
A New Fine Tuning Method for FHEW/TFHE Bootstrapping with

IND-CPAD Security

Deokhwa Hong1, Young-Sik Kim2, Yongwoo Lee1, and Eunyoung Seo2

1Inha University, Incheon, Republic of Korea
12191837@inha.edu, yongwoo@inha.ac.kr

2Daegu Gyeongbuk Institute of Science and Technology, Daegue, Republic of Korea
eunyoung00@gmail.com, ysk@dgist.ac.kr

Abstract

Fully homomorphic encryption (FHE) schemes enable computations on encrypted data, mak-
ing them a crucial component of privacy-enhancing technologies. Ducas and Micciancio intro-
duced FHEW (Eurocrypt ’15), and Chillotti et al. improved it in TFHE (Asiacrypt ’16), both
of which provide homomorphic binary (or larger) gate evaluations with fast latency due to their
small parameters. However, their evaluation failure probability is highly sensitive to param-
eter selection, resulting in a limited set of viable parameters and a trade-off between failure
probability and runtime.

Recently, Cheon et al. proposed a key recovery attack against FHEW/TFHE schemes based
on a new security model for FHE, called IND-CPAD security, which was first introduced by
Li and Micciancio (Eurocrypt ’21). To prevent this attack, it is necessary to make the failure
probability negligible (e.g., 2−128). However, due to limited choice parameters, it is forced to use
a parameter set with unnecessarily low failure probabilities than needed, causing inefficiencies
in runtime.

We propose a new bootstrapping method for FHEW/TFHE, providing a precise balance
between runtime and failure probability, and easy to implement. The proposed methods en-
able the selection of parameter sets that achieve negligible failure probabilities for each desired
security level while optimizing runtime.
Keywords. Homomorphic encryption, key recovery attack, bootstrapping

1 Introduction

A Fully Homomorphic Encryption (FHE) scheme enables various computations to be performed on
encrypted data, preserving privacy during data processing. The Brakerski-Gentry-Vaikuntanathan
(BGV) and Brakerski-Fan-Vercauteren (BFV) schemes support operations on integers [BGV14,
Bra12, FV12], while the FHEW and TFHE schemes [DM15, CGGI17, CGGI20] enable operations
on logic circuits. These FHE schemes are categorized as Exact FHE. Additionally, the Cheon-
Kim-Kim-Song (CKKS) scheme, introduced in [CKKS17], allows operations on complex numbers
approximately, and thus is categorized as Approximate FHE.

The practical application of FHE in privacy-preserving models typically involves a client en-
crypting data and sending it to a server, which performs the requested computations and returns

1

the (encrypted) result of evaluation. Since homomorphic evaluations require substantial resources,
they are usually executed on high-performance servers. Designing an efficient model involves se-
lecting optimal parameters that balance security and performance. The chosen FHE scheme must
be secure against chosen plaintext attacks (IND-CPA security), ensuring that servers cannot infer
any information about the client’s data from the ciphertext.

Li and Micciancio broadened the scope of IND-CPA by introducing indistinguishability under
chosen plaintext attacks with a decryption oracle (IND-CPAD) [LM21]. Unlike the traditional
IND-CPA, this variant exposes the computation results of the ciphertext. It is also shown that
there exists an attack on approximate HE (CKKS scheme) in the IND-CPAD model, and the
known workaround is so-called noise flooding, which increases the noise level and makes the noise
statistically indistinguishable [LM21]. Cheon et al. [CCP+24] demonstrated that Exact FHE (i.e.,
BGV/BFV and FHEW/TFHE) also falls short of satisfying IND-CPAD security due to operation
failure. Moreover, they conducted a key-recovery attack on a widely used library, such as TFHE-rs,
highlighting the necessity to revise the current parameter set.

There are two main methods for bootstrapping in FHEW-like schemes. Ducas and Micciancio
introduced the Alperin-Sheriff and Peikert (AP) method [AP14] in their FHEW scheme [DM15],
which maintains consistent performance regardless of the key distribution. Alternatively, the TFHE
scheme [CGGI17], proposed by Chillotti et al., uses the Gama-Izabachene-Nguyen-Xie (GINX)
method [GINX16], which offers superior performance but is limited to binary key distributions. Al-
though the GINX/TFHE bootstrapping can be generalized to arbitrary secret keys [MP21, JP22],
its performance degrades when the secret key is sampled from a larger distribution. Recently,
Lee-Micciancio-Kim-Choi-Deryabin-Eom-Yoo (LMKCDEY) proposed efficient bootstrapping tech-
niques using ring automorphism, which is equally efficient as GINX/TFHE even when using an
arbitrary secret [LMK+23]. HE with small key sizes by packing evaluation keys in a smaller num-
ber of ciphertexts and reconstructing them server-side is proposed in [KLD+23].

1.1 Failure Probability of FHEW/TFHE and IND-CPAD Security

The FHEW/TFHE schemes are based on the Learning with Errors (LWE) problem and its ring
variant, Ring-LWE (RLWE)[LPR13]. Since ciphertexts inherently contain noise, which accumulates
with each homomorphic operation, decryption may fail if the noise exceeds a certain threshold. To
date, FHEW/TFHE schemes have been designed to maintain a low failure probability (preferably
less than 2−50 [DM15, CGGI17, MP21, LMK+23, BBB+23]) while ensuring acceptable performance.

Cheon et al. proposed a key-recovery (KRD) attack against FHEW/TFHE schemes in the
existence of a decryption oracle for the result of a homomorphic operation model [CCP+24]. When
an adversary has access to the decrypted value of a resulting ciphertext from a queried computation,
it can detect homomorphic operation failures. There is a noticeable difference in the distribution of
LWE ciphertext elements when the corresponding secret key is 0 or 1 upon failure. The adversary
can exploit this information to recover the secret key, and a polynomial-time attack becomes feasible
with a sufficient (but constant) number of failure events.

Let Pr be the probability of obtaining a constant number of failure ciphertexts and C be the
computational cost of the attack. To meet the λ-bit security level, work factor WF must satisfy

WF = C · Pr ≤ 2−λ

The event of failure is independent, thus Pr is approximated to a constant time to the probability

2

of a single failure of the homomorphic operation. Also, as C is constant, to securely employ Exact
FHE, the probability of single operation failure must be negligible as 2−λ.

Reducing this probability involves adjusting parameters such as ring dimension, learning with
error (LWE) ciphertext dimension, and ciphertext modulus. However, because the ring dimension
must be a power of two for efficient number theoretic transformation (NTT) and modular arithmetic
in the exponent, there is a significant gap between feasible values. While the LWE dimension does
not need to be a power of two, it directly affects the security level and cannot be drastically
altered. Another and most flexible option is changing the digit of decomposition d, typically a
small integer like 3 or 4 [MP21, LMK+23]. Unfortunately, even minor changes in d can significantly
impact failure probability and computational complexity, limiting viable parameters and making it
challenging to achieve satisfactory configurations.

1.2 Our Contribution

To reduce the probability of operation failure to less than 2−128, modifying parameters unavoidably
leads to inefficiencies such as increased computational complexity and key size. Furthermore, as
previously mentioned, the range of values that can be modified for parameters is very limited. For
instance, parameters like ring dimension may have a significant gap between permissible values,
leading to an operation failure probability higher than necessary. Similarly, parameters such as
digits of decomposition d can drastically reduce the probability of operation failure and increase
the computational complexity with only slight adjustments. Thus, we have to use parameters
with an unnecessarily low failure probability and high computational complexity for homomorphic
operations.

To minimize the inefficiencies caused by limited parameters, we introduce a new blind rotation
technique that omits basic operations with a small effect on noise while bootstrapping FHEW-
like HE. Blind rotation is essentially the homomorphic execution of the decryption operation,
f · Xb−⟨a⃗,s⃗⟩, on the given ciphertext (b, a⃗) ∈ Zn+1

q . During the proposed bootstrapping, the op-
eration corresponding to ⟨⃗a, s⃗⟩ is carried out for the secret key s⃗, with the threshold value t set
to omit operations for ⟨ai, si⟩ where |ai| ≤ t, thereby effectively reducing the number of heavy
ciphertext multiplications per blind rotation. Naturally, the newly proposed parameter t increases
the probability of operation failure. However, it also reduces the computational complexity by
omitting partial operations of blind rotation that account for a significant portion of the boot-
strapping runtime. Furthermore, t can be freely set within the range [0, q − 1], and its impact on
the probability of operation failure is much lower compared to decomposition digits. Therefore, it
assists in achieving a parameter setting that satisfies a probability of operation failure of 2−128 (or
lower depending on target security) while minimizing computational complexity.

Figure 1 shows the failure probability and runtime (the number of NTTs) as a function of t
when our technique is applied. Here, NTT refers to the operations that occur during blind rotation.

An additional important contribution of this work is the new parameter sets of FHEW-like HE
with negligible failure probability. We propose optimized parameter sets for 128, 192, and 256-bit
security for all existing bootstrapping methods (AP and GINX) considering advanced techniques
such as approximate gadget decomposition. This is crucial as the bootstrapping with non-negligible
failure leads to a key recovery attack [CCP+24]. Further, we improve the runtime based on the
new parameter sets and our proposed technique.

We implement the proposed method in the OpenFHE [Ope22], and the result shows that the
runtime can be reduced by applying the proposed method. Although this article targets parameter

3

23,950 24,000 24,050

−260

−240

−220

(a) The number of operations (NTTs)

F
P
G
IN

X

14,400 14,450 14,500

−200

−150

−100

(b) The number of operations(NTTs)

6,720 6,740 6,760 6,780

−140

−120

−100

(c) The number of operations(NTTs)

F
P
G
IN

X

Figure 1: The changes in failure probability FPGINX and the number of NTTs as a function of t.
The red point is when our technique is not applied; it has an unnecessarily low failure probability
and a high number of NTTs. (a), (b), and (c) represent λ = 256, λ = 192, and λ = 128, respectively.

sets for binary gates, we would like to note that the proposed technique can also be applied to
larger message spaces.

1.3 Organization

The rest of the paper is organized as follows. The basic lattice-based HE and the prior FHEW/TFHE
bootstrapping techniques are presented in Section 6. The IND-CPAD and key recovery attack pro-
posed by Cheon et al. are discussed in Section 3. In Section 4, we propose a new optimization
technique for FHEW/TFHE bootstrapping, which is especially efficient for IND-CPAD-secure pa-
rameters. Improvements to the proposed method are detailed in Section 5. Implementation results
and secure parameters are provided in Section 6. Finally, we conclude the paper with remarks in
Section 7.

2 Preliminaries

We denote the inner product between two vectors as ⟨·, ·⟩. N is a power of two, and we denote
that 2N -th polynomial ring as R[X]/(XN +1) and RQ = R/QR. We denote ring elements of RQ

in bold, such as a(X), and X is omitted when it is obvious. The i-th coefficient of ring element a
is denoted as ai. A vector is also denoted by boldface v and its i-th element is denoted as vi. We
denote the L2 norm of ring elements or vectors as || · ||, and the infinity norm as || · ||inf . We use
x← χ to indicate that x is sampled from distribution χ. When x is uniformly sampled from a set
S, we denote this as x← S.

4

2.1 Lattice-based Encryption

Note that integers q and n are positive. We can define LWE encryption of message m ∈ Zq under
secret key s⃗ as follows:

LWEs⃗(m) = (⃗a, b) = (⃗a, ⟨⃗a, s⃗⟩+m+ e) ∈ Zn+1
q

where secret key s⃗ ← χsk, error e ← χerr and public key a⃗ ← Zn
q . Note that χerr is usually a

discrete Gaussian distribution with zero mean and standard deviation σ. The decryption of LWE
ciphertext LWEs⃗(m) = (⃗a, b) is then defined as inner product with (−s⃗, 1). In other words,

⟨(⃗a, b), (−s⃗, 1)⟩ = ⟨⃗a, s⃗⟩+m+ e− ⟨⃗a, s⃗⟩ = m+ e ≈ m.

Q and N , which are powers of two, are positive integers. We can define RLWE encryption as
follows:

RLWEQ,z(m) = (a,a · z +m+ e) ∈ R2
Q

where a ← RQ, and e ← χerr. This represents the message m encrypted with RLWE under the
secret key z ← χsk. As in LWE, the decryption of RLWE is defined as follows:

⟨(a, b), (−z, 1)⟩ = a · z +m+ e− a · z = m+ e ≈m.

2.1.1 Basic Operations for RLWE Ciphertext

The basic building block of FHEW bootstrapping is RLWE′ and Ring-GSW (RGSW) and their
multiplication with ring element and RLWE ciphertext [GSW13, DM15]. We follow the definitions
of RLWE′

z(m) and RGSWz(m) from [MP21]:

RLWE′
z(m) :=

(
RLWEz(g0 ·m),RLWEz(g1 ·m), · · · ,RLWEz(gdg−1 ·m)

)
∈ R2dg

Q

RGSWz(m) :=
(
RLWE′(−z ·m),RLWE′(m)

)
∈ R2dg×2

Q

where g = (g0, g1, · · · , gdg−1) is a gadget vector, which is used in gadget decomposition. We say

(h0,h1, · · · ,hdg−1) is gadget decomposition of h ∈ RQ if h ≃
∑dg−1

i=0 gi ·hi where ||h||inf < Bg, Bg

is base of gadget decomposition and Bg
dg ≈ Q.

RLWE′ provides the following multiplication operation:

⊙ : RQ × RLWE′ −→ RLWE

h⊙ RLWE′ = ⟨(h0,h1, · · · ,hdg−1),
(
RLWEz(g0 ·m), · · · ,RLWEz(gdg−1 ·m)

)
⟩

=

dg−1∑
i=0

hi · RLWEz(gi ·m) = RLWEz (h ·m)

The multiplication operation between RLWE and RGSW is defined as follows:

⊗ : RLWE× RGSW −→ RLWE

5

RLWEz(m0)⊗ RGSWz(m1) = (a, b)⊗ (RLWE′
z(−z ·m1),RLWE′

z(m1))

= a⊙ RLWE′
z(−z ·m1) + b⊙ RLWE′

z(m1)

= RLWEz(m0 ·m1 + e1 ·m1)

This operation makes the RLWE encryption with the message m0 ·m1+e1 ·m1. It is worth noting
that the noise term m1 · e1 is small because m1 is usually selected as monomial, and thus, the
consecutive RGSW multiplication only accumulates additive noise.

The gadget decomposition technique with RLWE′ and RGSW multiplication reduces multipli-
cation in homomorphic operations. The variance of additive noise due to ⊙RLWE′ and ⊗RGSW

are dgN
B2

g

N and 2dgN
B2

g

N , respectively [MP21].

2.1.2 Ring Automorphism

We can find a ciphertext of ring autormorphism ψk : RQ 7→ RQ, ψk(m(X)) = m(Xk) using
RLWE′. Given RLWE ciphertext RLWEz(m) = (a, b), we can find RLWEz(Xk)(m(Xk)), by

(a(Xk), b(Xk)). However, its secret key is now z(Xk), not z(X). We can switch the key back to
z(X) when RLWE′

z(X)(−z(Xk)) is given using following equation:

(0, b(Xk)) + a(Xk)⊙ RLWE′
z(X)(−z(X

k)) = (0, b(Xk)) + RLWE′
z(X)(−a(X

k) · z(Xk))

= RLWEz(b− a(Xk) · z(Xk))

= RLWEz(m(Xk)).

RLWE′
z(X)(−z(Xk)) is often given as a public evaluation key for automorphism, and we call it akk.

2.1.3 LWE Key Switching

LWE key switching is the operation that converts LWE encryption under the secret key z⃗ ∈ ZN
q

into another secret key s⃗ ∈ Zn
q . This operation introduces some noise. To perform the key switching

operation, one must define a key called the key switching key:

ksk =
{
kski,j,v = LWEs⃗

(
−v · zi ·Bj

ks

)
|i = 0, . . . , Bks − 1, j = 0, . . . , N − 1, v = 0, . . . , dks − 1

}
,

where kski,j,v = LWEs⃗

(
−v · zi ·Bj

ks

)
and Bks and dks is the base and digits of gadget decomposition

for key switching.
We define the key-switching operation as follows:

KeySwitch ((⃗a, b), ksk) = (⃗0, b)−
∑
i,j

kski,j,ai,j , (1)

where the gadget decomposition of ai, h(ai) is given as (ai,0, ai,1, . . . , ai,dks−1). As kski,j,ai,j =

LWEs(−ai,j ·Bj
ks · zi), ≈ LWEs (−⟨⃗a, z⃗⟩) . (b, 0) is a transparent ciphertext of b, and 1 is equal to

LWEs (b) + LWEs (−⟨⃗a, z⃗⟩) = LWEs (b− ⟨⃗a, z⃗⟩)
= LWEs (m)

6

Total noise after key switching eres is given as follows:

eres = e0 +
∑

ei,j,ai,j ,

where ei,j,ai,j is noise of ciphertext kski,j,ai,j . Hence, we the variance of eres is

VAR (eres) = β2 = α2 +N · dks · σ2

where α2 is variance of e0, dks is a small integer satisfying Bdks
ks ≥ q, and σ

2 is variance of χerr.

2.1.4 Extraction of LWE Ciphertext from RLWE Ciphertext

We can extract an LWE ciphertext that contains only the constant term of message polynomial
from an RLWE ciphertext [DM15]. This operation, called LWE extraction, is used in FHEW-like
bootstrapping, to convert the resulting RLWE ciphertext of blind rotation to LWE ciphertext. The
LWE extraction operation is defined as follows:

LWEExtract : R2
Q 7→ ZN+1

Q

LWEExtract ((a, b)) =
(
a′, b0

)
∈ ZN+1

Q ,

where a′ = (a0,−a1,−a2, · · · ,−aN−1). By definition, (a′, b) is the ciphertext containing the con-
stant term of the RLWE ciphertext (a, b).

2.2 Bootstrapping in FHEW/TFHE

Initially, we execute the operation determined by the gate on two ciphertexts encrypted under LWE.
Subsequently, we engage in a process known as blind rotation. Blind rotation involves multiplying
ring elements f and the monomial Xu, where u = b − ⟨⃗a, s⃗⟩ is determined by an LWE ciphertext
(⃗a, b) ∈ Zn+1

q . Blind rotation operates on the accumulator initialized as ACC = RLWE
(
f ·Xb

)
,

as it iteratively performs RLWE ⊗ RGSW operations. Afterward, we perform the LWE ex-

traction, which involves extracting the constant term
(
a⃗′, b0

)
∈ ZN+1

Q in the RLWE polyno-

mial. Then, the extracted polynomial is a encryption of −u-th coefficient of f , i.e., LWEz(f−u).

The first mod switching performs ZN+1
Q

mod switching−−−−−−−−−→ ZN+1
Qks

, followed by key-switching executing

ZN+1
Qks

key switching−−−−−−−−→ Zn+1
Qks

, and finally, the last mod switching carries out Zn+1
Qks

mod switching−−−−−−−−−→ Zn+1
q .

The full procedure is given in Figure 2. In fact, the input LWE ciphertext of blind rotation is a
sum of two input ciphertexts. It is noted that the noise analysis in this paper assumes that the sum-
mation is done right after LWE extraction, rather than right before blind rotation as in [LMK+23].
By doing so, we can reduce the noise and failure probability with negligible computational overhead.

The full procedure is given in Figure 2. Notably, the input LWE ciphertext for blind rotation
is the sum of two ciphertexts. It is important to mention that the noise analysis in this paper
assumes that the summation is performed immediately after LWE extraction, rather than just
before blind rotation as in [LMK+23]. This approach helps to reduce noise and failure probability
with negligible computational overhead.

7

(⃗a, b) = LWEz⃗(
Q
4 ·m0) + LWEz⃗(

Q
4 ·m1) LWEz(Qks/4 ·mres)

LWEs⃗ (Qks/4 ·mres) LWEs⃗(q/4 · mres)

RLWEz

(
f ·Xb−⟨a⃗,s⃗⟩) LWEz (Q/4 ·mres)

Mod switching

Key switc
hing

Mod switching

Blind
rotat

ion

LWE extraction

Figure 2: FHEW-like bootstrapping procedure

2.3 Noise Analysis

Our noise analysis refers to [DM15], [MP21], and [CGGI20]. The noise generated by bootstrapping
can be broadly categorized into three types: noise due to blind rotation, noise due to key switching,
and finally, noise due to modulus switching.

2.3.1 Modulus Switching Noise

Modulus switching is the operation that changes the original modulus Q1 of the existing LWE
ciphertext to a new modulus Q2 through a randomized rounding function. Randomized rounding
function [·]Q2

Q1
: ZQ1 −→ ZQ2 can be defined as:

[t]Q2

Q1
=

⌊
Q2 · t
Q1

⌋
+ B

where B ∈ {0, 1} is a Bernoulli random variable. The modulus switch defined on the LWE ciphertext
can be defined as follows:

[(⃗a, b)]Q2

Q1
=
(
([a0]

Q2

Q1
, [a1]

Q2

Q1
, · · · , [an−1]

Q2

Q1
), [b]Q2

Q1

)
consider that [ai]

Q2

Q1
= Q2

Q1
· ai + ri = a′′i and [b]Q2

Q1
= Q2

Q1
· b+ rn = b′′i , where ri are rounding errors.

When the distribution of noise originally present in the ciphertext is denoted by σ, we can derive
the distribution of noise resulting from modulus switching as follows:

err
(
(a⃗′′i , b

′′)
)
= b′′ −

〈
a⃗′′i , s⃗

〉
− Q1

t
·m =

Q2

Q1
· err ((a⃗i, b)) +

n−1∑
i=0

ri + rn

In implementations, as the secret key distribution χsk follows a uniform ternary distribution, we
can express the standard deviation of the noise resulting from modulus switching as follows:

β =

√
Q2

2

Q2
1

σ2 +
||s⃗||2 + 1

3

8

2.3.2 Blind Rotation Noise

Blind rotation enables performing operations on encrypted data, represented as f · Xb−⟨a⃗,s⃗⟩. To
perform the blind rotation, the ⊗ operation is needed, as described in Section 2.1. The brk, known
as blind rotation key, is an RGSW encryption. It is involved in the process of performing decryption
while separating the coefficients and exponents of polynomials, thus generating ciphertexts with in-
dependent noise. There exist three competing blind rotation methods: AP/FHEW, GINX/TFHE,
and LMKCDEY. These methods exhibit different performances depending on the key distribution,
and for more detailed information we refer to [MP21, LMK+23]. The blind rotation key for each
type of blind rotation can be defined as follows:

AP/FHEW:
{
brki,v,j = RGSW

(
Xv·Bj

r ·si
)
|v ∈ ZBr , 0 ≤ j < logBr

q
}

GINX/TFHE:

{
brki,u = RGSW(xi,u) |xi ∈ {0, 1}U s.t.

∑
u∈U

u · xi,u = si ∈ Zq

}
LMKCDEY: {brki = RGSW(Xsi) |i ∈ [0, n)} , {ak−1, ak5k |1 ≤ k < w}

where w ∼ log(n) and U ⊂ Zq. For example, we can use U = {1,−1} for the ternary secret key and
U = {1} for the binary secret key. Using the blind rotation key defined above, the blind rotation
is done by accumulating Xaisi to ACC using the following operations:

AP/FHEW:ACC←− ACC⊗ brki,v,j for all 0 ≤ j < logBr
q

GINX/TFHE:ACC←− ACC+ (Xu·ai − 1)(ACC⊗ brki,u)

where ACC is initialized as RLWE(f ·Xb). We note that in the case of AP/FHEW, the ⊗ operation
needs to be repeated ndr · Ndg times, while in the case of GINX/TFHE, it needs to be repeated
2|U |n ·Ndg times, where |U | is the cardinality of U . The blind rotation key is an encryption of the
RGSW scheme, so it is decomposed by base Bg.

LMKCDEY bootstrapping, unlike the previous FHEW/AP and GINX/TFHE, uses ring auto-
morphism ψt and an automorphism key akt, where t is an odd number. In summary, LMKCDEY
bootstrapping supports arbitrary secret key distribution without additional runtime and generates
less noise compared to AP and GINX. It uses two basic building blocks: constant multiplication to
exponent using automorphism and adding si to exponent by multiplying RGSW(Xsi). For readers
who wish to know more details, please refer to [LMK+23].

As a result, we can calculate the standard deviation of noise caused by blind rotation as follows:

AP/FHEW:β =

√
2ndr · dgN

B2
g

12
σ2

GINX/TFHE:β =

√
2|U | · 2n · dgN

B2
g

12
σ2

LMKCDEY:β =

√
dgN

Bg
2

12

(
2n · σ2 +

(
k +

N − k
w

)
· σ2
)

where 2 represents the factor due to the RGSW scheme being composed of tuples, and
Bg

12 appears
as a factor because the RGSW scheme represents the message in a gadget decomposed form, which

is equivalent to uniform sampling from the interval
[
−Bg

2 ,
Bg

2

]
.

9

3 IND-CPAD and KRD Attack Exploiting Bootstrapping Failure

3.1 IND-CPAD and KRD Attack

Cheon et al. proposed key-recovery attacks under existence of decryption oracle (KRD attacks)
exploiting computational failures caused by to noise in Exact FHE [CCP+24]. It is revealed that
the parameters used in many libraries for Exact FHE do not satisfy IND-CPAD, and it underscored
the need to reduce the noise generated during homomorphic operation. In this section, we briefly
explore how KRD attacks are conducted and why they fail to satisfy IND-CPAD. For a detailed
understanding of the methods involved, please refer to [CCP+24].

In IND-CPAD, the attacker possesses an oracle not only for encryption and decryption but also
for evaluation. Each oracle can be defined as in the following algorithms, where G is any binary
circuit such as NAND, DB is a database to store oracles, and I represents input wires as indexes.

Algorithm 1: OENC (m0,m1; pk) [CCP+24]

1 ct←− ENCpk(mb)
2 DBi ←− {m0,m1, ct}
3 i← i+ 1
4 return ct

Algorithm 2: ODEC (i; sk) [CCP+24]

1 if DBi.m0 == DBi.m1 then
2 return m←− DECsk(DBi.ct)
3 end

Algorithm 3: OEVAL (G, I) [CCP+24]

1 ct←− EVAL(G,DBi∈I .ct)
2 result0 ←− EVAL(G,DBi∈I .m0)
3 result1 ←− EVAL(G,DBi∈I .m1)
4 DBi ←− {result0, result1, ct}
5 i← i+ 1
6 return ct

Through these oracles, IND-CPAD attacks on FHEW/TFHE are feasible. Figure 3 represents
generic IND-CPAD attacks on binary FHE. First, an adversary queries to the challenger with
OENC({0, 1}) and OENC({1, 1}). Then the challenger chooses challenge bit b and encrypts messages
{0, 1}b and {1, 1}b. Denote that if b = 0, then {A,B}b = A, and if b = 1, then {A,B}b = B. Now,
the adversary takes two ciphertexts, ct0, and ct1, where ct1 always represents the encryption of
1. Afterward, the adversary requests an evaluation oracle to the challenger. Through this, they
perform an OR operation on the previously obtained ciphertexts. Since ct1 always represents the
encryption of 1 (assuming correct execution), the result of the evaluation oracle always yields 1.
Following this, the adversary requests a decryption oracle from the challenger to verify the result
of ctres. In this case, if the operations were performed correctly, the result of ctres will always be 1
regardless of the value of b. However, in cases of operation failure due to noise inherent in Exact
FHE, the result will be 0, making it evident that the failure originated from ct1.

10

Adversary Challenger

b← {0, 1}

ct0 ← ENCsk({0, 1}b)

ct1 ← ENCsk({1, 1}b)

ctres ← EVAL(OR, {ct0, ct1})

mb ← DECsk(ctres)

if(mb == 1) : (b′ = 0)?(b′ = 1)

OENC({0, 1})

ct0

OENC({1, 1})

ct1

OEVAL(OR(ct0, ct1))

ctres

ODEC(ctres)

mb

Figure 3: IND-CPAD attacks on binary FHEW/TFHE

In such a scenario, the adversary can define the probability that b′ = b as follows:

Pr[b = b′] = (1− p) · Pr[b = b′|F̄] + p · Pr[b = b′|F] = 1

2
+
p

2

where F is the event of decryption failure and p is the probability of the event F . Therefore, if p is
significantly large, the adversary can obtain sufficient oracles to attack Exact FHE. According to
[CCP+24], through various methods, the adversary can increase the attack probability by 1

2 +
Np∗

2 ,
where p∗ > p.

By leveraging the failure probability, one can extend the KRD attack to Exact FHE. To increase
the failure probability, operations are performed using the ciphertext after the final mod switch,
as depicted in Figure 2. We described KRD attack to FHEW/TFHE in Algorithm 4, where K
represents the number of operations that need to be performed to collect failed results for performing
KRD attacks and cnt is the number of failed results. If enough failed results with noise are collected
and examined, KRD attacks become feasible as the distribution of noise varies depending on the
secret key value.

3.2 Failure Probability and Performance in FHEW

For the Exact FHE scheme to satisfy IND-CPAD, the attack success probability must satisfy 1
2+

p
2 ≈

1
2 , where p denotes the failure probability of operation. Therefore, the failure probability of the
operation, p, should be negligible. This needs to be adjusted according to the security level. For

11

Algorithm 4: KRD Attacks [CCP+24]

1 cnt = 0
2 for i = 0; i < K; i = i+ 1 do
3 ct0 ←− ENCpk(0)
4 ct1 ←− EVAL(OR, ct0, ct0)
5 ct2 ←− EVAL(OR, ct1, ct1)
6 m←− DECsk(ct2)
7 if m == 1 then
8 ecnt ←− evaluate noise from ct1
9 cnt = cnt + 1

10 end

11 end

12 e = 1
cnt ·

∑cnt−1
j=0 ej

13 if
(
ei >

α
2

)
?(si = 1) : (si = 0) for all i < n

14 return s

STD128, the failure probability must satisfy p ≤ 2−128, while for STD192 and STD256, it must
satisfy p ≤ 2−192 and p ≤ 2−256, respectively. For special circumstances where the number of queries
is very limited, we provide parameter sets for 192 and 256-bit security but failure probability 2−128

in Section 6.
To reduce the probability of operation failure, one can consider changing parameters such as

n, q,N , and Q. However, since N must be powers of two, there is often a significant gap between the
values that can be utilized. While n, q, and Q do not necessarily need to be a power of two, it is a
parameter directly affecting the security level. Therefore, they cannot be drastically reduced. Here,
the options we can consider include changing digits of decomposition, dg, dr, and dks. However, for
dg, dr, and dks, even small changes in values can significantly impact the probability of operation
failure. Hence, achieving satisfactory parameter settings may be challenging.

Additionally, to reduce the failure probability, adjusting the parameters will necessitate accept-
ing an increase in runtime due to the increased computational complexity. Due to limited parameter
choices, there may be instances where the use of less efficient parameters becomes unavoidable. Fig-
ure 4 illustrates the variation in failure probability with respect to dg at different security levels.
As dg varies, it is evident that the failure probability also undergoes rapid changes within certain
ranges. This represents an unnecessary reduction in failure probability, and one must also accept
the increase in computational complexity due to the increment in dg.

In this paper, we propose a blind rotation method that provides a find-grained trade-off between
operation failure probability and runtime. Figure 1 illustrates the spectrum of failure probabilities
achievable with our proposed blind rotation technique, which will be discussed in the following
section. Furthermore, as the failure probability increases, one can also expect an improvement in
runtime due to the reduction in computational complexity.

12

2 2.5 3 3.5 4 4.5 5

−60

−40

−20

0

Digits of decomposition dg

F
P
G
IN

X

λ = 128
λ = 192
λ = 256

Figure 4: The failure probability varying according to the changes in dg based on the security level
presented in [MP21]. FPGINX represents the failure probability when using the GINX method.

4 New Blind Rotation Technique

As discussed in the previous section, a high probability of failure can provide the adversary with
more information than necessary, thereby increasing their advantage. To mitigate this risk, it is
crucial to reduce the failure probability during bootstrapping to a negligible level. However, the
current parameters result in a sufficiently high failure probability that enables successful attacks,
necessitating updates to the default parameter sets for FHEW/TFHE. Modifications to parameters
such as N,Q, dg, and dks are imperative. However, the bootstrapping failure probability is highly
sensitive to these parameters, making fine adjustments challenging.

To address this issue and achieve a finer control over the failure probability while optimizing
computational complexity, we propose a modification of the blind rotation technique, which we call
cutoff blind rotation.

In the proposed algorithm, a new parameter, the threshold t, is introduced to influence the
bootstrapping process. This threshold allows us to skip certain RLWE⊗RGSW operations during
blind rotation when |ai| ≤ t. Consequently, although the failure probability may increase, this
approach provides a useful mechanism for fine-tuning the failure probability by reducing computa-
tional complexity, thereby minimizing the performance loss for IND-CPAD security.

4.1 The Cutoff Blind Rotation Algorithm

The proposed cutoff blind rotation algorithm is straightforward. The detailed operation of cutoff
blind rotation can be found in Algorithm 5. Although we have only presented the algorithm for the
AP method, it can also be applied to the GINX [CGGI17] and LMKCDEY [LMK+23]. As described
in Section 2, the bootstrapping procedure enables homomorphic decryption. Specifically, during
bootstrapping, we compute f ·X⟨a,s⟩ homomorphically. The main idea behind cutoff blind rotation
is to ignore terms where ai is sufficiently small, so that omitting (ai ·si) does not significantly affect
the result of ⟨a, s⟩. This approach results in performing decryption approximately, which increases

13

the noise.
However, by reducing the number of RGSW multiplications, the computational complexity

decreases and the additive noise from RGSW multiplication is also reduced. This means that in
scenarios where parameter choices are limited and lead to a lower failure probability than necessary,
adjusting the threshold value can increase the failure probability while simultaneously improving
computational efficiency. This method enhances the flexibility of parameter settings concerning the
failure probability, providing a broader range of parameter choices.

Algorithm 5: NAND with cutoff blind rotation

Data: ciphertext ct1, ciphertext ct2, blind rotation key ek, threshold value t
Result: ct←− ct1∧̄ct0 with small noise

1 (a, b)←− ct1 + ct2
2 for i ∈ [0, q/2) do
3 k ←− b− i
4 if k ∈ [3q/8, 7q/8) then
5 fi·2N/q = −Q/8
6 else
7 fi·2N/q = Q/8

8 end

9 end
10 Acc←− f
11 for i ∈ [0, n) do
12 if |ai| ≤ t then continue
13 for j ∈ [0, dr) do

14 cj ←− ⌊c/Bj
r⌋ mod Br

15 if cj ̸= 0 then
16 Acc←− Acc⊗ eki,j,cj

17 end

18 end

19 end
20 return LWEExtract(Acc) +Q/8

4.2 Noise Analysis

Our approach to noise analysis follows [DM15], [MP21], and [LMK+23]. Note that using a cutoff
blind rotation affects the number of RLWE ⊗ RGSW operations during blind rotation. The noise
introduced by the cutoff blind rotation consists of two components: the reduced noise from the
fewer RGSW multiplication in blind rotation and the increased noise due to omitting small ai
values.

Theorem 1. Let (a, b) be an LWE encryption with the secret key s, and let a∗ be the vector whose
elements are defined as a∗i = ai if |ai| > t, and a∗i = 0 otherwise. Then, RLWE

(
f ·Xb−⟨a,s⟩) can

14

be found using the AP blind rotation, and the noise introduced by the cutoff blind rotation is

σ2ACC−AP = 2ndr

(
dgN

B2
g

12
σ2

)
· (1− 2t+ 1

q
).

Proof. Since (a, b) is an LWE ciphertext, the coefficients of a are uniformly distributed over the
interval [−q/2, q/2) [Reg09]. Therefore, the average number of zero elements in a∗ is n · 2t+1

q .
Consequently, RGSW multiplications in the AP blind rotation are skipped by the probability of
2t+1
q .
The values encrypted in the RGSW evaluation key here are monomials and the error variance

σ2. Thus, the noise introduced by each RGSWmultiplication is σ2ACC = 2N
B2

g

12 σ
2, and it is additive.

Since the AP blind rotation for (a∗, b) requires ndr

(
1− 2t+1

q

)
RGSW multiplications, the noise

introduced by the AP blind rotation is given by

σ2ACC−AP = 2ndr

(
dgN

B2
g

12
σ2

)
·
(
1− 2t+ 1

q

)
.

Corollary 1. The noise occurring during GINX cutoff blind rotation is given as follows:

σ2ACC−GINX = 2|U | · 2n

(
dgN

B2
g

12
σ2

)
· (1− 2t+ 1

q
).

According to [LMK+23], the maximum noise variance that a ciphertext can have in LMKCDEY
blind rotation is given as follows:

σ2ACC−LMK+ = dgN
Bg

2

12

(
2n · σ2 +

(
k +

N − k
w

)
· σ2
)

where the left term 2n·σ2 corresponds to mutiplication of RGSW(Xsi) and the right term
(
k + N−k

w

)
·

σ2 corresponds to automorphsim.
Our technique affects only the blind rotation procedure. Specifically, it impacts σACC−LMK+

and results in a fixed variance depending on the t.

Corollary 2. The noise occurring during LMKCDEY cutoff blind rotation is given as follows:

σ2ACC−LMK+ = dgN
Bg

2

12

(
2n · σ2 ·

(
1− 2t+ 1

q

)
+

(
k +

N − k
w

)
· σ2
)

Let a∗ be a vector such that a∗i = ai if |ai| ≥ t, and a∗i = 0, otherwise. The noise introduced by
approximating a to a∗ given as follows:

σ2TH =
t2

3
· (n · 2t+ 1

q
) =

2nt3 + t2

3q

We can consider ai − a∗i as a random variable uniformly sampled from the interval [−t, t] given
that |ai| ≤ t. The variance of those ignored elements is t2

3 , and the probability of being ignored is

15

2t+1
q . We note that this noise is not generated during blind rotation or modulus switch operations.

Instead, it is considered as noise that the ciphertext always inherently possesses.
In other operations except for blind rotation, the threshold value does not have any impact;

therefore we have the following variances of noise:

σ2MS1
=
||sN ||2 + 1

3
, σ2MS2

=
||sn||2 + 1

3
, σ2KS = σ2Ndks

σ2MS1
and σ2MS2

represent the noise generated by modulus switches before and after key switching,
respectively, and σ2KS represents the noise that is generated by the key switching method. When
calculating the probability of failure, we consider ||sN ||2 and ||sn||2 under the assumption that if
the secret key is binary or ternary, then ||sn|| ≤

√
n/2 and ||sN || ≤

√
N/2, respectively.

The final noise that emerges is given as follows:

σ2total =
q2

Q2
ks

(
2
Q2

ks

Q2
σ2ACC + σ2MS1

+ σ2KS

)
+ σ2MS2

+ σ2TH

If the noise of LWEs

(q
4 ·m

)
exceeds q

8 , decryption failure occurs. Therefore, the failure probability

of (N)AND, (N)OR, and X(N)OR gate operations can be defined as 1− erf
(

q/8√
2·σtotal

)
.

4.3 Runtime Analysis

According to [MP21, LMK+23], the number of NTTs while bootstrapping can be defined as follows:

AP/FHEW: 2n · dr(1− 1/Br) · (dg + 1)

GINX/TFHE: 2n · |U | · (dg + 1)

LMKCDEY: 2n+
w − 1

w
k +

N

w
+ 2

This computational complexity can be reduced by applying cutoff blind rotation. As the NTT takes
most of the operation in FHEW bootstrapping, we measure the computational complexity by the
number of NTTs or RLWE′ multiplications as in [LMK+23]. We recall that the fundamental aspect
of cutoff blind rotation is the omission of computations. Now we focus on how many operations
can be skipped. If we fix the value of the threshold t, it means that we omit computations for the
portion within the range [-t, t], which is uniformly defined within the interval [-q/2, q/2]. Therefore,
we can easily calculate the number of NTTs for bootstrapping with the applied threshold:

AP/FHEW: 2n · dr(1− 1/Br) · (dg + 1) · (1− 2t+ 1

q
)

GINX/TFHE: 2n · |U | · (dg + 1) · (1− 2t+ 1

q
)

LMKCDEY: 2n ·
(
1− 2t+ 1

q

)
+
w − 1

w
k +

N

w
+ 2

5 Further Improvement and Application to Existing Optimization

5.1 Shifted Mapping

Here, we propose methods to reduce noise when the secret key is binary using threshold blind
rotation. In the proposed method, when (a, b) is approximted to (a∗, b), where a∗i = 0 if |ai| ≤ t,

16

a∗i = ai, other wise. It is noteworthy that we can anticipate a∗ in advance. Let e = a∗ − a, then,
noise added by the cutoff approximation is given as

(b− ⟨a, s⟩)− (b− ⟨a∗, s⟩) = ⟨a∗, s⟩ − ⟨a, s⟩ = ⟨e, s⟩.

We can precompute e∗ prior to blind rotation and estimate the expected mean and variance of
⟨e∗, s⟩. In this case, incorporating the expected mean into the mapping function can reduce the
failure probability. However, it is noted that this method can only be applied when the secret key
distribution is binary. In the case of a binary secret key distribution, the mean of key elements
E[si] is nonzero, whereas, for a ternary secret key distribution, the mean is zero.

The mean of ⟨e, s⟩ is given as µ =
∑

i ei/2 when s is binary. Given µ we find blind rotation to
find RLWE(f∗ ·Xb−⟨a∗,s⟩), instead of RLWE(f ·Xb−⟨a∗,s⟩), where f∗−u = f−(u−µ) and f is mapping
polynomial used in Algorithm 5. The detailed algorithm is represented in Algorithm 6; we note that
for other gates, simply proper mapping polynomial f needs to be selected as described in [MP21].

Algorithm 6: NAND with cutoff blind rotation and shifted mapping

Data: ciphertext ct1, ciphertext ct2, blind rotation key ek, threshold value t
Result: ct←− ct1∧̄ct0 with small noise

1 (⃗a, b)←− ct1 + ct2
2 a⃗∗ ←− cutoff(⃗a)
3 µ←−

∑
i(ai − a∗i)/2

4 for i ∈ [0, q/2) do
5 k ←− b− i
6 if k ∈ [3q/8 + µ, 7q/8 + µ) then
7 mi∗2N/q = −Q/8
8 else
9 mi∗2N/q = Q/8

10 end

11 end
12 Acc←−m
13 for i ∈ [0, n) do
14 if |ai| ≤ t then continue
15 for j ∈ [0, dr) do

16 cj ←− ⌊c/Bj
r⌋ mod Br

17 if cj ̸= 0 then
18 Acc←− Acc⊗ eki,j,cj

19 end

20 end

21 end
22 return LWEExtract(Acc) +Q/8

5.1.1 Noise Analysis with Shifted Mapping

Let e denote the blind rotation without the proposed cutoff technique. In other words, the final
decryption results in m+ e, and the failure occurs when |e| ≥ q/8. Applying the cutoff technique,

17

there is more noise introduced by approximating a to a∗, and we denote this noise ec. Now,
the decryption fails when |e + ec| ≥ q/8, in other words, the decryption succeds when −q/8 <
e + ec < q/8. The important observation here is that the posterior mean of ec is nonzero when e
is determined and the secret is binary. Its mean is µ =

∑
i ei/2 as explained above.

We may assume X = e+ ec follows the Gaussian distribution of mean µ and variance σ2. The
failure probability is then given,

1− Pr[−q/8 < X < q/8] = Pr[X − µ < −q/8− µ] + Pr[X − µ > q/8− µ]

=
1

2
− 1

2
erf

(
q/8 + µ√

2σ

)
+

1

2
− 1

2
erf

(
q/8− µ√

2σ

)
.

However, when we shift the mapping function by µ, the failure probability is

1− Pr[−q/8 < X − µ < q/8] = Pr[X − µ < −q/8] + Pr[X − µ > q/8]

= 1− erf

(
q/8√
2σ

)
.

It is obvious that

erf

(
q/8√
2σ

)
>

1

2
erf

(
q/8 + µ√

2σ

)
+

1

2
erf

(
q/8− µ√

2σ

)
,

and thus the failure probability is reduced.
It is noted that the average of µ is zero when a is not given. However, there is also a higher

probability that µ has a nonzero value, and thus we can reduce the failure probability in most cases.
In fact, µ follows the (shifted) Irwin-Hall distribution, and the probability of µ = 0 is significantly
low when the number of ignored coefficients is large. For example, the probability for nonzero µ is
0.86 for our 256-bit security parameter for GINX.

5.2 Square-sum Cutoff

In this subsection, we enhance the proposed cutoff blind rotation to provide a more precise choice
of failure probability. Instead of independently ignoring elements based on a threshold value, we
use the fact that a⃗ is given in advance, as discussed in Subsection 5.1, and determine the cutoff
by considering all the elements in a⃗. This approach enables a more precise examination of the
expected noise due to approximation, resulting in the ability to skip more values.

The detailed algorithm for determining the skipping array is as follows. Let (a(0), a(1), . . . , a(n−1))
be the sorted vector of a⃗ ∈ [−q/2, q/2− 1)n in increasing order of a2i . In other words, a(k) has the
k-th smallest square value among all ais.

Given a threshold T , we ignore a(0), a(1), . . . , a(k−1) for the largest k satisfying

k−1∑
i=0

a2(i) ≤ T <

k∑
i=0

a2(i).

5.2.1 Noise Analysis

As in the previous section, let a⃗∗ be a vector derived from a⃗ where the ignored terms are replaced
by zero. The difference is defined as e⃗ = a⃗− a⃗∗, where the elements of e⃗ include a(0), a(1), . . . , a(k−1)

and n− k zeros. Thus, we can easily find the expected noise varaince σ2TH for a given a as in the
following theorem. This analysis is straightforward to extend to other secret key distributions.

18

Theorem 2. For a given threshold T , the noise introduced by approximating a to a∗ using square-
sum cutoff has a variance of σ2TH ≤

2T
3 when the secret key is ternary.

Proof. We are finding the variance of the random variable

⟨e, s⟩ =
k−1∑
i=0

a(i) · s(i),

where s(i) is the element of the key vector corresponding to a(i). When s(i) are i.i.d. random
variables uniformly selected from {−1, 0, 1}, its variance is given as follows:

σ2TH = VAR[⟨e, s⟩] = VAR

[
k−1∑
i=0

a(i) · s(i)

]
=

k−1∑
i=0

VAR[a(i) · s(i)] =
k−1∑
i=0

a2(i) ·VAR[s(i)]

=
k−1∑
i=0

a2(i) ·
2

3
≤ 2T

3
.

The equation VAR[a(i) · s(i)] = a2(i) · VAR[s(i)] holds because a(i) are constants (since a is given)
and not random variables.

Corollary 3. For a given threshold T , the noise introduced by approximating a to a∗ using square-
sum cutoff has a variance of T

4 when the secret key is binary.

We note that the mean of the noise can be found as in Subsection 5.1, and thus shifted mapping
can also be applied.

5.2.2 Complexity Analysis: The Number of Ignored RGSW Multiplications

We analyze the expected number of ignored RGSW multiplications. As we are calculating the
expectation of k, we assume that a is not given. Instead, ai are i.i.d. random variables uniformly
sampled from {−q/2,−q/2 + 1, . . . , q/2− 1}.

We define a random variable KT as the number of ignored elements using square-sum cutoff
blind rotation with threshold T . Our goal is to find its expectation, E[KT]. Let Ai = a2i be a
random variable and A(i) be its i-th order statistic. Using the order statistics, we define another
random variable Zk as the sum of the first k values of A(i), that is,

Zk =

k−1∑
i=0

A(i).

We can then provide the probability that the number of ignored RGSW multiplications is k as
follows:

Pr[KT = k] = Pr [(Zk ≤ T) ∧ (Zk+1 > T)]

= Pr [Zk ≤ T]− Pr [Zk+1 ≤ T] ,

if k < n, and Pr[KT = n] = Pr[Zn ≤ T]. Then, we can simplify its expection as follows:

E[KT] =
n−1∑
k=0

k (Pr [Zk ≤ T]− Pr [Zk+1 ≤ T]) + nPr[Zn ≤ T]

19

0 50 100 150 200 250

0

2

4

6

σ2TH

N
u
m
b
er

o
f
ig
n
o
re
d
R
G
S
W

m
u
lt
.

Square-sum
Normal cutoff

Figure 5: The numerical comparision of normal cutoff bootstrapping and square-sum cutoff.

Simplying further, we have

E[KT] =

n−1∑
k=0

(kPr [Zk ≤ T]− kPr [Zk+1 ≤ T]) + nPr[Zn ≤ T]

=
n−1∑
k=0

(kPr [Zk ≤ T])−
n∑

k=1

(kPr [(Zk ≤ T)]) +
n−1∑
k=0

Pr [Zk+1 ≤ T] + nPr[Zn ≤ T]

=

n−1∑
k=0

Pr [Zk+1 ≤ T] (2)

Equation (2) gives us the expected number of RGSW multiplications that can be ignored using the
square-sum cutoff with threshold T .

Although the above probability may give us an analytic solution, but it doesn’t seem to have
a simple closed-from solution for Pr [(Zk ≤ T)]. Rather, we ran a numerical analysis to check the
relationship between threshold T and the number of skipped elements as given in Figure 5. It can
be seen that the square-sum cutoff provides a better (or similar) tradeoff between the number of
ignored RGSW multiplication and the noise introduced compared to the normal cutoff. Besides,
the square-sum cutoff provides a more find-grained control over the noise, and thus suitable if one
wants to do even finer optimization on the runtime.

5.2.3 Complexity Analysis: Finding Ignored Elements

The computational overhead of finding a(0), a(1), . . . , a(k−1) is minimal compared to the blind rota-
tion runtime. It requires sorting n integers and performing a linear search of the sorted array to
accumulate the sum

∑k
i=0 a

2
(i). Blind rotation involves O(n) RGSW multiplications, and a single

RGSW has dg + 1 NTTs. A single NTT has a time complexity of O(logN) and an overall time
complexity of O(n log n), where n < N . Additionally, finding a(0), a(1), . . . , a(k−1) does not require
modular reduction, making the computation quite inexpensive.

20

5.3 Approximate Gadget Decomposition

To efficiently set parameters for optimizing computational complexity, utilizing approximate gadget
decomposition can also be a good option. This method is suggested in [CGGI20], and [LMK+23]
introduces its simple variant that is working on the integer. In our research, we use the gadget

vector gδ = (δB0
g , δB

1
g , · · · , δB

dg−1
g) instead of g = (B0

g , B
1
g , · · ·B

dg−1
g) like used in [KLD+23]. So

we can redefine RLWE′ and its multiplication operation ⊙ as follows:

RLWE′(m) =
(
RLWE(δB0

gm),RLWE(δB1
gm), · · · ,RLWE(δB

dg−1
g m)

)
∈ Rdg×2

Q

⊙ : ⟨a,RLWE′(m)⟩ =
n∑

i=0

dg−1∑
j=0

RLWE(aiB
j
gδm) ≈ RLWE(a ·m)

This means it ignores log2 δ bits while performing ⊙ operation, so it increases the probability
of failure and decreases the digits of gadget decomposition dg. In situations where the failure
probability is sufficiently low, it is necessary to find an optimized value of δ compared to the
increasing noise, which can most effectively improve computational speed.

5.3.1 Noise Analysis with Approximate Gadget Decomposition

We referred to [KLD+23] for noise analysis. Those who desire detailed noise analysis are encouraged
to refer to Section 4 of [KLD+23]. The essence of the approximate gadget decomposition lies in
the blind rotation process, where log2 δ bits are disregarded, affecting only σACC and also being
dependent on the threshold value t. In this case, we can define σACC based on δ as follows:

σ2ACC−AP = dr · 2n

(
dgN

B2
g

12
σ2 +

δ2

12
(||sN ||2 + 1)

)
· (1− 2t+ 1

q
)

σ2ACC−GINX = 2u · 2n

(
dgN

B2
g

12
σ2 +

δ2

12
(||sN ||2 + 1)

)
· (1− 2t+ 1

q
)

The additional factor introduced here is δ2

12(||sN ||
2 + 1). This factor arises from the approximate

gadget decomposition, originating from the characteristic of disregarding log2 δ bits during the blind
rotation process. Furthermore, this factor is equivalent to the noise generated during the process
of secret key s inner product with δ∗, which is extracted from a uniform distribution with range
[−δ, δ].

5.3.2 Computational Complexity with Approximate Gadget Decomposition

The parameter dg significantly influences both the noise and computational complexity. Addition-
ally, the approximate gadget decomposition technique serves to minimize the value of dg while
maintaining the noise at a minimum. As mentioned earlier, applying the approximate gadget de-
composition results in ignoring values up to log2 δ bits from the least significant bit. In addition,
by appropriately adjusting the parameter, we can reduce dg to d∗g = dg − 1 with minimal noise.

21

Now we can define the number of NTTs as follows:

AP : 2n · dr(1−
1

Br
) · (d∗g + 1) · (1− 2t

q
) = 2n · dr(1−

1

Br
) · dg · (1−

2t+ 1

q
)

GINX : 2n · |U | · (d∗g + 1) · (1− 2t

q
) = 2n · |U | · dg · (1−

2t+ 1

q
)

6 Paramter Sets and Implementation Results

In this section, we present the runtime for bootstrapping using our technique and compare it
with previous methods. We implemented our blind rotation using OpenFHE, an open-source HE
library [Ope22]. Additionally, we provide suitable parameter sets for AP/FHEW and GINX/TFHE
when using a ternary secret key distribution.

To demonstrate the flexible applicability of our technique, we propose two parameter sets: one
using only our technique and another combining our technique with approximate gadget decompo-
sition [CGGI20, LMK+23]. Our evaluation was conducted using OpenFHE v.1.1.2 on an Intel(R)
Core(TM) i9-11900 @ 2.50GHz processor. The code was compiled with clang++ 14, using CMake
flags NATIVE SIZE=32 for ciphertext modulus less than 31 bits, and NATIVE SIZE=64 otherwise.

6.1 IND-CPAD-secure Parameter Sets

6.1.1 Basic Parameter Sets Without Approximate Gadget Decomposition

The proposed cutoff blind rotation significantly increases the flexibility of parameter choices. De-
pending on the requirements, the parameter set can be configured to optimize computational and
space complexity, or a balanced trade-off between the two. For example, increasing the value of
dks slightly increases the noise but allows for a reduction in key generation time and key size.
Conversely, decreasing the value of dg slightly increases the noise but can decrease runtime. After
these adjustments, the threshold t is used to fine-tune the failure probability and runtime.

The proposed parameter sets for 128, 192, and 256-bit security are given in Table 1. The
security is measured using the Lattice estimator [APS15]. In configuring these parameter sets, we
first reduced Qks and n. Then, we set dg and dks to achieve the best possible performance, and
finally, we adjusted the threshold value t to finely tune the failure probability.

Additionally, we provide parameter sets that satisfy different (higher) failure probabilities ac-
cording to the security level. For specific scenarios where 192 and 256-bit security is required,
but the adversary’s computational capability is the only threat (without a decryption oracle), we
provide additional parameters: Param192∗ and Param256∗, which ensure a failure probability of
2−128.

6.1.2 Parameter Sets with Approximate Gadget Decomposition

Our technique can be applied to various bootstrapping optimizations, facilitating advantageous
parameter set configurations. We present parameter sets with efficient computational complexity
by utilizing approximate gadget decomposition in conjunction with our proposed technique. These
parameter sets are shown in Table 2.

Due to the use of approximate gadget decomposition, the decomposition is given as dg =⌈
logBg

(Q/δ)
⌉
, where δ denotes the approximation factor. We prioritized minimizing dg by using

22

Table 1: Proposed optimized parameter sets without approximate gadget decomposition.

n q N log2Q log2Qks Bg Bks Br t FPAP FPGINX FP′
AP FP′

GINX

Param128 574 2048 2048 54 15 227 25 26 6 2−128 2−128 2−141 2−141

Param192 922 2048 2048 37 16 213 24 26 3 2−197 2−196 2−203 2−203

Param256GINX 1223 4096 2048 29 16 26 24 26 9 - 2−267 - 2−334

Param256AP 1223 4096 2048 29 16 26 24 26 10 2−256 - 2−346 -

Param192∗ 922 2048 2048 37 16 213 23 26 7 2−128 2−128 2−174 2−174

Param256∗ 1223 2048 2048 29 16 26 24 26 6 2−129 2−128 2−166 2−163

Param128 bin 620 2048 2048 54 15 227 25 26 5 2−129 2−129 2−138 2−138

Param192 bin 998 2048 2048 37 16 213 24 26 2 2−192 2−192 2−193 2−193

Param256 bin 1322 4096 2048 29 16 26 24 26 9 2−264 2−264 2−335 2−335

Param192 bin∗ 998 2048 2048 37 16 213 24 26 7 2−135 2−135 2−193 2−193

Param256 bin∗ 1322 2048 2048 29 16 26 24 26 5 2−134 2−134 2−157 2−157

the smallest possible δ. Subsequently, we minimized Qks and n, and finally set the threshold value t
to ensure a failure probability of 2−128 or to meet the respective conditions according to the security
level. The notation A/B in the threshold value t indicates that A represents the value for the AP
method, while B represents the value for the GINX method.

Table 2: Proposed parameter sets with approximate gadget decomposition and optimization.
n q N log2Q log2Qks Bg Bks Br δ t FPAP FPGINX FP′

AP FP′
GINX

Param128 ag 574 2048 2048 54 15 227 25 26 20 6 2−128 2−128 2−141 2−141

Param192 ag 992 2048 2048 37 16 213 24 26 20 3 2−197 2−196 2−203 2−203

Param256 ag 1223 4096 2048 29 16 27 24 26 21 9/7 2−258 2−263 2−320 2−289

Param192 ag*AP 922 2048 2048 37 16 217 26 26 23 6 2−129 - 2−154 -

Param192 ag*GINX 922 2048 2048 37 16 212 26 26 21 8 - 2−131 - 2−223

Param256 ag*AP 1151 2048 2048 29 15 27 28 26 21 2 2−129 - 2−130 -

Param256 ag*GINX 1223 2048 2048 29 16 27 24 26 21 5 - 2−132 - 2−152

Param128 bin ag 620 2048 2048 54 15 227 25 26 20 5 2−129 2−129 2−138 2−138

Param192 bin ag 998 2048 2048 37 16 213 24 26 20 2 2−192 2−192 2−193 2−193

Param256 bin ag 1322 4096 2048 29 16 26 24 26 21 7 2−264 2−264 2−293 2−293

Param192 bin ag* 998 2048 2048 37 16 217 26 26 23 5 2−130 2−130 2−145 2−145

Param256 bin ag* 1322 2048 2048 29 16 27 28 26 21 5 2−130 2−130 2−151 2−151

For reference, we also provide runtime results for the parameter sets proposed in [MP21]. These
parameter sets are shown in Table 3, but it should be noted that these parameters are not IND-
CPAD secure.

6.2 Bootstrapping Runtime

We compare the key generation time and runtime for different security levels using the parameter
sets with approximate gadget decomposition proposed earlier and the parameter sets currently used
in the OpenFHE library. The parameter sets currently used in the OpenFHE library do not satisfy

23

Table 3: Parameter sets proposed in [MP21].

n q N log2Q log2Qks Bg Bks Br FPAP FPGINX

STD128 OPT 502 1024 1024 27 14 27 27 25 2−52 2−48

STD128 APOPT 502 1024 1024 27 14 29 27 25 2−36 -

STD192 OPT 755 1024 2048 37 15 213 25 25 2−63 2−63

STD256 OPT 1225 1024 2048 27 16 27 24 25 2−37 2−33

0 5 10 15

129

130

131

132

133

Skipped term

R
u
n
ti
m
e
(m

s)

Figure 6: Number of skipped LWE elements vs GINXbootstrapping runtime result with parameter
Param128 ag.

the condition FP ≤ 2−128 for IND-CPAD security.
The runtime was measured by performing the NAND gate 1,000 times. Here, the OpenFHE

cmake option NATIVE SIZE was set to 32 when Q < 30, and NATIVE SIZE was set to 64,
otherwise. The experimental results are presented in Table 4.

Additionally, we performed a performance comparison between parameter sets. We compared
the conventional parameter set with the proposed parameter sets, for which both versions with and
without the proposed cutoff blind rotation. The results is given in Tables 5 and 6. The symbol #
represents the number of ⊙ operations.

The threshold value affects runtime, but its impact on noise and runtime is smaller compared to
dg. Consequently, the change in runtime by to the threshold value is difficult to detect with a small
(e.g., 1, 000) number of experiments. To illustrate the effect of the threshold value on runtime,
we measured the average runtime based on the number of omitted RGSW multiplications. We set
the threshold value to t = 8 and conducted experiment using the Param128 ag parameter set with
the GINX method applied. Additionally, we included the results obtained from performing 60,000
NAND gate operations, as shown in Figure 6.

24

Table 4: Comparison of bootstrapping runtime with previous parameter sets with failure probability
≈ 2−40

Previous [MP21] INC-CPAD secure (w/o cutoff)

AP GINX AP GINX

Param KeyGen Boot KeyGen Boot Param KeyGen Boot KeyGen Boot

STD128 OPT 2.64s 78.84ms 1.49s 61.43ms Param128 22.58s 172.39ms 18.27s 143.00ms

STD192 OPT 8.55s 259.80ms 4.83s 197.18ms Param192 38.59s 281.97ms 27.36s 213.01ms

STD256 OPT 43.38s 387.48ms 15.12s 291.78ms Param256 48.50s 531.42ms 34.01s 399.52ms

Table 5: Comparison of failure probability (FP) and computational complexity with and without
cutoff. # is the number of ⊙ operations.

without cutoff cutoff

AP GINX AP GINX

FP # FP # FP # FP #

Param128 2−141 2259 2−141 2294 2−128 2245 2−128 2281

Param192 2−203 3628 2−203 3686 2−197 3617 2−196 3675

Param256 2−346 4814 2−334 4890 2−256 4790 2−267 4869

Param192* 2−174 3628 2−174 3686 2−128 3603 2−128 3660

Param256* 2−166 4784 2−166 4860 2−128 4813 2−128 4889

Table 6: Comparison of failure probability (FP) and computational complexity with and without
cutoff when approximate gadget decomposition is applied. # is the number of ⊙ operations.

without cutoff cutoff

AP GINX AP GINX

FP # FP # FP # FP #

Param128 ag 2−141 2259 2−141 2294 2−128 2245 2−128 2281

Param192 ag 2−203 3628 2−203 3686 2−197 3617 2−196 3675

Param256 ag 2−320 4814 2−320 4890 2−258 4793 2−263 4874

Param192 ag* 2−154 3628 2−223 3686 2−129 3607 2−131 3657

Param256 ag* 2−130 4529 2−152 4889 2−129 4520 2−132 4865

25

7 Conclusion

We propose a new optimization technique applicable to existing blind rotation methods with min-
imal changes to the algorithm. By introducing the cutoff blind rotation, we enable more flexible
parameter settings, achieving an appropriate trade-off between failure probability and runtime. Un-
like traditional parameters, the threshold value has a relatively small impact on failure probability,
allowing for precise parameter adjustments.

This technique operates by partially omitting elements of the LWE ciphertext (⃗a, b), making it
applicable to various bootstrapping methods. We demonstrated the application of our technique
to three existing blind rotation methods—AP, GINX, and LMKCDEY—as well as its integration
with approximate gadget decomposition.

Previously, even slight changes to parameters such as dg and dks significantly affected the
failure probability, making parameter fine-tuning for very low failure probabilities challenging. As
discussed in [CCP+24], FHEW/TFHE HE schemes are insecure against IND-CPAD adversaries.
However, when lowering the failure probability lower than 2−128 for security, the sparse parameter
choices could lead to significant inefficiencies in runtime. Our proposed technique allows for the
precise tuning of parameters to achieve the desired failure probability and improve runtime.

The proposed method can also be applied to Torus [CGGI17] and NTRU [BIP+22, XZDF23]
variants. While these algorithms have different parameter sets and are subject to attacks such as
that in [CCP+24], finding parameters with negligible failure probability is crucial. Additionally, our
technique can be extended to blind rotations with higher bits, as seen in [LMP22, BBB+23]. Future
work could explore the application of the proposed method to amortized bootstrapping [LW23a,
LW23b, LW23c, MKMS23] to improve runtime.

References

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error.
In Advances in Cryptology – CRYPTO, pages 297–314. Springer, 2014.

[APS15] Martin Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning
with errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

[BBB+23] Loris Bergerat, Anas Boudi, Quentin Bourgerie, Ilaria Chillotti, Damien Ligier, Jean-
Baptiste Orfila, and Samuel Tap. Parameter optimization and larger precision for
(T)FHE. Journal of Cryptology, 36, 2023.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully homomor-
phic encryption without bootstrapping. ACM Transactions on Computation Theory
(TOCT), 6(3):1–36, 2014.

[BIP+22] Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira, and Nigel P.
Smart. Final: Faster fhe instantiated with NTRU and LWE. In Advances in Cryptology
– ASIACRYPT 2022, pages 188–215, 2022.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In Advances in Cryptology – CRYPTO 2012, pages 868–886. Springer,
2012.

26

[CCP+24] Jung Hee Cheon, Hyeongmin Choe, Alain Passelègue, Damien Stehlé, and Elias Su-
vanto. Attacks against the INDCPA-D security of exact fhe schemes. Cryptology ePrint
Archive, 2024.

[CGGI17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster packed
homomorphic operations and efficient circuit bootstrapping for TFHE. In Advances in
Cryptology – ASIACRYPT 2017, pages 377–408. Springer, 2017.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast
fully homomorphic encryption over the torus. Journal of Cryptology, pages 34–91, 2020.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryp-
tion for arithmetic of approximate numbers. In Advances in Cryptology – ASIACRYPT
2017, pages 409–437. Springer, 2017.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption
in less than a second. In Advances in Cryptology - EUROCRYPT, pages 617–640.
Springer, 2015.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryp-
tion. IACR Cryptol. ePrint Arch., page 144, 2012.

[GINX16] Nicolas Gama, Malika Izabachene, Phong Q Nguyen, and Xiang Xie. Structural lat-
tice reduction: Generalized worst-case to average-case reductions and homomorphic
cryptosystems. In Advances in Cryptology - EUROCRYPT, pages 528–558. Springer,
2016.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances
in Cryptology – CRYPTO 2013, pages 75–92. Springer, 2013.

[JP22] Marc Joye and Pascal Paillier. Blind rotation in fully homomorphic encryption with ex-
tended keys. In International Symposium on Cyber Security, Cryptology, and Machine
Learning, pages 1–18. Springer, 2022.

[KLD+23] Andrey Kim, Yongwoo Lee, Maxim Deryabin, Jieun Eom, and Rakyong Choi. Lfhe:
Fully homomorphic encryption with bootstrapping key size less than a megabyte. Cryp-
tology ePrint Archive, 2023.

[LM21] Baiyu Li and Daniele Micciancio. On the security of homomorphic encryption on
approximate numbers. In Advances in Cryptology – EUROCRYPT 2021, pages 648–
677. Springer, 2021.

[LMK+23] Yongwoo Lee, Daniele Micciancio, Andrey Kim, Rakyong Choi, Maxim Deryabin, Jieun
Eom, and Donghoon Yoo. Efficient FHEW bootstrapping with small evaluation keys,
and applications to threshold homomorphic encryption. In Advances in Cryptology –
EUROCRYPT 2023, pages 227–256. Springer, 2023.

[LMP22] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. Large-precision homomorphic
sign evaluation using FHEW/TFHE bootstrapping. In Advances in Cryptology–
ASIACRYPT 2022, pages 130–160. Springer, 2022.

27

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. Journal of the ACM (JACM), 60(6):1–35, 2013.

[LW23a] Feng-Hao Liu and Han Wang. Batch bootstrapping i: A new framework for simd
bootstrapping in polynomial modulus. In Advances in Cryptology – EUROCRYPT
2023, page 321–352, 2023.

[LW23b] Feng-Hao Liu and Han Wang. Batch bootstrapping ii: Bootstrapping in polynomial
modulus only requires o(1) FHE multiplications in amortization. In Advances in Cryp-
tology – EUROCRYPT 2023, page 353–384, 2023.

[LW23c] Zeyu Liu and Yunhao Wang. Amortized functional bootstrapping in less than 7 ms,
with õ(1) polynomial multiplications. In Advances in Cryptology - ASIACRYPT, pages
101–132, 2023.

[MKMS23] Gabrielle De Micheli, Duhyeong Kim, Daniele Micciancio, and Adam Suhl. Faster
amortized FHEW bootstrapping using ring automorphisms. Cryptology ePrint Archive,
2023.

[MP21] Daniele Micciancio and Yuriy Polyakov. Bootstrapping in FHEW-like cryptosystems.
In WAHC’21, pages 17–28, 2021.

[Ope22] OpenFHE. Open-Source Fully Homomorphic Encryption Library. https://github.

com/openfheorg/openfhe-development, 2022.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), 56(6):1–40, 2009.

[XZDF23] Binwu Xiang, Jiang Zhang, Yi Deng, and Dengguo Feng. Fast blind rotation for boot-
strapping fhes. In Helena Handschuh and Anna Lysyanskaya, editors, Advances in
Cryptology – CRYPTO 2023, pages 3–36, 2023.

28

https://github.com/openfheorg/openfhe-development
https://github.com/openfheorg/openfhe-development

	Introduction
	Failure Probability of FHEW/TFHE and IND-CPAD Security
	Our Contribution
	Organization

	Preliminaries
	Lattice-based Encryption
	Basic Operations for RLWE Ciphertext
	Ring Automorphism
	LWE Key Switching
	Extraction of LWE Ciphertext from RLWE Ciphertext

	Bootstrapping in FHEW/TFHE
	Noise Analysis
	Modulus Switching Noise
	Blind Rotation Noise

	IND-CPAD and KRD Attack Exploiting Bootstrapping Failure
	IND-CPAD and KRD Attack
	Failure Probability and Performance in FHEW

	New Blind Rotation Technique
	The Cutoff Blind Rotation Algorithm
	Noise Analysis
	Runtime Analysis

	Further Improvement and Application to Existing Optimization
	Shifted Mapping
	Noise Analysis with Shifted Mapping

	Square-sum Cutoff
	Noise Analysis
	Complexity Analysis: The Number of Ignored RGSW Multiplications
	Complexity Analysis: Finding Ignored Elements

	Approximate Gadget Decomposition
	Noise Analysis with Approximate Gadget Decomposition
	Computational Complexity with Approximate Gadget Decomposition

	Paramter Sets and Implementation Results
	IND-CPAD-secure Parameter Sets
	Basic Parameter Sets Without Approximate Gadget Decomposition
	Parameter Sets with Approximate Gadget Decomposition

	Bootstrapping Runtime

	Conclusion

