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Abstract. An aggregate signature scheme is a digital signature protocol
that enables the aggregation of multiple signatures. Given n signatures
on n distinct messages from n different users, it is possible to combine
all these signatures into a single, concise signature. This single signature,
along with the n original messages, convinces the verifier that the n users
indeed signed their respective n original messages. However, the verifier
must have access to all the original messages to perform the verification,
highlighting a potential limitation in terms of accessibility and efficiency.
Goyal and Vaikuntanathan introduced the concept of local verification,
which allows the verifier to determine if a specific message m is part
of the aggregated signature by only accessing the message m. In this
paper, we extend the single-signer locally verifiable aggregate signature
scheme initially proposed by Goyal and Vaikuntanathan, adapting it to
a multi-signer context. Our generalization allows the verifier to validate
multiple signatures simultaneously using an auxiliary value generated
by the LocalOpen algorithm, thereby enhancing verification efficiency.
Furthermore, we integrate this approach into the multi-signature scheme
proposed by Boneh, Drijvers, and Neven, demonstrating its broader ap-
plicability and potential benefits in complex cryptographic systems.

Keywords: aggregate signatures · locally verifiable signatures · multi-
signatures.

1 Introduction

A digital signature is a cryptographic technique crucial for ensuring the integrity
and authenticity of electronic data, making it indispensable for secure transac-
tions over open networks. Digital signature schemes form the backbone of modern
security infrastructure, facilitating trust and verification in various applications,
including online banking, e-commerce, software distribution, and secure com-
munications. As these technologies evolve, digital signature schemes continue
to adapt, addressing emerging challenges with a focus on enhancing efficiency,
scalability, and robustness in increasingly complex digital environments.
⋆ Corresponding author
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A multi-signature scheme [2,3,10,27] is a protocol that allows multiple sign-
ers to collaboratively produce a compact signature σ for a message m, ensuring
that a verifier can be convinced that all participating parties have signed the
same m. In particular, the verification process involves the input of the n public
keys, the message m, and the resulting multi-signature σ. At the end of the veri-
fication, σ can be rejected or accepted. This collaborative approach significantly
supports security by distributing trust across several parties, thus mitigating the
risks associated with key compromise or unauthorized access [6]. Multi-signature
protocols play a crucial role in numerous applications, such as blockchain trans-
actions, joint bank accounts, and distributed ledger technologies, where collective
approval is paramount [17].

The concept of aggregate signatures was introduced by Boneh et al. [11] and
has since been extensively studied [1, 5, 7, 12, 19, 20, 26]. It enables multiple in-
dividual signatures to be combined into a single compact signature, regardless
of whether the signatures are on the same or different messages and created
by different signers. Aggregate signatures provide significant efficiency benefits
in systems where multiple signatures need to be verified, such as in blockchain
networks, Internet of Things (IoT) applications, and other distributed systems,
since computational power, bandwidth, and storage are limited in these environ-
ments. Besides that, aggregate signatures not only streamline the verification
process but also maintain the same security guarantees as traditional digital sig-
natures, making them an essential tool in modern cryptographic protocols [6].
Recent research on aggregate signatures has focused on enhancing privacy, re-
ducing computational overhead, and adapting to specific application needs such
as blockchain and group authentication. These innovations underscore aggre-
gate signatures’ flexibility and increasing relevance in advanced cryptographic
systems [3, 13,24].

The verification process for aggregate signatures requires access to all n
messages. Therefore, the cost of the verification process increases linearly with
the number of messages. To address this issue, Goyal, Rishab, and Vaikun-
tanathan [18] proposed the concept of locally verifiable aggregate signatures,
which enables efficient verification for only one message instead of the whole
message set. They present two constructions for single-signer locally verifiable
aggregate signatures: one relying on the RSA assumption [4,21,25] and the other
on the bilinear Diffie-Hellman inversion assumption [8, 9, 22] within the random
oracle model.

Locally verifiable signature schemes have not been studied extensively yet
since the proposed idea is already new. However, this concept has swiftly inspired
considerable research effort. In literature, two notable works based on the local
verification concept based on [18] are the works of Duan et al. [16] and Zue et
al. [29]. Both works adapt the foundational concepts to address specific challenges
in health data verification and sharing.

Locally verifiable signatures allow efficient verification by enabling a verifier
to check the presence of a particular message in an aggregate signature without
accessing the entire set of messages. There are several important uses for this
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concept. Certificate transparency logs can store compressed certificates as ag-
gregate signatures. Users can verify the existence of a certificate by downloading
a short hint instead of the entire log, reducing storage and computational costs
while maintaining security. In blockchain applications, locally verifiable aggre-
gate signatures can aggregate signatures of all transactions from a single payer.
This allows users to efficiently prove the existence of a specific transaction with
minimal communication. Additionally, it offers privacy benefits by enabling proof
of a single transaction without revealing other transactions. On the other hand,
in cryptocurrencies, multi-signature schemes allow multiple parties to jointly
authorize a transaction. Locally verifiable multi-signatures can make the verifi-
cation process more efficient by enabling the verification of individual signatures
without accessing the entire transaction set.

In this paper, we first generalize the locally verifiable aggregate signature
scheme proposed in [18]. It means that first, a hint is generated for any k out of ℓ
messages using the local opening function. Then, a verifier can use the generated
hint to verify selected k messages at once. Moreover, the multi-message local
verification algorithm operates independently of the number of messages ℓ, which
is a natural expectation from such an improvement. Secondly, we present a locally
verifiable version of the multi-signature scheme proposed in [10]. This time, the
localization is performed in the signers domain, instead of the messages domain.
Similarly to that of multi-message local verification algorithm, locally verifiable
multi-signature algorithm also operates independently of the total number of
signers n.

The structure of the paper is as follows. In Section 2, we provide a concise
overview, including definitions of bilinear pairings, computational problems such
as Diffie-Hellman Inversion, Bilinear Diffie-Hellman Inversion, co-CDH problems,
the generalized forking lemma, and locally verifiable aggregate signatures. In
Section 3, we give the formal definition of our first contribution, namely Multi-
Message Locally Verifiable Aggregate Signatures (MM-LVAS), and then give the
details about the scheme. We also prove its security in the random oracle model.
In Section 4, we first provide the formal definition of Locally Verifiable Multi-
Signatures (LVMS) and then mention the details of the scheme. In the same
section, we demonstrate its security in the random oracle model by employing
the generalized forking lemma. Finally, the conclusion of our paper is given in
Section 5.

Note that, throughout this paper, we consider three types of entities: signers,
who execute key generation and signing operations; storage servers (or aggre-
gators), who perform aggregation of the signatures and generate the hint; and
verifiers, who carry out the verification processes.

2 Preliminaries

In this section, we define the concepts that we utilize in this paper. More pre-
cisely, we define bilinear pairings, underlying hard problems, generalized forking
lemma, and locally verifiable aggregate signature schemes.
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In general, we denote the set of all positive integers up to n as [n] :=
{1, . . . , n}. Additionally, the set of all non-negative integers up to n, i.e., [0, n] :=
0 ∪ [n] is denoted as [0, n].

2.1 Bilinear Pairings

Let G1 and G2 be two cyclic additive groups of prime order q and GT be a cyclic
multiplicative group with the same order. A pairing is a map e : G1×G2 → GT

which satisfies the bilinearity and non-degeneracy properties:

– Bilinearity: e(Aα, Bβ) = e(A,B)αβ for all α, β ∈ Zq, A ∈ G1 and B ∈ G2.
– Non-degeneracy: e(A,B) ̸= 1 for all A ∈ G1 and B ∈ G2.

Note that, in general, we can classify pairings into two classes, i.e., symmetric
and asymmetric pairings. The above definition belongs to the latter. In this
paper, we use both symmetric and asymmetric ones in our constructions. For
the symmetric ones, we will not give another definition, yet one can simply
consider G1 = G2.

2.2 Computational Problems

Definition 1 (Diffie-Hellman Inversion Problem [8]). For groups G = ⟨g⟩
and GT of order p, let e : G × G → GT be an efficient and non-degenerate
bilinear mapping. Let x ∈ Z∗

p be a randomly chosen secret and q ∈ Z be the
hardness parameter of the problem, which is the length of the powers-in-exponent
sequence given to the adversary. Given g, gx, gx

2

, . . . , gx
q ∈ G, the Diffie-Hellman

Inversion (DHI) problem is to compute g1/x ∈ G.

Definition 2 (Bilinear Diffie-Hellman Inversion Problem [8]). For groups
G = ⟨g⟩ and GT of order p, let e : G×G→ GT be an efficient and non-degenerate
bilinear mapping. Let x ∈ Z∗

p be a randomly chosen secret and q ∈ Z be the hard-
ness parameter of the problem, which is the length of the powers-in-exponent se-
quence given to the adversary. Given g, gx, gx

2

, . . . , gx
q ∈ G, the Bilinear Diffie-

Hellman Inversion (q-BDHI) problem is to compute e(g, g)1/x ∈ GT .

Definition 3 (Computational co-Diffie-Hellman Problem [10]). For
groups G1 = ⟨g1⟩ ,G2 = ⟨g2⟩ of prime order q, define Advco-CDH

G1,G2
of an adversary

A as
Pr

[
y = gαβ1 : (α, β)

$←− Z2
q, y ← A

(
gα1 , g

β
1 , g

β
2

)]
,

where the probability is taken over the random choices of A and the random
selection of (α, β). A(τ, ϵ)-breaks the co-CDH problem if it runs in time at most
τ and has Advco-CDH

G1,G2
≥ ϵ. co-CDH is (τ, ϵ)-hard if no such adversary exists.
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2.3 Generalized Forking Lemma

Pointcheval and Stern initially defined the forking lemma in [23], which has been
widely used to establish the security of schemes based on Schnorr signatures
within the random-oracle model [28]. Bellare and Neven later generalized this
lemma in [6]. Boneh et al. used a further generalization of the forking lemma
by Bagherzandi et al. [2] in their security proofs in [10]. In our work, we also
utilize this latter generalized forking lemma in the security proofs of our second
construction given in Section 4.

Let A be an algorithm interacting with a random oracle H : {0, 1}∗ → Zq

and takes in as input. Let f = (ρ, h1, . . . , hqH ) represent the randomness used
during an execution of A. Here, ρ denotes A ’s random tape, hi is the response
to A ’s i-th query to H, and qH is the maximum number of random-oracle
queries made by A. Let Ω be the space of all randomness vectors like f and let
f |i = (ρ, h1, . . . , hi−1) for any i ≤ qH . We consider an execution of A taking
input in and randomness f , denoted A(in, f), as successful if it outputs a pair(
J, {outj}j∈J

)
, where J is a multi-set that is a non-empty subset of {1, . . . , qH}

with |J | = n, and ({outj}j∈J) is a multi-set of side outputs. We say that A failed
if it outputs J = ∅. Let ϵ be the probability that A(in, f) is successful for fresh
randomness f

$←− Ω and for input in $←− IG generated by an input generator IG.
For a given input in, the generalized forking algorithm GFA is presented in

Algorithm 1.

Lemma 1 (Generalized Forking Lemma [2]). Let IG be a randomized algo-
rithm generating in. Let A be a random algorithm running in time τ , making at
most qH random oracle queries that succeeds with probability ϵ. If q > 8nqH/ϵ,
then GFA(in) runs in time at most τ ·8n2qH/ϵ · ln(8n/ϵ) and succeeds with prob-
ability at least ϵ/8, where the probability is over the choice of in $←− IG and over
the coins of GFA(in).

2.4 Locally Verifiable Aggregate Signature Schemes

A locally verifiable aggregate signature scheme [18] is a tuple of seven algo-
rithms, i.e., Setup, Sign, Verify, Aggregate, AggVerify, LocalOpen,
LocalAggVerify, which can be described as follows.

Setup(1λ) → (vk, sk). The setup algorithm takes the security parameter λ as
input and outputs a pair of signing and verification keys (vk, sk).

Sign(sk,m) → σ. The signing algorithm takes a signing key sk and a message
m and outputs a signature σ.

Verify(vk,m, σ) → 0/1. The verification algorithm takes a verification key vk,
a message m , and a signature σ as input. It outputs 1 if the signature is valid
or 0 otherwise.
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Algorithm 1 Algorithm GFA
Input: in
Output: (J, {outj}j∈J , {out′j}j∈J) or fail

1: f = (ρ, h1, . . . , hqH )← Ω
2: (J, {outj}j∈J)← A(in, f)
3: if J = ∅ then
4: return fail
5: else
6: Let J = {j1, . . . , jn} such that j1 ≤ . . . ≤ jn
7: for i = 1, . . . , n do
8: succi ← 0
9: ki ← 0

10: kmax ← 8nqH
ϵ
· ln
(
8n
ϵ

)
11: repeat
12: f ′′ ← Ω such that f ′′|ji = f |ji
13: Let f ′′ = (ρ, h1, . . . , hji−1, h

′′
ji , . . . , h

′′
qH )

14: (J ′′, {out′′j }j∈J′′)← A(in, f ′′)
15: if h′′

ji ̸= hji and J ′′ ̸= ∅ and ji ∈ J ′′ then
16: out′ji ← out′′ji
17: succi ← 1
18: end if
19: ki ← ki + 1
20: until succi = 1 or ki > kmax

21: end for
22: if succi = 1 for all i = 1, . . . , n then
23: return (J, {outj}j∈J , {out′j}j∈J)
24: else
25: return fail
26: end if
27: end if

Aggregate(vk, {mi, σi}i) → σ̂/⊥ . The signature aggregation algorithm takes
a verification key vk, a sequence of tuples, each containing a message mi and
signature σi as input and it outputs either an aggregated signature σ̂ or ⊥.

AggVerify(vk, {mi}i, σ̂) → 0/1. The aggregate verify algorithm takes a ver-
ification key vk, a sequence of messages mi, and an aggregated signature σ̂ as
input and outputs 1 if it is valid or 0 otherwise.

LocalOpen(σ̂, vk, {mi}i∈[ℓ], j ∈ [ℓ])→ auxj. The local opening algorithm takes
an aggregated signature σ̂, a verification key vk, a sequence of messages mi for
i ∈ [ℓ], and an index j ∈ [ℓ] as input. It outputs auxiliary information auxj

corresponding to the message mj .

LocalAggVerify(σ̂, vk,m, aux) → 0/1. The local aggregate verification al-
gorithm takes an aggregated signature σ̂, a verification key vk, a message m,
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and auxiliary information aux as input. It outputs 1 if the aggregate signature
σ̂ contains a signature for message m under verification key vk, 0 otherwise.

A locally verifiable aggregate signature scheme is considered correct and com-
pact if for all λ, ℓ ∈ N, given every verification-signing key pair (vk, sk) ←
Setup(1λ), messages mi, and every signature σi ← Sign(sk,mi) for i ∈ [ℓ], the
following conditions hold:

1. Correctness of Local Opening. For all k ∈ [ℓ],

LocalAggVerify (σ̂, vk,mk,LocalOpen (σ̂, vk, {mi}i, k)) = 1

2. Compactness of Opening. |aux| ≤ poly(λ), i.e., the size of the auxiliary
opening information is a fixed polynomial in the security parameter λ, inde-
pendent of the number of aggregations ℓ.

Definition 4 (Aggregated Unforgeability [18]). A single-signer aggregated
signature scheme (Setup, Sign, Verify, Aggregate, AggVerify) is said
to be a secure aggregate signature scheme if for every admissible PPT attacker
A, there exists a negligible function negl(·) such that for all λ ∈ N, the following
holds

Pr

[
AggVerify

(
vk, {m∗

i }i∈[ℓ], σ̂
∗) = 1 :

(vk, sk)← Setup
(
1λ

)(
{m∗

i }i∈[ℓ], σ̂
∗)← ASign(sk,·) (1λ, vk)

]
≤ negl(λ),

where A is admissible if there exists i ∈ [ℓ] such that m∗
i was not queried by A

to the Sign(sk, ·) oracle.

Definition 5 (Static Aggregated Unforgeability [18]). Before an adver-
sary A receives the verification key vk, if it is restricted to provide both the
message queries {mi}i∈[q] and the challenge messages {m∗

i }i∈[ℓ] at the beginning
of the game defined in Definition 4, then we say that this aggregated signature
scheme is statically secure.

Definition 6 (Agg. Unforgeability with Adversarial Opening [18]). A
locally verifiable aggregate signature scheme (Setup, Sign, Verify, Aggre-
gate, AggVerify, LocalOpen, LocalAggVerify) is said to be a secure
aggregate signature scheme against adversarial openings if for every admissible
PPT attacker A, there exists a negligible function negl (·) such that for all λ ∈ N,
the following holds

Pr

[
LocalAggVerify (σ̂∗, vk,m∗, aux∗) = 1 :

(vk, sk)← Setup
(
1λ

)
(σ̂∗, aux∗,m∗)← ASign(sk,·) (1λ, vk)

]
≤ negl(λ),

where A is admissible if m∗ was not queried by A to the Sign(sk, ·) oracle.

Definition 7 (Static Agg. Unforgeability with Adversarial Opening [18]).
We say the locally verifiable aggregate signature scheme is statically secure against
adversarial openings if the adversary in the previous game is confined to make
all of its message queries {mi}i∈[q] and declare the challenge message m∗ at the
beginning of the game before it receives the verification key vk.
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2.5 Pairing-based Locally Verifiable Aggregate Signatures

In this section, we discuss the primitives and functions utilized in the original
scheme proposed by Goyal and Vaikuntanathan [18], and consequently, in our ex-
tended scheme. Additionally, we provide an overview of the structural framework
of the original scheme that forms the basis of our work, which is an extension of
the locally verifiable aggregate signature scheme proposed in [18].

Injective Message Hashing and Its Variants. An injective mapping from the
message spaceMλ = {0, 1}λ to the prime field Zp for p > 2λ is used. To achieve
static and fully adaptive security, we consider two straightforward mappings,
(HGen,H), namely identity mapping and random oracle mapping. The identity
mapping employs a hash setup HGenI , which is a trivial algorithm that outputs
hk = ϵ. The corresponding hash function HI(ϵ,m) simply returns m, interpret-
ing the output m as a field element of Zp. For the random oracle mapping, let
H = {Hλ}λ denote a family of hash functions where each h ∈ Hλ processes
λ bits of input and produces λ bits of output. The hash setup HGenH ran-
domly selects a hash function h ∈ Hλ and outputs hk = h. The hash function
HH(hk = h,m) = h(m) maps m to h(m), with the output interpreted as a field
element of Zp.

Aggregation Algorithm. This “key accumulation” algorithm was developed by
Delerablée, Paillier, and Pointcheval [14,15]. The DPP algorithm takes an input
sequence of group elements {g

r
γ+xi , xi}i∈[ℓ] and produces the output g

∏
i∈[ℓ]

r
γ+xi .

It is used to aggregate individual signatures in both their scheme and ours.

Gen Algorithm. Gen is a probabilistic polynomial-time (PPT) algorithm that,
given a security parameter λ (in unary), generates a λ-bit prime p, an efficient
description of groups G,GT of order p, and a generator g ∈ G. Additionally,
it outputs an efficient non-degenerate bilinear map e : G × G → GT such that
e(g, g) ̸= 1GT

and for all a, b ∈ Zp, e(ga, gb) = e(g, g)ab.
The construction of the locally verifiable single-signer aggregate signature

scheme [18] is as follows. Notice that, in this construction, LocalOpen algo-
rithm generates a hint for only one message.

Setup(1λ, 1B) → (vk(local), vk, sk). The setup algorithm takes the security pa-
rameter λ and the upper bound B for aggregations as input. It generates bi-
linear group parameters Π = (p,G,GT , g, e(·, ·)) using Gen(1λ), and samples a
random exponent α ∈ Z∗

p. The public parameters for message hashing are set
as hk ← HGen(1λ). The key pair is defined as vk = (Π,hk, {gαi}i∈[B]) and
sk = (Π,hk, α). The local verification key is vk(local) = (Π,hk, gα).

Sign(sk,m) → σ. It parses the secret key and hashes the message as hm =

H(hk,m). The signature is then computed as g(α+hm)−1

, leveraging the knowl-
edge of α.
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Verify(vk,m, σ) → 0/1. It parses the verification key and hashes the message
as hm = H(hk,m). The verification involves checking if e(σ, gαghm) = e(g, g),
where gα is obtained from vk. If the check is successful, it outputs 1; otherwise,
it outputs 0.

Aggregate(vk, {mi, σi}i)→ σ̂/⊥. The aggregation algorithm first verifies each
input signature σi, and outputs ⊥ if any verification fails. Otherwise, it computes
the aggregated signature as

σ̂ = DPP({σi, xi}i)

where xi = H(hk,mi).

AggVerify(vk, {mi}i, σ̂) → 0/1. The algorithm parses the verification key and
computes the hash values xi = H(hk,mi) for each i ∈ [ℓ]. It then constructs the
polynomial P to determine the coefficients {βi ∈ Zp}i∈[ℓ]:

P{xi}i∈[ℓ]
(y) =

∏
i∈[ℓ]

(y + xi) =

ℓ∑
i=0

βiy
i (mod p).

Next, it verifies that ℓ ≤ B and checks, and it outputs 1 if it is valid or 0
otherwise.

e

(
σ̂,

ℓ∏
i=0

(gα
i

)βi

)
= e(g, g).

LocalOpen(vk, {mi}i∈[ℓ], j ∈ [ℓ]) → auxj. The local opening algorithm parses
vk and computes the hash sequence xi = H(hk,mi) for each i ∈ [ℓ], and co-
efficients {β̃i ∈ Zp}i∈[ℓ−1] similar to AggVerify except that now it removes
(y + xj). Finally, it computes

P{xi}i∈[ℓ]\{j}(y) =
∏

i∈[ℓ]\{j}

(y + xi) =

ℓ−1∑
i=0

β̃iy
i (mod p).

It then generates the auxiliary opening information auxj = (auxj,1, auxj,2),
where

auxj,1 =

ℓ−1∏
i=0

(gα
i

)β̃i , auxj,2 =

ℓ−1∏
i=0

(gα
i+1

)β̃i ,

with gα
i

obtained from the verification key vk.

LocalAggVerify(σ̂, vklocal,m, aux) → 0/1. The algorithm parses the local
verification key vklocal and auxiliary value aux = (aux1, aux2), then computes
the hash of the message as hm = H(hk,m). It checks the following two condi-
tions,

e(σ̂, auxhm
1 aux2) = e(g, g)
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e(gα, aux1) = e(g, aux2)

where gα is obtained from the local verification key vk. If both conditions hold,
it outputs 1; otherwise, it outputs 0.

In the following section, we formally define our first contribution, multi-
message locally verifiable aggregate signature schemes, and then dive into the
details of our scheme. We also provide its security proof.

3 Multi-Message Locally Verifiable Aggregate Signature
Schemes

In [18], the authors proposed a pairing-based locally verifiable aggregate sig-
nature scheme, which is described in the previous section. In that scheme, the
LocalOpen algorithm generates an auxiliary value aux for only one message.
Consequently, the local verification algorithm verifies whether the aggregated
signature σ̂ contains a signature for that single message m corresponding to
aux. In this section, we extend this scheme to a multi-message setting. Next, we
give a formal definition and the security definitions of our proposed scheme.

A locally verifiable aggregate signature scheme with multi-message setting
is a tuple of seven algorithms, i.e., Setup, Sign, Verify, Aggregate, Ag-
gVerify, LocalOpen, LocalAggVerify, which are defined as follows:

Setup(1λ, 1B) → (vklocal, vk, sk). The setup algorithm takes the security pa-
rameter λ as input and outputs vklocal and a pair of signing and verification
keys (vk, sk).

Sign(sk,m) → σ. The signing algorithm takes a signing key sk and a message
m as input and outputs a signature σ.

Verify(vk,m, σ) → 0/1. The verification algorithm takes a verification key vk
, a message m, and a signature σ as input. It outputs 1 if the signature is valid
or 0 otherwise.

Aggregate(vk, {mi, σi}i) → σ̂/⊥. The signature aggregation algorithm takes
a verification key vk, a sequence of tuples, each containing a message mi and
signature σi, and it outputs either an aggregated signature σ̂ or ⊥.

AggVerify(vk, {mi}i, σ̂) → 0/1. The aggregate verify algorithm takes a ver-
ification key vk, a sequence of messages mi, and an aggregated signature σ̂ as
input, and outputs 1 if it is valid or 0 otherwise.

LocalOpen(vk, {mi}i∈[ℓ], {j1, j2, . . . , jk} ⊂ [ℓ]) → aux. The local opening al-
gorithm takes a verification key vk, a sequence of messages mi for i ∈ [ℓ], and in-
dexes {j1, j2, . . . , jk} as input. It outputs auxiliary information aux correspond-
ing to the set of messages {mj1 ,mj2 , . . . ,mjk}.
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LocalAggVerify(σ̂, vklocal,mj1 ,mj2 , . . . ,mjk , aux) → 0/1. The local aggre-
gate verification algorithm takes an aggregated signature σ̂, a local verification
key vklocal, a set of messages mj1 ,mj2 , . . . ,mjk , and auxiliary information aux
as input. It outputs 1 if the aggregated signature σ̂ contains the signatures for
messages {mj1 ,mj2 , . . . ,mjk} under verification key vk, or not.

Now, we define the idea of security for the setup of multi-message locally
verifiable aggregate signature scheme.

Definition 8 (Aggregated Unforgeability with Adversarial Opening).
A multi-message locally verifiable aggregate signature scheme MM-LVAS
=(Setup, Sign, Verify, Aggregate, AggVerify, LocalOpen, LocalAg-
gVerify) is considered a secure aggregate signature scheme against adversarial
openings if for every admissible PPT attacker A, there exists a negligible function
negl(·) such that for all λ ∈ N, the following holds

Pr

[
LocalAggVerify

(
σ̂∗, vklocal, {m∗

i }i∈[k], aux
∗) = 1 :

(vk, sk)← Setup
(
1λ

)(
σ̂∗, aux∗, {m∗

i }i∈[k]

)
← ASign(sk,·) (1λ, vk)

]
≤ negl(λ)

where A is admissible if at least one of the challenge messages {m∗
i }i∈[k] was

not queried by A to the Sign(sk, ·) oracle.

Definition 9 (Static Agg. Unforgeability with Adversarial Opening).
Before an adversary A receives the verification key vk, if it is restricted to provide
both the message queries {mi}i∈[q] and the challenge messages {m∗

i }i∈[k] at the
beginning of the game in Definition 8, then we say that MM-LVAS is statically
secure against adversarial openings.

3.1 Description of our scheme

This section presents a generalized version of the single-signer locally verifiable
aggregate signatures proposed by Goyal et al. [18]. In this construction, which
is based on [9], a verifier can verify k out of ℓ messages at once using a gener-
ated common hint. Note that the DPP algorithm used for signature aggregation
and the HGen function employed for message hashing are utilized in the same
manner as in the original design here.

Setup(1λ, 1B) → (vklocal, vk, sk). The setup process requires input parame-
ters: the security parameter λ and the maximum allowed number of aggrega-
tions, denoted as B. It then generates vklocal, vk, and sk. It samples the bi-
linear group elements Π = (p,G,GT, g, e(·, ·)) ← Gen(1λ). It also samples a
random element α ← Zp

∗. It additionally generates public parameters for mes-
sage hashing through the process: hk ← HGen(1λ). The key pair is defined as
vk = (Π,hk, gα

i

i∈[B]) and sk = (Π,hk, α). Furthermore, it establishes the local
verification key as vklocal = (Π,hk, gα).

Sign(sk,m)→ σ. It parses sk as (Π,hk, α) and computes the hash of the mes-
sage as x = H(hk,m). The signature is then computed as g(α+x)−1

. Notice that
this computation is doable since α is known.
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Verify(vk,m, σ) → 0/1. It parses vk as (Π,hk, gα
i

i∈[B]), and computes the
hash of the message as x = H(hk,m). It verifies whether e(σ, gαgx) = e(g, g),
where gα is obtained from the verification key vklocal. It outputs 1 if the verifi-
cation is valid or 0 otherwise.

Aggregate(vk, {(mi, σi)}i∈[ℓ])→ σ̂/⊥. The aggregation algorithm verifies each
input signature σi,and returns ⊥ if any fail. If all verifications pass, the aggre-
gated signature is calculated as

σ̂ = DPP({σi, xi}i) = g
∏

i(α+xi)
−1

,

where xi = H(hk,mi).

AggVerify(vk, {mi}i∈[ℓ], σ̂) → 0/1. The aggregated signature verification al-
gorithm parses the verification key vk as (Π,hk, gα

i

i∈[B]), and calculates the
hash sequence as xi = H(hk,mi) for all i ∈ [ℓ] where ℓ represents the number
of aggregated messages. It symbolically computes the following polynomial P to
determine the coefficients {βi ∈ Zp}i∈[ℓ]∪{0},

P{xi}i∈[ℓ]
(y) =

∏
i∈[ℓ]

(y + xi) =

ℓ∑
i=0

βiy
i (mod p). (1)

Finally, it checks that ℓ ≤ B and verifies

e

(
σ̂,

ℓ∏
i=0

(gα
i

)βi

)
= e(g, g),

where gα
i

are taken from the verification key vk. If this equation holds, it outputs
1; otherwise, it outputs 0.

LocalOpen(vk, {mi}i∈[ℓ], {j1, j2, . . . , jk} ⊂ [ℓ])→ aux. The local opening algo-
rithm parses vk as (Π,hk, gα

i

i∈[B]) and computes the sequence of hash messages
as xi = H(hk,mi) for all i ∈ [ℓ] \ {j1, j2, . . . , jk}. It symbolically computes the
following polynomial P to determine the coefficients {β̃i ∈ Zp}i∈[ℓ−k]∪{0},

P{xi}i∈[ℓ]\{j1,j2,...,jk}(y) =
∏

i∈[ℓ]\{j1,j2,...,jk}

(y + xi) =

ℓ−k∑
i=0

β̃iy
i (mod p). (2)

It then calculates the auxiliary opening information aux = (aux0, aux1, . . . , auxk)
are computed as

aux0 =

ℓ−k∏
i=0

(gα
i

)β̃i , aux1 =

ℓ−k∏
i=0

(gα
i+1

)β̃i , . . . , auxk =

ℓ−k∏
i=0

(gα
i+k

)β̃i ,
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where gα
i

is obtained from the verification key vk. In general, auxt for t ∈
[k] ∪ {0} is computed as

auxt =

ℓ−t∏
i=0

(gα
i+t

)β̃i .

LocalAggVerify(σ̂, vklocal, mj1 ,mj2 , . . . ,mjk , aux) → 0/1. The local verifi-
cation algorithm parses the local verification key vklocal as (Π,hk, gα), as well
as the auxiliary opening aux = (aux0, aux1, . . . , auxk). It computes the message
hashes as xi = H(hk,mi) for i ∈ {j1, j2, . . . , jk}. It symbolically computes the
following polynomial Q to determine the coefficients {Ai ∈ Zp}i∈[k]∪{0},

Q{xji
}i∈[k]

(y) =
∏
i∈[k]

(y + xji) =
k∑

i=0

Aiy
i (mod p). (3)

Finally, it verifies the following k + 1 conditions:

e(σ̂, aux0
A0 · aux1

A1 · · · auxk
Ak) = e(g, g)

e(gα, aux0) = e(g, aux1)

e(gα, aux1) = e(g, aux2)

e(gα, aux2) = e(g, aux3)

...
e(gα, auxk−1) = e(g, auxk)

(4)

where gα is taken from the local verification key vklocal. It outputs 1 if it is valid
or 0 otherwise.

Remark 1. Note that the verification process only needs gα while checking the
equation, meaning the local verification key vklocal would be sufficient.

A locally verifiable aggregate signature scheme with multi-message setting
is considered correct and compact if for all λ, ℓ ∈ N, given every verification-
signing key pair (vk, sk)← Setup(1λ), messages mi, and every signature σi ←
Sign(sk,mi) for i ∈ [ℓ], the following conditions hold:

1. Correctness of signing. This follows from the fact that e(σ, gαgx) = e(g, g)
where x = H(hk,m).

e(σ, gαgx) = e(g(α+x)−1

, gαgx)

= e(g(α+x)−1

, g(α+x))

= e(g, g(α+x)(α+x)−1

)

= e(g, g)
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Correctness of aggregation. Consider a sequence of messages m1, . . . ,mt

and their corresponding signatures σi = g(α+xi)
−1

for i ∈ [ℓ], where
xi = H(hk,mi). It is known that these signatures are aggregated as
σ̂ = DPP({σi, xi}i). According to the correctness of the key accumulation
algorithm from [14, 15], we have σ̂ = g

∏
i(α+xi)

−1

. The verification of the
aggregated signature is as follows:

e

(
σ̂,

ℓ∏
i=0

(gα
i

)βi

)
= e(g, g),

where βi values are such that
∑ℓ

i=0 βiy
i =

∏
i∈[ℓ](y + xi) mod p. Thus, we

have
ℓ∏

i=0

(gα
i

)βi = g
∑ℓ

i=0 αiβi = g
∏

i∈[ℓ](α+xi).

Therefore, for honestly computed and aggregated signatures, the above ver-
ification check succeeds, ensuring correctness.

2. Correctness of local verification. The correctness of all of the equalities in
(4) except for the first one is trivial. Thus, we will only show the correctness
of the first one.

e(σ̂, aux0
A0 . . . auxk

Ak ) = e

σ̂,

(
ℓ−k∏
i=0

(gα
i

)β̃i

)A0

· · ·

(
ℓ−k∏
i=0

(gα
i+k

)β̃i

)Ak


= e

σ̂,

(
ℓ−k∏
i=0

(gα
i

)β̃i

)A0

· · ·

(
ℓ−k∏
i=0

(gα
i

)β̃iα
k

)Ak


= e

(
σ̂,

ℓ−k∏
i=0

(gα
i

)A0β̃i · · ·
ℓ−k∏
i=0

(gα
i

)Akβ̃iα
k

)

= e

(
σ̂,

ℓ−k∏
i=0

(gα
i

)β̃i(A0+A1α+···+Akα
k)

)

= e

(
σ̂,

ℓ−k∏
i=0

(gα
i

)β̃i
∑k

t=0 Atα
t

)

= e

(
σ̂,

ℓ−k∏
i=0

gα
iβ̃i

∏
t∈[k](α+xjt

)

)
= e

(
σ̂, g

∑ℓ−k
i=0 (αiβ̃i

∏
t∈[k](α+xjt

))
)

= e
(
σ̂, g

∏
t∈[k](α+xjt

)·
∑ℓ−k

i=0 αiβ̃i

)
= e

(
σ̂, g

∏
t∈[k](α+xjt

)·
∏

i∈[ℓ]\{j1,j2,...,jk}(α+xi)
)

= e
(
g
∏ℓ

i=1(α+xi)
−1

, g
∏ℓ

i=1(α+xi)
)

= e(g, g)
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3.2 Security Proof

Theorem 1 (Static Unforgeability). Static unforgeability and static aggre-
gated unforgeability are satisfied by MM-LVAS if the DHI assumption holds and
(HGen,H) is an identity hash.

In addition, static aggregated unforgeability with adversarial openings is sat-
isfied by MM-LVAS if the BDHI assumption holds and (HGen,H) is an identity
hash.

Proof. Note that aggregated unforgeability is more general than regular unforge-
ability, so here we consider the proof of aggregated unforgeability for our scheme.
However, the aggregation technique of our signature scheme is the same as the
original scheme in [18]. Since the entire proof is the same, we recommend readers
look at that paper to get more detailed information about the proof of this part.

Here, we will show that our signature scheme, which relies on the hardness
of BDHI, satisfies aggregated unforgeability with adversarial openings. Assume
that there is a PPT adversary A that breaks aggregated unforgeability with
adversarial openings with non-negligible probability ϵ. Based on this, we will
construct a PPT adversary B that breaks the q-BDHI assumption in GT with
ϵ− negl probability for some negligible function negl.

Since we demonstrate only static security, the adversary A submits all of its
signature queries Q := {mi}i∈[qs] together with the challenge messages C :=
{m∗

i }i∈[k] at the start of reduction algorithm B. Since A is admissible, there
exists an index j∗ ∈ [k] such that m∗

j∗ ∈ C \ Q. We set S := Q ∪ C \ {m∗
j∗}.

Let B be the aggregation bound. The reduction algorithm B breaks the q-BDHI
assumption in GT, where the hardness parameter q is such that q ≥ |S|+B.

The BDHI challenger generates the bilinear group parameter set
Π = (p,G,GT, h, e(·, ·)), and a sequence of group elements {hi = hai}qi=0 for
a randomly selected element a← Zp

∗ and sends (Π,h1, . . . , hq) to B.
Now, B will compute the signatures of the messages in Q and verification key

vk = {gi = gα
i}Bi=1 in order to send back to adversary A.

We will first focus on how the verification key is computed by B. The re-
duction B sets the signing key α = a − m∗

j∗ and the base group element g =

h
δ
∏

m∈S(α+m)

0 = h
δ
∏

m∈S(a−m∗
j∗+m)

0 after sampling a random exponent δ ∈ Z∗
p.

Then, for each i ∈ [q], we have gi = h
δ(a−m∗

j∗ )
i ∏

m∈S(a−m∗
j∗+m)

0 . For ease of nota-
tion, we will use g, h as g0, h0, respectively. In order to compute each gj , j ∈ [B],
B needs to define the following set of polynomials.

∀j ∈ [0, B], Pj(X) =
(
X −m∗

j∗
)j ∏

m∈S

(
X −m∗

j∗ +m
)
=

|S|+j∑
i=0

β
(i)
j Xi (mod p)

Then, B computes each gj as shown below:

gj = hδPj(a) = hδ
∑|S|+j

i=0 β
(i)
j ai

=

|S|+j∏
i=0

hδβ
(i)
j ai

=

|S|+j∏
i=0

h
δβ

(i)
j

i (mod p)
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It sets the verification key vk and vklocal as vk = (p,G,GT, g0, e(·, ·), hk =
ϵ, {gi}Bi=1) and vklocal = (p,G,GT, g0, e(·, ·), hk = ϵ, g1). Note that g0 is a gener-
ator, computed as previously mentioned, different from the one supplied by the
BDHI challenger.

Now, B needs to calculate the signatures of all query messages m1, . . . ,mqs

as

∀i ∈ [qs], σi = g(a−m∗
j∗+mi)

−1

= h
δ

P0(a)

a−m∗
j∗+mi = hδ

∏
m∈S\{mi}

(a−m∗
j∗+m).

Let Q−i be the following polynomial with coefficients {γ(j)
i ∈ Zp

∗}|S|−1
j=0

∀i ∈ [qs] , Q−i(X) =
∏

m∈S\{mi}

(
X −m∗

j∗ +m
)
=

|S|−1∑
j=0

γ
(j)
i Xj (mod p).

Then,

σi = hδQ−i(a) = hδ
∑|S|−1

j=0 γ
(j)
i aj

=

|S|−1∏
j=0

h
δγ

(j)
i

j .

Now, the reduction algorithm B sends vk and {σi}i∈[qs] to adversary A. A then
sends its forged signature σ̂∗ and aux∗ = (aux0, aux1, . . . , auxk). B then checks
if σ̂∗ is a valid signature by executing the local verification algorithm. It aborts if
it is an invalid signature. Otherwise, the next step for B is to compute e(h, h)

1
a .

Note that for all i ∈ [k], auxi = auxαi

0 from the equation (4). Then, also
using the equation (3), we get

k∏
i=0

auxAi
i =

k∏
i=0

auxAiα
i

0 = aux
∑k

i=0 Aiα
i

0 = aux
∏

i∈[k](α+m∗
i )

0 .

Using the equation above and the first equation of (4), we get

e(g, g) = e
(
σ̂∗, aux

∏
i∈[k](a−m∗

j∗+m∗
i )

0

)
= e

(
σ̂∗, aux

∏
m∈C(a−m∗

j∗+m)

0

)
.

Moreover, we have

e(g, g) = e
(
hδP0(a), hδP0(a)

)
= e (h, h)

δ2P0(a))
2

.

Therefore, by merging the previous two equations, we get

e(σ̂∗, aux0) = e(h, h)
δ2

P0(a)2∏
m∈C (a−m∗

j∗+m)
.

Then, B computes the polynomial

P ∗(X) =
P0(X).P0(X)∏

m∈C(X −m∗
j∗ +m)

=
β∗
−1

X
+

|S\C|+|S|−1∑
i=0

β∗
i X

i (mod p)
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so that e(σ̂∗, aux0) = e(h, h)δ
2P∗(a). As we continue from the previous equation,

e(σ̂∗, aux0) = e(h, h)δ
2
(

β∗
−1
a +

∑|S\C|+|S|−1
i=0 β∗

i a
i
)

= e(h, h)δ
2 (β∗

−1)

a · e(h, h)δ
2 ∑|S\C|+|S|−1

i=0 β∗
i a

i

= e(h, h)δ
2(

β∗
−1
a ) ·

|S\C|+|S|−1∏
i=0

e(h, h)δ
2β∗

i ai

= e(h, h)δ
2(

β∗
−1
a ) ·

|S\C|+|S|−1∏
i=0

e(ha⌈i/2⌉
, ha⌊i/2⌋

)δ
2β∗

i

= e(h, h)δ
2(

β∗
−1
a ) ·

|S\C|+|S|−1∏
i=0

e(h⌈i/2⌉, h⌊i/2⌋)
δ2β∗

i .

Thus, the reduction algorithm B outputs BDHI solution as

e(h, h)1/a =

(
e(σ̂∗, aux0)

1/δ2 ·
|S\C|+|S|−1∏

i=0

e
(
h⌈i/2⌉, h⌊i/2⌋

)−β∗
i

)1/β∗
−1

.

As a result, whenever there exists an admissible adversary A, the algorithm
B can break BDHI assumption with ϵ− negl probability for some negligible
function negl for q ≥ |S|+B.

□

Next, we demonstrate how MM-LVAS provides full unforgeability if the mes-
sage hashing is instantiated in the ROM.

Theorem 2 (Full Unforgeability). MM-LVAS meets full unforgeability and
aggregated unforgeability if the DHI assumption holds and (HGen,H) is instan-
tiated in the ROM.

Also, MM-LVAS meets full aggregated unforgeability with adversarial open-
ings if the BDHI assumption holds and (HGen,H) is instantiated in the ROM.

As in the previous proof, it will be sufficient to prove the part for adversarial
openings in this section.

Proof. We can reduce full aggregated unforgeability with adversarial openings
to BDHI in the ROM with some modifications as in the previous proof.

Assume that there is a PPT adversary A that breaks full unforgeability with
adversarial openings with non-negligible probability ϵ. Then, we will construct
a PPT adversary B that breaks q-BDHI assumption in GT with ϵ/QRO − negl
probability for some negligible function negl. Here, QRO denotes the number of
queries A makes to the random oracle. The reduction algorithm B is explained
below. It is constructed similar to that in the proof of Theorem 1, except that
it now exploits programmability.

Remember from the previous proof that the set of signature queries and
challenge messages are Q := {mi}i∈[qs] and C := {m∗

i }i∈[k], respectively. At the
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beginning of the game, the adversary A queries the random oracle for all of the
messages in the set U := Q ∪ C. At the same time, the reduction algorithm B
programs the random oracle, meaning samples the hash values associated with
the messages. Now, B chooses an element m∗

j∗ such that j∗ ∈ [k] expecting that
m∗

j∗ /∈ Q and sets α = a− hm∗
j∗

implicitly.
The q-BDHI challenger samples the bilinear parameters

Π = (p,G,GT, h, e(·, ·)), and a sequence of group elements {hi = hai}qi=0

for a randomly selected element a← Zp
∗ and sends (Π,h1, . . . , hq) to B.

The reduction algorithm B computes the verification key vk, computed in the
same way as in the previous proof, and then sends it to the adversary A. After
that, A sends the hash values of the signature query set Q, which is named
HQ, to the reduction algorithm B. The reduction algorithm aborts if hm∗

j∗
∈

HQ. Otherwise, B sends the signatures of queried messages to the adversary A.
Similar to the case of vk, B computes the signatures in an analogous way to
the previous proof. The remaining operations are the same as the proof of the
Theorem 1. As a result, the probability that B breaks q-BDHI assumption turns
out to be ϵ/QRO − negl for some negligible function negl. Note that we have
1/QRO factor emerges from the probability of B guessing m∗

j∗ correctly. □

In the next section, we first provide the formal definition of locally verifi-
able multi-signatures. Subsequently, we provide detailed information about the
scheme and its security proof.

4 Locally Verifiable Multi-Signatures

In this section, we integrate the notion of local verification into multi-signature
schemes. The multi-signature scheme that we choose to modify is the one given
in [10]. Given a locally verifiable multi-signature scheme with n signers, the
verifier can verify that the signatures of k out of n signers are included in the
multi-signature using an auxiliary value aux.

A locally verifiable multi-signature scheme LVMS is a tuple of seven algo-
rithms, i.e., Setup, Sign, Verify, Aggregate, AggVerify, LocalOpen,
LocalAggVerify, which are defined as follows:

Setup(1λ)→ (vk, sk). The setup algorithm takes the security parameter λ and
generates the bilinear group elements Π = (q,G1,G2,GT, g1, g2, e). It outputs
(sk, vk) for every signer i ∈ [n].

Sign(sk,m, V K) → σ. The signing algorithm takes a secret key sk, a message
m, and the set of verification keys V K = {vk1, vk2, . . . , vkn} as input, and it
computes the signature σ.

Verify(σ,m, V K) → 0/1. The verification algorithm takes a signature σ, a
message m, and the set of verification keys V K = {vki}ni=1 and outputs 1 if the
signature is valid or 0 otherwise.
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Aggregate({σi}ni=1, V K,m) → σ̂/⊥. The aggregation algorithm takes the in-
dividual signatures {σi}ni=1, the set of verification keys V K, and the message m
as input. It outputs either a multi-signature σ̂ or ⊥.

AggVerify(σ̂, {vki}ni=1,m)→ 0/1. The aggregation verification algorithm takes
the multi-signature σ̂, the set of verification keys V K = {vki}ni=1 and the mes-
sage m as input. It outputs 1 if it is valid or 0 otherwise.

LocalOpen({vki}ni=1, j1, j2, · · · , jk,m) → aux. The local opening algorithm
takes all verification keys {vki}ni=1, indices j1, j2, . . . , jk and the message m as
input. It outputs an auxiliary value aux corresponding to the signers.

LocalAggVerify(aux, {vkji}ki=1,m, σ̂, V K) → 0/1. The local verification al-
gorithm takes an auxiliary information aux, verification keys {vkji}ki=1, the mes-
sage m, a multi-signature σ̂ and the entire set of verification keys V K as input.
It outputs 1 if it is valid or 0 otherwise.

Definition 10 (Unforgeability of Multisignature with Adversarial Open-
ing). An adversary A is called a (τ, qS , qH , ϵ)-forger for locally verifiable multi-
signature scheme LVMS = (Setup, Sign, Verify, Aggregate, AggVerify,
LocalOpen, LocalAggVerify) if it runs in time τ , makes qS signing queries,
makes qH random oracle queries and satisfies

Pr

[
LocalAggVerify(aux∗, {vki}i∈[k],m

∗, σ̂∗,VK∗) = 1 :
(vk, sk)← Setup(1λ)
(σ̂∗, {vki}i∈[k],m

∗, V K∗, aux∗)← ASign(sk,·)(1λ, vk)

]
≥ ϵ

where vk ∈ {vki}ki=1 ⊂ V K∗. If there exist no such an adversary, we say
that LVMS is (τ, qS , qH , ϵ)-unforgeable. Note that A is admissible if m∗ was not
queried by A to the Sign(sk, ·) oracle.

4.1 Description of Our Scheme

In this section, we propose a multi-signature scheme with local verification prop-
erty, which we refer to as LVMS. Our proposed scheme is derived from the MSP
scheme proposed by Boneh, Drijvers, and Neven in [10]. Note that since this
scheme is a multi-signature scheme, the number of signed messages is only one.
We provide the following scheme for the local verification of k out of n signa-
tures. Assume the hash functions H0 : {0, 1}∗ → G1 and H1 : {0, 1}∗ → Zq.
Remember that we refer the set of all verification keys {vk1, vk2, . . . , vkn} as
V K.

Setup(1λ) → (vki, ski). The setup algorithm samples the bilinear group ele-
ments Π = (q,G1,G2,GT, g1, g2, e). It also generates secret keys randomly such
that ski

$←− Zq, computes vki ← g2
ski and outputs (ski, vki) for each signer i.

Sign(ski,m, V K) → σi. The signing algorithm computes σi ← H0(m)ai·ski ,
where ai ← H1(vki, V K).
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Verify(σi,m, vki, V K) → 0/1. The verification algorithm verifies whether the
following equation holds or not and outputs 1 if it is valid or 0 otherwise.

e(σi, g2)
?
= e(H0(m), vki

ai)

Aggregate({σi}ni=1, V K,m)→ σ̂/⊥. The aggregation algorithm firstly verifies
all the input signatures σi, and it returns ⊥ if any fail. Otherwise, it computes
the multi-signature as follows:

σ̂ ←
n∏

i=1

σi

AggVerify(σ̂, {vki}ni=1,m)→ 0/1. The aggregate verification algorithm checks
the following equality and outputs 1 if it is valid or 0 otherwise.

e(σ̂, g2)
?
= e

(
H0(m),

n∏
i=1

vkai
i

)

LocalOpen({vki}ni=1, j1, j2, · · · , jk,m) → aux. The local opening algorithm
takes all verification keys, indices {ji}ki=1 ⊂ [n] and the message m . It outputs
an auxiliary value aux corresponding to the signers in the set {ji}ki=1.

aux = e

(
H0(m),

n∏
i=1,

i ̸=j1,j2,...,jk

vkai
i

)

LocalAggVerify(aux, {vkji}ki=1,m, σ̂, V K)→ 0/1. The local verification func-
tion takes an auxiliary information aux, verification keys {vkji}ki=1, the message
m and a multi-signature σ̂ as input. It then checks the following equation and
outputs 1 if it is valid or 0 otherwise.

e(σ̂, g2)
?
= aux · e

(
H0(m),

k∏
i=1

vk
aji
ji

)

4.2 Security Proof

Theorem 3. LVMS is an unforgeable multi-signature scheme under the compu-
tational co-Diffie-Hellman problem in the random-oracle model. More precisely,
LVMS is (τ, qS , qH , ϵ)-unforgeable in the random-oracle model if q > 8qH/ϵ and
if co-CDH is ((τ + qH · τexp1

+ qS · τexp1) ·8q2H/ϵ · ln(8qH/ϵ), ϵ/(8qH))-hard, where
l is the maximum number of signers involved in a single multi-signature, τexp1

and τexp2
denote the time required to compute exponentiations in G1 and G2,

respectively, and τexpi
1

and τexpi
2

denote the time required to compute i-multi-
exponentiations in G1 and G2, respectively.
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Proof. Suppose we have a (τ, qS , qH , ϵ)-forger F against the LVMS scheme.
Consider an input generator IG that generates random tuples (A,B1, B2) =

(gα1 , g
β
1 , g

β
2 ), where α, β ∈ Zq are chosen uniformly at random. Finally, con-

sider an algorithm A that, given the input (A,B1, B2) and randomness f =
(ρ, h1, . . . , hqS ), proceeds as follows.

Algorithm A selects an index k ∈ {1, . . . , qH} randomly and executes the
forger F using the input vk∗ ← B2 with random tape ρ. It addresses the i-th
H0 query from F by randomly sampling ri ∈ Zq and returning gri1 if i ̸= k.
The k-th H0 query is answered by returning A. Without loss of generality, it is
assumed that F does not repeat any H0 queries. A responds to F ’s H1 queries
by discriminating them as follows:

1. If this is a query on (vk, V K) with vk ∈ V K and vk∗ ∈ V K, and this is the
first such query with V K,
(a) A selects a random value for H1(vkj , V K) for each vkj ̸= vk∗

(b) A sets H1(vk
∗, V K) to hi, where the query is the i-th query of this type

(c) A returns H1(vk, V K).
2. If this is a query on (vk, V K) with vk ∈ V K and vk∗ ∈ V K, and a query

with V K has already been made before, A returns the previously assigned
value.

3. For any other kind of queries, A simply returns a random value in Zq.

When F makes a signing query on a message m with signers V K, A looks
up H0(m). If this is A, then A aborts with output (0,⊥). Otherwise, it must be
of form gr1 and A can simulate the honest signer by computing σ ← Br

1 .
When F fails to output a successful forgery, then A outputs (0,⊥). If F

successfully outputs a forgery for a message m so that H0(m) ̸= A, then A again
outputs (0,⊥). Otherwise, F has output a forgery (aux, {vki}ki=1,m, σ̂, V K) such
that

e(σ̂, g2) = aux · e
(
A,

k∏
i=1

vkai
i

)
where vk∗ ∈ {vki}ki=1 ⊂ V K and ai = H1(vki, V K).

Let jf be the index such that H1(vk
∗, V K) = hjf . Then, A outputs (J =

{jf}, {(σ̂, V K, aux, hjf )}).
The running time of algorithm A is the running time of algorithm F plus the

additional computations made by A. Let qH denote the total number of hash
queries made by F , including queries to both H0 and H1. A requires a single
exponentiation in G1 to respond to H0 queries; hence, it requires a maximum
of qH · τexp1

to answer the hash queries. For signing queries with a V K of size
at most l, A computes one exponentiation in G1, which costs τexp1

. Therefore,
the total signing queries cost is qS · τexp1 . As a result, the total runtime of A is
τ + qH · τexp1

+ qS · τexp1 . A’s overall success probability is ϵA = ϵ/qH , which is
the probability that F succeeds and that A correctly guessed the hash index of
F ’s forgery, which occurs with probability at least 1/qH .

We prove the theorem by constructing an algorithm B that solves the co-
CDH problem in (G1,G2) given an input of a co-CDH instance (A,B1, B2) ∈
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G1 × G1 × G2 and a forger F . Specifically, B uses the previously mentioned
algorithm A to execute the generalized forking algorithm GFA from Lemma
1 on input (A,B1, B2). Observe that the co-CDH-instance is distributed iden-
tically to the output of IG. If GFA outputs (0,⊥), then B aborts. If GFA outputs
({jf}, {out}, {out′}), then B proceeds as follows. B parses out as (σ̂, V K, aux, hjf )
and out′ as (σ̂′, V K ′, aux′, h′

jf
). Note that out and out′ were obtained from two

executions of A with randomness f and f ′ such that f |jf = f ′|jf for some
integer jf ≤ qS . This means that these executions are identical up to the jf -
th H1-query of the type (1) that has not been queried before, but they dif-
fer at jf . To be more specific, this indicates that V K = V K ′ since V K is
an argument to this query. Moreover, aux = aux′ because all of the values
used to compute aux are calculated before the forking point. As a consequence,
we get e(σ̂, g2) = aux · e(A,

∏k
i=1 vk

ai
i ) and e(σ̂′, g2) = aux · e(A,

∏k
i=1 vk

a′
i

i ).
Without loss of generality, we assume that vk∗ = vk1. Then, the previous
two equations can be written as e(σ̂, g2) = aux · e(A, (vk∗)

hjf
∏k

i=2 vk
ai
i ) and

e(σ̂′, g2) = aux · e(A, (vk∗)
h′
jf

∏k
i=2 vk

ai
i ), respectively. By getting the ratio of

these equations, we obtain e(σ̂/σ̂′, g2) = e(A,B2
hjf

−h′
jf ). From this, we get

σ̂/σ̂′ = A
β·(hjf

−h′
jf

). As a result, B can compute a solution to the co-CDH
instance as (σ̂/σ̂′)

1/(hjf
−h′

jf
)
= gαβ1 .

Using Lemma 1, we know that if q > 8qH/ϵ, then B runs in time at most
(τ + qH · τexp1

+ qS · τexp1) · 8q2H/ϵ · ln(8qH/ϵ) and succeeds with probability
ϵ′ ≥ ϵ/(8qH). □

5 Conclusion

In this work, we first propose a multi-message locally verifiable aggregate sig-
nature scheme, which builds upon and generalizes the scheme proposed in [18].
With the locality property, the local opening function generates an auxiliary
value corresponding to a subset of messages. This allows a verifier to determine
if the final aggregated signature includes the signatures of these messages using
a single auxiliary value. This eliminates the need for the verifier to access to
all messages during the verification phase, thereby significantly enhancing the
efficiency of the verification process by introducing only the auxiliary value. Ad-
ditionally, we present a locally verifiable multi-signature scheme, which is based
on the work in [10]. In this context, the local opening function produces an aux-
iliary value for specific signers. This allows a verifier to efficiently verify which
signer’s/signers’ signatures are included in the multi-signature. Note that as the
number of signatures to be verified increases, the verification phase operates
more efficiently in both schemes.

Future research could extend the concept of local verification to various other
signature schemes, potentially discovering new methods to further improve the
efficiency of the verification process.
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