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Abstract. Zero-knowledge shuffle arguments are a useful tool for con-
structing mix-nets which enable anonymous communication. We propose
a new shuffle argument using a novel technique that probabilistically
checks that each weighted set of input elements corresponds to some
weighted set of output elements, with weights from the same set as the
input element weights. We achieve this using standard discrete log as-
sumptions and the shortest integer solution (SIS) assumption. Our shuffle
argument has prover and verifier complexity linear in the size of the shuf-
fled set, and communication complexity logarithmic both in the shuffled
set size and security parameter.

Keywords: Shuffle argument - electronic voting - zero-knowledge.

1 Introduction

Mix-networks are protocols used to hide relations between message senders and
their messages. At the heart of many widely used mix-networks are shuffle argu-
ments that prove that a set of output ciphertexts are a rerandomized permutation
of given input ciphertexts. Shuffle arguments are an essential tool for preserv-
ing anonymity in cryptographic protocols such as electronic voting systems [I],
anonymous messaging systems [28], anonymous cryptocurrencies [15], and single
secret leader elections [7].

Shuffle arguments can be constructed in various ways, such as Neff’s per-
mutation of roots method [24/4], permutation matrices [17], and rerandomizable
CCA-secure cryptosystems [I4]. Recent techniques such as Bulletproofs [T0/12],
Hoffman et al. [22], and Curdleproofs [27] achieve shuffle arguments with log-
arithmic communication complexity and linear prover and verifier complexity.
However, the concrete complexity of Bulletproofs and Hoffman et al. depend
on which sorting circuit is implemented, while Curdleproofs shuffles public keys
(9i,9;")7, into (9;(1‘)’ (g;(i))””ﬂi))?:l, for some randomly sampled r, and as such
do not shuffle ciphertexts. See [2I] for an overview of known techniques.

A recent work by Fleischhacker and Simkin [I6] uses a novel technique to
prove a shuffle of commitments by performing a shuffle as a composition of v
shuffles, then letting the verifier open any v — 1 of them. The technique leads to
very efficient shuffles based on mostly symmetric primitives without any setup



assumptions, but with a noticeable soundness error. While noticeable soundness
error is not ideal in many situations, it can be useful in cases where detected
cheating provers are heavily penalized. Moreover, their shuffle can achieve neg-
ligible soundness by repetition, although communication becomes linear in the
security parameter.

A natural question to ask is whether or not one can achieve shuffle argu-
ments under standard assumptions that are comparable to Fleischhacker and
Simkin [T6] if we allow noticeable soundness error, but can still have logarithmic
proof size if we require negligible soundness.

1.1  OQur Contributions

We propose a framework for communication-efficient shuffle arguments using a
simple random subset checking method. In the basic version, the verifier chooses
a random non-empty subset of input commitments (resp., ciphertexts) as a chal-
lenge, and the prover proves knowledge of a set of output commitments (resp., ci-
phertexts) and its randomizers that correspond to the input commitments (resp.,
ciphertexts). A cheating prover in our protocol will fail to answer this challenge
with some noticeable probability d§, thus by repeating the protocol a small num-
ber of times, a cheating prover can only succeed with a negligible chance. We are
using techniques which will make repeated applications very cheap by batching.
We obtain two versions of a public-coin zero-knowledge shuffle argument either
for commitments or ciphertexts using standard assumptions.

— The protocol ITl%¢ assumes that it is hard to find any non-trivial linear
relations between the input commitments. I71*¢ achieves excellent efficiency
under the discrete logarithm (DL) assumption in the random oracle model
(ROM).

— The protocol Il,.s is somewhat less efficient, but does not make any as-
sumption about the input commitments. However, it additionally requires
the Short Integer Solution (SIS) assumption.

We have minimal setup assumptions, as we only require a Pedersen commitment
key as CRS. See Table [I] for comparisons of our scheme to some recent shuffle
arguments.

1.2 Technical Overview

Many previous shuffle arguments commit to some representation of a permuta-
tion, then prove that it is indeed a permutation, and that the shuffled commit-
ments were obtained from the original commitments by applying the permutation
inside the commitment. We take a slightly different approach that does not try
to include some representation that describes a permutation. The prover has to
show for a randomly chosen subset of input commitments, that it knows a corre-
sponding subset of output commitments. We will mainly focus our attention on



Prover |Verifier |Decrypt |Communicat.(CRS size|CRS Assumption
[10] [O(N) O(N) N exp. |2N +O(logN)|2N x G |Uniform |ROM, DL
exp. exp. xG
[22] [30N exp. |10N exp. |[N exp. [2N 4+ O(logN)|N x G  |Uniform |Kernel-MDH
xG
[27]* [30N exp. [5N exp. |- * 2N +10log N |[N x G Uniform |DDH
xG
|[I4] |72N exp.,|22N pair. |2N  exp.,|12N X  Gq,|2m x Gi,|Uniform |Falsifiable
5N pair. 46N pair. [1IN  x  Gg,|2m X G2
4N x Gr
[2] |11IN exp. |TN exp.,|N exp. |4N x Gy, 3N x|5N x Gy,|Verifiable AGM
3N pair. GQ N x GQ
Iel12NXN + 2[2N  + 2[N exp. [2N +|(N + 1) x|Uniform |ROM, DL,
exp. exp. 2log(NX) +|G Trusted input
2xG ciphertexts
Ises |[3BNA +|26N exp. |N exp. 2N +12x G Uniform [ROM, DL, SIS
5N exp. 281log(NX/2) x
G

Table 1: Comparison of our shuffle argument against state-of-the-art. Exp. stands for exponenti-
ations, pair. for pairings, N is the number of input ciphertexts, m is the number of mixers, and A
is the security parameter. Constant terms are neglected, shuffling is included to prover’s efficiency,
and shuffled ciphertexts are included to proof size.

(*) Note that Curdleproofs [27] does not shuffle ciphertexts, so N depicts the number of public keys
it shuffles; here, no decryption is performed.

constructing a proof of shuffle for Pedersen commitments, but later show that it
can be modified to a proof of shuffle for ElGamal ciphertexts.

Subset-checking idea

Denote a Pedersen commitment to a message w by [w] = h"g" for some random-
ness r and group generators g and h. Let { [wj]}évzl be a set of input commitments
and {[w;]}}_, a set of shuffled output commitments (i.e., there exists a permu-
tation m and a vector r of randomizers such that for each i, [w;] = [tr(;)]h =@,
we also assume that the prover knows the 7 and r).

First, we note that one can treat the commitments {[w;]}}_; as a public key
for a Pedersen multicommitment, assuming that nobody knows any nontrivial
linear discrete logarithm relations between them. More formally, the adversary
cannot efficiently find a non-zero a € Z) such that H;V:l[wj]ai = 1. P| This
makes it easy to apply efficient proof techniques such as Bulletproofs to products
of commitments, because products of commitments will correspond to Pedersen
multicommitments in this perspective. We will expand more on this later on.

Let I C [1, N] be a subset chosen randomly by the verifier and let e € {0, 1}V
denote the characteristic vector of I. If there exists r and a permutation 7 such

® Brands [9] called it the FindRep assumption and its known to be tightly equivalent
to the discrete logarithm assumption.



that [w;] = h"=® [ir(;], then for the subset 7,

N
[Tlwil = [T A= lmy) = h=ier = T [ [dorgo) =
=1

i€l i€l

The right-hand side of this can be considered a Pedersen multicommitment with
the public key h, [w1],. .., [WN]-

We will show that if the prover cheats, there exists many subsets I such
that the prover does not know a randomizer r or a binary vector e satisfying
[Lic/[wi] = A" Hj.\;l[uﬁj]ei. We let the prover prove knowledge of r and e for
this relation using an aggregated range proof (e.g., Bulletproofs), which means a
cheating prover will fail for some challenge subsets I. In the most basic case, as
we will explain later, the prover will not know a suitable r and e for at least i of
subsets. We can make the soundness error negligible by repeating the protocol
a small number of times.

We will show that the soundness error of the basic protocol can be decreased,
which reduces the number of repetitions that we need in the protocol. The strate-
gies we exploit are as follows.

1. The prover additionally proves that the size of I is equal to Zj e;, which
will increase the number of challenge subsets for which a cheating prover will
fail.

2. Instead of having e € {0,1}", we can use some larger challenge set F for
which the verifier can also easily check that the messages in a multicommit-
ment belong to this set. More precisely, the verifier can sample a random
vector e from F' and the prover shows knowledge of how to open Hiv=1 [w;]€
in the basis h, [w1], ..., [ty] such that every element of the message vector
in that multicommitment is a member of F.

One can also flip the roles of {[w;]};L; and {[@;]}}_, and obtain the sym-
metrical case. In fact, we will proceed with the flipped case, due to it being more
realistic that no non-trivial DL relations (or DLRELs, as we will denote them)
are known between the {[w;]}~ ;. In a mix-net, a mixer (a server that shuffles
the ciphertexts) receives {[w;]}Y, from the previous mixer and produces suffled
{[;]}7C, and a proof of the shuffle. If the previous mixer does not collude with
the current mixer, then the current mixer does not know any non-trivial DL
relations for {[w;]}}¥ ;. The same is not true for {[zizj]}évzl, which the mixer itself
generates.

In the basic subset-checking shuffle IT!¢, we assume that the prover knows
no nontrivial DL Relations between the inputﬁ If a prover is able to pass with
at least a certain non-negligible probability, we will be able to extract values

d; j such that [w;] = h"i H;V:l[ﬁ)j]di'j. We will then show that all responses have

to be consistent with these values and that if (di7j)£\”j:1 is not a permutation
matrix, the success rate of the prover is negligible.

5 If non-trivial DLRELs are known between the input elements, there are attacks that
succeed with overwhelming probability.



The full subset-checking shuffle 1T,

For the more realistic case, we may face an adversary that knows DL relations
between the input elements. To overcome such an adversary, our general strategy
is as follows.

1. Use range proofs to ensure that with overwhelming probability, the known
DL relation is linear in nature, with small constants in the linear equation.
We will call such DL relations small. (Note that the range proofs serve a
dual purpose, as they are additionally used for the main argument to show
that the elements of the message vector are members of the challenge set.
Thus, in a sense, we get this first proof "for free".)

2. Ask the prover to pass the basic subset checking argument for various reran-
domizations {h% [w;]}Y, instead of {[w;]}}¥,, where the values {a;} are cho-
sen by the verifier. If the verifier accepts, then either the extractor can ex-
tract a valid permutation and randomness values for the shuffle, or the prover
knows small DL relations for all such given rerandomizations of {[w;]} .

3. Show that a prover that knows small DL relations for all given rerandom-
ization values will break a variant of the SIS assumption.

Firstly, note that not all known non-trivial DLRELSs will be useful to a cheat-
ing prover. Due to a clever use of range proofs, the only useful DLRELs for the
prover are those of the form [[[w;]* = 1, where all the a; are smaller than a cer-
tain bound. Intuitively, the basic attack vector that arises from known DLRELs
is that the cheating prover can use one or more shuffled elements to play the part
of another, and hence substitute elements into the output shuffle undetected.

For example, suppose N = 3 and suppose the prover knows that [w;][ws]? =
[ws]. Then a cheating prover can set [w;] = [wy], [W2] = [we] and [ws] = [0].
Suppose that we are using the set F' = [0,10] for the range proof. Then,
when the verifier sends a challenge I = {1,2,3} (i.e., asks for the value cor-
responding to [w1][ws][ws] in the basis [w1], [2], [W3]), the prover can say that
[w1][we][ws] = [i1]?[w2]3[w3]° and pass verification since 2,3,0 € [0,10], and
thus the range check passes. However, if the adversary instead knew a relation
of the form [w:][ws]'?" = [ws], then the above attack would not work since
the analogous resulting equation would be [w1][ws][ws] = [w1]?[12] 't [103]° and
101 ¢ [0,10]. Consequently, the corrected scheme will work even if the cheating
prover is allowed to know some nontrivial DL relations between the input ele-
ments, provided that at least one of the elements describing the DL relation is
large enough (i.e., not in F') so a range proof will fail.

Secondly, note that the scheme we have currently described, has not paid
attention to the exponent of h. However, in a correct challenge-response, the
exponent of the h must have a specific value. More specifically, we will let the
prover provide v commitments {C%}}_; to all the randomizers {r;}. For each
response to the challenge, the prover must additionally show that her response is
consistent to these commitments {Cj}}_,. In essence, we will be able to extract

a matrix (d; ;);_, whose coefficients will satisfy [w;] = H;il([}%])di,j where the
k E



7 must be consistent with the commitment of rerandomization factors {Cj }}_; -
Since the commitment is binding, we can conclude that 7’; =r;for1<j<N.

Hence, a cheating prover must not only know a non-trivial DLREL between
the messages, but also a non-trivial DLREL between the commitments that
can be denoted by some matrix (d; ;);";—,. Moreover, the matrix d must contain
small elements. Roughly speaking, this is because in order to do the same attack,
the same DLRELs that hold between the messages must now also hold between
the A"™i. A more precise reasoning will be given in the security proofs. We can
use rerandomization with public rerandomization factors to destroy small non-
trivial discrete logarithm relations between the commitments. That is, we would
publicly randomly sample a1, ..., ay, denote [w;]" +— h®[w;] for all 4, and do the
shuffle proof between the {[w;]'}¥; and the {[w;]’ é\/:l. After all, as the honest
prover knows these a;, she can as well do the new proof as the old proof. However,
as the values ay,...,ay are sent after the adversary has chosen {[w;]}, and
{[@;]}}¥,, the adversary’s advantage will significantly decrease.

However, the question of how good one public rerandomization is in getting
rid of small non-trivial DLRELS, is tricky. Here the rerandomization factors will
have to be still known to the prover. Thus, there will still be many nontrivial
DLRELSs that might be known to the prover if she happens to know some on the
original commitmentsﬂ

Fortunately, we will see that the vast majority of these DLRELs will have
at least some coefficients that are large which will cause them to not be usable
as attack vectors, due to reasons that were roughly explained above and will
be explained more precisely later on. The small amount of DLRELs that might
be usable, turn out to be hard to find due to lattice assumptions. However, the
precise values of “too large” and what the lattice assumption gives us, is depen-
dent on a number of parameters. Thus it might happen that if we rerandomize
only once, the adversary might still plausibly find medium-size DLRELs that are
useful for breaking the scheme. Thus it might be necessary to use several public
rerandomizations, say v times, with rerandomization values {alk}f\!f x—1- The
challenge I will be the same for all the rerandomizations and the prover has to
answer them all in a consistent way. Suppose now that the cheating prover will be
able to come up with a small discrete logarithm relation characterized by vector
{e;}N,. To cheat, the {¢;}}¥; has to be a DLREL in all the rerandomizations,
that is, for all k € [1,v], we would have that Hfil(h“’»[wz])cl =1

This turns out to be equivalent to ¢ being a vector with small coefficients
that gives a scalar product of 0 with v random vectors, which we show to be
equivalent to solving a SIS-problem over an exponentially large field. Note that
the soundness of a single test will depend on what set I’ we can use for the range
proof and on the number of rerandomizations v that we do. However, since the
size of the group G is a part of the SIS assumption, just one rerandomization
will be sufficient as long as G is large enough.

" Essentially finding a DLREL that holds both between the original commitments and
the rerandomized ones, is related to solving a linear equation with NV variables with
two equations.



2  Preliminaries

Let A denote the statistical security parameter. Let F denote a finite field. We
denote uniform sampling from a set S by = <% 5. Let [1..N] denote {1,..., N}.
We write f(A) < negl(\) if f is a negligible function in A. By y < A(z;r) we
denote that an algorithm A takes an input x and uses random coins r to produce
an output y. We denote by Sy the set of permutations on N elements. For a
predicate P, let 3"z P(x) denote that there exists exactly n distinct values x
such that P(z) holds.

We denote a commitment of z by [z], and a commitment of x with explicit
randomness r by [z; r]. We use Pedersen multicommitments, where [21, ...,z x;7]
h" vazl g;". For a shuffle argument, we assume that we have two committed
vectors {[w1],...,[wn]} and {[@1],...,[@n]} so that the second vector is a
permutation-and-rerandomization of the first. We assume that the prover knows
the permutation 7 and the rerandomization vector r. Thus, in the case of Ped-
ersen multicommitments, [w;] = [t ;)]h"~® for i € [1..N]

Notation: for an element a of Z,, we denote with |a| the non-negative integer
that measures the distance of this element from 0, that is, if a € [0, 2), |a| = a,
if a € [-1,0), then |a] = —a. For a vector a = {a;}1*,, we denote with |a| :=
max;(|a;|). For any set A, and an element k, we denote by k+ A := {k+ala € A}
and k- A:={k-ala € A}. Also A — A :={a1 — az|a1,a2 € A}. Let P, s ={a €
Zg|Fag, ... ,ar € {0,1},a = >_,_, a;p'} where pis an integer and 3 < p < /+/Z.

For a D that is a n x n square matrix with elements in Z, with rows
DW ..., D™ and E C Z,, we denote

pp.g = Pr[(DW b) € E,Vi € [1,n]|b1,ba, ..., by & E, b= (by,... b))

We defer to Appendix [A] for more definitions of basic concepts.

2.1 Zero-Knowledge Argument

Let Pgen be a PPT parameter generation algorithm that on input 1* outputs
p (e.g., a description of the group or some other setup parameters). A zero-
knowledge argument of knowledge for a relation R is a tuple of efficient algo-
rithms (Pgen, P, V) that satisfies properties of perfect completeness, computa-
tional witness-extended emulation, and special honest verifier zero-knowledge,
defined in Appendix The prover algorithm P and verifier algorithm V
are interactive algorithms and we denote their protocol transcript by tr <
(P(p,x,w), V(x)) where (x,w) € R and p € Pgen(1*). We write (P(p,x, w), V(x)) =
1 to denote that verifier outputs 1 at the end of the interaction. Interactions with
an adversary follow a similar notation. See Appendix for more detail of def-
initions related to zero-knowledge arguments of knowledge.

Our argument becomes non-interactive zero-knowledge when applying the
Fiat-Shamir transform [6].



2.2 Pedersen Multicommitment

Let G be a cyclic multiplicative group of prime order p where the discrete loga-
rithm assumption holds. A Pedersen multicommitment, also known as Extended
Pedersen commitment, consists of a key generation KGen and a commitment al-
gorithm Com. Key generation algorithm KGen(1*,n) samples h, g1, ..., g, +$G
and outputs ck = (h,¢g1,...,9n)- The commitment algorithm Com(m;r) takes
in a message m € Z,; and a randomness r <$ Z;, and outputs a commitment
c=h"gi™ -...-g,". The commitment is opened by revealing m and r which
allows to verify the commitment.

We obtain the standard Pedersen commitment if n = 1. Pedersen multicom-
mitment is perfectly hiding, i.e., m is information-theoretically hidden, and if
the discrete logarithm assumption holds in G it is also binding, i.e., an efficient
adversary cannot open a commitment to two different values.

2.3 Assumptions

Let GGen be an algorithm that takes as an input the security parameter 1* and
outputs a multiplicative group G.

Definition 1 (NoDLRel [10]). We say that the N-NoDLRel assumption
holds respect to GGen if for any PPT adversary A and for all N > 2 there
exists a negligible function u(X\) such that

G + GGen(1Y),g1,..., g8 <5 G, N
! :a;«éO/\Hgi’:l. = u(N).

Pr
a:(a17"',aN)<_A(G7glv'-'agN) i=1

The above is known to reduce to the standard discrete logarithm assumption [9/10].

2.4 Proof of knowledge of Pedersen commitment opening.

It is well known how to do the proof of knowledge of a Pedersen multicommitment
with a logarithmic-size proof using the compressed Sigma protocol approach [3].
The full relation is defined as follows.

RN — (x=ceG,w=(e,{ei}iy) € Z)T)
KoFE C:hegfl“"’gi\[N/\Ck:(hygla---,gN)EGN+1 .

2.5 Inner product argument
An inner product argument is an argument for the following relation.

an  [(x=(ceG,éeGHeGbeZ)w=(xeZ),6€,)):
Rin-prod T c=ho Hz]\il griNE = XL biwi )

K2

where ck = (h,g1,...,9n). One can use known sigma protocol theory [I3] to
describe a sigma protocol for this language with O(N) size last message, then use
the compression technique to make the proof size O(log N). See Appendix
for the full argument.



2.6 Set proofs and range proofs

A set-proof shows that committed elements belong to some structured set F'.

7?/Z(I,N,F_ { ((hygla"'7gN 6@7,7'[,),(7",617...,6]\[ EZq)) :}

set h" vazl gje-j =17 Nej € F,Vj € [1,N]

Note that while showing that the elements of a multicommitment belongs to
some arbitrary set can be quite expensive, for some particular types of sets, the
proofs are very efficient.

A more specific example of a set-proof is a range proof, i.e., the case when
the set is the interval [0, 2% — 1] for some fixed positive integer K. One example
of how to do it is Bulletproofs [10/12].

We note that while F' = [0, 2K —1] is one particular example of an effective set
proof using the Bulletproofs construction, the Bulletproofs construction actually
allows to use the same technique for somewhat more general sets. In particular,
the idea in Bulletproofs is that we prove that we can represent a committed
value a as a = Zfigl a;2" and then show that the a; are bits. However, the same
idea could be used, for example, to show that one can represent a committed
valueaasa=>._, a;p’ for some public value p and then show that the a; are
bits.

3 New sub-arguments and assumptions

Before describing our main construction, we introduce some tools that will be
used in the main protocol. Due to size constraints, we will not be able to present
them in the main body and they will be given in the appendices along with the
necessary proofs.

3.1 Showing that the values and randomness in two commitments
must be the same

Let us call a set of elements h, {g;}}_, in some group a trusted basis if we assume
that no nontrivial DLRELs are known between them. (For example, they were
sampled randomly from a group where a corresponding hardness assumption is
believed to hold.) We call the above set of elements an untrusted basis if we do
not have this assumption about them.

Given a trusted basis h, {g;}?_; and an untrusted basis h, {w;}}_, the ar-

N

gument ITY proves that you know the witness in the relation RY, ..

given below. The full argument can be seen in Appendix
((ha {wj}év:h B7 {gj}évZI € Ga paT)v (Tv €1,...,EN € Zq)) :
RN — N N
samecom hr H w;j =p A hr H g;j -
j=1 j=1

The relation is also known as the linking relation, see Lego SNARK [I1].



3.2 Showing that commitment’s randomizer is the same value in the
exponent of H

Given an element A, a randomly generated group element H, cornrnltment key
h ,J1, - -+, 9N, and a value 77, we need to prove knowledge of r, {ej j=1, such that

hr H 1 g]’ =7, and H" = \. We assume that no nontrivial DLRELs are known

between the H, h {gl * . The relation Rcomrand is shown below. Note that it is
essentially RY . Wlth {w]} _; = 1. The full argument for this relation is

given in Fig. [§]in Appendix [B

{((H,ﬁ,gl7...7gN € G,A€Zy,7),(r€1,....en € Zy)) :}

R 7 e,
hrl_[;\[:lng =TANH =)\

comrand —

3.3 Showing that the (weighted) sum of committed elements is equal
towv

Given a trusted basis ﬁ,gl, ..., gN, publicly known integers aq,...,an, public
value v and a commitment in that basis 77, we need to show that you know
r,{e;}}_, such that iLTH A gJJ = 77 and that Z 1 aje; = v. The relation
R ecomsum 18 given below. The full argument is given in Flg O)in in Appendix [B.5

RN _ ((ﬁ,gl,...,gN§G7(11\[1,...v,aN,vEZ]g,T),(r,el,...,eNeZq)): .
comeum | 9;] =TAD j_1ai6; =0

3.4 Showing that the messages in several commitments are the same

This is a slight variation of a previous primitive. Here, we are given v commit-
ments {p; }}_;, vN + v basis elements {g; ; };;,Zz\lr,jzp {hi}¥_; where no nontrivial
DLREL is known between these. We are asked to show that the prover knows
{ri}i_, and {e;}}_, such that p; = hj’ H] lg” We assume that the prover
has already shown that she knows how to open the p; in these respective bases,
we just need to show that the elements are the same. Note that it is essentially
a generalization of RY, . The protocol for showing the following relation is

discussed in Appendix [B

((hh-~-7hv791,1,91,2,...,gv’N €G7p17~~'7p1))7
Ri\;memes = (rl"'wrNa]eVl, .. EN cZ )) :
pi =hit H] 1g”,Vz € [1,v]

3.5 Additional assumptions

Definition 2 (Shortest Integer Solution [3]). Letay,...,a, € ZY be uni-
formly randomly sampled. The SIS, v ., 1-assumption states that it is hard for an
adversary to find a vector b = (by,...,byx) € ZV such that (b,a;) = 0 (mod q)
for all j € [1,v] and |b;| < L for all i € [1, N].

10



We note here that usually in this definition the field size ¢ is relatively small
(usually quadratic in the security parameter) and thus v needs to be approxi-
mately the size of the desired security parameter. In our case, however, the field
size is exponentially big, and N may be large. The case of a big ¢ and N has
been studied before, and it has been shown [I8/g], that even if v = 1 (i.e., 1-
dimensional SIS), one can show it to be as good as classic lattice assumptions,
provided that ¢ > L -y/NAlogA and N > Aloggq. Thus it seems plausible that
even in our case, if we picked a large-enough prime ¢ and assume a large N,
v = 1 would suffice. However, our design also allows to choose a larger v without
much extra cost. Thus the choice of v is a matter of preference, depending on
which version of SIS-in-a-large-field one uses.

To describe our final assumption, we must first define "small" discrete loga-
rithm relations. Thus, we come to the following definition:

Definition 3 (NoBounded-L-DLRel). For a set of elements {gi,j}fv:’ijzl we
say that the (N,v)-NoBounded-L-DLRel property holds for an adversary A if
there exists a negligible function (\) such that

a£0Alall <L

Pl = (0} € AG o} o) T 0 e | O
i=1

]

Note that this is actually not yet an assumption, but a property of a set. We
are merely introducing the language so that we would be able to say later that
a given set has this property.

Proposition 1. Let G be a group with order q and assume SISy n ., 1 holds.
Let the set {g11,...,9n80} C G be obtained the following way. Let g,h € G be
chosen in such a way that no DLRELs are known between g and h. The adver-
sary A picks a',...,d)y,b1...,by. Then, c11,...,¢1,N,C21-..,Co,N are picked
uniformly at random from [0,...,|G|—1]. We set g; j < h% i gb. Then (N,v)-
NoBounded-L-DLRel property holds for A.

Note that here we essentially assume that the prover not only knows all the
committed messages and randomnesses, but has picked them herself. In practice,
the prover likely has much less knowledge and power over the situation, thus she
will not be able to find short DLRELSs, if our assumptions hold.

4 The main technique

4.1 Basic shuffle

If we assume that the prover knows no DL relations between input ciphertexts,
then we can obtain the basic shuffle argument I7'*¢ depicted in Fig. [1} The
argument is very efficient, as we mostly need s range proofs that can be batched.

Using Bulletproofs, the verifier only needs to perform 2N + 1 exponentiations.
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Prover({[wi]}XL1, {[@:]} 1, h, g, Verifier ({[wi] }iL1,
w={m, {ri}/1}) {[w@:]}iL1, b, g)

. N
Prove: (71_[%1[101] , — Zrl) € R%i}g
[T2ilwi] =

Repeat the following algorithm x times in parallel, batched:

(a1,az2...,an) (a1,az...,an) «s FN

N

Set : 11 = H[wz]“t

i=1

N

r era,rl(j), Prove: ((h,[w1],...,[wn],71),
j=1

ej ¢ az-1(;),7j € [1,N] (' e1,.. .,eN)) € 'Rfjt’N’F

Accept if all proofs go through

Fig. 1: The basic shuffle argument I7%%e.

Sscs

Theorem 1. Let F be {0,1} and T= %. Suppose that it is hard for the prover
to find a nontrivial DLREL between h, {[w;]}}\.,. Then if the verifier accepts in
I1'te with probability at least (T + )" for a non-negligible €, there exists an
extractor that extracts a valid permutation and rerandomization factors.

Proof (Sketch). It is easy to see that the theorem claim is equivalent to the claim
that one single test has a success chance that is T'+ ¢ for a non-neglible . Thus,
let us consider the following rewinding experiment.

For all t =1,..., N, we argue that with polynomially many queries we can
obtain two challenge vectors aq ¢,...,a¢¢,...,aneand a1, ..., ae e +1,...,an,
for which the verifier accepts, that only differ at the ¢-th coordinate. This follows
from Lemmal3|from which we have that we can obtain two challenge vectors that
only differ on the tth position, and as the challenge elements are bits, they can
only differ by 1. We can extract for both of challenges the values (1}, {€],}_,)
and (ry, {ef, ;vzl) respectively by using the extractors of the set proofs.

N gl = B TTY A A N s taie — prd TV e,
Thus Hi:l[wi] be=h" Hj:l[wj] i+ and [y Hizl[wz] =R szl[w]] it

Denote d; ; := €, — €, and r; := r} — r{. Dividing the second equation by the
first one we obtain [w;] = A" Hj.vzl[wj]dt«f. Let D be the matrix {dm}é\i%:l-
Note that all elements of D are either —1,0 or 1.

12



Now, take any successful response to a challenge {a;}X,. We can extract
T, {ej}é»v:l from it such that vazl[ﬁ)l]“ = h" H;V:l[wj]ej. On the other hand
[Tl =TI (e TS fuy) o) = B3 oens [T faog] S s,

Now, because we assumed that no nontrivial DLRELSs are known between the
[w;] it follows that for all j, we have that e; = Ziv 1 aid; j. On the other hand
ej € F'. Thus the prerequisite for a successful answer to the verifier accepting is
that Zf\; a;d; ; € F. Thus, if the verifier happens to pick {a;}Y ; in such a way
that Zil a;d; ; € F, then the verifier will not accept. Thus it must hold that
T < pp,r by the definition of pp .

Now, it will suffice to show that if D is not a permutation matrix, we will
have that pp r < T'. We note that as the first step, in the KoE-proof, the prover

has to show that she knows a R such that h® = M This implies that

175, [w;]
N N Tt Tt ]\i i, ]
WL ;) =TI, ] = TT, (b7 TI5L fwy) %) = hESare [T wy )2 e
Thus, we have that for all j € [1, N] we have that ZZ 1 ” = 1. Now the result
follows directly from Lemma as that gives us pp p < 3 7 < T. O

4.2 Challenge-Response subargument

Our full shuffle argument will have the following part — the main part, where
some preparations are done for the subargument ChalResp, which is then called
k times with two variations. The argument will essentially be a random challenge
from a challenge set and a response, with the response being mostly proofs of
different types. The argument will allow us to extract a unique response. We will
run the argument for two different challenge sets.

Lemma 1. Consider the Ilchgiresp argument depicted in Fig. @, and assume
that no nontrivial DLOG relations are known between H, h, g, ck and the {ck;}1_;.

Let there also be a extractor who is given {rik},ﬁ’l\gt 10k}, such that

these satisfy Cy, = h% Hivzl 9" Denote [t ] := }[wt} Let the first message
3

of the Verifier be some (b1,...,bn) where each b; € F'. Assume that the Verifier

accepts. Then the extractor can extract {ej};v:l, which satisfy Hj-vzl[wj’k]eg =
Hiil [wt,k]’bt. Additionally, e; € F for all j and Zjvzl ej = Zivzl be.

Proof. (Sketch). Assume that the verifier accepts the argument IIcpqiresp. Firstly,
the verifier accepts the arguments HconLrand? i.e., for k € [1,v] the prover pro-

vides accepting arguments for the relation (H, hAk,gl,k,...,gN,k,)\I,k,TLk) IS

/ _ ~ Tk €k
Rcommnd Thus we can extract 7}, and (eq 1, ..., e, n) such that 77, = hy szl 9%

for all k and H"» = Az x. Similarly, since the verifier acccepts IT.V for

samemes’

(hi,.. ., hy, 1, Ly N, T, 1,---,TI,k), We can extract 7y, and (ef,...,€)) such

that 77, = = hy, " H;v_l 9; k for all k € [1,v]. Combining these we have that if for
some ej, # e; or rj, # ry, then we have broken the DLOG-assumption for the

gj.k- Thus we have that 775 = g © vazl gje]k for all k and H™ = ALk

13



Next, we have that for all &k, the verifier accepts I ;'j gmd went through, i.e.,

for (Cx, A1k, H, (b1,...,bn)) € RN for k € [1,v], we can extract &g and

1n prod
Ry, such that C, = ho% Ht 9y ”", and A\rp = HX5 5Bl Qur extractor
knows the values {r; ,{3},C 1t=1> 10k }i—1 such that Cj = ROk Hi\il g;"". Due to
the nontrivial DLOG property of (h,{g:}/_;) we have that R;, = r,, and
’ N ’
0 = 0y, for all k and ¢. Hence we have that H™ = A\;, = HX=1%"tk and thus

N
T, = Z berp - (1)
t=1

We also have that the ITY _ argument for the relation

N

(hﬂ {[wj,k]}évzlv 37 {gj,k};vzlﬂ H[wt]bt ’ TI,k) € Ré\(]zmecom
t=1

is accepted. Thus we can extract the 7, and dj ; such that

N N
_ , -
Tk d.‘/ _ ~ b,
W ][ lw )™ = [ [l
=1 t=1
and
N _
2 e di.j
h"* H gj,kj =TIk
j=1
Thus

’

r k, ~ 7 €j

’“Hgg == T
Jj=1

for all k. Hence 7, = rj, and € = di ; for all k. Thus
N N
prk [T lwgl s = ] Tl
j=1 t=1

We have that r}, = Zivz 1 bert j, and thus this is equivalent to

~ N N
th:1 birt,k H[wj,k]Ej = H[wt]bt
j=1 t=1
or
o ' el al [ﬁ)t] b ~ bt
[t =TT (7, ) = LTl
j=1 =1\ t=1

We have thus shown the first part of the claim. Now we have to show that the
e; € F.

14



We also have that the range proofs are accepted. More specifically,

((f;lvgl,la --+»3gN,1, TI,l)) € R%éij’F'

Thus we can extract {7}, {d}}}_, such that

N

~ 7 d’,

h [[gi=mandeF .
j=1

We have that
N N,
. : N ¢
hq I | gj,Jl =771 =h" | | gj,]l
=1 =1

Thus €} = d; where d; € F'. Hence the second claim is proven.

Also, the verifier accepts I

comsum)’

ie.,

N
(hh (gl,la S 7gN,1)v (17 L) 1)7th77—[,1) € Ré\(f)msum .
t=1

_ = ~rl N d -
Thus we can extract ¥ and d} such that 771 = My szl g;) and Zj d; =

Zivzl bs. By previous equalities, we have that

thus we have that d; = d_; Thus we also have that
N
Sh=h
i t=1

4.3 Main body of the shuffle argument

We will now describe our full construction, along with explaining why we are
using each part. Essentially our construction is a generalization of the simple
version. We first have to do some preparations, and then we will run two sets
of the ChalResp protocol x times using different types of challenge sets. For
preparation, we will need to compute intermediate commitment keys on v parallel
public rerandomizations. E|

8 The number v here will depend on our SIS-assumption. Essentially, if a cheating
prover wants to use some known discrete non-trivial relation between the inputs,
the relation has to be "short" and same across every rerandomization, meaning that
effectively using it would break the SIS-assumption. We will expand on this more
formally later.
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’ N, N, ~ N
Prover({[wi,k}}i:l,kzb {aiyk}izl,kzl’ {[i]iz1s
h7 g, Cka Zq: F7 v, {Ck}Z:h {hjk}Z:h {giak}ﬁ\illj,k:l)

w = {m {ri}ile, {rin} iy e {06301})

Veriﬁer({[wi,k}}ﬁiik:p {ai,k}?g,kﬂ
{[wl}}i\ila h7 g, Zl]7 F7 v, {CK}ZZM
{i{k};é:lv {glk}i\lel)kzl)

(b1,...,bn)

€; (*bﬂ.(j), ]: 1,,..,N
in parallel, for k € [1,v] :

N

’

T — E bir;
i=1

)\j,k — H™*

N
Ay 1197 {7k} k=1, { k=1

j=1

(r;k,dk)) S R?k’N
Prove: ((}{1, G115 -

in-prod

(7‘1,61,...,61\])) ER

(7’1,617 .. .,61\1)) S Ri\gmsum

(b1,...,bn) s F

Prove: ((h7 {[wj,k]};'\’:h ilv {gj,k}év:h pI, Tf,k)v
(rg,e1 .. .,eN)) eRYN o eom for k € 1, ]

Prove: ((h}, ces R g1 e  GN s TI L ey TR
(ri,...,ro,€1.. .,eN)) ERN mes

Prove: ((H, f{k,gl,k,~--79N,ka/\1,ka71,k)a
(rg,ei,...,en € Zq)) e RN una for k € [1,v]

Prove: ((Ck, A1k, H, (b1,...,bN)),
for k € [1,v]

VIN.1,TI),

N
Prove: ((hjl? (91717 e agN)7 (1’ R 1)azb’i77—1)a
=1

Accept if all proofs go through.

Fig.2: One round of the shuffling argument ChalResp (without the random oracle,

linear communication of random elements).

Next, the Verifier picks rerandomization factors {a; 1} ,,...,{a;,}, and
a number of random trusted bases sends them to the prover. The Prover and
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Verifier both compute [w;k] < h%*[w;]. The prover also computes 7; < 7; —

ar—1y fori=1,...,N;k=1,...,v and commits to these with commitments
C4,...,C, which she sends to the Verifier. The Prover shows that vazl [w;k] =
[TV, [drk] for all k where [ty ) = }E L The [w],] and the [wy] will be

our main building blocks. The fact that thelr products are the same will be an
important tool as it will allow us to show that in the extracted matrix, the sum
of all rows will be 1. The point of the commitments C; is that they will help us
to argue about [y ] and [wy k] instead of [w;] and [wy].

After that they will do two types of ChalResp protocols, one where the chal-
lenge set will be an interval and another where it will be P, ;. The reason for the
two types of tests is that it is much easier to extract from the interval, however,
the P, r will give much more efficient results.

Fine-tuning the ChalResp protocol

The prover will send N random elements {b; }N from the challenge set F'. In the
simpler version, the prover would show that she knows how to open the product
pr = vazl [;]% in the basis h, {{w;]}~ . However, here we will want to do all our
subproofs on a trusted basis, because a number of them simply would not work
on an untrusted basis. Thus, at the first step, we want to move to that trusted
basis (h, {gjﬁk}évzl). An honest prover would know e; = b.(;) and randomizers

TR = Zfil bir;’k such that h™ HN 1[w; w) = pr- Instead of showing that, she

will produce 771 = l{krk H?le gje-j, show using the 1T argument that the

samecom

values of 77, when opened in basis h, {g; 1} j=1 are the same as the values when

p opened in the basis h, {[w;k]}évzl would be and then proceed working with
71, and the trusted basis.

For the SIS-arguments to work, the response to the challenge {b;}~ must
be the same in every public rerandomization, which can be guaranteed usmg the
argument Hsamemes

A cheating prover might be tempted to pick the rerandomization factors rg’ &
in a dishonest way. Remember that because a prover might know the contents of
the messages, the fact that the secret rerandomization factors are a crucial part
of the protocol. The arguments I1Y ~  and ITY_ proa force the rerandomization
factors to be exactly what is in the commitments CY.

Now the conditions are set that we may run the actual range proof on the
challenge value 7; and the basis (lil,gm, ...,9n1,7r). Note that we do not actu-
ally have to run it on v parallel rerandomizations because it has been previously
proven that the committed values will be same for all of them, thus we only need
to do this for one of them.

Finally, the IT.omsum argument makes it sure that Zivzl b; = vazl e;, which
will allow us to show that in the extracted matrix, all columns must sum to 1.
The fact that both all rows and all columns must sum to 1 will be an important
part of the proof that the extracted matrix must be a permutation matrix.
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K+1
Theorem 2. Let p,2 < N. Suppose that the SISq,N,v,(N+1)~(Z{=O o) holds.

If p is odd, then let 2X < B. If p is even, then let 2K < p—2. Let T =
min{2%, (8)7}. The protocol depicted in Fig. @ has (+ + €1)" + ex-witness-
extended-emulation where €1 and e are negligible.

Proof given in Appendix [C]

One can pick p and f accordingly to the SIS-bound and get the respective
soundness error of one round according to that.

For example, if (N + 1)225-SIS holds, then one can take p = 18, K = 4,
f = 6, check that (N + 1), 18" < ( +1)225 and obtain that one round
of ChalResp has a soundness error of ~ =. Thus then, one can take k = %
If (N + 1)255-SIS holds, then one can take p =66, K =6, f =29, check that

(N+1)>,_,66" < (N + 1)25% and obtain that one round of ChalResp has

a soundness error of = @ Thus then, one can take k = %. To simplify the
analysis of efficiency, we take x to be /\/4.
Finally, by the completeness and HVZK of the sub-arguments, we obtain

security of the full shuffle argument.

Theorem 3. Let k = A/4. Then the shuffle argument in Fig. @ is perfectly
complete, (2=*)-WEE and special honest-verifier zero-knowledge.

4.4 ElGamal shuffle

Suppose that the prover instead wants to prove the correctness of an ElGamal
shuffle. Let Rgl’g’h be the shuffle relation for Elgamal ciphertexts defines as

RN,g,h:{((C {(cig, i)}y, O = {(Gin i) Hly), (m {ri} i) :WESA}.

EBlg Ci1 = Ca(i)1 - GO N Cig = Cr(i)2 - KT for i=1,...,N

We will in the appendix show that using an extra random challenge n and
setting [w;] := Ci7lc?,2 and [w;] := 6231622’ and the new h as gh", we can obtain a
proof-of-shuffle of ciphertexts with practically no extra costs. For more details,

see Appendix

Theorem 4. Let v > 2. Let kK > 2. If the underlying shuffle argument for

2
commitments has a- WEE, then the argument given in Figure is a (a+ NT)'
WEE proof-of-shuffie for ElGamal ciphertexts.

4.5 Efficiency

We discuss the efficiency of the sub-arguments, one round of the shuffle argument
(with noticeable soundness error), and the full shuffle argument (with negligible
soundness error) in Section For a shuffle argument that achieves noticeable
soundness with soundness error 1/16, one can take IT;.s with v = k = 1. Based
on the discussion following Definition [2| to achieve negligible soundness with
soundness error 2~ we can take v = 1 and x = \/4 assuming N is large.
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Prover({[wi]};21, {[wi]}i11, b, g, Verifier({[wi]}/1,,
quKvU’WZ{ﬂ-7{Ti}£V:1}) {[wi}}ijilah’gvzqu’v)

(al’l’al'z“”aN*"’) (a1’1,a1,2...,a1\7,v) 3 Zq

N ~ AN N, ~
HAgibmn bz Agindhiiems 1 {gi b, R HL {ginhoY ey <5 G

Both for i € [1,N],k € [1,v] :

[w; 1] < h**[wi], ki, < (hi, {gik}2o1), ck < (b, {gi} 1)

Tig S Ti — Qr-1(;)5 fori=1,..., N
L P AR /8
N .
Ck%héng;i’k Cr,...,Cy
i=1
N .
Prove: ((Ck, < Ht:l[lgj]v —h,(1,...,1)),
(Hj:l[wj})h g=1 %0k
(rik,Ok)) € R;':_]Zmd for k € [1,v]

Repeat the following algorithm x times in parallel, batched:

Chal Resp({{wi k]2 jmr fain b5 oy, {0610 hog, ok
Z4,[0,2% —1],0,{Cx}iz1, {cki}iz1)
(m, {Ti}ﬁv:h {Ti,k}iv:’;},k:p {5k}2:1))

Chal Resp({{wi k]2 goro fain b5 e, (03]}, g, ck
Lq, Py, £, {Ck}Z:h {ckk}Zzl),

(m, {radile, {ran il o, {06301))
Accept if all proofs go through

Fig. 3: The full shuffle argument 7.

However, to directly use Theorem [] we will conservatively take v = 2 and x =

A/4. We leave as an open problem how to prove soundness for smaller values of

v and k.

Note that the prover and verifier complexity is dominated by multi-exponentiations

of width N (or more), which can be optimized using Pippenger’s algorithm [25]

to get a log N speedup. Verifier’s complexity is much more efficient than prover’s

due to the use of batching techniques on repetitions of the same arguments. Addi-
tionally, random integers and group elements sent by the verifier can be replaced

by a single random seed that is then fed to a pseudorandom generator.

19



Argument |Prover (exp) |Verifier (exp) |Communication |[CRS size
g,z 3Nv 2N 2log(Nv) x G (N+1)xG

IR o ecom 6Nv 2N 2log(Nv) x G (N+1)xG
X emes 3Nv 2N 2log(Nv) x G (Nv+N+1)xG
al v 3Nv 2N 2log(Nv) x G (N+1)xG
ITin-prod 3Nv 2N 2log(Nv) x G (N+1)xG
2™ F o) 128 2N 2log(Nv) x G (N+1)xG
IR cum 8Nv 2N 2log(Nv) x G (N+1)xG
ChalResp 35Nv+ N 12N 14log(Nv) x G (Nv+N+1)xG
Basic shuffle|12Nk + 1 exp. |2N + 2 exp. 2N + 2log(Nk) +|{(N+1) x G
ITtite 2xG

Full shuffle| 70Nvk+ N (v+3)|26N exp. 2N+28log(Nvk)x |2 x G

Hes exp. G

Table 2: Efficiency of our shuffle argument and v runs of the sub-arguments.
Exp. stands for exponentiations, pair. for pairings, NV is the number of input
ciphertexts, and « is the number of repetitions of ChalResp. Constant terms are
neglected, shuffling is included to prover’s efficiency, and shuffled ciphertexts are
included to proof size.
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A Omitted Preliminaries

A.1 Schwartz-Zippel Lemma

Lemma 2 (Schwartz-Zippel lemma [26129]). Let f(X1,...,X,) be a non-
zero polynomial of degree d over a finite field F and let S CF. Then,

d
Pr[f(:cl,...,xn):O:xl,...,xn<—$5]S@_

A.2  Zero-Knowledge Argument

Let Pgen be a PPT parameter generation algorithm that on input 1* outputs
p (e.g., a description of the group or some other setup parameters). A zero-
knowledge argument of knowledge for a relation R is a tuple of efficient al-
gorithms (Pgen, P, V) that satisfies properties of perfect completeness, compu-
tational witness-extended emulation, and perfect special honest verifier zero-
knowledge, defined below. Prover algorithm P and verifier algorithm V are inter-
active algorithms and we denote their protocol transcript by tr < (P(p, x, w), V(x))
where (x,w) € R and p € Pgen(1*). We write (P(p,x,w),V(x)) = 1 to denote
that verifier outputs 1 at the end of the interaction. Interactions with an adver-
sary follow a similar notation.

Definition 4 (Perfect completeness). An argument is perfectly complete if
for any (x,w) € R,

Pr [p — Pgen(1>‘) : (P(p,x,w),V(p,x)) = 1] =1.

Definition 5 (Witness-extended emulation). An argument has witness-
extended emulation with knowledge error k, denoted k-WEE, if there exists a
PPT extractor Ext such that for any PPT A, |} — &V¢| < x(1*), where

ef® = Pr [p + Pgen(1%), (x, state) < A(p), tr < (A(state),V(p,x)) : A(state, tr) = 1],

eve _ Py {p « Pgen(1%), (x, state) < A(p), (tr,w) + Ext ) (p ) :} '

Al(state, tr) = 1 A if tr is accepting then (x,w) € R

Definition 6. An argument has special honest-verifier zero-knowledge (SHVZK)
if there exists PPT simulator Sim such that for any adversary A, |e3 — e2¢| <
negl(\), where

= [P PRI o ot o) PG5 Vo)
0o — )

(x,w) € R A A(tr, state) =1

& _pp|PE Pgen(1?), (x,w, r, state) < A(p), tr < Sim(p, x,7) :
R (x,w) € R A Altr, state) = 1 '

Note that we allow A to choose random coins v of the verifier.

24



Moreover, we say that an argument is public coin if all of verifier’s messages
are uniformly random bit-strings. This is useful since it allows to make the
argument non-interactive with the Fiat-Shamir heuristic.

Note that our definition of witness-extended emulation can be seen as a gen-
eralization of the more standard definitions of knowledge soundness and special
soundness. In particular, Lindell [23] showed that if an argument is knowledge
sound with negligible knowledge error, then there exists a witness-extended em-
ulator for the argument. Additionally, Groth [20] showed that witness-extended
emulation is implied by special soundness.

A.3 Compressed Sigma Protocols

We can use compressed sigma protocol theory [5] to transform a sigma protocol
with O(N) size last message to one with O(log N) size. The main idea is that in
many Sigma protocols the verification equation applies some linear map to the
last message z. However, instead of sending z, the prover can prove knowledge of
z which satisfies verification. The latter can be done in O(log N) communication
complexity using the recursion techniques introduced in Bulletproofs [10].

Let ck = (h,g1,...,9n) be a Pedersen commitment key. Let M : ZIY — Z,
be a linear map. We define a relation for linear maps as follows:

N
RCLkn]LV = {((07/\/1), ec Zf,v) e = pM©) Hgf}

i=1

Linear map argument of [5].

Let M, : Zg/Q — Z, and Mp : ZZZ,V/Z — Z, be the linear maps M (X) =
M(X||0x/2) and Mpg(X) = M(0y/2||X). Clearly, for any x,y € Zé\fﬂ, it holds
that M (x) + Mg(y) = M(x|ly).

In Fig. 4] we recall the linear map argument of [5] with proof size of O(log N).
The argument is not zero-knowledge (or even honest verifier zero-knowledge),
but it has knowledge soundness and logarithmic proof size. In our case, zero-
knowledge is not important since the last message z is public in a Sigma protocol.

B Full Description of Sub-arguments

B.1 Knowledge of committed message argument

The argument depicted in Fig. [5] proves knowledge of the message and random-

ness used in a commitment, formally defined as relation RCK"O]};

It is well-known that the argument I7 ;go% is perfectly complete, special sound,

and perfectly SHVZK. In particular, the simulator works as follows:
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Prover ((c, M), e)

Verifier(c, M)

......................................... Iflel=1...cooi
e=e Check RM(©)g¢ Ze
......................................... If el > 1. o
er < (e1,...,eny2)
€eR < (e(N/2)+1,~~~7€N)
N/2
Mp(er) er,i
we B [T g0
i=1
N/2
v« pMr(er) H ngJi U, v
i=1
z T <38 Zgq
e, < er+x-er
Both: ¢ ¢ u-c" - 0v"
M(X) ¢ c- Mp(X) + Mr(X)
cke = (g1 9(N/2)415 s IN/29N)
Recusively prove ((c', M.),e.) € R(z(fn‘Nm
Fig. 4: Argument I755" for relation RS .
Prover(ck,c,w = (e, {eb}ivzl)) Verifier (ck, ¢)

(r,r) <s ZfZVH

N
a<+ h" Hgf‘
i=1

z<«e-x+r

Z<—e-r+r

a
z T +$ Zyq
N
.7
%z Check hZHgflicz~a

=1

Fig. 5: Argument I137) ¢

<N for relation R%’OIE.
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Simor(ck = (h,g),c)
(c,2,2) s Z) T2

N
ae (0 [Lor)/e
i=1

Return (a,c, z,2)

B.2 Inner product argument

The inner product argument is shown in Fig. [6]

Theorem 5. Argument in Fig. @for the relatoin REZ’—JZmd i

sound, and special honest verifier zero-knowledge.

s complete, specially

i

Proof. (Perfect completeness). The completeness of the equation h? Hfil 9g;
acY is the same as in IIk,g. If the prover is honest, the other equality is also
easy to prove:

acy = Hzf\;1 biri | (Hva:l bimi)y = HZiV:1 bi(rityz:) _ Hzivzl bizi’

(Special Soundness). Let (a,a,y,z,z) and (a,a,y’,2’,2") be two accepting
transcripts for y # 3. That is

N N
. ’ zh ’
h* | Igfl =ac’, h* I |gil =ac?
i=1 i=1

and
HZ bz — ey gl = e,
Then by dividing the respective equations, we obtain

N
! N
hz_z, H927 s = Cy_y/; HZi:l bi(zi_z’z) = éy_y/.

i
i=1

This is equivalent to

’
FiTZ4 z;—2)

! N N PR
E=2 . 2 2
hy—y’ | I giyiyl =c, Hzizl bl( PRy ) — é
i=1

’ . !
zZ—z Zi—Z;

Hence, it is possible to extract a witness 6 = 2=%,, x; = i fori=1,...,N.
y—y y—y

(Perfect SHVZK). We describe the simulator in the following. Let y <$ Z,.
The simulator picks z < Z) and z < Z,. It then sets a « (h* Hfil gi')/c¥
and a « (HXZbizi) jev,

Elements z, z are chosen uniformly randomly and independently just as in
the real protocol. Now there are unique a,a that pass the verification. Thus,
simulated proof is indistinguishable from the real proof. ad
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Prover ((c, é, H,b), (%, 6)) Verifier(c, ¢, H, b)

N
r<sZy, 1T <S$ZLp

N
- . N oy ;
a(—h'Hg:", @ < [i=1bimi a,a
i=1
Y Y +$ Zq
N
2
Z<4 yx+r, 2 ye+r Z,z hZHgflzacy
=1

N .
HZ,-=1 biz :) acy

Fig. 6: Argument I13"  for relation RS

in-prod in-prod"
Prover Verifier
N 7 N N 7 N
((h7 {wj}j:17 h7 {gj}j:h P 7-)7 (h7 {wj}j:17 ha {gj}j:17 P T)
w=(e1,...,en,r))
NTT.
r<sZy
N
a; + h"N+1 Hw;];
=1
N
e
ag AN 41 ngj; ai, a2
i=1
¢ c+sZ,
N
7
z—r+c-w z hZN*'leJZ-":apr
i=1

N
_ 9
th+1 I |gjz_1 = as -’TC
=1

Fig.7: The argument IT N ecom for relation RY....om showing that two commitments
are equal.
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B.3 Same-Message Argument

Proposition 2. The argument IIY . depicted in Fig. E is perfectly com-
plete, has witness-extended emulation with negligible knowledge error and is a

perfect SHVZK argument of the relation RY

samecom *

Proof. Perfect completeness of the argument is trivial.
(Perfect SHVZK). Perfect SHVZK follows from the perfect SHVZK of IIk ..
In particular, let Simg,g be the simulator for IIx,g as defined in Section

Then the simulator for ITY _  works as follows:

SimSamecom(Ck = (h’7 w, Ba g)7 P T)

zsZy

c 43 Zy
N

ay < (h*N+1 I_ijz’)/pC
i=1
N

az (W [ g3)/7°

=1

Return (a1, a2, c¢,2)

The output of Simsqmecom has identical distribution to ITN, . .
(Witness extended emulation). By rewinding, an extractor can obtain two
accepting transcripts (a1, az,¢,z) and (a1, a9,c,2’'), where z =r+c¢-w, 2/ =

v + ¢ - w, and ¢ # . Hence the extractor obtains w = Z=%. O

c—c’

B.4 Same Randomness Argument

As we mentioned in Section [3.2) RY  is a special case of RY,, .com With
~{u)]-}§\’:1 = 1. Hence, we omit the security proof for IIY = and show it

in Fig. [8 for completeness sake.

Proposition 3. The argument IIY . depicted in Fig. @ is perfectly complete,

O
has witness-extended emulation with negligible knowledge error and is a perfect

SHVZK argument of the relation RY

comrand*

B.5 Weighted Sum Argument

Proposition 4. Let ﬁ,gl, ...,gn, H,G € G be such that finding any nontrivial
DLRELs between them is hard. LetII®, and II¥ ; have witness-extended

samecom
emulation with negligible knowledge error and be special honest-verifier zero-

knowledge. Then the argument ITY depicted in Fig. @ is also SHVZK and

comsum
has witness-extended emulation with negligible knowledge error.

Proof. Let us extract the values (¢, ...,¢€)y) from the RY _  protocol and
the value 7" from the KoE protocol. We thus have that

g _ IA{T//

Gv
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Prover Verifier
H.h AN Hh AN
(( ) 7{gj}j:1ap77—)a ( ) 7{91}]':1,P77')
w=(e1,...,en,r))
resZh
a; + H™N+1,
N
Qg « RN+ Hg;J; ai, a2
i=1
¢ c+sZ;
?
zZ+—r+c-w Z H*N+Y = qq - p°©
N
_ o
REN+1 Hg;z Las-7°
i=1

Fig. 8: The argument IT, .. ... for relation RY . ... showing that the randomness of
a commitment is the same as the logarithm of a given value.

Prover((iL,gl, ...,g8 € G,aq,...,an, Veriﬁer(((iL7 gi,--., 9N € G,
ai,...,aN,v € quT,HaGA))

v EZQ7T7ﬁ7G)7WZ {T,el,.”,eN GZQ})
N
o 07 [ (G o

j=1

Prove: ((FI,G“”, LGN hogy, .. N, 0, T),
(T7 €1,...,EN € ZQ)) € R?z’zmecom
Prove: ((ﬁ], G‘i)’ (1)) € Rion

Accept if the proofs go through

Fig.9: The argument showing that the (weighted) sum of commitments is equal to a
given value.
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and

N
o=H"T[(Gv)s = A7 GE=r e,
j=1

Thus we get that
I:ITNGU _ ﬁr'GAZ;Ll aje;

By the assumption that no nontrivial DLOG relations are known, we have that
" =¢" and v = Z;.V:l aje;. O

B.6 Argument showing same message in several commitments

As we mentioned in Section 3.4 R, is a general case of RY, " where 2

samemes
commitments becomes v commitments. Hence, we omit the argument depiction

and the security proof for 1T

samemes”

C Additional Lemmas and Proofs

C.1 Full proofs and missing proofs from the main body

Lemma 3. Let F' C Z, have polynomial size, and let k be a positive integer. Let
P be a protocol between prover P and verifier V where the first message of V is a
randomly chosen challenge (a1, ...,a;) € F*. Let the probability that \ accepts
be at least ﬁ + & where € is non-negligible. Suppose that for a given challenge
(a1,...,ax) the verifier either accepts or rejects in expected time t. Then there

is an algorithm &' that for any t € [1,k|, runs in expected time @t that finds
two challenges (a1, ...,a) and (a},...,a},) where the verifier accepts for both of
them and where (aq1,...,a) and (a},...,a},) differ only at position t.

Proof. The strategy of £ would be simply picking (a1, ...,at—1, at+1,-..,a) at
random, and then testing all possible values in F' to see whether there are at least
two possible accepting values for a;. If this is not the case, £ would pick a new
set (ay,...,a¢—1, G441, -..,a) at random, and repeat, until the desired object is
obtained. Let us now analyze the expected running time of this algorithm.
Let us fix the random coin used by P and V after (a1, ..., ax) is chosen. Then,
for any (ay,...,ax), the verifier accepts with probability either 0 or 1.
Let us denote the number of (k—1)-tuples of elements (a1, ..., a1, Q41 ..., Q%)
from F where there exist exactly r values for a; such that in P, (a1, ...,a:—1,a¢, @411, -, ax)
is an accepting argument, by v,.. That is,

vy o= {(ar, ... ai-1,a541,...,a) € FF=1: (Fas st. (a1, ..., ay) is accepted)}|.
We now note that Z‘Tilo v, = F*~1 and that
727@0 "o 1 +e€
|F|x [Fl
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as we are simply counting the number of accepting inputs in the numerator.

|£|
5V
Suppose that % < ﬁ Then we have that
r=0 "7
F _
Lo Temoroe Ot Loy Bocp Floe (P g e L
|F| \Flk = PR IFI’“ |F[¥ \F[ P
ZlF\
a contradiction. Hence TF‘Q Ur 2 T F|
r=0 Ur
We thus note that the probability of choosing such aset (a1, ...,at—1,at41,--.,ax),
such that there are at least 2 possible values for a; such that (ai,...,a;) is ac-
|F|
cepted, is ZTF‘Q > r77- Thus, €’ would obtain such a pair of values a,a’ in

r=0 Ur

expected number of tries ‘ I

with each try taking |F'|¢ time, giving us the result.

Before restating Theorem [2] we will prove the following helpful lemma.

Lemma 4. Let a,b € P,y — P, 5. Let (|c| + |d]) - (ZZ 0p") < q. Let p be even.
Let ac = bd. Let |c|,|d] < p—1. Let ¢,d # 0. Then a = £b.

Proof. Assume that this is not the case. W.l.o.g, let a,b > 0, and a > b. Let
a = Z a;p* and b = Z/ b;p* where a; = by = 1 and all a; and b; are in
{-1,0, 1} Let us split the proof into two cases — either [ =1’ or not.

First, we will consider the case where [ = I’. If [ = 0, then a = 1 and
b = 1 and thus we have a contradiction. Thus we will assume that [ > 0. We
have that ac = bd, thus cp! + Zé;é ca;pt = dp' + Zé;é db;p', ie pl(d — c) =
Zé;é(cai —db;)p’. If d — ¢ > 1, then we will show that Zé;é(cai — db;)p* < 2p!
which is a contradiction.

More precisely, note that Zﬁ_(l)(cal db)pt < 120 lel + |d))p
AN il Il =1, then (2p —4) Y i pf = 2p — 4 < 2.

Otherwise we note that (2p — 4) Zi:é P = Zé:l 2pt — Zi;é 4p' = 2pt —
2 Zi;i 2p' — 4 < 2p'. Hence, in the case of d — ¢ > 1 we have a contradiction.

If d — ¢ = 1, then note that ¢ # +d (mod p), because ¢ and d have different
parities. Thus we can apply the second clause of Lemma [6, and obtain that
a =0b =0, a contradiction.

Secondly, we will consider the case where [ > I". We will show that ¢ > p—2.
Denote by a’ := p! — Zi;é p' and by V' = Zé;é p?. Clearly o’ < a and b > b.
Thus ¢ > % Now

IN

(2p —

-1 5 1 ‘-1
a _ P =Yiep _ P—’,’H:pl(p—l)_1>pl(p—1)_1:p_2
Vo = v

Thus ¢ > p — 2, which leads to a contradiction.
Thus the result holds.
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Here we restate Theorem [2| again and prove it.

Theorem 6. Let p, 25+ < N. Suppose that the SIS N, (N4D) (5 o) holds.

If p is odd, then let 2K < 2. If p is even, then let 2K < p-2. Let T =
min{2%, (£)/}. The protocol depicted in @ has (7 + €1)" + ez-witness-extended-
emulation where €1 and €3 are negligible.

Proof. From the (N + 1) - (Zl o p")-SIS- assumption it follows that for the

{[w jk]}jv’i w—; the NoBounded-(N + 1) - (Zl oP")—DLRel holds. Suppose

that there is a prover who has success rate more than (% + )" where € is non-
negligible. By soundness amplification principles, it follows that the probability
to pass both the ChalResp protocols, for randomly picked challenges, is at least
% +e.

Now, thus both the individual ChalResp protocols must also have at least %+
e chance of passing. Consider first the ChalResp with the challenge set, [0, 25 —1].
Now for every i € [1, N] we do the following. Fix at random {b; ;}jepn, n\{i}
from the elements of [0,2% — 1]. Now for b;,; there are in expectation, I
values for which the prover is successful for the challenge {bi7j}§-\[:1. Thus for
every consecutive T' values, at least with a chance €72, there are two values
for b;; for which the proof is successful. Let those values be b;; and b;; +
a;, w.l.o.g a; > 0. Let the responses we extract to these challenges, as per
Lemmabe {d; ;3L and {d}; with all d; ., d! . € [0,2% —1]. We get that

] I w’ 1,J

N [ Tad b, o e TN e b,
Hj:l[wj,k]d”’ = Ht 1 [ k] and Hj:l[wj,k:} o= [wz 1)@ Ty [Wek]™" and
where Zivzl bit = ZJ 1d;j and a; + Ziil bit = Zj 1d;'J Deducting those

equations from each other and denoting d; ; := d}; — d; ;, we have that

’ N ’
[; ] = H[wj,k]di"j~ (2)

If for some %, ged(a;, {d; ; };VZI) = A; # 1 over Z, then let us divide all those ele-
ments with that common divisor A;. Thus we will assume that ged(a;, {d; ;}7C,) =
1. Note that thus the "original" extracted values will be a;A; and {4,d; ; }évzl

Analogously, from the ChalResp for the other extraction principles we are
able to extract {d; ;}/°] ;_; and a; such that

_ N ,
[W; ] = H[wj,k]di’j (3)

where a;,d; j € Pyy — Py ;.

Analogously, if for some i, ged(a;, {d;;}2)) = A; # 1 over Z, then let us
divide all those elements with that common divisor A;, thus we will assume from
now on that ged(a;, {d; }jvzl) = 1. Likewise, note here as well that the "original"
values in the set P,y — P,y will be A;a;, {Asd; ;3
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Let a; = «; - ¢; and a; = «; - ¢; where «; is the greatest common denominator
of a; and @;. Then ¢; and ¢; are coprime and a;c; = ¢;a;.

Now take the equations 2] and [3] to the powers ¢; and ¢; respectively. We will
obtain that

N N

’ - o o ) o
[T 0] = [y 1] = [y 1] = ] [lawy ]9
J=1

and hence HN [w, /- LJdiici=diic — 1. Because |d; je;—d; ;| < 2K+1(Z{:0pi) <
(N+1)- (L, p ) then it follows that d; jc¢; — d; j¢; = 0 for all i and j.

Now, because dw-cz- = d; j¢; and ¢; and ¢; are coprime, it follows that ¢; must
divide d; j and ¢; must divide d; ;. However, this means that ged(a;, {d; ;}}.,) =
¢; and gcd(di,{d;j};vzl) = ¢;. Hence ¢; = 1 = ¢; for all i. This means that
actually a; = a; = @; and also d; ; = d, ; for all 4, j.

We have that a;4; € [1,p — 2] and a;A; € P, s — Py ;. Note that also a; €
[1,p — 2]. We now want to show that a; = 1. Now, if A; = 1, then we have that

€[l,p—2]NP, s — P, s = {1} and thus a; = 1. However, suppose that A; # 1.
Consider some d; ; # 0 which must exist, otherwise ged(a; A4;, {d; ; }évzl) =q;A;
and thus a; = 1. W.l.o.g let it be d; ;. Then, we have that a;,d;1 € [-25 +

1 2K71] [7%,%) and alAl,dZ 1A Eppf pr
= - = d A . Denote z; := a;A; and x4 := d;, 1A; we get that

a;re = d; 1x1 with il,xg € P, 5 — P, . We have that a;,d; 1 # 0. Thus, if p is
odd, then by Lemma E[, and if p is even then by Lemma 4] we get that |a;| =
|d; 1]. Note however, that the same argument can be made for any nonzero d; ;-
Hence, all nonzero d; ; divide a;. However, by construction ged(a;, {d; ;}1.,) = 1.
Thus it follows that |a;] = 1, and because we chose it so that a; > 0, a; = 1.
Additionally, all d; ; € {—1,0,1}.

From the last claim of Lemmal[T] we also get that for any extracted equation,
the sums of the exponents must match on both sides. From there on it is not
difficult to obtain that Zj d; ; = a;. Because a; =1, Zj d; ; =1 for all 4.

Thus a; = 1 for all 4. Additionally, it follows that d; ; = d;j and thus all
diyj € [—2K + 1,2K - 1} N Pp’f — Ppyf.

Thus we get that

N
U)Z k di, (4)
]:1

for all i, k.
From the first proof of the RS ]z\:rod’ we can get that [, [ k] H;VZI [w;k]
This is because we can extract from it values 0; and 7} such that Cj =
5, k h Hi\;l[u}t] ZI\L T h h 1
h "Hz 1gz and that pe SN = h4i=1"i,k, We note that these val-

(I35 [wsR=3=1 9>

ues extracted from C}, must be the same values that are extracted from it in other
parts of the proof, thus we must have that [w ;. k] w’] . Also [ ] [wj]h%*.
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: 177, [t] _ N N par
Now when we reorganize ER h *, then [[;Z [0, 4]
H;\Izl[w;’k] follows.
Note now that

N
I fwiel =] ekl =

j=1 t=1

N N N
([Tiv;) = [Ty

=1

||’:]z

Thus it must also hold for all j that

N
Z dt,j == ].
t=1

Previously we had that for all ¢,

N
Z dt,j == ].
j=1

Now, suppose that the ChalResp with the challenge set [0, 2% — 1] one gets a

challenge (by,...,by) where all b; € [0,25 — 1], and successfully answers it with
some (e1,...,ey) where all e; € [0,25 — 1]. Thus

N N N N N S5 b

[ win)” =[] twin)™ = TT(IT Ry aD®)% = T Tl =227

i=1 i=1 i=1 j=1 i=1

We have that

N N
= bidij| < el + Y |billdi 5
i=1 =1

Because (N +1)25 < N -pf*! the NoBounded-N - p/*!'—DLRel property,
it must hold that for all j, e; = Zf\;l b;d; j. This implies that Zf\; bid;; €
[0,2% — 1] Thus, if for a randomly chosen (b1, ...,by) it happens that for some

7, vazl bidi ; € [0,25 — 1], then the prover is unable to answer this challenge.
Analogously, for the challenge set P, , one does the same argument and obtains
that if for some randomly chosen (b, ...,by) where all b; € P, ¢, if for some j,

N
<2K 4y oK 1< (V12X

i=1

Zl bidi j € P, s, then the prover is unable to answer this challenge. (In this
case the corresponding |€; — Zi:l bid; ;| in the exponent will analogously be
upper-bounded by (N + 1) S op)

Denote D := {d; J}Z 1,;—1- We have that all rows and columns of D must
sum to 1. Now consider Theorem [§] Suppose that there is some column vector of
D that is not a unit vector. In that case, if by,...,b, are randomly chosen from

P, s, then the probability that all the S\ | bid; ; & P, s is at most (8)f This
implies that the probability of the prover passing is upper-bounded by () > =
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which contradicts our assumption. Thus all columns of D must be unit vectors.
On the other hand, because each row must sum to 1, these values 1 must be
in separate rows. Thus D is a permutation matrix. Thus we have successfully
extracted the permutation matrix. Let it describe a permutation 7’ such that
Dyi(j),; = 1 and all the other entries are zeroes. Now let us also extract the
rerandomization factors.

Plugging the equation into the equation {4 we obtain that

N
[Wi k] = H[w;‘,k]di’j = ( H [w;,k]o)[w;/*l(i),k]l = [w-/rr/*l(i),k} (5)

j=1 i (j)

Taking 7'~1(i) =: j, we have that [w;k] = [War (k) for all j,k. We have by
definition that [w;k] = h%*[w;]. On the other hand, we denoted [wy 1) = %
Thus the equation becomes ‘

[wwl(j)]h_r;'(j)*’“ h~ %k — [w]]

We note that from this it follows that for a fixed j, for all k, the value
r;,(j) , Taj. is the same. We will denote this value by 7. Thus we have extracted

{r;}}_, and a 7’ such that

[ ()] = A" [w;].
such that D,/ ) ; = 1 and all the other entries are zeroes. Plugging this into the
equation [4] we obtain that

N
[wi k] = H[w;;k]d” = ( H [w;,k]o)[w;’*l(i),k]l = [w;r’*l(i),k} (6)

Jj=1 i#£7 (7)
Taking 7'~1(i) =: j, we have that [w;k] = [ (k) for all j,k. We have by

definition that [w;k] = h%*[w,;]. On the other hand, we denoted [ 1] := %

Thus the equation becomes
[wﬁ,(j)]h—r;/mkh—%,k = [w;].

We note that from this it follows that for a fixed j, for all k, the value
r;,(j) Taj .k is the same. We will denote this value by 7. Thus we have extracted

{r;}*_, and a 7’ such that
[tr (] = " [wy].

We thus have successfully extracted a permutation along with rerandomization
factors. O
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Prover({c;}iL1, {éi}ict, h, g,
Zq7 K7 U, W = {71'7 {rl}i\il})

Veriﬁer({ci}fil,
{éi}ﬁv:h h7 9, an K) U)

(a1,1,a1,2...,aNw)

H

Tik < Ti —

fori=1,...,N

Ar—1(3)k

ck=(h,g1...,9N)

Oty vy 0 <38 Zg
Ck%thgrlk 017...,01)
i=1

Both:[wi] «— Ci71(322, [UA)Z] < éi,1éz2,Vi c [1,

(a1,1,a1,2 .. .,aN,U) 3 Zq

H<+sG

gl...7gN<—$G

TTi, (] -
(H] 1[“’]])}121 1Ak
(riks Ok)) € RN for k e [1,v]

in-prod

Prove: ((Ck,

hl,--~7hvygl,1---7gN,v

Bothfori=1,..., Nk=1,...,v

[wi k] = A% [w],

(1.

N % Zq
NJ, h « gh"
11))’
i{l,...,}{v,gl,l---ygN,U G

Repeat the following algorithm & times in parallel, batched:

ChalResp(({[wi 2} jmr {ai s b0y ey, {0 }0, By g, ok,
Z4g,10,2% = 1], 0, {Ch e, {he e, {90 1oy )

(m, {ri e, {rin ot ks {0k Fim1))
ChalResp(({[wi s} 2} oy {ain} 103 ooy, {0} 0, B g, ok,
Zq, Py,5, v, {Cx Fimr, {P Y i=1, {95k i) 1)
(m {ri e, {ran Hh ks {0k Fim1))

Fig. 10: The shuffling protocol for ElGamal.
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C.2  Proof of ElGamal shuffle
The protocol for proving an ElGamal shuffle will be the following.

Theorem 7. Let p, 2511 < N. Suppose that the SISq N (N+1)- (51, p) holds.

If p is odd, then let 2K < L. If p is even, then let 2K < p-2. Let T =
min{2%, (£)/}. Let v > 2. The protocol in is (% + €)™ + e2-sound.

Proof. Fix a value . We carry out the proof similarly to the one of the previous
theorem. Denote with the subscript n the extracted values in the extraction
where 7 was used. We see thus that we able to extract values (77)y, (7} 1), (0k)y
and (7’), such that, among other things

(D, ()] = B3 [wj]y

and
/ _ . .
Tin = Qjk T Tr(j),km

and
N ’
S5 Tt k,
Ci = B [T gr
t=1

Now let’s rewind until before 7 is chosen. We have that the C} do not change.
Thus we have that r; , . = 7y, . and &, = ¢, for all n,n". Let us denote
rt kn = Tt k-

We have that the a; j, were randomly chosen from Z,. We can assume that N
is negligibly small. Thus, for all k, with overwhelmlng probability, there do not
exist such 1, j1, 92, jo where i1 # ji and o # jo but as, k — aj, &k = Giy b — Gjy k-

We now have that

/ o . . T e e e —— . .
Tjm = @51 + Ty (5),1 = =G50 + Trn(3)0

Suppose now that for some 71,72, the extracted permutations are not equal.
, 1.e there is a u such that m,, (uv) # m,,(u). Let v be such an element that
T, (V) = 7y, (u), by our assumption u # v.
We have that
Q1 + TT"M (u),1 = Qu,2 + Tﬂ'm (u),2>

i.e
Ay, 1 = Qu,2 = Ty (w),2 — Ty (w),1 = Ty (v),2 = Ty (v),1 = Qo1 — Go,2,
where the last equation holds because
Gy,1 + Ty (v),1 = Gu,2 + Ty (0),2 = Tvu,ns-

We have now obtained that a,,1 — ay2 = ay,1 — Gy,2, Where u # v, which
contradicts our assumption that this happens only with a negligible probability.

Thus we have that m,, = m,, for all . We will thus denote 77, =:77.
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From the WEE-proof of the commitments-proof we have that ¢; = éﬂ(i)fzrlﬂi).
Therefore,
n
1,

_ AN Tr) . BTG
Ci,1 " Cj o = C‘11'(1’)71 : Cﬂ(i),g g @) - hy ”(1')7

or equivalently

A~ r/ . A~ r n
Ca(i)1° g ™D [ Criy2h 7O\ 1
Ci1 Ci2

We saw that = and {r}} do not depend on . Thus by Schwarz-Zippel over n we

’
erciy oh (@) i
Sx®:2%  — 1 hence the claim also holds for

&y 1.g (i)
have that % =1 and
ElGamal-shuffles.

C.3 Necessary lemmas to prove Theorem

It turns out that the proof of Theorem [§)is rather involved and includes many
special cases. Thus we start by proving some lemmas essential to the proof.
Moreover, it seems likely that the Theorem can be strengthened in a way that
will be discussed later, but we will leave the details for future work.

Lemma 5. Let D be a n x n square matriz with elements in Z, with rows
DM . DM, Let E C Zq be a set. Consider the probability

pp.p = Pr[(DW b)Y € E,Vi € [1,n]|b1,ba,...,b, & E;b=(by,...,b,)].

Let a be the largest absolute value of an element of D. Let E be an interval

[0,m — 1] with ma < q. Let m be even. Then pp g < [&] .

m

Proof. Let the row where an element with the largest absolute value is stored be
w.l.o.g DM, Let one such element, w.l.o.g, be d . Let us consider the probability
that (DM, b) € [0,m — 1]. This probability is equal to

q—1 n—1 n n—1
Z PI‘[Z dl,ibi = j] . PI’[Z dl,ibi S [0, m — 1” Z dl,ibi = ]} (7)
i=0 =1 i=1 i=1

Let us try to upper-bound Pr[3"", d ;b; € [0,m —1]| 321" d1 ;b; = j]. We note
that if the by, ..., b,—1 have been fixed, then the function f(b,) = Z?:l dy ;b; =
J + di nby is injective for b, € [0,m — 1] because ma < g. This means that the
probability

. (j+1[0,m —1]dy ) N[0,m — 1]
p dy by € [0,m — 1] = , : .
z)ne[o,fml][‘7 e, | I (G +[0,m —1]dy,n)

We see that in the set (j + [0,m — 1]d1 ., the distance between each two consec-
utive elements is dy ,,. Thus, the size of (j + [0,m — 1]dy,,) N[0, m — 1] can be at
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—
o[z
—

most [2]. From this it follows that Pry, c(0.m—1)[j + d1,nbn € [0,m —1]] <
Thus the probability in Equation [§ is no bigger than

S Zd“b_j [z [z

7=0

3ol

Thus the result is proven.

Lemma 6. 1. Let o € [2,p — 2] (mod p) with (Ja| + 1) - (Zl oD") < gq. Then
ifac=dandc,d € P,y — P, s, thenc=d=0.
2. Let o, B € Zy be such that (Ja|+ |8]) - (ZZ oP") < q, and where a # B,p— 3
(mod p), and where o, 8 # 0 (mod p). Then if ac = Bd and ¢,d € P,
P, ¢, thenc=d=0.

Proof. 1. We note that P, — Pp,f = {b e Zq|3bp7...,bf e {-1,0,1},b =
sz:o bip'}. Let ¢ = Zf;o cip® and d = Zf;o d;p* where all ¢; and d; are in
{-1,0,1}. We have thus that QE{:O cpt = sz:o d;pt, ie

f

Z(aci - di)pi =0.

i=0
Let j be the smallest index where either of ¢; or d; is nonzero. Thus the
equation becomes

f
S (ae; — di)p' = 0.
i=j
Let us now move this equation from Z, to Z. Thus, using for each variable
the representative in [—@, %) we would have that for some integer v we
would have ;
Z(aci —d;)p' = vq
i=j
over the integers, where «, ¢;,...,cp,d;,...,ds € [fil %1) We note that
! ! ! _
> (ac; —di)p' Z lalleil + |di)p' <D (lal + 1)p" < (lal + DIp'| < q
i=j —y

and analogously that Z jlac; —d; )p* > —q. Thus it must be that v = 0

and we have that E (acl —d;)p* = 0 holds over Z.

Over 7Z we can cons1der the equation modulo p?+!. We then obtain that
(ac; —dj)p’ =0 (mod p™1). From this follows that ac; —d; =0 (mod p).
Let a = pa; +aq with ap € [2,p—2]. Then the equation becomes asc; —d; =
0 (mod p). Considering the nine possible values for the pair (c;,d;) we see
that the only case when it is possible that asc; —d; = 0 (mod p), is when
c;j = d; = 0. However, this contradicts our assumption that either c; or d;
is nonzero. Thus, by contradiction the claim is proven.
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2. Analogously to the last case, we reach the equation ac; — 8d; = 0 (mod p).
Analyzing the nine cases, we see that this is possible only when ¢; = d; = 0.
The result again follows.

Lemma 7. Let o € [2,p — 2] (mod p) with (|a| + 1) - (Zfzopi) < q. Then, for
any k € Zg, |(k+aP, )N Py y¢| <1.

Proof. Suppose by contradiction that there exist at least two x1,22 € (k +
aPp, ¢)NP, 5. Thus there must exist a1, as, b1, b2 € Py ¢, such that 1 = k+aa; =
by and 29 = k + aag = be. Thus it must be that 21 — 29 = a(a; — az) = by — bs.
Denote a; — as =: ¢,by — by =: d. We have that ¢,d € P, s — P, y and ac = d.
By the first claim of the previous lemma it must hold that ¢ = d = 0 and thus
a1 = ag and by = by, hence 1 = x5. Hence the claim is proven.

Lemma 8. Let D be a n x n square matriz with elements in Z, with rows
DM .. D", Let E = P, ¢ be a set. Consider the probability

pp.g = Pr[(DW b) € E,Yi € [1,n]|b1,ba, ..., by & E,b = (by,... by)].

Suppose that in D there is an element with value o such that (|oz|—|—1)~(zzj.;o ph) <
q and a € [2,p — 2] (mod p). Then pp g < ﬁ

Proof. Without loss of generality, let the element « be the last element in the
first row, i.e dy .

Let us consider the probability that (D) b) € P, ;. This probability is equal
to

q

—1 n—1 n n—1
ZPI‘[Z dl,ibi = _]] . PI’[Z dl,ibi € Pp’f| Z dl,ibi = j] (8)
1 =1 =1

=0 i=

Let us try to bound PI‘[Z?:l dlﬂ‘bi S Pp,f| E;:ll dl,ibi = ]]

We note that if the b1,...,b,_1 have been fixed, then we can consider the
function f(b,) = >, d1,:b; = k + di,nb, where k = Z?;ll dy ;b;. We first note
that this function must be injective because if for some different b, b/, it held
that f(by) = F(b,) then 0 = [(by) — f(8,) = k+dy ubn — b —dy bl, = (b —b,).
Because a, b, — b, # 0, and |a||b, — b),| < ¢, this is not possible.

This means that

(J+aPpr) NPy 1
TPyl

P i +dy b, € P, =
bnelgp,f[j+ 1 < p,f] |P f

The last inequality comes from Lemmal[7]
Hence the claim is proven.

Lemma 9. Let ai,as € [—m,m] and let 1,22 € P, ;. Let aj,as # 0. Let
2m +1 < p. Let p - (Zlfzopi) < q. Let ayx1 = asxy. Let x1,x9 # 0. Then
ap = :ta2.
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Proof. We have that by the second clause of Lemma@ if (la1|+]az])- (ZZ 0P’ <

q and a; # as,p — az (mod p), and ay,as # 0 (mod p), then it follows that
x1 = 2o = 0. Thus it must be that some of the conditions are not satisfied. We
first note that

/ f f

(laa| + laz]) - O p") <2m(>_p') <p-O_p) <4,

i=0 =0 =0

thus this condition is satisfied. Thus we must have that a; = +as (mod p).
We first note that if a1 = as (mod p) or a; = p —as (mod p), then, because
p > 2m + 1, we have that these cases mean that a1 = as or a; = —as, i€
= :tag.

Lemma 10. [I9]
= 1(2"! + 2% cos 2F)
( ) %(2" 1—|—22 sin %)
"2l n
— Y0 (4¢+2) = %(2 — 2% cos “r)
( ) %(2” 1 _ 2% gin =)

Lemma 11. Let p,k < n with p > 4 and k € [0,p — 1]. Denote sum vy, pj =
n n n n 1/on— n
(k) + (k-‘rp) + (k+2p) +.. (kﬂ"Tj’qp)' Then vnp < 5(2 b 423).

Proof. We note that by Lemma we have that v, 45 < $(2"71 +229) for any
n and k where k < p < n.

We will now show that for any n and k and p > 4, there exists a k' € [0,p—1]
such that vy, 41 > Vp k-

Let p > 4. Let the largest among the (.}, ) be (). ). Choose k' to be
smallest such nonnegative integer that there exists a nonnegative integer j’ such
that k + jp = K’ —|—j’4

NOW Unpr = S, (k1 (jys)p) for some nonnegative J and K where k +
(j—J)p>0and k+ (j+ K)p < n. Because k + jp = k' + j'4 and p > 4 and
J, K <0, we have that

k+jip—pJ <k +j4—4J
and
kE+jp+pK >k + 454 +4K

We can rewrite these as k' + (7' — J)4d > k+ (j — J)p and ¥ + (j/ + K)4 <
k+ (5 + K)p.

We note that {k + (j’ + i)4}_, is a subset of {k’ + 41} 5] because
K+ —D4>k+jip—pJ >0and K 4+ (' + N)4 < k+jp+pK < n and

n—k
{K' + 42'}Z»LZOTJ is the set of all integers a € [0,n] such that a = k&’ (mod 4).
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Thus

|25 ) o K o
;) = > .
o= 32 (o h0) 2 32 (s )

=0 —J

Now, for any i € [—J, K],we will show that (k’+(;’+i)4) > <k+(;+i)p)'

For this, note that if k+jp > 4, and if i > 0, then k4 (j+1i)p = k+jp+ip =
K +j'44ip > k' +j'4+4p = k' + (§' +1)4. Because the binomial function f(z) =
(Z) is decreasing when 2 > %, we have that in that case (k/+(?/+i)4) > (k+(;b+i)p).

Analogously, if k + jp < %, and if 4 < 0, we likewise get that k + (j +i)p <
k' + (j' +1i)4 and because f(z) = (7) is increasing when z < %, we have that in
that case (k’+(;L’+i)4) =z (k:Jr(]T'LJri)p)'

Now, if £+ jp < %, and if i > 0, then we must have that k + (j +4)p > §. If
we had that k4 (j +i)p < 5, then, because the binomial function is increasing

for z < %, we would have that (kH;LH)p) > (kfjp) which would contradict the
maximality of (kfjp).

Now, for &' 4 (j' + )4, there are two options. Either &’ 4- (j' +i)4 < & or
K+('+i)4 > 5. Ik +(5'+i)4 < 5, then (4 5y y) = (4d,) = (e (iayp)- The
first of these equalities comes from the increasingness of the binomial function
for all values not greater than 3 and the second inequality comes from the
maximality of (kfjp).

If & + (j' +14)4 > %, then, because k + (j +i)p < k' + (j/ + 4)4, both of

the values are greater than 3 and the binomial function is decreasing for values

greater than 2, we have that (k,+(;’,+i)4) > (k+(;’+i)p).

The proof for the case when k£ + jp > %, and if 7 < 0 is analogous. Thus for
all 7, (k’+(;‘1’+i)4) z <k+(?+i)p)'

Thus we get that

K K
n n 1 n
n = < < n ’ < - 2%—1 25 .
ek = 2 (o ) = 20 (s ) < omaw <5 20

i=—J —J
Hence the result follows.
Lemma 12. Let a vector d of length N with elements from Z, contain k + 1

elements 1, k elements —1 and let the rest of the elements be 0. Consider the
probability

Jet = Pr[(d,b) = t|by,ba, ..., bx < {0,1},b = (b1, ..., bn))].

2k+1)

Then for any t € [—k, k], we have that Jy+ = (23%

Proof. We do this inductively over k. It is clear that the elements of d that are
zero can be ignored. W.lo.g, let d = (1,-1,1,—1,...,1,0,...,0). Let us thus
only consider the vector dyx formed out of the first 2k 4 1 elements of d. Let I ;
be the number of binary vectors b of length 2k 4+ 1 such that (b,dy) = t. By

.. I
definition, clearly Ji; = orfr-
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Now let us do the proof by induction. For the base case, if & = 0, then
do = (1). There is one vector b = (0) for which (b,dx) = 0 and one vector
= (1) for which (b,dy) = 1. Thus Iy = Ip1 =1 and Jyog = Jo1 = % Now let
us do the step of the induction. Suppose that the statement holds for k, let us
show that it holds for k + 1. We notice that moving from k to k+ 1 is equivalent
to concatenating (—1,1) to the vector dx. We thus will characterize the values
Iy4+1,+ in terms of I ;. Consider now how we can obtain [, when the first
2k — 1 values of b have been fixed. Let us denote those values with by. Let the
last two elements of b be by and bog1. There are four cases how it can happen
that the sum is ¢: either the scalar product of (by,dx) =t — 1 and by, = 0 and
bak+1 = 1; the scalar product of (by,dx) = t and bop, = 0 and bagy1 = 0; the
scalar product of (by,dx) =t and bog, = 1 and bax1 = 1; or the scalar product
of (by,dx) =t+ 1 and by, = 1 and bgr11 = 0. Thus we get that

Tpv1t = Ipg1 -1+ 20416 + Dig1 041
By the premise of the inductive step, we have that
Loors = ( 2k +1 )+<2k+1>+<2k+1)+( 2k +1 > _ <2k+2>+( 2k +2 ) < 2k +3 )
' t+k—1 t+k t+k t+k+1 t+k t+k+1 t+k+1
Thus we have by induction that Ij , = (Qt’f:;cl). From here it follows that Ji; =
L, (G5)

22k+1 22k+1 -

Lemma 13. Let a vector d of length N with elements from Z, contain k + 1
elements 1, k elements —1 and let the rest of the elements be 0. Consider the
probability

Prfo.1) = Pr[(d,b) € {0,1}b1,ba, ..., by < {0,1},b = (by,...,b,)].
Then, for any integer k > 1, py. (0,1} < %.

Proof. First notice that by the previous lemma @, we have that pj (01} =

2k41 2k+1 2k42 4
(s 2)++(1’““) = (2’”4&1). For k = 1, we have that pj, (0,1} = ( ) =23 =2 Now we

will show that for any k > 0, we have that py, 0,1} > pkﬂ 10,13~ For that first

2k+
note that E;kﬂl% = é:ﬁgg’;}jﬂ) by the definition of the binomial coefficient.
A

Now,

2}51»12 )

ooy S Ak 2)(k+2) 4K+ 16k + 16
Pk+1,{0,1} (kk_:r;) (Qk + 3)(2k + 4) 4k2% + 10k + 12

> 1.

Thus pg 10,1} > Pr+1,{0,1} and thus for all £k > 1, we have Pr,{0,1} < %.
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Lemma 14. Letd be a vector of length n over Z,. Let alld; € d be in {—1,0,1}.
Let the number of ones in d be k + 1 and the number of minus ones in d be k.
Let (2k+ 1) Z{:o p' < . Define

pa.g = Pr[(d,b) € P, f|b1,ba, ..., by & Ppp,b = (b1,...,0,)].

Then
1 1

Pa,E < (5 + kT

)f+1

Proof. Fix the d and denote (d,b) by g.

Because
2k41 f q
d,b)| < b; < (2k+1 b=
(b3 b< @b+ D)) < 3

we can consider g as an integer in [, ).

We can write g, = Zf:o gip" in p-ary where go,...,gr € [|F£],|5]) and
F > f. Note that this representation is unique, as we can first consider g,
modulo p to obtain g, then consider g, — go modulo p? to obtain pg; and so on.

We notice that g, € P, iff go,..., 95 € {0,1} and gf41,...9r = 0. Un-
fortunately we cannot consider these cases independently as there might be an
overflow term from some lower terms might influence higher terms. However, we
shall see that this will not make the result particularly worse.

Namely, if b; = Z{:o b; jp' where b; ; € {0,1}, then we obtain that

F n n f f n
Dogw ={db) =) diby = di Y bigp' =) 'Y dibiy.
i=0 j=1 j=1 =0 i=0  j—=1

This does not necessarily mean that g, € P,y iff 377, d;b;; € {0,1} for all
i € [0, f]. If the number of d; that are nonzero is greater than p, then it might
happen that for some 1, Z?Zl d;b; ; > p and thus it will both give an overflow

term to the coefficients of p**! and that for the coefficient of p’ it suffices when
the sum of the d;b; ; (plus a possible overflow or underflow term from the lower
values) is equal to 0 or 1 (mod p).

Thus, consider the following. For some fixed values of the vector b, define
iteratively:

N
D bojd; = peso + chyo

j=1

where ¢, € [[5F], [5]), and for i € [1, F:

N
/
Coim1 + Y bijdj =t peyi+ ¢,
=1

where ¢ ; € [[52], [5])-
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Also define ¢p,—1 = 0.

We note that thus defined ¢, ; and c’b’i are a function of b, as d has been
assumed to be fixed.

Thus we can say that (d,b) € P,y if and only ¢ ; € {0,1} for all i € [0, f]
and ¢, ; = 0 for all i > f. However, we will now focus only on the first of these
requirements — c;, ; € {0, 1} for all 7 € [0, f].

We note that this is equivalent to cy;—1 + Y7, bijd; € {0,1} (mod p) for
all i € [0, f].

Note that, assuming that the elements b; ; are chosen uniformly at random
from {0,1}, the probability Prc, ; € {0,1} (mod p)|cp,;—1 = w] is well-defined
for every w € Z, where Pr[c, ,—1 = w] > 0.

For the probabilities given from here on, assume that the probability is given
for picking all the elements b; ; uniformly at random from {0,1}.

We can write for all w € Z, that

Pr(c,; € {0,1} (mod p)|cpi—1 = w] = Prlw + Zbi’jdj €{0,1} (mod p)]
j=1

Let v; be defined as such that the value Pr[v; +>°7_, b; ;d; € {0,1} (mod p)] is
maximal for v; € [0,p — 1].
Now by that definition

PI‘[Cbﬂ'_l + Zbi’jdj € {O, 1} (mod p)] < PI‘[Ui + Zbi’jdj S {O, 1} (HlOd p)]
=1

j=1

We note that by Lemma the probability that Z?Zl bijd;j =tif k+1 of

the d; are equal to 1, k are equal to —1 and the b; ; are random bits, is equal to
2k+1
g’;,jjl) . From here we have directly that the probability that v; + Z?Zl b jdj =t

if £+ 1 of the d; are equal to 1, k are equal to —1 and the b; ; are random bits,

2k+1
is equal to (k;;;l) We note that the only values for ¢ for which this value is

nonzero are [v; — k,v; + k + 1], thus we only have to look at them.

The respective values ¢ that we would be interested in are the values where
t € {0,1} (mod p). In [v; — k — 1,2k + 1] let the smallest value that is equal to
0 (mod p) be v} and let the largest value in [v; — k — 1,2k + 1] that is equal to
0 (mod p) be v}. Thus we obtain that

n Z P ( 2k+1 ) ) + ( 2k+1 ) )
=0 k—v;+v] k—v; 4’
Prlv+ ) bid; € {0,1}  (mod p)] = = + 1;,’:“ o tintl)

j=1

(For edge cases when one of the k —v; + v} + jp and k — v; + v} + jp+ 1 is in
[0,2k + 1] and the other is not, recall that (25‘;1) = @Zi;) = 0 and thus it does
not matter whether we include them or not, we choose to include them to make

the equation nicer. )
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Additionally, (, 261y, ZRHL Y= (, 2EF2

k—vi+vi+jp k—vi+v)+jp+1 k—vi-l-v;-&-jp-&-l)'
Hence

" Z 1—8 i (k Qk—/‘rg' 1)
Prlv; + Y bijd; € {0,1} (mod p)] < == 22;”; ar ety
j=1

We can obtain an upper-bound for the right-hand side from Lemma [11] and

: - L CaRn i N 1
obtain that it is upper-bounded by >~z = 5 + 5557-
Knowing this, we can bound the entire probability. Thus

f
Pr[/\ cp; € 10,1} (mod p)] =

i=0
n f f—1 f—1
Z Pr[/\ i € {0,1}  (mod p)| /\ b = w;| Pr| /\ Chi = w;| =
w_l,wo,...,wf,leZq =0 1=—1 1=—1
f—1
Pr[vi/\_lcb,i:wi]>0
n f n f-1
Z Pr[/\ Wi—1 + me-dj € {0,1} (mod p)]Pr| /\ Chi = w;] <
W_1,W0,...,Wf_1ELq =0 Jj=1 i=—1
f—1
Pr[-,/\,lcb’i:wi}>0
n f n f-1
Z Pr[/\ v; + Zbi,jdj € {0,1} (mod p)]Pr| /\ Chi = w;] <
W_1,W0 .., W 1ELg =0 7j=1 i=—1

f—=1
Pr[ /\ cb,i:wi]>0
i=—1

n

f n f-1
Z (H Prlv; + Zbi,jdj € {0,1} (mod p)]) Pr] /\ cpi = wi] <
wfl,wo,.“,wf_lelq 1=0 Jj=1 1=—1

f—1
Pr[ A cp,i=w;]>0

i=—

n f 1 1 f—1

Z (H(§ + W)) Pf[‘/\ Chi = W] =

W_1,W0,...,wf_1ELg 1=0 i=—1
Pr[f/7\1 cb,i:wi]>0
i=—1
f—1
1 1 = 1 1
I E ] = (= f+1
(2+2k+1) Pr[/\ cbvl_wl]_(2+2k+1) :
W_1,W0 ;.- wy_1E€Lq 1=—1

Hence we have the desired result.
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Lemma 15. Let D be a n x n matriz over Z, where the only elements are —1,0
and 1 and all rows and columns sum to 1. Let p > 4. Let 2p/+1 < q. Additionally,
let there be no row with more than 2 elements 1. Denote

pp.g = Pr[(DW.b) € P, ;,Vi € [1,n]|b1, b2, ..., by & Py, b= (by,...,by)]

and

pp {01y = Pr[(D.b) € [0,1],Vi € [1,n][b1, b, ..., b, < [0,1],b = (by,...,by)].

Then
|
PD,E = pD,{O,l}'

Proof. In the first experiment where we randomly choose bq,bs,..., b, & P, s,

denote b; = Zi:o ijcpk where all b; , are bits. Thus the first experiment is the
same when we choose the bits separately, that is

Pr[(DY.b) € P, ;,Vi € [1,n]|b1,ba, ..., by & Py pyb = (by,...,b,)] =

f
Pr[(D"),b) € P, s,Vi € [Lnl[{bjs}ii ) hg € {0,1},0; < Y bjnp¥ b= (by,...

k=0
Let the matrix D be {d;;}{;_,. We note that (D), b) € P, s,¥i € [1,n]

means that for all i, Zj\;l d; jb; = Zi:o crip’ and all ¢,; are bits.
We have that

N N f / N
Z d; jbj = Z d; ; Z b ip" = Zpk Z d; jbj k-
j=1 j=1 k=0 k=0 j=1
Because we have that any row is either a unit vector or the nonzero elements
are two elements 1 and one element —1, we have that for any i,k, —1 <
Z;.V:l di jbjr < 2. This means that there can be no "overflow" to the next
power of p, i.e

f
Zdi’jbj = chyipf,Vkﬂ; 1CL; € {0, 1}
k=0

j=1
is equivalent to
N
Z d@jbﬁk S {O, 1},Vk, 1.
j=1

We note, however, that if we fix a value k, then the probability that for all
i, we have that Z;\f:l d; ;bjr € {0,1}, can be written as

Pr[(DW,b) € [0,1],Vi € [1,n]|b1, b, ..., by < [0,1],b = (b1, ..., bn)] = Pp (0.1}

Now, because there are f + 1 values of k and for any particular value of k
the outcome does not depend on any other value of k, these experiments are
independent. Thus the result follows.

O
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Theorem 8. Let D be a n x n square matriz with elements in Z, with columns
DWW ... D" where every row and column of D sums to 1. Let p > 4. Let
2pftt < q. Let nZ{zOpi < 4. Let all values in D have absolute values no

2

greater than p — 2. Let D contain a column that is not a unit vector. Then

pp.g = Pr[(DW b) € P, ;,Vi € [1,0]|b1,ba, ..., by & Py, b= (b1,...,b,)] < (

Proof. We will split the proof down to a number of cases.

1
2

[\

The matrix contains an element with an absolute value larger than 1.

All the elements of the matrix are either —1, 0 or 1. There is a row with at
least 3 elements 1.

All the elements of the matrix are either —1, 0 or 1. In every row there is at
most 2 elements 1.

Let us first consider the case when there is an element (w.l.o.g d; n) with
an absolute value larger than 1 but no larger than p — 2. By Lemma |8 we

have that
1 1 5

o= s < (G
Pogl ~ 21 =8

By Lemma we have that k& > 3. (The requirements for the lemma are

satisfied because n > 2k + 1 and thus (2k+1) ZLO p' < %) In that row we
get the bound (5 + 7)< ()7L

There are not very many distinct cases here. First, consider the case where
there are two rows with 3 nonzero elements where the sets of the indices of
the nonzero elements are disjoint. By a simple argument, we can apply the
Lemma [14] to both of these rows independently and thus obtain a bound of
()7 (23) = ()7 < ()7 which suffices for our claim. If there are no two rows
with 3 nonzero elements where the sets of the indices of the nonzero elements
are disjoint, there are, modulo permutations of rows, a small amount of
possible matrices that satisfy this property. We will describe these matrices
and show that the rate is at most 2 for the test set {0,1}. Using the lemma
this will give us the result.

We will count the cases by considering what is the largest overlap of indices
of nonzero coefficients of rows of three nonzero elements, classifying them,
and showing that we will always have that pp g < g. First, consider the
case when the largest overlap of indices of nonzero coeflicients of rows of
three nonzero elements is one. Then consider two rows that overlap. The
submatrix where the nonzero elements of those two rows will be must be

(modulo permutations) one of the following:

11-10 0
- (00 1 1—1>

11-100
B (00—111)

(11-10 0
010 1-1

Pp,E <
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11 -100
0—1()11>

For all those cases, we can consider all the 32 possible cases for challenge
bits and see that for each matrix, at least for 12 cases, the scalar product
with at least one of the rows will not be a bit. Thus we have that for a
matrix that contains one of these matrices as a submatrix, we must have
that pp 0,1} < 3-

Second, consider the case when the largest overlap of indices of nonzero
coefficients of rows of three nonzero elements is two. Then consider two rows
that overlap. The submatrix where the nonzero elements of those two rows
will be must be (modulo permutations) one of the following;:

11-10
B (11 0 —1>
11-10
(10 1 1)
11-10
<10—11>
11-10
(1—1 0 1)
11-10
(11 0 1)

1 1-10

- <—1 01 1)
For all those cases, we can consider all the 16 possible cases for challenge
bits and see that for each matrix, at least for 6 cases, the scalar product
with at least one of the rows will not be a bit. Thus we have that for a
matrix that contains one of these matrices as a submatrix, we must have
that pp 0,13 < 3-
Third,consider the case when the largest overlap of indices of nonzero coef-
ficients of rows of three nonzero elements is three. Then consider two rows
that overlap. The submatrix where the nonzero elements of those two rows
will be must be (modulo permutations) one of the following.

(11 -1
1-11

11-1
11-1
For the first of those two cases, we can see that pp (0,1} must be no greater

than % However, for the second case we get the bound %. This, however,

turns out not to be an issue. Because we have that the sum of the columns
must also be 1, we cannot have that all the rows with three elements are the
same. Somewhere there must be another row with three elements that is not
(1 1 —1) and thus must be an example of the first case, which means that
for the whole matrix, we get the bound %

Thus we have enumerated all the possible cases and seen that for all of them,
we have that pp 10,1} < %, and thus, by Lemm this will give us the result.
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