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Abstract—This paper presents KyberSlash1 and KyberSlash2 –
two timing vulnerabilities in several implementations (includ-
ing the official reference code) of the Kyber Post-Quantum Key
Encapsulation Mechanism, currently undergoing standardiza-
tion as ML-KEM. We demonstrate the exploitability of both
KyberSlash1 and KyberSlash2 on two popular platforms: the
Raspberry Pi 2 (Arm Cortex-A7) and the Arm Cortex-M4
microprocessor. Kyber secret keys are reliably recovered within
minutes for KyberSlash2 and a few hours for KyberSlash1.
We responsibly disclosed these vulnerabilities to maintainers
of various libraries and they have swiftly been patched. We
present two approaches for detecting and avoiding similar vul-
nerabilities. First, we patch the dynamic analysis tool Valgrind
to allow detection of variable-time instructions operating on
secret data, and apply it to more than 1000 implementations
of cryptographic primitives in SUPERCOP. We report multiple
findings. Second, we propose a more rigid approach to guaran-
tee the absence of variable-time instructions in cryptographic
software using formal methods.

1. Introduction

In 2016, the National Institute of Standards and Tech-
nology (NIST) launched a global standardization process for
Public Key Encryption (PKE), Key Encapsulation Mecha-
nisms (KEM), and Digital Signatures (DS) that can with-
stand quantum computer attacks, which is widely recognized
under the umbrella term ”Post-Quantum Cryptography.” Af-
ter years of evaluation, NIST announced the first set of
four algorithms to be standardized in July 2022. Among
these, one algorithm is selected for Public Key Encryp-

tion/Key Encapsulation Mechanisms (PKE/KEM) and three
algorithms were selected for Digital Signatures. Kyber [1],
a KEM based on the Module Learning With Error (MLWE)
problem, is being standardized by NIST as ML-KEM in
FIPS203 [2]. We expect to soon witness wide-scale adoption
of ML-KEM across a wide-spectrum of computing devices,
ranging from the high-end general purpose PCs to mobile
phone processors all the way until computationally con-
strained embedded devices.

Since the announcement of the NIST standardization
process, Kyber has garnered significant attention regarding
its vulnerability to Side-Channel Attacks (SCA) [3]. This
concern was a key focus during the NIST PQC standardiza-
tion process, where the susceptibility of Kyber to SCA and
appropriate protection mechanisms were studied by several
reported works in literature [4], [5], [6]. Given its anticipated
widespread adoption, the safety of Kyber implementations
will be even more important in the future.

In this work, we report the discovery of multiple timing
vulnerabilities in the official reference implementation of
Kyber,1 as well as several well-known open-source Kyber
implementations. Notably, all these implementations are
carefully designed to be constant-time at the level of source
code, by avoiding secret dependent branches and memory
accesses. However, we identify that compilers can introduce
timing vulnerabilities through utilization of instructions that
execute in variable-time. In particular, we discover these
vulnerabilities being caused by certain subroutines that in-
volve divisions by the Kyber prime 𝑞 = 3329 (written as
/KYBER_Q in the code).

1. https://github.com/pq-crystals/kyber
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1.1. Division variations

It is well known that CPU division instructions are
slower for some inputs than for others. It has also been
known for a long time that these timing variations might
be exploitable; see, e.g., [7, “DIV instruction”] measuring
timing variations in the context of fixing Lucky Thirteen.

But this general background does not mean that there is
a problem with the divisions in the Kyber reference code.
For those divisions, the numerator has a limited range, and
the denominator is a compile-time constant (whereas in [7]
the denominator was variable). The code is not written to
use the CPU’s division instruction, but rather to use divi-
sions in the C programming language. One can reasonably
guess that any modern compiler will optimize the division
by a constant into a multiplication by a suitable constant;
multiplication instructions are well known to be faster than
division instructions.

A programmer can easily try an experiment to check
this: write the division in C; compile it; check the re-
sulting assembly to see that, yes, the compiler is using a
multiplication instruction rather than a division instruction.
A pleasant consequence of this automatic optimization is
that the resulting binary is unaffected by any potential
timing variation from division instructions. (There is still a
problem on some embedded processors with variable-time
multiplication instructions—see, e.g., [8] and [9]—but that
problem is outside the scope of this paper.)

Unfortunately, the experiment described in the previ-
ous paragraph isn’t sufficiently systematic, and the guess
stated above is an oversimplification. Common changes
in compiler options can easily end up producing division
instructions instead. For example, asking gcc to optimize
for code size (-Os) generally disables the conversion of
divisions into multiplications. This creates a timing vulner-
ability. (-Os is just one example of the issue: for example,
on 32-bit MIPS CPUs, gcc 14.1.0 from May 2024 produces
division instructions even when it is optimizing for speed.)

We observe that exactly this vulnerability is triggered
by the Kyber reference code. As the vulnerability is caused
by the appearance of divisions in Kyber’s C code (/),
we name the vulnerability KyberSlash. We distinguish two
forms of KyberSlash, named KyberSlash1 and KyberSlash2;
these arise from different aspects of the cryptography inside
Kyber, and turn out to open up very different exploitation
mechanisms.

1.2. Our Contribution

The contribution of our paper is manifold.

• We describe two variants of the KyberSlash vul-
nerability present in the November 2023 version of
the Kyber reference implementation: KyberSlash1
is present in the decryption of the CPA-secure en-
cryption scheme underlying Kyber and directly leaks
information about the secret key. KyberSlash2 is
present in the encryption of the CPA-secure en-
cryption scheme and leaks information about the

ciphertext. While this is unproblematic inside en-
capsulation as the ciphertext is public, it can be
used to construct a plaintext-checking (PC) oracle
in decapsulation allowing key recovery.

• We present a practical demo showcasing the ex-
ploitability of KyberSlash1 on a Raspberry Pi 2
(Arm Cortex-A7). It crafts special ciphertexts and
measures the time for decapsulation running on the
same processor in a separate process. It successfully
recovers a Kyber512 secret key in 10 out of 10
experiments within 2 to 4 hours.

• We demonstrate the exploitability of KyberSlash2
in a separate demo targeting the Arm Cortex-M4
microcontroller. We craft ciphertexts on a host and
send the ciphertexts using serial communication to
the target microcontroller which performs a decap-
sulation and reports back to the host when decapsu-
lation is completed. When timing is performed on
the target itself, the attack succeeds for Kyber768
within 4 minutes in 10 out of 10 experiments. Most
of this time is spent on transmitting 6144 cipher-
texts to the target device. We also demonstrate that
the attack still works if timing is performed on a
separate attacker device transmitting the ciphertexts
to the target device. Consequently, KyberSlash2 is
exploitable remotely in certain cases.

• We patch the dynamic analysis tool Valgrind [10] to
allow detection of variable-time instructions operat-
ing on secret data extending Langley’s ctgrind [11]
methodology for detecting timing leaks. With the
patched Valgrind, and with modified test programs,
we are able to detect the vulnerable division op-
erations in the November 2023 version of the Ky-
ber code. We perform a large scale study with the
patched Valgrind and apply it to more than 1000
implementations of various cryptographic primitives
within SUPERCOP [12] and identify various poten-
tial vulnerabilities due to secret-dependent instruc-
tion timings.

• Additionally, we propose a more rigid approach to
guarantee the absence of variable-time instructions
in cryptographic software by using formal verifica-
tion.

The code for the two demos is available at https:
//kyberslash.cr.yp.to/demos.html.

1.3. Related work

There is a long literature on side-channel attacks. At-
tacks often rely on access to physical sensors close to the
targeted device; see, e.g., van Eck’s 1985 paper [13] on
electromagnetic leaks from monitors, or, as one of many
recent examples, consider the EM probe in [14, Section 5].
Modeling and protecting against these information leaks is
difficult, with protections continually being broken (see, e.g.,
[15]) and with security seemingly relying on the hope that
attackers are too far away to carry out attacks. Sometimes
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attacks exploit a lack of access control for physical sensors
built into the targeted device, such as the power monitors
exploited in [16].

Many other attacks rely purely on timing informa-
tion. An early example is a timing attack recovering
TENEX passwords; see, e.g., [17]. Within cryptography,
broad awareness of the power of timing attacks began
with Kocher’s 1996 paper [18]. Specific sources of timing
variation listed in [18] include “branching and conditional
statements” (exploited in that paper), “RAM cache hits” (ex-
ploited in [19], [20], and [21]), and “processor instructions
(such as multiplication and division) that run in non-fixed
time”, along with a general warning about “compiler opti-
mizations” as a source of “unexpected timing variations”.
Many timing attacks exploit the fact that attackers are very
often allowed to run computations on the target machine
(see, e.g., [22]); there have also been some remote timing
attacks relying on timing information naturally percolating
through networks (see, e.g., [23]). Another avenue for timing
attacks comes from the fact that many CPUs vary clock
speeds depending on power consumption by default, creat-
ing a channel from power monitors to timing; see, e.g., [24]
and [25].

By now there are many examples of side-channel attacks
against post-quantum cryptography, including systems sub-
mitted to the NIST post-quantum competition. For example,
[26] targeted non-constant-time error-correcting codes used
in LAC, a lattice-based KEM; [27] targeted a non-constant-
time ciphertext-comparison operation within FrodoKEM,
another lattice-based KEM; and [28] targeted non-constant-
time decoding in HQC, a code-based KEM.

Side-channel attacks against KEMs frequently work as
follows. The attacker sends maliciously crafted ciphertexts
to the decapsulation procedure, such that the decrypted
message and its associated variables are related to a targeted
portion of the secret key. The attacker uses side channels
to obtain information about whether the message decrypted
correctly. This reveals incremental information about the
secret key, leading to full key recovery once there are enough
ciphertexts. Our attack demos follow this pattern but exploit
a different side channel, obtaining the first successful timing
attacks against the reference implementation of Kyber.

1.4. Disclosure

We have reported KyberSlash to the Kyber team pri-
vately shortly after discovery. After discussion with the Ky-
ber team it has been agreed to publicize the vulnerabilities
immediately. The main consideration for this was that due
to the upcoming standardization later in 2024, the current
deployment of the affected code is small, but the potential
impact of delaying the announcement would be much more
devastating. The divisions have been replaced by explicit
multiplications in the official reference implementation prior
to the announcement.2

2. KyberSlash1 vulnerability was patched in the commit dda29cc dated
December 1, 2023 and KyberSlash2 vulnerability was patched in the
commit 272125f dated December 30, 2023.

Starting in December 2023, further patches addressing
KyberSlash have been applied to at least the following cryp-
tographic libraries: zig3, kyber-k2so4, CIRCL5, AWS-LC6,
Botan7, liboqs8, crystals-go9, PQClean10, pqcrypto-kyber11,
pypqc12, pqm413, and kyberlib14. We have not investigated
whether these libraries were exploitable before the patches.
There are some other Kyber implementations, such as [29],
that never included the problematic divisions.

We have communicated with numerous maintainers of
potentially affected libraries and feedback has been uni-
formly positive.

2. Notation

For any prime 𝑞, we denote the field of integers modulo
𝑞 as Z𝑞 . When 𝑛 is a fixed positive integer, we let 𝑅𝑞 denote
the polynomial ring Z𝑞 [𝑥]/(𝑥𝑛 +1). Then, 𝑅𝑘

𝑞 is the module
of rank 𝑘 whose scalars are polynomials in 𝑅𝑞 . Polynomials
𝑎 ∈ 𝑅𝑞 are denoted using lowercase letters. Vectors a ∈ 𝑅𝑘

𝑞

and matrices A ∈ 𝑅𝑘×𝑘
𝑞 are denoted in bold using lowercase

and uppercase, respectively. When u, v ∈ 𝑅𝑘
𝑞 , we let ⟨u, v⟩ ∈

𝑅𝑞 denote their dot product. The 𝑖th entry of vector a ∈ 𝑅𝑘
𝑞

is denoted as a[𝑖]. Similarly, for a polynomial 𝑎 ∈ 𝑅𝑞 , we
use 𝑎[𝑖] to denote its coefficient associated with the power
𝑥𝑖 .

We denote by B𝜂 the centered binomial distribu-
tion (CBD) with range [−𝜂, 𝜂]. For a concise notation,
we let a ← B𝜂 (𝑅𝑘

𝑞) mean that each coefficient from
each polynomial of vector a ∈ 𝑅𝑘

𝑞 is drawn according
to B𝜂 . Furthermore, we write a ← B𝑟

𝜂 (𝑅𝑘
𝑞) to denote a

derandomized sampling where the randomness comes from
a string 𝑟. Furthermore, 𝑦 ← Compress(𝑥, 𝑑) denotes the
lossy compression of 𝑥 to 𝑑 bits, where 𝑑 <

⌈
log2 𝑞

⌉
.

The compression function is defined as Compress(𝑥, 𝑑) =⌊ (
2𝑑/𝑞

)
𝑥
⌉

mod 2𝑑 , where ⌊·⌉ denotes the rounding function
that rounds up on ties. The decompression is defined as
𝑥′ = Decompress(𝑦, 𝑑) =

⌊ (
𝑞/2𝑑

)
𝑦
⌉
.

3. Kyber

Kyber is a KEM designed for CCA security based on the
Module-Learning With Errors problem (MLWE) [30], [31].
It offers parameter sets designed for NIST security levels 1,
3, and 5. For each security level, it uses fixed parameters
𝑞 = 3329 and 𝑛 = 256 that define the polynomial ring

3. https://github.com/ziglang/zig
4. https://github.com/symbolicsoft/kyber-k2so
5. https://github.com/cloudflare/circl
6. https://github.com/aws/aws-lc
7. https://github.com/randombit/botan
8. https://github.com/open-quantum-safe/liboqs
9. https://github.com/kudelskisecurity/crystals-go
10. https://github.com/PQClean/PQClean
11. https://github.com/rustpq/pqcrypto
12. https://github.com/JamesTheAwesomeDude/pypqc
13. https://github.com/mupq/pqm4
14. https://github.com/sebastienrousseau/kyberlib
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TABLE 1. KYBER PARAMETERS FOR EACH SECURITY LEVEL [31].

NIST security Parameter set 𝑘 𝜂1 𝜂2 𝑑u 𝑑𝑣
Failure

probability

Level 1 Kyber512 2 3 2 10 4 2−139

Level 3 Kyber768 3 2 2 10 4 2−165

Level 5 Kyber1024 4 2 2 11 5 2−175

𝑅𝑞 = Z𝑞 [𝑥]/(𝑥𝑛 + 1), over which most of the operations
are performed.

Given a desired security level, the setup takes public
parameters 𝑘, 𝜂1, 𝜂2, 𝑑u, and 𝑑𝑣 from Table 1. Parameter
𝑘 defines the rank of the modules used in the scheme.
Parameters 𝜂1 and 𝜂2 define the centered binomial distribu-
tions B𝜂1 and B𝜂2 used to generate coefficients with small
norm in Z𝑞 . Integers 𝑑u and 𝑑𝑣 are the number of bits into
which coefficients from the two parts of the ciphertext are
compressed.

Kyber uses an encoding procedure that allows it to
recover the message even after some noise accumulates
during the encryption and decryption. It encodes a 256-bit
message m ∈ Z256

2 into a polynomial in 𝑅𝑞 as

Encode (m) = 𝑚0 + 𝑚1𝑥 + · · · + 𝑚𝑛−1𝑥
𝑛−1 ∈ 𝑅𝑞 ,

where 𝑚𝑖 = m[𝑖] ⌈𝑞/2⌉. In other words, if bit m[𝑖] = 0 then
𝑚𝑖 = 0, otherwise 𝑚𝑖 = ⌈𝑞/2⌉ . A simple decoding procedure
can then be applied to a polynomial 𝑚′. Namely, the decod-
ing function outputs a 256-bit message m′ = Decode (𝑚′)
from a noisy polynomial 𝑚′ by simply checking if each
coefficient of 𝑚′ is closer to 0 or to 𝑞/2, modulo 𝑞, and
decoding it to 0 or 1, correspondingly.

Similar to most proposed post-quantum KEMs, Kyber
is built in two layers. The bottom layer consists of a
public-key encryption (PKE) scheme that is designed to
be secure against passive adversaries, or, more precisely,
against chosen-plaintext attacks (CPA). The top layer, which
is a key encapsulation mechanism (KEM) designed to
be secure against more powerful chosen-ciphertext attacks
(CCA), is then constructed by applying a variation of the
Fujisaki-Okamoto [32], [33] security conversion over the
PKE scheme. Sections 3.1 and 3.2 provide the details of
these two layers of algorithms.

3.1. Kyber’s auxiliary PKE algorithms designed for
CPA security

PKE schemes are defined by three algorithms: key gen-
eration, encryption and decryption. These are described by
the corresponding procedures listed in Figure 1. The key
generation procedure is essentially a creation of an instance
of the MLWE problem that protects the secret key. Similarly,
the encryption procedure consists of generating another
MLWE instance, which now protects the message m from
being recovered from the ciphertext by someone who does
not know the secret key sk.

To see why decryption works, first notice that the ci-
phertext compression and decompression adds a small noise

1: procedure PKE.KEYGEN
2: A← random element from 𝑅𝑘×𝑘

𝑞

3: s← B𝜂1

(
𝑅𝑘
𝑞

)
4: e← B𝜂1

(
𝑅𝑘
𝑞

)
5: t← As + e
6: pk← (A, t)
7: sk← s
8: return (pk, sk)

9: procedure PKE.ENCRYPT
(
pk,m ∈ Z256

2 , 𝑟
)

10: A, t← pk
11: ⊲Pseudorandom function PRF is used for sampling
12: r← BPRF(𝑟 ,0)

𝜂1

(
𝑅𝑘
𝑞

)
13: e1 ← BPRF(𝑟 ,1)

𝜂2

(
𝑅𝑘
𝑞

)
14: 𝑒2 ← BPRF(𝑟 ,2)

𝜂2

(
𝑅𝑞

)
15: u← Aᵀr + e1
16: 𝑣 ← Encode (m) + ⟨t, r⟩ + 𝑒2
17: cu ← Compress(u, 𝑑u) ⊲ KyberSlash2
18: 𝑐𝑣 ← Compress(𝑣, 𝑑𝑣) ⊲ KyberSlash2
19: return (cu, 𝑐𝑣)

20: procedure PKE.DECRYPT(sk, (cu, 𝑐𝑣))
21: u′ ← Decompress(cu, 𝑑u)
22: 𝑣′ ← Decompress(𝑐𝑣 , 𝑑𝑣)
23: 𝑚′ ← 𝑣 − ⟨u′, s′⟩
24: return Decode (𝑚′) ⊲ KyberSlash1

Figure 1. Kyber’s PKE algorithms, with marks indicating where Kyber-
Slash1 and KyberSlash2 appear.

when going from (u, 𝑣) to (u′, 𝑣′). Now, by expanding
𝑚′ = 𝑣 − ⟨u′, s′⟩, one obtains

𝑚′ = Encode (m) + ⟨e, r⟩ − ⟨s, e1 + Δu⟩ + 𝑒2 + Δ𝑣,

where Δu = u′−u and Δ𝑣 = 𝑣′−𝑣. That is, 𝑚′ is the sum of
the encoded message and a polynomial that is constructed
from products and sums of elements whose coefficients
came from centered binomial distributions, and are, there-
fore, small. Kyber security parameters are responsible for
ensuring that the coefficients in Δ𝑚 are small enough so that
decryption errors occur only with negligible probability, as
shown in Table 1.

3.2. Kyber’s KEM algorithms designed for CCA
security

The Kyber KEM is defined in Figure 2. The scheme
is constructed using an implicit rejection [33] variant of
the Fujisaki-Okamoto [32] transform, which is designed to
achieve CCA security by combining hash functions 𝐻 and
𝐺 with a PKE designed for CPA security. The KEM key
generation is essentially the same as its PKE counterpart,
except for the fact that a secret string 𝑧 and the public key
pk are packed into the secret key sk, to allow for additional
verification procedures. The KEM encapsulation takes only
pk and returns a ciphertext c and a shared key 𝐾 , that is



1: procedure KEM.KEYGEN
2: pk, skPKE ← PKE.KEYGEN
3: 𝑧 ← random 256-bit string
4: sk← (skPKE, pk, 𝑧)
5: return (pk, sk)

6: procedure KEM.ENCAPS(pk)
7: m← random 256-bit string
8: 𝐾̄, 𝑟 ← 𝐺 (m, 𝐻 (pk))
9: c← PKE.ENCRYPT(pk,m, 𝑟)

10: 𝐾 ← KDF
(
𝐾̄, 𝐻 (c)

)
11: return (c, 𝐾)

12: procedure KEM.DECAPS(sk, c)
13: skPKE, pk, 𝑧 ← sk
14: m′ ← PKE.DECRYPT(skPKE, c)
15: 𝐾̄ ′, 𝑟 ′ ← 𝐺 (m′, 𝐻 (pk))
16: c′ ← PKE.ENCRYPT(pk,m′, 𝑟 ′)
17: if c = c′ then
18: return 𝐾 ← KDF

(
𝐾̄ ′, 𝐻 (c)

)
19: return 𝐾 ← KDF(𝑧, 𝐻 (c))

Figure 2. Kyber’s KEM algorithms.

computed using a key derivation function (KDF). The main
objective of the encapsulation is to make the randomness
used for encrypting message m depend on m itself by
defining 𝑟 based on 𝐺 (m, 𝐻 (pk)), and sampling the the
disposable values used for encryption using a cryptographic
pseudorandom function PRF. This allows for a quick check,
during decapsulation, to see if a ciphertext c is actually valid
or not.

Suppose c is a chosen ciphertext that was manipulated
by the attacker. First, we decrypt c obtaining m′, then
we reencrypt m′. Now, even if the ciphertext c can be
successfully decrypted by the PKE algorithm, if we get a
different ciphertext after reencrypting m′ using randomness
𝑟 ′ defined by 𝐺 (m′, 𝐻 (pk)), then we consider c to an invalid
ciphertext. Now, to avoid giving information to an attacker
about the validity of the ciphertext they sent, a procedure
called implicit rejection is used for deriving the shared key.
If the ciphertext was considered valid, then we compute
the shared secret based on 𝐾 ′ that was derived from m′.
Otherwise, we build a fake shared secret applying the KDF
to 𝑧 and c. Since the attacker does not know 𝑧, the fake
shared secret 𝐾 is indistinguishable from a valid one, thus
not revealing additional information, and, since the output
is deterministic, repeating the same challenge will result in
exactly the same 𝐾 .

4. KyberSlash

We first start by briefly explaining the adversary model
for our attack: The attacker attempts to recover the long-
term secret key used by the target’s decapsulation procedure
of Kyber. We assume that the attacker has the ability to
communicate with the target decapsulation procedure with
chosen ciphertexts. This is a standard adversarial model used

in several chosen ciphertext based side-channel attacks [34],
[35], [36]. We assume that the attacker is able to observe
the execution timing of the decapsulation procedure.

We identified two timing vulnerabilities, which we call
KyberSlash1 and KyberSlash2, in implementations of di-
vision operations in Kyber. Sections 4.1 and 4.2 explain
KyberSlash1 and KyberSlash2 respectively.

4.1. KyberSlash1: Leakage from message decoding

The first timing vulnerability is present within the mes-
sage decoding operation within the decryption procedure
(Line 24 in PKE.Decrypt procedure in Fig. 1). This op-
eration denoted as Decode (𝑚′), essentially converts every
coefficient of 𝑚′ ∈ 𝑅𝑞 into corresponding bit of the de-
crypted message m′ ∈ Z256

2 . This decoding operation for
each coefficient of 𝑚′ is computed as follows:

m′ [𝑖] = (((𝑚′ [𝑖] ≪ 1) + KYBER_Q/2)/KYBER_Q) & 1;

This operation should be implemented in constant time
since the message polynomial 𝑚′ ∈ 𝑅𝑞 is sensitive, and
incremental information about 𝑚′ for chosen ciphertexts can
be used to recover the secret key sk [14], [35], [37]. Refer
to Fig 3 for the C code snippet of the message decoding
procedure, taken from the official reference implementation
of Kyber. Notice that this operation contains a division by
the Kyber prime (i.e. KYBER_Q) in Line 11 in Fig. 3.
We have added highlighting to our figures to emphasize
divisions with secret inputs. We compiled the code using
gcc 14.1 for the x86-64 architecture using the -Os com-
piler optimization flag, instructing gcc to optimize for code
size. Part of the resulting assembly is shown in Fig. 4 and
an idiv operation presenting a timing leak is highlighted
in red (Line 8). Previous versions of gcc result in similar
code containing idiv instructions. It is important to note
that this behavior is not observed for compiler optimization
flags -O0,-O1,-O2,-O3. We observe similar behavior
for many other platforms as shown in Appendix C.

1 void poly_tomsg(uint8_t msg[32], const poly *a)
2 {
3 unsigned int i,j;
4 uint16_t t;
5 for(i=0;i<KYBER_N/8;i++) {
6 msg[i] = 0;
7 for(j=0;j<8;j++) {
8 t = a→coeffs[8*i+j];
9 t += ((int16_t)t >> 15) & KYBER_Q;
10 /* Division by Kyber Prime */
11 t = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1;
12 msg[i] |= t << j;
13 }
14 }
15 }

Figure 3. C code snippet of message decoding operation, containing the
vulnerable division operation by the Kyber prime KYBER_Q.



1 ...
2 and ax, 3329
3 add eax, edx
4 movzx eax, ax
5 lea eax, [rax+1664+rax]
6 cdq
7 /* Variable-Time Division Instruction */
8 idiv r10d
9 and eax, 1
10 sal eax, cl
11 inc ecx
12 ...

Figure 4. Assembly code snippet of the message decoding operation
for a single coefficient, when compiled with gcc 14.1 for the x86-64
architecture using the -Os compiler optimization flag.

4.2. KyberSlash2: Leakage from ciphertext com-
pression

The second timing vulnerability is present within the
ciphertext compression operation within the encryption pro-
cedure (Line 17-18 in CPA.Encrypt procedure in Fig. 1).
The compression procedure essentially compresses each co-
efficient of the input 𝑢 ∈ 𝑅𝑞 as follows:

Compress 𝑞(𝑢[𝑖], 𝑑) = ⌈(2𝑑/𝑞) · 𝑥⌋ mod 2𝑑;
The ciphertext compression operation should also be

implemented in constant time, as it leaks information about
the recomputed ciphertext within the decapsulation proce-
dure (Line 16 of KEM.Decaps procedure in Fig. 2). The
recomputed ciphertext is considered sensitive, and leaks in-
formation about the secret key for chosen ciphertexts. Refer
to Fig. 5 for the C code snippet for ciphertext compres-
sion operation from the official reference implementation
of Kyber. This operation contains division by the Kyber
prime KYBER_Q, similar to that of the message decoding
procedure, that is highlighted in red (Line 9). Refer to
Fig. 6 for the assembly code snippet of a single iteration of
the message decoding operation when compiled with gcc
and -Os where the idiv operation is highlighted in red
(Line 7). We observe similar divisions for other platforms
as shown in Appendix D.

1 void poly_compress(uint8_t r[128], const poly *a)
2 {
3 unsigned int i,j; int16_t u; uint8_t t[8];
4 for(i=0;i<KYBER_N/8;i++) {
5 for(j=0;j<8;j++) {
6 u = a→coeffs[8*i+j];
7 u += (u >> 15) & KYBER_Q;
8 /* Division by Kyber Prime */
9 t[j] = ((((uint16_t)u << 4) + KYBER_Q/2)

/KYBER_Q) & 15;
10 }
11 r[0] = t[0] | (t[1] << 4);
12 r[1] = t[2] | (t[3] << 4);
13 r[2] = t[4] | (t[5] << 4);
14 r[3] = t[6] | (t[7] << 4);
15 r += 4;
16 }
17 }

Figure 5. C code snippet of the ciphertext compression operation, contain-
ing the vulnerable division operation by the Kyber prime KYBER_Q.

1 ...
2 movzx eax, ax
3 sal eax, 4
4 add eax, 1664
5 cdq
6 /* Variable-Time Division Instruction */
7 idiv r9d
8 and eax, 15
9 mov BYTE PTR [rsp-8+rsi], al
10 ...

Figure 6. Assembly code snippet of a single iteration of ciphertext compres-
sion operation, when compiled with gcc 14.1 for the x86-64 architecture
using the -Os compiler optimization flag.

5. KyberSlash1 demo

This section describes demo1-pi2, software demon-
strating exploitability of the KyberSlash1 variations in de-
capsulation timing in the end-of-November-2023 official
Kyber512 reference code running under Raspbian (gcc
8.3.0) on a Raspberry Pi 2 with a BCM2836 CPU, a quad-
core Cortex-A7 running at 900MHz.

5.1. Running the demo

The demo software consists of two files: a
script demo1-pi2.sh and the main attack code
demo1-pi2.c. Running three attack experiments is a
simple matter of running

sh demo1-pi2.sh; sh demo1-pi2.sh; sh demo1-pi2.sh

if both files are in the current directory. The script automat-
ically downloads the target Kyber code and compiles and
runs the demo. The script assumes that the packages git,
time, and build-essential are installed.

A typical experiment takes a few hours. A successful
experiment, i.e., an experiment recovering the full Kyber512
secret key, prints yes, eve succeeded. The demo was
observed succeeding ten times in ten experiments, with
run times of 2:13:53, 2:04:45, 3:32:45, 1:59:11, 3:23:30,
2:06:31, 2:34:05, 2:04:46, 3:16:21, 2:23:04.

The demo is not guaranteed to succeed: it gives up if
it has not found the key from timings of 7 · 218 decapsula-
tions. An earlier version of the demo, differing only in the
mechanism used to check the computer’s clock, succeeded
only twice in three experiments.

5.2. Soft divisions

On this platform, gcc -Os converts each division into
a call to a division subroutine divsi3. The CPU includes a
hardware division instruction, but by default gcc compiles
for an ABI that doesn’t guarantee division instructions.

Checking the cost of the divsi3 subroutine for di-
visions of 𝑛 by 3329, for each 𝑛 in the range of interest,
shows that there is a jump by 20 cycles when the numerator
𝑛 reaches 3329, a further jump by 2 cycles when 𝑛 reaches
4096, and a further jump by 1 cycle when 𝑛 reaches 8192.



5.3. Ciphertext selection

As noted above, this is a demo exploiting KyberSlash1,
specifically the division in the line

t = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1;

applied to each coefficient in the noisy message polynomial
𝑚′ = 𝑣′ − ⟨s, u′⟩, where s is the secret key and (u′, 𝑣′) is
the decompressed ciphertext.

Each input coefficient 𝑡 in 𝑚′ turns into a division of
2𝑡 +1664 by 𝑞 = 3329. Consequently, there is a big jump in
division cost on this platform when 𝑡 reaches 833, and there
are smaller jumps when 𝑡 reaches 1216 and 3264. The demo
chooses ciphertexts (u, 𝑣) so that these timings reveal the
coefficients in s, as explained in the following paragraphs.

A Kyber512 ciphertext (u, 𝑣) consists of three elements
u[0], u[1], 𝑣 of 𝑅𝑞 = Z𝑞 [𝑥]/(𝑥256 + 1), that is, 256-
coefficient polynomials, with each coefficient being an inte-
ger modulo 𝑞 = 3329. There are some constraints on the co-
efficients because ciphertext compression enforces rounding.
The secret key s consists of two elements s[0], s[1] of 𝑅𝑞 ,
each coefficient being between −3 and 3. The polynomial
𝑚′ mentioned above is 𝑚′ = 𝑣′ − s[0]u′ [0] − s[1]u′ [1].

Consider what decryption does when u′ [0] = 72𝑥100,
u′ [1] = 0, and 𝑣 = 2081 + 2081𝑥 + · · · + 2081𝑥254 + 208𝑥255.
Note that the final coefficient of 𝑣 is 208, not 2081. All of the
coefficients listed here are compatible with the constraints
on compressed ciphertexts.

The coefficient of 𝑥255 in 𝑚′ has the form 𝑚′ [255] =
208 − 72s[0] [155]. If s[0] [155] happens to be 3, then
𝑚′ [255] mod 3329 is 3321, producing a slow division. Oth-
erwise 𝑚′ [255] is between 64 and 424, producing a fast
division. Other coefficients in 𝑚′ are between 1865 and
2297, producing slow divisions with no obvious dependence
upon secrets.

Consider an optimistic model of total decapsulation
time as a constant plus the time for this division. Then
s[0] [155] = 3 produces slow decapsulation, while other
possibilities for s[0] [155] produce fast decapsulation, so de-
capsulation timings immediately distinguish s[0] [155] = 3
from the other possibilities. Replacing 72 with −72 similarly
distinguishes −3 from −2,−1, 0, 1, 2, 3; replacing 72 with
107, which is another allowed coefficient, distinguishes 2, 3
from −3,−2,−1, 0, 1; etc. Replacing 72𝑥100 with 72𝑥101

targets s[0] [154] instead of s[0] [155]. Exchanging the roles
of u′ [0] and u′ [1] targets s[1] instead of s[0].

Converting this into a complete attack demo was a
conceptually straightforward matter of filtering out the noise
that appears in real timings. The details are in Section B.
Optimizing this demo turned out to be unimportant, since
KyberSlash2 allows a more powerful attack approach, ex-
plained in Section 6.

6. KyberSlash2 demo

In this section, we discuss how an attacker can recover
the key using leakage from the ciphertext compression step
of the reencryption procedure.

6.1. Chosen ciphertexts to extract key information

Let us begin by defining how to build ciphertexts whose
decapsulation timings allow the attacker to learn information
on the secret key. Each malicious ciphertext is defined by 5
parameters: a 256-bit message m̂ ∈ Z256

2 , followed by four
integers 𝑢̂, 𝑣̂, 𝚤, and 𝚥. To build the malicious ciphertext, first
we compute (u, 𝑣) as

𝑣 = Encode (m̂) + 𝑣̂, and u[𝑖] =
{
−𝑢̂𝑥 (256− 𝚥) , if 𝑖 = 𝚤,
0, otherwise.

Remember that polynomial operations in Kyber are done in
𝑅𝑞 = Z𝑞 [𝑥]/

(
𝑥256 + 1

)
. Then, the malicious ciphertext is the

compression of (u, 𝑣), as defined by Kyber.
To avoid having to deal with additional noise from

compression and decompression, it makes sense to choose
attacking parameters 𝑢̂ and 𝑣̂ that are not significantly af-
fected by the lossy compression. This way, during decapsu-
lation, the malicious ciphertext produces the following noisy
message

𝑚′ = 𝑣 − ⟨s, u⟩ = Encode (m̂) + 𝑣̂ + 𝑢̂𝑥 (256− 𝚥)s[𝚤] .
More specifically, each coefficient of the noisy message 𝑚′
is defined as

𝑚′ [ 𝑗] =
{

m̂[0] ⌈𝑞/2⌉ + 𝑣̂ − 𝑢̂s[𝚤] [ 𝚥], if 𝑗 = 0,
m̂[ 𝑗] ⌈𝑞/2⌉ − 𝑢̂s[𝚤] [ 𝑗], otherwise.

We can now see that, since s[𝚤] is a polynomial of small
coefficients, if 𝑢̂ is sufficiently small, then 𝑚′ [ 𝑗] will be
correctly decoded, for all 1 ≤ 𝑗 < 256. However, whether
𝑚′ [0] would be correctly decoded depends on how large the
noise defined by 𝑣̂, 𝑢̂ and s[𝚤] [ 𝚥] is. Therefore, if an attacker
is careful in their selection of 𝑣̂, 𝑢̂, they may be able to learn
the coefficient s[𝚤] [ 𝚥] when they have the information on
whether 𝑚′ is correctly decrypted to m̂ or not.

This is the core observation used by what are called
plaintext-checking (PC) oracle attacks [4], [34], [35], [36],
[38], [39]. PC-oracle attacks are a generic class of attacks
that assume access to an oracle that, given a ciphertext c
and a message m̂, returns whether c was decrypted to m̂
or not. Next we discuss how to build a PC-oracle using the
decapsulation time, and how it can be used to recover the
secret key.

6.2. PC-oracle attack using decapsulation time

Take a pair of 256-bit messages m̂0 and m̂1 that differ
only in their first bits, and assume that m̂0 [0] = 0 and
m̂1 [0] = 1. Then, it is possible [34], [38] to find a small
set of pairs (𝑢̂, 𝑣̂) such that the knowledge on whether the
malicious ciphertext built with parameters (m̂0, 𝑢̂, 𝑣̂, 𝚤, 𝚥) is
decrypted to m̂0 or m̂1 completely characterizes the secret
key coefficient s[𝚤] [ 𝚥]. In our attack, we used the same
parameters (𝑢̂, 𝑣̂) as the ones used by Ravi et al. [38], which
are shown in Table 2.

Now, to use these ciphertexts to mount an attack relying
on KyberSlash2, we proceed as follows. Generate a pair of



TABLE 2. THE EFFECT OF (𝑢̂, 𝑣̂) IN THE DECODED MESSAGES FOR
EACH POSSIBLE SECRET COEFFICIENT, CONSIDERING KYBER768 [38].

s[𝚤] [ 𝚥] Attack parameters (𝑢̂, 𝑣̂)
(207, 937) (2, 729) (106, 521) (106,−728)

−2 m̂1 m̂1 m̂0 m̂0
−1 m̂1 m̂1 m̂0 m̂0

0 m̂1 m̂0 m̂0 m̂0
1 m̂0 m̂0 m̂0 m̂0
2 m̂0 m̂0 m̂0 m̂1

messages (m̂0, m̂1) differing only in their first bits, and let
c0 and c1 be their corresponding uncompressed encryptions
using Kyber’s CPA encryption algorithm. Let 𝑡0 and 𝑡1 be
the decapsulation times when m̂0 and m̂1 are observed
after decryption of the malicious ciphertext generated with
parameters (m̂0, 𝑢̂, 𝑣̂, 𝚤, 𝚥). Notice that the randomness used
when computing ciphertexts c0 and c1 come from the hashes
of m̂0 and m̂1, respectively, thus the encryption of c0 and
c1 should not share any noticeable similarities.

In an idealized scenario where perfect timing is available
and KyberSlash2 is the only leakage from the implementa-
tion, then 𝑡0 is expected to be slightly different than 𝑡1. If
𝑡0 = 𝑡1, then we can simply restart the process with different
pairs (m̂0, m̂1) until such a difference is observed. This
means that, from the decapsulation time, the attacker can
infer whether m̂0 or m̂1 was observed during decryption.
Now, given a pair of indexes (𝚤, 𝚥), the attacker can verify,
for each of the 4 parameters (𝑢̂, 𝑣̂) from Table 2, which row
matches their observations, thus learning secret coefficient
s[𝚤] [ 𝚥]. By iterating over the possible 𝑘𝑛 index parameters
(𝚤, 𝚥), the attacker then learns the full secret key s.

There are, however, two problems when using this ap-
proach in real attacks: in some setups, time measurements
come with noise, and the leakages from KyberSlash1 and
KyberSlash2 may interfere. In the following, we show how
to recover the key in real-world noisy environments.

6.3. Key recovery under noisy setups

From the last sections, we know that the problem of key
recovery reduces to classifying the observed decapsulation
time into m̂0 or m̂1. However, because of the interference
between KyberSlash1 and KyberSlash2, the distributions
that we need to distinguish may not be well separated, as
shown in Figure 7a. We now present a series of observations
that allow us to simplify this classification by using a careful
choice of ciphertexts to be decapsulated.

6.3.1. Separating the analysis for pairs (𝑢̂, 𝑣̂). The most
important observation is that the leakage from KyberSlash1
is very dependent on the value of 𝑢̂. This happens because
𝑢̂ scales the secret coefficients, resulting in different base-
lines for the coefficients upon which the message decod-
ing procedure will act. Therefore, we should analyze the
leakage distribution for each of the pairs (𝑢̂, 𝑣̂) separately.
Figure 7b illustrates how, by focusing on only one pair,
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(a) Interference between KyberSlash1 and KyberSlash2.
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(b) Leakage within the same group of parameters (𝑢̂, 𝑣̂) = (2, 729) .
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(c) Leakage for (𝑢̂, 𝑣̂) = (2, 729) considering the most separated pair
(m̂0, m̂1 ) of messages among 𝜋 = 500 randomly generated pairs.
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(d) Average leakage for (𝑢̂, 𝑣̂) = (2, 729) using 𝜇 = 20 pairs (m̂0, m̂1 ) .
Figure 7. The series of observations that allow us to increase the separation
of the distributions that we need to distinguish for key recovery. We
considered parameters for Kyber768, and the values are simulated using
our model for the Cortex-M4 division time.

namely 𝑢̂, 𝑣̂ = (2, 729), we get a simpler pair of distributions
to distinguish.

6.3.2. Dealing with random noise. The simplest way to
deal with random timing noise is to repeat the measure-
ment a number 𝜌 times and compute some robust measure
(e.g. median) over the observed values. However, since
the leakage from KyberSlash1 is completely determined by
the ciphertext, we cannot get rid of it by repeating the
measurement for the same ciphertext. One way of lowering
the effect of both measurement and KyberSlash1 noise in
the separation is to be more careful in the selection of the
pair of messages (m̂0, m̂1).

Our idea is to generate a number 𝜋 of message pairs
(m̂0, m̂1), and select the pair whose KyberSlash2 leakage is
separated by the largest number of cycles. Notice that this
can be done offline, using only the target’s public key, and



TABLE 3. CLOCK CYCLES OF UDIV INSTRUCTION WITH NUMERATOR 𝑛

AND DENOMINATOR 𝑑 ON ARM CORTEX-M4 (STM32F407VG). FOR A
SIMPLER DESCRIPTION, WE LET 𝑑FL = 2⌊log2 𝑑⌋ .

Case Clock cycles Range of 𝑛 with 𝑑 = 3329

𝑑 = 0 or 𝑛 = 0 2 0
𝑛/𝑑FL < 1 3 1 to (211 − 1)
𝑛/𝑑FL < 24 5 211 to (215 − 1)
𝑛/𝑑FL < 28 6 215 to (219 − 1)
𝑛/𝑑FL < 212 7 219 to (223 − 1)
𝑛/𝑑FL < 216 8 223 to (227 − 1)
𝑛/𝑑FL < 220 9 227 to (231 − 1)
𝑛/𝑑FL < 224 10 231 to (232 − 1)
𝑛/𝑑FL < 228 11 –
𝑛/𝑑FL ≥ 228 12 –

a model of the division timing for the target device. For
the Arm Cortex-M4, the Technical Reference Manual [40]
states that a udiv instruction takes 2–12 cycles depending
on input data. We have reverse engineered the division
timings for the common STM32F407VG (present on the
STM32F407-Discovery board) and show the results on
Table 3. We performed similar (but less extensive) experi-
ments on the STM32L476RG suggesting that the ultra-low-
power L4 series has the same division timings. While we
present timings for arbitrary denominators, for KyberSlash
only the column with 𝑑 = 3329 is relevant showing cross-
over points at 1, 211, 215, 219, 223, 227, 231. For 𝑑 = 3329,
we have confirmed these timings through exhaustive search
over the entire numerator space. This shows that for a fixed
denominator, the division timing grows monotonically in
the value of the numerator allowing to binary search the
cross-over points. For variable denominator, we have picked
random denominators and specially formed denominators
(very small values and powers of two) and searched for
the corresponding cross-over points using binary search. We
have performed similar reverse enginerring for the more
complex application-profile processors Arm Cortex-A55 and
Arm Cortex-A72 and present the results in Appendix A.

We can then use the division time model for the target
microarchitecture to select the best pair (m̂0, m̂1) of mes-
sages out of 𝜋 pairs generated at random. Figure 7c shows
how the selection among 𝜋 = 500 pairs allows to better
distinguish between the two messages.

6.3.3. Reducing the noise from KyberSlash1. We observe
that it is possible to actively reduce the noise from Kyber-
Slash1 if, instead of using only one message pair (m̂0, m̂1)
for building the malicious ciphertexts, we use a collection of
𝜇 pairs. Because each message pair has its own KyberSlash1
leakage baseline, using more pairs and taking the average
leakage allow us to significantly reduce the deterministic
noise. The effect of averaging the result for 𝜇 = 20 pairs is
illustrated in Figure 7d.

6.3.4. Key recovery. Synthesizing our 3 methods of dealing
with noise, we have the following parameters:

• 𝜌 is the number of repetitions we use for each
ciphertext to lower random measurement noise;

• 𝜋 is the number of candidate pairs (m̂0, m̂1) we test
offline to select only the one whose KyberSlash2
leakage is the most separated. We have used 100,000
for all experiments as it results in sufficient separa-
tion and ciphertext generation still terminates within
seconds.

• 𝜇 is the number of pairs (m̂0, m̂1) that we actually
use when performing the attack.

Therefore, to attack Kyber768 using this setup, the num-
ber of decapsulations is 4𝜌𝜇𝑘𝑛, where the factor of 4 comes
from the number of pairs (𝑢̂, 𝑣̂) needed to distinguish the
secret coefficients (see Table 2).

Now, given the decapsulation time for each of the 4𝜌𝜇𝑘𝑛
ciphertexts, we proceed as follows. First we take the median
of the 𝜌 repetitions of each ciphertext and consider this value
as the observed time. Then we group each set of ciphertexts
with the same parameters (𝑢̂, 𝑣̂, 𝚤, 𝚥), and take the average
decapsulation time of the 𝜇 resulting values. We are now
left with a set of 4𝑘𝑛 values that we need to classify.

For each pair (𝑢̂, 𝑣̂), we use a Gaussian mixture model
(GMM) to give the probability that the decapsulation time
is associated with m̂0 or m̂1. We remark that the GMM is
a rather simple model that does not require any training or
complicated parameters. We also tested the performance of
𝑘-means unsupervised clustering, but it did not perform as
well as the GMM. Furthermore, the probabilities that GMM
outputs are very useful when evaluating the likelihood of
each row in Table 2 since, not only we are able to find the
most suitable value of s[𝚤] [ 𝚥], we can also rank the different
possibilities values by their likelihoods.

6.4. Experiments

We present software demonstrating our attack on
Cortex-M4 implementations from pqm4 [41] described
in [42]. We target the Kyber768 parameter set, but the
attack script is straightforwardly modified to all parameter
sets of Kyber. The vulnerable functions (poly_tomsg,
poly_compress, polyvec_compress) are verbatim
copies of the Kyber reference implementations. We use the
4956a30 version of pqm4 which is the commit before the
KyberSlash fixes have been ported to pqm4. We use the Arm
GNU compiler toolchain version 13.2.1.Rel1 from 15.
We target the STM32F407VG Cortex-M4 (present on the
STM32F407-Discovery board).

We implement a simple Python script m4.py that can be
used to perform the attacks. It takes care of generating the
corresponding ciphertexts, assembling the software to be run
on the board, flashing the software to the board, executing
the experiment, and attempting key recovery. In the end it
reports if the secret key was recovered successfully. We
present two versions of attack software and describe the
experiments and results in more detail in the following.

15. https://developer.arm.com/downloads/-/
arm-gnu-toolchain-downloads

https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads


Figure 8. demo2b experiment setup. The target device (left) receives
ciphertext from the attacker device (right) through the purple and gray
jumper cables (USART3 to USART2) and reports back after decapsulation
has completed. The attacker device receives the ciphertexts generated on
the host through USART2 (yellow and orange jumper cables), forwards
them to the target device through USART3, and reports the timings back
to the host.

6.4.1. Local attacker (demo2a). The first version performs
cycle counting directly on the target device returning exact
cycle counts of the decapsulation to the attacker (the host).
Due to the simplicity of the the Cortex-M4 microarchitecture
this results in predictable and deterministic cycle counts
exactly matching our expectations for timing differences due
to KyberSlash1 and KyberSlash2.

As we do not have any noise in this setup, the attack
succeeds with a minimum number of measurements: We
use the lowest sensible number of messages (𝜇 = 2), and
only perform a single measurement (𝜌 = 1) per ciphertext
resulting in 𝑛 · 𝑘 · 8 = 6144 decapsulations. We make use of
the 32-bit DWT_CYCCNT cycle counter on the target device
allowing us to obtain the exact number of clock cycles a
decapsulation took. This cycle count is then sent back to
the host using USART which attempts the key recovery.
We clock the the target at the maximum clock frequency of
168 MHz at which one decapsulation requires approximately
900,000 clock cycles.

An end to end attack takes approximately four minutes
out of which only 33 seconds are spent on actual decap-
sulations, while the remaining overhead is dominated by
serial communication with the target device. We achieve
significantly higher baud rates using a USB-TTL adapter
with a FDTI FT232 chipset rather than the cheaper and more
common USB-TTL adapters with a Prolific PL2303 chipset.
We determine 806,400 bps as the maximum baudrate for
which our setup works reliably.

We perform 10 experiments and successfully recover the
secret key in each of them. Running the attack with the
above parameters can be done by invoking m4.py:
./m4.py -i 1 -n 2

6.4.2. Remote attacker (demo2b). The second more prac-
tical version of the attack software does not make use of

the cycle counter on the target device, but instead performs
the timing on the device interacting with the target device.
The target reports back using USART after completing the
decapsulation, but does not report the cycle counts passed.
Note that this adds some noise especially due to the USART
clock being much slower than the core clock. For simplicity,
we make use of a second Cortex-M4 performing the timing
and passing it on to a host laptop. The setup is shown in
Figure 8.

The experiments proceed similarly as before, except that
there is an intermediate Cortex-M4 that acts as a proxy
for the ciphertexts and performs the timing. To improve
the reliability of the timing, we make use of interrupts for
receiving from the target device (USART3). Between the
two boards, we use the highest baud rate that reliably works,
which is 768,000 bps for our setup. Furthermore, we clock
the target device at a lower clock frequency (24 MHz) than
the attacker device (168 MHz) improving the accuracy of
our timings.

We achieve reliable key recovery when using 𝜇 = 2 and
𝜌 = 4. A full experiment takes around 20 minutes out of
which 17 minutes are spent on decapsulations. Note that,
for 𝜌 > 1, we only transmit the ciphertext once which may
not be possible for a real attack. One could also increase
𝜇, rather than 𝜌, however, increasing 𝜇 in our setup results
in a much more significant increase in runtime due to the
slow serial communication. We perform 10 experiments and
successfully recover the secret key in each of them. Running
the remote attack can be done by executing

./m4.py -i 4 -n 2 -r

6.4.3. Other platforms. We have performed similar ex-
periments on the Arm Cortex-A55 (which is part of the
Qualcomm Snapdragon 888 present in many smartphones)
and successfully recovered the secret key when obtaining
cycle counts using Perf. However, the measurements in that
case contain significantly more noise than in the Cortex-
M4 experiments, therefore we require significantly more
decapsulations for recovering the key. Nevertheless, in this
setup the transmission of the ciphertext is less time consum-
ing than in the M4 experiments, and it is hence preferable
to increase 𝜇 as discussed before. We have successfully
recovered a secret key for 𝜇 = 40 and 𝜌 = 300 once, but
have not yet performed any larger experiments.

7. Detecting secret-dependent divisions

There are many software-analysis tools aimed at sys-
tematically ensuring that secrets are not used as branch
conditions or as memory addresses, the two most famous
sources of timing attacks. The best usability scores in a
recent study [43] come from a dynamic-analysis tool, TIME-
COP, which has been applied to many existing cryptographic
implementations. On the other hand, dynamic-analysis tools
inherently catch only what is visible during specific program
runs. Those runs do not always achieve the necessary path
coverage; the best guarantees require static analysis.



This section investigates what can be done to systemat-
ically ensure that secrets are not used as inputs to division
instructions. Section 7.1 covers dynamic analysis of many
existing cryptographic implementations, and Section 7.2
covers high assurance as a spinoff of formal verification.

7.1. Dynamic scanning using Valgrind

TIMECOP was introduced in [44] as a patch to the SU-
PERCOP test framework [12]. An evolution of TIMECOP is
now maintained as part of SUPERCOP. We have modified
TIMECOP to check not just for secret branch conditions
and secret load/store addresses but also for secret divisions.

7.1.1. Patching Valgrind. Internally, like various other
constant-timeness tools going back to ctgrind [11], TIME-
COP runs cryptographic software under the Valgrind tool
– specifically, under Valgrind’s Memcheck memory error
detector [45]. Our main patch is to Memcheck, and is
designed to also be usable via Valgrind-based tools other
than TIMECOP, or by developers using Valgrind directly
for ad-hoc tests; see Section 7.1.2.

Memcheck applies binary instrumentation to a program
to detect, among other things, whether a program uses
uninitialized values in non-trivial ways. In particular, it
tests for uninitialized branch conditions and uninitialized
load/store addresses. Tools such as TIMECOP mark secret
data as uninitialized via a Valgrind “client request” [45,
§3.1]. Memcheck does not test for uninitialized divisions;
this is why a patch is needed.

Our patch, extending a simple 2015 prototype from
Dove and Vasiliev [46], issues a warning when a client
program uses a division instruction – such as sdiv or
udiv on AArch64, or idiv or div on x86-64 – to operate
on a secret (or uninitialized) data item. The patch also
includes preliminary support for catching other variable-
latency instructions. We developed the patch for Valgrind
3.22.0 (released October 2023), and it continues to work
with Valgrind 3.23.0 (released April 2024).

The patch also modifies Memcheck to print a distinct
error message for these operations, to make the operations
easier to spot by human readers and scripts. To allow
smooth future integration into upstream Valgrind, the patch
checks for variable-latency instructions as a run-time option,
skipped by default but enabled by a new Valgrind client
request VALGRIND_ENABLE_TIMECOP_MODE.

7.1.2. Small-scale example: Kyber. We modified the test
program ref/test/test_kyber.c from the November
2023 Kyber reference code, to invoke the Valgrind client
request for the new checking mode, to mark the random
number generator’s output as “uninitialized” (i.e. potentially
secret), and to mark public key data as “initialized”.

We cross-compiled, for Linux/AArch64, the patched
version of Valgrind, as well as the November 2023 version
of the Kyber test programs linked with the Kyber512, Ky-
ber768, and Kyber1024 implementations. The Kyber code
was built at optimization levels -O0, -O1, -Os, -O2, and

==7174== Conditional jump or move depends
on uninitialised value(s)

==7174== at 0x108BBC: rej_uniform (indcpa.c:140) ...
==7174== Variable-latency instruction operand

of size 4 is secret/uninitialised
==7174== at 0x1090CC: pqcrystals_kyber512_ref_

polyvec_compress (polyvec.c:48) ...
==7174== Variable-latency instruction operand ...
==7174== at 0x109358: ...poly_compress (poly.c:28) ...
==7174== Variable-latency instruction operand ...
==7174== at 0x10952C: ...poly_tomsg (poly.c:191) ...

Figure 9. Sample of Valgrind log showing detection of variable-latency
instructions, in modified test_kyber.c with Kyber512, compiled with
gcc 11.2.1 for AArch64 with -Os

-O3, and with debugging information enabled (-g). The
builds were done on an Apple MacBook Pro (2018) with an
Intel x86-64 Core i7, running Alpine Linux 3.19, and with
a gcc 11.2.1 cross-compilation toolchain16. We then ran
the Kyber test programs under Valgrind, using the QEMU17

emulator.
The Valgrind runs produced instrumentation logs, as

partially shown in Figure 9. For the -Os binaries, the runs
flagged

• lines 28 and 191 of poly.c (poly_compress,
poly_tomsg), and line 48 of polyvec.c, for
Kyber512 and Kyber768,

• and lines 43 and 191 of poly.c, and line 24 of
polyvec.c, for Kyber1024,

as being involved in variable time operations. The flagged
instructions correspond to loads of operands for the vulnera-
ble divisions, or operands to be combined with results from
the divisions (Figure 10). Moreover, all of the KyberSlash
divisions were successfully detected by this method.

We thus show that patching Valgrind can be a practical
way to uncover this class of timing vulnerabilities.

7.1.3. Large-scale example: SUPERCOP. Beyond the Val-
grind patch, we patched SUPERCOP to provide TIMECOP
as part of SUPERCOP’s multi-core dependency-tracking
data-do tool for collecting and updating a large database
of test results, whereas previously SUPERCOP provided
TIMECOP only as part of a single-core non-dependency-
tracking do-part tool aimed at developers testing their
own code.

The current development version of SUPERCOP con-
tains 4433 implementations of 1383 cryptographic prim-
itives, all following SUPERCOP’s API, which has also
been adopted by various cryptographic competitions and
cryptographic libraries. Within these 4433 implementa-
tions, 1283 are marked as goal-constbranch and
goal-constindex, meaning that they are designed to
avoid secret-dependent branches and array indices. This is
also what triggers implementations to be considered by
TIMECOP; this does not always mean that they pass TIME-
COP.

16. https://musl.cc
17. https://www.qemu.org

https://musl.cc
https://www.qemu.org


...
t[k] = a→vec[i].coeffs[4*j+k];
10cc: 78e27828 ldrsh w8, [x1, x2, lsl #1]

t[k] += ((int16_t)t[k] >> 15) & KYBER_Q;
10d0: 0a887ce2 and w2, w7, w8, asr #31
10d4: 0b080042 add w2, w2, w8

t[k] = ((((uint32_t)t[k] << 10)
+ KYBER_Q/2)/ KYBER_Q) & 0x3ff;

10d8: 53163c42 ubfiz w2, w2, #10, #16
10dc: 111a0042 add w2, w2, #0x680
10e0: 1ac70842 udiv w2, w2, w7
...

u = a→coeffs[8*i+j];
1358: 78e27826 ldrsh w6, [x1, x2, lsl #1]

u += (u >> 15) & KYBER_Q;
135c: 0a867ca2 and w2, w5, w6, asr #31
1360: 0b060042 add w2, w2, w6

t[j] = ((((uint16_t)u << 4) + KYBER_Q/2)
/KYBER_Q) & 15;

1364: 531c3c42 ubfiz w2, w2, #4, #16
1368: 111a0042 add w2, w2, #0x680
136c: 1ac50842 udiv w2, w2, w5
...

t = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1;
msg[i] |= t << j;
152c: 38636805 ldrb w5, [x0, x3]
1530: 531f3c42 ubfiz w2, w2, #1, #16
1534: 111a0042 add w2, w2, #0x680
1538: 1ac60842 udiv w2, w2, w6
...

for(j=0;j<8;j++) {
1544: 11000484 add w4, w4, #0x1

msg[i] |= t << j;
1548: 2a050042 orr w2, w2, w5
154c: 38236802 strb w2, [x0, x3]
...

Figure 10. Disassembly showing secret operands flagged by patched
Valgrind, and corresponding variable-latency instructions, in modified
test_kyber.c with Kyber512, compiled with gcc 11.2.1 for AArch64
with -Os

For example, two of the primitives are Kyber512
and Kyber768. The Kyber768 primitive has three imple-
mentations in SUPERCOP, in three subdirectories ref,
compact, and avx2 of the crypto_kem/kyber768
directory. All of these are marked as goal-constbranch
and goal-constindex. The compact implementation
passes TIMECOP but the ref and avx2 implementations
do not. All of the implementations have rejection-sampling
loops; the reason the compact implementation passes
TIMECOP is that it has an extra line of code to declassify
the rejection condition.

SUPERCOP compiles each implementation with a list
of compilers. The default list includes gcc -O, gcc -O2,
gcc -O3, gcc -Os, in each case with -march=native
and -mtune=native to optimize for the host CPU,
-fwrapv to avoid a well-known class of vulnerabilities,
and -fPIC -fPIE for position independence. The default
list also includes five clang options. It is important to
note that analyzing binaries cannot make any guarantees
about what will happen when there are changes in compiler
options (e.g., a project not using -fwrapv), compiler ver-
sions, choice of compiler, and CPU; there is simply the hope
that trying more combinations will catch more problems.

We restricted SUPERCOP to the 1283 implementations
described above—except that we included SUPERCOP’s

four implementations of New Hope CCA, an ancestor of
Kyber, by simply marking them as goal-constbranch
and goal-constindex. As in Section 7.1.2, we added
-g to the compiler options so that Valgrind output would
mention line numbers in source code. We then ran our
patched TIMECOP, along with SUPERCOP’s usual tests
and benchmarks. We used a dual AMD EPYC 7742 (128
cores in total) with 512GB of RAM. We compiled natively
to include, e.g., AVX2 implementations; of course, this also
meant that the run was excluding, e.g., Arm implementa-
tions. The machine owner had disabled overclocking both
for security reasons and for hardware-longevity reasons, so
the CPUs were limited to 2.245GHz. The machine is running
Debian 12, with gcc 12.2.0 and clang 14.0.6. The run com-
pleted in 87 minutes of real time, using 5786 minutes of user
time and 193 minutes of system time. Spot-checks during
the run showed that all cores were in use at the beginning
(with variable RAM usage, typically around 20GB in total
for 128 threads), but half the real time was spent waiting for
implementations of a few particularly expensive primitives
to finish.

This patched TIMECOP run successfully detected vari-
ous divisions, all of which were specifically the New Hope
code with gcc -Os (and not clang -Os). For example,
within newhope1024cca/avx2, Valgrind pointed to line
77 of poly.c. Manually checking that line finds a di-
vision by NEWHOPE_Q. Within newhope1024cca/ref,
Valgrind pointed to lines 16, 41, 82, 83, 84, 85, 115, 116,
354, and 370 of poly.c, along with line 215 of ntt.c.
Manually checking these lines finds that line 16 of poly.c
is the starting brace of a short function inlined into lines
41, 82, 83, 84, 85, and 115, with a division (actually a mod
operator, %) on line 19. The other line numbers are directly
pointing to divisions in the code.

A separate scan of the New Hope source code finds
other division operators, such as an r / 8 division in
fips202.c. What distinguishes the TIMECOP results
from such a scan is that TIMECOP locates divisions applied
to data derived from secret inputs.

As a further experiment, we tried adding all of the
KEMs in SUPERCOP and starting an incremental run.
Like the first run, this finished in under 2 hours real time.
The output contains 11610 “Variable-latency” lines; the
immediately following lines have 2133 different instruction
pointers coming from 556 different lines of code in 139
different implementations. A full analysis of those 556 lines
of code would be a large project, but here are two illustrative
examples. The first report in alphabetical order points to
crypto_kem/hila5/avx2, specifically a line saying
% (HILA5_Q / 4) in kem.c. The last in alphabetical
order points to crypto_kem/sikep751/ref, specifi-
cally line 263 of tdiv_qr.c, which is actually inside
the GMP library for big-integer arithmetic. SIKE has been
broken in other ways, but this example illustrates the ability
of binary analysis to automatically investigate subroutines.

These experiments show that TIMECOP’s data-flow
analysis, including our patches, can be efficiently applied
to large volumes of existing cryptographic software within



SUPERCOP’s API, in particular producing many examples
of data flow from secrets to division instructions. Of course,
this does not imply that the examples are exploitable. We
also emphasize that the analysis is not a guarantee: it is
limited to the binaries created in the TIMECOP run, and to
the code paths that are actually taken in the TIMECOP run.

7.2. Using formal methods

Another approach that can help programmers detect and
prevent bugs like KyberSlash is the use of formal verification
tools. Indeed, KyberSlash1 was first discovered by some of
the authors of this paper when they were trying to formally
verify a Rust implementation of Kyber.

The security ideal for cryptographic code is secret in-
dependence, that is, the attacker-observable behavior of a
program should not depend on its secret inputs. This means
that the program should, of course, not reveal its secrets
via its input-output behavior, but also that it does not leak
secrets via (say) the program’s runtime or memory accesses.

There are several variations and formal definitions of
secret independence defined in the literature that cover
different subsets of side-channel attacks. The most com-
mon definition seeks to prevent branching on secrets, non-
constant-time arithmetic operations (such as division) on
secrets, and using secrets as array indexes or memory ad-
dresses. This discipline is sometimes called cryptographic
constant time. [47]

There are a variety of tools that seek to ensure secret
independence in cryptographic code. We refer the reader
to recent surveys of these tools and evaluations of their
usability for a more complete picture. [43], [48], [49] In
the rest of this section, we use the definition of secret inde-
pendence that is used in the HACL∗ verified cryptographic
library [50], whose formal guarantees are defined and proven
for C programs generated from the F∗ programming lan-
guage [51].

7.2.1. Secret independence by typechecking. To use any
of the formal verification tools on cryptographic code, we
must begin by labeling every input and output as either
public or secret. In expressive dependently-typed languages
like F∗, these secrecy labels can be embedded within the
type of each variable, alongside other logical properties
needed for correctness (e.g. the range of integers that may
be contained in the variable). By default, it is safe to assume
that all inputs and outputs within cryptographic code is
labeled secret, and the programmer only needs to annotate
inputs and outputs that they know to be public.

To verify these labels, we then need to annotate all
the primitive operations in the language to reflect our as-
sumptions about whether or not they leak information about
their inputs via side-channels. If an operation may leak
information about one of its inputs, then that input is labeled
as public, preventing cryptographic code from calling it with
a secret value. For example, we typically label both inputs to
the division operation as public, and on some platforms we
may also want to label inputs to certain multiplications as

public. The labels given to language primitives and external
libraries are trusted and hence must be carefully reviewed to
ensure that they capture the operational details of the target
platforms.

In the F∗ library used in HACL∗, for example, the types
u8 and i16 are defined to be secret integers and arithmetic
operations like division and modulus are not defined for
them. Furthermore, secret integers cannot be compared or
used as array indexes. All these operations are only available
for values declared with the public integer types pub_u8
or pub_i16. Public integers can be converted to secret
integers, but converting a secret integer to a public integer
requires a call to an explicit declassify operation, every
use of which needs to be carefully audited.

Given such a secrecy labeling for a program and all
the libraries it uses, the type checker can statically verify
that the program is secret independent, and point out any
parts of the code where the discipline is violated. It is worth
noting that such a typing discipline does not really need the
full expressiveness of F∗; it can easily be implemented in
any type system that supports abstract types and interfaces,
including Rust and Java.

7.2.2. Finding KyberSlash with F*. The first variant of
KyberSlash was found during a larger project of formally
verifying a Rust implementation of ML-KEM by translating
it to F∗ and then proving its correctness. As a first step
towards a correctness proof, we tried to prove that the
translated ML-KEM F∗ code was secret independent. By
using the default integer types, all the inputs and outputs
in our code were initially labeled as secret. Then, inputs
that are public, such as algorithm parameters or public keys
are manually labeled as public by changing their types
to use public integers. Finally, outputs that need to be
revealed to the application, such as ML-KEM ciphertexts,
are declassified from secret to public.

When we then run the F∗ tyepchecker on the F∗ code
generated from the Rust implementation, it immediately
finds and flags the secret dependent division on line 5:

1 let compress q (coefficient bits: u8) (fe: u16) =
2 let compressed:u32 = (cast (fe <: u16) <: u32) <<!
3 (coefficient bits +! 1uy <: u8) in
4 let compressed:u32 = compressed +! v FIELD MODULUS in
5 let compressed:u32 = compressed /!
6 (v FIELD MODULUS <<! 1ul) in
7 get n least significant bits coefficient bits compressed

To fix this type error, we could label the input field
element as pub_u16 to indicate that it is public, and then
prove that this input is indeed public at all call sites, which
would fail since this function is used to compress the IND-
CPA message coefficient. And if the function was going to
be used with secret inputs, we need to rewrite the Rust code
to not use division.

Initially, we did both. We wrote a separate function
for compressing message coefficients that treated the input
field element as secret, and we kept this function for com-
pressing IND-CPA ciphertext coefficients, since we were
(incorrectly) assuming that the ciphertexts were public and



declassifying them. Later, when KyberSlash2 was discov-
ered, we fixed our model and moved this declassification
from the IND-CPA ciphertexts to the IND-CCA ciphertexts.
When we do so, the KyberSlash2 variant also gets flagged
by the F∗ typechecker, and we subsequently reimplemented
ciphertext compression as well.

This experience shows both the strengths and the weak-
nesses of our approach. As long as we correctly annotate
and review all public inputs and outputs, the typechecker is
able to find secret independence bugs. However, one must
be careful when reflecting cryptographic assumptions in the
secrecy labeling, or we may miss attacks.

7.2.3. Limitations and Future Directions. When writing
code in a compiled language such as Rust or C, the method-
ology described above ensures that there are no obvious
timing leaks. However, even when carefully writing and for-
mally checking the source code, the compiler may produce
secret-dependent code.

The formal verification guarantees we obtain from F∗
above are at the level of source code, and nothing we check
here guarantees that the compiler or microarchitecture will
not introduce new side-channels that were not visible in the
source language semantics.

Modern compilers optimize code aggressively for perfor-
mance when using high optimization levels. During this pro-
cess operations such as masking or shifts may be converted
into conditional jumps. Techniques as described in 7.1 can
be used to analyze the compiled code and detect compiler-
introduced secret-dependent operations. To get more formal
guarantees, one would need to apply the secret independence
checks at the level of machine code, using techniques like
those used in the Jasmin assembly implementation of ML-
KEM [29].
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M. Van Beirendonck, “Attacking and defending masked polynomial
comparison for lattice-based cryptography,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, pp. 334–359, 2021.

[37] P. Ravi, S. S. Roy, A. Chattopadhyay, and S. Bhasin, “Generic
side-channel attacks on CCA-secure lattice-based PKE and KEMs,”
IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 3, pp.
307–335, 2020. [Online]. Available: https://doi.org/10.13154/tches.
v2020.i3.307-335

[38] P. Ravi, S. Deb, A. Baksi, A. Chattopadhyay, S. Bhasin, and
A. Mendelson, “On threat of hardware trojan to post-quantum lattice-
based schemes: a key recovery attack on Saber and beyond,” in Inter-
national Conference on Security, Privacy, and Applied Cryptography
Engineering. Springer, 2021, pp. 81–103.

[39] Q. Guo, T. Johansson, and A. Nilsson, “A key-recovery timing attack
on post-quantum primitives using the Fujisaki-Okamoto transforma-
tion and its application on FrodoKEM,” in Annual International
Cryptology Conference. Springer, 2020, pp. 359–386.

[40] Arm Limited, “Cortex-M4 Technical Reference Manual.” [Online].
Available: https://developer.arm.com/documentation/ddi0439/latest

[41] M. J. Kannwischer, R. Petri, J. Rijneveld, P. Schwabe, and K. Stoffe-
len, “PQM4: Post-quantum crypto library for the ARM Cortex-M4,”
https://github.com/mupq/pqm4.

[42] J. Huang, J. Zhang, H. Zhao, Z. Liu, R. C. C. Cheung, Ç. K.
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TABLE 4. CLOCK CYCLES OF UDIV INSTRUCTION WITH NUMERATOR 𝑛

AND DENOMINATOR 𝑑 ON ARM CORTEX-A55 (SNAPDRAGON 888).
FOR A SIMPLER DESCRIPTION, WE LET 𝑑FL = 2⌊log2 𝑑⌋ .
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𝑛/𝑑FL < 210 5 217 to (221 − 1)
𝑛/𝑑FL < 214 6 221 to (225 − 1)
𝑛/𝑑FL < 218 7 225 to (229 − 1)
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𝑛/𝑑FL ≥ 230 11 –
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Appendix A.
Division leakage for other devices

Table 4 and Table 5 show the reverse engineered division
timings for the Arm Cortex-A55 and the Arm Cortex-A72.
The timings look similar to the Arm Cortex-M4 timings, but
have different cross-over points. The Arm Cortex-A72 has
additional shortcuts for power-of-two denominators.

Appendix B.
Signal processing for the KyberSlash1 demo

The KyberSlash1 demo takes the following steps to filter
out noise in timings, although sufficient noise—or noise
dependent on the ciphertexts—can make this fail.

The demo collects batches of measurements. After each
batch, it uses all measurements so far to formulate a guess
for the Kyber secret key. It recomputes the public key from

TABLE 5. CLOCK CYCLES OF UDIV INSTRUCTION WITH NUMERATOR 𝑛

AND DENOMINATOR 𝑑 ON ARM CORTEX-A72 (BCM2835). FOR A
SIMPLER DESCRIPTION, WE LET 𝑑FL = 2⌊log2 𝑑⌋ .

Case Clock cycles Range of 𝑛 with 𝑑 = 3329

𝑑 = 0 or 𝑛 = 0 3 0
power-of-two 𝑑 3 –
𝑛/𝑑 < 1 3 1 to 3328
𝑛/𝑑FL < 28 5 3329 to (219 − 1)
𝑛/𝑑FL < 212 6 219 to (223 − 1)
𝑛/𝑑FL < 216 7 223 to (227 − 1)
𝑛/𝑑FL < 220 8 227 to (231 − 1)
𝑛/𝑑FL < 224 9 231 to (232 − 1)
𝑛/𝑑FL < 228 10 –
𝑛/𝑑FL ≥ 228 11 –

this guess, checks for a match, and stops in case of success.
It gives up if it has not succeeded after 512 batches.

Each batch includes 7 choices of ciphertexts (u, 𝑣)
targeting each of the 512 positions in the secret. These
7 · 512 ciphertexts are handled in a random order to limit
any impacts from hysteresis. Each ciphertext is tried 16
times in succession, with the timings sorted and only one
intermediate timing recorded to remove outliers.

After the batch, the demo computes an interquartile
mean of the recorded timings (across all batches) for each
of the 7 choices of (u, 𝑣) at each position, obtaining 7 · 512
interquartile means. At each position, the demo then obtains
a guess for this position of the secret key by comparing

• 7 interquartile means 𝑡0, . . . , 𝑡6 from the observed
timings and

• for each possibility for this position of the secret
key: a model of the division timings 𝑑0, . . . , 𝑑6 for
the same 7 choices of (u, 𝑣).

Specifically, the demo takes the possibility that minimizes
the variance of the 7 numbers 𝑡0 − 𝑑0, . . . , 𝑡6 − 𝑑6. The point
here is that, in the optimistic model from Section 5.3, a
correct guess would have these 7 numbers being a constant
(and thus variance 0), namely the time for the rest of the
decapsulation process. (This is not exactly the same as
asking which guess has a model best correlated with the
observed timings; it is asking specifically for a diagonal
correlation. Correlation allows a scaling factor, whereas the
model predicts that the scaling factor is 1.)

One expects random noise to settle down at most po-
sitions before it settles down at all positions; a “coupon
collector” spends considerable time waiting for the last few
coupons. To address this, the demo actually tries multiple
guesses after each batch: specifically, it picks 10 posi-
tions with the smallest ratios between the second-smallest
variance and the smallest variance, and then tries all 210

combinations of first or second guesses at each position.

B.1. Optimizations

No claims of optimality are made for the number of
decapsulations used in this demo. Only one timing is kept
from each series of 16 timings; presumably the other timings
could be used productively, and there is no reason to think

https://courses.csail.mit.edu/6.857/2015/projects
https://courses.csail.mit.edu/6.857/2015/projects
https://doi.org/10.1145/3110261


that 16 is optimal. The 210 guesses after each batch could
be replaced by more guesses and more advanced lattice
attacks; it would be interesting to explore how to optimize
“soft-decision decoding” in the lattice context, accounting
for varying confidence levels at each position. A ciphertext
can target many positions at once, say a random selection of
about a third of the 256 positions, and attribute the resulting
timing to each of those positions; each position receives
some noise from the other positions, but a simple model
suggests that this will be outweighed by the speedup.

Appendix C.
Assembly Code Snippets for Message Decoding
Operation

Fig.11 and Fig. 12 show divisions when compiling Fig 3
for 64-bit and 32-bit Arm processors.

1 ...
2 ldrsh w6, [x1, x2, lsl 1]
3 ldrh w2, [x1, x2, lsl 1]
4 and w6, w7, w6, asr 31
5 add w2, w2, w6
6 ubfiz w2, w2, 1, 16
7 add w2, w2, 1664
8 /* Variable-Time Division Operation */
9 udiv w2, w2, w7
10 and w2, w2, 1
11 lsl w2, w2, w4
12 ...

Figure 11. Assembly code snippet of the message decoding operation for
a single coefficient, when compiled with arm64 gcc 14.1.0 for the
AArch64 architecture using the -Os compiler optimization flag.

1 ...
2 uxtah r3, lr, r3
3 uxth r3, r3
4 lsls r3, r3, #1
5 add r3, r3, #1664
6 /* Variable-Time Division Instruction */
7 udiv r3, r3, r5
8 and r3, r3, #1
9 lsls r3, r3, r4
10 orr r3, ip, r3
11 ...

Figure 12. Assembly code snippet of the message decoding operation for
a single coefficient, when compiled with arm-none-eabi-gcc 14.1
for Arm Cortex-M4 CPU (-mcpu=cortex-m4) using the -Os compiler
optimization flag.

Appendix D.
Assembly Code Snippets for Ciphertext Com-
pression Operation

Fig.13 and Fig. 14 show divisions when compiling Fig 5
for 64-bit and 32-bit Arm processors.

1 ...
2 ldrsh w6, [x1, x2, lsl 1]
3 and w2, w5, w6, asr 31
4 add w2, w2, w6
5 ubfiz w2, w2, 4, 16
6 add w2, w2, 1664
7 /* Variable-Time Division Operation */
8 udiv w2, w2, w5
9 and w2, w2, 15
10 strb w2, [x3, x7]
11 add x3, x3, 1
12 cmp x3, 8
13 ...

Figure 13. Assembly code snippet of a single iteration of ciphertext
compression operation, when compiled with arm64 gcc 14.1.0 for
the AArch64 architecture using the -Os compiler optimization flag.

1 ...
2 uxth r3, r3
3 lsls r3, r3, #4
4 add r3, r3, #1664
5 cmp r5, r1
6 /* Variable-Time Division Instruction */
7 udiv r3, r3, r4
8 and r3, r3, #15
9 strb r3, [r6], #1
10 bne .L3
11 ..

Figure 14. Assembly code snippet of a single iteration of ciphertext com-
pression operation, when compiled with arm-none-eabi-gcc 14.1
for Arm Cortex-M4 CPU (-mcpu=cortex-m4) using the -Os compiler
optimization flag.
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