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ABSTRACT
Many lattice-based crypstosystems employ ideal lattices for high

efficiency. However, the additional algebraic structure of ideal lat-

tices usually makes us worry about the security, and it is widely

believed that the algebraic structure will help us solve the hard

problems in ideal lattices more efficiently. In this paper, we study

the additional algebraic structure of ideal lattices further and find

that a given ideal lattice in a polynomial ring can be embedded

as an ideal into infinitely many different polynomial rings by the

coefficient embedding. We design an algorithm to verify whether

a given full-rank lattice in Z𝑛 is an ideal lattice and output all the

polynomial rings that the given lattice can be embedded into as an

ideal with bit operations O(𝑛3 (log𝑛 + 𝐵)2 (log𝑛)2), where 𝑛 is the

dimension of the lattice and 𝐵 is the upper bound of the bit length

of the entries of the input lattice basis. We would like to point out

that Ding and Lindner proposed an algorithm for identifying ideal

lattices and outputting a single polynomial ring of which the input

lattice can be regarded as an ideal with bit operations O(𝑛5𝐵2) in
2007. However, we find a flaw in Ding and Lindner’s algorithm, and

it causes some ideal lattices can’t be identified by their algorithm.

CCS CONCEPTS
•Mathematics of computing→ Discrete mathematics; • Se-
curity and privacy → Mathematical foundations of cryptog-
raphy; • Theory of computation → Design and analysis of
algorithms.
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1 INTRODUCTION
1.1 The Development of Ideal Lattices
The research on lattice-based cryptography was pioneered by Ajtai

[1] in 1996. He presented a family of one-way function based on

the Short Integer Solution (SIS) problem, which has the average-

case hardness under the worst-case assumptions for some lattice

problems. In 1997, Ajtai and Dwork [3] introduced a public-key

cryptosystem, whose average-case security can be based on the

worst-case hardness of the unique-Shortest Vector Problem. In 2005,

Regev [23] proposed another problem with average-case hardness,

the Learning with Errors problem (LWE), and also a public-key

encryption scheme based on LWE.

lattice-based cryptosystems are widely believed to be quantum-

resistant. Although there have been many cryptographic schemes

based on LWE and SIS, the main drawback of such schemes is their

limited efficiency, due to its large key size and slow computations.

Especially, with the development of research on quantum comput-

ers, it becomes more urgent to design more practical lattice-based

cryptosystems.

To improve the efficiency, additional algebraic structure is in-

volved in the lattice to construct more practical schemes. Among

them, ideal lattice plays an important role.

In fact, as early as in 1998, Hoffstein, Pipher, and Silverman

[14] introduced a lattice-based public-key encryption scheme

known as NTRU, whose security is related to the ideal in the ring

Z[𝑥]/(𝑥𝑛 − 1). Due to the cyclic structure of the ideal lattice, the
efficiency of NTRU is very high. Later, in 2010, Lyubashevsky, Peik-

ert and Regev [18] presented a ring-based variant of LWE, called

Ring-LWE, whose average-case hardness is based on worst-case

assumptions on ideal lattices. In 2017, Peikert, Regev and Stephens-

Davidowitz [21] refined the proof of the security of Ring-LWE for

more algebraic number field. The Ideal-SVP (finding the shortest

none zero vector in the ideal lattice) is the bottom hard problem

under the Ring-LWE which means it guarantees the hardness of

Ring-LWE theoretically.

https://doi.org/10.1145/3666000.3669688
https://doi.org/10.1145/3666000.3669688
https://doi.org/10.1145/3666000.3669688
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There are two different ways to define ideal lattices.

One is induced by the coefficient embedding from ring

Z[𝑥]/𝑓 (𝑥) into Z𝑛 (This embedding maps the coefficients of vec-

tors to the coefficients of polynomials). NTRU uses coefficient em-

bedding to define its lattice. It is very convenient to implement

cryptosystems based on Ring-LWE with the coefficient embedding.

In fact, almost all the ideal lattice-based cryptosystems are imple-

mented via the coefficient embedding. However, it seems not easy

to clarify the hardness of problems for the coefficient-embedding

ideal lattice in general.

The other one is defined by the canonical embedding from the

algebraic integer ring of some number field 𝐾 into C𝑛 . This type of
ideal lattice is usually employed in the security proof or hardness

reduction in Ring-LWE based cryptography.

The additional algebraic structure of ideal lattice will help us

solve its hard problems more efficiently.

In 2016, Cramer, Ducas, Peikert and Regev [10] introduced a

polynomial-time quantum algorithm to solve 2

√
𝑛log𝑛

-SVP in prin-

cipal ideal lattices in the algebraic integer ring ofQ(𝜁𝑚), where𝑚 is

a power of some prime. In 2017, Cramer, Ducas andWesolowski [11]

extended the result to general ideals. In the same year, Holzer, Wun-

derer and Buchmann [15] extended the field to be Q(𝜁𝑚), where
𝑚 = 𝑝𝑎𝑞𝑏 and 𝑝 , 𝑞 are different primes.

In 2019, Pellet-Mary, Hanrot and Stehlé [22] introduced a pre-

processing method (PHS algorithm) to solve 𝛾-SVP for ideal lat-

tices in any number field. The pre-processing step takes exponen-

tial time. Let 𝑛 be the dimension of the number field 𝐾 viewed

as a Q-vector space. Pellet-Mary et al. showed that by perform-

ing pre-processing on 𝐾 in exponential time, their algorithm can,

given any ideal lattice 𝐼 of 𝑂𝐾 , for any 𝛼 ∈ [0, 1/2] output a

exp(𝑂 ((𝑛 log𝑛)𝛼+1/𝑛)) approximation of a shortest none-zero vec-

tor of 𝐼 in time exp(𝑂 ((𝑛 log𝑛)1−2𝛼/𝑛)) + 𝑇 . For the classical

method, 𝑇 = exp(𝑂 ((𝑛 log𝑛)1/2) if 𝐾 is a cyclotomic field or

𝑇 = exp(𝑂 ((𝑛 log𝑛)2/3) for an arbitrary number field 𝐾 .

In 2020, Bernard and Roux-Langlois [7] proposed a new “twisted”

version of the PHS algorithm. They proved that Twisted-PHS algo-

rithm performs at least as well as the original PHS algorithm and

their algorithm suggested that much better approximation factors

were achieved. In 2022, Bernard, Lesavourey, Nguyen and Roux-

Langlois [6] extended the experiments of [7] to cyclotomic fields of

degree up to 210 for most conductors𝑚.

In 2021, Pan, Xu, Wadleigh and Cheng [20] found the connection

between the complexity of the shortest vector problem (SVP) of

prime ideals in number fields and their decomposition groups, and

revealed lots of weak instances of ideal lattices in which SVP can

be solved efficiently. In 2022, Boudgoust, Gachon and Pellet-Mary

[9] generalized the work of Pan et al. [20] and provided a simple

condition under which an ideal lattice defines an easy instance of

the shortest vector problem. Namely, they showed that the more

automorphisms stabilize the ideal, the easier it was to find a short

vector in it.

As mentioned above, almost all the research on SVP is in the

canonical-embedding ideal lattices and the research on SVP in the

coefficient-embedding ideal lattices is few. However, in some rings,

such as Z[𝑋 ]/(𝑥𝑛 + 1) where 𝑛 = 2
𝑘
for 𝑘 ≥ 1, the SVPs induced

by the two different embeddings are almost equal. We refer to [5]

for more details.

1.2 Our contribution
In this paper, our main contribution is to find that an ideal lat-

tice in the ring Z[𝑥]/𝑓 (𝑥) can be embedded into infinitely many

rings Z[𝑥]/𝑔(𝑥) as ideals, where 𝑓 (𝑥) and 𝑔(𝑥) are monic and 𝑓 (𝑥),
𝑔(𝑥) ∈ Z[𝑥] (Theorem 3.4). Besides, corresponding to our finding,

we show an efficient algorithm for computing all the rings that an

ideal lattice can be embedded into as ideals and also judgingwhether

a given integer lattice can be embedded as an ideal into a polynomial

ring like Z[𝑥]/𝑓 (𝑥) with bit operations O(𝑛3 (log𝑛 + 𝐵)2 (log𝑛)2),
where 𝑛 is the dimension of the lattice and 𝐵 is the upper bound of

the bit length of the entries of the input lattice basis (Algorithm 1).

Although, in 2007, Ding and Lindner [12] proposed an algorithm

for identifying ideal lattice that output a single polynomial ring

which the input lattice can be embedded into as an ideal with bit

operations O(𝑛5𝐵2), we find that there is a flaw in Ding and Lind-

ner’s algorithm. More exactly, some ideal lattices can’t be identified

by their algorithm and we give a non-trivial example in Section

4. Besides, ignoring the flaw, our algorithm is more efficient and

output more polynomial rings than Ding and Lindner’s algorithm.

On one hand, our finding reveals that an ideal lattice in

Z[𝑥]/𝑓 (𝑥) can be viewed as an ideal lattice in Z[𝑥]/𝑔(𝑥) for in-
finitely many different 𝑔(𝑥) and it is widely believed that some

additional algebraic structures may lead a more efficient algorithm

to solve the hard problems in ideal lattice than general lattices, such

as [10], [22]. Hence, we may embed the given ideal lattice into a

well-studied ring as an ideal lattice and use the algebraic structure

of the well-studied ring to solve the hard lattice problems more

efficiently.

On the other hand, we test the proportion of ideal lattices in

plain integer lattices by our algorithm and find that the proportion

decreases very fast with the increase of the lattice dimension and

upper bound of the bit length of the entries of the input lattice basis.

Our test data indicates that the ideal lattice is actually very rare.

Finally, we provide an efficient open source implementation of

our algorithm for identifying ideal lattices in SageMath. The source

code is available at:

https://github.com/fffmath/Identifying-Ideal-Lattice.

With this implementation, we conducted several experiments, and

the experimental results are presented in Appendix A.

1.3 Roadmap
The paper is organized as follows. In Section 2, some preliminaries

are presented. In Section 3, we show embedding relation between

integer lattices and polynomial rings, and the theoretic basis of

Algorithm 1 is also presented. In Section 4, we propose the algorithm

for identifying a coefficient-embedding ideal lattice together with

the complexity analysis and the comparison to Ding and Lindner’s

algorithm. The appendix contains our experimental results and

reference.

https://github.com/fffmath/Identifying-Ideal-Lattice
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2 PRELIMINARIES
2.1 Notation
In this paper we denote by C, R, Q and Z the complex number field,

the real number field, the rational number field and the integer ring

respectively.

We denote a matrix by a capital letter in bold and denote a vector

by a lower-case letter in bold. To represent the element of a matrix,

we use the lower-case letter. For example, the element of matrix

A at the 𝑖-th row and 𝑗-th column is denoted by 𝑎𝑖 𝑗 , while its 𝑖-

th row is denoted by a𝑖 . Since we have the inner products in R𝑛

and C𝑛 respectively, we can define the norm of vectors, that is,

∥v∥ :=< v, v > in R𝑛 and ∥v∥ :=< v, v > in C𝑛 .
For two integers 𝑎 and 𝑏, 𝑎 |𝑏 means that 𝑏 is divisible by 𝑎.

Otherwise, we write 𝑎 ∤ 𝑏. For integer 𝑎 and a matrix A, 𝑎 |A means

that every entry of A can be divisible by 𝑎.

For a polynomial 𝑓 (𝑥) ∈ Z[𝑥], denote by Z[𝑥]/𝑓 (𝑥) for simplic-

ity the quotient ring Z[𝑥]/(𝑓 (𝑥)Z[𝑥]).
For a map 𝜎 , and a set 𝑆 , denote by 𝜎 (𝑆) the set {𝜎 (𝑥) : 𝑥 ∈ 𝑆}.

2.2 Lattice
Lattices are discrete subgroups of R𝑚 , or equivalently,

Definition 2.1. (Lattice) Given 𝑛 linearly independent vectors

B =

©­­­­«
b1
b2
.
.
.

b𝑛

ª®®®®¬
, where b𝑖 ∈ R𝑚 , the lattice L(B) generated by B is

defined as follows:

L(B) = {
𝑛∑︁
𝑖=1

𝑥𝑖b𝑖 : 𝑥𝑖 ∈ Z} = {xB : x ∈ Z𝑛}.

We call B a basis of L(B),𝑚 and 𝑛 the dimension and the rank

of L(B) respectively. When𝑚 = 𝑛, we say L(B) is full-rank.
When 𝑛 > 1, there are infinitely many bases for a lattice L, and

any two bases are related to each other by a unimodular matrix,

which is an invertible integral matrix (the entries of the matrix are

all integers). More precisely, given a lattice L(B1), B2 is also a basis
of the lattice if and only if there exists a unimodular matrix U s.t.

B1 = UB2.

Hard problems in lattices. The shortest vector problem (SVP) is

one of the most famous hard problems in lattices.

SVP is the question of finding a nonzero shortest vector in a given

lattice L, whose length is denoted by 𝜆1 (L). The approximating-

SVP with factor 𝛾 , denoted by 𝛾-SVP, asks to find a short nonzero

lattice vector v such that

∥v∥ ≤ 𝛾 · 𝜆1 (L) .
In fact, The hardness of 𝛾-SVP depends on 𝛾 . When 𝛾 = 1, 𝛾-

SVP is exactly the original SVP, and for constant 𝛾 , this problem is

known to be NP-hard under randomized reduction [2]. Many cryp-

tosystems are based on the hardness of (decision) 𝛾-SVP when 𝛾 is

in polynomial size. By now we have not found any polynomial-time

classical algorithm to deal with such cases. The existing polynomial

algorithms such as LLL [16] can find the situation when 𝛾 = exp(𝑛)
and BKZ [25] algorithm can run in exponential time to reach small

approximation factors.

2.3 Hermite Normal Form And Smith Normal
Form

For the integral matrix, there is a very important standard form

known as the Hermite Normal Form (HNF). For simplicity, we just

present the definition of HNF for the non-singular integral matrix.

Notice that we are defining the HNF in lower triangular form.

Definition 2.2. (the lower triangular Hermite Normal Form) A

non-singular matrix H ∈ Z𝑛×𝑛 is said to be in HNF, if

• ℎ𝑖,𝑖 > 0 for 1 ≤ 𝑖 ≤ 𝑛.
• ℎ 𝑗,𝑖 = 0 for 1 ≤ 𝑗 < 𝑖 ≤ 𝑛.
• 0 ≤ ℎ 𝑗,𝑖 < ℎ𝑖,𝑖 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

The Hermite Normal Form has some important properties. See

[13, 17, 19] for more details.

Lemma 2.3. For any integer matrix A, there exists a unimodular
matrix U such that H=UA is in HNF. Moreover, the HNF can be
computed in polynomial time.

For integral lattices, we have

Lemma 2.4. For any lattice L ⊂ Z𝑛 , there exists a unique basis H
in HNF. We call H the HNF basis of L.

Sometimes we do not need the whole HNF of an integral matrix.

So we introduce the Incomplete Hermite Normal Form of an integral

matrix, which is also a special basis of the integral lattice.

Definition 2.5. (Incomplete Hermite Normal Form) A non-

singular matrix B ∈ Z𝑛×𝑛 is said to be in Incomplete Hermite

Normal Form, if

• 𝑏𝑛,𝑛 > 0;

• 𝑏𝑖,𝑛 = 0 for 1 ≤ 𝑖 ≤ 𝑛 − 1.

Given a full-rank integral matrix B,

B =

©­­­­«
𝑏1,1 𝑏1,2 · · · 𝑏1,𝑛
𝑏2,1 𝑏2,2 · · · 𝑏2,𝑛
.
.
.

.

.

.
. . .

.

.

.

𝑏𝑛,1 𝑏𝑛,2 · · · 𝑏𝑛,𝑛

ª®®®®¬
,

it is well known that by the Extended Euclidean Algorithm we can

find a unimodular matrix U, such that

U
©­­­­«
𝑏1,𝑛
𝑏2,𝑛
.
.
.

𝑏𝑛,𝑛

ª®®®®¬
=

©­­­­«
0

0

.

.

.

𝑑

ª®®®®¬
,

where 𝑑 = gcd(𝑏1,𝑛, 𝑏2,𝑛, ..., 𝑏𝑛,𝑛). Then we have

B′ = UB =

(
D 0
b′ 𝑑

)
is in Incomplete Hermite Normal Form, where D ∈ Z(𝑛−1)×(𝑛−1)

,

b′ ∈ Z𝑛−1.
About the Incomplete Hermite Normal Form, it is easy to con-

clude the following lemma. So we omit the proof.

Lemma 2.6. For any non-singular matrix B ∈ Z𝑛×𝑛 , the following
properties are satisfied:
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• we can find a unimodular matrix U in polynomial time, such
that B′ = UB is in Incomplete Hermite Normal Form.

• For any unimodular matrix U and V such that B′ = UB and
B′′ = VB both in Incomplete Hermite Normal Form, B′ and
B′′ are not necessarily equal, but

𝑏′𝑛,𝑛 = 𝑏′′𝑛,𝑛 = gcd(𝑏1,𝑛, 𝑏2,𝑛, ..., 𝑏𝑛,𝑛).
Specially, notice that the HNF H of B is also in Incomplete
Hermite Normal Form. We immediately have

ℎ𝑛,𝑛 = gcd(𝑏1,𝑛, 𝑏2,𝑛, ..., 𝑏𝑛,𝑛).
Definition 2.7. (Smith Normal form) [24] Let A be nonzero𝑚 ×𝑛

matrix over a principal ideal domain 𝑅, there exist invertible𝑚 ×𝑚
and 𝑛×𝑛-matrices P, T (with coefficients in 𝑅) such that the product

S = PAT =

©­­­­­­­­­­­«

𝛼1 0 0 · · · 0

0 𝛼2 0 · · · 0

0 0

. . .
. . . 0

.

.

.
.
.
.

. . . 𝛼𝑟
.
.
.

.

.

.
.
.
. 0 0

.

.

.

0 · · · · · · · · · 0

ª®®®®®®®®®®®¬
The diagonal elements satisfy 𝛼𝑖 |𝛼𝑖+1 for all 1 ≤ 𝑖 < 𝑟 . S is the

Smith Normal Form of A, and the elements 𝛼𝑖 are unique up to

multiplication by a unit in 𝑅 and are called the elementary divisors,

invariants, or invariant factors.

Definition 2.8. (Smith Massager)[24] Let A ∈ Z𝑛×𝑛 be a non-

singular (full-rank) integral matrix with Smith Normal Form S. A
matrixM ∈ Z𝑛×𝑛 is a Smith Massager for A if

(i) it satisfies that AM ≡ 0 cmod S, and
(ii) there exists a matrixW ∈ Z𝑛×𝑛 such thatWM ≡ In cmod S.

Definition 2.9. (cmod) Given B ∈ Z𝑚×𝑛
and S ∈ Z𝑛×𝑛 , where

B =
(
b1 b2 · · · bn

)
S =

©­­­­«
𝑠1 0 · · · 0

0 𝑠2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 𝑠𝑛

ª®®®®¬
bi is the 𝑖-th column of B and S is a diagonal matrix.

B cmod S :=
(
b1 mod 𝑠1 b2 mod 𝑠2 · · · bn mod 𝑠𝑛

)
The definitions of Smith Normal form and Smith Massager will

only be used in Theorem 4.2, Section 4.

2.4 Ideal lattices
An algebraic number field 𝐾 is an extension field of the rationals Q
such that its dimension [𝐾 : Q] as a Q-vector space (i.e., its degree)
is finite.

An element 𝑥 in the algebraic number field𝐾 is said to be integral

over Z if the coefficients of the monic minimal polynomial of 𝑥 over

Q are all integers. All the elements which are integral over Z in 𝐾
make up a set𝑂𝐾 .𝑂𝐾 is actually a ring called the algebraic integer

ring of 𝐾 over Z.
𝑂𝐾 is a finitely generated Z-module of dimension [𝐾 : Q]. A

basis of 𝑂𝐾 as a Z-module is called an integral basis, which is also

a basis of 𝐾 as a Q-vector space.

Canonical-embedding ideal lattice. If Ω ⊃ 𝐾 is an extension field

such that Ω is algebraically closed over Q, then there are exactly

[𝐾 : Q] field embeddings of 𝐾 into Ω. For convenience, we regard
Ω as the complex field C.

An ideal of 𝑂𝐾 is a full-rank submodule of 𝑂𝐾 . Let [𝐾 : Q] = 𝑛.
This structure induces a canonical embedding:

Σ : 𝑂𝐾 → C𝑛

𝑎 ↦→ (Σ𝑖 (𝑎))𝑖=1,...,𝑛,
where Σ𝑖 ’s are the 𝑛 different embeddings from 𝐾 into C.

Definition 2.10. (Canonical-embedding Ideal Lattice) Given a

number field 𝐾 and any ideal I of 𝑂𝐾 , Σ(I) is called its canonical-

embedding ideal lattice.

Coefficient-embedding ideal lattice. Denote by Z(𝑛) [𝑥] the set of
all the polynomials in Z[𝑥] with degree ≤𝑛 − 1. We use the symbol

𝜎 to represent the following linear map:

𝜎 : Z(𝑛) [𝑥] → Z𝑛
𝑛∑︁
𝑖=1

𝑎𝑖𝑥
𝑖−1 ↦→ (𝑎1, 𝑎1, ..., 𝑎𝑛),

where linear map means that

• For any 𝑓 (𝑥), 𝑔(𝑥) ∈ Z(𝑛) [𝑥], 𝜎 (𝑓 (𝑥) + 𝑔(𝑥)) = 𝜎 (𝑓 (𝑥)) +
𝜎 (𝑔(𝑥));

• For any 𝑓 (𝑥) ∈ Z(𝑛) [𝑥] and 𝑧 ∈ Z, 𝜎 (𝑧𝑓 (𝑥)) = 𝑧𝜎 (𝑓 (𝑥)).
We can also define its inverse, which is linear too:

𝜎−1 : Z𝑛 → Z(𝑛) [𝑥]

(𝑎1, 𝑎1, · · · , 𝑎𝑛) ↦→
𝑛∑︁
𝑖=1

𝑎𝑖𝑥
𝑖−1 .

In what follows, we focus on ideal lattices induced by ideals of

the ring Z[𝑥]/𝑓 (𝑥), where 𝑓 (𝑥) is a monic polynomial of degree

𝑛. Any element in Z(𝑛) [𝑥] can be viewed as a representative in

the ring Z[𝑥]/𝑓 (𝑥) with degree(𝑓 (𝑥)) ≥ 𝑛 [12]. So we abuse the

symbol 𝜎 to represent the the following coefficient embedding.

𝜎 : Z[𝑥]/𝑓 (𝑥) → Z𝑛
𝑛∑︁
𝑖=1

𝑎𝑖𝑥
𝑖−1 ↦→ (𝑎1, 𝑎2, ..., 𝑎𝑛) .

Therefore, under the coefficient embedding, any ideal of

Z[𝑥]/𝑓 (𝑥) can be viewed as an integer lattice.

Definition 2.11. (Coefficient-embedding Ideal Lattice) Given

Z[𝑥]/𝑓 (𝑥), where 𝑓 (𝑥) is a monic polynomial of degree n, and

any ideal 𝐼 of Z[𝑥]/𝑓 (𝑥), 𝜎(I) is called its coefficient-embedding

ideal lattice, which is of course an integer lattice.

Roughly speaking, due to the abundant algebraic structures of

the corresponding algebraic integer domains, the hard lattice prob-

lems in canonical-embedding ideal lattices are easier to analyse than

that in coefficient-embedding ideal lattices. However, as we’ve in-

troduced in the introduction, in some cases, the results in canonical-

embedding ideal lattices can be converted to the results in the

coefficient-embedding ideal lattices with small loss.

The following is an important property of ideal lattices, it was

proposed by Zhang, Liu and Lin [26].
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Lemma 2.12 ([26]). Let H be the HNF basis of the full-rank
coefficient-embedding ideal lattice L(B) in the ring Z[𝑥]/𝑓 (𝑥).

H =

©­­­­«
ℎ1,1 0 · · · 0

ℎ2,1 ℎ2,2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

ℎ𝑛,1 · · · · · · ℎ𝑛,𝑛

ª®®®®¬
.

Then ℎ𝑖,𝑖 |ℎ 𝑗,𝑙 , for 1 ≤ 𝑙 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛. Specially, ℎ𝑛,𝑛 |ℎ𝑖, 𝑗 , 𝑖, 𝑗 ≤ 𝑛.

2.5 Overview
In the third section, we first show and prove a naturally equivalent

definition (Lemma 3.1) of integer lattices. It’s a direct application of

the definition of the coefficient-embedding ideal lattice. Though the

result of Lemma 3.1 may have been used in some earlier research,

we haven’t found a detailed description. Hence, we rewrite and

prove Lemma 3.1 formally.

Inspired by Lemma 2.12 proposed by Zhang, Liu and Lin [26],

we propose Theorem 3.2, another equivalent definition of ideal

lattices in Section 3.2. Using this equivalent definition, we design

Algorithm 1 to verify whether an integer lattice is an ideal lattice.

In Section 3.3, Theorem 3.4 shows that a coefficient-embedding

ideal lattice can be embedded into another polynomial ring denoted

by 𝑅 as an ideal of 𝑅, and for a fixed coefficient-embedding ideal

lattice the number of such 𝑅 is infinite. The proof is also motivated

by Lemma 2.12. Theorem 3.4 guarantees that Algorithm 1 can out-

put all the polynomial rings which the input integer lattice can be

embedded into as ideals.

In the fourth section, we propose Algorithm 1 to judge whether

an integer lattice can be embedded into a polynomial ring as ideals

and compute all the rings that the lattice can be embedded into as

an ideal if the given lattice is a coefficient-embedding ideal lattice.

We analysis the time complexity of Algorithm 1 and also compare

our algorithm to related work.

Finally, we give a brief conclusion. Out experimental data is

presented in the Appendix A.

3 AN IDEAL LATTICE CAN BE EMBEDDED
INTO DIFFERENT RINGS

We stress that in the following, we focus on the coefficient-

embedding ideal lattice, and in this section, we’ll show how an

coefficient-embedding ideal lattice can be embedded into different

rings.

3.1 Deciding an ideal lattice
We next present an easy way to tell if a given lattice is a coefficient-

embedding ideal lattice in Z[𝑥]/𝑓 (𝑥) or not.

Lemma 3.1. For any monic polynomial 𝑓 (𝑥) ∈ Z[𝑥] with degree
𝑛, a lattice L(B) with any basis B is a coefficient-embedding ideal
lattice in Z[𝑥]/𝑓 (𝑥) if and only if 𝜎 (𝑥𝜎−1 (b𝑖 ) mod 𝑓 (𝑥)) ∈ L(B)
for 𝑖 = 1, · · · , 𝑛, where b𝑖 is the 𝑖-th row vector of B, and 𝜎 is the map
defined in Section 2.3.

Proof. If L(B) is a coefficient-embedding ideal lattice in

Z[𝑥]/𝑓 (𝑥), then 𝜎−1 (b𝑖 )’s are in the corresponding ideal. It is obvi-

ous that 𝑥𝜎−1 (b𝑖 ) mod 𝑓 (𝑥) must be in the ideal too, which means

that 𝜎 (𝑥𝜎−1 (b𝑖 ) mod 𝑓 (𝑥)) ∈ L(B).
If there exists a monic polynomial 𝑓 (𝑥) ∈ Z[𝑥] with degree

𝑛, such that 𝜎 (𝑥𝜎−1 (b𝑖 ) mod 𝑓 (𝑥)) ∈ L(B) for 𝑖 = 1, · · · , 𝑛, we
show that 𝜎−1 (L(B)) must be an ideal in Z[𝑥]/𝑓 (𝑥). It is easy to

check that 𝜎−1 (L(B)) is an additive group, due to the fact that

𝜎 is an additive homomorphism. Since 𝜎 (𝑥𝜎−1 (b𝑖 ) mod 𝑓 (𝑥)) ∈
L(B), then for any lattice vector v =

∑𝑛
𝑖=1 𝑧𝑖b𝑖 , 𝑧𝑖 ∈ Z, we have

𝜎 (𝑥𝜎−1 (v) mod 𝑓 (𝑥)) =
𝑛∑︁
𝑖=1

𝑧𝑖𝜎 (𝑥𝜎−1 (b𝑖 ) mod 𝑓 (𝑥)) ∈ L(B).

Applying the result on the lattice vector 𝜎 (𝑥𝜎−1 (v) mod 𝑓 (𝑥)),
we will have

𝜎 (𝑥2𝜎−1 (v)) = 𝜎 (𝑥𝜎−1 (𝜎 (𝑥v mod 𝑓 (𝑥)))) ∈ L(B) .
Hence, for any positive integer 𝑘 , we know that

𝜎 (𝑥𝑘𝜎−1 (v)) ∈ L(B).
Then for any 𝑔(𝑥) =

∑𝑛
𝑖=1 𝑔𝑖𝑥

𝑖−1 ∈ Z[𝑥]/𝑓 (𝑥) and any lattice

vector v,

𝜎 (𝑔(𝑥)𝜎−1 (v) mod 𝑓 (𝑥)) =
𝑛∑︁
𝑖=1

𝑔𝑖𝜎 (𝑥𝑖−1𝜎−1 (v) mod 𝑓 (𝑥)) ∈ L(B).

The lemma follows.

□

3.2 Equivalent condition
Inspired by Lemma 2.12, we find a new equivalent definition of

coefficient-embedding ideal lattices.

Theorem 3.2. Given a full-rank integer lattice L(B), let B′ =(
D 0
b′ 𝑏′𝑛,𝑛

)
be any Incomplete Hermite Normal Form of B. Then

L(B) is an ideal lattice if and only if there exists a T ∈ Z(𝑛−1)×𝑛 ,
s.t.

(
0 D

)
= TB. Specially, if L(B) is an ideal lattice, then taking

any 𝑔(𝑥) = 𝑥𝑛 + 𝑔𝑛𝑥𝑛−1 + · · · + 𝑔1 with
(
𝑔1 𝑔2 · · · 𝑔𝑛

)
∈

1

𝑏′𝑛,𝑛
(
(
0 b′

)
+ L(B)), L(B) is also an ideal lattice in the ring

Z[𝑋 ]/𝑔(𝑥).

Proof. The “only if” part can be easily checked by Lemma 3.1.

According to Lemma 3.1, if L(B) is a idea lattice in Z[𝑥]/𝑔(𝑥), then
for any v ∈ L((D 0)), 𝜎 (𝑥𝜎−1 (v)) ∈ L(B), which exactly means

there exists a matrix T ∈ Z(𝑛−1)×𝑛 such that

(
0 D

)
= TB.

For “if” part, to indicate that L(B) is an ideal lattice, we need to

find a monic polynomial 𝑔(𝑥) of degree 𝑛, s.t. L(B) can be embed-

ded as an ideal into Z[𝑥]/𝑔(𝑥), or 𝜎 (𝑥𝜎−1 (b′
𝑖
) mod 𝑔(𝑥)) ∈ L(B)

for 𝑖 = 1, · · · , 𝑛 by Lemma 3.1.

Note that for any polynomial 𝑔(𝑥) with degree 𝑛, 𝜎 (𝑥𝜎−1 (b′
𝑖
)

mod 𝑔(𝑥)) ∈ L(B) for 𝑖 = 1, · · · , 𝑛 − 1 since there exists a T ∈
Z(𝑛−1)×𝑛 , s.t.

(
0 D

)
= TB.

It remains to show that there exists a monic polynomial 𝑔(𝑥) of
degree 𝑛, such that 𝜎 (𝑥𝜎−1 (b′𝑛) mod 𝑔(𝑥)) ∈ L(B).

We first present a lemma, which will be proven later. □
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Lemma 3.3. If
(
0 D

)
= TB, then B′/𝑏′𝑛,𝑛 ∈ Z𝑛×𝑛

By Lemma 3.3,
1

𝑏′𝑛,𝑛
(
(
0 b′

)
+ L(B)) ⊂ Z𝑛 . Taking any

g =
(
𝑔1 𝑔2 · · · 𝑔𝑛

)
∈ 1

𝑏′𝑛,𝑛
(
(
0 b′

)
+ L(B)), (1)

the integer polynomial 𝑔(𝑥) = 𝑥𝑛 + 𝑔𝑛𝑥𝑛−1 + · · · + 𝑔1 is what we
want, since

𝜎 (𝑥𝜎−1 (b′𝑛 ) mod 𝑔 (𝑥 ) ) =
(
0 b′

)
−𝑏′𝑛,𝑛

(
𝑔1 𝑔2 · · · 𝑔𝑛

)
∈ L(B) .

It remains to prove Lemma 3.3. Actually, the proof is essentially

the same with Lemma 2.12.

Proof. (Lemma 3.3) According to Lemma 2.4, L(B′) has

a unique HNF basis, denoted by H = (ℎ𝑖, 𝑗 )1≤𝑖≤𝑛,1≤ 𝑗≤𝑛 =

(h1 · · · h𝑛)T and Lemma 2.6 tells us that 𝑏′𝑛,𝑛 = ℎ𝑛,𝑛 . Hence, there

exist a unimodular matrix U ∈ Z𝑛×𝑛 such that H = UB′.

Since B′ =
(
D 0
b′ 𝑏′𝑛,𝑛

)
and H is lower triangular, U has a special

form: U =

(
U′ 0
v′ 1

)
, where U′ ∈ Z(𝑛−1)×(𝑛−1)

, 0 ∈ Z(𝑛−1)×1 and

v′ ∈ Z1×(𝑛−1)
. Apparently, U′

is also a unimodular matrix. Hence,

L((h1 · · · h𝑛−1)T) = L(U′ (D 0
)
) = L(

(
D 0

)
)

Since

(
0 D

)
= TB, 𝜎 (𝑥𝜎−1 (v)) ∈ L(B) for any v ∈

L(
(
D 0

)
). Therefore, 𝜎 (𝑥𝜎−1 (h𝑖 )) ∈ L(B) for any 𝑖 = 1, · · · , 𝑛−

1. Next, we use the induction to proof the following result: ℎ𝑖,𝑖 |ℎ 𝑗,𝑙 ,
for 1 ≤ 𝑙 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛. Specially,ℎ𝑛,𝑛 |ℎ𝑖, 𝑗 , 𝑖, 𝑗 ≤ 𝑛. It’s the same with

the conclusion with Lemma 2.12. Actually, the induction process is

precisely the same with the one in Lemma 2.12[26] and we present

the entire induction in the following for readers to check:

By induction on 𝑖 , it’s trivial for 𝑖 = 1.

Assume the result holds for 𝑖 ≤ 𝑘 ≤ 𝑛 − 1. It remains to show

that for 𝑖 = 𝑘 + 1, ℎ𝑘+1,𝑘+1 |ℎ 𝑗,𝑙 where 1 ≤ 𝑙 ≤ 𝑗 ≤ 𝑘 + 1 ≤ 𝑛.
Since 𝜎 (𝑥𝜎−1 (h𝑘 )) ∈ L(B) for any 𝑘 = 1, · · · , 𝑛 − 1, it is very

simple to imply that there must exist 𝑦𝑖 ∈ Z, for 𝑖 = 1, 2, · · · , 𝑘 + 1

such that:

(
0 ℎ𝑘,1 · · · ℎ𝑘,𝑘 0 · · · 0

)
=

𝑘+1∑︁
𝑖=1

𝑦𝑖h𝑖 .

Hence,

ℎ𝑘,𝑘 = 𝑦𝑘+1ℎ𝑘+1,𝑘+1
ℎ𝑘,𝑘−1 = 𝑦𝑘ℎ𝑘,𝑘 + 𝑦𝑘+1ℎ𝑘+1,𝑘

.

.

.

ℎ𝑘,1 =

𝑘+1∑︁
𝑖=2

𝑦𝑖ℎ𝑖,2

0 =

𝑘+1∑︁
𝑖=1

𝑦𝑖ℎ𝑖,1

From the first equation, we get 𝑦𝑘+1 =
ℎ𝑘,𝑘

ℎ𝑘+1,𝑘+1
∈ Z, and

ℎ𝑘+1,𝑘 =
ℎ𝑘,𝑘−1 − 𝑦𝑘ℎ𝑘,𝑘

ℎ𝑘,𝑘
ℎ𝑘+1,𝑘+1

ℎ𝑘+1,𝑘−1 =
ℎ𝑘,𝑘−2 − 𝑦𝑘−1ℎ𝑘−1,𝑘−1 − 𝑦𝑘ℎ𝑘,𝑘−1

ℎ𝑘,𝑘
ℎ𝑘+1,𝑘+1

.

.

.

ℎ𝑘+1,2 =
ℎ𝑘,1 −

∑𝑘
𝑖=2 𝑦𝑖ℎ𝑖,2

ℎ𝑘,𝑘
ℎ𝑘+1,𝑘+1

ℎ𝑘+1,1 =
−∑𝑘

𝑖=1 𝑦𝑖ℎ𝑖,1

ℎ𝑘,𝑘
ℎ𝑘+1,𝑘+1

From the induction hypothesis, we have ℎ𝑘,𝑘 |ℎ 𝑗,𝑙 for 1 ≤ 𝑙 ≤ 𝑗 ≤
𝑘 ≤ 𝑛. So the coefficient of ℎ𝑘+1,𝑘+1 in each equation is in fact an

integer. Therefore,ℎ𝑘+1,𝑘+1 |ℎ𝑘+1,𝑙 , 1 ≤ 𝑙 ≤ 𝑘+1. Sinceℎ𝑘+1,𝑘+1 |ℎ𝑘,𝑘 ,
we know ℎ𝑘+1,𝑘+1 |ℎ 𝑗,𝑙 , where 1 ≤ 𝑙 ≤ 𝑗 ≤ 𝑘 + 1 ≤ 𝑛. Thus, the

result holds for 𝑖 = 𝑘 + 1.

By induction, ℎ𝑖,𝑖 |ℎ 𝑗,𝑙 , 1 ≤ 𝑙 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛. So ℎ𝑛,𝑛 |ℎ𝑖, 𝑗 ,
1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. The divisibility relation follows.

□

3.3 An ideal lattice can be embedded into
infinitely many different polynomial rings
as ideals

Given a full-rank ideal lattice L(B) together with the Incomplete

Hermite Normal Form B′ =
(
D 0
b′ 𝑏′𝑛,𝑛

)
, Theorem 3.2 shows that

for any 𝑔(𝑥) = 𝑥𝑛 + 𝑔𝑛𝑥𝑛−1 + · · · + 𝑔1 with
(
𝑔1 𝑔2 · · · 𝑔𝑛

)
∈

1

𝑏′𝑛,𝑛
(
(
0 b′

)
+ L(B)), L(B) is also an ideal lattice in the ring

Z[𝑋 ]/𝑔(𝑥). The following theorem proves that only if we take

𝑔(𝑥) in this way, L(B) can be viewed as an ideal lattice in the ring

Z[𝑋 ]/𝑔(𝑥). In other words, the coset
1

𝑏′𝑛,𝑛
(
(
0 b′

)
+ L(B)) can

represent the class of all the polynomial rings which the given ideal

lattice L(B) can be embedded into as ideals.

Theorem 3.4. For any full-rank coefficient-embedding ideal lattice
L(B) in the ring Z[𝑥]/𝑓 (𝑥), where 𝑓 (𝑥) is monic and deg(𝑓 (𝑥)) = 𝑛,
there exists infinitely many monic 𝑔(𝑥) ∈ Z[𝑥] with degree 𝑛, s.t.
L(B) is also a coefficient-embedding ideal lattice in Z[𝑥]/𝑔(𝑥).

More precisely, let 𝑑 = gcd(𝑏1,𝑛, 𝑏2,𝑛, ..., 𝑏𝑛,𝑛). Then L(B) is also a
coefficient-embedding ideal lattice in Z[𝑥]/𝑔(𝑥), where 𝑔(𝑥) ∈ Z[𝑥]
is a monic polynomial with degree 𝑛, if and only if

𝜎 (𝑓 (𝑥) − 𝑔(𝑥)) ∈ L(B
𝑑
),

or equivalently,

𝑔(𝑥) ∈ 𝑓 (𝑥) + 𝜎−1 (L(B
𝑑
)) .

Proof. Consider the HNF basis of L(B),

H =

©­­­­«
ℎ1,1 0 · · · 0

ℎ2,1 ℎ2,2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

ℎ𝑛,1 · · · · · · ℎ𝑛,𝑛

ª®®®®¬
.
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For convenience, we denote by h𝑖 the 𝑖-th row of H, and then h𝑖 is
a vector in Z𝑛 .

(i) If there is a monic 𝑔(𝑥) ∈ Z[𝑥] with degree 𝑛, s.t. L(B) is also
a coefficient-embedding ideal lattice in Z[𝑥]/𝑔(𝑥), we next prove
that 𝜎 (𝑓 (𝑥) − 𝑔(𝑥)) ∈ L( B

𝑑
).

By Lemma 3.1, L(H) = L(B) is a coefficient-embedding ideal

lattice in Z[𝑥]/𝑓 (𝑥), then we have

𝜎 (𝑥𝜎−1 (h𝑛) mod 𝑓 (𝑥)) ∈ L(B).
Note that

𝑥𝜎−1 (h𝑛) mod 𝑓 (𝑥) =
𝑛−1∑︁
𝑖=1

ℎ𝑛,𝑖𝑥
𝑖 − ℎ𝑛,𝑛 (𝑓 (𝑥) − 𝑥𝑛).

We have(
0 ℎ𝑛,1 ... ℎ𝑛,𝑛−1

)
− ℎ𝑛,𝑛𝜎 (𝑓 (𝑥) − 𝑥𝑛) ∈ L(B) . (2)

Similarly, since L(B) is also a coefficient-embedding ideal lattice

in Z[𝑥]/𝑔(𝑥), we have(
0 ℎ𝑛,1 ... ℎ𝑛,𝑛−1

)
− ℎ𝑛,𝑛𝜎 (𝑔(𝑥) − 𝑥𝑛) ∈ L(B) . (3)

Subtracting the left side of (2) from the left side of (3), we immedi-

ately have

ℎ𝑛,𝑛𝜎 (𝑓 (𝑥) − 𝑔(𝑥)) ∈ L(B) .
By Lemma 2.6, ℎ𝑛,𝑛 = 𝑑 , we have

𝜎 (𝑓 (𝑥) − 𝑔(𝑥)) ∈ L(B
𝑑
) .

(ii) We next prove that for any polynomial 𝑔(𝑥), such that

𝜎 (𝑓 (𝑥) − 𝑔(𝑥)) ∈ L( B
𝑑
), any full-rank coefficient-embedding

ideal lattice L(B) in the ring Z[𝑥]/𝑓 (𝑥) can also be viewed as

a coefficient-embedding ideal lattice in Z[𝑥]/𝑔(𝑥).
First, 𝑔(𝑥) is obviously a monic polynomial with degree 𝑛. Note

that by Lemma 2.12, ℎ𝑛,𝑛 |ℎ𝑖, 𝑗 , then 𝑑 = ℎ𝑛,𝑛 divide all the compo-

nents of every lattice vector in L(B), which means that L( B
𝑑
) is

an integer lattice and once 𝜎 (𝑓 (𝑥) − 𝑔(𝑥)) ∈ L( B
𝑑
), 𝑔(𝑥) ∈ Z[𝑥].

By Lemma 3.1 again, L(H) = L(B) is a coefficient-embedding

ideal lattice in Z[𝑥]/𝑓 (𝑥), then we have

𝜎 (𝑥𝜎−1 (h𝑖 ) mod 𝑓 (𝑥)) ∈ L(B),
for 𝑖 = 1, · · · , 𝑛.

To prove that L(B) is also a coefficient-embedding ideal lattice

in Z[𝑥]/𝑔(𝑥), by Lemma 3.1 it is enough to show that 𝜎 (𝑥𝜎−1 (h𝑖 )
mod 𝑔(𝑥)) ∈ L(B), for 𝑖 = 1, · · · , 𝑛.

Note that for 𝑖 = 1, · · · , 𝑛 − 1,

𝜎 (𝑥𝜎−1 (h𝑖 ) mod 𝑔(𝑥)) = 𝜎 (𝑥𝜎−1 (h𝑖 ) mod 𝑓 (𝑥)) ∈ L(B) .
Since𝜎 (𝑓 (𝑥) − 𝑔(𝑥)) ∈ L( B

𝑑
), there exists a lattice vector v ∈

L(B) such that 𝑑 (𝑓 (𝑥)−𝑔(𝑥)) = ℎ𝑛,𝑛 (𝑓 (𝑥)−𝑔(𝑥)) = 𝜎−1 (v). Then
for 𝑖 = 𝑛,

𝜎 (𝑥𝜎−1 (h𝑛) mod 𝑔(𝑥)) = 𝜎 (
𝑛−1∑︁
𝑖=1

ℎ𝑛,𝑖𝑥
𝑖 − ℎ𝑛,𝑛 (𝑔(𝑥) − 𝑥𝑛))

= 𝜎 (
𝑛−1∑︁
𝑖=1

ℎ𝑛,𝑖𝑥
𝑖 − ℎ𝑛,𝑛 (𝑓 (𝑥) − 𝑥𝑛) + 𝜎−1 (v))

= 𝜎 (𝑥𝜎−1 (h𝑛) mod 𝑓 (𝑥)) + v ∈ L(B).
The theorem follows. □

Remark 1. The HNF H in the proof can be replaced by any In-
complete Hermite Normal Form.

Remark 2. For most lattice-based cryptosystems, their security is
guaranteed by the hardness of lattice problems such as 𝛾-SVP. Hence,
the hardness of lattice problem in ideal lattice is widely considered as
the security foundation of Ring-LWE based cryptosystems.

However, the worst-case hardness of ideal lattice 𝛾-SVP in different
polynomial rings are not the same exactly. For example, in the ring
Z[𝑥]/(𝑥𝑛 + 1) 𝑛 = 2

𝑘 𝑘 ≥ 1, there is a quantum polynomial time al-
gorithm for ideal lattice exp(𝑛1/2)-SVP [10] [11], but the approximate
factor is no less than exp(𝑛) in the majority of polynomial rings.

Theorem 3.4 indicates that an ideal lattice can be viewed as an ideal
lattice in infinitely different polynomial rings. Hence, it’s possible to
embed the given ideal lattice into a special ring such as Z[𝑥]/(𝑥𝑛 +1)
𝑛 = 2

𝑘 𝑘 ≥ 1 which can help to the solve the hard lattice problems. We
refer to [5] for more details about research on the geometry relation
between the canonical embedding and the coefficient embedding in
cyclotomic fields.

4 IDENTIFYING AN IDEAL LATTICE
4.1 Algorithm
According to Theorem 3.2 and Theorem 3.4, we propose an algo-

rithm to identify whether a given integer lattice is an ideal lattice

or not (Algorithm 1).

Algorithm 1 Identifying an ideal lattice

Input: B ∈ Z𝑛×𝑛 , rank(B) = 𝑛.
Output: False if L(B) is not a coefficient-embedding ideal lattice;

Otherwise output a set 𝑆 ⊂ Z𝑛 s.t. for any (𝑔1, 𝑔2, ..., 𝑔𝑛) ∈ 𝑆 ,
L(B) can be embedded as an ideal into Z[𝑥]/(𝑔1 + 𝑔2𝑥1 + ... +
𝑔𝑛𝑥

𝑛−1 + 𝑥𝑛).

1: Compute the HNF B′ =
(
D 0
b′ ℎ𝑛,𝑛

)
, whereD = (ℎ𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑛−1

and b′ = (ℎ𝑛,𝑖 )1≤𝑖≤𝑛−1 (HNF is a special Incomplete Hermite

Normal Form);

2: if ℎ𝑖,𝑖 |ℎ 𝑗,𝑙 , for 1 ≤ 𝑙 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛 then
3: if

(
0 D

)
B−1 ∉ Z(𝑛−1)×𝑛 then

4: return False;

5: else
6: return 𝑆 = 1

ℎ𝑛,𝑛
(
(
0 b′

)
+ L(B))

7: end if
8: else
9: return False

10: end if

Remark 3. In Step 1, we compute the HNF of L(B), and in step
2 use the divisibility relation described in Lemma 2.12 to rule out
some integer lattices that can’t be embedded as an ideal into any
polynomial ring. This may speedup the algorithm in practice, since
many "random" integer lattices can not pass such check.

The correctness of Algorithm 1 is guaranteed by Theorem 3.2

and Theorem 3.4
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4.2 Complexity
For step 1, we refer to the following theorem to compute the HNF:

Theorem 4.1. [24] There exists a Las Vegas randomized algorithm
that computes the Hermite form H ∈ Z𝑛×𝑛 of a nonsingular integer
matrix A ∈ Z𝑛×𝑛 . The algorithm uses standard integer and ma-
trix multiplication and has cost O(𝑛3 (log𝑛 + log | |A| |)2 (log𝑛)2) bit
operations.

About judging whether

(
0 D

)
B−1 ∈ Z(𝑛−1)×𝑛 or not in step

3, there is an equivalent description and we refer to the results of

Birmpilis et al [8].

Theorem 4.2 (See Theorem 4 of [8] ). Let B ∈ Z𝑛×𝑛 be nonsin-
gular with Smith form S and Smith massager M. Let 𝑠 be the largest
invariant factor of S. The following lattices are identical:
𝐿1 = {𝑣 |𝑣B−1 ∈ Z1×𝑛}
𝐿2 = {𝑣 |𝑣M ≡ 01×𝑛 cmod S}

By Theorem 4.2, 𝐿1 = 𝐿2, which means to judge whether(
0 D

)
B−1 ∈ Z(𝑛−1)×𝑛 or not , it’s sufficient to verify

(
0 D

)
M ≡

0(𝑛−1)×𝑛 cmod S. S is the Smith Norm Form of B, and it’s diagonal.

The following theorem is also proposed by Birmpilis et al [8] to

compute the Smith Normal Form S and a reduced Smith Massager

M of the input matrix (M is reduced cmod S)

Theorem 4.3 (See Theorem 19 of [8]). There exists a Las Vegas
algorithm that takes as input a nonsingular A ∈ Z𝑛×𝑛 , and returns
as output the Smith Normal Form S ∈ Z𝑛×𝑛 and a reduced Smith
Massager M ∈ Z𝑛×𝑛 of the input matrix. The cost of the algorithm
is O(𝑛𝜔B(log𝑛 + log ∥𝐴∥)(log𝑛)2) bit operations. The algorithm
returns Fail with probability at most 1/2.

B(𝑑) = O(𝑀 (𝑑) log𝑑) and𝑀 (𝑑) bounds the number of bit oper-

ations required to multiply two integers bounded in magnitude by

2
𝑑
. We take𝑀 (𝑑) = O(𝑑2). 𝜔 is a valid exponent of matrix multi-

plication: two 𝑛×𝑛 matrices can be multiplied in O(𝑛𝜔 ) operations
from the domain of the entries, and the best known upper bound is

𝜔 < 2.37286 by Alman and Williams [4].

We omit the complexity of step 2 since it’s very efficient, and

it remains to compute

(
0 D

)
M cmod S. We refer to [Lemma 18,

[24]]:

Lemma 4.4. [24] Given as input:
(1) a nonsingular Smith form S = diag(𝑠1, . . . , 𝑠𝑛) ∈ Z𝑛×𝑛 ,
(2) a matrixM ∈ Z𝑛×𝑛 such that M = cmod(M, 𝑆), and
(3) a nonsingular Hermite form H ∈ Z𝑛×𝑛 ,

we can compute cmod(HM, S) in O(𝑛(log |det(S) |) (log |det(H) |))
bit operations.

In our case, notice that D is in HNF. Since the first column of(
0 D

)
is 0, we can always remove the first row of M and the

remaining rows form a matrix denoted by M′ ∈ Z(𝑛−1)×(𝑛)
. Com-

puting

(
0 D

)
M cmod S is essentially computing DM′ cmod S.

Next, we can divide the columns of M′
together with S into two

parts (M′
1
S1), (M′

2
S2). M′

𝑖
∈ Z(𝑛−1)×(𝑛−1)

contains 𝑛 − 1 columns

of M′
with the corresponding 𝑛 − 1 columns Si of S and the union

of these two parts contain all the columns of M′
and S. Hence,

computing

(
0 D

)
M cmod S only needs to compute DM′

𝑖
cmod

S𝑖 for 𝑖 = 1, 2. Since log |det(S) | and log |det(D) | is bounded by

O(𝑛(log𝑛 + 𝐵)), using Lemma 4.4 we can conclude that

(
0 D

)
M

cmod S needs O(𝑛3 (log𝑛 + 𝐵)2) bit operations, where 𝐵 is the bit

length of entries of the input lattice basis and 𝑛 is the the dimension

of the input lattice.

Combining the analysis above, we get the whole bit operations:

Theorem 4.5. Given B ∈ Z𝑛×𝑛 , rank(B) = 𝑛, and the absolute
value of the entries of B is bounded by 2

𝐵 , then there is a Las Vegas
algorithm with expected complexity O(𝑛3 (log𝑛 + 𝐵)2 (log𝑛)2) to
identify whether L(B) is an ideal lattice or not.

4.3 Related research
In 2007, Ding and Lindner [12] already proposed an algorithm for

identifying ideal lattices, but we find that there is a flaw in their

algorithm. More exactly, some ideal lattices can’t be identified by

their algorithm.

We find some non-trivial ideal lattices which can’t be identified

by Ding and Lindner’s algorithm. The following is an example:

B =
©­«
6 −8 −5
3 −7 −4
6 1 −1

ª®¬
The row vectors of B span a full-rank ideal lattice in the ring

Z[𝑥]/𝑥3+3𝑥2+𝑥1−3. However, with the inputB, Ding and Lindner’s
algorithm return false.

More exactly, in their algorithm, the lattice is spanned by column

vectors, so the input matrix should be B𝑇 . They first transform B𝑇

into an upper-triangular Hermite Normal Form H.

H =
©­«
9 6 0

0 1 0

0 0 1

ª®¬
Then they compute the adjugate matrix A of H.

A =
©­«
1 −6 0

0 9 0

0 0 9

ª®¬
Let In be the unit matrix of dimension 𝑛, andM be a matrix only

related to the dimension 𝑛 (For this example, the dimension is 3).

M =

(
0 0

In−1 0

)
In step 4 of their algorithm, they need to verify whether only the

last columnAMHmod det(B) is equal to 0 or not. If the input lattice
basis B spans an ideal lattice, they believe by default only the last

columnAMHmod det(B) is not equal to 0. However,AMH ≡ 0mod

det(B), which causes their algorithm to return "false". Apparently,

they ignore the situation that all the column of AMH mod det(B)
is equal to 0.

Ignoring the flaw above, our algorithm still performs better than

theirs in two aspects:

• Our algorithm outputs more. Ding and Lindner’s algorithm

outputs a single polynomial ring of the ring class if the input

lattice is an ideal lattice but ours outputs the entire ring class.

• The time complexity of our algorithm is lower. It is claimed

in [12] that the algorithm presented by Ding and Lindner to

identify an ideal lattice costs O(𝑛4𝐵2) bit operations. How-
ever, we have to point out that there is also a flaw in the
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complexity analysis in O(𝑛4𝐵2). The algorithm in [12] needs

to compute 𝑛 − 2 powers of B, that is, B𝑘 for 𝑘 = 2, · · · , 𝑛 − 1.

It is claimed this can be done within O(𝑛4𝐵2) bit operations.
However, when 𝑘 grows bigger, the bit size of the entries

in B𝑘 will be O(𝑘𝐵) instead of 𝐵. Hence the correct time

complexity should be

𝑛−1∑︁
𝑘=2

O(𝑛3 ∗ 𝑘 ∗ 𝐵2) = O(𝑛5𝐵2) .

4.4 Experiment
Using our algorithm, we conducted several experiments, and the

experimental results are presented in Appendix A.

5 CONCLUSION
In this paper, we explore the connection between integer lattices

and coefficient-embedding ideal lattices. We have three main con-

tributions:

Firstly, we find and proof an ideal lattice can be viewed as an

ideal lattice in infinitely many different polynomial rings. This

interesting phenomenon may contribute to the solution to hard

ideal lattice problems as mentioned in Remark 2.

Secondly, we propose an efficient algorithm for identifying ideal

lattices, and compared to related work, our algorithm has more

advantages.

Finally, we provide an efficient open source implementation

of our algorithm for identifying ideal lattices in SageMath. Our

experimental results are presented in Appendix A.
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Regarding algorithm runtime, we conducted multiple experi-

ments with different variables. For input parameters dim and bound,
we randomly generated a dim-dimensional matrix within the spec-

ified bound as the lattice basis. In other words, this results in the

generation of a dim × dim matrix, where each element of the matrix

falls within the range of −2bound to 2
bound

.

Two scenarios were considered:

• Fixing the dimension (dim): We kept dim constant and

recorded the runtime as bound increased gradually.

• Fixing the bound (bound): We kept bound constant and

recorded the runtime as dim increased.

The relevant experimental results can be found in Figure 1.

For parameters with dim less than 300, we conducted 100 experi-

ments for each parameter and recorded the average time consump-

tion as the time record. We observed that these data have very low

variance, with each data point closely approaching the mean.

For parameters with large dim, due to the longer individual

runtime, we performed five experiments for each group and used

the average of these five values as the time consumption.

(a) dim fixed (b) bound fixed

Figure 1: Cost time for our algorithm using random lattice
as input

Note that as dimensions or bounds increased, the proportion of

ideal lattices became very small. Therefore, most of the generated

lattices in the former experiments weren’t ideal lattice, resulting

in runtime data just be not suitable for ideal lattice input. We use

Remark 3 in our algorithm and if the input lattice is not an ideal

lattice, it may be excluded efficiently.

To further explore ideal lattices, we conducted additional ex-

periments using ideal lattice as input. We randomly selected poly-

nomials 𝑓 with coefficients in {-1,0,1} and 𝑔 with coefficients in

(−2bound, 2bound) and computed the lattice basis of the principal

ideal generated by 𝑔 in Z[𝑥]/𝑓 (𝑥), ensuring it is an ideal lattice. In

such case, we take the coefficient vectors of 𝑥𝑖𝑔(𝑥)mod𝑓 (𝑥) as the
lattice basis, and the reason why we limit the coefficients of 𝑓 (𝑥)
in {-1,0,1} is to decrease the exploration of the coefficients of ideal

lattice basis generated by 𝑔. Similarly as former experiments, we

also performed experiments with fixed dimensions, recording the

runtime as bound varied, and fixed bounds, recording the runtime

as dim varied. The relevant experimental results can be found in

Figure 2.

To facilitate the comparison of different parameters and the

runtime under various inputs, you can refer to the data table in

Table 1.

Finally, although finding an ideal lattice in high dimensions is

challenging, we conducted experiments in lower dimensions to

(a) dim fixed (b) bound fixed

Figure 2: Cost time for our algorithm using Ideal lattice as
input

(dim, bound) lattice (s) ideal lattice (s)

(100, 5) 0.406 0.467

(100, 10) 0.555 0.598

(100, 15) 0.713 0.759

(100, 20) 0.894 0.934

(200, 5) 3.999 5.538

(200, 10) 5.607 7.503

(200, 15) 7.494 8.203

(200, 20) 9.365 11.140

(300, 5) 16.426 30.870

(300, 10) 23.916 37.507

(300, 15) 30.485 44.475

(300, 20) 39.398 57.703

(400, 5) 46.075 93.985

(400, 10) 61.436 103.909

(400, 15) 87.487 136.954

(400, 20) 115.221 153.318

(500, 5) 110.583 192.532

(500, 10) 144.965 297.249

(500, 15) 204.832 313.888

(500, 20) 270.002 393.900

Table 1: Experimental results for cost time when using ran-
dom lattice/ideal lattice as input.

(a) bound fixed (b) dim fixed

Figure 3: Density of ideal lattice

estimate the reduction factor. We investigated the density of ideal

lattices in low dimensions and small bounds. We performed 100,000

experiments for each parameter dim = 3, bound = 3, 4, 5, 6, 7 and

bound = 3, dim = 2, 3, 4, 5, 6, recording the quantity of ideal lattices

under different parameters. We observed a rapid decrease in the

proportion of ideal lattices in Figure 3.
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