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Abstract. Zero-knowledge shu�e arguments are a useful tool for con-
structing mix-nets which enable anonymous communication. We propose
a new shu�e argument using a novel technique that probabilistically
checks that each weighted set of input elements corresponds to some
weighted set of output elements, with weights from the same set as the
input element weights. We achieve this using standard discrete log as-
sumptions and the shortest integer solution (SIS) assumption. Our shu�e
argument has prover and veri�er complexity linear in the size of the shuf-
�ed set, and communication complexity logarithmic both in the shu�ed
set size and security parameter.
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1 Introduction

Mix-networks are protocols used to hide relations between message senders and
their messages. At the heart of many widely used mix-networks are shu�e argu-
ments that prove that a set of output ciphertexts are a rerandomized permutation
of given input ciphertexts. Shu�e arguments are an essential tool for preserv-
ing anonymity in cryptographic protocols such as electronic voting systems [1],
anonymous messaging systems [28], anonymous cryptocurrencies [15], and single
secret leader elections [7].

Shu�e arguments can be constructed in various ways, such as Ne�'s per-
mutation of roots method [24,4], permutation matrices [17], and rerandomizable
CCA-secure cryptosystems [14]. Recent techniques such as Bulletproofs [10,12],
Ho�man et al. [22], and Curdleproofs [27] achieve shu�e arguments with log-
arithmic communication complexity and linear prover and veri�er complexity.
However, the concrete complexity of Bulletproofs and Ho�man et al. depend
on which sorting circuit is implemented, while Curdleproofs shu�es public keys
(gi, g

xi
i )ni=1 into (grπ(i), (g

r
π(i))

xπ(i))ni=1, for some randomly sampled r, and as such

do not shu�e ciphertexts. See [21] for an overview of known techniques.
A recent work by Fleischhacker and Simkin [16] uses a novel technique to

prove a shu�e of commitments by performing a shu�e as a composition of v
shu�es, then letting the veri�er open any v− 1 of them. The technique leads to
very e�cient shu�es based on mostly symmetric primitives without any setup



assumptions, but with a noticeable soundness error. While noticeable soundness
error is not ideal in many situations, it can be useful in cases where detected
cheating provers are heavily penalized. Moreover, their shu�e can achieve neg-
ligible soundness by repetition, although communication becomes linear in the
security parameter.

A natural question to ask is whether or not one can achieve shu�e argu-
ments under standard assumptions that are comparable to Fleischhacker and
Simkin [16] if we allow noticeable soundness error, but can still have logarithmic
proof size if we require negligible soundness.

1.1 Our Contributions

We propose a framework for communication-e�cient shu�e arguments using a
simple random subset checking method. In the basic version, the veri�er chooses
a random non-empty subset of input commitments (resp., ciphertexts) as a chal-
lenge, and the prover proves knowledge of a set of output commitments (resp., ci-
phertexts) and its randomizers that correspond to the input commitments (resp.,
ciphertexts). A cheating prover in our protocol will fail to answer this challenge
with some noticeable probability δ, thus by repeating the protocol a small num-
ber of times, a cheating prover can only succeed with a negligible chance. We are
using techniques which will make repeated applications very cheap by batching.
We obtain two versions of a public-coin zero-knowledge shu�e argument either
for commitments or ciphertexts using standard assumptions.

� The protocol Π lite
scs assumes that it is hard to �nd any non-trivial linear

relations between the input commitments. Π lite
scs achieves excellent e�ciency

under the discrete logarithm (DL) assumption in the random oracle model
(ROM).

� The protocol Πscs is somewhat less e�cient, but does not make any as-
sumption about the input commitments. However, it additionally requires
the Short Integer Solution (SIS) assumption.

We have minimal setup assumptions, as we only require a Pedersen commitment
key as CRS. See Table 1 for comparisons of our scheme to some recent shu�e
arguments.

1.2 Technical Overview

Many previous shu�e arguments commit to some representation of a permuta-
tion, then prove that it is indeed a permutation, and that the shu�ed commit-
ments were obtained from the original commitments by applying the permutation
inside the commitment. We take a slightly di�erent approach that does not try
to include some representation that describes a permutation. The prover has to
show for a randomly chosen subset of input commitments, that it knows a corre-
sponding subset of output commitments. We will mainly focus our attention on

2



Prover Veri�er Decrypt Communicat. CRS size CRS Assumption

[10] O(N)
exp.

O(N)
exp.

N exp. 2N +O(logN)
×G

2N ×G Uniform ROM, DL

[22] 30N exp. 10N exp. N exp. 2N +O(logN)
×G

N ×G Uniform Kernel-MDH

[27]* 30N exp. 5N exp. - * 2N + 10 logN
×G

N ×G Uniform DDH

[14] 72N exp.,
5N pair.

22N pair. 2N exp.,
46N pair.

12N × G1,
11N × G2,
4N ×GT

2m × G1,
2m×G2

Uniform Falsi�able

[2] 11N exp. 7N exp.,
3N pair.

N exp. 4N ×G1, 3N ×
G2

5N × G1,
N ×G2

Veri�able AGM

Πlite
scs 12Nλ + 2

exp.
2N + 2
exp.

N exp. 2N +
2 log(Nλ) +
2×G

(N + 1)×
G

Uniform ROM, DL,
Trusted input
ciphertexts

Πscs 35Nλ +
5N exp.

26N exp. N exp. 2N +
28 log(Nλ/2)×
G

2×G Uniform ROM, DL, SIS

Table 1: Comparison of our shu�e argument against state-of-the-art. Exp. stands for exponenti-
ations, pair. for pairings, N is the number of input ciphertexts, m is the number of mixers, and λ
is the security parameter. Constant terms are neglected, shu�ing is included to prover's e�ciency,
and shu�ed ciphertexts are included to proof size.
(*) Note that Curdleproofs [27] does not shu�e ciphertexts, so N depicts the number of public keys
it shu�es; here, no decryption is performed.

constructing a proof of shu�e for Pedersen commitments, but later show that it
can be modi�ed to a proof of shu�e for ElGamal ciphertexts.

Subset-checking idea

Denote a Pedersen commitment to a message w by [w] = hrgw for some random-
ness r and group generators g and h. Let {[wj ]}Nj=1 be a set of input commitments

and {[ŵj ]}Nj=1 a set of shu�ed output commitments (i.e., there exists a permu-
tation π and a vector r of randomizers such that for each i, [wi] = [ŵπ(i)]h

rπ(i) ,
we also assume that the prover knows the π and r).

First, we note that one can treat the commitments {[wj ]}Nj=1 as a public key
for a Pedersen multicommitment, assuming that nobody knows any nontrivial
linear discrete logarithm relations between them. More formally, the adversary
cannot e�ciently �nd a non-zero a ∈ ZN

q such that
∏N

j=1[wj ]
aj = 1. 5 This

makes it easy to apply e�cient proof techniques such as Bulletproofs to products
of commitments, because products of commitments will correspond to Pedersen
multicommitments in this perspective. We will expand more on this later on.

Let I ⊆ [1, N ] be a subset chosen randomly by the veri�er and let e ∈ {0, 1}N
denote the characteristic vector of I. If there exists r and a permutation π such

5 Brands [9] called it the FindRep assumption and its known to be tightly equivalent
to the discrete logarithm assumption.
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that [wi] = hrπ(i) [ŵπ(i)], then for the subset I,

∏
i∈I

[wi] =
∏
i∈I

hrπ(i) [ŵπ(i)] = h
∑

i∈I rπ(i)

N∏
i=1

[ŵπ(i)]
eπ(i) .

The right-hand side of this can be considered a Pedersen multicommitment with
the public key h, [ŵ1], . . . , [ŵN ].

We will show that if the prover cheats, there exists many subsets I such
that the prover does not know a randomizer r or a binary vector e satisfying∏

i∈I [wi] = hr
∏N

j=1[ŵj ]
ej . We let the prover prove knowledge of r and e for

this relation using an aggregated range proof (e.g., Bulletproofs), which means a
cheating prover will fail for some challenge subsets I. In the most basic case, as
we will explain later, the prover will not know a suitable r and e for at least 1

4 of
subsets. We can make the soundness error negligible by repeating the protocol
a small number of times.

We will show that the soundness error of the basic protocol can be decreased,
which reduces the number of repetitions that we need in the protocol. The strate-
gies we exploit are as follows.

1. The prover additionally proves that the size of I is equal to
∑

j ej , which
will increase the number of challenge subsets for which a cheating prover will
fail.

2. Instead of having e ∈ {0, 1}N , we can use some larger challenge set F for
which the veri�er can also easily check that the messages in a multicommit-
ment belong to this set. More precisely, the veri�er can sample a random
vector e from F and the prover shows knowledge of how to open

∏N
i=1[wi]

ei

in the basis h, [ŵ1], . . . , [ŵN ] such that every element of the message vector
in that multicommitment is a member of F .

One can also �ip the roles of {[wi]}Ni=1 and {[ŵj ]}Nj=1 and obtain the sym-
metrical case. In fact, we will proceed with the �ipped case, due to it being more
realistic that no non-trivial DL relations (or DLRELs, as we will denote them)
are known between the {[wi]}Ni=1. In a mix-net, a mixer (a server that shu�es
the ciphertexts) receives {[wi]}Ni=1 from the previous mixer and produces su�ed
{[ŵj ]}Nj=1 and a proof of the shu�e. If the previous mixer does not collude with
the current mixer, then the current mixer does not know any non-trivial DL
relations for {[wi]}Ni=1. The same is not true for {[ŵj ]}Nj=1, which the mixer itself
generates.

In the basic subset-checking shu�e Π lite
scs , we assume that the prover knows

no nontrivial DL Relations between the input.6 If a prover is able to pass with
at least a certain non-negligible probability, we will be able to extract values
di,j such that [wi] = hr′i

∏N
j=1[ŵj ]

di,j . We will then show that all responses have

to be consistent with these values and that if (di,j)
N
i,j=1 is not a permutation

matrix, the success rate of the prover is negligible.

6 If non-trivial DLRELs are known between the input elements, there are attacks that
succeed with overwhelming probability.
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The full subset-checking shu�e Πscs

For the more realistic case, we may face an adversary that knows DL relations
between the input elements. To overcome such an adversary, our general strategy
is as follows.

1. Use range proofs to ensure that with overwhelming probability, the known
DL relation is linear in nature, with small constants in the linear equation.
We will call such DL relations small. (Note that the range proofs serve a
dual purpose, as they are additionally used for the main argument to show
that the elements of the message vector are members of the challenge set.
Thus, in a sense, we get this �rst proof "for free".)

2. Ask the prover to pass the basic subset checking argument for various reran-
domizations {hai [wi]}Ni=1 instead of {[wi]}Ni=1, where the values {ai} are cho-
sen by the veri�er. If the veri�er accepts, then either the extractor can ex-
tract a valid permutation and randomness values for the shu�e, or the prover
knows small DL relations for all such given rerandomizations of {[wi]}Ni=1.

3. Show that a prover that knows small DL relations for all given rerandom-
ization values will break a variant of the SIS assumption.

Firstly, note that not all known non-trivial DLRELs will be useful to a cheat-
ing prover. Due to a clever use of range proofs, the only useful DLRELs for the
prover are those of the form

∏
[wi]

ai = 1, where all the ai are smaller than a cer-
tain bound. Intuitively, the basic attack vector that arises from known DLRELs
is that the cheating prover can use one or more shu�ed elements to play the part
of another, and hence substitute elements into the output shu�e undetected.

For example, suppose N = 3 and suppose the prover knows that [w1][w2]
2 =

[w3]. Then a cheating prover can set [ŵ1] = [w1], [ŵ2] = [w2] and [ŵ3] = [0].
Suppose that we are using the set F = [0, 10] for the range proof. Then,
when the veri�er sends a challenge I = {1, 2, 3} (i.e., asks for the value cor-
responding to [w1][w2][w3] in the basis [ŵ1], [ŵ2], [ŵ3]), the prover can say that
[w1][w2][w3] = [ŵ1]

2[ŵ2]
3[ŵ3]

0 and pass veri�cation since 2, 3, 0 ∈ [0, 10], and
thus the range check passes. However, if the adversary instead knew a relation
of the form [w1][w2]

100 = [w3], then the above attack would not work since
the analogous resulting equation would be [w1][w2][w3] = [ŵ1]

2[ŵ2]
101[ŵ3]

0 and
101 ̸∈ [0, 10]. Consequently, the corrected scheme will work even if the cheating
prover is allowed to know some nontrivial DL relations between the input ele-
ments, provided that at least one of the elements describing the DL relation is
large enough (i.e., not in F ) so a range proof will fail.

Secondly, note that the scheme we have currently described, has not paid
attention to the exponent of h. However, in a correct challenge-response, the
exponent of the h must have a speci�c value. More speci�cally, we will let the
prover provide v commitments {Ck}vk=1 to all the randomizers {ri}. For each
response to the challenge, the prover must additionally show that her response is
consistent to these commitments {Ck}vk=1. In essence, we will be able to extract

a matrix (di,j)
N
i,j=1 whose coe�cients will satisfy [wi] =

∏N
j=1(

[ŵj ]

h
r′
j
)di,j where the
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r′j must be consistent with the commitment of rerandomization factors {Ck}vk=1.
Since the commitment is binding, we can conclude that r′j = rj for 1 ≤ j ≤ N .

Hence, a cheating prover must not only know a non-trivial DLREL between
the messages, but also a non-trivial DLREL between the commitments that
can be denoted by some matrix (di,j)

N
i,j=1. Moreover, the matrix d must contain

small elements. Roughly speaking, this is because in order to do the same attack,
the same DLRELs that hold between the messages must now also hold between
the hri . A more precise reasoning will be given in the security proofs. We can
use rerandomization with public rerandomization factors to destroy small non-
trivial discrete logarithm relations between the commitments. That is, we would
publicly randomly sample a1, . . . , aN , denote [wi]

′ ← hai [wi] for all i, and do the
shu�e proof between the {[wi]

′}Ni=1 and the {[ŵj ]
′}Nj=1. After all, as the honest

prover knows these ai, she can as well do the new proof as the old proof. However,
as the values a1, . . . , aN are sent after the adversary has chosen {[wi]}Ni=1 and
{[ŵi]}Ni=1, the adversary's advantage will signi�cantly decrease.

However, the question of how good one public rerandomization is in getting
rid of small non-trivial DLRELs, is tricky. Here the rerandomization factors will
have to be still known to the prover. Thus, there will still be many nontrivial
DLRELs that might be known to the prover if she happens to know some on the
original commitments.7

Fortunately, we will see that the vast majority of these DLRELs will have
at least some coe�cients that are large which will cause them to not be usable
as attack vectors, due to reasons that were roughly explained above and will
be explained more precisely later on. The small amount of DLRELs that might
be usable, turn out to be hard to �nd due to lattice assumptions. However, the
precise values of �too large� and what the lattice assumption gives us, is depen-
dent on a number of parameters. Thus it might happen that if we rerandomize
only once, the adversary might still plausibly �nd medium-size DLRELs that are
useful for breaking the scheme. Thus it might be necessary to use several public
rerandomizations, say v times, with rerandomization values {ai,k}N,v

i=1,k=1. The
challenge I will be the same for all the rerandomizations and the prover has to
answer them all in a consistent way. Suppose now that the cheating prover will be
able to come up with a small discrete logarithm relation characterized by vector
{ci}Ni=1. To cheat, the {ci}Ni=1 has to be a DLREL in all the rerandomizations,

that is, for all k ∈ [1, v], we would have that
∏N

i=1(h
ai,k [wi])

ci = 1.

This turns out to be equivalent to c being a vector with small coe�cients
that gives a scalar product of 0 with v random vectors, which we show to be
equivalent to solving a SIS-problem over an exponentially large �eld. Note that
the soundness of a single test will depend on what set F we can use for the range
proof and on the number of rerandomizations v that we do. However, since the
size of the group G is a part of the SIS assumption, just one rerandomization
will be su�cient as long as G is large enough.

7 Essentially �nding a DLREL that holds both between the original commitments and
the rerandomized ones, is related to solving a linear equation with N variables with
two equations.
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2 Preliminaries

Let λ denote the statistical security parameter. Let F denote a �nite �eld. We
denote uniform sampling from a set S by x←$ S. Let [1..N ] denote {1, . . . , N}.
We write f(λ) ≤ negl(λ) if f is a negligible function in λ. By y ← A(x; r) we
denote that an algorithm A takes an input x and uses random coins r to produce
an output y. We denote by SN the set of permutations on N elements. For a
predicate P , let ∃nxP (x) denote that there exists exactly n distinct values x
such that P (x) holds.

We denote a commitment of x by [x], and a commitment of x with explicit
randomness r by [x; r]. We use Pedersen multicommitments, where [x1, . . . , xN ; r] =

hr
∏N

i=1 g
xi
i . For a shu�e argument, we assume that we have two committed

vectors {[w1], . . . , [wN ]} and {[ŵ1], . . . , [ŵN ]} so that the second vector is a
permutation-and-rerandomization of the �rst. We assume that the prover knows
the permutation π and the rerandomization vector r. Thus, in the case of Ped-
ersen multicommitments, [wi] = [ŵπ(i)]h

rπ(i) for i ∈ [1..N ]

Notation: for an element a of Zq, we denote with |a| the non-negative integer
that measures the distance of this element from 0, that is, if a ∈ [0, q

2 ), |a| = a,
if a ∈ [− q

2 , 0), then |a| = −a. For a vector a = {ai}Ni=1, we denote with |a| :=
maxi(|ai|). For any set A, and an element k, we denote by k+A := {k+a|a ∈ A}
and k ·A := {k · a|a ∈ A}. Also A−A := {a1 − a2|a1, a2 ∈ A}. Let Pp,f = {a ∈
Zq|∃a0, . . . , af ∈ {0, 1}, a =

∑
i=0 aip

i} where p is an integer and 3 < p < f+1
√

q
2 .

For a D that is a n × n square matrix with elements in Zq with rows
D(1), . . . , D(n) and E ⊂ Zq, we denote

pD,E := Pr[⟨D(i),b⟩ ∈ E,∀i ∈ [1, n]|b1, b2, . . . , bn
$← E,b = (b1, . . . , bn)].

We defer to Appendix A for more de�nitions of basic concepts.

2.1 Zero-Knowledge Argument

Let Pgen be a PPT parameter generation algorithm that on input 1λ outputs
p (e.g., a description of the group or some other setup parameters). A zero-
knowledge argument of knowledge for a relation R is a tuple of e�cient algo-
rithms (Pgen,P,V) that satis�es properties of perfect completeness, computa-
tional witness-extended emulation, and special honest veri�er zero-knowledge,
de�ned in Appendix A.2. The prover algorithm P and veri�er algorithm V
are interactive algorithms and we denote their protocol transcript by tr ←
⟨P(p, x,w),V(x)⟩ where (x,w) ∈ R and p ∈ Pgen(1λ). We write ⟨P(p, x,w),V(x)⟩ =
1 to denote that veri�er outputs 1 at the end of the interaction. Interactions with
an adversary follow a similar notation. See Appendix A.2 for more detail of def-
initions related to zero-knowledge arguments of knowledge.

Our argument becomes non-interactive zero-knowledge when applying the
Fiat-Shamir transform [6].
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2.2 Pedersen Multicommitment

Let G be a cyclic multiplicative group of prime order p where the discrete loga-
rithm assumption holds. A Pedersen multicommitment, also known as Extended
Pedersen commitment, consists of a key generation KGen and a commitment al-
gorithm Com. Key generation algorithm KGen(1λ, n) samples h, g1, . . . , gn ←$ G
and outputs ck = (h, g1, . . . , gn). The commitment algorithm Comck(m; r) takes
in a message m ∈ Zn

p and a randomness r ←$ Zp and outputs a commitment
c = hrg1

m1 · . . . · gnmn . The commitment is opened by revealing m and r which
allows to verify the commitment.

We obtain the standard Pedersen commitment if n = 1. Pedersen multicom-
mitment is perfectly hiding, i.e., m is information-theoretically hidden, and if
the discrete logarithm assumption holds in G it is also binding, i.e., an e�cient
adversary cannot open a commitment to two di�erent values.

2.3 Assumptions

Let GGen be an algorithm that takes as an input the security parameter 1λ and
outputs a multiplicative group G.

De�nition 1 (NoDLRel [10]). We say that the N -NoDLRel assumption
holds respect to GGen if for any PPT adversary A and for all N ≥ 2 there
exists a negligible function µ(λ) such that

Pr

[
G← GGen(1λ), g1, . . . , gN ←$ G,

a = (a1, . . . , aN )← A(G, g1, . . . , gN )
: a ̸= 0 ∧

N∏
i=1

gai
i = 1.

]
= µ(λ).

The above is known to reduce to the standard discrete logarithm assumption [9,10].

2.4 Proof of knowledge of Pedersen commitment opening.

It is well known how to do the proof of knowledge of a Pedersen multicommitment
with a logarithmic-size proof using the compressed Sigma protocol approach [5].
The full relation is de�ned as follows.

Rck,N
KoE =

{ (
x = c ∈ G,w = (e, {ei}Ni=1) ∈ ZN+1

p

)
:

c = hege11 · . . . · g
eN
N ∧ ck = (h, g1, . . . , gN ) ∈ GN+1

}
.

2.5 Inner product argument

An inner product argument is an argument for the following relation.

Rck,N
in-prod :=

{(
x = (c ∈ G, ĉ ∈ G, H ∈ G,b ∈ ZN

p ),w =
(
x ∈ ZN

p , δ ∈ Zp

))
:

c = hδ
∏N

i=1 g
xi
i ∧ ĉ = H

∑N
i=1 bixi .

}
,

where ck = (h, g1, . . . , gN ). One can use known sigma protocol theory [13] to
describe a sigma protocol for this language with O(N) size last message, then use
the compression technique to make the proof size O(logN). See Appendix B.2
for the full argument.
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2.6 Set proofs and range proofs

A set-proof shows that committed elements belong to some structured set F .

RZq,N,F
set =

{(
(h, g1, . . . , gN ∈ G, , τI , ), (r, e1, . . . , eN ∈ Zq)

)
:

hr
∏N

j=1 g
ej
j = τI ∧ ej ∈ F,∀j ∈ [1, N ]

}
.

Note that while showing that the elements of a multicommitment belongs to
some arbitrary set can be quite expensive, for some particular types of sets, the
proofs are very e�cient.

A more speci�c example of a set-proof is a range proof, i.e., the case when
the set is the interval [0, 2K − 1] for some �xed positive integer K. One example
of how to do it is Bulletproofs [10,12].

We note that while F = [0, 2K−1] is one particular example of an e�ective set
proof using the Bulletproofs construction, the Bulletproofs construction actually
allows to use the same technique for somewhat more general sets. In particular,
the idea in Bulletproofs is that we prove that we can represent a committed
value a as a =

∑K−1
i=0 ai2

i and then show that the ai are bits. However, the same
idea could be used, for example, to show that one can represent a committed
value a as a =

∑v
i=0 aip

i for some public value p and then show that the ai are
bits.

3 New sub-arguments and assumptions

Before describing our main construction, we introduce some tools that will be
used in the main protocol. Due to size constraints, we will not be able to present
them in the main body and they will be given in the appendices along with the
necessary proofs.

3.1 Showing that the values and randomness in two commitments
must be the same

Let us call a set of elements h, {gj}Nj=1 in some group a trusted basis if we assume
that no nontrivial DLRELs are known between them. (For example, they were
sampled randomly from a group where a corresponding hardness assumption is
believed to hold.) We call the above set of elements an untrusted basis if we do
not have this assumption about them.

Given a trusted basis h̄, {gj}Nj=1 and an untrusted basis h, {wj}Nj=1 the ar-

gument ΠN
samecom proves that you know the witness in the relation RN

samecom

given below. The full argument can be seen in Appendix B.3.

RN
samecom =


(
(h, {wj}Nj=1, h̄, {gj}Nj=1 ∈ G, ρ, τ), (r, e1, . . . , eN ∈ Zq)

)
:

hr
N∏
j=1

w
ej
j = ρ ∧ h̄r

N∏
j=1

g
ej
j = τ

 ·
The relation is also known as the linking relation, see Lego SNARK [11].
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3.2 Showing that commitment's randomizer is the same value in the
exponent of H

Given an element λ, a randomly generated group element H, commitment key
ĥ, g1, . . . , gN , and a value τI , we need to prove knowledge of r, {ej}Nj=1, such that

ĥr
∏N

j=1 g
ej
j = τ , and Hr = λ. We assume that no nontrivial DLRELs are known

between the H, ĥ, {gi}Ni=1.The relation Rcomrand is shown below. Note that it is
essentially RN

samecom with {wj}Nj=1 = 1. The full argument for this relation is
given in Fig. 8 in Appendix B.4.

RN
comrand =

{(
(H, ĥ, g1, . . . , gN ∈ G, λ ∈ Zq, τ), (r, e1, . . . , eN ∈ Zq)

)
:

ĥr
∏N

j=1 g
ej
j = τ ∧Hr = λ

}
.

3.3 Showing that the (weighted) sum of committed elements is equal
to v

Given a trusted basis ĥ, g1, . . . , gN , publicly known integers a1, . . . , aN , public
value v and a commitment in that basis τI , we need to show that you know
r, {ej}Nj=1 such that ĥr

∏N
j=1 g

ej
j = τI and that

∑N
j=1 ajej = v. The relation

Rcomsum is given below. The full argument is given in Fig. 9 in in Appendix B.5.

RN
comsum =

{(
(ĥ, g1, . . . , gN ∈ G, a1, . . . , aN , v ∈ Zq, τ), (r, e1, . . . , eN ∈ Zq)

)
:

ĥr
∏N

j=1 g
ej
j = τ ∧

∑N
j=1 ajej = v

}
.

3.4 Showing that the messages in several commitments are the same

This is a slight variation of a previous primitive. Here, we are given v commit-
ments {ρi}vi=1, vN + v basis elements {gi,j}v,Ni=1,j=1, {hi}vi=1 where no nontrivial
DLREL is known between these. We are asked to show that the prover knows
{ri}vi=1 and {ej}Nj=1 such that ρi = hri

i

∏N
j=1 g

ej
i,j . We assume that the prover

has already shown that she knows how to open the ρi in these respective bases,
we just need to show that the elements are the same. Note that it is essentially
a generalization of RN

samecom. The protocol for showing the following relation is
discussed in Appendix B.6.

RN
samemes =


(
(h1, . . . , hv, g1,1, g1,2, . . . , gv,N ∈ G, ρ1, . . . , ρv),

(r1, . . . , rN , e1, . . . , eN ∈ Zq)
)
:

ρi = hri
i

∏N
j=1 g

ej
i,j ,∀i ∈ [1, v]

 .

3.5 Additional assumptions

De�nition 2 (Shortest Integer Solution [3]). Let a1, . . . ,av ∈ ZN
q be uni-

formly randomly sampled. The SISq,N,v,L-assumption states that it is hard for an
adversary to �nd a vector b = (b1, . . . , bN ) ∈ ZN such that ⟨b,aj⟩ = 0 (mod q)
for all j ∈ [1, v] and |bi| ≤ L for all i ∈ [1, N ].
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We note here that usually in this de�nition the �eld size q is relatively small
(usually quadratic in the security parameter) and thus v needs to be approxi-
mately the size of the desired security parameter. In our case, however, the �eld
size is exponentially big, and N may be large. The case of a big q and N has
been studied before, and it has been shown [18,8], that even if v = 1 (i.e., 1-
dimensional SIS), one can show it to be as good as classic lattice assumptions,
provided that q ≥ L ·

√
Nλ log λ and N ≥ λ log q. Thus it seems plausible that

even in our case, if we picked a large-enough prime q and assume a large N ,
v = 1 would su�ce. However, our design also allows to choose a larger v without
much extra cost. Thus the choice of v is a matter of preference, depending on
which version of SIS-in-a-large-�eld one uses.

To describe our �nal assumption, we must �rst de�ne "small" discrete loga-
rithm relations. Thus, we come to the following de�nition:

De�nition 3 (NoBounded-L-DLRel). For a set of elements {gi,j}N,v
i=1,j=1 we

say that the (N, v)-NoBounded-L-DLRel property holds for an adversary A if
there exists a negligible function µ(λ) such that

Pr

a = ({ai}Ni=1)← A(G, {gi,j}N,v
i=1,j=1) :

a ̸= 0 ∧ ∥a∥ ≤ L

∧
N∏
i=1

gai
i,j = 1,∀j ∈ [1, v]

 = µ(λ).

Note that this is actually not yet an assumption, but a property of a set. We
are merely introducing the language so that we would be able to say later that
a given set has this property.

Proposition 1. Let G be a group with order q and assume SISq,N,v,L holds.
Let the set {g1,1, . . . , gN,v} ⊂ G be obtained the following way. Let g, h ∈ G be
chosen in such a way that no DLRELs are known between g and h. The adver-
sary A picks a′1, . . . , a

′
N , b1 . . . , bN . Then, c1,1, . . . , c1,N , c2,1 . . . , cv,N are picked

uniformly at random from [0, . . . , |G|−1]. We set gi,j ← ha′
i−ci,jgbi . Then (N, v)-

NoBounded-L-DLRel property holds for A.

Note that here we essentially assume that the prover not only knows all the
committed messages and randomnesses, but has picked them herself. In practice,
the prover likely has much less knowledge and power over the situation, thus she
will not be able to �nd short DLRELs, if our assumptions hold.

4 The main technique

4.1 Basic shu�e

If we assume that the prover knows no DL relations between input ciphertexts,
then we can obtain the basic shu�e argument Π lite

scs depicted in Fig. 1. The
argument is very e�cient, as we mostly need κ range proofs that can be batched.
Using Bulletproofs, the veri�er only needs to perform 2N + 1 exponentiations.

11



Prover({[wi]}Ni=1, {[ŵi]}Ni=1, h,g, Veri�er({[wi]}Ni=1,

w = {π, {ri}Ni=1}) {[ŵi]}Ni=1, h, g)

Prove:
(∏N

i=1[ŵi]∏N
j=1[wj ]

,−
N∑
i=1

ri
)
∈ R(h),0

KoE

Repeat the following algorithm κ times in parallel, batched:

(a1, a2 . . . , aN ) (a1, a2 . . . , aN )←$ FN

Set : τI =

N∏
i=1

[ŵi]
ai

r′ ←
N∑

j=1

rjaπ−1(j), Prove:
(
(h, [w1], . . . , [wN ], τI),

ej ← aπ−1(j),∀j ∈ [1, N ] (r′, e1, . . . , eN )
)
∈ RZq,N,F

set

Accept if all proofs go through

Fig. 1: The basic shu�e argument Π lite
scs .

Theorem 1. Let F be {0, 1} and T̂ = 3
4 . Suppose that it is hard for the prover

to �nd a nontrivial DLREL between h, {[wi]}Ni=1. Then if the veri�er accepts in

Π lite
scs with probability at least (T̂ + ε)κ for a non-negligible ε, there exists an

extractor that extracts a valid permutation and rerandomization factors.

Proof (Sketch). It is easy to see that the theorem claim is equivalent to the claim
that one single test has a success chance that is T̂ + ε for a non-neglible ε. Thus,
let us consider the following rewinding experiment.

For all t = 1, . . . , N , we argue that with polynomially many queries we can
obtain two challenge vectors a1,t, . . . , at,t, . . . , aN,t and a1,t, . . . , at,t+1, . . . , aN,t

for which the veri�er accepts, that only di�er at the t-th coordinate. This follows
from Lemma 3 from which we have that we can obtain two challenge vectors that
only di�er on the tth position, and as the challenge elements are bits, they can
only di�er by 1. We can extract for both of challenges the values (r′t, {e′j,t}Nj=1)

and (r′′t , {e′′j,t}Nj=1) respectively by using the extractors of the set proofs.

Thus
∏N

i=1[ŵi]
ai,t = hr′t

∏N
j=1[wj ]

e′j,t and [ŵt]
∏N

i=1[ŵi]
ai,t = hr′′t

∏N
j=1[wj ]

e′′j,t .
Denote dt,j := e′′j,t − e′j,t and rt := r′′t − r′t. Dividing the second equation by the

�rst one we obtain [ŵt] = hrt
∏N

j=1[wj ]
dt,j . Let D be the matrix {dt,j}N,N

t=1,j=1.
Note that all elements of D are either −1, 0 or 1.
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Now, take any successful response to a challenge {ai}Ni=1. We can extract

r, {ej}Nj=1 from it such that
∏N

i=1[ŵi]
ai = hr

∏N
j=1[wj ]

ej . On the other hand∏N
i=1[ŵi]

ai =
∏N

i=1(h
ri
∏N

j=1[wj ]
di,j )ai = h

∑N
i=1 airi

∏N
j=1[wj ]

∑N
i=1 aidi,j .

Now, because we assumed that no nontrivial DLRELs are known between the
[wj ] it follows that for all j, we have that ej =

∑N
i=1 aidi,j . On the other hand

ej ∈ F . Thus the prerequisite for a successful answer to the veri�er accepting is

that
∑N

i=1 aidi,j ∈ F . Thus, if the veri�er happens to pick {ai}Ni=1 in such a way

that
∑N

i=1 aidi,j ̸∈ F , then the veri�er will not accept. Thus it must hold that

T̂ ≤ pD,F by the de�nition of pD,F .
Now, it will su�ce to show that if D is not a permutation matrix, we will

have that pD,F < T̂ . We note that as the �rst step, in the KoE-proof, the prover

has to show that she knows a R such that hR =
∏N

i=1[ŵi]∏N
j=1[wj ]

. This implies that

hR
∏N

j=1[wj ] =
∏N

i=1[ŵi] =
∏N

i=1(h
rt
∏N

j=1[wj ]
di,j ) = h

∑N
i=1 rt

∏N
j=1[wj ]

∑N
i=1 di,j .

Thus, we have that for all j ∈ [1, N ] we have that
∑N

i=1 di,j = 1. Now the result

follows directly from Lemma 13, as that gives us pD,F ≤ 3
4 < T̂ . ⊓⊔

4.2 Challenge-Response subargument

Our full shu�e argument will have the following part � the main part, where
some preparations are done for the subargument ChalResp, which is then called
κ times with two variations. The argument will essentially be a random challenge
from a challenge set and a response, with the response being mostly proofs of
di�erent types. The argument will allow us to extract a unique response. We will
run the argument for two di�erent challenge sets.

Lemma 1. Consider the ΠChalResp argument depicted in Fig. 2, and assume
that no nontrivial DLOG relations are known between H,h, g, ck and the {ckk}vk=1.

Let there also be a extractor who is given {r′t,k}
v,N
k=1,t=1, {δk}vk=1 such that

these satisfy Ck = hδk
∏N

t=1 g
r′t,k
t . Denote [ŵt,k]

′ := [ŵt]

h
r′
t,k

. Let the �rst message

of the Veri�er be some (b1, . . . , bN ) where each bi ∈ F . Assume that the Veri�er

accepts. Then the extractor can extract {ej}Nj=1, which satisfy
∏N

j=1[w
′

j,k]
e′j =∏N

t=1 [ŵt,k]
′bt . Additionally, ej ∈ F for all j and

∑N
j=1 ej =

∑N
t=1 bt.

Proof. (Sketch). Assume that the veri�er accepts the argumentΠChalResp. Firstly,
the veri�er accepts the arguments ΠN

comrand, i.e., for k ∈ [1, v] the prover pro-

vides accepting arguments for the relation (H, ĥk, g1,k, . . . , gN,k, λI,k, τI,k) ∈
RN

comrand. Thus we can extract r
′
k and (e1,1, . . . , ev,N ) such that τI,k = ĥk

r′k ∏
j=1 g

ej,k
j,k

for all k and Hr′k = λI,k. Similarly, since the veri�er acccepts ΠN
samemes, for

(ĥ1, . . . , ĥv, g1,1 . . . , gN,v, τI,1, . . . , τI,k), we can extract r′′k and (e′1, . . . , e
′
N ) such

that τI,k = ĥk
r′′k ∏N

j=1 g
e′j
j,k for all k ∈ [1, v]. Combining these we have that if for

some ej,k ̸= ej or r
′
k ̸= r′′k , then we have broken the DLOG-assumption for the

gj,k. Thus we have that τI,k = ĥk
r′k ∏N

j=1 g
e′j
j,k for all k and Hr′k = λI,k.
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Next, we have that for all k, the veri�er accepts Πck,N
in-prod went through, i.e.,

for (Ck, λI,k, H, (b1, . . . , bN )) ∈ Rck,N
in-prod for k ∈ [1, v], we can extract δk′ and

Rt,k such that Ck = hδ′k
∏N

t=1 g
R′

t,k

t , and λI,k = H
∑N

t=1 btR
′
t,k . Our extractor

knows the values {r′t,k}
v,N
k=1,t=1, {δk}vk=1 such that Ck = hδk

∏N
t=1 g

r′t,k
t . Due to

the nontrivial DLOG property of (h, {gt}Nt=1) we have that R′
t,k = r′t,k and

δk = δ′k for all k and t. Hence we have that Hr′k = λI,k = H
∑N

t=1 btr
′
t,k and thus

r′k =

N∑
t=1

btr
′
t,k. (1)

We also have that the ΠN
samecom argument for the relation

(h, {[w
′

j,k]}Nj=1, ĥ, {gj,k}Nj=1,

N∏
t=1

[ŵt]
bt , τI,k) ∈ RN

samecom

is accepted. Thus we can extract the r̄k and ¯dk,j such that

hr̄k

N∏
j=1

[w
′

j,k]
¯dk,j =

N∏
t=1

[ŵt]
bt

and

ĥr̄k

N∏
j=1

g
¯dk,j

j,k = τI,k.

Thus

ĥr̄k

N∏
j=1

g
¯dk,j

j,k = τI,k = ĥk
r′k

N∏
j=1

g
e′j
j,k

for all k. Hence r̄k = r′k and e′j =
¯dk,j for all k. Thus

hr′k

N∏
j=1

[w
′

j,k]
e′j =

N∏
t=1

[ŵt]
bt .

We have that r′k =
∑N

t=1 btr
′
t,k and thus this is equivalent to

h
∑N

t=1 btr
′
t,k

N∏
j=1

[w
′

j,k]
e′j =

N∏
t=1

[ŵt]
bt

or
N∏
j=1

[w
′

j,k]
e′j =

N∏
t=1

(
[ŵt]

hr′t,k

)bt

=

N∏
t=1

[ŵt,k]
′bt .

We have thus shown the �rst part of the claim. Now we have to show that the
ei ∈ F .
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We also have that the range proofs are accepted. More speci�cally,(
(ĥ1, g1,1, . . . , gN,1, τI,1)

)
∈ RZ1,N,F

set .

Thus we can extract {r̂}, {d′j}Nj=1 such that

ĥ1
r̂

N∏
j=1

g
d′
j

j,1 = τI,1 ∧ d′j ∈ F .

We have that

ĥ1
r̂

N∏
j=1

g
d′
j

j,1 = τI,1 = ĥr1

N∏
j=1

g
e′j
j,1

Thus e′j = d′j where dj ∈ F . Hence the second claim is proven.

Also, the veri�er accepts ΠN
comsum, i.e.,

(ĥ1, (g1,1, . . . , gN,1), (1, . . . , 1),

N∑
t=1

bt, τI,1) ∈ RN
comsum .

Thus we can extract r̄′ and d̄′j such that τI,1 = ĥ1
r̄i

′ ∏N
j=1 g

d̄′
j

j,1 and
∑

j d̄
′
j =∑N

t=1 bt. By previous equalities, we have that

ĥ1
r̂

N∏
j=1

g
d′
j

j,1 = τI,1 = ĥ1
r̄i

′ N∏
j=1

g
d̄′
j

j,1,

thus we have that d′j = d̄′j . Thus we also have that

∑
j

d′j =

N∑
t=1

bt.

4.3 Main body of the shu�e argument

We will now describe our full construction, along with explaining why we are
using each part. Essentially our construction is a generalization of the simple
version. We �rst have to do some preparations, and then we will run two sets
of the ChalResp protocol κ times using di�erent types of challenge sets. For
preparation, we will need to compute intermediate commitment keys on v parallel
public rerandomizations. 8

8 The number v here will depend on our SIS-assumption. Essentially, if a cheating
prover wants to use some known discrete non-trivial relation between the inputs,
the relation has to be "short" and same across every rerandomization, meaning that
e�ectively using it would break the SIS-assumption. We will expand on this more
formally later.
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Prover({[w
′
i,k]}N,v

i=1,k=1, {ai,k}N,v
i=1,k=1, {[ŵi]}Ni=1, Veri�er({[w

′
i,k]}N,v

i=1,k=1, {ai,k}N,v
i=1,k=1

h, g, ck,Zq, F, v, {Ck}vk=1, {ĥk}vk=1, {gi,k}N,v
i=1,k=1) {[ŵi]}Ni=1, h, g,Zq, F, v, {Ck}vk=1,

w = {π, {ri}Ni=1, {r′i,k}N,v
i=1,k=1, {δk}

v
k=1}) {ĥk}vk=1, {gi,k}N,v

i=1,k=1)

(b1, . . . , bN ) (b1, . . . , bN )←$ F

Both :

ρI =

N∏
i=1

[ŵi]
bi ,

ej ← bπ(j), j = 1, . . . , N

in parallel, for k ∈ [1, v] :

rk ←
N∑
i=1

bir
′
i,k

λI,k ← Hrk

τI,k ← ĥk
rk

N∏
j=1

g
ej
j

{τI,k}vk=1, {λI,k}vk=1

Prove:
(
(h, {[w

′
j,k]}Nj=1, ĥ, {gj,k}Nj=1, ρI , τI,k),

(rk, e1 . . . , eN )
)
∈ RN

samecom for k ∈ [1, v]

Prove:
(
(ĥ1, . . . , ĥv, g1,1 . . . , gN,v, τI,1, . . . , τI,k),

(r1, . . . , rv, e1 . . . , eN )
)
∈ RN

samemes

Prove:
(
(H, ĥk, g1,k, . . . , gN,k, λI,k, τI,k),

(rk, e1, . . . , eN ∈ Zq)
)
∈ RN

comrand for k ∈ [1, v]

Prove:
(
(Ck, λI,k, H, (b1, . . . , bN )),

(r
′
i,k, δk)

)
∈ Rck,N

in-prod for k ∈ [1, v]

Prove:
(
(ĥ1, g1,1, . . . , gN,1, τI),

(r1, e1, . . . , eN )
)
∈ RZq,N,F

set

Prove:
(
(ĥ1, (g1,1, . . . , gN ), (1, . . . , 1),

N∑
i=1

bi, τI),

(r1, e1, . . . , eN )
)
∈ RN

comsum

Accept if all proofs go through.

Fig. 2: One round of the shu�ing argument ChalResp (without the random oracle,
linear communication of random elements).

Next, the Veri�er picks rerandomization factors {ai,1}Ni=1, . . . , {ai,v}Ni=1 and
a number of random trusted bases sends them to the prover. The Prover and
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Veri�er both compute [w
′

i,k] ← hai,k [wi]. The prover also computes ri,k ← ri −
aπ−1(i),k for i = 1, . . . , N, k = 1, . . . , v and commits to these with commitments

C1, . . . , Cv which she sends to the Veri�er. The Prover shows that
∏N

j=1[w
′

j,k] =∏N
t=1 [ŵt,k]

′ for all k where [ŵt,k]
′ := [ŵt]

h
r′
t,k

. The [w
′

i,k] and the [ŵt,k]
′ will be

our main building blocks. The fact that their products are the same will be an
important tool as it will allow us to show that in the extracted matrix, the sum
of all rows will be 1. The point of the commitments Ci is that they will help us
to argue about [ŵt,k]

′ and [wt,k]
′ instead of [ŵt] and [wt].

After that they will do two types of ChalResp protocols, one where the chal-
lenge set will be an interval and another where it will be Pp,f . The reason for the
two types of tests is that it is much easier to extract from the interval, however,
the Pp,f will give much more e�cient results.

Fine-tuning the ChalResp protocol

The prover will send N random elements {bi}N
i=1

from the challenge set F . In the
simpler version, the prover would show that she knows how to open the product
ρI =

∏N
i=1[ŵi]

bi in the basis h, {[wi]}N
i=1

. However, here we will want to do all our
subproofs on a trusted basis, because a number of them simply would not work
on an untrusted basis. Thus, at the �rst step, we want to move to that trusted
basis (ĥ, {gj,k}Nj=1). An honest prover would know ej = bπ(j) and randomizers

rk =
∑N

i=1 bir
′

i,k such that hrk
∏

N
j=1

[w
′

j,k] = ρI . Instead of showing that, she

will produce τI,k = ĥk
rk ∏N

j=1 g
ej
j , show using the ΠN

samecom argument that the

values of τI,k when opened in basis ĥ, {gj,k}Nj=1 are the same as the values when

ρ opened in the basis h, {[w′

j,k]}Nj=1 would be and then proceed working with
τI,k and the trusted basis.

For the SIS-arguments to work, the response to the challenge {bi}N
i=1

must
be the same in every public rerandomization, which can be guaranteed using the
argument ΠN

samemes.
A cheating prover might be tempted to pick the rerandomization factors r′i,k

in a dishonest way. Remember that because a prover might know the contents of
the messages, the fact that the secret rerandomization factors are a crucial part
of the protocol. The arguments ΠN

comrand and ΠN
in-prod force the rerandomization

factors to be exactly what is in the commitments Ck.
Now the conditions are set that we may run the actual range proof on the

challenge value τI and the basis (ĥ1, g1,1, . . . , gN,1, τI). Note that we do not actu-
ally have to run it on v parallel rerandomizations because it has been previously
proven that the committed values will be same for all of them, thus we only need
to do this for one of them.

Finally, the Πcomsum argument makes it sure that
∑N

i=1 bi =
∑N

i=1 ei, which
will allow us to show that in the extracted matrix, all columns must sum to 1.
The fact that both all rows and all columns must sum to 1 will be an important
part of the proof that the extracted matrix must be a permutation matrix.
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Theorem 2. Let p, 2K+1 < N . Suppose that the SISq,N,v,(N+1)·(
∑f

i=0 pi) holds.

If p is odd, then let 2K ≤ p
2 . If p is even, then let 2K ≤ p − 2. Let T =

min{2K , ( 85 )
f}. The protocol depicted in Fig. 3 has ( 1

T + ϵ1)
κ + ϵ2-witness-

extended-emulation where ϵ1 and ϵ2 are negligible.

Proof given in Appendix C.
One can pick p and f accordingly to the SIS-bound and get the respective

soundness error of one round according to that.
For example, if (N + 1)226-SIS holds, then one can take p = 18, K = 4,

f = 6, check that (N + 1)
∑

i=0 18
i ≤ (N + 1)226 and obtain that one round

of ChalResp has a soundness error of ≈ 1
16 . Thus then, one can take κ = 1λ

4 .
If (N + 1)255-SIS holds, then one can take p = 66, K = 6, f = 9, check that
(N + 1)

∑
i=0 66

i ≤ (N + 1)255 and obtain that one round of ChalResp has

a soundness error of ≈ 1
64 . Thus then, one can take κ = 1λ

6 . To simplify the
analysis of e�ciency, we take κ to be λ/4.

Finally, by the completeness and HVZK of the sub-arguments, we obtain
security of the full shu�e argument.

Theorem 3. Let κ = λ/4. Then the shu�e argument in Fig. 3 is perfectly
complete, (2−λ)-WEE and special honest-veri�er zero-knowledge.

4.4 ElGamal shu�e

Suppose that the prover instead wants to prove the correctness of an ElGamal
shu�e. Let RN,g,h

Elg be the shu�e relation for Elgamal ciphertexts de�nes as

RN,g,h
Elg =

{(
(C = {(ci,1, ci,2)}Ni=1, Ĉ = {(ĉi,1, ĉi,2)}Ni=1), (π, {ri}Ni=1)

)
: π ∈ S∧

ci,1 = ĉπ(i),1 · grπ(i) ∧ ci,2 = ĉπ(i),2 · hrπ(i) for i = 1, . . . , N

}
.

We will in the appendix show that using an extra random challenge η and
setting [wi] := ci,1c

η
i,2 and [ŵi] := ĉi,1ĉ

η
i,2, and the new ĥ as ghη, we can obtain a

proof-of-shu�e of ciphertexts with practically no extra costs. For more details,
see Appendix C.2.

Theorem 4. Let v ≥ 2. Let κ ≥ 2. If the underlying shu�e argument for

commitments has α-WEE, then the argument given in Figure 10 is a (α+ N2

q )-
WEE proof-of-shu�e for ElGamal ciphertexts.

4.5 E�ciency

We discuss the e�ciency of the sub-arguments, one round of the shu�e argument
(with noticeable soundness error), and the full shu�e argument (with negligible
soundness error) in Section 4.5. For a shu�e argument that achieves noticeable
soundness with soundness error 1/16, one can take Πscs with v = κ = 1. Based
on the discussion following De�nition 2, to achieve negligible soundness with
soundness error 2−λ we can take v = 1 and κ = λ/4 assuming N is large.
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Prover({[wi]}Ni=1, {[ŵi]}Ni=1, h, g, Veri�er({[wi]}Ni=1,

Zq,K, v,w = {π, {ri}Ni=1}) {[ŵi]}Ni=1, h, g,Zq,K, v)

(a1,1, a1,2 . . . , aN,v) (a1,1, a1,2 . . . , aN,v)←$ Zq

H, {gi}Ni=1, {ĥi}Ni=1, {gi,k}N,v
i=1,k=1 H, {gi}Ni=1, {ĥi}Ni=1, {gi,k}N,v

i=1,k=1 ←$ G

Both for i ∈ [1, N ], k ∈ [1, v] :

[w
′
i,k]← hai,k [wi], ckk ← (ĥk, {gi,k}Ni=1), ck← (h, {gi}Ni=1)

ri,k ← ri − aπ−1(i),k for i = 1, . . . , N

δ1, . . . , δk ←$ Zq

Ck ← hδk

N∏
i=1

g
ri,k
i

C1, . . . , Cv

Prove:
(
(Ck,

∏N
t=1[ŵt]

(
∏N

j=1[wj ])h
∑N

j=1 aj,k
, h, (1, . . . , 1)),

(ri,k, δk)
)
∈ Rck,N

in-prod for k ∈ [1, v]

Repeat the following algorithm κ times in parallel, batched:

ChalResp(({[w
′
i,k]}N,v

i=1,k=1, {ai,k}N,v
i=1,k=1, {[ŵi]}Ni=1, h, g, ck,

Zq, [0, 2
K − 1], v, {Ck}vk=1, {ckk}vk=1)

(π, {ri}Ni=1, {ri,k}N,v
i=1,k=1, {δk}

v
k=1))

ChalResp(({[w
′
i,k]}N,v

i=1,k=1, {ai,k}N,v
i=1,k=1, {[ŵi]}Ni=1, h, g, ck

Zq, Pp,f , v, {Ck}vk=1, {ckk}vk=1),

(π, {ri}Ni=1, {ri,k}N,v
i=1,k=1, {δk}

v
k=1))

Accept if all proofs go through

Fig. 3: The full shu�e argument Πscs.

However, to directly use Theorem 4 we will conservatively take v = 2 and κ =
λ/4. We leave as an open problem how to prove soundness for smaller values of
v and κ.

Note that the prover and veri�er complexity is dominated by multi-exponentiations
of width N (or more), which can be optimized using Pippenger's algorithm [25]
to get a logN speedup. Veri�er's complexity is much more e�cient than prover's
due to the use of batching techniques on repetitions of the same arguments. Addi-
tionally, random integers and group elements sent by the veri�er can be replaced
by a single random seed that is then fed to a pseudorandom generator.
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Argument Prover (exp) Veri�er (exp) Communication CRS size

ΠN
KoE 3Nv 2N 2 log(Nv)×G (N + 1)×G

ΠN
samecom 6Nv 2N 2 log(Nv)×G (N + 1)×G

ΠN
samemes 3Nv 2N 2 log(Nv)×G (Nv+N+1)×G

ΠN
comrand 3Nv 2N 2 log(Nv)×G (N + 1)×G

Πin-prod 3Nv 2N 2 log(Nv)×G (N + 1)×G

Π
Zq,N,F
set [10] 12Nv 2N 2 log(Nv)×G (N + 1)×G

ΠN
comsum 8Nv 2N 2 log(Nv)×G (N + 1)×G

ChalResp 35Nv +N 12N 14 log(Nv)×G (Nv+N+1)×G

Basic shu�e
Πlite

scs

12Nκ+ 1 exp. 2N + 2 exp. 2N + 2 log(Nκ) +
2×G

(N + 1)×G

Full shu�e
Πscs

70Nvκ+N(v+3)
exp.

26N exp. 2N+28 log(Nvκ)×
G

2×G

Table 2: E�ciency of our shu�e argument and v runs of the sub-arguments.
Exp. stands for exponentiations, pair. for pairings, N is the number of input
ciphertexts, and κ is the number of repetitions of ChalResp. Constant terms are
neglected, shu�ing is included to prover's e�ciency, and shu�ed ciphertexts are
included to proof size.
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A Omitted Preliminaries

A.1 Schwartz-Zippel Lemma

Lemma 2 (Schwartz-Zippel lemma [26,29]). Let f(X1, . . . , Xn) be a non-
zero polynomial of degree d over a �nite �eld F and let S ⊆ F. Then,

Pr[f(x1, . . . , xn) = 0 : x1, . . . , xn ←$ S] ≤ d

|S|
.

A.2 Zero-Knowledge Argument

Let Pgen be a PPT parameter generation algorithm that on input 1λ outputs
p (e.g., a description of the group or some other setup parameters). A zero-
knowledge argument of knowledge for a relation R is a tuple of e�cient al-
gorithms (Pgen,P,V) that satis�es properties of perfect completeness, compu-
tational witness-extended emulation, and perfect special honest veri�er zero-
knowledge, de�ned below. Prover algorithm P and veri�er algorithm V are inter-
active algorithms and we denote their protocol transcript by tr← ⟨P(p, x,w),V(x)⟩
where (x,w) ∈ R and p ∈ Pgen(1λ). We write ⟨P(p, x,w),V(x)⟩ = 1 to denote
that veri�er outputs 1 at the end of the interaction. Interactions with an adver-
sary follow a similar notation.

De�nition 4 (Perfect completeness). An argument is perfectly complete if
for any (x,w) ∈ R,

Pr
[
p← Pgen(1λ) : ⟨P(p, x,w),V(p, x)⟩ = 1

]
= 1.

De�nition 5 (Witness-extended emulation). An argument has witness-
extended emulation with knowledge error κ, denoted κ-WEE, if there exists a
PPT extractor Ext such that for any PPT A, |εwe0 − εwe1 | ≤ κ(1λ), where

εwe0 = Pr
[
p← Pgen(1λ), (x, state)← A(p), tr← ⟨A(state),V(p, x)⟩ : A(state, tr) = 1

]
,

εwe1 = Pr

[
p← Pgen(1λ), (x, state)← A(p), (tr,w)← ExtA(state)(p, x) :
A(state, tr) = 1 ∧ if tr is accepting then (x,w) ∈ R

]
.

De�nition 6. An argument has special honest-veri�er zero-knowledge (SHVZK)
if there exists PPT simulator Sim such that for any adversary A, |εzk0 − εzk1 | ≤
negl(λ), where

εzk0 = Pr

[
p← Pgen(1λ), (x,w, r, state)← A(p), tr← ⟨P(p, x,w),V(p, x; r)⟩ :

(x,w) ∈ R ∧A(tr, state) = 1

]
,

εzk1 = Pr

[
p← Pgen(1λ), (x,w, r, state)← A(p), tr← Sim(p, x, r) :

(x,w) ∈ R ∧A(tr, state) = 1

]
.

Note that we allow A to choose random coins r of the veri�er.

24



Moreover, we say that an argument is public coin if all of veri�er's messages
are uniformly random bit-strings. This is useful since it allows to make the
argument non-interactive with the Fiat-Shamir heuristic.

Note that our de�nition of witness-extended emulation can be seen as a gen-
eralization of the more standard de�nitions of knowledge soundness and special
soundness. In particular, Lindell [23] showed that if an argument is knowledge
sound with negligible knowledge error, then there exists a witness-extended em-
ulator for the argument. Additionally, Groth [20] showed that witness-extended
emulation is implied by special soundness.

A.3 Compressed Sigma Protocols

We can use compressed sigma protocol theory [5] to transform a sigma protocol
with O(N) size last message to one with O(logN) size. The main idea is that in
many Sigma protocols the veri�cation equation applies some linear map to the
last message z. However, instead of sending z, the prover can prove knowledge of
z which satis�es veri�cation. The latter can be done in O(logN) communication
complexity using the recursion techniques introduced in Bulletproofs [10].

Let ck = (h, g1, . . . , gn) be a Pedersen commitment key. Let M : ZN
p → Zp

be a linear map. We de�ne a relation for linear maps as follows:

Rck,N
Lin =

{(
(c,M), e ∈ ZN

p

)
: c = hM(e)

N∏
i=1

geii

}
.

Linear map argument of [5].

Let ML : ZN/2
p → Zp and MR : ZN/2

p → Zp be the linear maps ML(X) =

M(X∥0N/2) andMR(X) =M(0N/2∥X). Clearly, for any x,y ∈ ZN/2
p , it holds

thatML(x) +MR(y) =M(x∥y).
In Fig. 4, we recall the linear map argument of [5] with proof size of O(logN).

The argument is not zero-knowledge (or even honest veri�er zero-knowledge),
but it has knowledge soundness and logarithmic proof size. In our case, zero-
knowledge is not important since the last message z is public in a Sigma protocol.

B Full Description of Sub-arguments

B.1 Knowledge of committed message argument

The argument depicted in Fig. 5 proves knowledge of the message and random-
ness used in a commitment, formally de�ned as relation Rck,N

KoE .

It is well-known that the argumentΠck,N
KoE is perfectly complete, special sound,

and perfectly SHVZK. In particular, the simulator works as follows:
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Prover
(
(c,M), e

)
Veri�er(c,M)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If |e| = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e = e Check hM(e)ge1
?
= c

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If |e| > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

eL ← (e1, . . . , eN/2)

eR ← (e(N/2)+1, . . . , eN )

u← hMR(eL)

N/2∏
i=1

g
eL,i

(N/2)+i

v ← hML(eR)

N/2∏
i=1

g
eR,i

i
u, v

x x←$ Zq

ex ← eL + x · eR

Both: c′ ← u · cx · vx
2

Mc(X)← c · ML(X) +MR(X)

ckx ← (gx1 g(N/2)+1, ..., g
x
N/2gN )

Recusively prove ((c′,Mc), ec) ∈ Rckx,N/2
Lin

Fig. 4: Argument Πck,N
Lin for relation Rck,N

Lin .

Prover(ck, c,w = (e, {ei}Ni=1)) Veri�er(ck, c)

(r, r)←$ ZN+1
q

a← hr
N∏
i=1

grii
a

x x←$ Zq

z ← e · x+ r

z← e · x+ r z, z Check hz
N∏
i=1

gzii
?
= cx · a

Fig. 5: Argument Πck,N
KoE for relation Rck,N

KoE .
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SimKoE(ck = (h,g), c)

(c, z, z)←$ ZN+2
q

a← (hz
N∏
i=1

gzii )/cx

Return (a, c, z, z)

B.2 Inner product argument

The inner product argument is shown in Fig. 6.

Theorem 5. Argument in Fig. 6 for the relatoin Rck,N
in-prod is complete, specially

sound, and special honest veri�er zero-knowledge.

Proof. (Perfect completeness). The completeness of the equation hz
∏N

i=1 g
zi
i =

acy is the same as in ΠKoE . If the prover is honest, the other equality is also
easy to prove:

âĉy = H
∑N

i=1 biri ·
(
H

∑N
i=1 bixi

)y
= H

∑N
i=1 bi(ri+yxi) = H

∑N
i=1 bizi .

(Special Soundness). Let (a, â, y, z, z) and (a, â, y′, z′, z′) be two accepting
transcripts for y ̸= y′. That is

hz
N∏
i=1

gzii = acy, hz′
N∏
i=1

g
z′
i

i = acy
′

and
H

∑N
i=1 bizi = âĉy, H

∑N
i=1 biz

′
i = âĉy

′
.

Then by dividing the respective equations, we obtain

hz−z′
N∏
i=1

g
zi−z′

i
i = cy−y′

, H
∑N

i=1 bi(zi−z′
i) = ĉy−y′

.

This is equivalent to

h
z−z′
y−y′

N∏
i=1

g
zi−z′i
y−y′

i = c, H
∑N

i=1 bi(
zi−z′i
y−y′ )

= ĉ.

Hence, it is possible to extract a witness δ = z−z′

y−y′ , xi =
zi−z′

i

y−y′ for i = 1, . . . , N .

(Perfect SHVZK). We describe the simulator in the following. Let y ←$ Zp.

The simulator picks z ←$ ZN
p and z ←$ Zp. It then sets a ←

(
hz
∏N

i=1 g
zi
i

)
/cy

and â←
(
H

∑N
i=1 bizi

)
/ĉy.

Elements z, z are chosen uniformly randomly and independently just as in
the real protocol. Now there are unique a, â that pass the veri�cation. Thus,
simulated proof is indistinguishable from the real proof. ⊓⊔
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Prover
(
(c, ĉ, H,b), (x, δ)

)
Veri�er(c, ĉ, H,b)

r←$ ZN
p , r ←$ Zp

a← hr
N∏
i=1

grii , â← H
∑N

i=1 biri a, â

y y ←$ Zq

z← yx+ r, z ← ye+ r z, z hz
N∏
i=1

gzii
?
= acy

H
∑N

i=1 bizi ?
= âĉy

Fig. 6: Argument Πck,N
in-prod for relation Rck,N

in-prod.

Prover Veri�er

((h, {wj}Nj=1, h̄, {gj}Nj=1, ρ, τ), (h, {wj}Nj=1, h̄, {gj}Nj=1, ρ, τ)

w = (e1, . . . , eN , r))

r←$ ZN+1
p ;

a1 ← hrN+1

N∏
j=1

w
rj
j ;

a2 ← hrN+1

N∏
i=1

g
rj
j ; a1, a2

c c←$ Z∗
q

z← r+ c ·w z hzN+1

N∏
i=1

wzi
j

?
= a1 · ρc

h̄zN+1

N∏
i=1

gzij
?
= a2 · τ c

Fig. 7: The argument ΠN
samecom for relation RN

samecom showing that two commitments
are equal.
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B.3 Same-Message Argument

Proposition 2. The argument ΠN
samecom depicted in Fig. 7 is perfectly com-

plete, has witness-extended emulation with negligible knowledge error and is a
perfect SHVZK argument of the relation RN

samecom.

Proof. Perfect completeness of the argument is trivial.
(Perfect SHVZK). Perfect SHVZK follows from the perfect SHVZK of ΠKoE .

In particular, let SimKoE be the simulator for ΠKoE as de�ned in Section 2.4.
Then the simulator for ΠN

samecom works as follows:

Simsamecom(ck = (h,w, h̄,g), ρ, τ)

z←$ ZN+1
q

c←$ Z∗
q

a1 ← (hzN+1

N∏
i=1

wzi
j )/ρc

a2 ← (h̄zN+1

N∏
i=1

gzij )/τ c

Return (a1, a2, c, z)

The output of Simsamecom has identical distribution to ΠN
samecom.

(Witness extended emulation). By rewinding, an extractor can obtain two
accepting transcripts (a1, a2, c, z) and (a1, a2, c

′, z′), where z = r + c · w, z′ =

r′ + c′ ·w, and c ̸= c′. Hence the extractor obtains w = z−z′

c−c′ . ⊓⊔

B.4 Same Randomness Argument

As we mentioned in Section 3.2, RN
comrand is a special case of RN

samecom with
{wj}Nj=1 = 1. Hence, we omit the security proof for ΠN

comrand, and show it
in Fig. 8 for completeness sake.

Proposition 3. The argument ΠN
comrand depicted in Fig. 8 is perfectly complete,

has witness-extended emulation with negligible knowledge error and is a perfect
SHVZK argument of the relation RN

comrand.

B.5 Weighted Sum Argument

Proposition 4. Let ĥ, g1, . . . , gN , Ĥ, Ĝ ∈ G be such that �nding any nontrivial
DLRELs between them is hard. LetΠN

samecom and ΠN
KoE have witness-extended

emulation with negligible knowledge error and be special honest-veri�er zero-
knowledge. Then the argument ΠN

comsum depicted in Fig. 9 is also SHVZK and
has witness-extended emulation with negligible knowledge error.

Proof. Let us extract the values (r′, e′1, . . . , e
′
N ) from the RN

samecom protocol and
the value r′′ from the KoE protocol. We thus have that

σ

Ĝv
= Ĥr′′
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Prover Veri�er

((H, h̄, {gj}Nj=1, ρ, τ), (H, h̄, {gj}Nj=1, ρ, τ)

w = (e1, . . . , eN , r))

r←$ ZN+1
p ;

a1 ← HrN+1 ;

a2 ← hrN+1

N∏
i=1

g
rj
j ; a1, a2

c c←$ Z∗
q

z← r+ c ·w z HzN+1 ?
= a1 · ρc

h̄zN+1

N∏
i=1

gzij
?
= a2 · τ c

Fig. 8: The argument ΠN
comrand for relation RN

comrand showing that the randomness of
a commitment is the same as the logarithm of a given value.

Prover((ĥ, g1, . . . , gN ∈ G, a1, . . . , aN , Veri�er(((ĥ, g1, . . . , gN ∈ G,

a1, . . . , aN , v ∈ Zq, τ, Ĥ, Ĝ))

v ∈ Zq, τ, Ĥ, Ĝ),w = {r, e1, . . . , eN ∈ Zq})

σ ← Ĥr
N∏

j=1

(Ĝaj )ej σ

Prove:
(
(Ĥ, Ĝa1 , . . . , ĜaN , ĥ, g1, . . . , gN , σ, τ),

(r, e1, . . . , eN ∈ Zq)
)
∈ RN

samecom

Prove:
(
(Ĥ,

σ

Ĝv
), (r)

)
∈ RKoE

Accept if the proofs go through

Fig. 9: The argument showing that the (weighted) sum of commitments is equal to a
given value.
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and

σ = Ĥr′
N∏
j=1

(Ĝaj )e
′
j = Ĥr′Ĝ

∑N
j=1 ajej .

Thus we get that

Ĥr′′Ĝv = Ĥr′Ĝ
∑N

j=1 ajej .

By the assumption that no nontrivial DLOG relations are known, we have that
r′′ = r′ and v =

∑N
j=1 ajej . ⊓⊔

B.6 Argument showing same message in several commitments

As we mentioned in Section 3.4, RN
samemes is a general case of RN

samecom where 2
commitments becomes v commitments. Hence, we omit the argument depiction
and the security proof for ΠN

samemes.

C Additional Lemmas and Proofs

C.1 Full proofs and missing proofs from the main body

Lemma 3. Let F ⊂ Zq have polynomial size, and let k be a positive integer. Let
P be a protocol between prover P and veri�er V where the �rst message of V is a
randomly chosen challenge (a1, . . . , ak) ∈ F k. Let the probability that V accepts
be at least 1

|F | + ε where ε is non-negligible. Suppose that for a given challenge

(a1, . . . , ak) the veri�er either accepts or rejects in expected time t. Then there

is an algorithm E ′ that for any t ∈ [1, k], runs in expected time |F |2
ε t that �nds

two challenges (a1, . . . , ak) and (a′1, . . . , a
′
k) where the veri�er accepts for both of

them and where (a1, . . . , ak) and (a′1, . . . , a
′
k) di�er only at position t.

Proof. The strategy of E ′ would be simply picking (a1, . . . , at−1, at+1, . . . , ak) at
random, and then testing all possible values in F to see whether there are at least
two possible accepting values for ai. If this is not the case, E ′ would pick a new
set (a1, . . . , at−1, at+1, . . . , ak) at random, and repeat, until the desired object is
obtained. Let us now analyze the expected running time of this algorithm.

Let us �x the random coin used by P and V after (a1, . . . , ak) is chosen. Then,
for any (a1, . . . , ak), the veri�er accepts with probability either 0 or 1.

Let us denote the number of (k−1)-tuples of elements (a1, . . . , at−1, at+1, . . . , ak)
from F where there exist exactly r values for at such that in P, (a1, . . . , at−1, at, at+1, . . . , ak)
is an accepting argument, by vr. That is,

vr := |{(a1, . . . , at−1, at+1, . . . , ak) ∈ F k−1 : (∃rat s.t. (a1, . . . , ak) is accepted)}|.

We now note that
∑|F |

r=0 vr = F k−1 and that∑|F |
r=0 rvr
|F |k

=
1

|F |
+ ε,
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as we are simply counting the number of accepting inputs in the numerator.

Suppose that

∑|F |
r=2 vr∑|F |
r=0 vr

< ε
|F | . Then we have that

1

|F |
+ε =

∑|F |
r=0 rvr
|F |k

≤ 0 · v0 + 1 · v1
|F |k

+

∑|F |
r=2 |F |vr
|F |k

<
|F |k−1

|F |k
+|F | ε

|F |
=

1

|F |
+ε,

a contradiction. Hence

∑|F |
r=2 vr∑|F |
r=0 vr

≥ ε
|F |

We thus note that the probability of choosing such a set (a1, . . . , at−1, at+1, . . . , ak),
such that there are at least 2 possible values for at such that (a1, . . . , ak) is ac-

cepted, is

∑|F |
r=2 vr∑|F |
r=0 vr

≥ ε
|F | . Thus, E

′ would obtain such a pair of values a,a′ in

expected number of tries |F |
ε with each try taking |F |t time, giving us the result.

Before restating Theorem 2 we will prove the following helpful lemma.

Lemma 4. Let a, b ∈ Pp,f − Pp,f . Let (|c|+ |d|) · (
∑f

i=0 p
i) ≤ q. Let p be even.

Let ac = bd. Let |c|, |d| < p− 1. Let c, d ̸= 0. Then a = ±b.

Proof. Assume that this is not the case. W.l.o.g, let a, b > 0, and a > b. Let

a =
∑l

i=0 aip
i and b =

∑l′

i=0 bip
i where al = bl′ = 1 and all ai and bi are in

{−1, 0, 1}. Let us split the proof into two cases � either l = l′ or not.
First, we will consider the case where l = l′. If l = 0, then a = 1 and

b = 1 and thus we have a contradiction. Thus we will assume that l > 0. We
have that ac = bd, thus cpl +

∑l−1
i=0 caip

i = dpl +
∑l−1

i=0 dbip
i, i.e pl(d − c) =∑l−1

i=0(cai − dbi)p
i. If d− c > 1, then we will show that

∑l−1
i=0(cai − dbi)p

i < 2pl

which is a contradiction.
More precisely, note that

∑l−1
i=0(cai − dbi)p

i ≤
∑l−1

i=0 |c| + |d|)pi ≤ (2p −
4)
∑l−1

i=0 p
i. If l = 1, then (2p− 4)

∑l−1
i=0 p

i = 2p− 4 < 2p.

Otherwise we note that (2p − 4)
∑l−1

i=0 p
i =

∑l
i=1 2p

i −
∑l−1

i=0 4p
i = 2pl −

2
∑l−1

i=1 2p
i − 4 < 2pl. Hence, in the case of d− c > 1 we have a contradiction.

If d− c = 1, then note that c ̸= ±d (mod p), because c and d have di�erent
parities. Thus we can apply the second clause of Lemma 6, and obtain that
a = b = 0, a contradiction.

Secondly, we will consider the case where l > l′. We will show that a
b > p−2.

Denote by a′ := pl −
∑l−1

i=0 p
i and by b′ :=

∑l−1
i=0 p

i. Clearly a′ ≤ a and b′ ≥ b.

Thus a
b ≥

a′

b′ . Now

a′

b′
=

pl −
∑l−1

i=0 p
i∑l−1

i=0 p
i

=
pl − pl−1

p−1

pl−1
p−1

=
pl(p− 1)

pl − 1
− 1 >

pl(p− 1)

pl
− 1 = p− 2.

Thus a
b > p− 2, which leads to a contradiction.

Thus the result holds.
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Here we restate Theorem 2 again and prove it.

Theorem 6. Let p, 2K+1 < N . Suppose that the SISq,N,v,(N+1)·(
∑f

i=0 pi) holds.

If p is odd, then let 2K ≤ p
2 . If p is even, then let 2K ≤ p − 2. Let T =

min{2K , ( 85 )
f}. The protocol depicted in 3 has ( 1

T + ϵ1)
κ + ϵ2-witness-extended-

emulation where ϵ1 and ϵ2 are negligible.

Proof. From the (N + 1) · (
∑f

i=0 p
i)-SIS-assumption, it follows that for the

{[w′

j,k]}
N,v
j=1,k=1 the NoBounded-(N + 1) · (

∑f
i=0 p

i)−DLRel holds. Suppose

that there is a prover who has success rate more than ( 1
T + ε)κ where ε is non-

negligible. By soundness ampli�cation principles, it follows that the probability
to pass both the ChalResp protocols, for randomly picked challenges, is at least
1
T + ε.

Now, thus both the individual ChalResp protocols must also have at least 1
T +

ε chance of passing. Consider �rst the ChalResp with the challenge set [0, 2K−1].
Now for every i ∈ [1, N ] we do the following. Fix at random {bi,j}j∈[1,N ]\{i}
from the elements of [0, 2K − 1]. Now for bi,i there are in expectation, 1

1
T +ε

values for which the prover is successful for the challenge {bi,j}Nj=1. Thus for

every consecutive T values, at least with a chance εT 2, there are two values
for bi,i for which the proof is successful. Let those values be bi,i and bi,i +
ai, w.l.o.g ai > 0. Let the responses we extract to these challenges, as per
Lemma 1 be {d′i,j}Nj=1 and {d′′i,j}Nj=1, with all d′i,j , d

′′
i,j ∈ [0, 2K − 1]. We get that∏N

j=1[w
′

j,k]
d′
i,j =

∏N
t=1 [ŵt,k]

′bi,t and
∏N

j=1[w
′

j,k]
d′
i,j = [ŵ

′

i,k]
ai
∏N

t=1 [ŵt,k]
′bi,t and

where
∑N

t=1 bi,t =
∑N

j=1 d
′
i,j and ai +

∑N
t=1 bi,t =

∑N
j=1 d

′′
i,j . Deducting those

equations from each other and denoting di,j := d′′i,j − d′i,j , we have that

[ŵ
′

i,k]
ai =

N∏
j=1

[w
′

j,k]
di,j . (2)

If for some i, gcd(ai, {di,j}Nj=1) = Ai ̸= 1 over Z, then let us divide all those ele-

ments with that common divisorAi. Thus we will assume that gcd(ai, {di,j}Nj=1) =

1. Note that thus the "original" extracted values will be aiAi and {Aidi,j}Nj=1

Analogously, from the ChalResp for the other extraction principles we are
able to extract { ¯di,j}N,N

i=1,j=1 and āi such that

[ŵ
′

i,k]
āi =

N∏
j=1

[w
′

j,k]
¯di,j (3)

where āi, ¯di,j ∈ Pp,f − Pp,f .
Analogously, if for some i, gcd(āi, { ¯di,j}Nj=1) = Āi ̸= 1 over Z, then let us

divide all those elements with that common divisor Āi, thus we will assume from
now on that gcd(āi, { ¯di,j}Nj=1) = 1. Likewise, note here as well that the "original"

values in the set Pp,f − Pp,f will be Āiāi, {Āi
¯di,j}Nj=1.
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Let ai = αi · ci and āi = αi · c̄i where αi is the greatest common denominator
of ai and āi. Then ci and c̄i are coprime and āici = c̄iai.

Now take the equations 2 and 3 to the powers c̄i and ci respectively. We will
obtain that

N∏
j=1

[w
′

j,k]
¯di,jci = [ŵ

′

i,k]
āici = [ŵ

′

i,k]
c̄iai =

N∏
j=1

[w
′

j,k]
di,j c̄i

and hence
∏N

j=1[w
′

j,k]
¯di,jci−di,j c̄i = 1. Because | ¯di,jci−di,j c̄i| ≤ 2K+1(

∑f
i=0 p

i) ≤
(N + 1) · (

∑f
i=0 p

i), then it follows that ¯di,jci − di,j c̄i = 0 for all i and j.

Now, because ¯di,jci = di,j c̄i and ci and c̄i are coprime, it follows that c̄i must
divide ¯di,j and ci must divide di,j . However, this means that gcd(ai, {di,j}Nj=1) =

ci and gcd(āi, { ¯di,j}Nj=1) = c̄i. Hence ci = 1 = c̄i for all i. This means that

actually ai = αi = āi and also di,j = ¯di,j for all i, j.

We have that aiAi ∈ [1, p − 2] and āiĀi ∈ Pp,f − Pp,f . Note that also ai ∈
[1, p− 2]. We now want to show that ai = 1. Now, if Āi = 1, then we have that
ai ∈ [1, p−2]∩Pp,f −Pp,f = {1} and thus ai = 1. However, suppose that Āi ̸= 1.
Consider some di,j ̸= 0 which must exist, otherwise gcd(aiAi, {di,j}Nj=1) = aiAi

and thus ai = 1. W.l.o.g let it be di,1. Then, we have that ai, di,1 ∈ [−2K +
1, 2K − 1] ⊆ [−p

2 ,
p
2 ) and aiĀi, di,1Āi ∈ Pp,f − Pp,f .

We have that ai

di,1
= aiĀi

di,1Āi
. Denote x1 := aiĀi and x2 := di,1Āi we get that

aix2 = di,1x1 with x1, x2 ∈ Pp,f − Pp,f . We have that ai, di,1 ̸= 0. Thus, if p is
odd, then by Lemma 9, and if p is even then by Lemma 4, we get that |ai| =
|di,1|. Note however, that the same argument can be made for any nonzero di,j .
Hence, all nonzero di,j divide ai. However, by construction gcd(ai, {di,j}Nj=1) = 1.
Thus it follows that |ai| = 1, and because we chose it so that ai > 0, ai = 1.
Additionally, all di,j ∈ {−1, 0, 1}.

From the last claim of Lemma 1, we also get that for any extracted equation,
the sums of the exponents must match on both sides. From there on it is not
di�cult to obtain that

∑
j di,j = ai. Because ai = 1,

∑
j di,j = 1 for all i.

Thus ai = 1 for all i. Additionally, it follows that di,j = ¯di,j and thus all
di,j ∈ [−2K + 1, 2K − 1] ∩ Pp,f − Pp,f .

Thus we get that

[ŵi,k]
′ =

N∏
j=1

[w
′

j,k]
di,j (4)

for all i, k.

From the �rst proof of theRck,N
in-prod, we can get that

∏N
i=1[ŵ

′

i,k] =
∏N

j=1[w
′

j,k].
This is because we can extract from it values δ′k and r′′i,k such that Ck =

hδ′k
∏N

i=1 g
r′′i,k
i and that

∏N
t=1[ŵt]

(
∏N

j=1[wj ])h
∑N

j=1
aj,k

= h
∑N

i=1 r′′i,k . We note that these val-

ues extracted from Ck must be the same values that are extracted from it in other
parts of the proof, thus we must have that [ŵ

′

i,k] =
[ŵi]

h
r′′
i,k
. Also [w

′

j,k] = [wj ]h
aj,k .
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Now when we reorganize
∏N

t=1[ŵt]

(
∏N

j=1[wj ])h
∑N

j=1
aj,k

= h
∑N

i=1 r′′i,k , then
∏N

i=1[ŵ
′

i,k] =∏N
j=1[w

′

j,k] follows.
Note now that

N∏
j=1

[wj,k]
′ =

N∏
t=1

[ŵt,k]
′ =

N∏
t=1

(

N∏
j=1

[w
′

j,k]
dt,j ) =

N∏
j=1

[wj,k]
′
∑N

t=1 dt,j .

Thus it must also hold for all j that

N∑
t=1

dt,j = 1.

Previously we had that for all t,

N∑
j=1

dt,j = 1.

Now, suppose that the ChalResp with the challenge set [0, 2K −1] one gets a
challenge (b1, . . . , bN ) where all bi ∈ [0, 2K − 1], and successfully answers it with
some (e1, . . . , eN ) where all ej ∈ [0, 2K − 1]. Thus

N∏
i=1

[wj,k]
′ej =

N∏
i=1

[ŵi,k]
′bi =

N∏
i=1

(

N∏
j=1

([w
′

j,k])
di,j )bi =

N∏
i=1

[wj,k]
′
∑N

i=1 bidi,j .

We have that

|ej −
N∑
i=1

bidi,j | ≤ |ej |+
N∑
i=1

|bi||di,j | ≤ 2K +

N∑
i=1

2K · 1 ≤ (N + 1)2K .

Because (N +1)2K ≤ N · pf+1 the NoBounded-N · pf+1−DLRel property,

it must hold that for all j, ej =
∑N

i=1 bidi,j . This implies that
∑N

i=1 bidi,j ∈
[0, 2K − 1] Thus, if for a randomly chosen (b1, . . . , bN ) it happens that for some

j,
∑N

i=1 bidi,j ̸∈ [0, 2K − 1], then the prover is unable to answer this challenge.
Analogously, for the challenge set Pp,f , one does the same argument and obtains
that if for some randomly chosen (b̄1, . . . , b̄N ) where all b̄i ∈ Pp,f , if for some j,∑N

i=1 b̄idi,j ̸∈ Pp,f , then the prover is unable to answer this challenge. (In this

case the corresponding |ēj −
∑N

i=1 b̄idi,j | in the exponent will analogously be

upper-bounded by (N + 1)
∑f

i=0 p
i)

Denote D := {di,j}N,N
i=1,j=1. We have that all rows and columns of D must

sum to 1. Now consider Theorem 8. Suppose that there is some column vector of
D that is not a unit vector. In that case, if b1, . . . , bn are randomly chosen from
Pp,f , then the probability that all the

∑N
i=1 b̄idi,j ̸∈ Pp,f is at most ( 58 )

f . This
implies that the probability of the prover passing is upper-bounded by ( 58 )

f > 1
T
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which contradicts our assumption. Thus all columns of D must be unit vectors.
On the other hand, because each row must sum to 1, these values 1 must be
in separate rows. Thus D is a permutation matrix. Thus we have successfully
extracted the permutation matrix. Let it describe a permutation π′ such that
Dπ′(j),j = 1 and all the other entries are zeroes. Now let us also extract the
rerandomization factors.

Plugging the equation into the equation 4 we obtain that

[ŵi,k]
′ =

N∏
j=1

[w
′

j,k]
di,j = (

∏
i ̸=π′(j)

[w
′

j,k]
0)[w

′

π′−1(i),k]
1 = [w

′

π′−1(i),k] (5)

Taking π′−1(i) =: j, we have that [w
′

j,k] = [ŵπ′(j),k]
′ for all j, k. We have by

de�nition that [w
′

j,k] = haj,k [wj ]. On the other hand, we denoted [ŵt,k]
′ := [ŵt]

h
r′
t,k

.

Thus the equation becomes

[ŵπ′(j)]h
−r′

π′(j),kh−aj,k = [wj ].

We note that from this it follows that for a �xed j, for all k, the value
r′π′(j),k+aj,k is the same. We will denote this value by r′j . Thus we have extracted

{rj}Nj=1 and a π′ such that

[ŵπ′(j)] = hr′j [wj ].

such that Dπ′(j),j = 1 and all the other entries are zeroes. Plugging this into the
equation 4 we obtain that

[ŵi,k]
′ =

N∏
j=1

[w
′

j,k]
di,j = (

∏
i ̸=π′(j)

[w
′

j,k]
0)[w

′

π′−1(i),k]
1 = [w

′

π′−1(i),k] (6)

Taking π′−1(i) =: j, we have that [w
′

j,k] = [ŵπ′(j),k]
′ for all j, k. We have by

de�nition that [w
′

j,k] = haj,k [wj ]. On the other hand, we denoted [ŵt,k]
′ := [ŵt]

h
r′
t,k

.

Thus the equation becomes

[ŵπ′(j)]h
−r′

π′(j),kh−aj,k = [wj ].

We note that from this it follows that for a �xed j, for all k, the value
r′π′(j),k+aj,k is the same. We will denote this value by r′j . Thus we have extracted

{rj}Nj=1 and a π′ such that

[ŵπ′(j)] = hr′j [wj ].

We thus have successfully extracted a permutation along with rerandomization
factors. ⊓⊔
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Prover({ci}Ni=1, {ĉi}Ni=1, h, g, Veri�er({ci}Ni=1,

Zq,K, v,w = {π, {ri}Ni=1}) {ĉi}Ni=1, h, g,Zq,K, v)

(a1,1, a1,2 . . . , aN,v) (a1,1, a1,2 . . . , aN,v)←$ Zq

H H ←$ G

ri,k ← ri − aπ−1(i),k

for i = 1, . . . , N

ck = (h, g1 . . . , gN ) g1 . . . , gN ←$ G

δ1, . . . , δk ←$ Zq

Ck ← hδk

N∏
i=1

g
ri,k
i

C1, . . . , Cv

η η ←$ Zq

Both:[wi]← ci,1c
η
i,2, [ŵi]← ĉi,1ĉ

η
i,2, ∀i ∈ [1, N ], ĥ← ghη

Prove:
(
(Ck,

∏N
t=1[ŵt]

(
∏N

j=1[wj ])ĥ
∑N

j=1 aj,k
, ĥ, (1, . . . , 1)),

(ri,k, δk)
)
∈ Rck,N

in-prod for k ∈ [1, v]

ĥ1, . . . , ĥv, g1,1 . . . , gN,v ĥ1, . . . , ĥv, g1,1 . . . , gN,v ←$ G

Both for i = 1, . . . , N, k = 1, . . . , v :

[w
′
i,k]← ĥai,k [wi],

Repeat the following algorithm κ times in parallel, batched:

ChalResp
(
({[w

′
i,k]}N,v

i=1,k=1, {ai,k}N,v
i=1,k=1, {[ŵi]}Ni=1, ĥ, g, ck,

Zq, [0, 2
K − 1], v, {Ck}vk=1, {ĥk}vk=1, {gi,k}N,v

i=1,k=1)

(π, {ri}Ni=1, {ri,k}N,v
i=1,k=1, {δk}

v
k=1)

)
ChalResp

(
({[w

′
i,k]}N,v

i=1,k=1, {ai,k}N,v
i=1,k=1, {[ŵi]}Ni=1, ĥ, g, ck,

Zq, Pp,f , v, {Ck}vk=1, {ĥk}vk=1, {gi,k}N,v
i=1,k=1)

(π, {ri}Ni=1, {ri,k}N,v
i=1,k=1, {δk}

v
k=1)

)
Accept if all proofs go through

Fig. 10: The shu�ing protocol for ElGamal.
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C.2 Proof of ElGamal shu�e

The protocol for proving an ElGamal shu�e will be the following.

Theorem 7. Let p, 2K+1 < N . Suppose that the SISq,N,v,(N+1)·(
∑f

i=0 pi) holds.

If p is odd, then let 2K ≤ p
2 . If p is even, then let 2K ≤ p − 2. Let T =

min{2K , ( 85 )
f}. Let v ≥ 2. The protocol in 10 is ( 1

T + ε)κ + ε2-sound.

Proof. Fix a value η. We carry out the proof similarly to the one of the previous
theorem. Denote with the subscript η the extracted values in the extraction
where η was used. We see thus that we able to extract values (r′i)η, (r

′
t,k)η, (δk)η

and (π′)η such that, among other things

[ŵπ′
η(j)]η = hr′j,η [wj ]η

and
r′j,η = aj,k + rπ(j),k,η

and

Ck = hδ′k,η

N∏
t=1

g
r′t,k,η

t .

Now let's rewind until before η is chosen. We have that the Ck do not change.
Thus we have that r′t,k,η = r′t,k,η′ and δ′k,η = δ′k,η′ for all η, η′. Let us denote
r′t,k,η =: r′t,k.

We have that the ai,k were randomly chosen from Zq. We can assume that N2

q
is negligibly small. Thus, for all k, with overwhelming probability, there do not
exist such i1, j1, i2, j2 where i1 ̸= j1 and i2 ̸= j2 but ai1,k − aj1,k = ai2,k − aj2,k.

We now have that

r′j,η = aj,1 + rπη(j),1 = · · · = aj,v + rπη(j),v.

Suppose now that for some η1, η2, the extracted permutations are not equal.
, i.e there is a u such that πη1(u) ̸= πη2(u). Let v be such an element that
πη2(v) = πη1(u), by our assumption u ̸= v.

We have that
au,1 + rπη1

(u),1 = au,2 + rπη1
(u),2,

i.e

au,1 − au,2 = rπη1 (u),2
− rπη1 (u),1

= rπη2 (v),2
− rπη2 (v),1

= av,1 − av,2,

where the last equation holds because

av,1 + rπη2 (v),1
= av,2 + rπη2 (v),2

= rv,η2 .

We have now obtained that au,1 − au,2 = av,1 − av,2, where u ̸= v, which
contradicts our assumption that this happens only with a negligible probability.
Thus we have that πη1 = πη2 for all η. We will thus denote r′j,η =: r′j .

38



From the WEE-proof of the commitments-proof we have that ci = ĉπ(i)ĥ
r′π(i) .

Therefore,

ci,1 · cηi,2 = ĉπ(i),1 · ĉηπ(i),2 · g
r′π(i) · hηr′π(i) ,

or equivalently

ĉπ(i),1 · gr
′
π(i)

ci,1
·

(
ĉπ(i),2h

r′π(i)

ci,2

)η

= 1.

We saw that π and {r′i} do not depend on η. Thus by Schwarz-Zippel over η we

have that
ĉπ(i),1·g

r′
π(i)

ci,1
= 1 and

ĉπ(i),2h
r′
π(i)

ci,2
= 1, hence the claim also holds for

ElGamal-shu�es.

C.3 Necessary lemmas to prove Theorem 8

It turns out that the proof of Theorem 8 is rather involved and includes many
special cases. Thus we start by proving some lemmas essential to the proof.
Moreover, it seems likely that the Theorem can be strengthened in a way that
will be discussed later, but we will leave the details for future work.

Lemma 5. Let D be a n × n square matrix with elements in Zq with rows
D(1), . . . , D(n). Let E ⊂ Zq be a set. Consider the probability

pD,E := Pr[⟨D(i),b⟩ ∈ E,∀i ∈ [1, n]|b1, b2, . . . , bn
$← E,b = (b1, . . . , bn)].

Let a be the largest absolute value of an element of D. Let E be an interval

[0,m− 1] with ma < q. Let m be even. Then pD,E ≤
⌈m

a ⌉
m .

Proof. Let the row where an element with the largest absolute value is stored be
w.l.o.gD(1). Let one such element, w.l.o.g, be d1,n. Let us consider the probability
that ⟨D(1),b⟩ ∈ [0,m− 1]. This probability is equal to

q−1∑
j=0

Pr[

n−1∑
i=1

d1,ibi = j] · Pr[
n∑

i=1

d1,ibi ∈ [0,m− 1]|
n−1∑
i=1

d1,ibi = j]. (7)

Let us try to upper-bound Pr[
∑n

i=1 d1,ibi ∈ [0,m−1]|
∑n−1

i=1 d1,ibi = j]. We note
that if the b1, . . . , bn−1 have been �xed, then the function f(bn) =

∑n
i=1 d1,ibi =

j + d1,nbn is injective for bn ∈ [0,m − 1] because ma < q. This means that the
probability

Pr
bn∈[0,m−1]

[j + d1,nbn ∈ [0,m− 1]] =
(j + [0,m− 1]d1,n) ∩ [0,m− 1]

(j + [0,m− 1]d1,n)
.

We see that in the set (j+ [0,m− 1]d1,n, the distance between each two consec-
utive elements is d1,n. Thus, the size of (j+ [0,m− 1]d1,n)∩ [0,m− 1] can be at
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most
⌈
m
a

⌉
. From this it follows that Prbn∈[0,m−1][j+ d1,nbn ∈ [0,m− 1]] ≤ ⌈

m
a ⌉
m .

Thus the probability in Equation 8 is no bigger than

q−1∑
j=0

Pr[

n−1∑
i=1

d1,ibi = j] ·
⌈
m
a

⌉
m

=

⌈
m
a

⌉
m

.

Thus the result is proven.

Lemma 6. 1. Let α ∈ [2, p − 2] (mod p) with (|α| + 1) · (
∑f

i=0 p
i) < q. Then

if αc = d and c, d ∈ Pp,f − Pp,f , then c = d = 0.

2. Let α, β ∈ Zq be such that (|α|+ |β|) · (
∑f

i=0 p
i) ≤ q, and where α ̸= β, p−β

(mod p), and where α, β ̸= 0 (mod p). Then if αc = βd and c, d ∈ Pp,f −
Pp,f , then c = d = 0.

Proof. 1. We note that Pp,f − Pp,f = {b ∈ Zq|∃b0, . . . , bf ∈ {−1, 0, 1}, b =∑f
i=0 bip

i}. Let c =
∑f

i=0 cip
i and d =

∑f
i=0 dip

i where all ci and di are in

{−1, 0, 1}. We have thus that α
∑f

i=0 cip
i =

∑f
i=0 dip

i, i.e

f∑
i=0

(αci − di)p
i = 0.

Let j be the smallest index where either of ci or di is nonzero. Thus the
equation becomes

f∑
i=j

(αci − di)p
i = 0.

Let us now move this equation from Zq to Z. Thus, using for each variable
the representative in [− q+1

2 , q+1
2 ), we would have that for some integer v we

would have
f∑

i=j

(αci − di)p
i = vq

over the integers, where α, cj , . . . , cf , dj , . . . , df ∈ [− q+1
2 , q+1

2 ). We note that

f∑
i=j

(αci − di)p
i ≤

f∑
i=j

(|α||ci|+ |di|)pi ≤
f∑

i=j

(|α|+ 1)pi ≤ (|α|+ 1)|pf | < q

and analogously that
∑f

i=j(αci − di)p
i > −q. Thus it must be that v = 0

and we have that
∑f

i=j(αci − di)p
i = 0 holds over Z.

Over Z we can consider the equation modulo pj+1. We then obtain that
(αcj − dj)p

j = 0 (mod pj+1). From this follows that αcj − dj = 0 (mod p).
Let α = pα1+α2 with α2 ∈ [2, p−2]. Then the equation becomes α2cj−dj =
0 (mod p). Considering the nine possible values for the pair (cj , dj) we see
that the only case when it is possible that α2cj − dj = 0 (mod p), is when
cj = dj = 0. However, this contradicts our assumption that either cj or dj
is nonzero. Thus, by contradiction the claim is proven.
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2. Analogously to the last case, we reach the equation αcj − βdj = 0 (mod p).
Analyzing the nine cases, we see that this is possible only when cj = dj = 0.
The result again follows.

Lemma 7. Let α ∈ [2, p− 2] (mod p) with (|α|+ 1) · (
∑f

i=0 p
i) < q. Then, for

any k ∈ Zq, |(k + αPp,f ) ∩ Pp,f | ≤ 1.

Proof. Suppose by contradiction that there exist at least two x1, x2 ∈ (k +
αPp,f )∩Pp,f . Thus there must exist a1, a2, b1, b2 ∈ Pp,f , such that x1 = k+αa1 =
b1 and x2 = k+ αa2 = b2. Thus it must be that x1 − x2 = α(a1 − a2) = b1 − b2.
Denote a1 − a2 =: c, b1 − b2 =: d. We have that c, d ∈ Pp,f − Pp,f and αc = d.
By the �rst claim of the previous lemma it must hold that c = d = 0 and thus
a1 = a2 and b1 = b2, hence x1 = x2. Hence the claim is proven.

Lemma 8. Let D be a n × n square matrix with elements in Zq with rows
D(1), . . . , D(n). Let E = Pp,f be a set. Consider the probability

pD,E := Pr[⟨D(i),b⟩ ∈ E,∀i ∈ [1, n]|b1, b2, . . . , bn
$← E,b = (b1, . . . , bn)].

Suppose that in D there is an element with value α such that (|α|+1)·(
∑f

i=0 p
i) <

q and α ∈ [2, p− 2] (mod p). Then pD,E ≤ 1
|E| .

Proof. Without loss of generality, let the element α be the last element in the
�rst row, i.e d1,n.

Let us consider the probability that ⟨D(i),b⟩ ∈ Pp,f . This probability is equal
to

q−1∑
j=0

Pr[

n−1∑
i=1

d1,ibi = j] · Pr[
n∑

i=1

d1,ibi ∈ Pp,f |
n−1∑
i=1

d1,ibi = j]. (8)

Let us try to bound Pr[
∑n

i=1 d1,ibi ∈ Pp,f |
∑n−1

i=1 d1,ibi = j].
We note that if the b1, . . . , bn−1 have been �xed, then we can consider the

function f(bn) =
∑n

i=1 d1,ibi = k + d1,nbn where k =
∑n−1

i=1 d1,ibi. We �rst note
that this function must be injective because if for some di�erent bn, b

′
n it held

that f(bn) = f(b′n) then 0 = f(bn)−f(b′n) = k+d1,nbn−k−d1,nb′n = α(bn−b′n).
Because α, bn − b′n ̸= 0, and |α||bn − b′n| < q, this is not possible.

This means that

Pr
bn∈Pp,f

[j + d1,nbn ∈ Pp,f ] =
(j + αPp,f ) ∩ Pp,f

|Pp,f |
≤ 1

|Pp,f |
.

The last inequality comes from Lemma 7.
Hence the claim is proven.

Lemma 9. Let a1, a2 ∈ [−m,m] and let x1, x2 ∈ Pp,f . Let a1, a2 ̸= 0. Let

2m + 1 ≤ p. Let p · (
∑f

i=0 p
i) ≤ q. Let a1x1 = a2x2. Let x1, x2 ̸= 0. Then

a1 = ±a2.
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Proof. We have that by the second clause of Lemma 6, if (|a1|+|a2|)·(
∑f

i=0 p
i) <

q and a1 ̸= a2, p − a2 (mod p), and a1, a2 ̸= 0 (mod p), then it follows that
x1 = x2 = 0. Thus it must be that some of the conditions are not satis�ed. We
�rst note that

(|a1|+ |a2|) · (
f∑

i=0

pi) ≤ 2m(

f∑
i=0

pi) < p · (
f∑

i=0

pi) ≤ q,

thus this condition is satis�ed. Thus we must have that a1 = ±a2 (mod p).
We �rst note that if a1 = a2 (mod p) or a1 = p− a2 (mod p), then, because

p > 2m + 1, we have that these cases mean that a1 = a2 or a1 = −a2, i.e
a1 = ±a2.

Lemma 10. [19]

�
∑⌊n

4 ⌋
i=0

(
n
4i

)
= 1

2 (2
n−1 + 2

n
2 cos nπ

4 )

�
∑⌊n−1

4 ⌋
i=0

(
n

4i+1

)
= 1

2 (2
n−1 + 2

n
2 sin nπ

4 )

�
∑⌊n−2

4 ⌋
i=0

(
n

4i+2

)
= 1

2 (2
n−1 − 2

n
2 cos nπ

4 )

�
∑⌊n−3

4 ⌋
i=0

(
n

4i+3

)
= 1

2 (2
n−1 − 2

n
2 sin nπ

4 )

Lemma 11. Let p, k < n with p ≥ 4 and k ∈ [0, p − 1]. Denote sum vn,p,k :=(
n
k

)
+
(

n
k+p

)
+
(

n
k+2p

)
+ . . .

(
n

k+⌊n−k
p ⌋p

)
. Then vn,p,k ≤ 1

2 (2
n−1 + 2

n
2 ).

Proof. We note that by Lemma 10, we have that vn,4,k ≤ 1
2 (2

n−1+2
n
2 d) for any

n and k where k < p < n.
We will now show that for any n and k and p > 4, there exists a k′ ∈ [0, p−1]

such that vn,4,k′ ≥ vn,p,k.
Let p > 4. Let the largest among the

(
n

k+ip

)
be
(

n
k+jp

)
. Choose k′ to be

smallest such nonnegative integer that there exists a nonnegative integer j′ such
that k + jp = k′ + j′4.

Now vn,p,k =
∑K

i=−J

(
n

k+(j+i)p

)
for some nonnegative J and K where k +

(j − J)p ≥ 0 and k + (j +K)p ≤ n. Because k + jp = k′ + j′4 and p > 4 and
J,K ≤ 0, we have that

k + jp− pJ ≤ k′ + j′4− 4J

and

k + jp+ pK ≥ k′ + j′4 + 4K

We can rewrite these as k′ + (j′ − J)4 > k + (j − J)p and k′ + (j′ + K)4 <
k + (j +K)p.

We note that {k′ + (j′ + i)4}Ki=−J is a subset of {k′ + 4i}⌊
n−k′

4 ⌋
i=0 because

k′ + (j′ − J)4 ≥ k + jp − pJ ≥ 0 and k′ + (j′ + N)4 ≤ k + jp + pK ≤ n and

{k′ + 4i}⌊
n−k′

4 ⌋
i=0 is the set of all integers a ∈ [0, n] such that a = k′ (mod 4).

42



Thus

vn,4,k′ =

⌊n−k′
4 ⌋∑

i=0

(
n

k′ + 4i

)
≥

K∑
i=−J

(
n

k′ + (j′ + i)4

)
.

Now, for any i ∈ [−J,K],we will show that
(

n
k′+(j′+i)4

)
≥
(

n
k+(j+i)p

)
.

For this, note that if k+jp ≥ n
2 , and if i > 0, then k+(j+ i)p = k+jp+ ip =

k′+j′4+ ip > k′+j′4+4p = k′+(j′+ i)4. Because the binomial function f(x) =(
n
x

)
is decreasing when x ≥ n

2 , we have that in that case
(

n
k′+(j′+i)4

)
≥
(

n
k+(j+i)p

)
.

Analogously, if k + jp ≤ n
2 , and if i < 0, we likewise get that k + (j + i)p <

k′ + (j′ + i)4 and because f(x) =
(
n
x

)
is increasing when x ≤ n

2 , we have that in

that case
(

n
k′+(j′+i)4

)
≥
(

n
k+(j+i)p

)
.

Now, if k+ jp < n
2 , and if i > 0, then we must have that k+ (j + i)p > n

2 . If
we had that k + (j + i)p ≤ n

2 , then, because the binomial function is increasing
for x ≤ n

2 , we would have that
(

n
k+(j+i)p

)
>
(

n
k+jp

)
which would contradict the

maximality of
(

n
k+jp

)
.

Now, for k′ + (j′ + i)4, there are two options. Either k′ + (j′ + i)4 ≤ n
2 or

k′+(j′+i)4 > n
2 . If k

′+(j′+i)4 ≤ n
2 , then

(
n

k′+(j′+i)4

)
≥
(

n
k+jp

)
≥
(

n
k+(j+i)p

)
. The

�rst of these equalities comes from the increasingness of the binomial function
for all values not greater than n

2 and the second inequality comes from the
maximality of

(
n

k+jp

)
.

If k′ + (j′ + i)4 > n
2 , then, because k + (j + i)p < k′ + (j′ + i)4, both of

the values are greater than n
2 and the binomial function is decreasing for values

greater than n
2 , we have that

(
n

k′+(j′+i)4

)
≥
(

n
k+(j+i)p

)
.

The proof for the case when k + jp > n
2 , and if i < 0 is analogous. Thus for

all j,
(

n
k′+(j′+i)4

)
≥
(

n
k+(j+i)p

)
.

Thus we get that

vn,p,k =

K∑
i=−J

(
n

k + (j + i)p

)
≤

K∑
i=−J

(
n

k′ + (j′ + i)4

)
≤ vn,4,k′ ≤ 1

2
(2n−1 + 2

n
2 ).

Hence the result follows.

Lemma 12. Let a vector d of length N with elements from Zq contain k + 1
elements 1, k elements −1 and let the rest of the elements be 0. Consider the
probability

Jk,t := Pr[⟨d,b⟩ = t|b1, b2, . . . , bN
$← {0, 1},b = (b1, . . . , bn)].

Then for any t ∈ [−k, k], we have that Jk,t =
(2k+1

t+k )
22k+1 .

Proof. We do this inductively over k. It is clear that the elements of d that are
zero can be ignored. W.l.o.g, let d = (1,−1, 1,−1, . . . , 1, 0, . . . , 0). Let us thus
only consider the vector dk formed out of the �rst 2k+1 elements of d. Let Ik,t
be the number of binary vectors b of length 2k + 1 such that ⟨b,dk⟩ = t. By

de�nition, clearly Jk,t =
Ik,t

22k+1 .
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Now let us do the proof by induction. For the base case, if k = 0, then
d0 = (1). There is one vector b = (0) for which ⟨b,dk⟩ = 0 and one vector
b = (1) for which ⟨b,dk⟩ = 1. Thus I0,0 = I0,1 = 1 and J0,0 = J0,1 = 1

2 . Now let
us do the step of the induction. Suppose that the statement holds for k, let us
show that it holds for k+1. We notice that moving from k to k+1 is equivalent
to concatenating (−1, 1) to the vector dk. We thus will characterize the values
Ik+1,t in terms of Ik,t. Consider now how we can obtain Ik+1,t when the �rst
2k − 1 values of b have been �xed. Let us denote those values with bk. Let the
last two elements of b be b2k and b2k+1. There are four cases how it can happen
that the sum is t: either the scalar product of ⟨bk,dk⟩ = t− 1 and b2k = 0 and
b2k+1 = 1; the scalar product of ⟨bk,dk⟩ = t and b2k = 0 and b2k+1 = 0; the
scalar product of ⟨bk,dk⟩ = t and b2k = 1 and b2k+1 = 1; or the scalar product
of ⟨bk,dk⟩ = t+ 1 and b2k = 1 and b2k+1 = 0. Thus we get that

Ik+1,t = Ik+1,t−1 + 2Ik+1,t + Ik+1,t+1.

By the premise of the inductive step, we have that

Ik+1,t =

(
2k + 1

t+ k − 1

)
+

(
2k + 1

t+ k

)
+

(
2k + 1

t+ k

)
+

(
2k + 1

t+ k + 1

)
=

(
2k + 2

t+ k

)
+

(
2k + 2

t+ k + 1

)
=

(
2k + 3

t+ k + 1

)
.

Thus we have by induction that Ik,t =
(
2k+1
t+k

)
. From here it follows that Jk,t =

Ik,t

22k+1 =
(2k+1

t+k )
22k+1 .

Lemma 13. Let a vector d of length N with elements from Zq contain k + 1
elements 1, k elements −1 and let the rest of the elements be 0. Consider the
probability

pk,{0,1} := Pr[⟨d,b⟩ ∈ {0, 1}|b1, b2, . . . , bN
$← {0, 1},b = (b1, . . . , bn)].

Then, for any integer k ≥ 1, pk,{0,1} ≤ 3
4 .

Proof. First notice that by the previous lemma 12, we have that pk,{0,1} =
(2k+1

k )+(2k+1
k+1 )

22k+1 =
(2k+2

k+1 )
22k+1 . For k = 1, we have that pk,{0,1} =

(42)
23 = 6

8 = 3
4 . Now we

will show that for any k ≥ 0, we have that pk,{0,1} > pk+1,{0,1}. For that, �rst

note that
(2k+2

k+1 )
(2k+4

k+2 )
= (k+2)(k+2)

(2k+3)(2k+4) by the de�nition of the binomial coe�cient.

Now,

pk,{0,1}

pk+1,{0,1}
=

(2k+2
k+1 )

22k+1

(2k+4
k+2 )

22k+3

=
4(k + 2)(k + 2)

(2k + 3)(2k + 4)
=

4k2 + 16k + 16

4k2 + 10k + 12
> 1.

Thus pk,{0,1} > pk+1,{0,1} and thus for all k ≥ 1, we have pk,{0,1} ≤ 3
4 .
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Lemma 14. Let d be a vector of length n over Zq. Let all di ∈ d be in {−1, 0, 1}.
Let the number of ones in d be k + 1 and the number of minus ones in d be k.
Let (2k + 1)

∑f
i=0 p

i < q
2 . De�ne

pd,E := Pr[⟨d,b⟩ ∈ Pp,f |b1, b2, . . . , bn
$← Pp,f ,b = (b1, . . . , bn)].

Then

pd,E ≤ (
1

2
+

1

2k+1
)f+1

Proof. Fix the d and denote ⟨d,b⟩ by gb.
Because

|⟨d,b⟩| ≤
2k+1∑
i=0

bi ≤ (2k + 1)

f∑
i=0

pi <
q

2

we can consider gb as an integer in [−q
2 , q

2 ).

We can write gb =
∑F

i=0 gip
i in p-ary where g0, . . . , gF ∈ [⌊−p

2 ⌋, ⌊
p
2⌋) and

F ≥ f . Note that this representation is unique, as we can �rst consider gb
modulo p to obtain g0, then consider gb− g0 modulo p2 to obtain pg1 and so on.

We notice that gb ∈ Pp,f i� g0, . . . , gf ∈ {0, 1} and gf+1, . . . gF = 0. Un-
fortunately we cannot consider these cases independently as there might be an
over�ow term from some lower terms might in�uence higher terms. However, we
shall see that this will not make the result particularly worse.

Namely, if bj =
∑f

i=0 bi,jp
i where bi,j ∈ {0, 1}, then we obtain that

F∑
i=0

gip
i = ⟨d,b⟩ =

n∑
j=1

djbj =

n∑
j=1

dj

f∑
i=0

bi,jp
i =

f∑
i=0

pi
n∑

j=1

djbi,j .

This does not necessarily mean that gb ∈ Pp,f i�
∑n

j=1 djbi,j ∈ {0, 1} for all
i ∈ [0, f ]. If the number of dj that are nonzero is greater than p, then it might
happen that for some i,

∑n
j=1 djbi,j ≥ p and thus it will both give an over�ow

term to the coe�cients of pi+1 and that for the coe�cient of pi it su�ces when
the sum of the djbi,j (plus a possible over�ow or under�ow term from the lower
values) is equal to 0 or 1 (mod p).

Thus, consider the following. For some �xed values of the vector b, de�ne
iteratively:

N∑
j=1

b0,jdj =: pcb,0 + c′b,0

where c′b,0 ∈ [⌊−p
2 ⌋, ⌊

p
2⌋), and for i ∈ [1, F ]:

cb,i−1 +

N∑
j=1

bi,jdj =: pcb,i + c′b,i

where c′b,i ∈ [⌊−p
2 ⌋, ⌊

p
2⌋).
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Also de�ne cb,−1 = 0.
We note that thus de�ned cb,i and c′b,i are a function of b, as d has been

assumed to be �xed.
Thus we can say that ⟨d,b⟩ ∈ Pp,f if and only c′b,i ∈ {0, 1} for all i ∈ [0, f ]

and c′b,i = 0 for all i > f . However, we will now focus only on the �rst of these
requirements � c′b,i ∈ {0, 1} for all i ∈ [0, f ].

We note that this is equivalent to cb,i−1 +
∑n

j=1 bi,jdj ∈ {0, 1} (mod p) for
all i ∈ [0, f ].

Note that, assuming that the elements bi,j are chosen uniformly at random
from {0, 1}, the probability Pr[c′b,i ∈ {0, 1} (mod p)|cb,i−1 = w] is well-de�ned
for every w ∈ Zq where Pr[cb,i−1 = w] > 0.

For the probabilities given from here on, assume that the probability is given
for picking all the elements bi,j uniformly at random from {0, 1}.

We can write for all w ∈ Zq that

Pr[c′b,i ∈ {0, 1} (mod p)|cb,i−1 = w] = Pr[w +

n∑
j=1

bi,jdj ∈ {0, 1} (mod p)]

Let vi be de�ned as such that the value Pr[vi +
∑n

j=1 bi,jdj ∈ {0, 1} (mod p)] is
maximal for vi ∈ [0, p− 1].

Now by that de�nition

Pr[cb,i−1 +

n∑
j=1

bi,jdj ∈ {0, 1} (mod p)] ≤ Pr[vi +

n∑
j=1

bi,jdj ∈ {0, 1} (mod p)].

We note that by Lemma 12, the probability that
∑n

j=1 bi,jdj = t if k + 1 of
the dj are equal to 1, k are equal to −1 and the bi,j are random bits, is equal to
(2k+1

k+t )
22k+1 . From here we have directly that the probability that vi+

∑n
j=1 bi,jdj = t

if k + 1 of the dj are equal to 1, k are equal to −1 and the bi,j are random bits,

is equal to
( 2k+1
k+t−vi

)
22k+1 . We note that the only values for t for which this value is

nonzero are [vi − k, vi + k + 1], thus we only have to look at them.
The respective values t that we would be interested in are the values where

t ∈ {0, 1} (mod p). In [vi − k − 1, 2k + 1] let the smallest value that is equal to
0 (mod p) be v′i and let the largest value in [vi − k − 1, 2k + 1] that is equal to
0 (mod p) be v′′i . Thus we obtain that

Pr[v +

n∑
j=1

bi,jdj ∈ {0, 1} (mod p)] =

∑ v′′
i −v′

i
p

j=0

(
2k+1

k−vi+v′
i+jp

)
+
(

2k+1
k−vi+v′

i+jp+1

)
22k+1

.

(For edge cases when one of the k − vi + v′i + jp and k − vi + v′i + jp + 1 is in
[0, 2k+ 1] and the other is not, recall that

(
2k+1
−1

)
=
(
2k+1
2k+2

)
= 0 and thus it does

not matter whether we include them or not, we choose to include them to make
the equation nicer. )
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Additionally,
(

2k+1
k−vi+v′

i+jp

)
+
(

2k+1
k−vi+v′

i+jp+1

)
=
(

2k+2
k−vi+v′

i+jp+1

)
.

Hence

Pr[vi +

n∑
j=1

bi,jdj ∈ {0, 1} (mod p)] ≤

∑ v′′
i −v′

i
p

j=0

(
2k+2

k−vi+v′
i+jp+1

)
22k+1

.

We can obtain an upper-bound for the right-hand side from Lemma 11 and

obtain that it is upper-bounded by
1
2 (2

2k+1+2k+1)

22k+1 = 1
2 + 1

2k+1 .
Knowing this, we can bound the entire probability. Thus

Pr[

f∧
i=0

c′b,i ∈ {0, 1} (mod p)] =

n∑
w−1,w0,...,wf−1∈Zq

Pr[
f−1∧
i=−1

cb,i=wi]>0

Pr[

f∧
i=0

c′b,i ∈ {0, 1} (mod p)|
f−1∧
i=−1

cb,i = wi] Pr[

f−1∧
i=−1

cb,i = wi] =

n∑
w−1,w0,...,wf−1∈Zq

Pr[
f−1∧
i=−1

cb,i=wi]>0

Pr[

f∧
i=0

wi−1 +

n∑
j=1

bi,jdj ∈ {0, 1} (mod p)] Pr[

f−1∧
i=−1

cb,i = wi] ≤

n∑
w−1,w0,...,wf−1∈Zq

Pr[
f−1∧
i=−1

cb,i=wi]>0

Pr[

f∧
i=0

vi +

n∑
j=1

bi,jdj ∈ {0, 1} (mod p)] Pr[

f−1∧
i=−1

cb,i = wi] ≤

n∑
w−1,w0,...,wf−1∈Zq

Pr[
f−1∧
i=−1

cb,i=wi]>0

(

f∏
i=0

Pr[vi +

n∑
j=1

bi,jdj ∈ {0, 1} (mod p)]) Pr[

f−1∧
i=−1

cb,i = wi] ≤

n∑
w−1,w0,...,wf−1∈Zq

Pr[
f−1∧
i=−1

cb,i=wi]>0

(

f∏
i=0

(
1

2
+

1

2k+1
)) Pr[

f−1∧
i=−1

cb,i = wi] =

(
1

2
+

1

2k+1
)f+1

n∑
w−1,w0,...,wf−1∈Zq

Pr[
f−1∧
i=−1

cb,i=wi]>0

Pr[

f−1∧
i=−1

cb,i = wi] = (
1

2
+

1

2k+1
)f+1.

Hence we have the desired result.
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Lemma 15. Let D be a n×n matrix over Zq where the only elements are −1, 0
and 1 and all rows and columns sum to 1. Let p > 4. Let 2pf+1 ≤ q. Additionally,
let there be no row with more than 2 elements 1. Denote

pD,E := Pr[⟨D(i),b⟩ ∈ Pp,f ,∀i ∈ [1, n]|b1, b2, . . . , bn
$← Pp,f ,b = (b1, . . . , bn)]

and

pD,{0,1} := Pr[⟨D(i),b⟩ ∈ [0, 1],∀i ∈ [1, n]|b1, b2, . . . , bn
$← [0, 1],b = (b1, . . . , bn)].

Then
pD,E = pf+1

D,{0,1}.

Proof. In the �rst experiment where we randomly choose b1, b2, . . . , bn
$← Pp,f ,

denote bj =
∑f

k=0 bj,kp
k where all bj,k are bits. Thus the �rst experiment is the

same when we choose the bits separately, that is

Pr[⟨D(i),b⟩ ∈ Pp,f ,∀i ∈ [1, n]|b1, b2, . . . , bn
$← Pp,f ,b = (b1, . . . , bn)] =

Pr[⟨D(i),b⟩ ∈ Pp,f ,∀i ∈ [1, n]|{bj,k}N,f
ij=1,k=0

$← {0, 1}, bj ←
f∑

k=0

bj,kp
k,b = (b1, . . . , bn)]

Let the matrix D be {di,j}Ni,j=1. We note that ⟨D(i),b⟩ ∈ Pp,f ,∀i ∈ [1, n]

means that for all i,
∑N

j=1 di,jbj =
∑f

k=0 ck,ip
f and all ck,i are bits.

We have that

N∑
j=1

di,jbj =

N∑
j=1

di,j

f∑
k=0

bj,kp
k =

f∑
k=0

pk
N∑
j=1

di,jbj,k.

Because we have that any row is either a unit vector or the nonzero elements
are two elements 1 and one element −1, we have that for any i, k, −1 ≤∑N

j=1 di,jbj,k ≤ 2. This means that there can be no "over�ow" to the next
power of p, i.e

N∑
j=1

di,jbj =

f∑
k=0

ck,ip
f ,∀k, i : ck,i ∈ {0, 1}

is equivalent to
N∑
j=1

di,jbj,k ∈ {0, 1},∀k, i.

We note, however, that if we �x a value k, then the probability that for all
i, we have that

∑N
j=1 di,jbj,k ∈ {0, 1}, can be written as

Pr[⟨D(i),b⟩ ∈ [0, 1],∀i ∈ [1, n]|b1, b2, . . . , bn
$← [0, 1],b = (b1, . . . , bn)] = pD,{0,1}.

Now, because there are f + 1 values of k and for any particular value of k
the outcome does not depend on any other value of k, these experiments are
independent. Thus the result follows.

⊓⊔
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Theorem 8. Let D be a n×n square matrix with elements in Zq with columns
D(1), . . . , D(n) where every row and column of D sums to 1. Let p > 4. Let
2pf+1 ≤ q. Let n

∑f
i=0 p

i < q
2 . Let all values in D have absolute values no

greater than p− 2. Let D contain a column that is not a unit vector. Then

pD,E := Pr[⟨D(i),b⟩ ∈ Pp,f ,∀i ∈ [1, n]|b1, b2, . . . , bn
$← Pp,f ,b = (b1, . . . , bn)] ≤ (

5

8
)f+1.

Proof. We will split the proof down to a number of cases.

1. The matrix contains an element with an absolute value larger than 1.
2. All the elements of the matrix are either −1, 0 or 1. There is a row with at

least 3 elements 1.
3. All the elements of the matrix are either −1, 0 or 1. In every row there is at

most 2 elements 1.

1. Let us �rst consider the case when there is an element (w.l.o.g d1,N ) with
an absolute value larger than 1 but no larger than p − 2. By Lemma 8, we
have that

pD,E ≤
1

|Pp,f |
=

1

2f+1
< (

5

8
)f+1.

2. By Lemma 14, we have that k ≥ 3. (The requirements for the lemma are

satis�ed because n ≥ 2k+1 and thus (2k+1)
∑f

i=0 p
i < q

2 .) In that row we
get the bound ( 12 + 1

2k+1 )
f ≤ ( 58 )

f+1.
3. There are not very many distinct cases here. First, consider the case where

there are two rows with 3 nonzero elements where the sets of the indices of
the nonzero elements are disjoint. By a simple argument, we can apply the
Lemma 14 to both of these rows independently and thus obtain a bound of
( 34 )

f ( 34 )
f = ( 9

16 )
f < ( 58 )

f which su�ces for our claim. If there are no two rows
with 3 nonzero elements where the sets of the indices of the nonzero elements
are disjoint, there are, modulo permutations of rows, a small amount of
possible matrices that satisfy this property. We will describe these matrices
and show that the rate is at most 5

8 for the test set {0, 1}. Using the lemma
15, this will give us the result.
We will count the cases by considering what is the largest overlap of indices
of nonzero coe�cients of rows of three nonzero elements, classifying them,
and showing that we will always have that pD,E ≤ 5

8 . First, consider the
case when the largest overlap of indices of nonzero coe�cients of rows of
three nonzero elements is one. Then consider two rows that overlap. The
submatrix where the nonzero elements of those two rows will be must be
(modulo permutations) one of the following:

�

(
1 1 −1 0 0
0 0 1 1 −1

)
�

(
1 1 −1 0 0
0 0 −1 1 1

)
�

(
1 1 −1 0 0
0 1 0 1 −1

)
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�

(
1 1 −1 0 0
0 −1 0 1 1

)
For all those cases, we can consider all the 32 possible cases for challenge
bits and see that for each matrix, at least for 12 cases, the scalar product
with at least one of the rows will not be a bit. Thus we have that for a
matrix that contains one of these matrices as a submatrix, we must have
that pD,{0,1} ≤ 5

8 .
Second, consider the case when the largest overlap of indices of nonzero
coe�cients of rows of three nonzero elements is two. Then consider two rows
that overlap. The submatrix where the nonzero elements of those two rows
will be must be (modulo permutations) one of the following:

�

(
1 1 −1 0
1 1 0 −1

)
�

(
1 1 −1 0
1 0 1 −1

)
�

(
1 1 −1 0
1 0 −1 1

)
�

(
1 1 −1 0
1 −1 0 1

)
�

(
1 1 −1 0
−1 1 0 1

)
�

(
1 1 −1 0
−1 0 1 1

)
For all those cases, we can consider all the 16 possible cases for challenge
bits and see that for each matrix, at least for 6 cases, the scalar product
with at least one of the rows will not be a bit. Thus we have that for a
matrix that contains one of these matrices as a submatrix, we must have
that pD,{0,1} ≤ 5

8 .
Third,consider the case when the largest overlap of indices of nonzero coef-
�cients of rows of three nonzero elements is three. Then consider two rows
that overlap. The submatrix where the nonzero elements of those two rows
will be must be (modulo permutations) one of the following.

�

(
1 1 −1
1 −1 1

)
�

(
1 1 −1
1 1 −1

)
For the �rst of those two cases, we can see that pD,{0,1} must be no greater

than 1
2 . However, for the second case we get the bound 3

4 . This, however,
turns out not to be an issue. Because we have that the sum of the columns
must also be 1, we cannot have that all the rows with three elements are the
same. Somewhere there must be another row with three elements that is not(
1 1 −1

)
and thus must be an example of the �rst case, which means that

for the whole matrix, we get the bound 1
2 .

Thus we have enumerated all the possible cases and seen that for all of them,
we have that pD,{0,1} ≤ 5

8 , and thus, by Lemma15, this will give us the result.
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