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Abstract

We analyse a two password-authenticated key exchange protocols, a
variant of CPace and a protocol related to the well-known SRP protocol.
Our security results are tight. The first result gives us some information
about trade-offs for design choices in CPace. The second result provides
information about the security of SRP.

Our analysis is done in a new game-based security definition for password-
authenticated key exchange. Our definition accomodates arbitrary pass-
word sampling methodologies. Our definition also supports modular se-
curity analysis, which we illustrate by giving two example applications
of password-authenticated key exchange: password-authenticated secure
channels and password-authenticated device authorisation, capturing pop-
ular applications of passwords.

1 Introduction
A password is a human-memorable string of symbols. Despite their well-documented
weaknesses, passwords will likely be with us a while yet. Hence, we want to un-
derstand the security properties of cryptography based on passwords. In this
work, we consider how to define security for key exchange authenticated using
passwords, so-called password-authenticated key exchange (PAKE), analyse an
existing and a novel protocol, and show how our definition allows compositional
reasoning for password-based applications.

A password-authenticated key exchange protocol is a two-party protocol
where each party takes a password and (public) associated data as input, then
the parties take turns exchanging messages and finally either reject or output a
session key. The associated data encodes the context for the key exchange. Our
first cryptographic goal concerns authentication:

• If one party accepts, the other party knows the password and agrees on
the associated data.
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It follows that any reasonable protocol acts as a password testing oracle, in the
sense that an adversary can connect to the system pretending to be a user in
order to test if a particular candidate password is correct or not. Such attacks
are unavoidable. This gives us our second cryptographic goal, saying that this
should be the only mechanism available to the adversary:

• An adversary’s ability to guess passwords is bounded by the number of
sessions.

Finally, note that the password’s role is authentication. Confidentiality should
not depend on the password. This gives us our third cryptographic goal:

• When two honest parties exchange a session key without adversarial in-
terference, then, even if the adversary knows the password, the session key
remains private.

Passwords are typically used to authenticate users of a system to the system.
Theoretically, passwords are attractive because they are human-memorable, so
passwords connect the use of a system directly to something that is only ever
recorded on long-term storage inside the system and inside the heads of the users.
A better explanation for the use of passwords as a system security mechanism,
now and in the foreseeable future, is the low startup cost and the ease of use,
primarily for the system owner, but in some sense also for the user of the system.
Any analysis of password-based cryptography must therefore also consider the
system owner point of view, not just the user point of view.

A user often controls their password sampling methodology, so from a user’s
point of view, the probability that an adversary will be able to guess their pass-
word is an interesting number. A system owner often cannot dictate their users’
password sampling methodologies or their general behaviour. The probability
that some adversary is able to correctly guess some user’s password may very
well be close to 1, which is not interesting. From a system owner’s point of view,
a more interesting number may be how many passwords will be guessed.

• We must work in a multi-password, multi-session setting.

1.1 Related Work
We give a somewhat limited overview of related work. Boyd et al. [7] gives a
good overview of password-authenticated key exchange, though there has since
been developments.

Bellovin and Merritt [6] first proposed password-authenticated key exchange.
As discussed, an online password guessing attack will always be possible. The
main goal is therefore to authenticate key exchange using a password without
enabling a much more powerful offline password guessing attack. One simple
instantiation of their proposal uses a password to authenticate a Diffie-Hellman
key exchange by encrypting the group elements using the password as a key.
There are a number of technical issues with this idea, but it has since been
analysed, by among others Liu et al. [22].
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A different approach based on Diffie-Hellman is that of SPEKE [18], where
the password defines the Diffie-Hellman generator. A recent variant is CPace [4,
16] with analysis by Abdalla et al. [3] among others.

Other Security Properties In the introduction, we outlined the basic prop-
erties. Here we outline further desirable properties, which we do not handle in
this paper.

EKE and SPEKE are both symmetric, in the sense that the two parties
have essentially the same representation of the password. Commonly, password-
authenticated key exchange is used between a server and a client acting on behalf
of a user. The client gets a human-expressible form of the password from the
user, but the server could in principle have some other representation, which
gives us asymmetric password-authenticated key exchange. In particular, this
representation need not allow impersonation of the client towards that particular
server. This is obviously a useful security property, though limited.

One early approach to asymmetric password-based key exchange was SRP [29].
Unlike many other schemes, it has seen wide adoption [8], but it does not seem
to have attracted much cryptographic analysis, beyond the initial analysis by
the protocol designer and some attacks on early iterations. Sherman et al. [25]
used formal methods to do a simplified analysis on an idealised version of SRP.

A server compromise allows offline attacks. If the adversary has a particular
target in mind, the offline attack could be made more effective by precom-
putation. The interesting use case is when the adversary expects the server
compromise to be quickly detected, and consequently has limited time for ex-
ploitation. Schemes like OPAQUE [19] prevent this precomputation. This is a
useful security property, though quite limited.

Some protocols, such as SRP, are explicitly authenticated, in the sense that
an instance will not accept unless there is a partner or the password has been
misused. Some protocols, such as CPace, can be thought of as implicitly authen-
ticated, in the sense that a session key is private, unless there is no partner and
the password has been misused. We can build applications on top of implicitly
authenticated key exchange, but it is easier to work with explicit authentication.
Fortunately, the standard folklore upgrade technique of sending key confirma-
tion messages works well.

Modelling Strategies Correct and useful modelling of security for password-
authenticated key exchange has been a significant challenge. This is not unex-
pected, since even ordinary key exchange has been difficult to model. Generally,
a good definition of security (a) captures the essential security properties in such
a way that (b) we are able to prove some scheme secure, and (c) we can do mod-
ular security analysis of larger systems. It is also good if the definition is easy
to understand and work with.

The natural approach is to draw inspiration from the modelling of ordinary
key exchange using symmetric keys for authentication. Instead of sampling keys
from the uniform distribution on some key set, we sample passwords from some
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distribution on a set of possible passwords. This is the approach of Bellare et
al. [5], known as the BPR framework. There are many other variants of the
BPR framework. The BPR framework certainly succeeds at (b), but Shoup [27]
(an extended version of [26]) suggests that it fails at (c), in particular for secure-
channel protocols built on top of password-authenticated key exchange. There
are variants [28] of BPR that allow for composability.

One problem is that cryptographic protocol designers will typically not know
the password distribution used in practice, and there may not be a unique pass-
word distribution. We claim that this also breaks (a) for the BPR framework.
To address this, we could allow the adversary to specify the distribution. We
would also like to model passwords that are correlated, as well as passwords
that come from both high- and low-entropy distributions. When the adversary
specifies the distribution, these issues lead to a number of technical difficulties
that we found hard to resolve.

A more fundamental difficulty is what happens when the adversary guesses
a password. In the BPR framework, the adversary simply wins. This is even
carried over to some compositional results [28]. As discussed above, this may
be acceptable modelling for a single user, but it is unsatisfactory from a system
owner point of view, again breaking (a).

Another approach is to ignore password sampling and instead define a notion
based on simulatability, using Canetti’s Universal Composability (UC) frame-
work [9] or similar. In this approach, the password-authenticated key exchange
protocol is compared to a so-called ideal functionality which defines security.
Any definition in the UC framework should excel at (c).

Determining the correct ideal functionality seems to be tricky. Canetti et
al. [10] proposed one functionality and Gentry et al. [14] proposed a functional-
ity for asymmetric protocols. Abdalla et al. [3] found a common flaw in several
earlier proposed functionalities, and therefore proposed a corrected functionality
that captures the single-password, single-session implicitly authenticated case,
using the standard UC theorems to get to the multi-password, multi-session
case. Shoup [27] also found it necessary to modify earlier proposed functionali-
ties in order to better capture security properties and fix flaws, and proposed a
functionality that captures the multi-password, multi-session explicitly authen-
ticated case. The system owner’s point of view can be accommodated by the
latter approach, but is harder to deal with in the former approach.

It is interesting to look at modelling artefacts. A draft specification [4] for
one protocol recommends exchanging randomness to build session identifier,
grounded in a UC security proof. Shoup [27] handles session identifiers differ-
ently and does not end up with the same recommendation, though of course for
a different protocol and a different UC framework.

It is interesting that the recent analysis of TLS-OPAQUE [17] in the UC
framework does not use UC functionalities for password-authenticated key ex-
change, because they use passwords only for authentication, not session key
establishment.
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1.2 Our Contribution
We claim two main contributions:

• We analyse a variant of CPace [4] and a protocol related to SRP [29],
providing more information about both CPace and SRP.

• We do our analysis in a new security framework.

We also think two other minor points are worth pointing out:

• Our framework supports the usual modular security analysis.

• Our framework allows the usual folklore implicit-to-explicit design strat-
egy, but unlike the corresponding case for ordinary key exchange [13], we
do not get a tightness loss.

We discuss each claim separately.

Analysis We give (Section 3.4) a new analysis of the CPace [4, 16]. The
proof techniques are based on the techniques used by Abdalla et al. [3], but
because we work in a multi-password, multi-session setting, it is natural to em-
phasise tightness, which we achieve by careful use of standard rerandomisation
techniques.

We consider reduction tightness and our analysis suggests that the password
should be included when deriving the session key. If it is not, the reduction will
not be tight and larger groups will be required for a fixed security level. Abdalla
et al. [3] and the draft CPace specification [4] do not include the password.
Our analysis therefore gives information about the trade-offs involved in
this particular design choice. Also, our analysis suggests that the session
identifier randomness suggested by the specification can be dispensed with in
many settings.

We also analyse (Section 3.5) what we believe is a novel construction (Ex-
ample 16). A few simple changes (Remark 17) turn this protocol into the SRP
protocol [29] in such a way that SRP should be no more secure than our proto-
col. It seems likely that SRP is as secure as our protocol. SRP has been
widely deployed [8], so this is an interesting result on its own.

The protocol can be made asymmetric (Remark 18). It is interesting to note
that the post-reveal, our protocol degenerates to a variant of a protocol from
Cohn-Gordon et al. [12] with one-sided authentication. This is consistent with
the impossibility result for asymmetric protocols of Liu et al. [22].

One interesting property of our protocol is that it would be very easy to
derive a mixed-authentication protocol from it (Remark 19), where the server
would authenticate with the password as well as a long-term cryptographic key.
Server signatures achieve the same effect in some settings (Remark 23).
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Figure 1: Security definition game structures: password guessing left, password-
authenticated key exchange right.

Framework Our framework is game-based and very similar to frameworks for
ordinary key exchange. The two main novelties with respect to earlier game-
based frameworks for password-based key exchange are that we allow for arbi-
trary and varying password sampling methodologies, and that we measure the
adversary’s advantage in a new way.

A password guessing algorithm tries to guess one or more passwords by
making guesses, and it may reveal other passwords to exploit the fact that
passwords are not chosen independently. Password guessing algorithms trivially
become adversaries against password-authenticated key exchange, which Exam-
ple 7 demonstrates in some detail. Morally speaking, we have security if we show
that every adversary essentially comes from a password guessing algorithm.

The natural password guessing game (Section 3.1) is sketched in Figure 1. A
password generator generates passwords, while an opponent tries to guess pass-
words. An experiment facilitates the guessing, and we allow free communication
between the generator and the opponent to model leakage and adversarial in-
fluence. Note that the difficulty of password guessing depends strongly on the
generator, and we make no claim or assumption about difficulty.

The security definition for password-authenticated key exchange (Section 3.2)
ought to be as similar to ordinary key exchange as possible, so we use the struc-
ture of the password guessing game and have an experiment based on ordinary
key exchange that simulates the honest parties in password-based key exchange.
The opponent interacts with the experiment in the usual way. This structure is
also shown in Figure 1.

Recall that an adversary against key exchange wins in one of three ways:
breaking authentication by some instance having no partner, breaking authen-
tication by some instance having too many partners, or breaking confidentiality
of the session keys. For password-based key exchange, the latter two are un-
problematic, but the first is troublesome, since we cannot easily know when a
missing partner is due to a cryptographic break, or trivially because of pass-
word misuse. We therefore define two success measures for an opponent. The
advantage measures breaking confidentiality and breaking authentication via
too many partners. The success rate measures breaking authentication via hav-
ing no partner. We want to bound the advantage, and we want to explain the
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success rate by exhibiting an opponent for the password guessing game that
achieves the same success rate. For the latter argument, it is essential that
this opponent works with the same generator, otherwise the opponent would be
meaningless.

Informally, we say that the generator and the opponent are playing some
unknown password-based game, with some experiment assisting the opponent.
The security claim is that the password-authenticated key exchange experiment
should be no more helpful to the opponent than the password guessing experi-
ment.

Our definition contains the BPR framework [5] and some recent refine-
ments [1, 2] as a special case, by considering a generator that samples passwords
from a fixed distribution. Note that relative to the BPR framework, our defi-
nition is still useful for compositional designs of larger protocols. We therefore
claim that our framework improves on the BPR framework.

The comparison with the UC framework is more complicated. We expect UC
security to imply security in our model. We consider a generator-opponent pair
to be an environment and use a dummy adversary which can then be simulated
(by UC security) to give us an ideal UC adversary. We then turn the opponent
together with the ideal UC adversary into a password guessing opponent with
the same success rate and no advantage. There are a number of minor technical
obstacles, and we do not prove such a result.

The converse result seems difficult to obtain. Syntactical issues regarding
who makes which queries can probably be overcome. But the deeper reason is
that a password guessing opponent only needs to explain the missing partners
by guessing the passwords. There’s no requirement that it duplicates any other
behaviour of the opponent. This means that any ideal adversary will find it
difficult to simulate the behaviour of the honest instances, allowing a suitable
environment to distinguish.

It seems, then, that we propose a security definition that is implied by, but
not equivalent to, UC security notions. Practically, this seems to be of little
importance. Comparing security proofs in our model with UC proofs [3, 27]
reveal very similar proof techniques. And indeed, the proof obligations in the
two settings are very similar.

While the ideas involved in UC security are intuitive and beautiful, the
working cryptologist still needs to handle the many technical issues related to
UC frameworks. Our framework is much simpler than the full UC models, which
is natural since we are trying to solve a much smaller smaller problem. We
therefore believe that our framework makes password-based key exchange more
accessible than UC security. Of course, simplicity is in some sense subjective,
so our belief should perhaps not count for too much. Still, we claim that our
framework improves on UC security with respect to simplicity.

Our definition does not capture asymmetric security. We do explain (Re-
mark 10) how one could model asymmetry. We leave this for a future paper.

Some definitions include the option of running honest instances with incor-
rect passwords, modelling user typing mistakes. It is possible to design protocols
that fail catastrophically in the presence of typing mistakes. We allow the gen-
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erator to choose correlated passwords, so we could model typing mistakes by
relaxing our context-respecting notion (see Section 3.2) in some suitable fashion.
However, we are not convinced this is important.

Applications of Password-authenticated Key Exchange We define (Sec-
tion 4) two password-authenticated applications, channels and device authori-
sation. Our main objective is to demonstrate that our security definition
allows modular analysis of composed protocols, which the BPR frame-
work and some early ideal functionalities would not. The applications them-
selves are important. Our protocols are designed mainly for simplicity, with the
secure channel being essentially equivalent to the secure channel of Canetti and
Krawczyk [11]. We make no claim of novelty for the protocols. One may want
protocols with a few more ornamentations.

Unlike [28], we do not prove a general composition result for our security
definition. While general composition results may be useful, we leave this for
future work.

A mixed-authentication protocol as above combined with the natural secure
channel protocol in Section 4.1 would be a straight-forward way to build some-
thing security-equivalent to TLS-OPAQUE [17]. Alternatively, we could follow
the approach outlined in Remarks 23 and 24 to achieve the same result with
surveillance resistance. Again, we make no claim of novelty.

Implicit-to-Explicit Design Strategy We prove (Section 3.3) the relevant
folklore theorem regarding the standard implicit-to-explicit upgrade strategy.
Compared to other proofs of similar theorems, we claim that our model makes
this proof particularily simple. Note that some protocols would be insecure
without key confirmation tags, which is one reason why we include the protocol
in Section 3.5.

Some UC ideal functionalities define implicit authentication [3], while others
define explicit authentication [27]. When the functionalities are defined in the
same variant of the UC framework and are otherwise compatible, it is possible
to prove a similar theorem [2].

2 Background

2.1 Notation
Uppercase letters denote sets, calligraphic letters algorithms, small-caps proto-
cols and sans-serif letters problems and constants. In protocol messages and
records stored by algorithms, −, ⊥ and ⊤ denote special symbols that are dis-
tinct from all other values. When we do not care about a particular value in a
message, transcript or record, we denote this by a centered dot (·).
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2.2 Groups
Our schemes are based on a group G of order p with generator g. We define
Diffie-Hellman-based problems. The first is for convenience, while the second is
essential. The first is merely a multi-sample, multi-generator variant of Compu-
tational Diffie-Hellman (CDH). It is well known that the ordinary CDH problem
reduces tightly to this variant by random self-reducibility, even when we include
Gap or Strong Diffie-Hellman oracles. The second variant is a more obscure
problem, but is plausibly secure.

Definition 1. Let G be a cyclic group of order p. The Computational Diffie-
Hellman (CDH) problem provides the solver with three oracles that sample as
follows:

• The first oracle samples the ith sample as gi
r← G .

• The second oracle samples the jth sample as xj
r← G .

• The third oracle samples the lth sample as yl
r← G .

Eventually, the solver outputs (i, j, l, z). The tuple (i, j, l, z) is an answer if
(gi, xj , yl, z) is a DDH tuple. A (τ, nu, ns)-solver against CDH uses time at
most τ , makes at most nu to the first oracle and at most ns queries to the
second and third oracle.

The Strong Computational Diffie-Hellman (StCDH) problem gives the ad-
versary an additional oracle that on input of (i, j, y, z) returns 1 if (gi, xj , y, z)
is a DDH tuple, otherwise it returns 0.

We denote the success probability of an adversary B by AdvCDH
G (B) and

AdvStCDH
G (B), respectively.

Remark 1. We shall also use a fixed-generator variant of this problem, and con-
sider that adversaries against this problem makes 0 queries to the first oracle.
It is not trivially equivalent to sampling a single generator, since the fixed gen-
erator could be special and a DDH oracle for a special generator could be hard
to simulate using only a DDH oracle for a single random generator.

Definition 2. Let G be a cyclic group of order p. The simultaneous Diffie-
Hellman tuple finder (SDHF) problem provides the solver with two oracles that
sample as follows:

• The first oracle samples the ith sample as gi
r← G .

• The second oracle samples the jth sample as xj
r← G .

Eventually, the solver outputs (i1, i2, j, y, z1, z2). A tuple (i1, i2, j, y, z1, z2),
y ̸= 1, is an answer if (gi1 , xj , y, z1) and (gi2 , xj , y, z2) are both DDH tuples. A
(τ, nu, ns)-solver against SDHF uses time at most τ , makes at most nu queries
to the first oracle and at most ns queries to the second oracle.

The Strong simultaneous Diffie-Hellman tuple finder (StSDHF) gives the
adversary an additional oracle that on input of (i, j, y, z) returns 1 if (gi, xj , y, z)
is a DDH tuple, otherwise it returns 0.
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We denote the success probability of an adversary B by AdvSDHF
G (B) and

AdvStSDHF
G (B), respectively.

Remark 2. Given a fixed generator, the strong variants of both problems could
sample group elements by sampling exponents and exponentiating, making the
DDH oracles easy to compute.

2.3 Block Ciphers
A block cipher is a pair of functions (π, π−1) : K × S → S such that for any
k ∈ K , π(k, ·) and π−1(k, ·) are inverse functions.

Sometimes, we want a block cipher on some set S0. If we have a block cipher
(π0, π

−1
0 ) on a set S containing S0, but not too much larger, and it is easy to

recognise elements of S0, there is a simple technique [21] to get a block cipher
on S0. A set element s0 ∈ S0 defines a sequence of elements s1, s2, . . . through
the iteration rule si+1 = π0(k, si). We define π(k, s0) to be si, where i is such
that sj ̸∈ S0 for j = 1, 2, . . . , i − 1. We define π−1 in the same way. There are
side-channel issues, but they can be managed.

If we do not have a suitable block cipher on a sufficiently small set S , we
can build one using Luby-Rackoff [23].

Using the above techniques, we can make a (somewhat slow) block cipher
on the set of rational points on an elliptic curve over a finite field. We cannot
use the above techniques to make a block cipher on the set of j-invariants of
elliptic curves isogenous to some particular curve, since this set is very sparse
in the finite field.

2.4 Symmetric Encryption
A symmetric cryptosystem sym consists of a set of keys K , a set of plaintexts P ,
and encryption and decryption algorithms E0 and D0, such that ∀k ∈ K ,∀m ∈
P : Pr[D0(k, E0(k,m)) = m] = 1.

We define multi-user security. The experiment allows the adversary to sam-
ple keys, encrypt and decrypt under those keys, and reveal keys. A challenge
oracle returns an encryption of either the chosen ciphertext or a random mes-
sage of the same length. The adversary may query it multiple times for multiple
keys. The adversary may not both challenge and reveal a key.

The adversary against real-or-random must guess what the challenge oracle
returns, with the usual restrictions on decryption oracle queries. The adversary
breaks ciphertext integrity if a chosen ciphertext query succeeds for anything
not previously returned by an encrypt or challenge query under that key.

A (τ, nu, nc, ne)-adversary against sym makes at most nu sample key queries,
nc challenge queries and ne chosen plaintext and ciphertext queries, and the
runtime of the adversary and the experiment is at most τ . We denote the
advantages of such an adversary B by Advind-cca

sym (B) and Advint-ctxt
sym (B).
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2.5 Random Oracle and Ideal Cipher Models
A random oracle models hash functions such as HMAC-x and SHA-3, while an
ideal cipher oracle models a block cipher such as Threefish.

Our oracles sample function values only when they need to, while keeping
track of previous responses.

A random oracle from S0 to S1 keeps a list of records (s0, s1) that together
define a partial function S0 → S1. On a query s0, either a record (s0, s1) exists
or the oracle samples s1

r← S1 and records (s0, s1). In either case, it returns s1.
An ideal cipher oracle on set S with keys K keeps a list of records (k, s0, s1)

such that the records for any k ∈ K defines a partial permutation on S . The
adversary makes queries (k, si, i) for i ∈ {0, 1}, either a record (k, s0, s1) exists
or the oracle samples s1−i and records (k, s0, s1). In either case, it returns
s1−i. Note that for the ideal cipher oracle, sampling would have to be without
replacement, so some extra accounting is needed.

These oracles are not free, and their cost is not linear in the number of
queries. We include this into the total run-time. When we modify oracles in
security proofs, the modified oracles will have cost comparable to at most a
small multiple of the original oracles.

3 Password-authenticated Key Exchange
A password is a human-memorable string of symbols. Often, it is convenient to
map this string of symbols into a representation more suitable for cryptography.
We do this with a password-based key derivation function, denoted by pbkdf .
These are carefully designed functions, but modelled as random oracles in our
context.

In client-server settings, per-user nonces or salts are often included as in-
put in a password-based key derivation function. These are considered public
since they must be communicated to any client trying to connect, who cannot
otherwise derive the correct password representation. Alternatively, password-
associated data such as user name and other identifying information can be
included. Regardless, the effect is similar to using a per-password key deriva-
tion function.

3.1 Passwords and Password Guessing
Intuitively, a password guessing game starts by using some fixed sampling pro-
cess to choose a password, then allowing the opponent to make guesses until
it succeds or gives up. Unfortunately, there are some issues. We would like to
model different password sampling processes. We would like to model distinct,
but correlated passwords. In fact, we would like the opponent to be able to
influence the sampling process. And we want to model leakage of information.

The simplest approach is to model password generation as a separate algo-
rithm, essentially part of the adversary specification, that communicates freely
with the opponent. Since we do not specify what this generator algorithm does,
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The password guessing experiment proceeds as follows:

1. On the jth password query pw from G, do:

(a) Record (j, pw) and respond with j.

2. On a guess query (j, pw) from A, do:

(a) If (j, pw) is recorded, erase it and respond with ⊤. Otherwise,
respond with ⊥.

3. On a reveal query j from A, do:

(a) If (j, pw) is recorded, erase it and respond with pw .

Figure 2: Experiment Exppw for the password guessing game, interacting with
a password generator G and opponent A.

we cannot say anything about how hard the resulting password guessing game is.
In particular, how do we know that the generator algorithm does not simply leak
passwords to the adversary? This is not a problem. The goal of the password
guessing game is not to be difficult, but to provide a baseline for difficulty.

For later convenience, we also capture the intuitive approach.
We repeat for emphasis: The generator and the opponent play an unknown

password-related game. The game may be easy, but the game may also be
difficult game and the opponent strongly dependent on the available assistance.
Our theorems must hold for all such games, both easy and difficult.

Definition 3. A (τ, nu, ns)-password guesser (G,A) is a pair of algorithms
interacting with the experiment in Figure 2, where G and A may freely send
each other messages, G makes at most nu password queries (whose responses
are sent to A), and A makes reveal queries and at most ns guess queries, such
that the total runtime of G, A and the experiment is at most τ .

The success rate SuccRpw(G,A) of a password guesser (G,A) is the number
of ⊤ responses.

Definition 4. Let X be a probability space on a set W . A simple (τ, nu, ns)-
password guesser for X is an interactive algorithm A such that (GX ,A) is a
(τ, nu, ns)-password guesser, where GX is the following algorithm interacting
with the password search experiment and A. When GX receives a ⊤ query from
A, it samples pw r← X and sends pw to the password guessing experiment.

The success rate of a password guesser is not a number, but a probability
space on the integers. When convenient, we shall identify it with the corre-
sponding cumulative distribution function on the integers. We will need to
compare the success rates of various password guessers and similar algorithms.
For reasons that will become apparent, we cannot expect our algorithms to
have identical or very similar success rates. Instead, we shall show that they
are “almost at least as good”.
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Let f, f ′ : S → R be functions. For δ ∈ R, we say that f ′ ≤ f + δ if f ′(x) ≤
f(x) + δ for all x ∈ S . By thinking about probability spaces as cumulative
distribution functions, we extend this notation to success rates and write SR′ ≤
SR + δ, meaning that for all x

Pr[SR′ ≤ x] ≤ Pr[SR ≤ x] + δ,

with the implication that SR′ is “almost at least as good” as SR if δ is small.
It may be much better. Note that the direction of the inequality is opposite of
advantages.

3.2 Definition
Definition 5. A password-authenticated key exchange (PAKE) protocol pake =
(K ,W ,AD , I,R) consists of sets of session keys K , passwords W and associ-
ated data AD , and two algorithms:

• The interactive initiator algorithm I takes as input associated data ad ∈
AD and a password pw ∈W . It alternates between sending and receiving
messages. Eventually, it either outputs a session key k or ⊥ signifying
failure.

• The interactive responder algorithmR takes as input associated data ad ∈
AD and a password pw ∈W . It alternates between sending and receiving
messages. Eventually, it either outputs a session key k or ⊥ signifying
failure.

Consider an instance of I(ad , pw) that sends and receives a sequence of messages
(s1, s2, . . . , sn). The transcript tr of the instance is (ad , pw , s1, s2, . . . , sn). The
transcript of an instance R(ad , pw) is defined in the same way.

We require that for any pw ∈ W and ad ∈ AD , then for any two instances
I(ad , pw) and R(ad , pw) that both output keys and have identical transcripts,
they will output identical keys.

Remark 3. The above definition does not capture asymmetry. It could be cap-
tured as follows: An additional algorithm would on input of a password and
some password-associated data output a server password representation and a
(public) hint (e.g. user name, nonce, etc.). The initiator algorithm would take
associated data, password and hint as input. The responder algorithm would
take associated data and server password representation as input.

We base our security definition on definitions for ordinary key exchange.
There are many ways to define security for ordinary key exchange in the litera-
ture, but which exact basis we use is not important. Somewhat arbitrarily, we
use a definition from a recent textbook [15]. A key exchange security defini-
tion essentially consists of an experiment together with notions of partnering,
authentication and freshness.
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There are two design choices in our security definition that need explanation.
Both are related to the standard implicit-to-explicit upgrade strategy via key
confirmation tags.

The first design choice is that each password-authenticated key exchange
protocol has a session key set consisting of np-tuples, so K = K1 × · · · × Knp

.
The idea is that each session key is actually a tuple of session keys and these
session keys are somehow independent. This is important to support our design
strategy.

The second design choice is to model session key confidentiality as a blend
of real-or-random and one-way adversary goals. The idea is that the upgrade
strategy forces the adversary to guess part of the session key, which is a one-way
security goal.

The Experiment As in Section 3.1, we shall consider a two-part adversary:
a password generator G and an opponent A. Again, we shall assume that
they are playing an unknown, password-related game and that they are free
to communicate.

The passwords the experiment uses come from password queries made by G.
The adversary may reveal these long-term keys, as well as instance session keys.

The experiment’s main task is to allow the opponent to interact with in-
stances of the password-authenticated key exchange algorithms. The opponent
starts instances through the execute query, and also functions as the network
and sends messages to the instances through the send query. Since we work in a
multi-password model, the adversary needs to specify which generated password
a particular instance should use. The adversary does this simply by specifying
that the jth generated password should be used. Likewise, instances are num-
bered in the order they are started.

As usual for key exchange, we model confidentiality of session keys as real-
or-random security, with a test query that gives the adversary either session
keys or random keys, as determined by a secret bit. The adversary is allowed
to do multiple test queries, and the experiment uses the same secret bit for all
the queries.

We shall also allow the adversary to guess session keys, which models one-
way security. This is not generally useful for applications, but we need it for
the implicit-to-explicit design strategy.

As mentioned initially, the protocol specification includes a description of
the session key set as a set of tuples, K = K1 × · · · ×Knp

. The test, guess and
session key reveal queries all specify which part of the key they apply to. The
adversary may test one part, guess another part and reveal a third part. Note
that np may be 1.

Remark 4. Unlike for key exchange, we cannot reveal the state and the session
key at the same time. The session key is a function of the password, the random-
ness and the messages received. This means that if we give the adversary both
the randomness and the session key, the adversary can do an offline attack. Of
course, we could have opted to give the adversary the randomness or the session
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key, but not both. However, for many protocols the messages are independent
of the password, so this would not give the adversary any extra power. Also, it
does not actually model the real world very well. So we do not bother.

Partnering We use matching conversations for partnering. Consider an in-
stance with transcript (ad , pw , s1, . . . , sn) that output a session key. A second
instance is a partner of the first if either their transcripts are equal and the
second instance output a session key, or the second instance did not output a
session key, its transcript is (ad , pw , s1, . . . , sn−1) and the second instance sent
sn−1.

Partnering is not symmetric. An instance that has not output a session key
may be someone’s partner, but cannot have a partner.

Authentication Implicit authentication for ordinary key exchange says that
an instance can have at most one partner.

Explicit authentication for ordinary key exchange requires the presence of
a partner. This does not work for us. We want to distinguish between cryp-
tographic attacks and misuse of the password. But we do not know which
passwords the adversary knows.

We resolve this as follows. Authentication holds if no instance has more than
one partner. The adversary’s explicit success rate is the number of passwords
for which there is an instance without a partner that finished while the password
was unrevealed. The idea is that this success rate should be accounted for by
adversarial password guessing, which we do by showing that the opponent can
be turned into a pure opponent with at least the same success rate.

We also want to support an implicit-to-explicit design strategy. This is what
the guess query is for. The adversary’s implicit success rate is the number of
passwords for which there is a successful guess query while the password was
unrevealed. Any such successes should be accounted for by adversarial password
guessing.

The design strategy idea is that in order to break explicit authentication
when we use key confirmation tags, the adversary must present a key confirma-
tion tag. But the tags are part of the session key, so any adversary that can
present a correct key confirmation tag can also guess part of the session key.

We emphasise that guess queries are synthetic, in the sense that we have
no applications in mind that can use the sort of security provided by the guess
queries, unlike (say) the test query.

Remark 5. Note that with password-authenticated key exchange, the adversary
is free to generate the same password for two distinct password queries. We
have defined our partnering notion such that this does not create an immediate
authentication attack, since the transcript only lists the password that was used,
not which password query originated the password. However, in multi-password
settings, this is usually not a desirable property, since it would imply that the
system could confuse two users who happen to have the same password.
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The real-or-random experiment proceeds as follows:

1. Sample β, β′′ r← {0, 1}.
2. On the jth password query pw from G, do:

(a) Record (j, pw) and send j.

3. On the ith execute query (ρ, j, ad) from A, do:

(a) If (j, pw) is not recorded, send ⊥ and stop.

(b) If ρ = I, start the ith instance as I(ad , pw). When the instance
sends s, send (i, s). Otherwise, start the ith instance as R(ad , pw)
and send i.

4. On the send query (i, s) from A, do

(a) If (i, ·, ·) is recorded, send ⊥.

(b) Otherwise, send s to the ith instance. If the ith instance outputs ⊥,
record (i,⊥,⊥) and send (i,⊥). If the ith instance outputs k0 ∈ K ,
sample k1

r← K and record (i, k0, k1). If the instance sent a message
s′ and did not output a key, send (i, s′). If the instance sent a
message s′ and output a key, send (i,⊤, s′). If the instance output a
key and did not send a message, send (i,⊤).

5. On the test query (test, i) from A, do:

(a) If (i, s0, s1) is recorded, send (i, sβ).

6. On the guess query (guess, i, j, kj) from A, do:

(a) If (i, (· · · , kj , · · · ), ·) is recorded, send ⊤, otherwise ⊥.

7. On the reveal query (x, i) from A, do:

(a) If x = session (session reveal) and (i, s0, s1) is recorded, send (i, s0).

(b) If x = ltk (long-term key reveal) and (i, pw) is recorded, send pw .

(c) Otherwise, send ⊥.

Eventually, the opponent A outputs β′ ∈ {0, 1}.

Figure 3: Experiment Exppake-ror
pake for the real-or-random game for a password-

authenticated key exchange protocol pake = (K ,W ,AD , I,R) with session key
set K = K1 × · · · × Knp

. The experiment interacts with a password generator
G and an opponent A. The bit β′′ is not used in the experiment, but is used to
simplify the calculation of advantage.
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We say that an adversary is context-respecting if it never issues an execute
query for two distinct passwords (that is, the js in the queries are distinct) with
the same associated data. In a single-password setting, this trivially satisfied.
In a multi-password setting, this is usually a reasonable restriction, since some
information must be available to uniquely identify which password is in use, so
that the server can use the correct password. Another option that may achieve
the same effect is to use a per-password password-based key derivation function
pbkdf in the design of schemes, as discussed in Section 3.1.

Freshness Freshness decides which keys have been trivially compromised. If
the adversary tests these keys, we do not count that as winning. However, as for
authentication, the adversary may know passwords and therefore also session
keys. And we cannot in advance know which passwords the adversary knows.
The end result is that we shall only allow instances with partners to have fresh
session keys.

Remark 6. There is no guarantee of confidentiality for session keys of instances
that do not have partners. The expectation is that these session keys are trivially
known to the adversary because of password misuse, and we account for this
through authentication. This means that some standard confidentiality attacks
fail, but since they are counted as authentication attacks, that is ok.

The instances output a tuple of independent session keys. Freshness therefore
considers session keys, not instances, unlike our partnering and authentication
definitions.

A session key is trivially compromised if a session key reveal query has been
made for that session key, or both a test and a guess query has been made for
that session key. A session key is exposed if it is trivially compromised or a test
or guess query has been made for that session key. A session key is fresh if it
is not trivially compromised and its instance has a partner instance where the
corresponding session key is not exposed. An execution is fresh if every session
key that receives a test query is fresh.

Remark 7. We only allow one guess query per instance, though see Section 3.3.

The Definition We define advantage and success rates.

Definition 6. A (τ, nt, nu, ns)-adversary against a password-authenticated key
exchange protocol pake is a pair of interactive algorithms (G,A) that interacts
with the experiment in Figure 3, where G makes at most nu password queries,
A makes at most nt test queries and ns execute and guess queries, and where
the runtime of the adversary and the experiment is at most τ .

The advantage of the adversary (G,A) against pake is

Advpake-ror
pake (G,A) = max{2|Pr[Ec]− 1/2|,Pr[Ea]},

where Ec is the event that the adversary’s guess equals β if the execution is
fresh, or that the adversary’s guess equals β′′ if the execution is not fresh; and
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Ea is the event that authentication does not hold for some instance that outputs
a session key.

The implicit success rate SuccRpake-i
pake (G,A) of the adversary (G,A) is the

number of instances using distinct, password indexes for which a successful
guess happens while the password is unrevealed. The explicit success rate
SuccRpake-e

pake (G,A) of the adversary (G,A) is the number of instances using dis-
tinct, password indexes that, without having a partner, output a session key
while the password is unrevealed.

Let X be a probability space on W . A simple (τ, nt, nu, ns)-adversary for X
against a password-authenticated key exchange protocol pake is an interactive
algorithm A such that (GX ,A) is a (τ, nt, nu, ns)-adversary against pake.

Remark 8. Morally speaking, we should expect that any honestly generated
passwords are independent of any cryptography in use. In particular, in the
random oracle model, we will not allow the password generation algorithm G to
make any queries to any random oracles. This is just a modelling issue and does
not impact adversarial power, since the generator is free to ask the opponent to
evaluate hashes.

Example 7. For any password game and opponent (G,A), there exists a corre-
sponding pure adversary (G,B) against password-authenticated key exchange.
The pure opponent B runs a copy of A and forwards any messages to and from
G. When A makes a reveal query, B makes a corresponding reveal query. When
A makes a guess query pw for the jth password, B privately starts an instance
of R(ad , pw) for some ad , makes an execute query (I, j, ad) and lets the two
instances exchange messages. If both instances output a session key, then B
reveals the session key of the initiator instance, and if the two session keys are
identical, B responds with ⊤ to A. Otherwise, it responds with ⊥.

Unless the particular password-authenticated key exchange protocol allows
two instances using distinct passwords to agree on the same session key with
non-trivial probability (which means that the protocol is trivially useless), it is
clear that the above is a useful adversary whose success rate is essentially equal
to the success rate of the password adversary.

The example shows that the class of password guessers is essentially in-
cluded in the class of realistic adversaries against a password-authenticated key
exchange scheme. These are the pure adversaries. What we want to show is
that pure adversaries make up essentially the entire realistic class.

At this point, it is instructive to consider a bad password-authenticated key
exchange protocol and see how the success of an adversary against that protocol
cannot be accounted for by password guessing.

Example 8. Let pake = (G ,G ,AD , I,R) be the protocol where (I,R) is the
ordinary Diffie-Hellman key exchange protocol.

It is easy to show that any adversary against pake that has non-trivial
advantage leads to an adversary against DDH with essentially the same advan-
tage (up to a factor n2

snt), because authentication and freshness only consider
instances with partners, which is the same as unauthenticated key exchange.
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Consider, however, the following simple (τ, 0, 1, 1)-adversary for the uniform
password distribution on G : It generates one password, runs an instance of the
responder algorithm privately, makes one execute query for this password with
some associated data, and then has the two instances exchange messages.

Clearly, τ is trivial. Likewise, this adversary achieves one success with prob-
ability 1. However, any simple (τ ′, 1, 1)-password guesser for the uniform pass-
word distribution on G achieves one success with probability at most 1/|G |,
regardless of τ ′.

Remark 9. The usual claims that a single test query suffices and that a single
password query suffices are, in some sense, true. It is not obvious that such
results are useful and we do not prove them.

It is important to prove these results in the correct order, which is to deal
with the single test query first. The single test theorem is done through a stan-
dard hybrid argument. There is one minor difficulty, which is that an execution
can be non-fresh with many test queries, but would be fresh if some of the
test queries were reveal queries. However, the simulator can notice when the
simulated execution would become non-fresh and output a random bit.

A single password query suffices when considering the advantage. (This
changes the game between the generator and opponent.) We guess which pass-
word will be used for the advantage. The experiment deals with that password.
We simulate a second experiment that deals with all the other passwords. This
strategy relies crucially on there being a single test query. The success rate
information is mostly lost when considering a single password.

Remark 10. Our definition does not capture the properties of asymmetric password-
authenticated key exchange, where the responder has a different password rep-
resentation than the client. We would model this by having two variants of
the long-term key reveal, one for the initiator representation and one for the
responder representation. We then change the definition of authentication to
count a responder instance without a partner towards the success rate, even if
the responder representation has been revealed.

For simple adversaries using high-entropy password distributions, such a
protocol could be considered as an ordinary key exchange protocol, where the
server representation is the public key and the password is the secret key.

To model other adversaries, we would introduce two types of guess queries
into our password guessing experiment, offline and online. The adversary’s
success rate must then include information about what type of query was used
to find a particular password. In the random oracle model, we can register
adversarial password guesses whenever certain queries to pbkdf are made.

When [19] the offline guesses are made, namely whether they are before or
after the reveal of the responder password representation, can also be interesting,
and can be measured using this approach.

19



3.3 Implicit to Explicit
We now show that the standard design strategy of adding tags that confirm
knowledge of the key is sound. The proof is straight-forward, providing evidence
that our definitions are sound. The compiler we use is essentially identical to
Example 10.8 in [15], but the strategy is well established [27].

Example 9. Let pake0 = (K0,W ,AD , I0,R0) be a password-authenticated
key exchange scheme with K0 = K × T 2. The password-authenticated key
exchange scheme pake = (K ,W ,AD , I,R) works as follows:

Let P and P0 denote either I and I0, or R and R0.
The interactive algorithm P runs the P0 algorithm with its own input. If

P0 ever outputs ⊥, P immediately outputs ⊥ and stops. Any messages P0

sends P sends, and P forwards any received messages to P0, with the following
modifications:

• If P0 sends a message s and outputs a session key (k, t0, t1) ∈ K0, P
remembers (k, t1) and sends the pair (s, t0).

• If P receives a pair (s, t′0), it sends s to P0. If P0 sends any message,
P outputs ⊥. If P0 does not send a message and outputs a session key
(k, t0, t1) with t′0 = t0, then P sends t1 and outputs k. Otherwise, P
outputs ⊥.

• If P0 outputs (k, t0, t1) and P receives a tag t′1, then it outputs k if t1 = t′1,
otherwise it outputs ⊥.

Remark 11. Constructions using PRFs or MACs are common in the literature.
This is significantly more complicated.

Proposition 10. Consider pake and pake0 as in Example 9, with keys split
into three parts. Let (G,A) be a (τ, nt, nu, ns)-adversary against a password-
authenticated key exchange scheme pake. Then there exists a (τ, nt, nu, ns)-
adversary (G,B) against pake0 such that

Advpake-ror
pake (G,A) ≤ Advpake-ror

pake0
(G,B) and

SuccRpake-i
pake0

(G,B) ≤ SuccRpake-e(G,A).

If (G,A) is context-respecting, so is (G,B).

Proof. The adversary B runs a copy of A and a simulator Sim that runs a copy
of the pake experiment, modified as follows:

• Instead of each pake instance running a pake0 instance, Sim delegates
the pake0 instances to the pake0 experiment.

• When a pake instance would send a pair (s, t0), Sim reveals the second
session key of the corresponding pake0 instance to get t0.
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• When a pake instance receives a pair (s, t′0) and the corresponding pake0

instance outputs a session key, Sim guesses t′0 for the second session key
of the corresponding pake0 instance. If the experiment returns ⊥, the
pake instance outputs ⊥. Otherwise, Sim reveals the third session key t1
of the corresponding pake0 instance and has the pake instance send t1.
Also, Sim acts as if the pake instance has output a session key.

• When a pake instance receives a tag t′1 and the corresponding pake0

instance output a session key, Sim guesses t′1 for the third session key of
the corresponding pake0 instance. If the experiment returns ⊥, the pake
instance outputs ⊥. Otherwise, Sim acts as if the the pake instance
output a session key.

• When A makes a test, guess or reveal query for some pake instance, Sim
makes the corresponding query for the first session key of the correspond-
ing pake0 instance and forwards the response.

• When A makes a long-term reveal query for a password, Sim makes a
long-term reveal query for the same password, forwarding the response.

It is straight-forward, though somewhat tedious, to verify that Exppake-ror
pake0

together with Sim behave in identical fashion to Exppake-ror
pake .

If some pake instance has two or more partners, then trivially, the corre-
sponding pake0 instance will have the same number of partners. In other words,
the probability that (G,A) breaks authentication for pake is at least as great
as the probability that (G,B) breaks authentication for pake0. We do not get
equality, because it could be that the pake0 instance has more than one part-
ner, but one or more never output a session key, and so do not count as pake
partners.

If a pake session key is fresh, then the instance has a partner where the
session key is not exposed, which means that the corresponding pake0 instance
has a partner where the first session key is not exposed. Also, no test or guess
queries have been made for the session key. It follows that the first pake0

session key is also fresh. Conversely, if a pake session key is not fresh, then the
corresponding first pake0 session key is also not fresh. From which it follows
that the probability that (G,B) guesses the correct challenge bit is identical to
the probability that (G,A) guesses the correct challenge bit.

Next, suppose there is a pake instance without a partner. By design of
Sim, this can only happen if Sim made a successful guess query for the second
or third pake0 session key. In other words, the implicit success rate of (G,B)
at least equals the explicit success rate of (G,A). Note that the success rates
need not be identical, since any successful guess query made by A would not
be counted towards the explicit success rate, but would be counted towards its
implicit success rate.

Remark 12. When K = K1 × · · · × Knp
, seems obvious that it should not

matter if we consider the symmetric key to consist of one part or np parts.
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It is obvious that a single-part adversary immediately becomes a multi-part
adversary because test, guess and reveal queries can be simulated with queries
for each part. A multi-part adversary does not immediately become a single-
part adversary, however, because the multi-part adversary may succeed with a
guess query for one part of the key, and there is no way to recover the entire
key from the one part.

We could attempt to simulate such a result by deriving the multiple key
parts from a single key part using a key derivation function that we model as a
random oracle. The technical issues not-withstanding, such a construction seems
redundant, so we shall not prove such a result. Instead, we work with multi-
part adversaries against the underlying password-authenticated key exchange
directly.

3.4 CPace Variant Analysis
The following protocol is equivalent to the CPace protocol [16, 3, 4], except that
we include the password in the session key derivation.

Example 11. The protocol cpace’ = (K ,W ,AD , I,R), based on the group
G and functions kdf : AD ×W ×G3 → K and pbkdf : W → G \ {1}, works as
follows:

• The initiator algorithm I takes ad and pw ∈ W as input, samples a r←
{1, 2, . . . , p−1}, computes x← pbkdf (pw)a and sends x. When it receives
the message y ̸= 1, it computes k ← kdf (ad , pw , x, y, ya) and outputs k.

• The responder algorithm R takes ad and pw ∈ W as input and samples
b r← {1, 2, . . . , p − 1}. When it receives the message x ̸= 1, it computes
y ← pbkdf (pw)b, k ← kdf (ad , pw , x, y, xb), sends y and outputs k.

Remark 13. Sometimes, the actual hash function pbkdf : W → G we use does
not induce a uniform distribution on G . Abdalla et al. [3] have shown that how
to resolve this using rejection sampling, under reasonable conditions. Essen-
tially, we need a few more oracle queries of all types, and the cost of choosing
the hash values increases somewhat. Adapting the proof of the following result
to use rejection sampling is relatively straight-forward.

Proposition 12. Consider the scheme cpace’ with K = K1 × K2 × K3, with
1/|Ki| ≤ δ for i = 1, 2, 3. Let (G,A) be a context-respecting (τ, nt, nu, ns)-
adversary against cpace’ in the random oracle model, making at most nh queries
to the pbkdf and kdf oracles. Then there exists a (τ ′1, nh, ns, nh)-solver B1
for StSDHF, a (τ ′2, nh, ns, nh)-solver B2 for StCDH and a (τ ′3, nu, ns)-password
guesser (G,B3), with τ ′1, τ ′2 and τ ′3 all equal to a small multiple of τ , such that

Advpake-ror
cpace’ (G,A) ≤

n2
s

|G |
+ ϵ and

SuccRpw(G,B3) ≤ SuccRpake-i
cpace’(G,A) + ϵ+ nsδ
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where

ϵ = (nh(nh + 1) + ns)/|G |+AdvStSDHF
G (B1) +AdvStCDH

G (B2).

The idea is that the adversary would have to find valid DDH tuples for
multiple bases in order to reject more than one password guess based on an
instance session key, which solves the StSDHF problem. For instances that have
a partner, the adversary would have to solve an instance of the Computational
Diffie-Hellman problem for a random base. For both of these cases, we will
need to recognise some DDH tuples, which we can do if we have a restricted
DDH oracle, so we need the strong version of the two problems. After excluding
these two cases, we can simulate the remaining interactions with the adversary
without knowledge of instance passwords. The result is a password guesser,
which gives us a pure opponent.

Proof of Proposition 12 We first bound the probability of Ea happening.
Since we use matching conversations, this can only fail if two or more instances
use the same randomness. Since the randomness is sampled from the uniform
distribution and independently, the birthday paradox applies and we get the
bound

Pr[Ea] ≤
n2
s

|G |
. (1)

The bound on Ec is structured as a sequence of games. Let Ec,i be the event
that the adversary outputs the correct guess in Game i (for β if the execution
is fresh, for β′′ if not).

We must also keep track of any possible loss of implicit success rate through-
out the sequence of games. We let SRi denote the probability space given by
the adversary’s implicit success rate in Game i.

The first three games implement some technical changes. The fourth game
restricts random oracle queries to prevent the adversary from deriving more than
one hypothetical session key per instance, by restricting access to the random
oracle. This gives us an adversary against the StSDHF problem.

The fifth game restricts random oracle queries to prevent the adversary from
deriving the session key of instances that have a partner. This gives us an
adversary against the StCDH problem.

Finally, we observe that unless the adversary makes oracle queries corre-
sponding to successful password guesses, the adversary does not evaluate the
hash oracle at the session key points, and consequently cannot reliably make
guess queries or say anything about test queries. This gives us a password
guesser that succeeds at its password guesses at least as often as the adversary
succeeds at guess queries.

For a more compact notation, we denote the value pbkdf (pw) ∈ G by gpw .

Game 0 The initial game is the experiment interacting with the adversary
(G,A). Then

Pr[Ec] = Pr[Ec,0] and SuccRpake-i
cpace’(G,A) = SR0. (2)
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Let τ0 = τ .

Game 1 In this game, when honest instances sample exponents, we sample
them from {0, 1, . . . , p− 1}. If any instance samples 0, the game stops.

The probability that any one instance causes the game to stop is 1/|p| and
we get that

|Pr[Ec,0]− Pr[Ec,1]| ≤
ns

|G |
and SR1 ≤ SR0 +

ns

|G |
(3)

The runtime τ1 is essentially the same as τ0.

Remark 14. We need this modification because the honest instances cannot
accept 1 as a message, but the underlying computational problems sample group
elements from the uniform distributions on the group, which includes 1. We
cannot change the scheme. We could change the underlying problems, but it
seems easier to do this game.

Game 2 In this game, the random oracle pbkdf does not sample group ele-
ments as gpw

r← G , but rather as r r← {0, 1, . . . , p− 1} and gpw ← gr, for some
fixed generator g. We also stop if gpw = gpw ′ for pw ̸= pw ′.

The birthday paradox applies and we get that

|Pr[Ec,1]− Pr[Ec,2]| ≤
n2
h

|G |
and SR2 ≤ SR1 +

n2
h

|G |
(4)

This game requires some extra accounting for each pbkdf hash query. Since
the number of hash queries is bounded by τ , the runtime bound τ2 is at most a
small multiple of τ1.

Remark 15. Note that when either x or y were sent by an honest instance with
password pw , the experiment knows the discrete logarithm to base gpw and can
now decide if (gpw ′ , x, y, z) is a DDH tuple or not, even if gpw ̸= gpw ′ , as long
as gpw ′ was output by the pbkdf oracle.

Game 3 In this game, we stop if when an instance computes a message x, the
random oracle kdf has seen a query of the form (·, ·, x, ·, ·) or (·, ·, ·, x, ·).

Since x is sampled from the uniform distribution on G and there have been
at most nh queries to kdf , we get that

|Pr[Ec,2]− Pr[Ec,3]| ≤
nh

|G |
and SR3 ≤ SR2 +

nh

|G |
. (5)

This game requires some extra accounting for each hash query. Since the
number of hash queries is bounded by τ , the runtime bound τ3 is at most a
small multiple of τ2.
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Game 4 In this game, we introduce some extra accounting into the random
oracle kdf . For each query (ad , pw , x, y, z), pw queried to the pbkdf oracle, that
results in a response k, the oracle stores a tuple (ad , pw , x, y, z, k, ind), where
ind is ⊥ if the query is made by A and ⊤ otherwise.

The changes in this game are not observable, so

Pr[Ec,4] = Pr[Ec,3] and SR4 = SR3. (6)

The runtime bound τ4 is essentially equal to τ3.

Remark 16. Note that in the games, the last flag denotes who made the hash
oracle query, either the adversary (⊥) or the experiment (⊤). In the reductions,
the flag will typically denote a DDH tuple (or at least an intended DDH tuple)
or a non-DDH tuple.

Game 5 In this game, we stop if the random oracle kdf ever records two tuples
(·, pw1, x, y, z1, ·,⊥) and (·, pw2, x, y, z2, ·,⊥), where pw1 ̸= pw2, pw1 and pw2

have both been queried the pbkdf oracle, some honest instance sent x or y, and
(gpw1 , x, y, z1) and (gpw2 , x, y, z2) are both DDH tuples.

Let Fi be the event that this happens in Game i, i = 4, 5. Since the games
proceed identically until Fi happens, we get that Pr[F5] = Pr[F4], and that

|Pr[Ec,5]− Pr[Ec,4]| ≤ Pr[F5] and SR5 ≤ SR4 + Pr[F5]. (7)

This game requires some extra accounting for each hash query. Since the
number of hash queries is bounded by τ , the runtime bound τ5 is at most a
small multiple of τ4.

Lemma 13. There exists a (τ ′1, nh, ns, nh)-solver B1 for StSDHF, with τ ′1 es-
sentially equal to τ5, such that

AdvStSDHF
G (B1) = Pr[F5].

Proof. The adversary B1 runs a copy of A and a simulation Sim of the random
oracles pbkdf and kdf interacting with a copy of the experiment Exppake-ror

cpace’ ,
modified as follows:

• When a query to pbkdf is made and the oracle would sample a response,
Sim makes a query to its first sampling oracle and uses the response as
the sampled value.

• When an instance starts, Sim makes a query to its second sampling oracle
and uses the response as its message.

• When an instance with transcript (ad , pw , x, y) wants to compute its ses-
sion key, Sim first checks if there is a tuple (ad , pw , x, y, ·, k,⊤) recorded.
If there is, it uses k as its session key. If not, it samples k r← K and records
(ad , pw , x, y,−, k,⊤).
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• When A makes a new query (ad , pw , x, y, z) to the random oracle kdf such
that pw was returned by the pbkdf oracle and some instance has sent either
x or y, then Sim uses its third oracle to decide if (gpw , x, y, z) is a DDH
tuple. If it is not, Sim samples k r← K , records (ad , pw , x, y, z, k,⊥) and
returns k. If it is a DDH tuple and there is a record (ad , pw , x, y,−, k,⊤),
Sim updates the record to (ad , pw , x, y, z, k,⊤) and returns k. Otherwise,
Sim samples k r← K , records (ad , pw , x, y, z, k,⊤) and returns k.

If two tuples (·, pw1, x, y, z1, ·,⊤) and (·, pw2, x, y, z2, ·,⊤) are recorded, with
pw1 ̸= pw2 and some instance sent x or y, B1 outputs the corresponding indexes
and group elements and stops. Otherwise, B1 ends when A outputs its bit.

Simulating pbkdf using the first oracle of B1 does not introduce any changes,
since the oracle samples its values from the uniform distribution on G , which
the pbkdf random oracle would also have done.

The main simulation difficulty is that the underlying game knows the discrete
logarithms of the messages sent by instances, but the simulation does not. In
particular, this means that the simulation does not know z for its own instances.

This difficulty is resolved by using lazy evaluation of the hash oracle input
combined with ensuring consistency in query responses by using the Strong
Diffie-Hellman oracle provided by the StSDHF problem. Lazy evaluation is
done in the third bullet point where we choose a value for the session key
without knowing the entire hash input. Consistent evaluation is ensured by the
fourth bullet point. We already forbid instances from using messages that had
previously been queried to kdf . This simplifies the accounting in the reduction.

It therefore follows that until B1 stops, it perfectly simulates Game 5 (and
Game 4). It only stops if the event F5 happens. When this event happens, B1
stops and its output corresponds to two tuples that satisfy the StSDHF problem.

The adversary B1 makes at most as many queries to its first oracle as there
are hash queries, it makes as many queries to its second oracle as there are
sessions, and it makes at most as many queries to its Strong Diffie-Hellman
oracle as there are hash queries.

Finally, the simulation requires some extra accounting, but the runtime of
B1 and its experiment is essentially the same as the runtime of Game 5.

Game 6 In this game, we stop if the adversary makes a kdf query (ad , pw , x, y, z)
such that pw has been queried to pbkdf , some responder instance has transcript
(ad , ·, x, y), some initiator instance has transcript (ad , ·, x, ·) and (gpw , x, y, z) is
a DDH tuple.

Let F ′
i be the event that this happens in Game i, i = 5, 6. Since the games

proceed identically until F ′
i happens, we get that Pr[F ′

6] = Pr[F ′
5], and that

|Pr[Ec,6]− Pr[Ec,5]| ≤ Pr[F ′
6] and SR6 ≤ SR5 + Pr[F ′

6]. (8)

This game requires some extra accounting for each hash query. Since the
number of hash queries is bounded by τ5, the runtime bound τ is at most a
small multiple of τ5.
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Lemma 14. There exists a (τ ′2, nh, ns, nh)-solver B2 for StCDH, with τ ′2 essen-
tially equal to τ6, such that

AdvStCDH
G (B2) = Pr[F ′

6].

Proof. The adversary B1 runs a copy of A and a simulation Sim of the random
oracles pbkdf and kdf interacting with a copy of the experiment Exppake-ror

cpace’ ,
modified as follows:

• When a query to pbkdf is made and the oracle would sample a response,
Sim makes a query to its first sampling oracle and uses the response as
the sampled value.

• When an initiator instance starts, Sim makes a query to its second sam-
pling oracle and uses the response as its message.

• When a responder instance receives a message x from an initiator in-
stance with the same associated data ad and same password pw , Sim
makes a query to its third sampling oracle and uses the response as
its message. Then it samples k r← K as its session key and records
(ad , pw , x, y,−, k,⊤).

• When an initiator instance with transcript (ad , pw , x, y) wants to compute
its session key, then if there is a record (ad , pw , x, y, ·, k,⊤), it uses k as its
session key. Otherwise, it samples k r← K as its session key and records
(ad , pw , x, y,−, k,⊤).

• When A makes a new query (ad , pw , x, y, z) to the random oracle kdf such
that pw has been queried to the pbkdf oracle, some initiator instance sent
x and some responder instance has transcript (·, ·, x, y), then Sim uses
its fourth oracle to decide if (gpw , x, y, z) is a DDH tuple. If it is a DDH
tuple, Sim outputs the corresponding indices of gpw , x and y, as well as z.
Otherwise, Sim samples k r← K , records (ad , pw , x, y, z,⊥) and returns
k.

• When A makes a new query (ad , pw , x, y, z) to the random oracle kdf
such that pw has been queried to the pbkdf oracle, some initiator instance
sent x and no responder instance has transcript (·, ·, x, y), then Sim uses
its fourth oracle to decide if (gpw , x, y, z) is a DDH tuple. If it is not,
Sim samples k r← K , records (ad , pw , x, y, z, k,⊥) and returns k. Other-
wise, if there is a record (ad , pw , x, y,−, k,⊤), the record is updated to
(ad , pw , x, y, z, k,⊤) and k is returned. Otherwise, Sim samples k r← K ,
records (ad , pw , x, y, z, k,⊤) and returns k.

Simulating pbkdf using the first oracle of B2 does not introduce any changes,
since the oracle samples its values from the uniform distribution on G , which
the pbkdf random oracle would also have done.

Again, the main difficulty is that the underlying game knows the discrete
logarithms of the messages sent by instances, but the simulation does not. In
particular, this means that the simulation does not know z for its own instances.
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This difficulty is resolved by using lazy evaluation of the hash oracle input
combined with ensuring consistency in query responses by using the Strong
Diffie-Hellman oracle provided by the StCDH problem. Lazy evaluation is done
in the third and fourth bullet points, where we choose consistent values for the
session key without knowing the entire hash input. We do not know the entire
hash input because we have embedded CDH challenges in the password and the
protocol messages.

The fourth and fifth bullet points ensure consistent evaluation. There are two
cases. The first originates with initiator instances that do not have a partner.
We can recognize these tuples using the Strong Diffie-Hellman oracle. The
second originates with responder instances that have potential partners, which
is exactly F ′

6. In this case, we have embedded a complete CDH problem in
the password and the protocol messages, so if the adversary makes such a hash
query, we get the solution to the CDH problem. Here too, we can recognise such
hash queries using the Strong Diffie-Hellman oracle. Again, forbidding instances
from using messages that have already been queried to kdf simplifies accounting
in the reduction.

It therefore follows that until B2 stops, it perfectly simulates Game 6 (and
Game 5). It only stops if the event F ′

6 happens. When this event happens, B2
stops and its output is a solution to the CDH challenge.

Since B2 makes queries to the Strong Diffie-Hellman oracle only when A
makes queries to kdf , this bounds the number of Strong Diffie-Hellman queries.
Since B2 makes a query to its first sampling oracle only to respond to pbkdf
queries, we can bound the number of sampling queries by the number of hash
queries. Finally, since B2 makes queries to the second and third sampling ora-
cles only to sample messages for instances, and each instance samples at most
one message, we can bound the number of sampling queries by the number of
instances.

Finally, the simulation requires some extra accounting, but the runtime of
B2 and its experiment is essentially the same as the runtime of Game 6.

Conclusion Observe that in the final game, the adversary cannot query the
kdf oracle at the value used for session key derivation for instances with part-
ners, so a test query for any session key of such an instance cannot reveal any
information about the challenge bit. Therefore

Pr[Ec,6] = 1/2. (9)

For any instance with transcript (ad , pw , x, y), where either x or y were
adversary-generated, then we say that a kdf query (ad , pw , x, y, z) where (gpw , x, y, z)
is a DDH tuple is password-revealing. Let Y denote the number of distinct pass-
words that such password-revealing queries happen for.

Unless the adversary makes a password-revealing query, it cannot distinguish
the instance session key from a random key, which means that it cannot make
a successful guess query for that instance, except with probability at most δ.
Therefore, unless a password-revealing query happens for a particular password,

28



that password cannot see a successful guess query except with probability n′
sδ,

where n′
s is the number of instances started with that particular password.

Hence, except with probability nsδ, the number of distinct passwords that will
see successful guess queries is upperbounded by Y, so SR6 is nsδ-near Y.

Y ≤ SR6 + nsδ. (10)

Proposition 12 then follows from equations (1)–(10) and Lemmas 13, 14 and
15.

Lemma 15. There exists a (τ ′3, nu, ns)-password guesser (G,B3), with τ ′3 essen-
tially equal to τ6, such that

SuccRpw(G,B3) = Y.

Proof. The opponent B3 runs a copy of A and a simulation Sim of the random
oracles pbkdf and kdf interacting with a copy of the experiment in Game 6,
modified as follows:

• When Sim is notified about the jth password, Sim records (j,⊥).

• When Sim makes a guess query (j, pw) and gets a response ⊤, it replaces
the record (j,⊥) by (j, pw).

• Initiator instances compute their messages as x ← ga, while responder
instances compute their messages as y ← gb.

Note that for any gpw = gr returned by pbkdf , any initiator instance
and any y, Sim can compute a DDH tuple (gpw , x, y, z) by computing
z ← yar

−1

. A similar formula applies for responder instances.

• Suppose an instance with transcript (ad , ·, x, y) uses the jth password and
wants to compute its session key.

– If (j, pw) is recorded, Sim computes the correct z, samples k r← K
and records (ad , pw , x, y, z, k,⊤).

– If (j,⊥) and (ad , pw , x, y, z, k,⊤) are recorded, then Sim makes a
guess query (j, pw). If the result is ⊤, it returns k. If the result is ⊥,
it samples k′ r← K and records (ad ,−, x, y,−, k′, j).

– If (j,⊥) and (ad ,−, x, y,−, k, j) are recorded, then Sim uses k. (Note
that unless (G,A) is context-respecting, this could cause inconsistent
results.)

– If (j,⊥) is recorded, but no record (ad , ·, x, y, ·, k,⊤) or (ad ,−, x, y,−, k, j)
exists, then Sim samples k r← K and records (ad ,−, x, y,−, k, j).

• When A makes a new query (ad , pw , x, y, z) to the random oracle kdf such
that pw has been queried to the pbkdf oracle and either x or y was sent
by an honest instance, then Sim checks if (gpw , x, y, z) is a DDH tuple.
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– If it is not, Sim samples k r← K , records (ad , pw , x, y, z, k,⊥) and
returns k.

– If it is a DDH tuple, some responder instance has transcript (ad , ·, x, y)
and some initiator instance has transcript (ad , ·, x, ·), Sim stops.

– If it is a DDH tuple, (ad , pw ′, x, y, z′, k′,⊤) with pw ′ ̸= pw is recorded,
and some instance has transcript (ad , ·, x, ·) or (ad , ·, ·, y), Sim stops.

– If it is a DDH tuple and (ad ,−, x, y,−, k, j) is recorded (that is,
there is a unique instance with transcript (ad , ·, x, y) that uses the
jth password), Sim makes a guess query of (j, pw). If the result is
⊤, the record is updated to (ad , pw , x, y, z, k,⊤). Otherwise, Sim
samples k r← K and records (ad , pw , x, y, z, k,⊤).

– Otherwise, Sim samples k r← K and records (ad , pw , x, y, z, k,⊤).

We must show that Exppw together with Sim perfectly simulate the ex-
periment and the random oracles in Game 6. The only difficulty is that some
simulated instances do not know their passwords. Their messages are indepen-
dent of the password, so the messages are simulated perfectly. If an instance
password becomes known, we can recreate the instance DDH tuple correctly.

Until the password is known, we cannot know the input to the session key
derivation, which we deal with using lazy evaluation. The adversary may eval-
uate the hash at DDH tuples (which correspond to password guesses), but this
is forbidden for instances with partners and allowed at most once for other in-
stances. Sometimes, the adversary evaluates the hash at a DDH tuple before the
instance derives its session key, which Sim notices and turns it into a password
guess. Other times, the adversary evaluates the hash at a DDH tuple after the
instance derives its session key. Again, Sim notices and turns it into a pass-
word guess. If the guess is correct, any records of lazy evaluation are updated to
keep the simulated hash oracle consistent. Since we prohibit multiple password
guesses per instance, we know that we will make at most one password guess
per instance.

It follows that the simulation is perfect, that the password guesser (G,B3)
makes at most nu password queries, and at most one password guess per in-
stance.

Finally, any hash query made by A that causes Y to increase corresponds
exactly to a hash query that makes B3 guess a password, so SuccRpw(G,B3) = Y
and the lemma follows.

3.5 SRP-related Protocol
As we shall explain, the following protocol is related to the well-known SRP
protocol.

Example 16. Let (π, π−1) be a block cipher on G with key set G . The protocol
srp’ = (K ,W ,AD , I,R), based on the group G , (π, π−1) and functions kdf :
AD ×G5 → K × T 2 and pbkdf : W → {0, 1, . . . , p− 1}, works as follows:
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• The initiator algorithm I takes ad and pw ∈ W as input, samples a r←
{1, 2, . . . , p − 1}, computes gpw ← gpbkdf (pw) and x ← ga, and sends x.
When it receives the message y, it computes

(k, t1, t2)← kdf (ad , pw , x, y, π−1(gpw , y)
a, π−1(gpw , y)

pbkdf (pw))

and sends t1. When it eventually receives the message t′2, it outputs k if
t′2 = t2. Otherwise, it outputs ⊥.

• The responder algorithm R takes ad and pw ∈ W as input, computes
gpw ← gpbkdf (pw) and samples b r← {0, 1, . . . , p− 1}. When it receives the
message x ̸= 1, it computes y ← π(gpw , g

b) and (k, t1, t2)← kdf (ad , pw , x, y, xb, gbpw )
and sends y. When it receives the message t′1, it sends t2 and outputs k if
t′1 = t1. Otherwise, it outputs ⊥.

Remark 17. We describe two changes that give us a scheme equivalent to
SRP [29]. First, a slight speedup is possible. Instead of computing π−1(gpw , x)

b

and gbpw separately, we can compute a random linear combination as in MQV-
like protocols. Second, we may not need a full-blown block cipher. For particular
groups, a very simple algebraic function seems to work well, in the sense that
nobody has come up with a useful attack on SRP which uses that block cipher.

It is not obvious how to give a tight proof of security after the first change,
though techniques like Kiltz et al.[20] would be one likely approach. We have
no idea how to prove security in any way after the second change.

Remark 18. The protocol srp’ can be made asymmetric by letting the responder
take gpw as input instead of pw , and using gpw instead of pw when deriving the
session key. If pw was sampled from a high-entropy distribution and gpw is
known by the adversary, this scheme reduces to ordinary key exchange with
one-sided authentication (only the initiator is authenticated).

Remark 19. Another direction we could develop this scheme is as a mixed-
authentication scheme, where the server authenticates with the password and a
long-term cryptographic key.

The server has a secret key v and a public key u = gv. The initiator takes u
as input, while the server takes (u, v) as input. The input to kdf will be

(ad , gpw , u, x, y, x
b, gbpw , x

v)

= (ad , gpw , u, x, y, π
−1(gpw , y)

a, π−1(gpw , y)
pbkdf (pw), ua).

Remark 20. If we remove the exchange of tags in srp’, we get an insecure pro-
tocol, not just a protocol with implicit authentication. In particular, note that
the tags are sent in the opposite order of what Example 9 would do, resulting
in a protocol with four messages instead of three.

Proposition 17. Consider the scheme srp’ from Example 16. Let (G,A) be
a context-respecting (τ, nt, nu, ns)-adversary against srp’ in the random ora-
cle and the ideal cipher models, making at most nh queries to the pbkdf , kdf
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and ideal cipher oracles. Then there exists a (τ ′1, 0, ns + nh, nh)-solver B1, a
(τ ′2, nh, ns, nh)-solver B2 and a (τ ′3, nu, ns)-password guesser (G,B3), with τ ′1, τ ′2
and τ ′3 all equal to a small multiple of τ , such that

Advpake-ror
srp’ (G,A) ≤ ϵ+

n2
s

|G |
and

SuccRpw(G,B3) ≤ SuccRpake-e
srp’ (G,A) + ϵ,

where

ϵ = (nh(3nh + 1) + ns(ns + nh))/|G |+ (n2
h + ns)/|T |

+AdvStCDH
G (B1) +AdvStCDH

G (B2).

We need to extract password guesses from interactions with both the initia-
tor and responder. The key confirmation tag derivation involves the password,
which commits the adversary to a particular password guess which we can iden-
tify. But we need to identify a particular password guess. When interacting
with a responder instance, unless the adversary can find two or more passwords
that result in the same tag, any query made is uniquely identified by the tag.
When interacting with an initiator instance, unless the adversary can find par-
ticular collisions in the block cipher (seen as a function from keys and blocks
to blocks), the adversary’s first message commits to a password guess, and any
other guess forces the adversary to solve CDH problems.

Proof of Proposition 17 We first bound the probability of Ea happening.
Since we use matching conversations, this can only fail if two or more instances
send the same group element. Since the group elements are sampled from the
uniform distribution (and in the responder’s case, have a permutation applied
to it) and independently, the birthday paradox applies and we get the bound

Pr[Ea] ≤
n2
s

|G |
. (11)

The bound on Ec is structured as a sequence of games. Let Ec,i be the event
that the adversary outputs the correct guess in Game i (for β if the execution
is fresh, for β′′ if not).

We must also keep track of any possible loss of implicit success rate through-
out the sequence of games. We let SRi denote the probability space given by
the adversary’s implicit success rate in Game i.

The first five games implement several technical changes. The sixth game has
responders reject if the adversary has not evaluated kdf at the appropriate point,
forcing the adversary to commit to a password guess and preventing more than
one password guess per responder instance. The seventh game has initiators
reject if the adversary evaluates kdf at multiple points, preventing more than
one password guess per initiator instance unless the adversary solves the StCDH
problem. The eight game prevents the adversary from evaluating kdf at certain
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points, preventing the adversary from learning anything about fresh session keys,
unless the adversary solves the StCDH problem. After excluding these cases, we
can simulate the remaining interactions with the adversary without knowledge
of instances passwords. The result is a password guesser, which gives us a pure
opponent.

For a more compact notation, we denote the value gpbkdf (pw) ∈ G by gpw .

Game 0 The initial game is the experiment interacting with the adversary
(G,A). Then

Pr[Ec] = Pr[Ec,0], and SuccRpake-i
srp’ (G,A) = SR0. (12)

Let τ0 = τ .

Game 1 In this game, when the (inverse) block cipher oracle receives a query
for which no corresponding record exists, it samples its response from the uni-
form distribution on G , without rejecting already used group elements.

We may assume that this does not change the time bound on the game, so
τ1 = τ0.

This change is only observable if the oracle ever records a collision. Since
elements are sampled independently from the uniform distribution, the birthday
bound applies and we get

|Pr[Ec,1]− Pr[Ec,0]| ≤
n2
h

|G |
and SR1 ≤ SR0 +

n2
h

|G |
. (13)

Game 2 In this game, we stop if two instances ever send the same group
element, or the kdf has been queried at that group element before, or the block
cipher has ever returned the group element of a responder instance before the
responder instance made its query.

This game requires some extra accounting for each oracle query. Since the
number of hash queries is bounded by τ , the runtime bound τ2 is essentially
equivalent to τ1 plus at most a small multiple of τ .

Since the group elements are sampled from the uniform distribution (and in
the responder’s case, have a permutation applied to it) and independently, the
usual analysis applies and we get

|Pr[Ec,2]− Pr[Ec,1]| ≤
ns(ns + nh) + nh

|G |
and

SR2 ≤ SR1 +
ns(ns + nh) + nh

|G |
.

(14)

Game 3 In this game, we stop if there is ever a collision in pbkdf .
This game requires some extra accounting for each oracle query. Since the

number of hash queries is bounded by τ , the runtime bound τ3 is essentially
equivalent to τ2 plus at most a small multiple of τ .
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The birthday bound applies, giving us

|Pr[Ec,3]− Pr[Ec,2]| ≤
n2
h

|G |
and SR3 ≤ SR2 +

n2
h

|G |
. (15)

Game 4 Consider an block cipher query (gpw , y) where the oracle must sample
a response, that is, the block cipher has not seen this query before, nor has the
inverse block cipher responded with y to some query with the key gpw . We say
that such a query is colliding if the same block cipher value is recorded for a
distinct block cipher query. (Note that the previous query may have come from
a block cipher query or an inverse block cipher query.) In this game, we stop if
we ever observe a colliding query.

This game requires some extra accounting for each oracle query. Since the
number of hash queries is bounded by τ , the runtime bound τ4 is essentially
equivalent to τ3 plus at most a small multiple of τ .

The worst case is if the ideal cipher is evaluated at most once for any key,
in which case we consider at most nh elements sampled independently from the
uniform distribution, giving us

|Pr[Ec,4]− Pr[Ec,3]| ≤
n2
h

|G |
and SR4 ≤ SR3 +

n2
h

|G |
. (16)

Game 5 In this game, we stop if two distinct queries to kdf ever return
identical results in the second coordinate (the initiator’s tag).

This game requires some extra accounting for each oracle query. Since the
number of hash queries is bounded by τ , the runtime bound τ5 is essentially
equivalent to τ4 plus at most a small multiple of τ .

Since the random oracle samples values from the uniform distribution and
independently, the birthday paradox applies and we get

|Pr[Ec,5]− Pr[Ec,4]| ≤
n2
h

|T |
and SR5 ≤ SR4 +

n2
h

|T |
. (17)

A responder instance receives a tag which now uniquely identifies a particular
kdf query. By the changes in the previous game, this query must contain the
instance password.

Remark 21. While we will need a certain amount of collision resistance in kdf ,
the above bounds are likely an overestimate. The issue is that an adversary
can use collisions in kdf and a responder instance to make multiple password
guesses. Since the collisions can be found without interaction with the exper-
iment, this breaks security. But the adversary must see the responder’s group
element before finding the collisions, which means that the collisions must match
a particular pattern, and the only thing that can vary is the password. It is also
likely that the responder will time out, strictly limiting the available resources
to find collisions. The above details are easy to describe, but somewhat tricky
to model, so we do not.
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Game 6 In this game, we shall have certain instances reject. Consider an
instance with associated data ad using password pw that sent and received
x, y and t1, and for initiator instances, also t2, and that no instance with
the same associated data and password sent the group element the instance
first received. If the adversary did not query kdf at (ad , pw , x, y, z1, z2), where
(g, x, π−1(gpw , y), z1) and (g, gpw , π

−1(gpw , y), z2) are DDH tuples, then the in-
stance rejects, regardless of the value of the relevant tag.

This game requires some extra accounting for each oracle query. Since the
number of hash queries is bounded by τ , the runtime bound τ6 is essentially
equivalent to τ5 plus at most a small multiple of τ .

By an earlier change, instances send unique messages. If a particular instance
cannot have a partner, no other instance will evaluate kdf at the point this
instance will. For any particular instance, since the adversary has not queried
kdf , it has no information about the correct value of the tag. (Note that we
stop after certain collisions, but the adversary cannot know if we will stop, so
this does not give the adversary any information.) The adversary is therefore
correct with probability at most 1/|T |, giving us

|Pr[Ec,6]− Pr[Ec,5]| ≤
ns

|T |
and SR6 ≤ SR5 +

ns

|T |
. (18)

This change means that before any instance accepts, there will be a particular
kdf query containing the instance password. We now need to make sure this
query is unique.

Game 7 In this game, we stop if for any initiator instance with associ-
ated data ad that sent x and t1 and received y, the adversary queries kdf
at two points (ad , pw , x, y, z1, ·) and (ad , pw ′, x, y, z′1, ·), pw ̸= pw ′, such that
(g, x, π−1(gpw , y), z1) and (g, x, π−1(gpw ′ , y), z′1) are both DDH tuples.

This game requires some extra accounting for each oracle query. Since the
number of hash queries is bounded by τ , the runtime bound τ7 is essentially
equivalent to τ6 plus at most a small multiple of τ .

We get that for any honest initiator instance, the adversary made at most
one kdf query related to the instance. By the changes in the previous games, if
the instance accepts there must be such a query.

Let Fi be the event that this happens in Game i, i = 6, 7. Since the games
proceed identically until Fi happens, we get that Pr[F7] = Pr[F6], and that

|Pr[Ec,7]− Pr[Ec,6]| ≤ Pr[F7] and SR7 ≤ SR6 + Pr[F7]. (19)

Lemma 18. There exists a (τ ′1, 0, ns + nh, nh)-solver B1 for StCDH, with τ ′1
essentially equal to τ7, such that

AdvStCDH
G (B1) = Pr[F7].

Proof. The adversary B1 runs a copy of A and a simulation Sim of the ideal
cipher and the random oracles pbkdf and kdf interacting with a copy of the
experiment Exppake-ror

srp’ , all as in Game 7, further modified as follows:
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• Initiator instances use the second CDH oracle to get x.

• When the block cipher oracle receives a query (gpw , h) for which no record
(gpw , h, y, ·) exists, it samples y r← G , records (gpw , h, y,⊥) and responds
with y.

• When the inverse block cipher oracle receives a query (gpw , y) for which
no record (gpw , h, y) exists, the block cipher oracle queries the third CDH
oracle to get h, records (gpw , h, y,⊤) and responds with h.

• When an initiator oracle with associated data ad and password pw that
sent x and received y would query the kdf oracle, if a record (ad , pw , x, y,
·, π−1(gpw , y)

pbkdf (pw), k, t1, t2,⊤) exists, we use (k, t1, t2). Otherwise, we
sample (k, t1, t2) r← K×T 2, record (ad , pw , x, y,−, π−1(gpw , y)

pbkdf (pw), k, t1, t2,⊤)
and use (k, t1, t2).

• When the adversary makes a new kdf query (ad , pw , x, y, z1, z2), with
z2 = π−1(gpw , y)

pbkdf (pw)), and some initiator instance has transcript
(ad , ·, x, . . . ), Sim uses its Strong Diffie-Hellman oracle to determine if
(g, x, π−1(gpw , y)

pbkdf (pw), z1) is a DDH tuple. If it is not a DDH tuple,
Sim samples (k, t1, t2)

r← K × T 2, records (ad , pw , x, y, z1, z2, k, t1, t2,⊥)
and responds with (k, t1, t2). If it is a DDH tuple and (ad , pw , x, y,−, z2, k, t1, t2,⊤)
is recorded, Sim updates the record to include z1 and responds with
(k, t1, t2). Otherwise, Sim samples (k, t1, t2) r← K×T 2, records (ad , pw , x, y, z1, z2, k, t1, t2,⊤)
and responds with (k, t1, t2).

• Suppose Sim ever makes two records (ad , pw , x, y, z1, ·, ·, ·, ·,⊤) and (ad , pw ′, x, y, z′1, ·, ·, ·, ·,⊤).
Then for some h either (gpw , h, y,⊤) or (gpw ′ , h, y,⊤) are recorded, so B1
outputs (g, x, h, z1).

The main difficulty with the simulation is that the underlying game knows
the discrete logarithms of the messages sent by initiator instances, while the
simulation does not. In particular, this means that the simulation does not
know z1 for its own instances.

This difficulty is resolved by using lazy evaluation of the hash oracle input
combined with ensuring consistency in query responses by using the Strong
Diffie-Hellman oracle provided by the StCDH problem. Lazy evaluation is done
in the fourth and fifth bullet points, where we choose consistent values for the
session key without knowing the entire hash input. We do not know the entire
hash input because we have embedded CDH challenges in the protocol messages.

The only interesting case is the initiator instances that have sent a message
that we do not know the discrete logarithm of. We use a blank value for the
Diffie-Hellman secret, and then we need to recognise when the adversary queries
the oracle at the point the instance would have queried it. Since our message
came from the second CDH oracle, we can use the Strong Diffie-Hellman oracle
to recognize the correct query.

(Note that we do not need any oracles for responder oracles, since we know
both the password and the discrete logarithm of the message.)
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It therefore follows that until B1 stops, it perfectly simulates Game 7 (and
Game 6). It only stops if the event F7 happens. When this event happens, B1
stops and its output is a solution to a CDH challenge.

Since B1 makes queries to the Strong Diffie-Hellman oracle only when queries
to kdf are made, this bounds the number of Strong Diffie-Hellman queries by
nh. Since B1 queries its sampling oracles either for initiator instances or in
response to block cipher oracle queries, we can bound the number of sampling
queries by ns + nh.

Finally, the simulation requires some extra accounting, but the runtime of
B1 and its experiment is essentially the same as the runtime of Game 7.

Game 8 In this game, we stop if the adversary makes a kdf query (ad , pw , x, y, z1, ·)
such that some responder instance has transcript (ad , ·, x, y, . . . ), some initia-
tor instance has transcript (ad , ·, x, y, . . . ), and (g, x, π−1(gpw , y), z1) is a DDH
tuple.

This game requires some extra accounting for each oracle query. Since the
number of hash queries is bounded by τ , the runtime bound τ8 is essentially
equivalent to τ7 plus at most a small multiple of τ .

Let F ′
i be the event that this happens in Game i, i = 7, 8. Since the games

proceed identically until F ′
i happens, we get that Pr[F ′

8] = Pr[F ′
7], and that

|Pr[Ec,8]− Pr[Ec,7]| ≤ Pr[F ′
8] and SR8 ≤ SR7 + Pr[F ′

8]. (20)

Lemma 19. There exists a (τ ′2, nh, ns, nh)-solver B2 for StCDH, with τ ′2 essen-
tially equal to τ8, such that

AdvStCDH
G (B2) = Pr[F ′

8].

Proof. The adversary B2 runs a copy of A and a simulation Sim of the ideal
cipher oracle and the random oracles pbkdf and kdf interacting with a copy of
the experiment Exppake-ror

srp’ , all as in Game 8, further modified as follows:

• Initiator instances use the second CDH oracle to get x. Responder in-
stances receiving x sent by an initiator instance use the third CDH oracle
to get h and use the block cipher with key gpw to get y.

• When an initiator or responder instance with associated data ad , pass-
word pw and first two messages x and y would query the kdf oracle,
if a record (ad , pw , x, y, ·, π−1(gpw , y)

pbkdf (pw), k, t1, t2,⊤) exists, we use
(k, t1, t2). Otherwise, we sample (k, t1, t2) r← K×T 2, record (ad , pw , x, y,−,
π−1(gpw , y)

pbkdf (pw), k, t1, t2,⊤) and use (k, t1, t2).

• When the adversary makes a new kdf query (ad , pw , x, y, z1, z2), with
z2 = π−1(gpw , y)

pbkdf (pw), and some responder instance has transcript
(ad , ·, x, y, . . . ) and some initiator instance has transcript (ad , ·, x, y, . . . ),
Sim uses its Strong Diffie-Hellman oracle to check if (g, x, π−1(gpw , y), z1)
is a DDH tuple. If so, B2 outputs z1. Otherwise, Sim samples (k, t1, t2) r←
K × T 2, records (ad , pw , x, y, z1, z2, k, t1, t2,⊥) and returns (k, t1, t2).
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• When the adversary makes a new kdf query (ad , pw , x, y, z1, z2), with
z2 = π−1(gpw , y)

pbkdf (pw), and some initiator instance sent x or some
responder instance with password pw sent y, but not both, simulator
uses its Strong Diffie-Hellman oracle to check if (g, x, π−1(gpw , y), z1) is
a DDH tuple. If it is not, Sim samples (k, t1, t2)

r← K × T 2, records
(ad , pw , x, y, z1, z2, k, t1, t2,⊥) and returns (k, t1, t2). If it is and a record
(ad , pw , x, y,−, z2, k, t1, t2,⊤) exists, Sim updates the record to include z1
and responds with (k, t1, t2). Otherwise, Sim samples (k, t1, t2) r← K×T 2,
records (ad , pw , x, y, z1, z2, k, t1, t2,⊤) and returns (k, t1, t2).

The main difficulty with the simulation is that the underlying game knows
the discrete logarithms of the messages sent by instances, while the simulation
does not. In particular, this means that the simulation does not know z1 for its
own instances.

This difficulty is resolved by using lazy evaluation of the hash oracle input
combined with ensuring consistency in query responses by using the Strong
Diffie-hellman oracle provided by the StCDH problem. Lazy evaluation is done
in the third and fourth bullet points, where we choose consistent values for the
session key without knowing the entire hash input. We do not know the entire
hash input because we have embedded CDH challenges in the protocol messages.

When instances evaluate kdf , we use a blank value for the Diffie-Hellman
secret, and then we need to recognise when the adversary queries the oracle at
the point the instance would have queried it. Since our messages come from the
second and third StCDH oracles, we can use the Strong Diffie-Hellman oracle to
recognize the correct query.

It therefore follows that until B2 stops, it perfectly simulates Game 8 (and
Game 7). It only stops if the event F ′

8 happens. When this event happens, B2
stops and its output is a solution to a CDH challenge.

Since B2 makes queries to the Strong Diffie-Hellman oracle only when queries
to kdf are made, this bounds the number of Strong Diffie-Hellman queries by
nh. Since B2 queries its sampling oracles either for initiator instances or in
response to block cipher oracle queries, we can bound the number of sampling
queries by ns + nh.

Finally, the simulation requires some extra accounting, but the runtime of
B2 and its experiment is essentially the same as the runtime of Game 8.

Conclusion We now observe that in the final game, the adversary has no
information about the session key, so

Pr[Ec,8] = 1/2. (21)

Proposition 17 then follows from equations (11)–(21) and Lemmas 18, 19
and 20.

Lemma 20. There exists a (τ ′3, nu, ns)-password guesser (G,B3), with τ ′3 essen-
tially equal to τ8, such that

SuccRpw(G,B3) = SR8.
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Proof. The adversary B3 runs a copy of A and a simulation Sim of the ideal
cipher oracle and the random oracles pbkdf and kdf interacting with a copy of
the experiment Exppake-ror

srp’ , all as in Game 8, further modified as follows:

• When B3 is notified about the jth password, Sim records (j,⊥).

• When B3 makes a guess query (j, pw) and gets a response ⊤, it replaces
the record (j,⊥) by (j, pw).

• When the block cipher receives a query (gpw , h) for which no record
(gpw , h, ·, ·) exists, the block cipher oracle r r← {0, 1, . . . , p − 1} and com-
putes y r← gr. If some responder instance ever sent y, Sim stops. Other-
wise, Sim records (gpw , h, y, 0) and responds with y.

• When the inverse block cipher oracle receives a query (gpw , y) for which no
record (gpw , h, y, ·) exists, the block cipher oracle samples r r← {0, 1, . . . , p−
1}, computes h r← gr, records (gpw , h, y, 1) and responds with h.

• Initiator instances sample their messages as usual. Responder instances
sample y r← G . If the ideal cipher oracle already has a record (·, ·, y, ·),
Sim stops.

• Suppose an instance with associated data ad , using the jth password and
with messages x and y wants to compute its session key.

– If (j, pw) is recorded, Sim computes the correct Diffie-Hellman se-
crets z1 and z2. If (ad , pw , x, y, ·, ·, k, t1, t2,⊤) is recorded, Sim uses
(k, t1, t2). Otherwise, Sim samples (k, t1, t2)

r← K × T 2, records
(ad , pw , x, y, z1, z2, k, t1, t2,⊤) and uses (k, t1, t2).

– If (j,⊥) and (ad , pw , x, y, z1, z2, k, t1, t2,⊤) are recorded, B3 makes a
guess query (j, pw). If the result is ⊤, it uses (k, t1, t2). If the result is
⊥, it samples (k, t1, t2) r← K×T 2, records (ad ,−, x, y,−,−, k, t1, t2, j)
and uses (k, t1, t2).

– If (j,⊥) and (ad ,−, x, y,−,−, k, t1, t2, j) are recorded, then Sim uses
(k, t1, t2). (Note that unless (G,A) is context-respecting, this could
cause inconsistent results.)

– If (j,⊥) is recorded, but no record (ad , ·, x, y, ·, ·, ·, ·, ·,⊤) or (ad , ·, x, y, ·, ·, ·, ·, ·, j)
exists, then Sim samples (k, t1, t2) r← K×T 2, records (ad ,−, x, y,−,−, k, t1, t2, j)
and uses (k, t1, t2).

• When A makes a new query (ad , pw , x, y, z1, z2) to the random oracle kdf
such that either x or y was sent by an honest instance, then Sim checks if
both (g, x, π−1(gpw , y), z1) and (g, gpw , π

−1(gpw , y), z2) are DDH tuples.

– If either is not a DDH tuple, Sim samples (k, t1, t2)
r← K × T 2,

records (ad , pw , x, y, z1, z2, k, t1, t2,⊥) and returns (k, t1, t2).
– If both are DDH tuples, some responder instance has transcript

(ad , ·, x, y, . . . ) and some initiator instance has transcript (ad , ·, x, y, . . . ),
Sim stops.
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– If both are DDH tuples, (ad , pw ′, x, y, z′1, z
′
2, ·, ·, ·,⊤) is recorded with

pw ′ ̸= pw , and some initiator instance has transcript (ad , ·, x, y, . . . ),
Sim stops.

– If both are DDH tuples and (ad ,−, x, y,−,−, k, t1, t2, j) is recorded
(that is, there is a unique instance with transcript (ad , ·, x, y) that
uses the jth password), Sim makes a guess query of (j, pw). If the
result is ⊤, the record is updated to (ad , pw , x, y, z1, z2, k, t1, t2,⊤).
Otherwise, Sim samples (k, t1, t2) r← K×T 2, records (ad , pw , x, y, z1, z2, k, t1, t2,⊥)
and returns (k, t1, t2).

– Otherwise, Sim samples (k, t1, t2) r← K×T 2, records (ad , pw , x, y, z1, z2, k, t1, t2,⊥)
and returns (k, t1, t2).

We must show that Exppw together with Sim perfectly simulate the exper-
iment and the oracles in Game 8. The only difficulty is that some simulated
instances do not know their passwords. Their initial messages are independent
of the password, so these can be simulated perfectly, though some care is needed
with respect to responder messages, both to avoid collisions in the block cipher
and ensure that we know the discrete logarithm of the requisite group elements.
(We rely on exceptions instituted in earlier games to reject these cases.) If an
instance password becomes known, we can recreate the instance DDH tuples
correctly.

Until the password is known, we cannot know the input to the session key
derivation, which we deal with using lazy evaluation. The adversary may eval-
uate the hash at DDH tuples (which correspond to password guesses), but this
is forbidden for instances with partners and allowed at most once for initia-
tor instances. For responder instances, the adversary will have to point to a
particular query which gives us a guess.

Sometimes, the adversary evaluates the hash at DDH tuples before the in-
stance derives its session key, which Sim notices and turns into a password
guess. Other times, the adversary evaluates the hash at DDH tuples after the
instance derives its session key. Again, Sim notices and turns it into a password
guess. If the guess is correct, any records of lazy evaluation are updated to keep
the simulated hash oracle consistent. The end result is that we make at one
password guess per instance.

It follows that the simulation is perfect, that the password guesser (G,B3)
makes at most nu password queries, and at most one password guess per in-
stance.

Finally, any hash query made by A that allows SR8 to increase corresponds
exactly to a hash query that makes B3 guess a password, so SuccRpw(G,B3) =
SR8 and the lemma follows.

4 Applications
In order to see the utility of our security definition, we want to investigate two
applications of password-authenticated key exchange.
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In the interests of simplicity, we do not go for a fully general definitions
for either application, nor will we use fully compositional constructions. We
choose these particular protocols because they are simple to explain and easy
to analyse, not because they have particularily strong security properties or
are otherwise desirable. Other protocols achieve stronger or different security
notions. We make several remarks along these lines.

Security definitions and proof sketches are in Appendix A.

4.1 Secure Channels
A secure channel protocol is a protocol that provides two-party conversations.
While these may be actual human-to-human conversations, they are more likely
to be computer-to-computer conversations. TLS [24] is one example of such a
protocol. We shall only consider the simplest class of such protocols, where each
plaintext message sent corresponds to a single network message sent. Any such
protocol has three tasks: Establishing a state for a conversation, encrypting
messages and decrypting messages.

Our modelling of secure channels captures establishing a conversation, done
by an initiator and a responder, and then encryption and decryption of messages.
A secure channel is asynchroneous, as usual. We make no attempt to model
the actual transmission of messages. Instead, the network is the adversary.
As earlier, we base our definition on a secure channel definition from a recent
textbook [15], but avoid most of the somewhat baroque complexity in that
presentation.

Definition 21. A password-authenticated secure channel protocol pbmsg =
(P ,AD ,W , I,R, E ,D) consists of sets of plaintexts P , associated data AD and
passwords W , and four algorithms:

• The interactive initiator and responder algorithms I and R take as input
a password pw ∈ W and associated data ad ∈ AD and output either a
state st or ⊥. They alternate between sending and receiving messages,
with I sending the first message and R receiving the first message.

• The encryption algorithm E takes as input a state st and a plaintext m
and outputs a new state st ′ and a ciphertext c.

• The decryption algorithm D takes as input a state st and a ciphertext c
and outputs either ⊥, or a new state st ′ and a message m.

An instance of the secure channel protocol first runs either the initiator or the
responder algorithms to get a state, and then runs the encryption and decryption
algorithms multiple times, each time updating the state. The role of an instance
is 0 if it ran the initiator algorithm, 1 if it ran the responder algorithm. An
instance is accepting if the initiator or responder algorithm output a state.

Our example protocol for password-authenticated secure channels is the
classical cryptographic design, composing password-authenticated key exchange
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with symmetric key encryption. We use symmetric encryption with associated
data, which allow us to keep track of which direction messages are sent and in
which order. This construction is very simple, e.g. encryption and decryption
are independent processes and there is no attempt to communicate how many
messages have been decrypted.

Example 22. Let pake = (K ,W ,AD , I0,R0) be a password-authenticated
key exchange protocol and let sym be a symmetric cryptosystem with plaintext
set P , key set K , associated data set {0, 1} × Z, encryption algorithm E0 and
decryption algorithm D0. The password-authenticated secure channel protocol
pbmsg = (P ,AD ,W , I,R, E ,D) has the following algorithms:

• The initiator and responder algorithms I and R take as input a password
pw ∈ W and ad ∈ AD and run I0 and R0, respectively. If the output
is k, the initiator and responder algorithm output the state (ρ, k, 0, 0),
where ρ = 0 for I and ρ = 1 for R. If the output is ⊥, the initiator and
responder algorithm output ⊥.

• The encryption algorithm E takes as input a state (ρ, k, j0, j1) and a plain-
text m. It computes c ← E0(k, (ρ, jρ),m) and outputs the new state
(ρ, k, j0 + (1− ρ), j1 + ρ) and the ciphertext c.

• The decryption algorithm D takes as input a state (ρ, k, j0, j1) and a
ciphertext c. It computes m ← D0(k, (1 − ρ, j1−ρ), c). If the decryp-
tion fails, D outputs ⊥. Otherwise, the algorithm outputs the new state
(ρ, k, j0 + ρ, j1 + (1− ρ)) and the message m.

It is worth emphasising the plain meaning of the security definition. The
intention is that we give traditional cryptographic proofs to bound the advan-
tage, while we bound the success rate using a password guesser. This provides
the following guarantees (cf. C1, C2 and C3 from Section 1):

• For any conversation started, the other party knows the password and
agrees on the associated data.

• An adversary’s ability to guess passwords is bounded by the number of
sessions.

• When two honest parties successfully start a conversation with each other,
then, even if the adversary knows the password, they agree on the content
and order of messages, up to the last sent messages not arriving, and the
conversation is private, up to the length of the messages.

Proposition 23. Consider the scheme pbmsg from Example 22 based on a
password-authenticated key exchange scheme pake and a symmetric cryptosys-
tem sym. Let (G,A) be a context-respecting (τ, nc, nu, ns, ne)-adversary against
pbmsg. Then there exists a context-respecting (τ ′1, 0, nu, ns)-adversary (G,B1)
against pake, a context-respecting (τ ′2, 0, nu, ns)-adversary (G,B2) against pake,
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context-respecting (τ ′3, ns, nu, ns)-adversaries (G,B3) and (G,B′3) against pake,
a multi-key (τ ′4, nu, ne+nc, ne+nc)-adversary B4 against ciphertext integrity for
sym and a multi-key (τ ′5, nu, nc, ne+nc, ne)-adversary B5 against real-or-random
for sym, with τ ′1, τ ′2, τ ′3, τ ′4 and τ ′5 essentially equal to τ , such that

Advror
pbmsg(G,A) ≤ 2Advpake-ror

pake (G,B2) +
2Advpake-ror

pake (G,B3) + 2Advpake-ror
pake (G,B′3) +

2Advint-ctxt
sym (B4) +Advind-cca

sym (B5) and,

SuccRpake-e(G,B1) ≤ SuccRpbmsg
pbmsg(G,A).

Remark 22. There are a number of ways to build password-authenticated se-
cure channel protocols with stronger security properties. If we use evolving
session keys, we can allow state reveals after a challenge query. We could also
use two-round unauthenticated key exchange to allow challenge queries after a
state reveal, once the instance has recovered. (We do not want to use unau-
thenticated key exchange, but since authentication would have to be password-
authenticated, the only practicable option seems to be unauthenticated key
exchange.)
Remark 23. We emphasise that the protocols we study in this section are chosen
to be simple examples of how our model works, and not suggestions for how to
do password-authenticated cryptography in the real world.

Typically, a password-authenticated secure channel is used between a client
and a server. If the adversary learns the users’s password, pure cryptography
cannot help the server (though things like confirmation messages sent through
independent channels may to some extent work). But the adversary should not
be able to impersonate the server.

The obvious approach is to give servers signing keys. The client and server
then run password-authenticated key exchange, and the server signs the associ-
ated data and the protocol messages.

In the model, we would need to add key generation queries for server key
pairs as well as long term key reveals for both secret keys and passwords. For
authentication, we would require a partner for initiator instances, but not for
server instances. For freshness, we would still require a partner for server in-
stances, but we need not require partner instances for client instances.

For the security proof, we add another game where we reject if a client does
not have a partner. If this changes the game behaviour, it leads to an attack on
the signature scheme.

An alternative approach is to use a mixed-authentication scheme, as dis-
cussed in Remark 19. We leave this for future work.
Remark 24. An added complication is that we want surveillance-resistant cryp-
tography, in the sense that a passive adversary cannot deduce the identities
of communicating partners. Our current formulation does not allow for this,
because agreeing on which password to use (and the related associated data)
happens out of band, which for common use cases means that the information
must be sent in the clear.
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The standard way to approach this problem is to first establish an unauthen-
ticated secure channel. Identifying information is then exchanged, after which
the password authenticated key exchange protocol is run, possibly augmented
as in the previous remark to provide one-sided authentication for the server
that does not depend on the password. The main trick is that the password-
authenticated key exchange protocol needs to be bound to the unauthenticated
secure channel, which is done easiest through associated data. It is also natural
to mix the established session keys, but as Hesse et al. [17] show, this is not
necessary.

For the security proof, we would insert a game where we replace the session
key established by the unauthenticated key exchange protocol by random keys
for instances with partners.

It is an interesting question if the mixed-authentication version of srp’ from
Remark 19 can be modified to support surveillance-resistant cryptography.

4.2 Device Authorisation
Our second application captures the popular paradigm of using a password to
authorise devices to access some resource, which the devices then access at will.
It is common practice not to store a user’s password on their devices in case
a device is lost or otherwise compromised. There are many, many ways to do
this, and we shall describe a very simple method.

Our modelling consists of an authorisation process follows by connecting to
the service. Authorisation is an interactive process between an initiator and a
responder and results in each party getting a token that will later be used to
connect to the service. Connecting to the service is modelled as having a new
conversation with the service. In order to simplify the presentation, we model
starting a new conversation as a non-interactive process. This requires a fairly
strong assumption to achieve meaningful security.

Definition 24. A password-authenticated device authorisation scheme pbauth =
(P ,AD ,W , I,R,H, E ,D) consists of sets of plaintexts P , associated data AD
and passwords W , and algorithms:

• The initiator and responder interactive algorithms I and R take as input
a password pw ∈W and ad ∈ AD and output either a token tok or ⊥.

• The handshake algorithm H takes as input a token tok and associated
data ad ∈ AD and output a state st .

• The encrypt algorithm E takes as input a state st and a message m and
outputs a ciphertext c and a state st ′.

• The decrypt algorithm D takes as input a state st and a ciphertext c and
outputs either ⊥, or a message m and a state st ′.

An instance of the authorisation protocol runs either the initiator or the re-
sponder algorithm to get a token. The role of an instance running the initiator
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algorithm is 0, and 1 for an instance running the responder algorithm. The
token output by an instance has the same role as the instance.

We say that an adversary is nonce-respecting if it does at most one execute
query for each token-associated data pair.

Our construction uses password-authenticated key exchange to get a session
key which becomes the token. Session keys for new connections are derived from
the token using a key derivation function. Each connection uses a symmetric
cryptosystem with associated data just as in Example 22.

Example 25. Let pake = (K ,W ,AD , I0,R0) be a password-
authenticated key exchange protocol and let sym be a symmetric cryptosys-
tem with key set K0, plaintext set P , associated data set AD × {0, 1} × Z and
encryption and decryption algorithms E0 and D0, and let kdf : K × AD → K0

be a key derivation function. The password-authenticated device authorisation
scheme pbauth = (P ,AD ,W , I,R,H, E ,D) has the following algorithms:

• The initiator and responder algorithms I and R take as input a password
pw ∈W and ad ∈ AD and run I0 and R0, respectively. If the output is k,
the initiator and responder algorithm output the state (ρ, k), where ρ = 0
for I and ρ = 1 for R. If the output is ⊥, the initiator and responder
algorithm output ⊥.

• The handshake algorithm H takes as input a token (ρ, k) and associated
data ad ∈ AD and outputs a state (ρ, kdf (k, ad), 0, 0).

• The encryption and decryption algorithms E and D are exactly as in Ex-
ample 22.

Remark 25. This mechanism is also used for session resumption in secure chan-
nel systems, with varying degrees of elaboration.

It is worth emphasising the plain meaning of the security definition. The
intention is that we give traditional cryptographic proofs to bound the advan-
tage, while we bound the success rate using a password guesser. This provides
the following guarantees (cf. C1, C2 and C3 from Section 1):

• For any connection started without either partner token being revealed,
the other party knows the password and agrees on the associated data.

• An adversary’s ability to guess passwords is bounded by the number of
authorisation sessions.

• When two honest parties successfully start a connection with each other,
then, even if the adversary knows the password, they agree on the content
and order of messages, up to the last sent messages not arriving, and the
conversation is private, up to the length of the messages.
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Proposition 26. Consider the scheme pbauth from Example 25 based on
a password-authenticated key exchange scheme pake, a symmetric cryptosys-
tem sym and a key derivation function kdf . Let (G,A) be a context-respecting
(τ, nc, nu, ns, ne)-adversary against pbauth, with kdf modelled as a random
oracle. Then there exists a context-respecting (τ ′1, 0, nu, ns)-adversary (G,B1)
against pake, a context-respecting (τ ′2, 0, nu, ns)-adversary (G,B2) against pake,
context-respecting (τ ′3, ns, nu, ns)-adversaries (G,B3) and (G,B′3) against pake,
a context-respecting multi-key (τ ′4, nu, ne +nc, ne +nc)-adversary B4 against ci-
phertext integrity for sym and a context-respecting multi-key (τ ′5, nu, nc, ne +
nc, ne)-adversary B5 against real-or-random for sym, with τ ′1, τ ′2, τ ′3, τ ′4 and τ ′5
essentially equal to τ , such that

Advror
pbauth(G,A) ≤ 2Advpake-ror

pake (G,B2) +
2Advpake-ror

pake (G,B3) + 2Advpake-ror
pake (G,B′3) +

2Advint-ctxt
sym (B4) +Advind-cca

sym (B5) and,

SuccRpake-e(G,B1) ≤ SuccRpbauth
pbauth(G,A).

Remark 26. There are a number of ways to build authorisation protocols with
stronger security properties. If the handshake algorithm is replaced by a pair of
interactive algorithms, we can get confidentiality even after tokens are revealed,
for instance by using an ordinary key exchange algorithm authenticated using
symmetric cryptography. We can even put public and private key pairs into the
tokens (the initiator and responder need not output identical tokens) so that
compromising the initiator token does not allow an adversary to impersonate
the responder.
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A Applications: Details and Sketches
In these sections, we sometimes denote tuples (s1, s2, . . . , sn) by a bold-face s.

A.1 Secure Channels: Details and Sketches
Security for a secure channel protocol, as defined, is fairly straight-forward. We
want confidentiality, integrity and authentication. We model confidentiality as
real-or-random security, in the sense that the adversary cannot tell if a ciphertext
contains a message of their choice or a randomly chosen message of the same
length. Integrity is ciphertext integrity, which essentially states that an instance
will only accept the ciphertexts sent by its partner, in the same order they were
sent. Authentication says essentially that whenever we establish a conversation,
the password is known to the partner. We could have included authentication
into the integrity notion, but it seems appropriate to discuss the two separately.

Definition 27. Consider an instance of role ρ where the initiator or responder
algorithm using password pw sent and received a sequence of network messages
s = (s1, s2, . . . , sn), it encrypted a sequence of messages mρ = (mρ,1, . . . ,mρ,nρ

)
to ciphertexts cρ = (cρ,1, . . . , cρ,nρ) and decrypted a sequence of ciphertexts
c1−ρ = (c1−ρ,1, . . . , c1−ρ,n1−ρ) to messages m1−ρ = (m1−ρ,1, . . . ,m1−ρ,n1−ρ).
The message transcript of an instance is (ρ, ad , pw ,m0,m1). The network tran-
script of an instance is (ρ, ad , pw , s, c0, c1). (Note that the encryptions and
decryptions may be interleaved arbitrarily, but the transcripts do not record
this information.) The network transcript is accepting if the instance was ac-
cepting.
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The real-or-random experiment proceeds as follows:

1. Sample β, β′′ r← {0, 1}.
2. On the jth password query pw , do:

(a) Record (j, pw) and send j.

3. On the ith execute query (ρ, j, ad), do:

(a) If (j, pw) is not recorded, send ⊥ and stop.

(b) If ρ = 0, start the ith instance as I(ad , pw). When the instance
sends s, send (i, s). Otherwise, start the ith instance as R(ad , pw)
and send i.

4. On the send query (i, s), do

(a) If (i, st) is recorded, send ⊥.

(b) Otherwise, send s to the ith instance. If the ith instance outputs ⊥,
record (i,⊥) and send (i,⊥). If the ith instance outputs st , record
(i, st , 0). If the instance sent a message s′ and did not output a
state, send (i, s′). If the instance sent a message s′ and output a
state, send (i,⊤, s′). If the instance output a state and did not send
a message, send (i,⊤).

5. On the chosen plaintext / chosen ciphertext / challenge query (cp, i,m)
/ (cc, i, c) / (ror, i,m0), do:

(a) If (i, st , l) is not recorded, send ⊥ and stop.

(bcp) Compute (st ′, c)← E(st ,m) and send c.

(bcc) Compute (st ′,m)← D(st , c), record (msg, i, l,m) and send ⊤. If the
decryption failed, update the record to (i,⊥), send ⊥ and stop.

(bror) Sample m1
r← {m ∈ P | |m| = |m0|}, compute (st ′, c)← E(st ,mβ)

and send c.

(c) Update the record to (i, st ′, l + 1).

6. On the reveal query (x, π), do:

(a) If x = msg, π = (i, l) (message reveal) and (msg, i, l,m) is recorded,
send (i, s0).

(b) If x = ltk, π = i (long-term key reveal) and (i, pw) is recorded, send
pw .

(c) Otherwise, send ⊥.

Eventually, the adversary outputs β′ ∈ {0, 1}.

Figure 4: Experiment Expror
pbmsg for the real-or-random game for a password-

authenticated secure channel protocol. The bit β′′ is not used in the experiment,
but is used to simplify the calculation of advantage.
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We require that if the network transcripts of two instances using the same
password have opposite roles and are otherwise identical, then their message
transcripts have opposite roles and are otherwise identical.

Remark 27. Note that the initiator and the responder send messages, but these
are network messages, not the messages that are actually sent between the users
of the secure channel protocol.

The Experiment The experiment is shown in Figure 4. It is mostly straight-
forward. The only curious thing is that a chosen ciphertext query does not
immediately reveal the result of the decryption to the adversary. Instead, the
adversary must explicitly reveal the result. This gives the adversary greater
access to the decryption algorithm, without making the game trivial.

Partnering Two instances are partners if they agree on the network messages
sent as part of setting up the conversation, except that the last messages sent
may not have arrived yet. Note that we require partners to have opposite roles.

Two instances with network transcripts (0, ad , s(0), c(0)0 , c
(0)
1 ) and (1, ad , s(1), c

(1)
0 , c

(1)
1 )

using the same password are partners if both instances are accepting and s(0) =
s(1), or if for some ρ, that instance is accepting and s(1−ρ) is a prefix of s(ρ),
missing only the last message.

Authentication As usual, we would like to require that every accepting in-
stance has a partner, but this cannot work, since the adversary may know or
learn passwords. Instead, we account for this fact by counting the number of
instances without a partner and hoping that this corresponds to the number of
passwords the adversary knows.

Authentication holds if every accepting instance has at most one partner.
The adversary’s success rate is the number of accepting instances without a
partner.

Integrity Integrity is only relevant for instances with partners, and the idea
is that anything that one party receives was sent by the other party. Morally,
what we want is plaintext integrity, so that the message sequence received by
one party is a prefix of the message sequence sent by the other party. We
instead define ciphertext integrity, which anyway implies plaintext integrity via
correctness.

Integrity holds for two partner instances with network transcripts (0, ad , s(0), c(0)0 , c
(0)
1 )

and (1, ad , s(1), c
(1)
0 , c

(1)
1 ), if c(1)0 is a prefix of c(0)0 and c

(0)
1 is a prefix of c(1)1 .

Freshness We model confidentiality using a real-or-random challenge query.
As usual, we must require that challenge queries are only made for instances
with partners. We want to allow the adversary the ability to decrypt chosen
ciphertexts. Because our encryption is stateful, this means that the adversary
must ask honest instances to decrypt the ciphertexts produced by challenge
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queries. But the adversary should not see the result of these decryptions. To
allow for this, we do not immediately return the result of any chosen ciphertext
query. Instead, the adversary will have to reveal the result of each query.

A challenge query for some instance is fresh if the instance has a partner
and any corresponding chosen ciphertext query for the partner instance has not
been revealed.

An execution is fresh if every challenge query in the execution is fresh.

The Definition The notion of security is straight-forward. We want confi-
dentiality of messages, up to message length, captured through the challenge
queries. And we want integrity, which implies agreement on ciphertexts and
their order, up to the most recent ciphertexts not being received. As usual, the
adversary consists of a pair of interactive algorithms, one of which decides the
passwords while the other does the actual attack on the cryptography.

Definition 28. A (τ, nc, nu, ns, ne)-adversary against a password-authenticated
secure channel protocol pbmsg is a pair of interactive algorithms (G,A) that
interacts with the experiment in Figure 4, where G makes at most nu password
queries, A makes at most nc challenge queries, ns execute queries and ne chosen
plaintext and ciphertext queries, and where the runtime of the adversary and
the experiment is at most τ .

The advantage of the adversary (G,A) against pbmsg is

Advror
pbmsg(G,A) = max{2|Pr[Ec]− 1/2|,Pr[Ei],Pr[Ea]},

where Ec is the event that the adversary’s guess equals β if the execution is
fresh, or that the adversary’s guess equals β′′ if the execution is not fresh; Ei

is the event that integrity does not hold for some pair of partnered instances;
and Ea is the event that the authentication does not hold for some accepting
instance.

The success rate SuccRpbmsg
pbmsg(G,A) of the adversary (G,A) against pbmsg is

the number of accepting instances using distinct, unrevealed password indexes
which do not have partners.

Let X be a probability space on W . A simple (τ, nc, nu, ns, ne)-adversary
for X against a password-authenticated secure channel protocol pbmsg is an in-
teractive algorithm A such that (GX ,A) is a (τ, nc, nu, ns, ne)-adversary against
pbmsg.

We now prove the password-authenticated secure channel protocol from Ex-
ample 22 secure. Combining this result with Propositions 10 and Propositions 12
gives us a desired theorem for the overall construction.

Proposition 23. Consider the scheme pbmsg from Example 22 based on a
password-authenticated key exchange scheme pake and a symmetric cryptosys-
tem sym. Let (G,A) be a context-respecting (τ, nc, nu, ns, ne)-adversary against
pbmsg. Then there exists a context-respecting (τ ′1, 0, nu, ns)-adversary (G,B1)
against pake, a context-respecting (τ ′2, 0, nu, ns)-adversary (G,B2) against pake,
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context-respecting (τ ′3, ns, nu, ns)-adversaries (G,B3) and (G,B′3) against pake,
a multi-key (τ ′4, nu, ne+nc, ne+nc)-adversary B4 against ciphertext integrity for
sym and a multi-key (τ ′5, nu, nc, ne+nc, ne)-adversary B5 against real-or-random
for sym, with τ ′1, τ ′2, τ ′3, τ ′4 and τ ′5 essentially equal to τ , such that

Advror
pbmsg(G,A) ≤ 2Advpake-ror

pake (G,B2) +
2Advpake-ror

pake (G,B3) + 2Advpake-ror
pake (G,B′3) +

2Advint-ctxt
sym (B4) +Advind-cca

sym (B5) and,

SuccRpake-e(G,B1) ≤ SuccRpbmsg
pbmsg(G,A).

The idea is that the adversary will have to break the password-authenticated
key exchange protocol in order to break authentication or learn anything about
the session keys. Ciphertext integrity for the symmetric scheme then guarantees
integrity for the conversation. Finally, confidentiality for the symmetric scheme
guarantees confidentiality for the messages. We sketch the proof.

Sketch of proof of Proposition 23 The proof is organised as a sequence of
games. Let Ec,i, Ei,i and Ea,i be the events in Game i corresponding to Ec, Ei

and Ea, respectively, and let τi denote the runtime of Game i.
We start with the usual game where the adversary interacts with the exper-

iment. The adversary’s success rate can be bounded in terms of an adversary
against the password-authenticated key exchange.

The first modification to the game is to stop if any instance ever has more
than one partner. This ensures that authentication holds for every instance.
If this change is noticeable, we get an adversary against authentication for the
password-authenticated key exchange.

Next, we replace the session keys of instances with partners by random
session keys. At this point, we no longer need to care about the password-
authenticated key exchange. If this change is noticeable, we get an adversary
against confidentiality for the password-authenticated key exchange.

We then stop if an instance with a partner ever accepts a ciphertext that
the partner did not send, or accepts it out of order. This guarantees that in-
tegrity holds. If this change is noticeable, we get an adversary against ciphertext
integrity for the symmetric scheme.

Finally, we observe that the resulting game is essentially the real-or-random
game for a symmetric scheme, which we use to bound the adversary’s confiden-
tiality advantage.

Game 0 This game is the adversary (G,A) interacting with the experiment
Expror

pbmsg.
The runtime τ0 of this game is τ .
We immediately account for the adversary’s success rate by construction

an adversary against the password-authenticated key exchange with the same
success rate.
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Lemma 29. There exists a context-respecting (τ ′1, 0, nu, ns)-adversary (G,B1)
against pake, with τ ′1 essentially equal to τ0, such that

SuccRpake-e
pake (G,B1) ≤ SuccRpbmsg

pbmsg(G,A).

Game 1 In this game, we stop if any instance ever has more than one partner.
This requires some accounting, but τ1 is essentially equal to τ0.
In this and future games, whenever an instance has a partner, it is unique.
Let F1 be the event that we stop in this game. It is immediate that Pr[Ea,1] =

0, and we also get that
Pr[Ea,0] ≤ Pr[F1]. (22)

and

|Pr[Ec,1]− Pr[Ec,0]| ≤ Pr[F1], |Pr[Ei,1 − Ei,0]| ≤ Pr[F1]. (23)

Lemma 30. There exists a context-respecting (τ ′1, 0, nu, ns)-adversary (G,B2)
against pake, with τ ′2 essentially equal to τ , such that

Pr[F1] = Advpake-ror
pake (G,B2).

Game 2 In this game, when an instance outputs a state and the instance has
a partner, we discard the key in the state. If the partner has output a state, we
instead use the key from that state. Otherwise, we sample a key from K and
use that.

This requires some accounting, but τ2 is essentially equal to τ1.
In this game, the messages encrypted and decrypted with symmetric encryp-

tion are independent of the password-authenticated key exchange.

Lemma 31. There exists context-respecting (τ ′3, ns, nu, ns)-adversaries (G,B3)
and (G,B′3) against pake, with τ ′3 essentially equal to τ2, such that

|Pr[Ec,2]− Pr[Ec,1]| ≤ Advpake-ror
pake (G,B3),

|Pr[Ei,2]− Pr[Ei,1]| ≤ Advpake-ror
pake (G,B′3).

Game 3 In this game, we stop if an instance with a partner ever successfully
decrypts a ciphertext not sent by its partner, or successfully decrypts ciphertexts
sent by its partner in the wrong order.

This requires some accounting, but τ3 is essentially equal to τ2.
In this game, integrity failures never happen and

Pr[Ei,3] = 0. (24)

Let F3 be the event that we stop in this game. We get that

|Pr[Ec,3]− Pr[Ec,2]| ≤ Pr[F3], Ei,2 = Pr[F3]. (25)

Lemma 32. There exists a multi-key (τ ′4, ns, ne + nc, ne + nc)-adversary B4
against ciphertext integrity for sym, with τ ′4 essentially equal to τ3, such that

Pr[F3] = Advint-ctxt
sym (B4).
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Conclusion We have now bounded Ea and Ei, so what remains is to bound
the probability that the adversary correctly guesses the challenge bit.

Proposition 23 then follows from equations (22)–(25) and Lemmas 29 to 33.

Lemma 33. There exists a multi-key (τ ′5, ns, nc, ne+nc, ne)-adversary B5 against
real-or-random for sym, with τ ′5 essentially equal to τ3, such that

2|Ec,3 − 1/2| ≤ Advind-cca
sym (B5).

A.2 Device Authorisation: Details and Sketches
Security for a device authorisation protocol, as defined, is fairly straight-forward.
We want confidentiality, integrity and authentication for the connections. We
model confidentiality as real-or-random security, in the sense that the adversary
cannot tell if a ciphertext contains a message of their choice or a randomly
chosen message of the same length. Integrity is ciphertext integrity, which
essentially states that an instance of the connection protocol will only accept the
ciphertexts sent by its parner, in the same order they were sent. Authentication
says essentially that whenever we establish a token, the password is known to
the partner, and whenever we establish a connection, the token is known to the
partner.

Definition 34. Consider an instance of role ρ where the initiator or responder
algorithm sent and received a sequence of messages s = (s1, s2, . . . , sn). It has
the transcript (ρ, ad , s).

An instance of the connection protocol first runs the handshake algorithm
to get a state, and then runs the encryption and decryption algorithms multi-
ple times, each time updating the state. The role of the instance is the same
as the role of the token input to the handshake algorithm. Consider an in-
stance of role ρ that encrypts a sequence of messages mρ = (mρ,1, . . . ,mρ,nρ

) to
ciphertexts cρ = (cρ,1, . . . , cρ,nρ

), and decrypts a sequence of ciphertexts c1−ρ =
(c1−ρ,1, . . . , c1−ρ,n1−ρ) to a sequence of messages m1−ρ = (m1−ρ,1, . . . ,m1−ρ,n1−ρ).
The message transcript of an instance is (ρ, ad ,m0,m1). The network transcript
of an instance is (ρ, ad , c0, c1). (Note that the encryptions and decryptions may
be interleaved arbitrarily, but the transcripts do not record this information.)

We require that if two authentication instances outputting two tokens have
the same transcripts, except with opposite roles, and if two connection instances
run with the output tokens have the same network transcripts, then their mes-
sage transcripts are identical, except with roles corresponding to their tokens.

The Experiment The experiment is shown in Figure 5. It is very similar
to the secure channel experiment in Figure 4, but adds queries to establish
connections and reveal tokens.

Partnering Two authorisation instances are partners if they agree on the
associated data and the messages sent, except that the last messages sent may
not have arrived yet. Note that we require partners to have opposite roles.
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The real-or-random experiment proceeds as follows:

1. Sample β, β′′ r← {0, 1}.
2. On the jth password query pw , do:

(a) Record (j, pw) and send j.

3. On the ith execute query (ρ, j, ad), do:

(a) If (j, pw) is not recorded, send ⊥ and stop.

(b) If ρ = 0, start the ith instance as I(ad , pw). When the instance
sends s, send (i, s). Otherwise, start the ith instance as R(ad , pw)
and send i.

4. On the send query (i, s), do:

(a) If (i, tok) is recorded, send ⊥.

(b) Otherwise, send s to the ith instance. If the ith instance outputs ⊥,
record (i,⊥) and send (i,⊥). If the ith instance outputs tok , record
(tok, i, tok). If the instance sent a message s′ and did not output a
state, send (i, s′). If the instance sent a message s′ and output a
state, send (i,⊤, s′). If the instance output a state and did not send
a message, send (i,⊤).

5. On the lth handshake query (hshk, i, ad), do:

(a) If (tok, i, tok) is recorded, compute st ← H(tok , ad), record
(l, i, st , 0) and send ⊤ to the adversary.

(b) Otherwise, send ⊥ to the adversary.

6. On a chosen plaintext / chosen ciphertext / challenge query (cp, l,m) /
(cc, l, c) / (ror, l,m0), do:

(a) If (l, ·, st , ν) is not recorded, send ⊥ and stop.

(bcp) Compute (st ′, c)← E(st ,m) and send c.

(bcc) Compute (st ′,m)← D(st , c), record (msg, l, ν,m) and send ⊤. If
decryption failed, update the record to (l,⊥), send ⊥ and stop.

(bror) Sample m1
r← {m ∈ P | |m| = |m0|}, compute (st ′, c)← E(st ,mβ)

and send c.

(c) Update the record to (l, i, st ′, ν + 1).

7. On the reveal query (x, π), do:

(a) If x = msg, π = (l, ν) (message reveal) and (msg, l, ν,m) is recorded,
send (i, s0).

(b) If x = tok, π = i (token reveal) and (tok, i, tok) is recorded, send tok .

(c) If x = ltk, π = i (long-term key reveal) and (i, pw) is recorded, send
pw .

(d) Otherwise, send ⊥.

Eventually, the adversary outputs β′ ∈ {0, 1}.

Figure 5: Experiment Expror
pbauth for the real-or-random game for a password-

authenticated device authorisation. The bit β′′ is not used in the experiment,
but is used to simplify the calculation of advantage.
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Two authorisation instances using the same password with transcripts (0, ad , s(0))
and (1, ad , s(1)) are partners if s(0) = s(1), or if for some ρ, that instance output
a token and s(1−ρ) is a prefix of s(ρ), missing only the last message.

Two connection instances are partners if they derived their initial state from
tokens output by authorisation instance partners.

Integrity Integrity is only relevant for connection instances with partners,
and as for secure channels, we define only ciphertext integrity.

Integrity holds for two partner connection instances with network transcripts
(0, ad , c

(0)
0 , c

(0)
1 ) and (0, ad , c

(1)
0 , c

(1)
1 ), if c(1)0 is a prefix of c(0)0 and c

(0)
1 is a prefix

of c(1)1 .

Freshness We model confidentiality using a real-or-random challenge query
in much the same way as for secure channels.

A challenge query for some connection instance is fresh if the instance has
a partner, any corresponding chosen ciphertext query for the partner instance
has not been revealed and neither token has been revealed.

The Definition By this point, the definition is a straight-forward exercise.

Definition 35. A (τ, nc, nu, ns, n
′
s, ne)-adversary against a password-authenticated

device authorisation protocol pbauth is a pair of interactive algorithms (G,A)
that interacts with the experiment in Figure 5, where G makes at most nu

password queries, A makes at most nc challenge queries, ns execute queries, n′
s

handshake queries and ne chosen plaintext and ciphertext queries, and where
the runtime of the adversary and the experiement is at most τ .

The advantage of the adversary (G,A) against pbauth is

Advror
pbauth(G,A) = max{2|Pr[Ec]− 1/2|,Pr[Ei],Pr[Ea]},

where Ec is the event that the adversary’s guess equals β if the execution is
fresh, or that the adversary’s guess equals β′′ if the execution is not fresh; Ei

is the event that integrity does not hold for some pair of partnered connection
instances; and Ea is the event that the authentication does not hold for some
instance that outputs a token.

The success rate SuccRpbauth
pbauth() of the adversary (G,A) against pbauth

is the number of accepting authorisation instances using distinct, unrevealed
password indexes which do not have partners.

Let X be a probability space on W . A simple (τ, nc, nu, ns, n
′
s, ne)-adversary

for X against a password-authenticated authorisation protocol pbauth is an
interactive algorithm A such that (GX ,A) is a (τ, nc, nu, ns, n

′
s, ne)-adversary

against pbauth.

We now prove the password-authenticated device authorisation protocol
from Example 25 secure. Combining this result with Propositions 10 and Propo-
sitions 12 gives us a desired theorem for the overall construction.
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Proposition 26. Consider the scheme pbauth from Example 25 based on
a password-authenticated key exchange scheme pake, a symmetric cryptosys-
tem sym and a key derivation function kdf . Let (G,A) be a context-respecting
(τ, nc, nu, ns, ne)-adversary against pbauth, with kdf modelled as a random
oracle. Then there exists a context-respecting (τ ′1, 0, nu, ns)-adversary (G,B1)
against pake, a context-respecting (τ ′2, 0, nu, ns)-adversary (G,B2) against pake,
context-respecting (τ ′3, ns, nu, ns)-adversaries (G,B3) and (G,B′3) against pake,
a context-respecting multi-key (τ ′4, nu, ne +nc, ne +nc)-adversary B4 against ci-
phertext integrity for sym and a context-respecting multi-key (τ ′5, nu, nc, ne +
nc, ne)-adversary B5 against real-or-random for sym, with τ ′1, τ ′2, τ ′3, τ ′4 and τ ′5
essentially equal to τ , such that

Advror
pbauth(G,A) ≤ 2Advpake-ror

pake (G,B2) +
2Advpake-ror

pake (G,B3) + 2Advpake-ror
pake (G,B′3) +

2Advint-ctxt
sym (B4) +Advind-cca

sym (B5) and,

SuccRpake-e(G,B1) ≤ SuccRpbauth
pbauth(G,A).

The idea is that the adversary will have to break the password-authenticated
key exchange protocol in order to break authentication or learn anything about
the tokens. Since we have modelled kdf as a random oracle, then as long as a to-
ken has not been revealed and associated data is not reused (nonce-respecting),
the adversary cannot learn anything about the session key used for a connection.
Ciphertext integrity for the symmetric scheme then guarantees integrity for the
conversation. Finally, confidentiality for the symmetric scheme guarantees con-
fidentiality for the messages. We sketch the proof.

Sketch of proof of Proposition 26 The proof is organised as a sequence of
games. Let Ec,i, Ei,i and Ea,i be the events in Game i corresponding to Ec, Ei

and Ea, respectively, and let τi denote the runtime of Game i.
We start with the usual game where the adversary interacts with the exper-

iment. The adversary’s success rate can be bounded in terms of an adversary
against the password-authenticated key exchange.

The first modification to the game is to stop if any instance ever has more
than one partner. This ensures that authentication holds for every instance.
If this change is noticeable, we get an adversary against authentication for the
password-authenticated key exchange.

Next, we stop if the adversary queries the kdf random oracle with the ses-
sion key from a partnered token where the token and its partner token are both
unrevealed. Because we model kdf as a random oracle, we have now cryp-
tographically separated the symmetric keys derived for connections from the
password-authenticated key exchange. This allows us to use random symmetric
keys as in the symmetric cryptography security experiments.

We then stop if a connection instance with a partner ever accepts a ciphertext
that the partner did not send, or accepts it out of order. This guarantees
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that integrity holds. If this change is noticeable, we get an adversary against
ciphertext integrity for the symmetric scheme.

Finally, we observe that the resulting game is essentially the real-or-random
game for a symmetric scheme, which we use to bound the adversary’s confiden-
tiality advantage.

Remark 28. Note that this proof requires key reveals in the multi-key symmetric
encryption security games. The reason is that while the adversary cannot reveal
tokens after making challenge queries, the adversary may have session keys
derived from tokens and used for encryption and decryption before deciding
whether to reveal or challenge. This means that the experiment has, essentially,
to commit to the symmetric key.

The theorem relating the security of multi-key symmetric encryption with
key reveals to ordinary single-key symmetric encryption is somewhat non-tight,
but it is not very bad.

If we replaced the handshake algorithm with a proper key exchange algo-
rithm, as dicussed above, we could avoid this issue.

Game 0 This game is the adversary (G,A) interacting with the experiment
Expror

pbauth.
The runtime τ0 is τ .

Lemma 36. There exists a context-respecting (τ ′1, 0, nu, ns)-adversary (G,B1)
against pake, with τ ′1 essentially equal to τ0, such that

SuccRpake-e
pake (G,B1) ≤ SuccRpbauth

pbauth(G,A).

Game 1 In this game, we stop if any authorisation instance ever has more
than one partner.

This requires some accounting, but τ1 is essentially equal to τ0.
In this and future games, whenever an instance has a partner, it is unique.
Let F1 be the event that we stop in this game. It is immediate that Pr[Ea,1] =

0, and we also get that
Pr[Ea,0] ≤ Pr[F1]. (26)

and

|Pr[Ec,1]− Pr[Ec,0]| ≤ Pr[F1], |Pr[Ei,1 − Ei,0]| ≤ Pr[F1]. (27)

Lemma 37. There exists a context-respecting (τ ′1, 0, nu, ns)-adversary (G,B2)
against pake, with τ ′2 essentially equal to τ1, such that

Pr[F1] = Advpake-ror
pake (G,B2).

Game 2 In this game, if the adversary queries the kdf random oracle with
the secret k from a partnered token where both tokens are unrevealed, we stop
the game.

This requires some accounting, but τ2 is essentially equal to τ1.
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In this game, from the adversary’s point of view, the messages encrypted
and decrypted with symmetric encryption are independent of the password-
authenticated key exchange.

Let F2 be the event that we stop in this game. We get that

|Pr[Ec,2]− Pr[Ec,1]| ≤ Pr[F2], |Pr[Ei,2 − Ei,1]| ≤ Pr[F2]. (28)

Lemma 38. There exists a context-respecting (τ ′3, ns, nu, ns)-adversary (G,B3)
against pake, with τ ′3 essentially equal to τ2, such that

Pr[F2] ≤ Advpake-ror
pake (G,B3) +

nhns

|K |
.

Game 3 In this game, we stop if an instance with a partner ever successfully
decrypts a ciphertext not sent by its partner, or successfully decrypts ciphertexts
sent by its partner in the wrong order.

This requires some accounting, but τ3 is essentially equal to τ2.
In this game, integrity failures never happen and

Pr[Ei,3] = 0. (29)

Let F3 be the event that we stop in this game. We get that

|Pr[Ec,3]− Pr[Ec,2]| ≤ Pr[F3], Ei,2 = Pr[F3]. (30)

Lemma 39. There exists a multi-key (τ ′4, n
′
s, ne + nc, ne + nc)-adversary B4

against ciphertext integrity for sym, with τ ′4 essentially equal to τ3, such that

Pr[F3] = Advint-ctxt
sym (B4).

Conclusion We have now bounded Ea and Ei, so what remains is to bound
the probability that the adversary correctly guesses the challenge bit.

Proposition 26 then follows from equations (26)–(30) and Lemmas 36 to 40.

Lemma 40. There exists a multi-key (τ ′5, n
′
s, nc, ne+nc, ne)-adversary B5 against

real-or-random for sym, with τ ′5 essentially equal to τ3, such that

2|Ec,3 − 1/2| ≤ Advind-cca
sym (B5).
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