptual hashing [55]. The goal of perceptual
hashing is to design a hash function that is resilient to
content-preserving manipulations but can detect malicious
manipulations. While this attempts to guarantee semantic
meaning in a photo, our solution aims to guarantee some-
thing more rigorous, namely to certify that only certain edits
have been made to a photo.

Another potential cryptographic approach to image au-
thentication is homomorphic signatures [20], [21], as dis-
cussed in the introduction. Homomorphic signatures that are
not built from a zk-SNARK can be used for cropping (or
other forms of redaction), but are too inefficient to handle
more complex image edits, such as blurring and resizing.

The most closely related work to ours is that of Naveh
and Tromer [10] and Kang et al. [11] mentioned in the
introduction. Those works applied to images that are more
than an order of magnitude smaller than image sizes from
modern cameras. More recently, Della Monica et al. [56]
proposed dividing a photo into N non-overlapping “tiles”
and producing a proof for each tile that attests to the hash
and a certain transformation on that image. Because these
tiles are smaller than the entire image, the memory and
time required to generate the N proofs is smaller than the
memory and time required to generate one large proof. Just
like Kang et al., Della Monica et al. only consider photos
≤ 900 KP, which is an order of magnitude smaller than the

photos we consider. Moreover, verification time for these
tiled proofs is about 3 minutes, which could be problematic
for someone reading a newspaper in a browser. Another
issue with this approach is that image transformations must
be applied per tile rather than on the image as whole, which
is the standard practice in photo editing software like Adobe
Photoshop. For instance, to resize or blur a photo, tiles
must be individually resized or blurred and then collated
together. Consequently, these methods are unable to support
standard Photoshop algorithms. Very recently Dziembowski
et al. [57] experimented with folding schemes for proving
image edits.

We also note that previous work by Ben-Sasson et
al. [14] and Kosba et al. [15] has, like VerITAS, used lattice-
based hashes as SNARK-friendly hashes.

9. Extensions and Conclusion

In this paper, we have discussed how to use zk-SNARKs
to enable practical provenance verification for realistically
large edited images in online news articles. Our system uses
signing keys embedded in cameras as the origin of trust,
but rather than trusting a third-party application to digi-
tally sign edited images, we propose to use zero-knowledge
proofs to prove to a news reader that an edited published
photo was taken when and where the article claims it was
taken. We create proofs for 30 MP images, which is the
size of images produced by actual cameras equipped with
embedded signing keys. The bottleneck in image editing
proof systems is proving knowledge of a valid signature
on the unedited photo. Our key innovations are two-fold:
first, we introduce a new SNARK-friendly hashing method
that reduces the hash proof generation time. We believe this
SNARK-friendly method, which is a sequential composition
of lattice hash with a Poseidon hash, may be of independent
interest to those looking to create SNARKs that prove
hashes of large amounts of data. Additionally, we introduce
a polynomial commitment hash that completely eliminates
the need for proving knowledge of a valid signature in the
SNARK circuit. However, signing the unedited image using
a polynomial commitment hash is more expensive than the
lattice hash scheme.

We note that the description of VerITAS given here does
not protect the identity of the signer (the photographer).
Indeed, vk (and in σ in mode 2) are sent along with the ZK
proof to the verifier. If the editor wants to hide the identity
of the signer, then the editor could replace vk (and σ) by
a public commitment com to those values, and move vk
and σ to the zk-SNARK secret witness. The zk-SNARK
circuit would then verify that com is a valid commitment
to (vk, σ), instead of directly using those values as public
inputs. This fully hides vk and σ from the verifier and
protects the identity of the signer.

Finally, this paper has only discussed how to prove
edits for photos, but videos are also a major source of
misinformation. The main challenge with videos is that
once they are edited, they are stored in a lossy compressed
format. Directly applying the techniques discussed here to

videos would thus require us to prove statements about video
compression in a SNARK, which is challenging due to the
size of a video file. Another avenue for future research is
exploring different kinds of range proofs. In our work, we
used a Plookup-based range proof. More recent methods,
such as Lasso [30], may lead to time and memory savings
for the editor.

Acknowledgments. This work was funded by NSF,
DARPA, the Simons Foundation, UBRI, and NTT Research.
Opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of DARPA.

References

[1] A. Coleman and S. Sardarizadeh, “Ukraine conflict: Many misleading
images have been shared online,” BBC News, 2022, link.

[2] V. Pavilonis, “Fact check: Images show mosul in 2017, kyiv one day
after russian invasion began,” USA Today, 2022, link.

[3] A. Coleman, “Ukraine conflict: Further false images shared online,”
BBC News, 2022, link.

[4] “BBC breakfast uses old footage of russian parade rehearsal to show
invasion of ukraine,” Full Fact, 2022, link.

[5] “C2PA technical specification,” link.

[6] “Partnership for greater trust in digital photography: Leica and content
authenticity initiative,” Leica, 2022, link.

[7] “Sony unlocks in-camera forgery-proof technology,” Sony, 2022, link.

[8] “Visuals,” Associated Press, 2022, link.

[9] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowl-
edge, and back again,” in ITCS 2012, S. Goldwasser, Ed. ACM,
Jan. 2012, pp. 326–349.

[10] A. Naveh and E. Tromer, “Photoproof: Cryptographic image authen-
tication for any set of permissible transformations,” in 2016 IEEE
Symposium on Security and Privacy (SP), 2016, pp. 255–271.

[11] D. Kang, T. Hashimoto, I. Stoica, and Y. Sun, “ZK-IMG: Attested
images via zero-knowledge proofs to fight disinformation,” arXiv
2211.04775, 2022.

[12] T. Datta and D. Boneh, “Using ZK proofs to fight disinformation,”
Medium, 2022, link.

[13] ——, “Using ZK proofs to fight disinformation,” Real World Crypto,
2023, link.

[14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Scalable zero
knowledge via cycles of elliptic curves,” in Advances in Cryptology –
CRYPTO 2014, J. A. Garay and R. Gennaro, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 276–294.

[15] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in 2016 IEEE Symposium on Security and Privacy (SP),
2016, pp. 839–858.

[16] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Fast reed-
solomon interactive oracle proofs of proximity,” in ICALP 2018, ser.
LIPIcs, I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. Sannella,
Eds., vol. 107. Schloss Dagstuhl, Jul. 2018, pp. 14:1–14:17.

[17] “plonky2,” https://github.com/0xPolygonZero/plonky2.

[18] R. Johnson, D. Molnar, D. Song, and D. Wagner, “Homomorphic
signature schemes,” in Topics in Cryptology — CT-RSA 2002, B. Pre-
neel, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp.
244–262.

https://www.bbc.com/news/60513452.amp?fbclid=IwAR09hZQ4W6qocuYaC7NBRiFRPWJJ6_t-n38fDZxmjX0rkit6DbjlhB7ZsZc
https://www.usatoday.com/story/news/factcheck/2022/03/16/fact-check-photos-mosul-kyiv-out-of-context-ukraine-war/7039487001/?fbclid=IwAR0OfFos4iSSFX3TI3ytPkkwGgpKm10ry5SXE-tEHZGFWV118LfUcKesEzg
https://www.bbc.com/news/60528276.amp?fbclid=IwAR0hLXhRJWdzF8__MkEwtRjUgtM2GgVCw9eC_-efLXANByULwSr8bpe_dzA
https://fullfact.org/europe/bbc-footage-russian-flyover-ukraine/
https://c2pa.org/specifications/specifications/1.1/specs/C2PA_Specification.html
https://leica-camera.com/en-US/news/partnership-greater-trust-digital-photography-leica-and-content-authenticity-initiative
https://www.sony.eu/presscentre/news/sony-unlocks-in-camera-forgery-proof-technology
https://www.ap.org/about/news-values-and-principles/telling-the-story/visuals
https://medium.com/@boneh/using-zk-proofs-to-fight-disinformation-17e7d57fe52f
https://rwc.iacr.org/2023
https://github.com/0xPolygonZero/plonky2

[19] D. Derler, H. C. Pöhls, K. Samelin, and D. Slamanig, “A general
framework for redactable signatures and new constructions,” in Infor-
mation Security and Cryptology - ICISC 2015, S. Kwon and A. Yun,
Eds. Cham: Springer International Publishing, 2016, pp. 3–19.

[20] D. Boneh and D. M. Freeman, “Homomorphic signatures for polyno-
mial functions,” in EUROCRYPT 2011, ser. LNCS, K. G. Paterson,
Ed., vol. 6632. Springer, Heidelberg, May 2011, pp. 149–168.

[21] S. Gorbunov, V. Vaikuntanathan, and D. Wichs, “Leveled fully ho-
momorphic signatures from standard lattices,” in 47th ACM STOC,
R. A. Servedio and R. Rubinfeld, Eds. ACM Press, Jun. 2015, pp.
469–477.

[22] “Image size and resolution,” Adobe, 2024, link.

[23] D. Boneh and V. Shoup, A Graduate Course in Applied Cryptography,
2023, https://toc.cryptobook.us/book.pdf.

[24] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size com-
mitments to polynomials and their applications,” in Advances in
Cryptology-ASIACRYPT 2010: 16th International Conference on the
Theory and Application of Cryptology and Information Security,
Singapore, December 5-9, 2010. Proceedings 16. Springer, 2010,
pp. 177–194.

[25] J. Groth, “On the size of pairing-based non-interactive arguments,”
Cryptology ePrint Archive, Paper 2016/260, 2016, https://eprint.iacr.
org/2016/260. [Online]. Available: https://eprint.iacr.org/2016/260

[26] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk:
Permutations over lagrange-bases for oecumenical noninteractive
arguments of knowledge,” Cryptology ePrint Archive, Paper
2019/953, 2019, https://eprint.iacr.org/2019/953. [Online]. Available:
https://eprint.iacr.org/2019/953

[27] A. Gabizon and Z. J. Williamson, “Plookup: A simplified
polynomial protocol for lookup tables,” Cryptology ePrint Archive,
Paper 2020/315, 2020, https://eprint.iacr.org/2020/315. [Online].
Available: https://eprint.iacr.org/2020/315

[28] A. Zapico, A. Gabizon, D. Khovratovich, M. Maller, and C. Ràfols,
“Baloo: Nearly optimal lookup arguments,” Cryptology ePrint
Archive, Paper 2022/1565, 2022, https://eprint.iacr.org/2022/1565.
[Online]. Available: https://eprint.iacr.org/2022/1565

[29] L. Eagen, D. Fiore, and A. Gabizon, “CQ: Cached quotients
for fast lookups,” Cryptology ePrint Archive, Paper 2022/1763,
2022, https://eprint.iacr.org/2022/1763. [Online]. Available: https:
//eprint.iacr.org/2022/1763

[30] S. Setty, J. Thaler, and R. Wahby, “Unlocking the lookup singularity
with lasso,” Cryptology ePrint Archive, Paper 2023/1216, 2023, link.

[31] J. T. Schwartz, “Fast probabilistic algorithms for verification of
polynomial identities,” J. ACM, vol. 27, no. 4, p. 701–717, oct 1980.
[Online]. Available: https://doi.org/10.1145/322217.322225

[32] R. Zippel, “Probabilistic algorithms for sparse polynomials,” in Pro-
ceedings of the International Symposiumon on Symbolic and Al-
gebraic Computation, ser. EUROSAM ’79. Berlin, Heidelberg:
Springer-Verlag, 1979, p. 216–226.

[33] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions
to identification and signature problems,” in Advances in Cryptology
— CRYPTO’ 86, A. M. Odlyzko, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1987, pp. 186–194.

[34] T. Attema, S. Fehr, and M. Klooß, “Fiat-shamir transformation of
multi-round interactive proofs (extended version),” Journal of Cryp-
tology, vol. 36, no. 4, p. 36, Oct. 2023.

[35] U. Haböck, “Multivariate lookups based on logarithmic derivatives,”
Cryptology ePrint Archive, Report 2022/1530, 2022, https://eprint.
iacr.org/2022/1530.

[36] B. Chen, B. Bünz, D. Boneh, and Z. Zhang, “HyperPlonk: Plonk
with linear-time prover and high-degree custom gates,” in EURO-
CRYPT 2023, Part II, ser. LNCS, C. Hazay and M. Stam, Eds., vol.
14005. Springer, Heidelberg, Apr. 2023, pp. 499–530.

[37] M. Ajtai, “Generating hard instances of lattice problems,” in Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of
computing, 1996, pp. 99–108.

[38] O. Goldreich, S. Goldwasser, and S. Halevi, “Collision-free hashing
from lattice problems,” ser. Lecture Notes in Computer Science.
Springer, 2011, vol. 6650, pp. 30–39.

[39] M. Bellare, D. Micciancio, and B. Warinschi, “Foundations of group
signatures: Formal definitions, simplified requirements, and a con-
struction based on general assumptions,” in EUROCRYPT 2003, ser.
LNCS, E. Biham, Ed., vol. 2656. Springer, Heidelberg, May 2003,
pp. 614–629.

[40] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in
CRYPTO 2004, ser. LNCS, M. Franklin, Ed., vol. 3152. Springer,
Heidelberg, Aug. 2004, pp. 41–55.

[41] “circom-ecdsa circuit,” link.

[42] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and
M. Schofnegger, “Poseidon: A new hash function for zero-
knowledge proof systems,” Cryptology ePrint Archive, Paper
2019/458, 2019, https://eprint.iacr.org/2019/458. [Online]. Available:
https://eprint.iacr.org/2019/458

[43] “Poseidon circuit,” link.

[44] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “PLONK: Permuta-
tions over lagrange-bases for oecumenical noninteractive arguments
of knowledge,” Cryptology ePrint Archive, Report 2019/953, 2019,
https://eprint.iacr.org/2019/953.

[45] A. Gabizon and Z. J. Williamson, “plookup: A simplified polyno-
mial protocol for lookup tables,” Cryptology ePrint Archive, Report
2020/315, 2020, https://eprint.iacr.org/2020/315.

[46] R. Freivalds, “Probabilistic machines can use less running time,” p.
839–842, 1977.

[47] J. Thaler, “The unreasonable power of the sum-check protocol,” The
Art of Zero Knowledge, 2020, link.

[48] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and
N. P. Ward, “Aurora: Transparent succinct arguments for R1CS,” in
EUROCRYPT 2019, Part I, ser. LNCS, Y. Ishai and V. Rijmen, Eds.,
vol. 11476. Springer, Heidelberg, May 2019, pp. 103–128.

[49] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating com-
putation: interactive proofs for muggles,” in 40th ACM STOC, R. E.
Ladner and C. Dwork, Eds. ACM Press, May 2008, pp. 113–122.

[50] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing, 2007.

[51] M. R. Albrecht, R. Player, and S. Scott, “On the concrete
hardness of learning with errors,” Cryptology ePrint Archive, Paper
2015/046, 2015, https://eprint.iacr.org/2015/046. [Online]. Available:
https://eprint.iacr.org/2015/046

[52] S. Valentine, “How photoshop translates rgb color
to gray,” insider, 2018, https://insider.kelbyone.com/
how-photoshop-translates-rgb-color-to-gray-by-scott-valentine/.

[53] “Blur and sharpen effects,” Adobe, 2024, link.

[54] “arkworks,” https://github.com/arkworks-rs/.

[55] F. Ahmed, M. Y. Siyal, and V. Uddin Abbas, “A secure and ro-
bust hash-based scheme for image authentication,” Signal Process.,
vol. 90, no. 5, p. 1456–1470, may 2010, link.

[56] P. D. Monica, I. Visconti, A. Vitaletti, and M. Zecchini, “Do not
trust anybody: Zk proofs for image transformations tile by tile on
your laptop,” Real World Crypto, 2024.

[57] S. Dziembowski, S. Ebrahimi, and P. Hassanizadeh, “VIMz:
Verifiable image manipulation using folding-based zkSNARKs,”
Cryptology ePrint Archive, Paper 2024/1063, 2024, https://eprint.iacr.
org/2024/1063. [Online]. Available: https://eprint.iacr.org/2024/1063

https://helpx.adobe.com/photoshop/using/image-size-resolution.html
https://toc.cryptobook.us/book.pdf
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2022/1565
https://eprint.iacr.org/2022/1565
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2023/1216
https://doi.org/10.1145/322217.322225
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2022/1530
https://github.com/0xPARC/circom-ecdsa
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://github.com/arkworks-rs/crypto-primitives/tree/main/src/sponge/poseidon
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2020/315
https://people.cs.georgetown.edu/jthaler/blogpost.pdf
https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2015/046
https://insider.kelbyone.com/how-photoshop-translates-rgb-color-to-gray-by-scott-valentine/
https://insider.kelbyone.com/how-photoshop-translates-rgb-color-to-gray-by-scott-valentine/
https://helpx.adobe.com/after-effects/using/blur-sharpen-effects.html
https://github.com/arkworks-rs/
https://doi.org/10.1016/j.sigpro.2009.05.024
https://eprint.iacr.org/2024/1063
https://eprint.iacr.org/2024/1063
https://eprint.iacr.org/2024/1063

Appendix A.
Preliminaries

This appendix contains the security definitions for the prim-
itives defined in Section 2.

A.1. Digital Signatures

For a signature scheme SIG to be existentially un-
forgeable under a chosen message attack, every efficient
adversary A with access to the verification key vk, and a
signing oracle for messages of its choice, should not be able
to produce a signature on a new message m∗ for which
A has not queried the signing oracle. The advantage of
the adversary A in the corresponding security game with
security parameter λ is AdvsigA,SIG(λ).

A.2. Commitment Schemes

We define the hiding and binding security property for
commitment schemes below:
• Hiding: for every PPT adversary A, there exists a neg-

ligible function ν(·):

Pr

b′ ̸= b :

pp←$ setup(1λ)
(x0, x1)←$ A(pp)
b←$ {0, 1}
r ←$RC
c← commit(pp,mb, r)
b′ ← A(c)

 ≤
1

2
+ ν(λ)

• Binding: for every PPT adversary A the following prob-
ability is negligible

AdvbindA,C (λ) := Pr
[
commit(pp, x, r) = commit(pp, x′, r′)

]
where pp←$ setup(1λ) and (x, x′, r, r′)←$ A(pp).

We define correctness, evaluation binding, and hiding
for a polynomial commitment scheme below.
• Correctness: for all λ, d ∈ N, all x ∈ F, and all f ∈ F[X]

of degree a most d, the following probability is 1:

Pr

 Vf(pp, com,
x, y, π) = 1

:

pp←$ setup(1λ, d)
r ←$RC
com← commit(pp, f, r)
(π, y)← open(pp, f, x, r)

• Evaluation Binding: it is not possible to open a commit-

ted polynomial to two different values at one point. That
is, for every PPT adversary A and for all λ, d ∈ N, the
following function is negligible

Pr

 Vf(pp, com, x, y, π) = 1
∧

Vf(pp, com, x, y′, π′) = 1
∧y ̸= y′

:
pp←$ setup(1λ, d)
(com, x, y, π,
y′, π′)←$ A(pp, d)

Optionally, a polynomial commitment scheme can also sat-
isfy the following property:

• Hiding: for every PPT adversary A, there exists a neg-
ligible function ν(·) such that:

Pr

b′ ̸= b :

pp←$ setup(1λ)
(f0, f1)←$ A(pp)
b←$ {0, 1}
r ←$RC
c← commit(pp, fb, r)
b′ ← A(c)

 ≤
1

2
+ ν(λ)

A.3. zk-SNARKs

We define completeness, knowledge soundness, zero-
knowledge, non-interactivity, and succinctness for a zk-
SNARK below.
• Completeness: if (x,w) ∈ R, then verification should

pass. That is, for all λ ∈ N and all (x,w) ∈ R:

Pr

[
Vf(pp, x, π) = 1 :

pp←$ setup(1λ)
π ← prove(pp, x, w)

]
= 1

• Knowledge Soundness: if an adversary can produce a
valid proof for some x, then there should be a poly-
time extractor that can compute a witness w such that
(x,w) ∈ R. That is, Π has knowledge error ϵ ∈ [0, 1]
if for every PPT adversary A = (A0,A1) there exists a
PPT extractor E such that:

Pr

 (x,w) ∈ R :
pp←$ setup(1λ)
(x, state)←$ A0(pp)
w ←$ EA1(state)(pp, x)

 ≥
Pr

 Vf(pp, x, π) = 1 :
pp←$ setup(1λ)
(x, state)←$ A0(pp)
π ←$ A1(state)

−ϵ
• Zero-Knowledge: We state the definition in the random

oracle model where all the algorithms are oracle machine
that can query an oracle H : X → Y for some finite sets
X and Y . The zk-SNARK is zero knowledge if there is a
PPT simulator Π.sim such that for all (x,w) ∈ R and all
PPT adversaries A, the following function is negligible

AdvzkA,Π(λ) :=

∣∣∣∣∣Pr
[
AH

(
pp, x,proveH(pp, x, w)

)
= 1

]
−

Pr
[
AH[h]

(
pp, x, π)

)
= 1

]∣∣∣∣∣
where pp←$ setup(1λ) and (π, h)←$ Π.sim(pp, x). Here
h is a partial function h : X → Y output by Π.sim, and
H[h] refers to the oracle H : X → Y modified by entries
in h. That is, we allow Π.sim to program the oracle H .

• Non-interactive: the proof is non-interactive, and a proof
created by the prover can be checked by any verifier.

• Succinct: the proof size and verifier runtime are o(|w|).
The verifier can run in linear time in |x|.

	Introduction
	Preliminaries
	Digital Signatures
	Commitment Schemes
	zk-SNARKs: Zero-Knowledge Succinct Arguments of Knowledge
	Lookup Table Arguments
	The Schwartz-Zippel Lemma
	Fiat-Shamir Transform
	PLONK

	Short Integer Solution (SIS) and Lattice Hash

	Threat Model
	The Design of VerITAS
	Proving Knowledge of a Valid Signature
	Lattice + Poseidon Hash Function
	A Polynomial Commitment Hash

	A Proof System for the Lattice Hash
	Polynomial Representation of Vectors
	Zero, Sum, and Permutation Check Proofs
	The Range Proof
	The Lattice Hash Proof

	VerITAS Implementation Details
	Implementing a Proof System for RVH
	Optimized (r A) Derivation
	Consistency with Photo Editing Proofs

	Photo Editing Proof Implementation

	Experimental Results
	RVH Proof Generation Results
	Photo Edit Proof Generation Results
	Comparing the Two Signing Schemes

	Related Work
	Extensions and Conclusion
	References
	Appendix A: Preliminaries
	Digital Signatures
	Commitment Schemes
	zk-SNARKs

