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Abstract

We develop a distributed service for generating correlated randomness (e.g. permutations) for multiple
parties, where each party’s output is private but publicly verifiable. This service provides users with a
low-cost way to play online poker in real-time, without a trusted party.

Our service is backed by a committee of compute providers, who run a multi-party computation (MPC)
protocol to produce an (identity-based) encrypted permutation of a deck of cards, in an offline phase well
ahead of when the players’ identities are known. When the players join, what we call the online phase,
they decrypt their designated cards immediately after deriving the identity-based decryption keys, a much
simpler computation. In addition, the MPC protocol also generates a publicly-verifiable proof that the
output is a permutation.

In our construction, we introduce a new notion of succinctly verifiable multi-identity based encryption
(SVME), which extends the existing notion of verifiable encryption to a multi-identity-based setting, but
with a constant sized proof – this may be of independent interest. We instantiate this for a permutation
relation (defined over a small set) along with identity-based encryption, polynomial commitments and
succinct proofs – our choices are made to enable a distributed computation when the card deck is always
secret shared. Moreover, we design a new protocol to efficiently generate a secret-sharing of random
permutation of a small set, which is run prior to distributed SVME.

Running these protocols offline simplifies the online phase substantially, as parties only derive their
identity-specific keys privately via secure channels with the MPC committee, and then decrypt locally to
obtain their decks. We provide a rigorous UC-based formalization in a highly modularized fashion.

Finally, we demonstrate practicality with an implementation that shows that for 8 MPC parties, gen-
erating a secret publicly-verifiable permutation of 64 cards takes under 3 seconds, while accessing cards for
a player takes under 0.3 seconds.

1 Introduction

Can a group of players play poker over the internet, without trusting other players or any other third party?
This question was first asked in the groundbreaking Mental Poker paper [36, 48] in 1979. Mainstream gaming
platforms today wield substantial and often unchecked authority over the operation of their gaming services;
unsurprisingly, reports have surfaced about the misuse of ”God view” by insiders to gain a complete advantage
over their customers [32, 6].

In this paper, we build a decentralized system for privately and verifiably shuffling a deck of cards — with
practical computational, communication, and storage costs — that can be accessed by the participants almost
instantaneously, thereby enabling online poker in real-time. We call our system Insta-Pok3r.1

Status Quo. Recent proposals [3, 5] have each player take turns shuffling an encrypted deck of cards,
and attach a zero-knowledge proof to prove the correctness of their shuffles. While modern SNARK proof-
systems, such as Plonk [8], make these operations undoubtedly far more efficient than once imagined (e.g.,
back in 1982 [36]), practical concerns linger. For example, each step of the shuffle incurs a separate proof,
or alternatively, the proof must be made recursive in the style of incrementally verifiable computation (IVC),
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which has prohibitive cost for real-time settings. More importantly, what is our recourse when a player has
low connectivity or has simply dropped out since joining? Do other players reach an agreement on whether to
skip their turn and continue with the shuffle?2 These issues incur substantial, and often unpredictable delays
between the players’ arrival and the game start.

Our Approach. We observe that shuffling a card deck is an input-less functionality, and can therefore
be performed ahead of time, even before (the identities of) the players are determined. Using this to our
advantage, we consider a new design that shifts work away from the players onto a (distributed) service, or
a committee of servers. We want the committee to produce (many) encrypted decks ahead of time, such
that when the players come online (or join a table) at some later point, they can immediately access their
own cards (with respect to that table or session) via decryption. Crucially, the encryptions must be publicly
verifiable, as the players would like to check the validity of the deck (whether it is indeed a permutation), for
which we use zero-knowledge proofs. Moreover, since the player’s identities are not known ahead of time, the
encryption must be identity-based, where each identity is unique to a card and a session. When players come
online, they simply request a derivation of their identity-specific keys and decrypt their cards. The key idea
behind Insta-Pok3r is that the relatively-expensive multiparty protocol of generating a verifiably (identity-
based) encrypted permutation is executed in advance, and only the inexpensive operations (i.e., key-derivation
and decryption) are executed in real-time.

Our Framework: Insta-Pok3r. Our framework consists of three sets of participants: (i) a committee of
MPC servers; (ii) a committee of key servers, called keypers, each of which holds a Shamir share of the IBE
master key; (iii) a set of players. The parties within a committee are connected via point-to-point authenticated
channels, and also perform a light setup phase amongst themselves. Insta-Pok3r consists of distinct offline
and online phases, outlined below. The offline phase is run continuously, preparing encrypted decks ahead of
time, to supply the demand for poker games.

Offline Sampling. In the offline phase (before players’ identities are known), the MPC servers collaborate
to:

1. sample a pseudorandom permutation in a distributed manner, where each server has an additive secret
share of each of the 52 cards;

2. encrypt the cards under an identity-based encryption (IBE) scheme – an identity is a tuple of the form
(table, card) (e.g., card #2 on table #8);

3. generate a PLONK-style proof for the claim that the IBE ciphertext encodes a valid permutation.

The ciphertext and proof are then submitted on-chain.3

Online Retrieval. Later, when each player joins the table (i.e., comes online), they put their request on-
chain asking for their IBE decryption key. The keypers fetch these requests, and then they: 1) compute the
(partial) keys using their share of the IBE master secret; 2) collaboratively aggregate them; and, 3) submit the
(aggregated) decryption key on-chain, which can be publicly verified using commitments to the IBE master
secret. The players then fetch the respective decryption keys along with the ciphertext and locally decrypt
their cards. Note that, to ensure that every decryption key is only available to the entitled player, a private
key-derivation akin to [19, 42] is used. Should the associated proof fail to verify, anyone can submit a dispute
transaction, triggering the on-chain contract to run the verification algorithm and potentially penalize the
cheating party.4

Fig. 1 has the flow-diagram. By executing all MPC steps ahead of time in the offline phase – in a sense, our
entire MPC protocol can be construed as pre-processing – we have a constantly running factory-like shuffling
pipeline that can absorb surges in player demand.

2Consensus algorithms require honest majority assumptions by definition, contrary to our requirement of not placing trust in
any other player. Use of bulletin boards, such as public blockchains, for this agreement is far too expensive.

3Note that the ciphertext size is large, and is virtually impossible to reduce significantly. In practice, this can mitigated by
just posting a hash on-chain, and storing the ciphertexts in a layer-2 data-availability service such as [1].

4For simplicity we assume a smart bulletin board abstraction which runs the verification procedure on each submitted value.
This obviates dealing with an explicit dispute mechanism in our exposition.
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Figure 1: Flow Diagram for Insta-Pok3r protocol. To clearly distinguish between the offline publicly verifiable
shuffling process and the online gaming activities, we start the offline shuffling at step 0, and the online process
at step 100.

1.1 Contributions

The Insta-Pok3r Framework. We introduce a new framework defining offline verifiably-encrypted permu-
tation generation, combined with a fast online retrieval. We formalize our framework via an ideal functionality
FVES in the universal composability [17] framework.

The SVME Primitive. Along the way, we develop a new primitive called succinctly verifiable multi-identity
based encryption (SVME). This is an enhancement of existing verifiable encryptions [16, 52, 28]. For any tuple
of plaintexts satisfying a relation, SVME generates a multi-receiver ciphertext, along with a (constant-size)
proof allowing for public verification of that relation while ensuring privacy. We construct a SVME scheme,
and further show a specific instantiation of that scheme for relations encoding a permutation argument (within
a small range). Our construction includes a novel combination of (i) a variant of Boneh-Franklin’s IBE [13];
(ii) KZG polynomial commitments [42]; (iii) Plonk proof techniques [8]; (iv) and a new (succinct) sigma-proof
system “linking” the commitment and the encryption. This can be of independent interest.

Distributed Protocol for Insta-Pok3r. To realize our framework, we design an MPC protocol to be
executed in the offline phase to generate verifiably encrypted random permutation. The protocol combines
several new and existing ideas:

• We construct a new protocol to generate an additive sharing of a set of small values (such as {1, ω, ω2, . . . , ωk},
where ω is a k-th root of unity), where the sharing is over a large prime field. This builds on ideas from [26]
for generating shares of random bits over a large field.

• Combining that with a (input and key homomorphic) distributed PRF by Dodis and Yampolskiy [29] we
obtain a new MPC protocol for generating pseudorandom permutations of a small set – here, each party
obtains a secret share of the permutation.

• Then, we use the generated permutation as the plaintext input tuple within our SVME scheme, although
now in a distributed setting, in that parties only possess secret shares of the plaintexts. In particular, we
design an MPC protocol to realize SVME. This is made possible by converting each of the building blocks to a
distributed setting. While some of them, such as Boneh-Franklin’s IBE and KZG commitment, were simple to
distribute by exploiting their respective homomorphic structures, others such as PLONK needed more effort,
requiring recent techniques from collaborative SNARKs [47]. Importantly, the distributed version does not
compromise privacy or succintness.

Finally, the online phase is instantiated simply by using the threshold compatibility of the IBE decryption
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scheme. In particular, to execute over on-chain, we use a blinded key-derivation technique, similar to [19, 41].

We provide UC-based formal definitions for each component, describe our protocols in highly modularized
hybrid models, and prove them individually via the real / ideal paradigm; the analysis of the final protocol
ΠVES follows essentially from UC. This abstraction / modularization of individual components enables possible
improvements in the future without redoing the full analysis. Remarkably, for our functionality (which is input-
less) we are able to achieve resilience against malicious behavior by using (public) verifiability of the SVME
scheme without explicitly resorting to cheating-prevention techniques in MPC literature (such as authenticated
sharing [27]).5

Implementation. We implement the protocol as a Rust crate, and perform performance testing. For
example, for 8 MPC parties (each with a single CPU), generating a secret publicly verifiable permutation of 52
cards takes about 3 secs; with 20 parties, the MPC time grows to about 11 secs – this is the computation latency
for the offline sampling phase. It convincingly manifests that factory-like pipelining (along with parallelization)
is quite feasible. In the online retrieval phase, accessing cards for a player, which includes proof verification
and IBE decryption, takes under 0.3 secs.

2 Technical Overview

We briefly describe the setting and requirements for realizing FVES, before delving into techniques.

Setting. There are three group of parties: (i) n MPC servers S1, . . . , Sn, among whom ≤ n − 1 can be
corrupt. (ii) ñ keypers, with a corruption threshold t̃ < n/2, and execution threshold t̃+1 (these many parties
suffice for an execution); (iii) m players. We consider an adversarial model, in that subset of these parties
may be corrupt (and collude), maliciously and statically, as long as the number of corrupt MPC servers does
not exceed n − 1, and the number of corrupt keypers is bounded by t̃ – we call this admissible corruption,
this guarantees full security. If all n servers are corrupt, the permutation is not private anymore, but public
verifiability can still be guaranteed. We remark that our choices are made keeping the requirements in mind,
as explained later.

Looking ahead we use a variant of SPDZ [27], secure against n− 1 semi-honest corruption for the MPC. This
suffices to provide full malicious security (against admissible corruption) because of the public verifiability
of the output. Also, this helps immensely in keeping the overall cost low. Honest majority in the keyper
committee is necessary to ensure guaranteed output delivery in the online phase. As long as the corruption is
admissible, we wish the construction to satisfy the following security requirements:

– First, cards dealt to an honest player must remain private throughout, until they are opened by a player
during a game (e.g. flop, turn, river cards in Texas Hold’em poker, or players opening their cards).

– Second, the encrypted deck, produced at the end of the offline phase must be publicly verifiable. This
simplifies the game mechanics and also allows for fee renumeration on smart contracts.

We also stress some key performance requirements:

– First, guaranteed output delivery is needed in the online phase to ensure the liveness of the game. The
offline phase, however, does not require this, as that can be dealt with other system measures, such as
restarting, penalty etc.6

– Second, we require low and predictable latency in the online phase, from the time the players arrive to
play a hand to the time cards are dealt. This enables (almost) instantaneous delivery to each player.

Before diving deeper, we take a detour and outline our core primitive: succinctly verifiable multi-identity
encryption (SVME) (full details are in Section 5).

5This may, in fact, extend to any input-less functionality – a formal analysis is out of scope for this work.
6While our choice of the MPC protocol executed by the servers may not provide guaranteed output delivery (incorporating

one might blow up the cost prohibitively), we can still achieve a relaxed form of liveness by performing the MPC sufficiently
ahead-of-time, and in case of abort, identify and then kick off the cheater, and restart – this is possible here because the shuffling
functionality is input-less, which means identifiable abort is achieved asking everyone to open up randomnesses in case of an
abort.
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2.1 Overview of SVME

Verifiable encryption [16, 52, 28] guarantees public verification of a ciphertext to attest a property of the
encrypted plaintext, with respect to an efficiently verifiable relation. This can be immediately extended to
support multi-receiver IBE, in that a tuple of plaintexts m = (m1, . . . ,mN ) is encrypted with respect to a tuple
of identities id = (id1, . . . , idN ). Similar to IBE, we would need to support id-key derivation and subsequent
decryption. Taking this concept a step further, we require a succinct proof π, that neither grows with the size
of the verification circuit nor N – this succintness property is needed in addition to the usual properties of
correctness, soundness, and zero-knowledge.

Constructing SVME for Permutations. We construct an SVME scheme where m is a permutation of
(1, ω, . . . , ω63) for a fixed public 64th root ω (this choice will be made clear in Sec 2.2.1). Here, it is important
to note that, while many constructions are possible (for example generically using an IBE with ZK proofs),
we are restricted to choosing certain schemes as building blocks, that support distributed computation when
the plaintext tuple is additively shared. Towards that, we choose a variant of pairing based (assume a pairing
e : G1 × G1 → G2, where gi generates Gi) Boneh-Franklin IBE scheme which supports the homomorphic
computation of both message and plaintext. In this scheme, the ciphertext c = (c1, . . . , cN ), is such that each
component is: (gρ1 , e(H(id)

ρ,mpk) · gm1 ) for message m and randomness ρ. Clearly, putting the message in the
exponent makes it additively homomorphic like exponentiated ElGamal. However, in general, for arbitrary
message space, this does not work because decryption would require solving discrete logs. Fortunately, in our
case we need to decrypt messages that are within a small range – this makes the decryption highly efficient,
for example, just using a look-up table.
Choosing Appropriate Succinct Proof Systems. We need to choose a proof system, which would
translate easily into the collaborative setting when the witnesses are secret-shared. We notice that using a
proof directly with encryption may not be that efficient, especially in the distributed setting. Therefore, we
use a deterministic polynomial commitment, namely KZG [42], to commit to the permutation tuple – let us
denote the commitment of m as M . Our proof π consists of two parts: (i) a proof, πperm showing that M
and V are commitments of two vectors that are permutation of each other, where V is a fixed commitment of
(1, ω, . . . , ω63); (ii) another proof πlec which links the commitment M with ciphertext c, attesting that they
have the same m committed / encrypted. We observe that this way we delegate the complex permutation
checking task to generating πperm, for which there is already an existing collaborative construction [47], that
can be plugged in directly. To generate πlec, we construct a succinct variant of sigma protocol, which uses the
homomorphic property of the ciphertext to evaluate the polynomial corresponding to m in the exponent, and
then uses a standard discrete log equality proof [23] between this and KZG commitment M . For soundness,
we need an evaluation on a random point (output of a random oracle), for which we use a KZG opening. It
is a well-known fact that Sigma protocols support collaborative proof generation with more interaction – we
deploy this in the distributed setting. Finally, it is important to note that the KZG polynomial commitments
are highly structured, and due to that support homomorphic computation, which suffice to compute them in
a distributed setting.

2.2 Designing Insta-Pok3r Protocol

Armed with our main tool (SVME), we now focus on the construction of ΠVES that realizes the FVES func-
tionality. As discussed earlier, there is a setup, followed by (i) an offline sampling phase; and (ii) an online
retrieving phase. While we provide extensive details, we remark that during setup, public parameters pp for
SVME need to be established and posted on-chain. From the above description, pp would consist of a master
public key mpk for the IBE, with each keyper Ki holding their t̃-out-of-ñ Shamir secret share mski – this can be
established, for example, via a distributed key generation [35, 39, 38] (each individual public key mpki = gmski

1

is also made part of pp using the same DKG). Additionally, pp would contain the KZG public parameters,
establishing which is more involved. For that, either a decentralized protocol [54] or a setup ceremony can be
performed.7

7Alternatively, we can rely on one of several existing SRS; our implementation uses Ethereum’s ceremony [50].
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2.2.1 Constructing Offline Sampling Protocol

Now we provide an overview of the offline sampling protocol that is executed between the MPC servers to
produce a tuple (c, π), which is an SVME encryption (and proof) of a permutation m of {1, . . . , ω63}. This
phase can be split into two parts: (i) protocol ΠR-Perm-Gen which implements an input-less computation that
produces a pseudorandom permutation, additively shared between the participants; and (ii) the distributed
SVME encryption protocol ΠEnc which takes shares of the permutation, and collaboratively produces (c, π) –
discussed in Section 2.1. We only focus on ΠR-Perm-Gen.
Step-1 of ΠR-Perm-Gen: Secret-sharing many random roots of unity. In this step the goal is to generate
secret shares of many (say B-many, where B ≫ 64) random values within the range {1, . . . , 64}. However,
generating secret shares of small (random) values are not easy – parties must ensure that the shared value
is in this small range. Using ideas from [26] we construct a new protocol to additively secret share a random
64-th root of unity in a field. By fixing a 64-th root of unity ω ∈ Zp, Ω = {1, ω, ω2, . . . , ω63} contains all the
64-th roots of unity. There is also a bijection between Ω with {1, . . . , 64} assuming p = 1 mod 64. Then, we
observe that, one can simply generate a random element in Ω by sampling a uniform random x in Zp and then

computing x · ( 64
√
x64)−1. Based on this principle, our protocol works as follows: we start with a secret-sharing

of a random field element [x], where [x] denotes an additive sharing of x; this is simply done by each party
locally sampling a random field element xi, where x =

∑
i xi. Next, by making six sequential invocations of

SPDZ’s multiplication parties compute shares of [x64]. After that, they collaboratively reconstruct x64 in the

clear. Finally, each party computes (
64
√
x64)−1 · [x], which, by the linearity of additive sharing, is a share of a

random 64th root of unity, and thus a random element in Ω. At the end of this step MPC servers end up with
(shares of) a large deck, where all cards come from Ω, but with a large number of repetitions. In the next step
we eliminate the repetition.

Step-2 of ΠR-Perm-Gen: Checking for collisions. Each server must discard any share that, if reconstructed,
will equal some other card in the shuffled deck. Equality checking is trivial if the cards are reconstructed in
the clear, but we need to retain them in the secret-shared form. To that end, we compute a pseudo-random
function (PRF) of the cards, which would allow for equality checking in the clear – the PRF hides the secret
input. The challenge then is to compute the PRF without letting any single party learn the reconstructed card;
i.e., the distributed PRF protocol must operate with shares of the input [x] (along with shares of the PRF
key [sk], which is again additively shared). Fortunately, the Dodis-Yampolski PRF [30] fits this requirement

(PRFsk(x) := g
1

x+sk ), and has an efficient distributed protocol that has each party locally compute and reveal

g([x]+[sk])−1

, which is reconstructed via group additions to get the PRF output g([x]+[sk])−1

– the PRF output
is a group element for which the element g is a generator. With this distributed PRF functionality, we can
do rejection sampling, or better yet, generate several samples in a batch, and search for 64 unique cards
amongst them (with a small probability of failure, which is handled by generating more samples – we use 400
for 64 cards). At the end of the shuffling protocol, we end up with shares of all 64 cards {[xj ]}j∈[64] without
repetition, in other words a permutation.
In most card games, we require decks of cards to be permuted, which is not a power of two. In this case, the
servers first compute a permutation of size 64. To obtain a permutation of size smaller than 64, (say 52), the
servers explicitly compute and open PRFs for the cards that should not be present in the final permutation
(53 . . . 64 in the above example). Then they discard the (unopened) cards in the permutation that have PRFs
corresponding to the above PRFs. The remaining cards form a permutation of size 52. We note that this can
be avoided by constructing a permutation of size 52 directly, which requires a 52nd root of unity to exist in
the field, equivalently p = 1 mod 52 – this does not hold for most fields (but does for bn254).

Next, we use ΠEnc, which realizes the SVME encryption on the shared deck to produce ciphertext-proof pair
(c, π), which is posted onto the blockchain.

2.2.2 Online Retrieval

In the online phase, when players come, they put a request on-chain for their decks. The requests are fetched by
the keypers; each keyper Ki then returns a partial id-key H(id)mski – a player who owns the identity combines
t̃ + 1 such responses to obtain H(id)msk, which it uses to IBD-decrypt the card associated with id. However,
the main issue here is that the communication is happening on-chain, so everyone can compute all secret keys.
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This could have been prevented if we assumed the existence of direct secure channels between the players and
the keypers, but that would not fit into our offline-online setting. Instead, we can borrow the verifiable private
key-derivation technique recently put forward in [19, 41]. The idea is: a player Pj sends a blinded request
H(id)µj with a blind µ chosen by Pj . This is verified publicly on-chain whether it is indeed corresponding to a
legitimate identity via a simple proof of exponent. The rest of the computation stays pretty much the same,
except now the secret keys available on the chain are blinded as H(id)µjmski , and µj is only known to Pj . This
ensures that Pj can obtain the corresponding key exclusively. However, in this setting, we assume malicious
corruption of up to t̃ keypers. Therefore, each response by the keyper must be publicly verifiable – this is
enabled by another proof of exponent with respect to mpki = gmski

1 , which is available as part of pp.

Finally, it is within the smart contract’s capability to ensure that a player only gets keys corresponding to
legitimate identities. For example, in a four-player game, each card of the deck can be sequentially indexed
as si,j for i ∈ {1, . . . , 4} and j ∈ {1, . . . , 16}. An id can simply be idi,j = (gid, i, j) where gid is the unique
game/table identity. Each player Pi owns all identities idi,j – this can be easily checked by a contract.

3 Related work

Starting with Mental poker [48, 36] in 1981, there is a long series of works considered designing card games
securely. The aim is to demonstrate that it is possible to play a classic card game without physical cards,
without trusting the participants, and without a trusted third party. While it became apparent that the
problem can be modeled and solved as an MPC problem, most recent efforts particularly focus on making
solutions practically relevant and efficient. In this section, we compare some prominent approaches with our
solution.

Randomness Service. Verifiable (pseudo-) randomness services [20, 4, 31], abundant on blockchains today,
are commonly used for coin-tossing applications such as lotteries, where unpredictability and verifiability are
desired properties. However, for poker, the shuffled card deck must remain private to all entities (except the
owner) for the duration of the poker hand, and possibly well beyond, requiring the randomness to be private
– specifically, we want each player to learn only her cards, and no other player or third party must learn those
cards. This leads us to recent developments such as FlexiRand [41], which implements a VRF with output
privacy. This is insufficient, as shuffling needs correlated randomness, where the private outputs of multiple
players satisfy a relation, specifically that the cards represent a valid permutation of the deck.

Secure Card Shuffling. Most existing approaches [3, 5] in the Web3 space have each player take turns
shuffling an encrypted deck of cards, and attach a zero-knowledge proof to prove the correctness of their
shuffles. Previously, Barnett and Smart [9], Stamer [51], and Golle [37] proposed variants of mental poker
protocols where the players run an interactive protocol for shuffling. As mentioned before, we seek a different
model of “instant” poker where the deck is shuffled a priori, independent of the players (who may trigger
delays by dropping out during the shuffling phase).

Nevertheless, the general shuffle-then-re-encrypt approach adopted by these protocols is of interest. Specifically,
each player takes as input an encrypted list of cards, applies her own random permutation, and re-encrypts
the output for the next player along with a ZK proof of correct shuffling. In the final phase, the players
engage in a threshold decryption protocol to reveal the designated cards to players. Similar to our protocol,
assuming a known fixed bound on message delays (i.e., bounded synchrony), it is possible to have identifiable
aborts. However, the key challenge with these approaches is the intermediate ciphertexts and associated ZK
proofs that make the on-chain (i.e., smart-contract-based) public verifiability aspect of the shuffling process
expensive. While, in principle it is possible to use recursive ZK proofs to compress the argument (i.e., the
intermediate ciphertexts and ZK proofs); this makes the off-chain proof generation process more expensive.
Moreover, we find the on-chain verifiability remains significantly expensive as compared to our protocol.

Bultel and Lafourcade [15], and Bella et al. [11] consider the problem of secure Trick-Taking Game. While the
considered games are also card-playing games such as Spades, they focused on preventing real-world cheating
where a dishonest user can play a wrong card when having a correct card available. This work focuses on
generating the (pseudo)randomly permuted decks and leaves detection/prevention of in-game trickeries to the
smart contract. We expect smart contracts can deal with these issues in a crypto-economic sense; however,
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further details are out of scope.

Publicly Auditable MPC. More broadly, our system is providing public verifiability for an MPC-based
computation, for which new constructions have been proposed over the years [40, 10]. Not only is our MPC
protocol tailored for shuffling, we also develop a tailored, efficient proof system based on a PLONK-style
permutation argument and sigma protocols, much more efficient than generic proofs for arithmetic circuits.

Blockchain-based Solutions. Kumaresan et al. [44] and Bentovet al. [12] considered the card problems
over the Bitcoin-like ledgers. However, similar to the above-discussed works, these approaches require the
players to be present and live to perform MPC. As we discussed earlier, we focus on the settings where the
players need not even know when we shuffle cards and build the game as MPC as a Web3 service. We also
observe most of these games allow security-with-abort. A single player can disturb the game proceeding,
which may not be acceptable in the real world. Finally, these approaches also focus on the monetary aspects
of card games like Poker such as how to perform fair exchanges with the restricted programming capabilities
of Bitcoin. These issues can be addressed on a Turing-complete smart contract platform, and hence, we leave
post-shuffling issues to the game’s smart contract.

Anonymity Communication Networks. As anonymous communication networks (ACN) [22, 21, 53] also
shuffle/mix users’ inputs to make individual users’ input messages unlinkable to a set of outputs, several ACN
solutions become immediately applicable to the card shuffling problem. However, most of these ACN solutions
(such as [7, 46, 45, 24, 33]) are focused on efficiency for a larger number of inputs than what is required for
card games. Moreover, they do not offer publicly verifiable ZK proofs of correct shuffling and thus cannot be
applied to our setting in a simple way.

4 Notations and Preliminaries

Notations. We use Z for integers, and N for {1, 2 . . .}. x
$←− D indicates that x is randomly sampled from

the domain D and h := y indicates that the h is assigned the value y. Also, for any (possibly randomized)
algorithm A, y ← A(x) indicates that A on input x yields the output y. Unless explicitly mentioned, all
algorithms (including adversaries) in this paper are PPT. y := A(x; r) is used to determinize A, with input
x and fixed randomness r. The security parameter is denoted by λ. Tuples (x1, x2 . . .) and vector x, and
used interchangeably. We denote ≈c to denote computational indistinguishability of two distributions. A
negligible function is defined as one that vanishes quickly than 1/poly(λ) for a security parameter λ. For
n-party distributed systems, where we denote the set of corrupt parties by C ⊆ [n] and honest parties by
H := [n] \ C.

Throughout the paper, we use the following notations for polynomials over finite fields. Let Ω ⊂ Zp be a
multiplicative subgroup of order |Ω| over the finite field Zp. We publicly fix an ω, a |Ω|-th root of unity in
F, that generates Ω = {1, ω, . . . , ω|Ω|−1}. Each polynomial p(X) of degree (|Ω| − 1) over Zp can be expressed

in the lagrange basis and evaluated via interpolation p(x) =
∑|Ω|

i=1 ℓi(x)p(ω
i−1) where: ℓi(x) := ωi−1(x|Ω| −

1)/|Ω|(x− ωi−1). Also, we define the degree-|Ω| vanishing polynomial over Ω as zΩ(x) =
∏|Ω|

i=1(x− ωi−1).

For any element x ∈ Zp we use [x] to denote an additive secret-share of x. For a cyclic group ⟨g⟩ = G of order p
we use the same notation [X] ∈ G which implies [X] = g[x] for any X = gx. Furthermore, the notation extends
to support a set of shares [x]S denoting all secret shares owned by parties in set S. An adequate number of
parties, all holding [x], can collaborate to reconstruct x. We denote [x] ←$ D, to imply each participant
sampling local share such that x is being implicitly sampled as the secret randomness.

Shamir’s secret sharing [49]. Shamir’s scheme shares a field element s ∈ Zp in a t out of n access structure
by choosing a uniform random t degree polynomial p(X) over Zp subject to p(0) = s and then defining the
i-th share as p(i). Given any t evaluation points, s is unconditionally hidden, and any t+ 1 evaluation points
can uniquely recover s through Lagrange interpolation.
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5 SVME: Definition & Construction

We introduce the notion of succinctly verifiable multi-identity-based encryption (SVME). This is related to
verifiable encryption [16, 52, 28] extended to a setting where τ -many messages m1, . . . ,mτ are encrypted under
possibly different identities id1, . . . , idτ . In addition to a multi-ciphertext, the encryption procedure produces
a proof π to allow anyone to publicly verify that the messages satisfy an efficiently verifiable τ -ary relation R.
CR denotes the (polynomial size) arithmetic circuit used to verify (m1 . . . ,mτ ) ∈ R. The proof π is succinct
(i.e. constant-sized).

Definition 1 (SVME). An SVME scheme for an efficiently verifiable τ -ary relation R consists of algorithms
(KeyGen,Enc,Dec,KeyExt,Ver) with the following syntax:

• KeyGen(1λ) → (msk, pp, tdsvme). The key-generation algorithm outputs a master secret key msk and
public parameters pp. It may also optionally output a trapdoor tdsvme (deleted for running the protocol,
but may be used in simulations).

• Enc(pp,m, id) → (c, π). The encryption algorithm takes as input m = (m1 . . . ,mτ ) ∈ R and identities
id = (id1, . . . , idτ ), then outputs a multi-ciphertext as τ + 1 tuple c = (caux, c1, . . . , cτ ) and a proof π.

• KeyExt(pp,msk, id) → skid. Similar to IBE the key-extraction works using the master secret and any
identity to compute a secret key.

• Dec(pp, skid, (caux, cid)) → m. Similar to IBE the decryption algorithm takes a single ciphertext pair to
compute message m using an appropriate derived key.

• Ver(pp, c, id, π)→ 1/0. The public verification algorithm takes the entire ciphertext tuple and the proof
π (along with pp) to verify that the encrypted plaintexts indeed belong to the relation R.

They satisfy the following requirements:

Correctness. For any sufficiently large security parameter λ ∈ N, any m := (m1, . . . ,mτ ) ∈ R and any set
of identities id := id1, . . . , idτ the following probability is at least 1− negl(λ):

Pr

 m′ = m;

Ver(pp, c, π) = 1;

∣∣∣∣∣∣∣∣∣∣
(msk, pp)← KeyGen(1λ);

(c, π)← Enc(pp,m, id);

{skidi ← KeyExt(pp,msk, idi)}i∈[τ ];

{m′
i := Dec(pp, ski, (caux, ci))}i∈[τ ]


Soundness. For any sufficiently large security parameter λ ∈ N, any PPT adversary A the following proba-

bility is at most negl(λ):

Pr

 (m1, . . . ,mτ ) /∈ R;

Ver(pp, c, π) = 1

∣∣∣∣∣∣∣∣∣∣
(msk, pp)← KeyGen(1λ);

(id, c, π)← A(pp);
{skidi ← KeyExt(pp,msk, idi)}i∈[τ ];

{mi := Dec(pp, ski, (caux, ci))}i∈[τ ]


Zero-knowledge. For any sufficiently large security parameter λ ∈ N and any PPT adversary A, there exists

a PPT simulator S such that the following probability is at most negl(λ):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(msk, pp, tdsvme)← KeyGen(1λ),

((m ∈ R), id, C, stA)← A(pp)
(c0, π0)← Enc(pp,m, id),

(c1, π1)← S(pp, {mi}i∈C , tdsvme),

{skidi ← KeyExt(pp,msk, idi)}i∈[C],

b← {0, 1}, b′ ← A(stA, {skidi}i∈C , (cb, πb))


−

1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Succinctness. For any security parameter λ ∈ N, any m = (m1 . . . ,mτ ) ∈ R and any set of identities

id = (id1, . . . , idτ ), let (c, π)← Enc(pp,m, id). Then, the size of π is independent of τ and |CR|, where
CR is the circuit for checking the membership in R.
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Next, we present the building blocks for constructing our specific SVME scheme for permutations.

5.1 Building Blocks for SVME

In this section we present the syntax of three building blocks required to construct an SVME.

5.1.1 Multi-identity based encryption (MIBE)

AMIBE scheme is similar to an IBE scheme, except that it encrypts multiple messages under multiple identities
to produce a ciphertext with a common part, which encodes the encryption randomness (and is independent
of the message) and an individual part which encodes the message. An instantiation, based on Boneh-Franklin
IBE [13] scheme is provided in Section 5.2.

Definition 2 (MIBE). A multi-identity based encryption scheme consists of four algorithms:

• MIBE.KeyGen(1λ)→ (msk,mpk). The key-generation algorithm generates a master public-secret key
pair.

• MIBE.Enc(mpk, id1, . . . , idn,m1, . . . ,mn) → (ẽ, e1, . . . , en). The encryption algorithm takes n identities
and n messages to produce a n + 1 tuple, with element ẽ being common to all messages, and each ei
encoding the message mi under the identity idi.

• MIBE.KeyExt(msk, id)→ skid. The key-extraction algorithm produces an identity-specific decryption key
using the master secret key.

• MIBE.Dec(skid, (ẽ, e)) → m. The decryption algorithm uses a decryption-key to decrypt a ciphertext
pair (ẽ, e).

We require the following properties to hold:

Correctness. For any sufficiently large security parameter λ ∈ N, any set of messages m1, . . . ,mn any set of
identities id := id1, . . . , idn the following probability is at most negl(λ):

Pr

 m′ ̸= m;

{MIBE.KeyVer(pp, skidi , idi)}i∈[n]

∣∣∣∣∣∣∣∣∣∣
(msk,mpk)← MIBE.KeyGen(1λ);

(ẽ, e1, . . . , en)← MIBE.Enc(mpk, id,m);

{skidi ← MIBE.KeyExt(msk, idi)}i∈[n];

{m′
i := Dec(ski, (ẽ, ei))}i∈[n]


CPA-security. For any sufficiently large security parameter λ ∈ N, any set of identities id, and any PPT

adversary A then the following probability is bounded by 1/2± negl(λ):

Pr


b = b′;

{m0,i = m1,i}i∈C

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(msk,mpk)← MIBE.KeyGen(1λ);

(m0,m1, C, stA)← A(mpk);

b← {0, 1};
(ẽ, e)← MIBE.Enc(mpk, id,mb);

{skidi ← KeyExt(msk, idi)}i∈[C];

b′ ← A(stA, {skidi}i∈C , (ẽb, eb))



5.1.2 (Trapdoor) Polynomial Commitments

We use a polynomial commitment scheme, which has succinctness and supports a trapdoor opening. This can
be instantiated by KZG [42] commitments (details in Appendix 5.3 ).

Definition 3 ((Trapdoor) Polynomial Commitments). A polynomial commitment scheme for polynomials of
maximum degree d over field F consists of the following algorithms:

• PC.Setup(1λ)→ (pppc, tdpc). The setup algorithm generates public parameters and a trapdoor.

• PC.Com(pppc, p(X))→ P . The commit algorithm commits a polynomial p(X) ∈ F[X]≤d to commitment
P .
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• PC.Open(pppc, p(X), x)→W . On input a polynomial p(X) ∈ F[X]≤d and an input x ∈ F, this algorithm
outputs an opening W of y = p(x).

• PC.Ver(pppc, P,W, x, y)→ 1/0. Given a commitment P of a polynomial p(X) ∈ F[X]≤d and an opening
W with respect to input x and output y, this algorithm verifies whether W is indeed a correct opening
of p(x) = y.

• PC.TD.Open(pppc, tdpc, P, x, y) → W . Given the trapdoor tdpc, this procedure equivocates an opening
W which asserts p(x) = y, when P ← PC.Com(pppc, p(X)).

We require them to satisfy the following properties:

Correctness. For sufficiently large λ ∈ N, any p(X) ∈ F[X]≤d, any x ∈ F the following probability is 1:

Pr

PC.Ver(pppc, P,W, x, p(x)) = 1

∣∣∣∣∣∣∣
(tdpc, pppc)← PC.Setup(1λ);

P ← PC.Com(pppc, p(X));

W ← PC.Open(pppc, p(X), x)


Polynomial Binding. For a sufficiently large λ ∈ N, any PPT adversary A the following probability is at

most negl(λ):

Pr

 p1(X), p2(X) ∈ F[X]≤d;

PC.Com(pppc, p1(X)) = P ;

PC.Com(pppc, p2(X)) = P

∣∣∣∣∣∣∣
(tdpc, pppc)← PC.Setup(1λ);

(P, p1(X), p2(X))

← A(pppc)


Evaluation Binding. For a sufficiently large λ ∈ N, any PPT adversary A the following probability is at

most negl(λ):

Pr

 (x1, y1) ̸= (x2, y2);

PC.Ver(pppc, P,W1, x, y1) = 1;

PC.Ver(pppc, P,W2, x, y2) = 1

∣∣∣∣∣∣∣
(tdpc, pppc)← PC.Setup(1λ);

(P,W1,W2, x, y1, y2)← A(pppc)


Trapdoor Opening. For any λ ∈ N, any polynomial p(X) ∈ F[X]≤d, and any x, y ∈ F the following

probability is 1.

Pr

W = W ′

∣∣∣∣∣∣∣∣∣∣
(tdpc, pppc)← PC.Setup(1λ);

P ← PC.Com(pppc, p(X));

W ← PC.Open(pppc, p(X), x);

W ′ ← PC.TD.Open(pppc, tdpc, P, x, y)


Succinctness. For any λ ∈ N and any polynomial p(X) let P is a commitment, and for any point x ∈ F, W

is an opening for y = p(x). Then the size of P,W and the running time of algorithm PC.Ver are all O(1).

5.1.3 Succinct Proofs

We use non-interactive succinct proof systems crucially in our construction.

Definition 4 (Succinct Proofs). A succinct proof system for any NP binary relation R, consisting of instance-
witness pairs (inst,wit), is a tuple of algorithms described as:

• SP.Setup(1λ, aux) → (tdsp, ppsp). The setup algorithm outputs the public parameters and optionally a
trapdoor for simulation. It may take some auxiliary information aux as an additional input.

• SP.Prove(ppsp, inst,wit)→ π. This algorithm outputs (non-interactively) a proof π using a witness.

• SP.Ver(ppsp, inst, π)→ 1/0. This algorithm verifies legitimacy of the (public) instance inst using a proof
π.

We require them to satisfy the following properties:
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Completeness. For any sufficiently large λ ∈ N, for any (inst,wit) ∈ R, the following probability is 1:

Pr

[
SP.Ver(ppsp, inst, π) = 1

∣∣∣∣∣ (tdsp, ppsp)← SP.Setup(1λ, aux);

π ← SP.Prove(ppsp, inst,wit)

]

Existential Soundness. For any sufficiently large security parameter λ ∈ N, any PPT adversary A the
following probability is at most negl(λ):

Pr

[
(inst, ·) /∈ R;

Ver(ppsp, inst, π) = 1

∣∣∣∣∣ (tdsp, ppsp)← SP.Setup(1λ, aux);

(inst, π)← A(ppsp)

]

Zero-knowledge For any sufficiently large security parameter λ ∈ N, and any PPT adversary A there exists
a PPT simulator S, such that the following probability is at most negl(λ):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(tdsp, ppsp)← SP.Setup(1λ, aux);

((inst,wit) ∈ R, stA)← A(ppsp);
π0 ← SP.Prove(ppsp, inst,wit)

π1 ← S(ppsp, tdsp, inst);
b← {0, 1};

b′ ← A(stA, πb)


−

1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Succinctness For any security parameter λ ∈ N and for any (inst,wit) ∈ R let (tdsp, ppsp)← SP.Setup(1λ, aux)

and π ← SP.Prove(ppsp, inst,wit). Then the size of π is independent of |CR|, where CR is a circuit used
for checking membership (inst,wit) ∈ R.

5.2 Our MIBE Construction

Based on Boneh-Franklin’s IBE scheme [13] we put forward the following MIBE construction to encrypt any n
vector (m1, . . . ,mn). We also assume that each mi is from a set of size at most ϕ(λ) to enable efficient (brute
force) decryption. Recall that, for the SVME construction we need each mi ∈ {1 . . . , 64}.

The scheme is based on bilinear pairing e : G1 ×G1 → G2
8 where each group has (prime) order p and a hash

function (modeled as random oracles) H : {0, 1}∗ → G1. Suppose n is a parameter denoting the number of
messages encrypted.

• MIBE.KeyGen(1λ)→ (msk,mpk): This algorithm samples msk←$ Zp and set mpk := gmsk
1 .

• MIBE.Enc(mpk, id1, . . . , idn,m1, . . . ,mn) → (ẽ, e1, . . . , en). The multi-identity encryption scheme en-
crypts message mi with respect to idi and outputs a ciphertext that consists of n + 1 elements, with
ẽ ∈ G1 and each ei ∈ G2 constructed as follows:

– Sample ρ←$ Zp and compute ẽ := gρ1 .
– Compute ei := e(H(id)ρ,mpk) · gmi

2 .
• MIBE.KeyExt(msk, id) → skid. Similar to the Boneh-Franklin key-extraction algorithm this uses the
master secret msk to derive the decryption key as skid := H(id)msk.

• MIBE.Dec(skid, (ẽ, e))→ m. It decrypts in the exponent as M := E/e(skid, ẽ) and then solving discrete
log m := DLogg2(M) by brute force.9

We show via the next theorem that the construction satisfies our MIBE definition for mi in small sets.

Theorem 1 (MIBE Construction). The above construction is a secure MIBE scheme in the random oracle
model as long as bilinear DDH holds over underlying pairing group.

8We use symmetric pairing notation for simplicity. We stress that it can easily be extended to support asymmetric pairing for
efficiency, which we adapt in our implementation.

9In practice one may use a pre-computed look up table for fast decryption.
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Proof. Correctness is easy to see, since by construction,

E

e(skid, ẽ)
=

e(H(id)ρ,mpk)gmi
2

e(H(id)msk, ẽ)

=
e(H(id), g1)

ρmskgmi
2

e(H(id), g1)ρmsk
= gmi

2

and this has the correct discrete logarithm. Note that decryption is efficient as long as the messages are chosen
from a small space, since DLog is hard in this group.

For CPA-security recall the multi-identity security notion first. For any arbitrary set of n identities the
adversary is allowed to obtain keys for upto n−1 identities – without loss of generality, assume that it obtains
keys for the first n− 1 identities (Note that any additional keygen queries that do not involve any of these n
identities give no information to the adversary due to the random oracle H). We will show that the adversary
cannot distinguish the encryption of any m0 and m1 encrypted with the n-th identity (for which it does not
know a secret key).
Suppose the encrypted message is m0. Then, the adversary’s view in the CPA game is:

(mpk, skid1
, . . . , skidn−1

, ẽ, En)

≡ (gmsk
2 ,H(id1)

msk, . . . ,H(idn−1)
msk,

gρ2 , e(H(idn), g2)
ρ·msk · gm0

T )

≡ (gmsk
2 , (gmsk

1 )r1 , . . . , (gmsk
1 )rn−1 ,

gρ2 , e(g1, g2)
rn·ρ·msk · gm0

T )

≈c

(
gmsk
2 , (gmsk

1 )r1 , . . . , (gmsk
1 )rn−1 , gρ2 , uT · gm0

T

)
Above, we show certain equivalences between the distributions of the view of the adversary. The first equiv-
alence holds by definition of the terms, and the second equivalence follows since H is a random oracle, and
H(idi) can be written as gri1 for random ri. The final computational indistinguishability step follows from
BDDH, which says that given gmsk

1 , gmsk
2 , grn1 (= H(idn)), g

ρ
2 for uniformly random msk, rn, ρ in Zp, it is compu-

tationally hard to distinguish between e(g1, g2)
rnρmsk and a uniform random element uT ←$ GT . Replacing

the pairing with a random element in G2, we observe that the last term is now a uniformly random element
in the group and independent of the value of m0.
Similarly, the analysis when the encrypted message ism1 leads to the same conclusion and hence by transitivity,
the encryptions are indistinguishable.

5.3 Instantiating Polynomial Commitments with KZG [42]

The KZG polynomial commitment scheme given below works for all polynomials of degree upto τ over Zp. It
is based on bilinear pairing G1 ×G1 → G2, where each Gi is a cyclic group of order p, and is generated by gi.
The algorithm specifications are as follows:

• PC.Setup(1λ)→ (pppc, tdpc). Sample a uniform random ı←$ Zp and publish pppc := {hi := gı
i

1 }i∈{0,...,τ}
and the trapdoor tdpc := ı.

• PC.Com(pppc, p(X))→ P . To commit to a τ -degree polynomial p(X) = c0 + c1x+ . . .+ cτx
τ output the

commitment P =
∏d

i=0 h
ci
i ∈ G1 where pppc = (h0, . . . , hd+1).

• PC.Open(pppc, p(X), x) → W . Compute the quotient polynomial w(X) := p(X)−p(x)
X−x and then output

W := PC.Com(pppc, w(X)).

• PC.Ver(pppc, P,W, x, y)→ 1/0. Return

(e(P/gy1 , g1) = e(W,h0/g
x
1 ))

• PC.TD.Open(pppc, tdpc, P, x, y)→W . Parse ı := tdpc, and output:

W :=

(
P

gy1

)(ı−x)−1
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Note that, the scheme maybe slightly altered by using evaluation representation of a polynomial instead, which
we adapt in our implementation.

Also as shown in the original paper [42], this scheme is a secure polynomial commitment scheme according to
Definition ?? as long as the DL and a variant of bilinear Diffie-Hellman assumptions hold.

5.4 Instantiating πperm with Plonk [8]

Recall that this proof system is based on the KZG commitments and is for the language Rperm which contains
instance-witness pair (inst,wit) where:

• inst := (M,V ) and wit := (m(X), ρm) such that:

– M := PC.Com(m′(X)) where m′(X) := m(X) + ρmzΩ(X);

– V := PC.Com(v(X)) where v(X) := V2P(1, 2, . . . , τ) is a fixed polynomial;

– m = P2V(m(X)) is a permutation of v := (1, 2, . . . , τ).

We use Plonk [8] permutation check proof system – we include this for notational consistency and completeness.
We assume the hash functions are chosen appropriately for the desired domains/ranges.

• SP.PERM.Setup(1λ, aux)→ (tdperm, ppperm).

Let (pppc, tdpc) := aux. Set ppperm := pppc and tdperm := tdpc.

• SP.PERM.Prove(ppperm, (M,V ), (m(X), ρm)→ πperm:

– Let v(X) := V2P(1, . . . , τ) and V := PC.Com(pppc, v(X)).

– Compute the hash γ1 := H1(V,M).

– Compute polynomials g(X) := γ1 +m(X) + ρmzΩ(X) and h(X) := γ1 + v(X).

– Compute a τ − 1-degree rational polynomial t(X) such that t(ωi) := g(ωi)
h(ωi) for all i ∈ {0, . . . , τ − 1}.

– Compute T := PC.Com(pppc, t(X)).

– Compute the quotient polynomial q(X) := d(X)/(Xτ−1) where d(X) := h(X)·t(X)−g(X)t(X/ω).
If there is a non-zero remainder, stop and return ⊥. Otherwise go to the next step.

– Commit Q = PC.Com(pppc, q(X)).

– Compute the hash γ2 := H2(M,V,Q, T ).

– Finally compute the KZG openings:

∗ W1 := PC.Open(pppc, t(X), ωτ−1);

∗ W2 := PC.Open(pppc, t(X), γ2);

∗ W3 := PC.Open(pppc, t(X), ωγ2);

∗ W4 := PC.Open(pppc, g(X), ωγ2);

∗ W5 := PC.Open(pppc, q(X), γ2);

– Compute the polynomial evaluations: y1 := t(ωτ−1), y2 := t(γ2), y3 := t(ωγ2), y4 := g(ωγ2) and
y5 := q(γ2).

– Output πperm where:

πperm :=(Q,T, (y1,W1), (y2,W2),

(y3,W3)(y4,W4), (y5,W5))

• SP.PERM.Ver(ppperm, (M,V ), πperm)→ 1/0
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– Parse πperm = (M,V,Q, T, (y1,W1), (y1,W2), (y3,W3), (y4,W4), (y5,W5))

– Compute γ1 := H1(M,V ), G = M.gγ1

1 and γ2 := H2(M,V,Q, T ).

– Run KZG verification on the following:

∗ PC.Ver(pppc, T,W1, ω
τ−1, y1).

∗ PC.Ver(pppc, T,W2, γ2, y2).

∗ PC.Ver(pppc, T,W3, ωγ2, y3).

∗ PC.Ver(pppc, G,W4, ωγ2, y4).

∗ PC.Ver(pppc, Q,W5, γ2, y5).

– Output 1 iff all verifications return 1, otherwise output 0.

First we note that the above proof system satisfies our Definition 4 for relation Rperm – this follows from [8] (the
security argument works in algebraic group model assuming the hash functions as random oracles). It is worth
noting that the zero-knowledge property is achieved as M is a commitment of m′(X) = m(X) + ρmzΩ(X)
instead of m(X) itself; m′(X) hides m(X) unconditionally as long as no other information on ρm is given. This
does not, however, affects the procedures, because when t(X) is being defined, the ration g(ωi)/h(ωi) remains
unchanged, as zΩ(ω

i) = 0 for all i ∈ {0, . . . , τ} by definition. For more details we refer to the original paper [8].
We note that, the soundness should hold for any m(X) mod (zΩ(X)), which suffices for our purpose due to
the property of the zero polyonmial.

5.5 Chaum-Pedersen’s (distributed) Proof of Equality of Discrete Log

We present Chaum-Pedersen’s proof of equality of discrete log for completeness. We also present the distributed
protocol for shared witness. We use a version that works over a symmetric bilinear map e : G1 × G2 → G2,
where each group is of prime order p. The proof system would enable knowledge of witness ρ such that
given the public instance (x, y,X, Y ) ∈ G1 × G1 × G2 × G2 y = xρ and Y = Xρ. The non-interactive (via
Fiat-Shamir) variant has two algorithms:

• DLEQ.Prove((x, y,X, Y )(ρ)): Compute:

– r ←$ Zp;

– y′ = xr and Y ′ = Xr;

– c := H(y′, Y ′) (c ∈ Zp);

– z := r + cρ;

Output: ((y′, Y ′), c, z)

• DLEQ.Ver((x, y,X, Y ), ((y′, Y ′), c, z) :

Return (xz = y′.yc) ∧ (Xz = Y ′.Y c)

The completeness, soundness and zero-knowledge of the proof system is well established. For details we refer
to, for example, [14].

5.5.1 Distributed DLEQ Proof

For the distributed SVME construction, we require a distributed proof system, in which n participants jointly
posses secret share of the witness [ρ]. First we present an ideal functionality FDLEQ.Prove:

• Upon (gid,DLEQ-Prove, ((x, y,X, Y ), ([ρ]))) from all n parties, then reconstruct ρ and compute πdleq :=
DLEQ.Prove((x, y,X, Y ), ρ) Return πdleq to everyone.

We then present a protocol ΠDLEQ.Prove:
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• Input: Upon (gid,DLEQ-Prove, (PubIP,PrivIP)) each party Pi has public input PubIP = (x, y,X, Y )
and private input PrivIP = [ρ].

• Step-1 (Non-interactive): Sample [r]←$ Zp. Compute [y′] := x[r] and [Y ′] := X [r].

• Step-2 (Interactive): Collaboratively reconstruct y′ and Y ′

• Step-3 (Non-interactive): Compute c := H(y′, Y ′) and [z] := [r] + c[ρ].

• Step-4 (Interactive): Collaboratively reconstruct z.

• Output: ((y′, Y ′), c, z).

Lemma 1. The protocol ΠDLEQ.Prove securely realizes the ideal functionality FDLEQ.Prove

Proof (sketch). Essentially if there is at most n − 1 corruption, the adversary still does not know anything
about ρ. The simulator, with its private inputs [ρ]C call the ideal functionality to obtain back (y′, Y ′, z) as part
of the output. In the interactive steps it samples the values ([y′]H, [Y ′]H, [z]H) on behalf of the honest parties
so that the reconstructed values from ([y′]H, [Y ′]H, [z]H) and ([y′]C , [Y

′]C , [z]C) match the output (y′, Y ′, z). If
all n parties are corrupt the simulation is trivial.

5.6 Our SVME Construction

Notations. First recall from Sec. 4 the representation of an (τ − 1)-degree polynomial over sub-group
Ω = {1, . . . , ω|Ω−1|} and the corresponding degree |Ω|-degree vanishing polynomial zΩ. Here we set |Ω| = τ
and F = Zp. For v = (v1, . . . , vτ ) where vi ∈ F, define a deterministic function V2P : Fτ → F[X]τ−1 that
converts a τ -dimensional vector v to a polynomial v(X) of degree τ − 1 over the same field F by setting
the evaluations v(ωi) = vi and then interpolating using the Lagrange basis ℓi(x)’s. Similarly we also define
P2V : F[X]τ−1 → Fτ which performs the inverse operation. Also we assume that there is a fixed dummy
identity idpp, such that for any id of size τ , îd := (id, idpp) has τ + 1 elements.

Specific Succinct Proof Systems. For SVME construction we rely on two succinct proof systems SP.PERM
and SP.LEC for the NP relations Rperm (a specific permutation relation, hence called perm) and Rlec (a relation
linking encryption and commitment, hence called lec), respectively, as follows:

1. Rperm is based on a polynomial commitment scheme for polynomials in Zp[X]≤τ . It captures that
a polynomial m(X) ∈ Zp[X]τ−1 is such that m := P2V(m(X)) is a permutation of a fixed vector
v = (1, ω, . . . , ωτ−1), where ω is a fixed public τ th root of unity in Zp. For zero-knowledge a commitment
to m′(X) = m(X) + ρmzΩ(X) is provided (this is borrowed from Plonk [8]). This does not affect the
instantiation, as this is essentially the (shifted) permutation check of Plonk.10 It contains instance-
witness pair (inst,wit) where:

• inst := (M,V ), wit := (m(X), ρm) such that:

– M := PC.Com(m′(X)) with m′(X) as above;

– V := PC.Com(v(X)) where v(X) := V2P(v) is a fixed polynomial;

2. Rlec is based on a polynomial commitment scheme for polynomials in Zp[X]≤τ and an MIBE scheme
for vectors of size (τ + 1) over Zp. Essentially, it captures that a polynomial commitment of m′(X) =
m(X) + ρmzΩ(X) and a MIBE ciphertext have the same values m̂ = (P2V(m(X), ρm) inside them.
Specifically, it contains instance-witness pairs (inst,wit) where:

• inst = (M, ẽ, e, îd,mpk) and wit = (ρ, ρm,m):

– M = PC.Com(m′(X)) where m′(X) := m(X) + ρmzΩ(X) and m(X) = V2P(m);

– m̂ := (m, ρm) and (ẽ, e) = MIBE.Enc(mpk, îd, m̂; ρ)

The Construction. In Figure 2, we describe our SVME construction for relationRmain such that (m1, . . . ,mτ ) ∈
Rmain if and only if m := (m1, . . . ,mτ ) is a permutation of (1, ω, . . . ωτ−1).

10Note that this is simpler than Plonk since one of the polynomials V is fixed.

16



Ingredients: A MIBE scheme MIBE for τ + 1 sized vector over Zp; a polynomial commitment PC for τ -
degree polynomials over Zp[X]; two succinct proof systems SP.LEC and SP.PERM as described above.

– KeyGen(1λ)→ (msk, pp, tdsvme). On input the security parameter execute:
• (tdpc, pppc)← PC.Setup(1λ); aux := (pppc, tdpc); (ppperm, tdperm)← SP.PERM.Setup(1λ, aux);

• (pplec, tdlec)← SP.LEC.Setup(1λ, aux); (msk,mpk)← MIBE.KeyGen(1λ); v(X) := V2P(v);
• Choose a random dummy idpp; pp := (mpk, idpp, pppc, ppperm, pplec, v(X)); tdsvme := (tdperm, tdlec).

– Enc(pp,m, id)→ (c, π). Parse (mpk, idpp, pppc, ppperm, pplec)← pp and execute:
• m(X) := V2P(m); ρm ←$ Zp; m′(X) := m(X) + ρmzΩ(X); M := PC.Com(pppc,m

′(x)); m̂ :=
(m, ρm);

• îd := (id, idpp); ρ←$ Zp; (ẽ, e) := MIBE.Enc(mpk, îd, m̂; ρ); V := PC.Com(pppc, v(x));

• πperm ← SP.PERM.Prove(ppperm, (M,V ), (m(X), ρm); πlec ← SP.LEC.Prove(pplec, (M, ẽ, e, îd,mpk),
(ρ, ρm,m));

• π := (M,V, πperm, πlec); c := (ẽ, e).
– KeyExt(msk, id)→ skid. Execute skid ← MIBE.KeyExt(msk, id).
– Dec(skid, (caux, cid))→ m. Execute m← MIBE.Dec(skid, (ẽ, eid)) where ẽ := caux and eid := cid.
– Ver(pp, c, id, π) → 1/0. Parse (ẽ, e) := c and (M,V, πperm, πlec) := π and (mpk, pppc, ppperm, pplec) ← pp.
Then execute:

• dperm := SP.PERM.Ver(ppperm, (M,V ), πperm); dlec := SP.LEC.Ver(pplec, (M, ẽ, e, îd,mpk), πlec);
• Return (dperm ∧ dlec).

Figure 2: Our SVME Construction for Permutation

We now argue that our construction is an SVME scheme for Rmain, formalized via the following theorem, a
detailed proof for which is given in Appendix B.2

Theorem 2. Our construction is an SVME for Rmain according to Def. 1 as long as the underlying (i) MIBE
scheme satisfies Def. 2; (ii) the polynomial commitment scheme satisfies Def. 3 and (iii) the proof systems
SP.PERM and SP.LEC both satisfy Def. 4 for their resepective relations.

Next, we provide the construction of the succinct proof system SP.LEC. The MIBE construction follows
tweaking Boneh-Franklin’s IBE [13]; SP.PERM is instantiated with Plonk [8] and PC with KZG [42]. We
describe them in Appendix 5.1.3.

5.7 Instantiating SP.LEC

We provide an instantiation of SP.LEC in Figure 3. Recall that, this succinct proof system links a committed
polynomial using PC (KZG commitment), and a MIBE encryption (described above) of the same (vector)
form.

Note that, while a standard (non-interactive) Sigma protocol may suffice for this, it would not be succinct.
Therefore, we design a proof system that combines the KZG verification and Chaum-Pedersen’s proof of
equality of discrete log (included in Appendix 5.5 ) – we call this DLEQ. The algorithms are described below
(we assume that the hash functions, modeled as random oracles, have appropriate ranges):

We formally capture the properties via the following theorem, a proof for which is provided in Appendix 5.5 .

Theorem 3. SP.LEC (Fig. 3) is a secure succinct proof system according to Def. 4 in the ROM.

5.8 Distributed SVME

In our protocol, the encryption and key-extraction algorithms will be distributed, albeit in two different
settings. We describe the settings and ideal functionalities below and the instantiation in Section 5.8.2.
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– SP.LEC.Setup(1λ, aux)→ (pplec, tdlec): Let (pppc, tdpc) := aux. Set pplec := pppc and tdlec := tdpc.

– SP.LEC.Prove(pplec, (M, ẽ, e, îd,mpk), (ρ, ρm,m))→ πlec

• δ := H(M, ẽ, e, id,mpk); m(X) := V2P(m); m′(X) := m(X) + ρmzΩ(X); zm := m′(δ); W :=
PC.Open(pppc,m

′(X), δ);
• E :=

∏
i e(H

′(idi)
ℓi(δ),mpk) · e(H′(idpp)

zΩ(δ),mpk); T := Eρ; πdleq ← DLEQ.Prove((g1, E, ẽ, T ), ρ).
• Output: πlec = (W, zm, πdleq)

– SP.LEC.Ver(pplec, (M, ẽ, e, îd,mpk), πlec)→ 1/0. Parse: (W, zm, πdleq) := πlec, and compute:

• δ := H(M, ẽ, e, id,mpk); T := (
∏

i e
ℓi(δ)
i · ezΩ(δ)

τ+1 )/(gzm2 ); E :=
∏

i e(H
′(idi)

ℓi(δ),mpk) ·
e(H′(idpp)

zΩ(δ),mpk)
• dkzg := PC.Ver(pppc,M,W, δ, zm); ddleq := DLEQ.Ver(pppc, (g1, E, ẽ, T ), πdleq); Return ddleq ∧ dkzg.

Figure 3: Our SP.LEC construction

5.8.1 Distributed Enc

Consider the following setting:

• There are n parties, among which an arbitrary large subset can be semi-honest corrupt. They commu-
nicate via point to point authenticated channel.

• Each party Pi holds τ+1 shares [m] as private inputs. There are public inputs, such as pp and (τ+1)-sized
id-vector id. The protocol depends on the specification of the SVME Enc algorithm.

• In the end each party gets public output (c, π).

We define the corresponding ideal functionality FSV.Enc as:

On (gid,Encrypt, (pp, [m], [ρEnc], id)) from all n parties:

– Reconstruct m and ρEnc.

– Encrypt (c, π) := Enc(pp,m, id; ρEnc), where ρEnc = (ρ, ρm) is the encryption randomness.

– Return (c, π) to everyone.

5.8.2 Distributed KeyExt

Let us lay out the setting:

• There are ñ keypers K1, . . . ,Kñ, among them at most < ñ/2 can be maliciously corrupt. Guaranteed
output delivery is required. There are also m players P1, . . . , Pm who provide public inputs. Once the
key-setup is done, the entire communication takes place over a blockchain.

• Each keyper has a private input mski, a (t̃, ñ)-Shamir’s share of msk of the SVME scheme. In each
execution each player Pi requests for the j-th card in its deck. After each execution, a legitimate player
Pi, whose legitimacy can be imposed by a smart contract, obtains a decryption key skidi,j

. These
executions can be easily merged to deliver the entire deck.

We define the ideal functionality FKeyExt below.

– Upon (SetUp, pp) from anyone, skip if the status is Active, otherwise store pp, and change the status to
Active.

– Upon (gid,KeyExt, j) from player Pi, send this message to all keypers. When at least (t̃+1) keypers {Kk}
reply back with {mskk}:

– Check if (mpkk,mskk) is consistent, if not then skip; otherwise:

– skidi,j ,k := KeyExt(mskk, idi,j), where idi,j = (gid, i, j).
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– Reconstruct skidi,j
using Lagrange in the exponent.

– Send back skidi,j
to Pi.

In the distributed setting, the encryption and key-extraction algorithms will be distributed, albeit in two
different settings.

5.9 Instantiation of Distributed ENC

For our instantiation of Enc (Figure 2), we observe:

• The MIBE scheme is additively homomorphic over the message and randomness – both are distributed as
witnesses. This can be easily seen from the structure: for example, for two ciphertexts (gρ1

1 , e(H(id)ρ1 ,mpk)·
gm1
2 ) and (gρ2

1 , e(H(id)ρ2 ,mpk) · gm2
2 ), one can just multiply the group elements to obtain encryption of

m1 +m2 as (gρ1+ρ2

1 , e(H(id)ρ1+ρ2 ,mpk) · gm1+m2
2 ) – this uses the bilinear property. So for secret shares

[m] and [ρ] we can write ([ẽ], [e]) ← MIBE.Enc(· · · , [m]). Such that one can perform group operations
to reconstruct (ẽ, e) from adequate number of shares ([ẽ], [e]).

• Next, we note that the KZG commitments with which we instantiate PC are also homomorphic on
the committed polynomial. Therefore, we can write [P ] := PC.Com(pppc, [p(X)]), such that one can
reconstruct P by linear operations.

• From [47] we observe that the Plonk proof SP.PERM.Prove can be implemented in a distributed fashion
as well, when the witness, i.e. the polynomial m(x) (plus the randomness ρm) is secret shared among
n parties. This will be executed using an interactive protocol, which realizes an ideal functionality
FPerm.Prove described as follows:

– Upon (gid,Perm-Prove, ((ppperm,M, V ), ([m(X)]), [ρm])) from all n parties:

∗ Reconstruct (m(X), ρm).

∗ Compute πperm ← SP.PERM.Prove(ppperm, (M,V ), (m(X), ρm)).

∗ Return πperm to everyone.

We refer to the paper [47] for detailed protocol.

• We design a protocol ΠSP.LEC.Prove in Figure 4 for distributed computation of the proof SP.LEC.Prove in
(FDLEQ.Prove,FZ-Share)-hybrid, where FDLEQ.Prove is described in Section 5.5.1and FZ-Share is described as:

– Upon (gid,Zero-share, ) from all n parties, choose a random share of [0] in Zp, and reply back

with g
[0]
1 .

. One can instantiate this protocol with several existing approaches, such as everybody picking up a
zero-share locally, and then adding.

• Finally let us describe the functionality FLEC.Prove:

– Upon (gid,LEC-Prove, ((pplec,M, ẽ, e, îd,mpk), ([ρ], [ρm], [m]))) from all n parties:

∗ Reconstruct ρ, ρm,m.

∗ Run πlec ← SP.LEC.Prove(pplec, (M, ẽ, e, îd,mpk), (ρ, ρm,m))

∗ Return πlec to everyone.

Now we present our protocol ΠSV.Enc in Figure 5 in FLEC.Prove-hybrid, which in turn is instantiated by protocol
ΠSP.LEC.Prove, described in Figure 4 in (FDLEQ.Prove,FZ-Share)-hybrid. The security of protocol ΠSV.Enc and
ΠSP.LEC.Prove are formalized via the following theorems, arguments for which are deferred to Appendix B.4 and
Appendix B.5 .

Theorem 4. The protocol ΠSV.Enc, described in Figure 5 securely realizes the ideal functionality FSV.Enc for
arbitrary many semi-honest corruption in FLEC.Prove-hybrid.
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Input: Each server Si receives (gid,LEC-Prove, (PubIP,PrivIP)) with public input PubIP = (pplec,M,
ẽ, e, îd,mpk), and private inputs PrivIP = ([ρ], [ρm], [m]).
Part-1 (non-interactive): Compute:

• δ := H(M, ẽ, e, îd,mpk)
• [m(X)] := V2P([m]).
• [m′(X)] := [m(X)] + [ρm]zΩ(X)
• [zm] := [m′(δ)]
• [W ] := PC.Open(pppc, [m

′(X)], δ)
• E :=∏

i e(H
′(idi)

ℓi(δ),mpk) · e(H′(idpp)
zΩ(δ),mpk)

Part-2 (interactive): Call FZ-Share with message (gid,Zero-share) to obtain back a secret sharing of
zero in te exponent of G1, [1] for 1 ∈ G1. Let [W ] := [W ] · [1].
Part-3 (interactive): Reconstruct zm,W by interaction.

Part-4 (interactive): Compute T := (
∏

i e
ℓi(δ)
i · ezΩ(δ)

τ+1 )/(gzm2 ) and then call functionality FDLEQ.Prove by
sending (gid, ((g1, E, ẽ, T ), [ρ])) to obtain back πdleq.
Output: πlec := (W, zm, πdleq)

Figure 4: Protocol ΠSP.LEC.Prove in (FDLEQ.Prove,FZ-Share)-hybrid

Input: Upon (gid,Encrypt, (pp, [m], [ρEnc], id)) each party Si has public input (pp, id), and private
inputs [m], parse [ρEnc] as ([ρ], [ρm]).
Part-1 (non-interactive): Compute:

• [m(X)] := V2P([m]);
• [m′(X)] := [m(X)] + [ρm]zΩ(X);
• [M ] := PC.Com(pppc, [m

′(X)]);
• [m̂] := ([m], [ρm]);
• îd := (id, idpp);
• ([ẽ], [e]) := MIBE.Enc(mpk, id, [m]; [ρ]);
• V := PC.Com(pppc, v(X)).

Part-2 (interactive): Reconstruct (M, ẽ, e) collectively by interaction.
Part-3 (interactive): Send (gid,Perm-Prove, (ppperm, ((M,V ), ([m(X)], [ρm])))) to FPerm.Prove to get

back πperm and in parallel send (gid,LEC-Prove, (pplec, ((M, ẽ, e, îd,mpk), ([m], [ρm])))) to FLEC.Prove to
get back πlec.
Output: Return (c, π) where c := (ẽ, e) and π := (M,V, πperm, πlec).

Figure 5: Protocol ΠSV.Enc in (FPerm.Prove,FLEC.Prove)-hybrid
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Theorem 5. The protocol ΠSP.LEC.Prove, described in Figure 4 securely realizes the ideal functionality FLEC.Prove

for arbitrary many semi-honest corruption in (FDLEQ.Prove,FZ-Share)-hybrid.

5.10 Instantiation of Distributed KeyExt

We discuss the instantiation here. Note that, from our SVME construction, KeyExt algorithm is exactly the
same as the MIBE.KeyExt algorithm, which is in turn the same as Boneh-Franklin’s IBE scheme. Similar to
threshold BLS, one can easily thresholdize this: for each i and any id if skid,i := KeyExt(mski, id), then skid
can reconstructed by Lagrange in the exponent from any (t̃+ 1) partial keys skid,i.

However, one difficulty is that there is no secure channel between the players and the keypers. Communication
takes place over the smart bulletin board. Over this channel, everyone can obtain any mskid, if it is posted on
the bulletin board. Nevertheless, this is exactly similar a recent construction put forward by [19], in that this
is resolved by blinding the output with a random blind only known to the client (a similar approach is also
taken in [41] in to enable output-privacy of VRFs via blinding). Furthermore, their construction also builds
on the threshold BLS structure. So, here we can directly use that to instantiate the functionality FKeyExt

(described in Section 5.8.2)

• This protocol will be over a smart bulletin board enabled with smart contracts that can verify:

1. a proof of knowledge (of the blind) in the exponent verification algorithm for a player;
2. a proof of knowledge (of the partial master secret key) in the exponent verification algorithm for a

keyper.

• Each player sends H′(id)ν to the bulletin board, with a blind ν, along with a proof of knowledge of ν
– this is verified on smart bulletin board and gets stored only when that succeeds. Note that this also
ensures that a player has the legitimate id.11

• Each keyper, with master key sharemski would retrieve H′(id)νmski and post that on to the smart bulletin board,
along with another proof of knowledge of exponent mski (with respect to a mpki = gmski

1 ). It will be then
stored, only if the verification on smart bulletin board succeeds. Note that, to enable this particular
verification, the setup (FSetup in Sec. 7) in the distributed setting must release partial verification keys

mpki := gmski
1 .

• Each player now downloads the partial blinded responses, and there must be at least t̃+ 1 of them due
to honest majority assumption. Then H′(id)νmsk is constructed locally using Lagrange in the exponent
from t̃+ 1 values H′(id)νmski . Finally skid = H′(id)msk is obtained by unblinding.

The protocol is very simple. Malicious security is guaranteed because everyone’s response can be verified
publicly. In fact, the simulator can extract the exponents form the zero-knowledge proofs – this can be done
using a non-interactive Schnorr’s proof. Guaranteed output delivery is guaranteed easily due to the honest
majority assumption and the in-built verification of each individual keyper’s response. This reduces to the
same assumption as [41] – a threshold variant of bilinear one more Diffie-Hellman.

6 Protocol for Distributed Random Permutation

In this section, we construct an MPC protocol for generating a distributed random permutation within a small
range τ . This is executed among the servers S1, . . . , Sn – the same as for distributed Enc (cf. Section 5.8). The
ideal functionality in Fig. 6 is parameterized by τ ∈ N. We provide a protocol in Figure 7, where B denotes
the parameter for the number of repetitions.
Smaller values of B decrease the MPC cost (fewer parallel repetitions of FRANω

) but increase the likelihood
that ΠR-Perm-Gen aborts (due to insufficient unique values). We can upper bound the probability of abort as
τ( τ−1

τ )B .

We describe the ideal functionalities FRANω
and FDY-DPRF and their instantiations below.

11While the exact procedure may vary, we set idi,j = (gid, i, j) for the j-th card of Pi.
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– Upon (gid,PermGen) from all servers send it to the adversary, once adversary sends back σ′ execute:
• If |CS | < n, sample a random permutation σ over [τ ].
• If |CS | = n, set σ := σ′ only if σ′ is a permutation over [τ ], else skip.
• Let (s1, . . . , sτ ) := s and vi := ωsi−1.
• Generate an additive sharing of v := (v1, . . . , vτ )
• Send share [v] to respective server.

Figure 6: Ideal functionality FR-Perm-Gen

– On input (gid,PermGen), server S does as follows:
• For k ∈ B send (gid, Invoke) to FRANω

(in parallel). Let [γk] be the shared private output of the
k-th iteration where k ∈ [B]. So, at the end of this step, the servers collectively hold (γ1, . . . , γB)
in additive secret-sharing.

• Send (gid,Key-Setup) to FDY-DPRF. For each k ∈ [B] send (gid,Eval, [γk]) to FDY-DPRF (in paral-
lel). Receive the outputs Y = (y1, . . . , yB), where yk is the output of the k-th invocation.

• If there are less than τ unique yk in Y , then abort. Otherwise construct the ordered set {[γk]}k∈I of
size |I| = τ by selecting τ -many [γk] corresponding to first τ unique yk from Y (each yk corresponds
to a [γk] for known k). Denote [v] := ([v1], . . . , [vτ ]), where vi = γk and k is the i-th index in I. Let
us call this sanitization.

• Return [v]

Figure 7: ΠR-Perm-Gen in (FRANω ,FDY-DPRF)-hybrid

• FRANω
: Upon (gid, Invoke) from all n parties, sample γ ←$ {1, ω, . . . , ωτ−1}, compute an additive

sharing [γ], send back the respective shares to the parties.

• FDY-DPRF :

– Upon (gid,Key-Setup) from all n parties sample a secret key sk←$ Zp. Store (gid, sk) and mark
gid.

– Upon (gid,Eval, [x]) from all n servers, unless gid is marked skip, else reconstruct x ∈ Zp. Then

return y := g(sk+x)−1

to everyone.

6.1 Protocols ΠRANω and ΠDY-DPRF

FRANω
and FDY-DPRF are instantiated by protocols ΠRANω

and ΠDY-DPRF respectively.

Protocol ΠRANω :

1. Upon (gid, Invoke) a server S:

2. Locally sample share [x].

3. Sends (gid,Exp-Reveal, [x]) to FEXP−REVEAL to receive back xτ .

4. If xτ = 0 mod p, then restart from Step 2 above. Otherwise output
(

τ
√
xτ

)−1 · [x]

Where:

Functionality FEXP−REVEAL:

• Upon (gid,Exp-Reveal, [a]) from all n parties, reconstruct a and send aτ mod p to all parties and the
adversary.

Protocol ΠDY-DPRF:
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1. Upon (gid,Key-Setup) if gid is not marked Live skip, else each server locally samples a share [sk]
uniformly at random from Zp. Store (gid, [sk]). Mark gid Key-Setup-Done.

2. Upon (gid,Eval, [x]), unless gid is marked Key-Setup-Done skip, else each server executes the follow-
ing:

(a) Send (gid, Invert, [x] + [sk]) to FINV to get back g[x̂].

(b) Set [y] := g[x̂] and collaboratively reconstruct y; and return y

Where:

Functionality: FINV

• Upon (gid, Invert, [x]) from all n servers, if gid is unmarked skip, else reconstruct x, then compute the
inverse y = x−1 in Zp. Compute random additive sharing [y]. Send g[y] to the respective server.

6.2 Protocols ΠEXP-REVEAL and ΠINV

Now we instantiate FEXP−REVEAL by protocol ΠEXP-REVEAL and FINV by ΠINV.

Protocol ΠEXP-REVEAL:

1. On (gid,Exp-Reveal, [a]) each party initializes [x0] = [a] and executes the following loop for k ∈
{1, . . . , log(τ)}

– Send (gid,Mult, [xk−1], [xk−1]) to FMULT and get back [xk] as output.

2. Once the loop is completed collaboratively reconstruct xe, and return that.

Where:

Functionality FMULT:

• Upon (gid,Mult, [x], [y]) from all n parties, if gid is unmarked skip, otherwise send (gid,Mult) to the
adversary.

1. Compute z = xy mod p, then compute an additive sharing [z].

2. Send zi to each honest party i.

Finally we present ΠINV in FMULT-hybrid.

Protocol ΠINV:

• On (gid, Invoke, [s]) if gid is unmarked skip, otherwise each server Si executes:

1. Locally sample a share of uniform random value [r] in Zp.

2. Send (gid,Mult, [s], [r]) to FMULT to get back [u] then reconstruct collboratively u.

3. Compute [s−1] := u−1 · [r].

4. Return g[s
−1]

We note that FMULT can be realized by any MPC protocol. We omit an instantiation. In our implementation
we use a variant of SPDZ [27].

We capture the security of ΠR-Perm-Gen via the following theorem, a proof of which is deferred to Appendix B.6.

Theorem 6. The protocol ΠR-Perm-Gen securely realizes FR-Perm-Gen in (FRANω ,FDY-DPRF)-hybrid.
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Parameters. This is specifically parameterized with SVME verification algorithm Ver (uploaded as smart
contracts). It has public storage and is visible to everyone.

– Upon (SetUp, pp), skip if the status is Active otherwise send this to all parties, if everyone approves,
then (publicly) store pp and change status to Active.

– Upon (gid,Server,msg) from a server Si, skip if gid is marked Sampled else send this to all servers,
once they respond back with approval, if msg = (id, c, π) verify Ver(pp, (id, c, π), if that succeeds, store
(gid, (id, c, π)) and mark gid Sampled, if msg = ⊥, then store (gid,⊥) and mark gid Sampling-Failed.

Figure 8: Functionality FSBB, which captures smart bulletin board

7 Insta-Pok3r: Definition and Construction

Finally we are ready to present Insta-Pok3r – this is formally captured by FVES (Fig. 9), which interacts with
m players P1, . . . , Pm, n servers S1, . . . , Sn, ñ keypers K1, . . . ,Kñ, a public verifier V and the ideal adversary.
It has four interfaces/phases:

1. Setup. This is run once to setup keys, and public parameters – only the keypers and servers are
involved (not players, who arrive only in the online phase). One setup serves multiple games. Of course,
in practice, we may need to redo this for rotation, etc., but for simplicity, we assume there is a single
setup. We do not instantiate this.

2. Sample (offline). In the Sample (offline) phase only servers are involved in generating a verifiably
encrypted random permutation. Each Sample (offline) phase is consumed by a single Retrieve (online)
phase.

3. Retrieve (online). In this phase players retrieve their cards with the help of keypers.
4. Public Verification. At any point, once the Sample (offline) phase is completed, anyone, including a

public verifier can verify whether the deck is correct.

Smart bulletin board. In our setting, different groups of parties communicate over a smart-contract-
enabled blockchain. We describe a simple ideal functionality FSBB in Fig. 8 to formally capture that. Note
that, this is specific to our requirement, and can be easily adapted to other requirements.

Parameters. It is parameterized with an integer τ ∈ N, where τ denotes the range of the permutation,
and a status flag initialized with InActive.

Ideal Functionality FVES

1. Setup. Upon SetUp from all servers and all players: if the status is InActive, forward it to the
adversary; else skip. When the adversary approves then set the status to Active and send Active
to everyone.

2. Sample (offline). Upon (gid,Sample) from all servers skip unless the status is Active, else
send it to the adversary to get back a response. If the adversary replies with ⊥, then mark gid
Sampling-Failed and send (gid,⊥) to the honest parties. Else if adversary’s response is (gid, s′):
(a) If |CS | < n then sample a random permutation s = (s1, . . . , sτ ) over [τ ] (that is, si ∈ [τ ]).
(b) Else when |CS | = n, then if s′ is not a permutation, then mark gid Sampling-Failed and send

(gid,⊥) to the honest parties and exit. Else set s := s′.
Mark gid Sampled and send (gid,Sampled) to all servers S1, . . . , Sn. Store (gid, s).

3. Retrieve (online): Upon (gid,Card, j) from Pi: skip if gid is not marked Sampled, else send
that to the adversary and when the adversary returns the same message then forward the message
to the keypers. When at least (t̃+1) keypers send approvals, retrieve (gid, s) and send (gid, si,j) to
player Pi.

4. Public Verification. Upon (gid,Verify) from any party including V : if gid is marked Sampled,
then reply Success; else if marked Sampling-Failed reply Failure; in all other cases skip.

Figure 9: Ideal Functionality FVES
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Parameters. It is parameterized with the permutation range τ and a field element ω ∈ Zp of order τ .
(Parameters are common for all (sub-)functionalities (and (sub-)protocols) recursively called; we omit
restating them further).

Protocol ΠVES

1. Setup. On input SetUp to a server or a player, if status is Inactive:
• Each party forwards this to FSetup. A keyper Ki gets back a private mski. Everyone gets back
a public parameter pp of SVME, then it sends (SetUp, pp) to FSBB and FKeyExt. When FSBB

seeks approval message for pp, send approval. Change status to Active.
2. Sample (offline). On input (gid,Sample) to a server, skip unless the status is Active and gid is

unmarked:
• Send (gid,PermGen) to FR-Perm-Gen to obtain back [v].
• Set id := (id1, . . . , idτ) where each idi := (gid, i)
• Sample [ρEnc] uniformly at random.
• Send (gid,Encrypt, (pp, [v], [ρEnc], id)) to FSV.Enc to get back (c, π).
• Verify d := Ver(pp, c, id, π).

– If d = 1: Mark gid Sampling-Failed send (gid,Server, (gid,⊥)) to FSBB.
– If d = 0: Mark gid Sampled and send (gid, id, c, π) to FSBB.

• Whenever FSBB seeks for a correct approval, send approval.
3. Retrieve (online). On input (gid,Card, j) a player Pi, skip unless gid is marked Sampled, else:

(a) Send (gid,KeyExt, j) to FKeyExt. On receiving the message from FKeyExt, each keyper Kk

sends mskk.
(b) Player Pi obtains skidi,j

then decrypts vi,j := Dec(skidi,j
, (caux, ci,j)).

(c) Pi outputs si,j such that vi,j = ωsi,j (note that, si,j ∈ [τ ]).
4. Public Verify. On input (gid,Verify) to any party it retrieves (gid, id, c, π) from FSBB, and

returns Ver(pp, c, id, π).

Figure 10: Our Main Protocol ΠVES, aka Insta-Pok3r, for sampling verifiable encrypted randomness

Setup. We describe the ideal functionality FSetup:

• Upon SetUp from all keypers:

1. Run (pp,msk, tdsvme)← KeyGen(1λ), where pp contains mpki = gmski
1 for all i ∈ [ñ].

2. Create a random t̃ out of ñ Shamir sharing of msk: (msk1, . . . ,mskñ). Send mski to all each Ki and
pp to everyone.

We describe ΠVES in Fig. 10 and formalize the security by the following theorem; a proof sketch is provided in
appendix B.7.

Theorem 7. The protocol ΠVES (Fig. 10) securely realizes FVES (Fig. 9) in (FSetup,FSBB,FKeyExt,FR-Perm-Gen,FSV.Enc)-
hybrid.

8 Empirical Evaluation

Total MPC time Player time
Size n = 4 n = 8 n = 16 n = 20 all n

64 1.54 2.97 7.86 12.08 0.28
128 2.99 5.85 15.31 23.32 0.44
256 6.70 13.39 35.68 56.16 0.63

Figure 11: MPC and player running Time (in seconds) for varying permutation sizes and number of servers
n. To account for collisions, we use B = 400, 800, 2000 samples for 64, 128, 256 cards, respectively.

25



Protocol n = 4 n = 8 n = 16 n = 20

beaver 0.03 0.08 0.16 0.22
shuffle 0.65 1.41 4.36 7.20

perm proof 0.12 0.22 0.82 1.36
encryption 0.67 1.13 2.19 2.79
ctxt proof 0.05 0.1 0.21 0.30

Figure 12: Running Time (secs) for sub-protocols in the MPC phase, for varying number of servers and 64
cards.

We implement our entire system – i.e., the ΠVES protocol and all its sub-protocols – in Rust, building upon
the arkworks libraries for finite fields, elliptic curves, and pairings, and the libp2p libraries for networking.
Specifically, we use the BLS12-381 pairing-based curve [25], and the hashing to elliptic curve method defined
in [34]. Our system is open-sourced at https://github.com/rsinha/pok3r.

For the MPC protocols in the shuffling phase, we use a dishonest majority MPC protocol based on additive
secret sharing. We use the Low Gear [43] protocol for generating Beaver triples. We reiterate that our protocol
can be implemented using a myriad of choices for the MPC protocol, and honest majority protocols can have
even better performance (but require twice as many servers for the same corruption threshold).

While our protocols have several opportunities for parallelism, we avoid implementing them for two reasons:
1) we find it simpler to use the available CPU cores in concurrent instances of the MPC protocol, to shuffle
decks in service of the concurrently running poker games; 2) by using a single processor for the duration of the
protocol, we were able to do an apples-to-apples comparison while evaluating various choices in our protocol’s
design. For applications that need a single instance of a permutation, one can avail the various opportunities
for parallelism to shorten the latency.

Experimental Setup

For evaluating the MPC phase, we use a cluster of 20 AWS c4.xlarge machines, with 4 vCPUs and 8 GB RAM
each. We allocate them in the same AWS region, by instantiating a virtual private cloud (VPC) to place them
in the same LAN subnet. The round-trip time between any two machines was found to be under 10 ms. We
use a Macbook Pro for measuring the running time of the player’s computation.

8.1 MPC Running Time

The end-to-end latency of the MPC phase is reported in Figure 11, where the permutation size is varied
between 64 and 256, while the number of MPC servers ranges from 4 to 20.

We also measure the running time by the various sub-protocols that comprise the MPC phase. These are
illustrated in Figure 12, where we vary the number of MPC servers between 4 and 20, while shuffling a deck
of 64 cards. Observe that we use more samples (denoted B) than the permutation size (denoted τ), as a
balancing act between efficiency and failure probability – in the event of failure, we simply run the protocol
again. 12

Our protocol consumes 3314, 7426, and 20050 Beaver triples for B = 400, 800, and 2000 respectively. As
reported in Figure 12, we find that the computation to generate the triples is a relatively small fraction of the
total running time.

The shuffle protocol includes the time to sample a shared, uniformly random permutation, and it takes
roughly 65% of the total running time. Shuffling is expensive mainly for having to compute several extra
samples to account for collisions – each sample requires O(n) group operations (for the the Dodis-Yampolski
PRF) in addition to the MPC multiplications.

12Here, failure is the case when we do not obtain all τ cards after sampling B cards. Explicitly, we can use the union bound to

upper bound this probability as τ ·
(
τ−1
τ

)B
.
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The protocol for computing the PLONK-style permutation argument is denoted by perm check, and it takes
roughly 8% of the total running time. This step is relatively inexpensive because it only computes 3 polynomial
commitments and 5 opening proofs, albeit distributed and therefore linear in n. That is, by encoding this
check in terms of polynomial identities, we avoid incurring cost linear in the size of the permutation. The
encryption protocol involves O(n) pairing operations – 3 GT group operations for each card – which results
in about 25% of the total running time. Finally, ctxt proof denotes the sub-protocol which computes the
LEC proof, and it occupies under 5% of the running time.

Not surprisingly, for all of the sub-protocols above, the running time grows linearly with the number of MPC
servers, as we generally rely on homomorphism to aggregate group elements from all servers.

8.2 Player Running Time

The player’s computation refers to decrypting the ciphertext corresponding to one card and verifying the proofs
for the permutation argument and ciphertext validity argument. For a deck of 64 cards, we find the running
time to be approximately 0.3 seconds, which is independent of the number of MPC servers, as expected and
desired.

8.3 On-chain Space Requirement

For each hand of poker, we place the encrypted cards and the associated proofs on the chain. The breakdown
is as follows:

1. IBE ciphertexts: 53 GT elements and 1 G2 element, totalling 20448 bytes
2. permutation argument: 8 G1 elements and 5 F elements, totalling 544 B
3. ciphertext validity (SP.LEC) argument: 2 GT elements, 1 G2 element, 1 G1 element, and 3 F

elements, totalling 1008 B

The entire ciphertext is 21.5 KB in size and is independent of the number of MPC servers. In practice, to
save on gas costs, we posit that the ciphertext we placed on cheaper mediums, such as on layer 2 side-chains
or data availability layers, e.g. [1].

8.4 Discussion

We demonstrated some attractive aspects of our construction. Specifically, we showed that the ciphertext size
and player’s computation are independent of the number of MPC servers, as one would want from a poker
service.

However, we find that the concrete running times are on the larger side, and studying further performance
improvements is a valid exercise for future work. Specifically, we find that the dominant cost in all the sub-
protocols is the need to do O(n) group operations to aggregate “contributions” from all MPC servers, as each
of them only operates over a share of any secret value in the protocol. This is a fundamental characteristic of
our MPC protocols.

9 Conclusion and Future Work

This paper addresses the need for verifiable encrypted shuffle in Web3 gaming. It introduces a framework for
generating publicly verifiable pseudorandom permutations. Our approach combines multiparty computation
and distributed checks while optimizing for on-chain efficiency. The MPC-as-a-Web3-service concept intro-
duced in the paper can be of interest to a few other MPC tasks. In the future, it can interesting to explore
privacy-preserving computation tasks such as secure learning/inference.
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A Additional Preliminaries

A.1 Universal Composability

We provide a brief description of Canetti’s universal composability framework [17] – this is taken almost
verbatim from [41].

In the UC framework, a PPT algorithm called the environment (which is adversarial) is trying to distinguish
between a real and an ideal world. The adversary in the protocol can corrupt parties in the real world,
whereas an ideal adversary, controls the corrupt parties in the ideal world. The ideal world comprises an
ideal functionality (a.k.a. trusted third party) that is directly connected to all the parties plus the ideal
adversary. The honest ideal world parties are called dummy parties because they are just interfaces between
the environment and the ideal functionality. The real world does not have the trusted party, and the protocol is
designed so that parties interacts to achieve the same effect as the ideal world. For proving a protocol securely
realizes an ideal functionality, for every real world adversary we need to design a simulator in the ideal world,
which acts as an ideal adversary and internally simulates the real world to a real world adversary such that
no environment providing inputs to and observing the outputs from the computing entities can distinguish
between the real world and the ideal world, given the adversary’s view of both worlds. The simulator typically
simulates the real world to an instance of the real-world adversary by providing messages on behalf of the
honest parties while accessing the ideal functionality and finally outputs whatever the adversary outputs. We
also use hybrid protocols, where part of the protocols are computed by a less powerful ideal functionality. In
that case, the simulator also needs to simulate those ideal (sub-)functionalities. The simulator can schedule
messaging and outputs in the ideal world to prevent trivial distinctions by timing. All entities are formally
modeled as instances of an interactive Turing machine, or ITI. For a detailed formalization, we refer to [17, 18].

B Proofs

B.1 Proofs for ΠR-Perm-Gen

In this section we provide proof sketches for relevant theorems about ΠR-Perm-Gen.

Theorem 8. The protocol ΠRANω securely realizes FRANω in the FEXP−REVEAL-hybrid model.

Proof Sketch. We describe a simulator which simulates the honest party’s response plus the ideal functionality
FEXP−REVEAL’s response to the adversary. First, we observe that , when all parties are corrupt then the
simulation is trivial, as it has full control over x. So we only focus on the case when |CS | < n, and the
simulator does not know x. The simulator, in that case, works as follows:

• Receive query [x] to FEXP−REVEAL for all corrupt parties from the adversary. Denote party i’s (i ∈ CS)
share [x] as xi. For each i ∈ CS , choose a uniform random ci ←$ Zp. Then compute xτ from the

equation: ci =
(

τ
√
xτ

)−1 · xi and check if xτ = 0 mod p, if not then reply back to the adversary as a
response. Otherwise ask the adevrsary to restart.

• Finally send {ci}i∈CS
to FRANω .

Essentially, the simulator here is leveraging the power of choosing its own share for the uniform random power
of ω. And we note that, since xτ is correctly computed using the actual equation, this holds for all i ∈ [n].

Theorem 9. The protocol ΠDY-DPRF securely realizes FDY-DPRF in FINV-hybrid.

Proof (sketch). Intuitively the protocol is secure due to secret sharing. One can construct a simulator which
gets y, and then creates a random additive sharing [y], which it replies to emulate FINV.

Theorem 10. The protocol ΠEXP-REVEAL securely realizes FEXP−REVEAL in FMULT-hybrid.
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Proof (sketch). We describe a simulator which simulates the honest party’s response plus the ideal functionality
FMULT’s response to the adversary. First, we observe that, when all parties are corrupt then the simulation is
trivial, as it has full control over a. So we only focus on the case when |CS | < n, and the simulator does not
know a. The simulator, in that case, works as follows:

• When the simulator receives the first call to FMULT from adversary, it gets a query (gid,Mult, [a], [a]) for
the corrupt servers. At this point the simulator sends (gid,Exp-Reveal, [a]) to FEXP−REVEAL for each
i ∈ CS to get back xe = aτ in the clear.

• Then the simulator computes x′
e−1 :=

√
xe, x

′
e−2 :=

√
x′
e−1, . . . , x

′
1 :=

√
x′
2 by taking repeated square

roots over Zp, and choosing any of the two roots at each step.

• Finally, constructs a random sharing of x′
1 for all corrupt parties and send back those in response to the

query (gid,Mult, [a], [a]) made in Step B.1.

• Then, once it receives the next query (gid,Mult, [x′
1], [x

′
1]) reply with random shares of x′

2 and continue
like this until it reaches the final step.

To see the correctness of the simulation, observe that, each step the adversary receives only random shares, so
even if it happens that the repeated square root does not lead to the actual value a (for example, a2 ̸= x′

1), it
would not be detected by the adversary due to the additive sharing (and since |CS | < n). Eventually, the only
value adversary sees in the clear is xe = aτ , which is correctly computed.

Theorem 11. The protocol ΠINV securely realizes FINV in FMULT-hybrid.

Proof (sketch). A simulator emulates FMULT with uniform random values. This implicitly define s and r.

Finally it obtains the g[s
−1] from the functionality FINV, which it sends to the adversary. Since s.r information

theoretically hides both s and r when at most n−1 servers are corrupt, this does not leak individual values.

B.2 SVME Security (Theorem 2)

We restate the theorem first.

Theorem 2. Our construction is an SVME for Rmain according to Def. 1 as long as the underlying (i) MIBE
scheme satisfies Def. 2; (ii) the polynomial commitment scheme satisfies Def. 3 and (iii) the proof systems
SP.PERM and SP.LEC both satisfy Def. 4 for their resepective relations.

Proof. We show that our construction is an SVME for Rmain by arguing the following four properties:

1. Correctness: Since Enc(pp,m, id)→ (c, π), we have c← MIBE.Enc(mpk, id, m̂) and πperm ← SP.PERM.Prove(

(M,V ), (m(X), ρm, ρv)), πlec ← SP.LEC.Prove((M, ẽ, e, îd,mpk), (ρ, ρm,m)); where M,V are honestly
computed polynomial commitments. Since m ∈ R, we can invoke the completeness properties of both
SP.PERM and SP.LEC to claim that dlec = 1 and dperm = 1, and hence Ver(c, π) = 1. Finally using the
correctness of MIBE we get correctness with a negligible loss.

2. Soundness: If Ver(c, π) = 1 then we have that both dlec = 1 and dperm = 1. Using the soundness
of SP.PERM and SP.LEC, we have that with overwhelming probability, M = PC.Com(m(X); ρm), V =
PC.Com(v(X); ρv) for polynomials v(X) and m(X) such that v = P2V(v(X)) and m = P2V(m(X)) are
permutations of each other and c encrypts m̂ under îd. Now, due to polynomial binding property of
the underlying polynomial commitment scheme, v = (1 . . . , τ) with overwhelming probability. Hence
m ∈ Rmain with overwhelming probability over λ.

3. Succinctness: This follows directly from the succinctness of the proof systems SP.LEC and SP.PERM
plus succinctness of the polynomial commitment scheme PC.

4. Zero-knowledge: Define a simulator SSVME(pp, {mi}i∈C , tdsvme) → (c′, π′) based on the simulators
SSP.PERM and SSP.LEC for the proof systems SP.PERM and SP.LEC as follows:

• Parse tdsvme as (tdlec, tdperm).
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• Sample a random vector m̃ ∈ Rmain such that m̃i = mi for all i ∈ C.

• m̃(X) := V2P(m̃).

• m̂ := (m̃, 0)

• (ẽ′, e′)← MIBE.Enc(mpk, îd, m̂).

• Sample a uniform random ρm̃ ∈ Zp.

• m̃′(X) := m̃(x) + ρm̃zΩ(X)

• M̃ := PC.Com(pppc, m̃
′(X)) and

V := PC.Com(pppc, v(X)).

• π′
perm ← SSP.PERM(tdperm, M̃ , V ).

• π′
lec ← SSP.LEC(tdlec, M̃ , ẽ′, e′, îd,mpk).

• Return ((ẽ′me′), (M̃, V, π′
perm, π

′
lec))

To prove the zero knowledge property, we use a hybrid argument. Consider the initial game (or 0th

hybrid) where the adversary sees honestly generated (c0, π0)← Enc(pp,m, id). As given in the definition,
m ∈ R and the corrupted set C is output by the adversary earlier.

• Hybrid 1: Replace the generation of πperm with the output of the zero knowledge simulator SSP.PERM’s
output with (M,V ) as input.
This hybrid only differs from hybrid 0 in the πperm part and is hence indistinguishable due to the
zero knowledge property of SP.PERM.

• Hybrid 2: Replace the generation of πlec with the output of Sπlec
.

This only differs from the previous hybrid in the πlec part and is hence also indistinguishable due
to the zero knowledge property of SP.LEC.

• Hybrid 3: Sample a m̃ ∈ Rmain, and set m̂ := (m̃, 0) as in the simulator and use that to generate
the ciphertext (ẽ′, e′).
This hybrid is indistinguishable from the previous one due to the CPA security of the MIBE scheme.

• Hybrid 4: Finally replace the commitment M with M̃ as done in the simulator.
This hybrid is statistically indistinguishable from the previous hybrid as since now the cipher-
text (ẽ, e) is independent of ρm, the distribution of m(X) + ρmzΩ(X) and m̃(X) + ρm̃zΩ(X) are
statistically indistinguishable.

Notice that hybrid-4 is the same as the ideal world – this concludes the proof.

B.3 Security of SP.LEC (Theorem 3)

Theorem 3. The construction described in Figure 3 is a secure succinct proof system according to Definition 4
in the random oracle model.

Proof. We show correctness, succinctness, soundness and zero-knowledge below:

• Correctness follows straightforwardly from the correctness of the polynomial commitment.

• Succinctness too is easy to see, observing that the proof πdleq is only of constant size, as it works on a
constant number of constraints and witnesses.

• Soundness can be argued by the soundness of DLEQ proof, binding of the polynomial commitment and
an information theoretic argument. To argue this, first note that, the binding of polynomial commit-
ment implies that M is a commitment of a polynomial, say p(X) for which p(δ) = zm – this holds
with overwhelming probability over λ if dkzg = 1. Furthermore, if ddleq = 1, that would imply (with
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overwhelming probability) the discrete logs DLogg1(ẽ) and DLogE(T ) both are equal to ρ – this follows
from the soundness of DLEQ proof. Now, note that each ei = e(H′(idi),mpk)ρ · gmi

2 . The computation
of T along with the fact that ρ = DLogE(T ) implies that

g
m(δ)−zm
2 · gρmzΩ(δ)

2 = 1

where m(X) = V2P(m). Alternatively we can write the exponents:

m(δ)− p(δ) + ρmzΩ(δ) = 0 mod p.

Now, since δ is chosen as a output of random oracle, by Schwartz-Zippel with probability O(1/p) we
conclude p(X) = m(X) + ρmzΩ(X) = m′(X) over Zp.

• Zero knowledge follows from the following simulation strategy:

– The simulator gets input the instance (M, ẽ, e, îd,mpk) and the trapdoor tdpc.

– Sample uniform random zm ←$ Zp.

– Compute δ := H(M, ẽ, e, îd,mpk).

– Run W := PC.TD.Open(pppc, tdpc,M, δ, zm)

– Compute E :=
∏

i e(H
′(idi)

ℓi(δ),mpk) and T := (
∏

i e
ℓi(δ)
i · ezΩ(δ)

τ+1 )/(gzm2 )

– Run the simulator of DLEQ with instance (g1, E, ẽ, T ) to get the simulated proof πdleq.

– Output (W, zm, πdleq).

We can use a number of hybrids to show that the output distribution of the simulator is indistinguishable
from the actual transcript output from a legitimate prover. The first hybrid would switch the DLEQ
prover to the DLEQ simulator for generating πdleq, rest remains unchanged – indistinguishability follows
from the statistical zero knowledge of DLEQ proof system. In the next hybrid trapdoor opening is used
instead of actual opening for the polynomial commitment – the indistinguishability follows from the
KZG commitment properties. Finally, it is made independent of the witness by sampling zm uniformly
at random and deriving T without using ρ – this is just a syntactical change.

B.4 Security of ΠSV.Enc (Theorem 4)

Theorem 4. The protocol ΠSV.Enc, described in Figure 5 securely realizes the ideal functionality FSV.Enc for
arbitrary many semi-honest corruption in FLEC.Prove-hybrid.

Proof. To argue Theorem 4 we construct a simulator as follows:

1. Input: Public inputs (pp, id) and private input of the corrupt parties ([m]C , [ρ]C , [ρm]C), where C ⊆ [n]
denotes the set of corrupt parties.

2. Send ([m]C , [ρ]C , [ρm]C) to the ideal functionality FSV.Enc to obtain (c, π) where c = (ẽ, e) and π =
(M,V, πperm, πlec)

3. Choose ([M ]H, [ẽ]H, [e]H) such that together with ([M ]C , [ẽ]C , [e]C) they reconstruct to (M, ẽ, e). In Step-2
use these values on behalf of each honest party.

4. For each corrupt party, compute:

(a) [m′(X)] := [m(X)] + [ρm]zΩ(X) where [m(X)] := V2P([m]).

(b) [M ] := PC.Com(pppc, [m
′(x)]);

(c) ([ẽ], [e]) := MIBE.Enc(mpk, îd, [(m, ρm)]; [ρ]);
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5. Simulate the ideal functionalities FPerm.Prove and FLEC.Prove using πperm and πlec obtained from the ideal
functionality FSV.Enc.

Now we argue the simulation is correct with overwhelming probability. This can be argued by a number of
hybrids, starting from the real world, where the protocol ΠEnc is executed in presence of an adversary, and
then gradually moving towards an ideal world, in presence of the above simulator. The hybrids are as follows:

Hybrid-1: This hybrid has everything same as the real world except the values ([ẽ], [e] from an honest party
is replaced by uniform random values subject to the reconstructed value (ẽ, e). We note that this is
indistinguishable from the real world due to BDDH over the bilinear group. Given (mpk = gmsk

1 , ẽ =
gρ1 , g

α
1 ) where msk, ρ, α are all uniform random over Zp, by BDDH we can argue that each e(H′(idi) =

e(g1, g1)
rimskα,mpk)ρ) is indistinguishable from hri

2 where h2 ←$ G2 and ri ←$ Zp as long as each
H(idi) is programmed to griα1 while assuming H′ is a programmable random oracle (here we denote
idpp = idτ+1).

Hybrid-2: In this hybrid, the only change we make is that instead of giving h
rτ+1

2 ·gρm

2 , we just give h
rτ+1

2 ←$ G2

– this is perfectly indistinguishable from previous

Hybrid-3: This is same as the previous one except that each honest [M ] is now chosen uniformly at random
subject to the reconstruction value equal toM . This is again perfectly indistinguishable from the previous
hybrid by construction. This is now same as the ideal world.

B.5 Security of ΠSP.LEC.Prove

Theorem 5. The protocol ΠSP.LEC.Prove, described in Figure 4 securely realizes the ideal functionality FLEC.Prove

for arbitrary many semi-honest corruption in (FDLEQ.Prove,FZ-Share)-hybrid.
13

Proof. To argue Theorem 5 we construct a simulator, that has access to tdpc as follows:

1. Input: public inputs (pplec,M, ẽ, e, îd,mpk) and private input ([ρ]C , [ρm]C , [m]C).

2. Send ([ρ]C , [ρm]C , [m]C) to the ideal functionality FLEC.Prove to obtain output SP.LEC.Prove = (W, zm, πdleq).

3. For each corrupt party, compute:

(a) δ := H(M, ẽ, e, îd,mpk);

(b) [m(X)] := V2P([m]).

(c) [m′(X)] := [m(X)] + [ρm]zΩ(X)

(d) [zm] := [m′(δ)]

(e) [W ] := PC.Open(pppc, [m
′(X)], δ)

(f) [W ] := [W ] · [1], where each [1] is sampled randomly, and used in simulating FZ-Share when queried
by the adversary.

4. Choose uniform random ([zm], [W ]) on behalf of honest parties, such that together with the corrupt
party’s shares they reconstruct to zm and W respectively.

5. Finally in response to messsage to functionality FDLEQ.Prove from the adversary, returns πdleq.

We show that the above simulation is correct via a number of hybrid, stating from real world to ideal world
as follows:

Hybrid-1: In this hybrid [zm] from a honest party is replaced by a random value without using [m′(X)]. This
is perfectly indistinguishable as the operation on a uniform random point δ by a random polynomial
m′(X) (since each [ρm] is random).

13See Section 5.5 for descriptions of FDLEQ.Prove.
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Hybrid-2: In this hybrid [W ] for each honest party is picked randomly subject to the reconstruction to W .
Now, here crucially the secret-sharing of zero becomes crucial. It ensures that each simulated [W ] has
the same distribution as real ones, unconditionally. Without this, each [W ] can be individually verified
using PC.Ver(pppc, [M ], [W ], δ, [zm]). However, masking with a random value, which does not perturb the
final evaluation breaks this correlation. However, such secret-share of zero does not work when exactly
n − 1 parties are corrupt, because adversary can calculate the exact share of zero of the honest party
subtracting from 0. Nevertheless, in that case [W ]H becomes deterministic anyway, so simulator does
not need to choose random values in behalf of honest parties. Observe that this hybrid is the same as
ideal world – this conclude the proof.

B.6 Security of ΠR-Perm-Gen (Theorem 6)

Theorem 6. The protocol ΠR-Perm-Gen securely realizes FR-Perm-Gen in (FRANω ,FDY-DPRF)-hybrid.

We describe a simulator which simulates the honest server’s communication plus all the ideal functionalities’
response to the adversary. A key observation is that for FR-Perm-Gen, there is no private input, but each party
gets a private output, which is additive share of a permutation. Now let us consider two cases:

• Case-1: When |CS | = n. In this case, the simulation is straightforward as it gets to choose the per-
mutation s. It is important to note that, in this case, the adversary too knows the permutation. So
the simulation strategy is to use the same permutation, which is chosen by the adversary. The simula-
tor extracts the permutation from adversary’s interaction with FRANω

, which is now simulated by the
simulator. Note that, in this case the permutation may not be random.

• Case-2: When |CS | < n. The simulator does not get to choose s, however it can leverage the fact the
adversary does not know s either. So the strategy it follows is:

– Invoke FR-Perm-Gen to obtain back [c].

– Choose uniform random permutation s′ of size τ {1, ω, . . . , ωτ−1} and compute their random additive
shares, such that for each corrupt party [s′i] = [ci].

– Now expand that to a set of B values γ1, . . . , γB , each γi ∈ {1, . . . , ωτ−1} such that the sanitization
would result in exactly s′.

– Simulate FRANω using [γ]CS
.

– Simulate FDY-DPRF by using a secret key sk and compute on the γi values.

Intuitively, the above simulation strategy is correct as the marginal distribution of adversary’s view in the
simulated execution, which is consistent with s′ is statistically indistinguishable from the marginal distribution
of adversary’s view in the real execution conditioned consistent with another random permutation s. Precisely,
since the output is secret shared, as long as a random permutation is chosen, which may be different from the
one chosen by the ideal functionality, the adversary’s view is the same.

B.7 Security of ΠVES (Theorem 7)

Theorem 7. The protocol ΠVES (Fig. 10) securely realizes FVES (Fig. 9) in (FSetup,FSBB,FKeyExt,FR-Perm-Gen,FSV.Enc)-
hybrid.

Proof (Sketch). The theorem essentially follows from the universal composability, as the only job of the sim-
ulator is to simulate the hybrid functionalities correctly. Intuitively, since the permutation sampled is always
secret shared, the only time a card is known to the adverasry in the clear is by corrupting the corresponding
player. Hence, the only challenge is to ensure that consistency is maintained between the cards obtained by
the corrupt players, and the prior interactions.

In particular, when |CS | < n the simulator works as follows:
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• Throughout the protocol simulate FSBB correctly, using the appropriate verification algorithm. The
correctness is guaranteed by the soundness of the SVME.

• In the Setup phase simulate FSetup by running KeyGen of SVME to obtain pp, all mski and tdsvme.

• In the Sample (offline) phase it makes call (gid,Sample) and subsequently (gid,Card, j) to the func-
tionality FVES to obtain back the corrupt player’s deck {si,j}i∈CP

. It obtains [v]CS
from the adversary.

For each corrupt player i ∈ CP it samples [vi,j ] subject to reconstruction being equal to vi,j = ωsi,j . This
is the consistency requirement.

• In the Retrieve (online) phase when the adversary requests a card, say si,j , on behalf of a corrupt player,
simply forward that.

It is not hard to argue that the simulation is correct. Note that, since in the real world (in (FSetup,FSBB,FR-Perm-Gen,FSV.Enc)-
hybrid), each party’s only interaction happens via these ideal functionality, usage of the above simulator instead
makes only syntactic changes. Security follows directly from composability. We omit the details.

C A simplified solution with player’s pre-registration

We note that, since we attempt to capture a realistic setting, where players are unknown until they are
available to play, we needed to deal with the IBE setting and also a keyper’s committee. However, one could
imagine a setting where players pre-register for the game ahead of time (maybe an hour before) for a game to
take place at a later time – this gives the framework to invoke a public-key infrastructure. In this setting, we
can easily replace the IBE by standard PKE – ElGamal encryption would just do the job, while everything
else stays the same during the offline phase, except now the ciphertext is encrypted with player’s public key
directly instead of identities. The major difference comes into the online retrieval phase – now each player can
immediately decrypt their deck with the secret keys – in other words, there is no key-derivation step. This
makes the online phase totally off-chain and truly instantaneous. Of course, this severely relies on all players
being able to register ahead of time, which is a major restriction and therefore we do not focus on this. It
is an interesting open question, if a truly instantaneous solution (where the entire key-derivation procedure
takes place off-chain) is possible in our IBE setting, or more technically, without assuming PKI.
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