
Structured-Seed Local Pseudorandom Generators and their
Applications

Dung Bui1, Geoffroy Couteau2, and Nikolas Melissaris3

1 IRIF, Université Paris Cité, France
bui@irif.fr

2 CNRS, IRIF, Université Paris Cité, France
couteau@irif.fr

3 Aarhus University, Denmark
nikolas@cs.au.dk

Abstract. In this note, we introduce structured-seed local pseudorandom generators, a relax-
ation of local pseudorandom generators. We provide constructions of this primitive under the
sparse-LPN assumption, and explore its implications.

1 Introduction

Pseudorandom generators (PRGs) are functions mapping n bits to m(n) > n bits such that no
polynomial-time algorithm can distinguish their output on a random input from a random m-bit
string. Local pseudorandom generators (local PRGs) are pseudorandom generators where every output
bit can be computed from a constant number of input bits (that is, they belong to the complexity class
NC0). The existence of local PRGs was first investigated in the work of Cryan and Miltersen [CM01].
The work of Applebaum, Ishai, and Kushilevitz [AIK04,AIK08] showed that pseudorandom generators
in NC0 with sublinear stretch (m = n+o(n)) exist under widely believed standard assumption for the
case of PRG with sublinear stretch (such as factorization, or discrete logarithm), and under a specific
intractability assumption related to the hardness of decoding “sparsely generated” linear codes for the
case of PRG with linear stretch m = Θ(n).

In recent years, the existence of local pseudorandom generators with polynomial stretch (m =
n1+ε for some constant ε > 0) has been shown to enjoy a variety of applications, ranging from
secure computation with constant computational overhead [IKOS08], indistinguishability obfusca-
tion [JLS21,JLS22], pseudorandom correlation generators and functions [BCG+17,BCM+24], public
key encryption [BKR23] and sublinear secure computation [BCM23], to applications extending be-
yond the realm of cryptography such as hardness of learning [DV21]. Consequently, the existence
of polynomial-stretch local PRGs and the cryptanalysis of existing candidates has been the subject
of many works [Gol00,MST03,BQ09,App12,OW14,CEMT14,App15,ABR16,AL16,LV17,CDM+18,
AK19,OST19,Méa,YGJL21,Méa22,Üna23b,DMR23,Üna23a]. All existing candidates build upon a
design originally suggested in [Gol00] that applies a well-chosen predicate P on constant-size subsets
of the bits of the seed, where the subsets are chosen to form the hyperedges of a sufficiently expanding
uniform hypergraph.

1.1 Our contribution

In this work, we revisit the applications of local PRGs. Our main observation is that many of the
standard applications of local PRGs do not require the full power of local PRGs. In particular, many
applications only require the existence of a local pseudorandom mapping from n-bit seeds to m-bit
strings, but do not require the seeds to be sampled uniformly at random. We formalize this observation
by introducing the notion of structured-seed local pseudorandom generators, which generalize local
PRGs to the setting where the seed should be sampled from a prescribed distribution with support
over {0, 1}n (instead of being sampled uniformly at random), and provide a sample of applications
where structured-seed local PRGs can be used as a drop-in replacement to standard local PRGs.
Concretely, we show how to use structured-seed local PRGs in the following applications:

– Indistinguishability obfuscation from well-founded assumptions [JLS21];
– Constant-overhead secure computation [IKOS08];

mailto:bui@irif.fr
mailto:couteau@irif.fr
mailto:nikolas@cs.au.dk

2 Dung Bui, Geoffroy Couteau, and Nikolas Melissaris

– Compact homomorphic secret sharing [BCM23];
– Hardness of learning DNFs [DV21].

Beyond introducing structured-seed local PRGs and providing a formal definition, we also intro-
duce constructions of structured-seed local PRGs from well-studied cryptographic assumptions which
are not known to imply the existence of standard local PRGs. Concretely, we focus on the sparse
learning parity with noise assumption, an assumption introduced in the work of Alekhnovich [Ale03]
which is equivalent to hardness of decoding random LDPC codes. We provide an extended coverage
of various flavors of this assumption and show several constructions of structured-seed local PRGs
from these variants. In particular, we obtain:

– A direct construction of structured-seed local PRG from the sparse-LPN assumption with regular
noise distribution (where the noise is sampled as a concatenation of random one-hot vector), and

– A construction of structured-seed local PRG with inverse-polynomial security from the sparse-
LPN assumption with more common noise distributions. This second construction is more involved
and builds upon hashing schemes for balanced allocation.

As a consequence, we show that for the four applications above, the assumption of local PRGs
can be replaced by the assumption that sparse-LPN with regular noise is hard (for the application
to indistinguishability obfuscation, we require subexponential hardness of the assumption). For the
application to hardness of learning, where inverse-polynomial security suffices, we further obtain
hardness results from the sparse-LPN assumption without regular noise.

1.2 Concurrent work

In a recent work [RVV24], Ragavan, Vafa, and Vaikuntanathan also introduced the notion of structured-
seed local pseudorandom generators and studied its application. Our work is concurrent and in-
dependent to theirs, and there is a significant overlap between our results: the core observation
(that structured-seed local PRGs can replace local PRGs in some applications) and the definition of
structured-seed local PRGs are essentially the same in both works. We outline a few differences:

– The work of [RVV24] focuses on the application of structured-seed local PRGs to indistinguisha-
bility obfuscation (iO). While we also consider iO, they provide a much more thorough coverage
of this application and achieve stronger results (replacing local PRGs with structured-seed local
PRG in the work of [JLS22] rather than in the work of [JLS21], hence avoiding the use of the
LWE assumption).

– The other applications we consider are not considered in the work of [RVV24]. While our coverage
of these applications is (for now) superficial, we plan to include a significantly more extended
coverage of the application to hardness of learning in future versions of this work (since several
non-trivial complications arise in this setting).

– Eventually, the work of [RVV24] focused on constructions from sparse-LPN with Bernoulli noise.
In contrast, we consider other noise distributions, such as regular noise, and XOR noise (where
the noise is sampled as a XOR of unit vectors). Consequently, our constructions of structured-seed
local PRGs, while sharing a common intuition, differ significantly from theirs.

The current version of our paper is a work in progress. We are posting this working draft on ePrint
due to the concurrent work of [RVV24] being online. In future versions of this work, we plan to include
additional results, such as

– Exploring further the implications of structured-seed local PRGs for PAC-learning;
– Providing constructions of structured-seed local PRGs with improved parameters (smaller locality

for a given stretch) from the Expand-Accumulate LPN assumption from [BCG+22].

2 Preliminaries

Vector and Matrix. We denote vectors using bold font and matrices using caps. Given a vector v, we
write v[i] to denote its i-th entry, for a given set S ∈ [n], we denote v[S] as a set including i-th entries
of v for all i ∈ S. By default, all vectors are column vectors. We call a length-m one-hot vector as
a unit vector over Fn

2 . We write [n] to denote the set {1, · · · , n} and unitn(i) to denote a unit vector
of length n having non-zero i-th entry. For any distribution D, we denote x ← D is the process of
sampling uniformly x over the distribution D.

Structured-Seed Local PRGs and their Applications 3

Distribution. Given an algorithm A and a pair of distributions (D0,D1), we write AdvA(D0,D1) to
denote

AdvA(D0,D1) =

∣∣∣∣ Pr
x←D0

[A(x) = 0]− Pr
x←D1

[A(x) = 0]

∣∣∣∣ .
We say the pair of distributions (D0,D1) is polynomially indistinguishable and subexponentially in-
distinguishable if AdvA(D0,D1) ≤ negl(λ) for all sufficient large λ ∈ N and AdvA(D0,D1) ≤ exp(−λc)
for a real number c > 0 respectively.

2.1 LPN Assumptions

The LPN assumption over the binary field F2 states, informally, that no adversary can distinguish
(A,A ·x+ e) from (A,b), where A is a matrix sampled from some matrix distributionM over Fn×k

2 ,
x is sampled uniformly from Fk

2 , and e is a noise vector sampled from some noise distribution E
over (typically sparse) F2-vectors. The vector b is a uniform vector over Fn

2 . More formally, we define
below the LPN assumption over F2 with dimension k and n samples, w.r.t. a matrix distributionM
and a noise distribution D:

Definition 2.1 (Learning parity with noise). For any integer k ∈ N, let n = n(k) be a poly-
nomial, and let M = Mn,k be a distribution over Fn×k

2 . Let E = En be a noise distribution over
Fn
2 . Then, we say that the (M, E)-LPN problem is (T, ε, δ)-hard if for every probabilistic adversary
A = (Aλ)λ∈N of size at most T = T (λ), it holds that for all large enough k,

Pr
A

$←Mn,k

[
AdvAk

(DA
0 ,DA

1) > ε
]
≤ δ,

where DA
0 denotes the distribution {(A,A·s+e) | x $← Fk

2 , e
$← E} and DA

1 denotes {(A,b) | b $← Fn
2}.

Types of noise. Denoting w a parameter which governs the average density of nonzero entries in
a random noise vector e, common choices of noise distribution are Bernoulli noise (each entry of e
is sampled from a Bernoulli distribution with parameter w/n), exact noise (e is uniformly random
over the set of vectors of Hamming weight w), and regular noise (e is a concatenation of w random
unit vectors). Another natural choice of noise distribution is to set e to be the XOR of w random
one-hot vectors of length n, as the independence of the one-hot vectors is often convenient in security
analysis. We will call respectively Bernoulli noise, exact noise, regular noise, and xor noise these
standard noise distributions, and denote:

– Bn,w the distribution over Fn
2 where each entry is set to 1 with independent probability w/n;

– Sn,w the uniform distribution over the set of vectors of Fn
2 with Hamming weight w;

– Rn,w the distribution obtained by sampling w one-hot vectors over Fn/w
2 (assuming for simplicity

that w divides n) and outputting their concatenation;
– Xn,w the distribution obtained by sampling w one-hot vectors over Fn

2 and outputting their XOR.

When n is clear from the context, we drop it from the subscript and write Bw,Sw,Rw,Xw respec-
tively.

When w ≪
√
n (the “low-noise” setting), the flavors of LPN with noise sampled from Sw and Xw

are easily shown to be equivalent, since a random sample from Xw has Hamming weight exactly w with
probability at least 1−w2/n. In turn, LPN with noise sampled from Sw is known to be equivalent to
LPN with noise sampled from Bw [Pie12]. While there are also reductions between LPN with regular
noise and other variants, they typically induce a much larger loss in the parameters [LWYY24].

Discussion on the definition. The reader may observe that Definition 2.1 differs slightly from
the standard definition of LPN: the standard definition requires that the adversary should have
at most advantage ε (for a negligible ε = ε(λ)) in distinguishing {(A,b) | A $← Mn,k,b

$← DA
0 }

from {(A,b) | A $←Mn,k,b
$← DA

1 } (that is, the distinguishing advantage is also quantified over the
random choice of A). Definition 2.1 is more fine-grained: it separates the probability δ that the matrix
A is a “good matrix” for the LPN problem from the probability ε that the adversary can (given A)
distinguish the LPN samples from random. Setting (ε, δ) to be negligible recovers the standard LPN
definition. However, this more fine-grained definition style is particularly helpful for the sparse-LPN
assumption, which we cover in Section 4.

4 Dung Bui, Geoffroy Couteau, and Nikolas Melissaris

2.2 Useful Lemmas

Lemma 2.2 (Chernoff Bound). Let n ∈ N and X1, · · · , Xn be independent random variables
taking values in {0, 1}. Let X denote their sum and let µ← E[X]. Then for any δ ∈ (0, 1),

Pr[X ≥ (1 + δ)µ] ≤ exp

(
−δ

2µ

3

)
and Pr[X ≤ (1− δ)µ] ≤ exp

(
−δ

2µ

2

)
.

Lemma 2.3 (Markov inequality). Let X be a positive random variable with finite expectation µ.
Then for any k > 0, Pr[X ≥ k] ≤ µ/k.

Lemma 2.4 (Piling-up lemma). For any 0 < r < 1/2 and any integer N , given N i.i.d. random
variables X1, · · · , XN over F2 with Pr[Xi = 1] = r, it holds that Pr[

⊕N
i=1Xi = 0] = 1/2+(1−2r)n/2.

3 Defining Structured-Seed Local PRGs

In this section, we introduce the notion of structured-seed local pseudorandom generator. Recall
that a pseudorandom generator (PRG) is an algorithm PRG : {0, 1}n → {0, 1}m, with n > m, such
that no polynomial-time adversary can distinguish between PRG(r) (for r $← {0, 1}n) and a random
z

$← {0, 1}m. The uniform string r ∈ {0, 1}n is called the seed of the PRG.
Informally, a local pseudorandom generator is a pseudorandom generator where each output bit

depends on a constant number of input bits. A structured-seed pseudorandom generator relaxes the
standard notion of pseudorandom generator to allow for more general distributions of seeds: instead
of sampling r uniformly over {0, 1}n, we sample it as r $← SampleSeed, where

– (small size) the support Supp(SampleSeed) of SampleSeed is contained in {0, 1}n, and
– (efficiency) the running time of the sampler SampleSeed is much smaller than m.

We provide a formal definition below.

Definition 3.1 (Structured-Seed Local Pseudorandom Generator). A structured-seed pseu-
dorandom generator with a stretch m(·) is a triple of uniform p.p.t. algorithms (Setup,SampleSeed,PRG),
with:

– Setup(1λ). A probabilistic algorithm that on inputs 1λ and outputs a public parameter pp.
– SampleSeed(pp). A probabilistic algorithm that on inputs pp and outputs a seed value seed ∈
{0, 1}n.

– PRG(pp, seed). A deterministic algorithm that on inputs seed, public parameter pp and outputs an
evaluation value y ∈ {0, 1}m(n).

A structured-seed pseudorandom generator is (T, ϵ, δ)-secure if for any non-uniform p.p.t adversary
A = (Aλ)λ∈N of size at most T = T (λ), for all λ ∈ N,

Pr [AdvAλ
(D0,D1) > ε] ≤ δ,

where D0 = Dλ,n
0 denotes the family of distributions

{(pp,PRG(pp, r)) | pp $← Setup(1λ), r
$← SampleSeed(pp)}

and D1 = Dλ,n
1 denotes the family of distributions

{(pp, z) | pp $← Setup(1λ), z
$← {0, 1}m(n)}.

Furthermore, a structured-seed PRG is said to be in NC0, or local, if PRG is implementable
by a uniformly efficiently generatable NC0 circuit. We say that a structured-seed PRG has poly-
nomial stretch if m(n) = n1+Ω(1). Denoting Tss = Tss(λ, n,m) the (worst-case) running time of
SampleSeed (implemented by a uniformly efficiently generatable family of boolean circuits), we say
that a structured-seed PRG has strong polynomial stretch if m(n) = T

1+Ω(1)
ss .

Structured-Seed Local PRGs and their Applications 5

We note that if a structured-seed PRG with input size n and stretch m is local, then there exists
a locality parameter l such that for all i ∈ [m], there exists a subset Si ⊂ [n] of size |Si| ≤ l and a
predicate Pi such that for all x ∈ Supp(SampleSeed(pp)), defining y = PRG(x), we have yi = Pi(x[Si]).

Eventually, we consider a further relaxation of structured-seed local PRGs where we allow Setup
to be inefficient:

Definition 3.2 (Non-Uniform Structured-Seed Local PRG). We say that (Setup,SampleSeed,PRG)
is a non-uniform structured-seed local pseudorandom generator if it satisfies the conditions of Defini-
tion 3.1, except that Setup(1λ) is not required to run in polynomial time.

4 The Sparse-LPN Assumption

4.1 The sparse-LPN assumption

In this work, we will mostly focus on a variant introduced in [Ale03] (commonly called the “Alekhnovich
assumption” or “sparse-LPN assumption”), whereM is a distribution of sparse matrices:

Notation 1 We denote by Wc = Wc
n,k the distribution over Fn×k

2 that samples independently each
row r of A as r⊺

$← Sc,k; that is, A is a uniformly random matrix with row-weight c over Fn×k
2 .

With these notations, the Aleknovich assumption asserts that for a suitable constant c ≥ 3, the
(Mc,Sw,F2)-LPN(k, n) assumption holds.

It is not hard to see that δ cannot be negligible for sparse-LPN: with probability at least n2/kc,
two rows ai,aj of A will be identical, in which case there is a trivial distinguisher (as ⟨ai,x⟩ + e[i]
is very likely to be equal to ⟨aj ,x⟩ + e[j] by the sparsity of the noise). In fact, any small set of
linearly-dependent rows of A yields a nontrivial distinguisher. Therefore, the standard formulation of
sparse-LPN asserts that the (Mc,Sw,F2)-LPN(k, n) is (poly(λ), negl(λ), δ)-hard for a suitable inverse-
polynomial δ.

When A does not have a small set of linearly-dependent rows, the best-known attacks on sparse-
LPN are the same as the best-known attacks on LPN. This is best explained through the framework of
linear tests, a framework to heuristically analyze the hardness of variants of LPN which has roots in the
works of Naor and Naor [NN90] and Mossel, Shpilka, and Trevisan [MST03], and which was explicitly
put forth and stuied in the context of LPN in [ADI+17,BCG+20,CRR21]. The central observation of
this framework is that most known attacks against LPN (such as BKW [BKW00,Lyu05], ISD [Pra62],
and many more) share a common template, and that to defeat all attacks sharing this template, it
suffices (in coding theoretic terms) that the dual distance of the code generated by A is large – i.e.,
that A does not have a small set of linearly-dependent rows.

4.2 Security against linear tests

We briefly overview the linear test framework, and derive from the framework a concrete set of
parameters for the sparse-LPN assumption. We stress that the framework is only a heuristic: there
are known settings in which a variant of LPN can be broken by an attack that does not fit in the
framework (see e.g. the discussions in [CRR21,BCCD23]). Nevertheless, the bounds provided by this
framework are in line with the state-of-the-art cryptanalysis on sparse LPN, and provides a convenient
heuristic to choose plausible parameters.

Notation 2 We call dual distance of a matrix M , and write dd(M), the largest integer d such that
every subset of d rows of M is linearly independent.

Informally, the linear test framework models attacks where the adversary is unbounded and can
arbitrarily use the LPN matrix A, but is restricted to computing a linear function of the vector b.
Concretely, let A be a (possibly unbounded) adversary. The attack proceeds in two stages:

1. A receives the LPN matrix A and outputs a nonzero test vector v. Note that A can run in
unbounded time, but sees only the matrix A.

6 Dung Bui, Geoffroy Couteau, and Nikolas Melissaris

2. In the second stage, the vector b← A ·x+e is sampled. We say that A is successful if, with large
probability over the random choice of A, the bias of the distribution induced by sampling x and
the noise e and computing ⟨v, Ax+ e⟩ (that is, evaluating the linear function picked by A on b)
is noticeable.

To formally state the definition, we recall the notion of bias of a distribution:

Definition 4.1 (Bias of a Distribution). Given a distribution D over Fn
2 and a nonzero vector

u ∈ Fn
2 , the bias of D with respect to u, denoted biasu(D), is equal to

biasu(D) =

∣∣∣∣∣ E
x←D

[u⊺ · x]− E
x

$←Fn
2

[u⊺ · x]

∣∣∣∣∣ =
∣∣∣∣ Prx←D

[u⊺ · x = 1]− 1

2

∣∣∣∣ .
The bias of D, denoted bias(D), is the maximum bias of D with respect to any nonzero vector u.

Definition 4.2 (Security against Linear Test). For any integer k ∈ N, let n = n(k) be a poly-
nomial, and let M =Mn,k be a distribution over Fn×k

2 . Let E = En be a noise distribution over Fn
2 .

Then, we say that the (M, E)-LPN problem is (ε, δ)-secure against linear tests if if for any (possibly
inefficient) adversary A which, on input a matrix A ∈ Fn×k

2 , outputs a nonzero v ∈ Fn
2 , it holds that

Pr[A
$←M,v

$← A(A) : biasv(DA) ≥ ε(λ)] ≤ δ(λ),

where DA denotes the distribution induced by sampling x
$← Fm

2 , e← En, and outputting the LPN
samples A · x+ e.

The following observation is folklore, and was made explicitly e.g. in [BCG+20]:

Observation 1 Most existing attacks against LPN, including BKW [BKW00,Lyu05], ISD [Pra62],
variants of Gaussian elimination [LF06, EKM17], statistical decoding attacks [Ove06], generalized
birthday attacks [Wag02, Kir11], linearization attacks [BM97, Saa07], or attacks based on finding
correlations with low-degree polynomials [ABG+14,BR17], can be cast as instances of the linear test
framework. Therefore, none of these attacks can provide a polynomial-time distinguisher against any
LPN assumption that is provably (ε, δ)-secure against linear tests for negligible functions (ε, δ).

Given any test vector v, observe that ⟨v, Ax + e⟩ = ⟨v, Ax⟩ + ⟨v, e⟩. We recall a simple folklore
observation, rooted in [NN90,MST03]: the distribution induced by A ·x is dd(A)-wise independent by
definition of dd(A). Hence, the bias of ⟨v, Ax + e⟩ = ⟨v, Ax⟩ + ⟨v, e⟩ is zero if the Hamming weight
of v is less than dd(A). But if HW(v) ≥ dd(A), then ⟨v, e⟩ has low bias, because e “hits” a nonzero
entry of v with large probability. Formally:

Lemma 4.3. Let M = Mn,k be a distribution over Fn×k
2 and En denote a noise distribution over

Fn
2 . Then for any d ∈ N, the the (M, E)-LPN problem with dimension k = k(λ) and n = n(λ) samples

is (εd, δd)-secure against linear tests, where

εd = max
HW(v)>d

biasv(En), and δd = Pr
A

$←M
[dd(A) < d].

The quantity εd in Lemma 4.3 depends solely on the noise distribution and can be computed
easily for standard types of noise:

Lemma 4.4. For any integer d and noise distribution En, we denote εd(En) = maxHW(v)>d biasv(En).
Then

– εd(Xn,w) ≤ (1− 2(d+ 1)/n)w/2 ≤ exp(−2(d+ 1)w/n)/2
– εd(Rn,w) ≤ (1− 2(d+ 1)/n)w/2 ≤ exp(−2(d+ 1)w/n)/2
– εd(Bn,w) ≤ (1− 2w/n)d+1/2 ≤ exp(−2(d+ 1)w/n)/2

The proof of the claim is a straightforward application of the piling-up lemma (Lemma 2.4):
for Xn,w or Rn,w, the distribution induced by ⟨v, e⟩ is a xor of w independent Bernoulli samples,
each equal to 1 with probability HW(v)/n < d/n. For Bn,w, ⟨v, e⟩ is a xor of HW(v) > d Bernoulli
sample of rate w/n. The rightmost side of the inequalities follows from the standard inequality
(1 − 1/N)N ≤ exp(−1). We note that a similar bound can be shown (with a slightly more tedious
analysis) for Sn,w.

Structured-Seed Local PRGs and their Applications 7

4.3 The dual distance of random sparse matrices

We recall below a standard bound on the probability that random sparse matrices have large dual
distance.

Theorem 4.5 (Most sparse matrices have large dual distance). For any constants c ≥ 3 and
η ∈ (0, 1), for any large enough k = k(λ), there is a constant γ(c) such that for any n ≤ k(1−η)c/2+η,

Pr

[
A

$←Wc : dd(A) ≥ kη

γ(c)
− 1

]
≥ 1−

(
γ(c)

kη

)c−2

.

For example, setting c = 3 and η = 1/5, Theorem 4.5 yields that for n = k1.4, a random c-sparse
matrix A over Fn×k

2 has dual distance dd(A) = Ω(k0.2) with probability at least 1 − O(k−0.2). For
completeness, we provide a proof of Theorem 4.5 in Appendix A.

4.4 A parametrized version of the sparse-LPN assumption

Combining Lemma 4.4 (bounding εd) and Theorem 4.5 (to bound δd) yields a quantified estimate of
the security of sparse-LPN against attacks from the linear test framework:

Lemma 4.6. For any constants c ≥ 3 and η ∈ (0, 1), for any noise distribution E ∈ {Xn,w,Rn,w,Bn,w},
the (Sc, E)-LPN problem with dimension k = k(λ), noise w = w(λ), and n = n(k) ≤ k(1−η)c/2+η sam-
ples is (ε, δ)-secure against linear tests, where

ε =
1

2
· exp

(
−2 w · k

η

γ(c) · n

)
, δ =

(
γ(c)

kη

)c−2

,

for a constant γ(c) = 2 · (c/2)
c/2

c/2−1 · e
c/2+1
c/2−1 .

For example, γ(3) ≈ 1000, γ(7) ≈ 70, and γ(10) ≈ 67 (note however that no effort has been
made to optimize the constant, and the analysis is very loose). We are now ready to state a concrete
parametrized version of the sparse-LPN assumption; the assumption basically states that there is no
attack on sparse LPN that does significantly better than linear tests:

Assumption 1 For any constants c ≥ 3 and η ∈ (0, 1), for any noise distribution E ∈ {Xn,w,Rn,w,
Bn,w}, for every T = 2o(λ), the (Sc, E)-LPN problem with dimension k = k(λ), number of samples
n = n(k) ≤ k(1−η)c/2+η, and noise w = w(λ, k) ≥ λ · k(1−η)c/2 is (T, ε, δ)-secure, with

ε =
poly(T)

2Ω(λ)
, δ =

1

Ω(kη)
.

We note that variants of the concrete assumption above have appeared on multiple occasions in
the literature: [ADI+17] makes a very similar assumption (Assumption 6 in [ADI+17]) but for a fixed
matrix A, and in the constant rate setting (saying that any circuit of size T = exp(Ωr(dd(A))) has
advantage at most 1/T against sparse LPN with noise rate r = w/n, where r is treated as a constant
and Ωr(·) hides the dependency in r). [BCG+23] also makes a very similar assumption (though they
again only require the existence of a matrix A with large enough dual distance). Below, we provide
two specific parameter settings consistent with the requirements of Assumption 1 that we will use in
this work:

Parameter Set 1 (balancing (k,w)) For every constant η ∈ (0, 1), for any noise distribution E ∈
{Xn,w,Rn,w,Bn,w}, for every T = 2o(λ), there is a constant c(η) = 2/(1−η) such that the (Sc, E)-LPN
problem with dimension k, number of samples n = k1+η, and noise w = λ · k is (T, 2−Ω(λ), 1/Ω(kη))-
secure.

Parameter Set 2 (minimizing w) For every constants γ > 0, for any noise distribution E ∈
{Xn,w,Rn,w,Bn,w}, for every T = 2o(λ) and every c ≥ 2 log γ/(log γ−1), the (Sc, E)-LPN problem with
dimension k, number of samples n = k1+γ/2 samples, and noise w = λ·kγ is (T, 2−Ω(λ), 1/Ω(k1−γ/2))-
secure.

8 Dung Bui, Geoffroy Couteau, and Nikolas Melissaris

4.5 Amplifying advantage

Let t = t(λ, ε, δ) ← λ/(δε2). We prove below that, up to a poly(λ, 1/ε, 1/δ) loss in the runtime and
number of samples, the (ε, δ)-hardness of sparse-LPN implies its (exp(−Ω(λ)), exp(−Ω(λ)))-hardness.

Lemma 4.7. Assume that the (Sc,Xn,w)-LPN problem with dimension k = k(λ), number of samples
n = k(1−η)c/2+η, and noise w = λ · k(1−η)c/2 is (T ′, ε, δ)-secure. Then the (Sc,Xn′,w′)-LPN problem
with dimension k, number of samples n′ = n · t, and noise w′ = w · t is (T, exp(−Ω(λ)), exp(−Ω(λ)))-
secure, with T ′ = poly(T, λ, 1/ε, 1/δ).

Proof. Let A be an algorithm running in time T solving the (Sc,Xn,w)-LPN problem with dimension
k, number of samples n, and noise w, such that PrA[AdvA(DA

0 ,DA
1) > ε] > δ. Set t ← λ/(δε2).

We show how to construct from A an algorithm B which is given black-box access to A and
(poly(λ, T, 1/ε, 1/δ), 1 − exp(−Ω(λ)), 1 − exp(−Ω(λ)))-solves the (Sc,Xn,w)-LPN problem with di-
mension k, number of samples n′ = n · t, an noise w′ = w · t. We denote GoodAµ the set of all matrices
A ∈ Fn×k

2 such that AdvA(DA
0 ,DA

1) > µ.
On input a (Sc,Xn,w)-LPN instance (A,b) ∈ Fn′×k

2 ×Fn′

2 , let c denote the index of the distribution
from which (A,b) was sampled (i.e. c = 0 if b is an LPN sample, and c = 1 if b is uniform). B proceeds
as follows:

– Break (A,b) into n′/n = t smaller instances (Ai,bi)i≤t with (Ai,bi) ∈ Fk×n
2 .

– Set S ← ∅. For each i ≤ t, test whether Ai ∈ GoodAε as follows:
• Repeat θ = 32λ/ε2 times the following procedure: set ctr ← 0. Sample a bit σ̃ $← {0, 1}. If
σ̃ = 0, sample (x, e)

$← Fk
2×Xn,w| and set b̃← Aix+e. If σ̃ = 1, set b̃ $← Fn

2 . If A(Ai, b̃) = σ̃,
set ctr← ctr + 1.

• If ctr ≥ θ · (1/2 + ε/4), declare Ai to be “good” and add i to S.
• If λ/(2ε2) matrices have been declared “good” (i.e., |S| = λ/(2ε2)), break.

– Set B ← |S| · (1/2− ε/16). For each good Ai:
• Sample xi

$← Fk
2 , b1

i
$← Fn

2 , and set b0
i ← bi ⊕Aixi.

• Flip a coin ci
$← {0, 1} and compute σi ← A(Ai,b

ci
i).

• Output 1 if
∑

i∈S σi ⊕ ci ≤ B.

We prove that B is successful. We use a sequence of simple claims:

Claim. If Ai ∈ GoodAε , then Pr[B declares Ai good] ≥ 1− exp(−λ).

Proof. If Ai ∈ GoodAε , then Pr[A(Ai, b̃) = b] ≥ 1/2 + ε/2 by definition. It follows that E[ctr] ≥
(1/2 + ε/2) · 32λ/ε2. By a Chernoff bound 2.2,

Pr[ctr < (1/2 + ε/4) · 32λ/ε2] < exp

(
−32 ·

(
ε/2

1 + ε

)2

· λ(1 + ε)

4ε2

)
≤ exp(−λ).

⊓⊔

Claim. Let S ⊆ [n′/n] be the subset of indices i such that Ai ∈ GoodAε . Then Pr[|S| ≤ λ/(2ε2)] ≤
exp(−λ/8).

Proof. The Ai are sampled uniformly and independently from Fn×k
2 , and Pr[Ai ∈ GoodAε] > δ by

assumption, hence E[|S|] > δ · n′/n = λ/ε2. By a Chernoff bound, it follows that

Pr[|S| ≤ λ/(2ε2)] ≤ exp

(
−
(
1

2

)2
λ

2ε2

)
< exp(−λ/8).

⊓⊔

Combining these two claims, it follows that B will declare at least λ/(2ε2) matrices Ai to be good,
except with probability at most exp(−λ) + exp(−λ/8).

Claim. If Ai /∈ GoodAε/4, then Pr[B declares Ai good] ≤ exp(−4λ/15).

Structured-Seed Local PRGs and their Applications 9

Proof. If Ai /∈ GoodAε/4, then Pr[A(Ai, b̃) = b] ≤ 1/2 + ε/8 by definition. It follows that E[ctr] ≤
(1/2 + ε/8) · 32λ/ε2. By a Chernoff bound 2.2,

Pr[ctr ≥ (1/2 + ε/4) · 32λ/ε2] < exp

(
−32 ·

(
ε

4 + ε

)2

· λ(1/2 + ε/8)

3ε2

)
≤ exp(−4λ/15).

⊓⊔

Therefore, by a straightforward union bound, with probability at least 1 − exp(−λ) − exp(−λ/8) −
λ exp(−4λ/15)/2 = 1− exp(−Ω(λ)),

– B declares λ/(2ε2) matrices to be good, and
– Every matrix Ai declared good by B belongs to GoodAε/4.

Then, for each Ai, observe that if (A,b) is an LPN sample, (Ai,b
0
i = bi ⊕ Aixi) is a uniformly

random LPN sample, while if b is uniform, the b0
i are uniform as well. That is,

– If b is uniform (c = 1), then b0
i and b1

i are identically distributed for every i ∈ S. Therefore, ci
is perfectly independent of σi, and

∑
i∈S σi ⊕ ci is a sum of independent unbiased random coins.

– Else, if b is an LPN sample (c = 0), then distinguishing (Ai,b
0
i) from (Ai,b

1
i) is exactly distin-

guishing between DAi
0 and DAi

1 . Since each Ai ∈ GoodAε/4 (with overwhelming probability), we
have for every i ∈ S,

Pr[σi ⊕ ci = 1 | ci
$← {0, 1},A(Ai,b

ci
i)] ≤ 1/2− ε/8.

Therefore,

2 · Pr[B fails] = Pr

[∑
i∈S

σi ⊕ ci > B | c = 0

]
+ Pr

[∑
i∈S

σi ⊕ ci ≤ B | c = 1

]

≤ exp

(
−|S| · (1/2− ε/8)

3
·
(

ε

8− 2ε

)2
)

+ exp

(
−|S| · 1/2

2
·
(ε
8

)2)
= exp

(
− λ

48 · (8− 2ε)

)
+ exp

(
− λ

256

)
≤ exp(−Ω(λ)),

where the first inequality follows by applying a Chernoff bound on both terms of the sum. This
concludes the proof that B is successful. ⊓⊔

4.6 Variants: changing the noise or matrix distribution

We focused in the above on the noise distribution X since it is the most convenient to use in our
constructions. However, the same analysis and conjectures apply equivalently to the other standard
noise distributions (B,S,R) (the analysis in the linear test framework gives identical bounds). Fur-
thermore, since in our regime we typically have n = k1+η with η < 1, it is not too hard to provide
tight reductions between (Sc,Xn,w)-LPN and (Sc,Sn,w)-LPN and/or (Sc,Bn,w)-LPN.

More interestingly, one can also consider a different distributions over sparse matrices, in the
hope of getting better bounds on the dual distance. And indeed, such a distribution was exhibited in
the work of Applebaum and Kachlon [AK19]: Theorem 8.2 in [AK19] states that for every constant
ℓ > 1, c > 4ℓ, there exists a negligible-error polynomial-time algorithm that samples matrices A over
Fn×k
2 , with n = kℓ rows of weight c with dual distance dd(A) ≥ Ω(kη) for some suitable constant
η(ℓ, c) ≤ 1 − 4(ℓ − 1)/(c − 4). On the flip side, this sampler achieves only a slightly negligible error
probability.

4.7 Predicate-conditioned sparse-LPN

We now state a result that will prove useful in our analysis later. Let P = {P : Fn
2 → {0, 1}} denote a

family of predicates. For a noise distribution E , let us denote E|P the distribution {e : e
$← E | P(e) =

1} (that is, E|P samples vectors from E conditioned on P(e) = 1). Fix a predicate P and consider the
following assumption (for suitable parameters (T, ε, δ)):

10 Dung Bui, Geoffroy Couteau, and Nikolas Melissaris

Definition 4.8 (P-conditioned sparse-LPN). For any constants c ≥ 3 and η ∈ (0, 1), for every
T = 2o(λ), we say that the P-conditioned (Sc,Xn,w)-LPN problem with dimension k = k(λ), number
of samples n = n(k) ≤ k(1−η)c/2+η, and noise w = w(λ, k) ≤ λ · k(1−η)c/2 is (T, ε, δ)-hard if for every
probabilistic adversary A = (Aλ)λ∈N of size at most T = T (λ), it holds that for all large enough k,

Pr
A

$←Sc,P
$←P

[
AdvAk

(DA,P
0 ,DA,P

1) > ε
]
≤ δ,

where DA,P
0 denotes the distribution {(A,P, A · s + e) | x $← Fk

2 , e
$← Xn,w|P} and DA,P

1 denotes
{(A,P,b) | b $← Fn

2}.

Reducing P-conditioned sparse-LPN to sparse-LPN. In this section, we prove a reduction
between P-conditioned sparse-LPN and sparse-LPN. The quality of the reduction depends on the
quantity err(P) = maxe Pr

P
$←P

[P(e) ̸= 1].

Lemma 4.9. Assume that the (Sc,Xn,w)-LPN problem with dimension k = k(λ), number of samples
n = k(1−η)c/2+η, and noise w = λ·k(1−η)c/2 is (T ′, ε, δ)-secure. Then the P-conditioned (Sc,Xn,w)-LPN
problem with dimension k = k(λ), number of samples n = k(1−η)c/2+η, and noise w = λ · k(1−η)c/2 is
(O(T), ε+ err(P), δ)-secure.

Proof. Let A be a (T, ε, δ)-adversary against the P-conditioned (Sc,Xn,w)-LPN problem with dimen-
sion k = k(λ), number of samples n = k(1−η)c/2+η, and noise w = λ ·k(1−η)c/2. We build an adversary
B against the (Sc,Xn,w)-LPN problem as follows: given as input a (Sc,Xn,w)-LPN problem (A,b), B
samples P

$← P and feeds (A,P,b) to B. Observe that

– If b is uniformly random, then (A,P,b) is a valid random P-conditioned instance.
– Else, if b is an LPN sample b = A·x+e, then the distribution of (A,P,b) conditioned on P(e) = 1

is a valid P-conditioned LPN instance.

For σ = 0, 1, let us denote

pσ(A,P) = Pr
(A,P,b)

$←DA,P
σ

[A(A,P,b) = 0].

We have AdvA(DA,P
0 ,DA,P

1) = |p0(A,Pt)− p1(A,Pt)|. Then:

Pr
A

[
AdvB(DA

0 ,DA
1) > ε′

]
= Pr

A,P
[|Pr[A(A,P,b) = | b random]− Pr[B(A,P,b) = | b LPN]| > ε′]

≤ max
x∈[0,1]

Pr
A,P

[|p1(A,P)− p0(A,P) · (1− err(P))− x · err(P)| > ε′] by the Bayes rule

≤ Pr
A,P

[|p1(A,P)− p0(A,P)| − err(P) > ε′] by triangle inequality

= Pr
A,P

[
AdvA(DA,P

0 ,DA,P
1) > ε′ + err(P)

]
≤ δ,

and we conclude the proof by setting ε′ = ε− err(P).

5 A Structured-Seed Local PRG from Sparse LPN

Our constructions rely on a simple method to compress a length-ℓ unit vector u into d smaller unit
vectors (u1, · · · ,ud) of length ℓ1/d such that each entry of u can be reconstructed by retrieving a
single entry from each ui.

Structured-Seed Local PRGs and their Applications 11

5.1 Compressing unit vectors

Let unitm(i) denote the procedure which, on input i ∈ [m], outputs a length-m one-hot F2-vector
with a 1 at position i. Conversely, let nzi(u) denote the procedure which, given as input a length-m
one-hot F2-vector u, returns its non-zero index i. We describe the compression and reconstruction
algorithms below:

Algorithms (Comp,Rec):

Comp(u, d): on input a length-ℓ unit vector u and a compression factor d,
1. Set ℓd ← ⌈ℓ1/d⌉.
2. Compute i← nzi(u) and write i over the ℓd-ary basis as (i1, · · · , id) ∈ [ℓd]

d.
3. Output (u1, · · · ,ud)← (unitℓd(i1), · · · , unitℓd(id)).

Rec(j, (u1, · · · ,ud)): on input an index j ∈ [ℓ] and d one-hot F2 vectors ui ∈ Fℓd
2 , with ℓdd ≥ ℓ,

1. Write j over the ℓd-ary basis as (j1, · · · , jd) ∈ [ℓd]
d.

2. Return b←
∏d

i=1 ui[ji]. // AND operation over F2.

We note in passing that since Comp(u, d) starts by computing i = nzi(u), it never needs to
store or read u in “expanded form” and can be passed i directly. We will make use of this obser-
vation when estimating the running time of our algorithms. From the description above, it is clear
that Rec(j, (u1, · · · ,ud)) always reads exactly d bits from its second input (u1, · · · ,ud): for every j,
Rec(j, ·) is d-local. Furthermore, it is easy to observe that on any input (j,Comp(u, d)), Rec correctly
reconstructs the j-th bit of u:

Claim. For every d and length-ℓ one-hot F2-vector u, for every j ≤ ℓ, it holds that

Rec(j,Comp(u, d)) = u[j].

We say that (Comp,Rec) is correct to denote this property.

5.2 Warm-up: a structured-seed local PRG from regular sparse LPN

Let (w, k) = (w(λ), k(λ)) denote respectively the noise weight and dimension of an LPN instance,
and let n = n(k) be the (polynomial) number of samples, chosen such that w divides n. Let c ≥ 3 and
d be two constants. Let ℓ ← n/w and ℓd ← ⌈(n/w)1/d⌉. We describe below a structured-seed local
PRG whose security reduces to the hardness of the regular sparse-LPN assumption:

– Global parameters: two constants (c, d), the noise weight w = w(λ) of, the dimension k = k(λ),
and the stretch n = n(k). All global parameters are implicitly passed as inputs to all algorithms.

– Setup(1λ) : sample A $← Mc
k,n. Let (a1, · · · ,an) denote the rows of A (of Hamming weight c).

Output pp← A.
– SampleSeed(pp) : sample x

$← Fk
2 and w unit vectors (e1, · · · , ew)

$← Un/w × · · · × Un/w. Output
seed← (x,Comp(e1, d), · · · ,Comp(ew, d)).

– PRGpp(seed) : parse seed as (x, (u1,1, · · · ,u1,d), · · · , (uw,1, · · · ,uw,d)), where each ui,j is a unit
vector over Fℓd

2 for every i ≤ w, j ≤ d. For i = 1 to n, write i as (α− 1) · (n/w) + β, with α ∈ [w]
and β ∈ [n/w]. set yi ← ⟨ai,x⟩+ Rec(β, (uα,1, · · · ,uα,d)). Output (y1, · · · , yn).

Theorem 5.1. Assuming the (T, ε, δ)-hardness of the (Mc,R)-LPN problem, for any constant d ≥ 3,
(Setup,SampleSeed,PRG) is a (T − O(n), ε, δ)-secure structured-seed local pseudorandom generator
with seed length k + wd · ⌈(n/w)1/d⌉, stretch n, and locality c+ d.

For example, setting k = w and n(k) = k1.99 yields a PRG with seed length s = O(k1+0.99/d) and
stretch k1.99 = Ω(s1.99/(1+0.99/d)); for d = 10, this translates to a stretch Ω(s1.81). In general, as n
approaches k2 and d grows, the stretch becomes Ω(s2−εd) for an arbitrarily small constant εd.

12 Dung Bui, Geoffroy Couteau, and Nikolas Melissaris

Proof. Let e denote the regular vector obtained by concatenating (e1, · · · , ew). Note that e is dis-
tributed as a random sample from Rw

n . By correctness of (Comp,Rec), Rec(β, (uα,1, · · · ,uα,d)) =
eα[β] = e[i] (the β-th entry of the α-th block of e is exactly the i-th entry of e as i = (α−1)·(n/w)+β).
Therefore, denoting y = (y1, · · · , yn),

y = (⟨ai,x⟩+ e[i])i≤n = A · x+ e.

From there, it follows immediately that breaking the (T−O(n), ε, δ)-security of (Setup,SampleSeed,PRG)
translates to breaking the (T, ε, δ)-hardness of the Alekhnovich assumption (the reduction is straight-
forward; the O(n) term accounts for the cost of sampling the LPN instance and compressing the unit
vectors). Eventually, (c+ d)-locality follows from the fact that each ai is c-sparse, hence the mapping
x 7→ ⟨ai,x⟩ is c-local, and the mapping Rec(β, ·) is d-local for any β ∈ [n/w]. The theorem follows.

5.3 Removing regularity using 2-choice hashing

The construction presented in the previous section requires the sparse-LPN assumption to be secure
when the noise has a regular structure. In this section, we explain how to lift this restriction using
efficient hashing schemes for allocating elements into bins. We use 2-choice hashing [CRS03,SEK03]
for the sake of concreteness, but we note that our construction can be framed generically using the
language of batch codes [IKOS04]. Replacing regular noise with random sparse noise in the LPN
variant using hashing or batch codes has been done in previous works [BCGI18,SGRR19,BBC+24].
Here, we show how to integrate this approach into our structured-seed local PRG without sacrificing
constant locality.

Hash functions are commonly used to distribute items into bins. In its simplest form, N items
(u1, · · · , uN) from a universe U can be placed into L · N bins (1, · · · , N) (for a suitable constant
L) using a hash function h : U → [L · N], by placing each item ui at position h(i); when h is a
random function, it is well known that with high probability, the maximum load across all bins will
be O(logN/ log logN) [RS98]. The question of finding alternative hashing strategies that result in a
more balanced load has been an active and fruitful field of research [PSWW18,PRTY19, SGRP19].
Typically, these improved strategies rely on multiple hash functions (h1, h2, · · ·), combined with an
allocation scheme to determine, for each item u, which hash function should be used to allocate u to
a bin.

For our application, we will need a hashing scheme that guarantees, with probability 1 − O(1)
(over the random choice of the hash functions, for an arbitrary set of items to be placed) that each
bin will contain a constant number of items. There are multiple options with different degrees of
simplicity and parameter tradeoffs. For the sake of concreteness, we focus on one of the simplest
possible solutions, called 2-choice hashing [SEK03].

Definition 5.2 (Allocation). Let U be a set, L be a constant, and N be an integer. Let h0, h1 be two
hash functions from U to [L ·N]. For any N -tuple u = (u1, · · · , uN) ∈ UN , we define an allocation
of u into the bins 1 · · ·N with respect to (h0, h1) to be a vector b ∈ FL·N

2 indicating which bin each
item is mapped to: for any i ∈ [N], the item ui is mapped to the bin hb[i](ui). Given (h0, h1), a tuple
u, and an allocation b, we let Loadi(h0, h1,u,b) denote the load of the bin i (i.e. the total number of
indices j such that hb[j](uj) = i).

We will rely on the following lemma:

Lemma 5.3 (2-choice hashing [SEK03,PRTY19]). Let U be a set, L be a constant, and N be
an integer. Then, there exists a deterministic algorithm Alloc running in time O(N logN) which, on
input two hash functions h0, h1 from U to [L · N] and an N -tuple u ∈ UN , returns an allocation b,
and such that for every u ∈ UN ,

Pr
h0,h1

[
b← Alloc(h0, h1,u) : max

i≤L·N
Loadi(h0, h1,u,b) > L+ 1

]
≤ O

(
1

NL

)
.

For notational convenience, we will define the quality of a pair of hash function (h0, h1) as the
fraction of vectors u ∈ UN that have a good allocation (i.e., such that maxi≤L·N Loadi(h0, h1,u,b) ≤
L+ 1):

Structured-Seed Local PRGs and their Applications 13

Definition 5.4 (Quality). We call quality of a pair (h0, h1) of functions from U to [L · N], and
denote Quality(h0, h1), the quantity

Quality(h0, h1) := Pr
u

$←UN

[
b← Alloc(h0, h1,u) : max

i≤L·N
Loadi(h0, h1,u,b) > L+ 1

]
.

Then, Lemma 5.3 says that on average, a random choice of (h0, h1) has quality 1−O(1/NL).

5.4 Sampling the seed

As for the regular construction, we assume that all algorithms implicitly receive as input global
parameters gp = (w, k, n, c, d, L) where w = w(λ) is the noise weight parameter, k = k(λ) is the LPN
dimension, n = n(k) denotes the stretch (or number of samples), and c, d ≥ 3 and L ≥ 1 denote three
constants.

At a high level, our construction proceeds by using 2-choice hashing to allocate the nonzero entries
of the noise vector into unit vectors, such that every entry of the noise vector can be reconstructed
by looking at one position in 2(L + 1) unit vectors, and compressing these unit vectors with the
compression algorithm Comp. In more details, assume that the setup Setup(1λ) produces a matrix
A

$←Mc
k,n together with two hash functions (h0, h1) (we ignore for now the issue of how “good” hash

functions (h0, h1) are selected). Then, SampleSeed(pp) proceeds as follows:

Algorithm SampleSeed(A, h0, h1):

1. Sample x
$← Fk

2 .
2. Sample (the positions of) a noise vector u

$← [n]w.
3. Set b← Alloc(h0, h1,u). If maxi≤Lw Loadi(h0, h1,u,b) > L+ 1, go to Item 2.
4. For i = 1 to Lw, define vi ∈ Fn

2 as follows:

vi ←
⊕

j:hb[j](u[j])=i

unitn(u[j]).

That is, for every entry j of u mapped to the bin i via the allocation (computed as hb[j](u[j])), sum 1 to
the position u[j] in vi. Note that by construction, HW(vi) ≤ L+ 1.

5. Write vi as a sum of L+1 (unit or zero) vectors vi = v0
i + · · ·+vL

i with HW(vℓ
i) ≤ 1 for ℓ ∈ {0, · · · , L}.

6. Output seed← (x, (Comp(v0
i , d), · · · ,Comp(vL

i , d))i≤Lw).

Note that SampleSeed does not have to work with an expanded representation of the vectors vi:
the vi can be manipulated in compact form (as the list of their nonzero entries, of size at most 2)
throughout the entire execution (including the execution of Comp, since for any v, Comp(v, d) only
needs the nonzero entry i = nzi(v), as noted in Section 5.1).

5.5 Expanding the seed

Let us denote e =
⊕w

j′=1 unitn(u[j
′]) the noise vector in expanded form. Observe that in the

SampleSeed process above, every vector unitn(u[j
′]) is XORed to exactly one vi: the one with in-

dex i = hb[j′](u[j
′]). Therefore, for every position j ∈ [n] of e, two cases can occur:

1. Either there exists j′ such that j = u[j′] (i.e., j is a noise position of e). Then the j-th entry
of vi with i = hb[j′](u[j

′]) is set to 1, and the j-th entry of the alternative option vi′ , where
i′ = hb̄[j′](u[j

′]) (i′ is the index of the “other bin”, not selected by the allocation) stays at 0.
2. Or there is no such j′ (i.e., j is not a noise position), in which case both vi0 [j] and vi1 [j] are

equal to 0, where (i0, i1) = (h0(j), h1(j)).

In both cases, it holds that e[j] = vi0 [j]⊕vi1 [j], with (i0, i1) = (h0(j), h1(j)). Hence, to “read” e[j],
it suffices to read the j-th entry in vi0 and vi1 for (i0, i1) = (h0(j), h1(j)). This can be done by reading
d entries in each of Comp(v0

i0
, d), · · · ,Comp(vL

i0
, d),Comp(v0

i1
, d), · · · ,Comp(vL

i1
, d) (hence 2d(L + 1)

14 Dung Bui, Geoffroy Couteau, and Nikolas Melissaris

entries in total) by the d-locality of (Comp,Rec). Concretely, given parameters pp = (A, h0, h1) and
a seed seed = (x, (Comp(v0

i , d), · · · ,Comp(vL
i , d))i≤Lw), the j-th entry of the noise vector e ∈ Fn

2

(whose nonzero entries are given by u) is reconstructed as follows: compute (i0, i1)← (h0(j), h1(j)).
Set

e[j]←
⊕

α≤L,β∈{0,1}

Rec(j,Comp(vα
iβ
, d)) =

⊕
α≤L,β∈{0,1}

vα
iβ
[j] = vi0 [j]⊕ vi1 [j].

The detailed procedure is represented below.

Algorithm PRGpp(x, (Comp(v0
i , d),Comp(v1

i , d))i≤w):
1. Parse pp as (A, h0, h1).
2. For j = 1 to n, set (ij0, i

j
1)← (h0(j), h1(j)).

3. For j = 1 to n, set

yj ← ⟨aj ,x⟩+
∑

0≤α≤L
β∈{0,1}

Rec

(
j,Comp

(
vα

i
j
β
, d

))
.

4. Output (y1, · · · , yn).

To complete the construction, it remains to explain how (h0, h1) are sampled by Setup. Con-
cretely, the algorithm SampleSeed requires (h0, h1) to be “good” in the following sense: for a random
choice of noise positions u

$← [n]w in step 2, it should hold with sufficiently large probability p that
maxi≤Lw Loadi(h0, h1,u,b) ≤ L + 1 using the allocation b ← Alloc(h0, h1,u), since the expected
runtime of SampleSeed grows as 1/p. In other words, we want Quality(h0, h1) to be sufficiently large
(with overwhelming probability over the choice of (h0, h1)).

Lemma 5.3 guarantees that for a fixed choice of u, a random choice of (h0, h1) has probability
close to 1 of yielding a good allocation. Looking ahead, our Setup procedure builds upon Lemma 5.3
to produce with overwhelming probability a pair (h0, h1) that yield a good allocation for a constant
fraction of all u’s (i.e., Quality(h0, h1) is bounded below by a constant). This bounds p by a constant,
causing only a constant blowup to the expected runtime of SampleSeed4.

5.6 Testing the hash functions

We let Fn,Lw denote the set of all functions from [n] to [Lw]. Our setup procedure builds upon a
Test subroutine to test whether pairs of hash functions (h0, h1) are sufficiently good. The procedure
is represented below:

Algorithm Test(1λ, h0, h1):
1. Set good← 0 and T ← 42 · λ. For j = 1 to T ,

(a) Sample uj
$← [n]w.

(b) Set bj ← Alloc(h0, h1,uj).
(c) If maxi≤Lw Loadi(h0, h1,uj ,bj) ≤ L+ 1, set good← good+ 1.

2. If good ≥ 0.3 · T , output 1. Else, output 0.

In other words, the procedure Test computes an empirical estimate of the quality of (h0, h1) on a
random test set of T = 42 · λ vectors u, and outputs 1 iff the empirical quality is at least 30% (see
Lemma 5.5 for a detailed explanation of the choice of number of vectors in the random test set and
the empirical quality). Our Setup algorithm will rely on two properties of Test:

4 We note that one can make the runtime strictly polytime by adding a bound λ on the number of retries,
where lambda is some security parameter, and aborting if the bound is reached. This gives a strict polytime
algorithm with a λ blowup in runtime and a negligible failure probability (1− p)λ.

Structured-Seed Local PRGs and their Applications 15

1. (few false positive) the probability (over the randomness of Test) that Test(1λ, h0, h1) = 1 but
Quality(h0, h1) < 0.2 is negligible;

2. (high success rate) the probability (over the random choice of (h0, h1) and the randomness of
Test) that Test(h0, h1) = 1 is bounded below by a constant.

Both proofs are elementary applications of standard tail bounds; we prove them in Section 5.8.

5.7 Sampling the hash functions

The setup procedure is represented below.

Algorithm Setup(1λ, k, n):

1. Sample A
$←Mc

k,n. Let (a1, · · · ,an) denote the rows of A (of Hamming weight c).
2. Sample (h0, h1)

$← Fn,Lw ×Fn,Lw.
3. If Test(1λ, h0, h1) = 0, go to Item 2.
4. Output pp← (A, h0, h1).

In Section 5.8, we will prove two lemmas: Lemma 5.6 shows that Test succeeds with probability
at least 1/2 (“Test succeeds often enough”) and Lemma 5.5 shows that (h0, h1) have good qual-
ity Quality(h0, h1) ≥ 0.2 with overwhelming probability (“Test has few false positives”). We discuss
consequences for the running time of Setup and SampleSeed below.

Since each Test succeeds with probability at least 1/2 by Lemma 5.6, Setup(1λ) executed a con-
stant expected number of Test (alternatively, we can let Setup run up to λ tests and abort if none
succeeded to get a strict bound on the running time and negligible abortion probability). Further-
more, by Lemma 5.5, the probability that the functions (h0, h1) output by Setup(1λ) have quality
Quality(h0, h1) < 0.2 is at most 1/2λ. In turn, this implies that the algorithm SampleSeed will succeed
in sampling u in step 3 after at most 5 tries in expectation.

5.8 Properties of Test

Test has few false positives. We prove the following:

Lemma 5.5. Let (h0, h1) be two functions from Fn,Lw such that Quality(h0, h1) < 0.2. Then,

Pr
[
Test(1λ, h0, h1) = 1

]
≤ 1

2λ
.

Proof. Let (h0, h1) be two functions from Fn,Lw such that Quality(h0, h1) < 0.2. Let Xj denote the
random variable, for j = 1 to T , taking value 1 if maxi≤Lw Loadi(h0, h1,uj ,bj) ≤ L + 1 and 0 else.
Note that the random variables X1, · · · , XT are independent. Let X ←

∑T
j=1Xj and µ← E[X]. Note

that µ = T ·E[X1] = T ·Quality(h0, h1) < 0.2T . Let us denote x← µ/T < 0.2. Then, by the Chernoff
bound (Lemma 2.2),

Pr[X ≥ 0.3T] ≤ exp

(
−
(
0.3T

µ
− 1

)2

· µ
3

)

= exp

(
−0.03T 2

µ
+ 0.2T − µ

3

)
= exp

(
−
(
0.03

x
− 0.2 +

x

3

)
· T
)
.

Now, writing f(x) = 0.03/x− 0.2 + x/3, we have f ′(x) = (1− (0.3/x)2)/3 < 0 since x < 0.3. Hence,
f(x) is decreasing and bounded above by f(0.2) = 1/60, which yields

Pr[X ≥ 0.3T] ≤ exp (−T/60) = 2−42·(log2 e/60)·λ ≤ 2−λ,

which concludes the proof. ⊓⊔

16 Dung Bui, Geoffroy Couteau, and Nikolas Melissaris

Test succeeds often enough. We prove the following:

Lemma 5.6. There exists an integer N such that for all w, λ ≥ N

Pr
h0,h1

$←Fn,Lw

[
Test(1λ, h0, h1) = 1

]
≥ 1

2
.

Proof. The proof follows immediately from the following (stronger) claim:

Claim. There exists an integer N such that for all w ≥ N ,

Pr
h0,h1

$←Fn,Lw

[Quality(h0, h1) ≥ 0.4] ≥ 1

1.9
.

Furthermore, if (h0, h1) are two functions from Fn,Lw such that Quality(h0, h1) ≥ 0.4,

Pr
[
Test(1λ, h0, h1) = 0

]
≤ 1

29λ
.

We prove each part of the stronger claim in turn. The first part of claim is an immediate application
of the Markov inequality: by Lemma 5.3 and Markov inequality (Lemma 2.3),

Pr
h0,h1

$←Fn,Lw

[
Quality(h0, h1) ≥

1−O(1/wL)

1.9

]
≥ 1

1.9
,

and for a large enough w, (1 − O(1/wL))/1.9 ≥ 0.9/1.9 > 0.4. For the second claim, the proof is
similar to that of (1), with a Chernoff bound in the other direction: let (h0, h1) be two functions from
Fn,Lw such that Quality(h0, h1) < 0.2. Then by the Chernoff bound,

Pr[X < 0.3T] ≤ exp

(
−
(
1− 0.3T

µ

)2

· µ
2

)

= exp

(
−0.03T 2

µ
+ 0.2T − µ

3

)
= exp

(
−
(
0.03

x
− 0.2 +

x

3

)
· T
)
.

Since Quality(h0, h1) = µ/T = x ∈ [0.4, 1), writing f(x) = 0.03/x − 0.2 + x/3, we have this time
f ′(x) = (1− (0.3/x)2)/3 > 0: f(x) is increasing and bounded above by f(1) = 49/300. Then,

Pr[X ≥ 0.3T] ≤ exp (−49T/300) = 2−42·(49 log2 e/300)·λ ≤ 2−9λ,

which concludes the proof. ⊓⊔

5.9 Efficiency and Security

Let HL = {Ph0,h1
} denote the following family of predicates: given two hash functions h0, h1 ∈ Fn,Lw

and an input u ∈ [n]w, Ph0,h1(u) samples b← Alloc(h0, h1,u). It returns 0 if maxi≤Lw Loadi(h0, h1,u,b) >
L+1, and 1 otherwise. We now summarize the efficiency properties of our construction (Setup,SampleSeed,
PRG) described in the previous subsections.

Theorem 5.7. Let L ≥ 1 be a constant. Assume the (T, ε, δ)-hardness of the HL-conditioned (Mc
n,k,

Xn,w)-LPN problem, for some constant c ≥ 3. Let d ≥ 2 be a constant. Then there exists a (T −
O(n), ε, δ−1/2λ)-secure structured-seed local pseudorandom generator (Setup,SampleSeed,PRG) with
the following characteristics:

– Parameter size: |pp| = n · (c log k + 2 logw);
– Seed length: |seed| = k + w · L(L+ 1)d · ⌈n1/d⌉;
– Stretch: n;
– Locality: c+ 2(L+ 1)d.

Structured-Seed Local PRGs and their Applications 17

In addition, the algorithms have the following running time:

– Setup(1λ) runs in time λ · Õ(n+ λw),
– SampleSeed(pp) runs in time O(k + w · (λ(logw + log n) + n1/d)).

Before we move on with the security analysis, we briefly overview each of the efficiency properties.
We analyze runtime in a RAM model for simplicity, but note that all our algorithms can easily be
implemented with similar runtime in a circuit model. The size of pp and seed, and the stretch, can be
read immediately from their description and that of Comp. As for locality, computing ⟨aj ,x⟩ requires
reading c bits of x (since HW(aj) = c), and computing Rec(j,Comp(vα

ijβ
, d)) for α ≤ L, β ∈ {0, 1}

requires reading d bits of Comp(vα
ij
, d) each time (hence 2(L+ 1)d bits in total).

The running time of Setup is decomposed as follows: sampling A requires sampling c · n elements
of [k] in time O(n log k). Sampling (h0, h1) requires sampling 2n elements of [w], in time O(n logw),
and running Test(1λ, h0, h1) requires O(λ) samples over [n]w (each in time w · log n), computations of
allocation and of the maximum load (in time O(w · (logw+ log n)). Furthermore, with overwhelming
probability, Setup terminates after at most λ executions of Test, hence the bound of λ · Õ(n+λw) on
the total runtime.

Eventually, the running time of SampleSeed is decomposed as follows: sampling x requires tossing
k coins. Sampling u

$← [n]w, computing the allocation, and computing the maximum load runs
in time O(w · (log n + logw)). Then, computing the (v0

i , · · · ,vL
i) (in implicit representation, as

nzi(v0
i), · · · , nzi(vL

i)) takes time O(w · (log n+ logw)), and compressing them takes time O(w · n1/d).
Eventually, with overwhelming probability, SampleSeed produces u after at most λ executions of the
steps 2 and 3, hence the bound of O(k + w · (λ(logw + log n) + n1/d)) on the total runtime.

Security analysis. We prove security of Theorem 5.9 under the (T, ε, δ)-hardness of theHL-conditioned
(Mc

n,k,Xn,w)-LPN problem. Let e denote the noise vector, which is sampled randomly from Xn,w.
We showed in Section 5.5 that

⊕
α≤L,β∈{0,1} Rec(j,Comp(vα

iβ
, d)) = e[j] for every j ≤ n. Therefore,

denoting y = (y1, · · · , yn),
y = (⟨aj ,x⟩+ e[j])i≤n = A · x+ e.

It follows that distinguishing y from random is perfectly equivalent to breaking the theHL-conditioned
(Mc

n,k,Xn,w)-LPN problem.

Reduction to sparse LPN. Plugging the reduction from predicate-conditioned sparse-LPN to sparse-
LPN from Lemma 4.9 yields a structured-seed local PRG under the sparse-LPN assumption. However,
this comes at a loss err(H) in the advantage bound ε. We have

err(H) = max
e

Pr
h0,h1

[h0, h1 are bad for e] ≤ O
(

1

wL

)
.

Therefore, using our concrete formulation of the sparse-LPN assumption (Assumption 1), we obtain
a (T, ε, δ)-secure (c + 2(L + 1)d)-local PRG with ε = O(1/wL) and δ = Ω(kη)c−2, for a suitable
constant η > 0.

5.10 Structured-seed local PRGs beyond quadratic stretch

If we plug our Parameter Set 1 in Section 5.9, we obtain a PRG with seed length |seed| = O(λn1/d) ·k
and stretch n = k1+η, where η is a constant arbitrarily close to 1 (using the constant c(η) = 1/(1−η)).
As k grows (polynomially), this means that the stretch can be made as large as |seed|2−γ for an
arbitrarily small constant γ = γ(η, d, logλ k). However, the construction cannot achieve a super-
quadratic stretch directly.

In general, the stretch of a polynomial-stretch local PRG can always be extended to an arbitrary
polynomial stretch (keeping the locality constant) by composing the PRG with itself. However, this
does not hold anymore for a structured-seed PRG, since the output distribution of the PRG does
not match the required seed distribution. Nevertheless, we show in this section that the stretch of
our construction can be extended to an arbitrary polynomial via self-composition. At a high level, we
leverage the observation that the seed seed of our construction has two components:

– A random bitstring x of length k, and

18 Dung Bui, Geoffroy Couteau, and Nikolas Melissaris

– The items Comp(vj
i), of total length O(w · n1/d).

Above, the structured part of the seed grows only with w, while the random part of the seed grows with
k. We leverage this observation by making w as small as we possibly can (while keeping the stretch
n to be polynomial, n ≥ k1+γ/2 for some constant γ > 0), and recursively invoke the structured-seed
local PRG to generate the length-k random part of the seed. The relevant set of parameters of the
sparse-LPN assumption are given in Parameter Set 2; details follow.

Parameters. For simplicity and concreteness, we use the following parameters throughout:

– γ > 0 denotes an arbitrarily small constant. Fix L = 1.
– n is set to k1+γ/2 and w to λ·kγ , according to Parameter Set 2 (where c = c(γ) ≥ 1 log γ/(log γ−1).
– We choose a large dimension k ≥ λ1/γ

2

and set d ≥ 1/γ + 1/2. Note that this guarantees that
λ ≤ kγ and n1/d ≤ kγ . Therefore, we have w · n1/d ≤ k3γ .

With the set of parameters above, our structured-seed local PRG has the following characteristics:

– Seed length |seed| = k+O(k3γ) (where the O(·) hides a factor proportional to 1/γ and the size-k
part is the random part of the seed),

– Stretch n = k1+γ/2.

We view the construction as shrinking n (pseudorandom) bits into a seed of size (dominated by)
k = n1/(1+γ/2). Let us denote θ(γ) = 1/(1 + γ/2) < 1 this shrinkage parameter.

Construction. Equipped with the parameters above, we are ready to describe our construction. Let s
be the target expansion; that is, we want to map |seed| bits to |seed|s bits. Set γ such that 3γθ(γ) =
3γ/(1 + γ/2) = 1/2s, and let t = t(s) be a constant such that θt ≤ 1/2s. For readability, we describe
the construction as a sequence of t seed-shrinking step:

– Step 1: fix the target output length n: we aim to generate a pseudorandom vector x0 ∈ Fn
2 .

Set k ← nθ. Define seed1 to be the seed of a structured-seed local PRG with stretch n, with
parameters (λ, k, w, L, d, γ, c) as defined above. We have

seed1 = (x1, S1 = (Comp(v0
i , d), · · · ,Comp(vL

i , d))i≤w),

with |x1| = nθ and |S1| = O(n3γθ) = O(n1/2s).
– Step 2: in this step, we shrink x1 ∈ Fnθ

2 using again our structured-seed local PRG. Writing
n1 = k = nθ, we generate a pseudorandom x1 using the seed:

seed2 = (x2, S2),

where |x2| = nθ1 = nθ
2

and |S2| = O(n
1/2s
1) ≤ O(n1/2s).

– Step i: we maintain the invariant that we generate a pseudorandom vector xi−1 ∈ Fnθi−1

2 using a
seed seedi = (xi, Si) with |xi| = nθ

i

and |Si| ≤ O(n1/2s).

After t steps of the seed-shrinking step, we end up with a final seed

seed = (xt, St, St−1, · · · , S1),

where |xt| ≤ nθ
t ≤ n1/2s, and |Si| ≤ O(n1/2s). The total seed length is therefore O(n1/2s) (where

the O(·) hides a factor t), which is below n1/s for a large enough n. Security follows immediately
from a sequence of t hybrids that “undo” the seed-shrinking steps, replacing everytime xi−1 with a
random string given a random seed (xi, Si) for the structured-seed local PRG, under the hardness
of the H1-conditioned sparse-LPN problem. Due to the t hybrids, the reduction looses a factor t
in the parameters (ε, δ) of the LPN problem. Plugging in the reduction from predicate-conditioned
sparse-LPN to sparse-LPN from Lemma 4.9 yields:

Theorem 5.8. For every s > 1, there exists constants γ such that 3γ/(1 + γ/2) = 1/2s, θ = 1/(1 +
γ/2), c ≥ 2 log γ/(log γ − 1), d ≥ 1/γ + 1/2, and t such that θt ≤ 1/2s, for all large enough n, if the
(Sc, E)-LPN problem with dimension nθ

i

and number of samples nθ
i−1

is (2o(λ), εi = Ω(1/n2γθi

, δi =

Ω(1/nθi(1+γ/2))-secure for i = 1 to t, then there exists a (T,
∑t

i=1 εi,
∑t

i=1 δi)-secure structured-seed
constant-locality pseudorandom generator (Setup,SampleSeed,PRG) with seed size |seed| ≤ n1/s.

Structured-Seed Local PRGs and their Applications 19

6 Applications

In this section, we identify works that make use of a local PRG in their main theorems and explore the
possibility of substituting their PRG with our own construction. These works span a variety of applica-
tions: indistinguishability obfuscation (iO) [JLS21], constant-overhead secure computation [IKOS08],
sublinear secure computation [BCM23], and hardness of learning [DV21]. At a high level, we can
substitute local PRGs with structured-seed local PRGs in these works because they do not rely on
the seed being uniform, but only require the seed to be short, and the sampling of the seed to be
efficient.

We note that in contrast, in other papers such as [BCG+23], it is not obvious how to use our PRG
out of the box, because the output is being used as input to another invocation of the PRG, and in
this case our idea breaks down as the seed is not structured anymore.

6.1 Indistinguishability obfuscation

Indistinguishability obfuscation (iO) is a cryptographic primitive that allows to obfuscate the code of a
program such that no polynomial-time adversary can distinguish which of two (equal size) functionally
equivalent programs has been obfuscated. Code obfuscation has been formalized already in the early
2000s as a cryptographic building block, by Hada [Had00] and Barak et al. [BGI+01], along with a
number of early positive [Can97,LPS04,Wee05,HRsV07,HMS07] and negative [BGI+01,GK05,Wee05]
results. In a recent sequence of breakthrough results culminating with [JLS21], Jain, Lin, and Sahai
have shown how to base indistinguishability obfuscation on the subexponential hardness of four
assumptions:

– the LWE assumption,
– the learning parity with noise over a general prime field Fp,
– a boolean local PRG in NC0,
– the Decision Linear assumption on symmetric bilinear groups of prime order.

At the heart of their construction is a sequence of transformations starting from weak forms of
functional encryption which are progressively boosted to full-fledged indistinguishability obfuscation.
Above, the local PRG is used for constructing a structured-seed PRG. We note that the notion of
structured-seed PRGs in [JLS21] differs from the notion of structured-seed local PRG considered in
our work. However, it follows by inspection that the construction of structured-seed PRG of [JLS21]
goes through identically if the boolean local PRG is replaced by a structured-seed local PRG.

We mention one technicality, though: the local PRG used in [JLS21] needs to have subexponential
security. For our construction from regular sparse-LPN, one can reasonably conjecture security against
subexponential time adversaries while keeping ε inverse-subexponential: this follows directly from our
concrete version of the sparse-LPN assumption (see Assumption 1) by setting T to subexponential
in λ. However, the value of δ remains always noticeable due to the non-negligible probability of
sampling a matrix with a small dual distance. One can make δ negligible using the alternative matrix
distribution introduced in [AK19], but this only makes δ slightly negligible, while the construction
requires δ to be subexponentially small.

We note that a very similar issue happens with (standard) local PRGs, which require an explicit
hypergraph with good expansions property, while random hypergraphs will only satisfy the required
property with probability 1−1/poly. There are two workarounds to this issue. The first one is identical
to the solution that was used in [JLS21]: using an explicit choice of the sparse matrix A and assuming
the subexponential hardness of sparse-LPN with respect to this matrix ; then, Assumption 1 implies
that most choices of A will yield plausible candidates. This works directly, with the caveat that it only
provides a non-uniform construction of iO (which would become uniform if an efficiently sampleable
distribution over sparse matrices with subexponentially small probability of having a small dual
distance is found in the future).

The second solution is to observe that except with subexponentially small probability, if we sample
multiple parameters pp for a structured-seed local PRG, at least one of them will be secure against
subexponential adversaries. Then, as observed in [JLS22], this implies in turn that the construction of
functional encryption will yield multiple candidates functional encryption schemes such that except
with subexponentially small probability, one of them is subexponentially secure. Then, one can obtain
a full-fledged functional encryption scheme out of these schemes using FE combiners (see Remark 3.1
in [JLS22]). We get the following:

20 Dung Bui, Geoffroy Couteau, and Nikolas Melissaris

Theorem 6.1 (informal). Assume sub-exponential security of the following assumptions:

– the LWE assumption,
– the learning parity with noise over a general prime field Fp,
– the sparse-LPN assumption with regular noise,
– the Decision Linear assumption on symmetric bilinear groups of prime order,

there exists a (subexponentially secure) indistinguishability obfuscation for all polynomial-size circuits.
Further, assuming only polynomial security of the aforementioned assumptions, there exists collusion-
resistant public-key functional encryption for all polynomial-size circuits.

We note that the follow-up work of [JLS22] gets rid of the LWE assumption by making a more
involved use of the local PRG. It is not immediately obvious how to replace the local PRG by a
structured-seed local PRG in their more involved construction, because it requires in particular an
affine randomized encoding construction that relies on self-composing the PRG (using its pseudoran-
dom output as a seed), which does not work with structured-seed local PRGs. We had preliminary
results in this direction, but in light of the recent concurrent and independent work of [RVV24] that
focuses precisely on this application, and which provides a full-fledged solution to overcoming this
obstacle (and others), we refrain in this work from pursuing this route further.

6.2 Constant-overhead secure computation

The seminal work of Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS08] showed that assuming polynomial-
stretch local pseudorandom generators (and oblivious transfers), any two-party functionality can be
securely computed with constant computational overhead over the cost of evaluating the function-
ality in the clear. In this section, we observe that the local PRG in [IKOS08] can be replaced by a
structured-seed local PRG. We summarize the result in Theorem 6.2 below.

Theorem 6.2. Assume the existence of a polynomial-stretch structured-seed local PRG in NC0, de-
noted as G : {0, 1}n → {0, 1}m, and of a standard OT protocol. Given a family of circuit C = {Cn}
of polynomial size s(n) that defines a two-party computation functionality f , there exists a two-party
protocol πf that realizes f in the semi-honest setting where each party in πf can be implemented by a
circuit of size O(s(n)).

As a direct corollary, we obtain that secure two-party computation with constant computational
overhead can be based on (oblivious transfer and) the hardness of regular sparse-LPN, or that of
H-conditioned sparse-LPN, diversifying the set of assumptions under which extreme efficiency can be
achieved in secure computation.

We sketch the proof of Theorem 6.2 below. The construction of [IKOS08] uses the following
sequence of steps:

1. Using the GMW protocol [GMW87], given black-box access to O(s) oblivious transfers, any
two-party computation for a circuit of size s can be securely evaluated using O(s) bits of commu-
nication and O(s) bit operations. Hence, building constant-overhead secure computation reduces
to the problem of constructing O(s) OTs with a constant computational overhead. In particular,
denoting p = O(s), [IKOS08] shows how to construct p bit-OTs using a local PRG and √p OT
instances (on strings of length √p) where each party can be implemented by a circuit of size O(p).

2. Let g be a functionality parametrized with a local PRG G which, on input a seed seed from the
receiver and p pairs of bits (σi

0, σ
i
1)i≤p from the sender, outputs (σi

G(seed)i
)i≤p to the receiver.

Then, given black-box access to g, there is a constant-overhead construction of a secure protocol
to generate p (chosen) bit-OTs. The protocol follows from the standard information-theoretic de-
randomization of OT with random selection bits [Bea92], using G(seed) instead of a random mask
to hide the selection bits. Since G(seed) can be computed in linear time and the derandomization
involves only O(p) XORs and ANDs, the claim follows.

3. The core component of the reduction is the constant-overhead reduction from securely imple-
menting g to a black-box access to √p OTs on strings of total length O(p). This reduction uses
decomposable randomized encodings and builds upon the fact that g ∈ NC0.

Structured-Seed Local PRGs and their Applications 21

Above, step 1 and 3 remain perfectly identical if G is replaced by a structured-seed local PRG: in
particular, g has the description of the stretching algorithm PRG hardcoded, which is in NC0, and is
oblivious to how the seed seed was sampled. The only difference is in step 2, where the receiver must
be instructed to sample seed

$← SampleSeed(pp) instead of picking a random seed. But since the cost
of running SampleSeed is sublinear in p, this has no effect on the computational complexity of the
protocol.

We mention two additional minor technicalities:

– The construction of [IKOS08] is described using a quadratic-stretch local PRG, which is without
loss of generality since a local PRG with arbitrary polynomial stretch can be extended to quadratic
stretch via self-composition. However, our structured-seed local PRG achieves only near quadratic
stretch, and structured-seed local PRGs cannot be self-composed. Nevertheless, the assumption
of (strict) quadratic stretch in [IKOS08] was made only for notational convenience, and can be
generalized in a straightforward way to work with a PRG with a smaller (polynomial) stretch.
The reduction then invokes O(p1/2+ε) string-OTs on strings of total length O(p), where ε is such
that the local PRG stretches O(p1/2+ε) bits into p bits.

– After completing the reduction, it remains to implement the O(p1/2+ε) string-OTs on strings
of total length O(p) with constant computational overhead. This relies again on a constant-
overhead PRG: given any pair of strings (α0, α1) of length O(p1/2−ε), the sender samples two
ℓ-bit seeds (seed0, seed1) for a local PRG. The sender and the receiver (with bit b) use an ℓ-bit
string-OT to let the receiver learn seedb, using poly(λ) · ℓ computation. Then, the sender sends
G(seed0)⊕α0, G(seed1)⊕α1, and the receiver unmasks αb. The total computation per OT scales
as poly(λ) · ℓ + O(|α0| + |α1|), hence an overall cost of poly(λ) · ℓ · p1/2+ε + O(p). Now, using a
structured-seed local PRG with any polynomial stretch yields ℓ = O(p(1/2−ε)·γ) for some γ < 1,
hence poly(λ) · ℓ · p1/2+ε = o(p) for a large enough p. Here again, an arbitrary structured-seed
local PRG with polynomial stretch suffices.

6.3 Sublinear secure computation and compact HSS

Homomorphic secret sharing (HSS) was introduced in the work of [BGI16] as an alternative to fully
homomorphic encryption to achieve secure computation with sublinear communication. At a high
level, an N -party HSS for a class of functions F allows to share an input x such that for every
function f ∈ F , each party with input share xi can locally compute yi such that (y1, · · · , yN) form
additive shares of y = f(x). A compact HSS is an HSS where the share size and sharing algorithm
runtime are O(|x|) + poly(λ). Combined with a generic MPC protocol with linear communication
overhead to securely run the sharing algorithm, a compact HSS scheme immediately gives rise to a
secure N -party protocol with essentially optimal communication O(N · (|x|+ |y|))+ poly(λ) for every
function f ∈ F .

A standard approach to build compact HSS from HSS is to use a “hybrid encapsulation” trick: to
share a long input x, share a short seed seed with HSS among the parties, and reveal u = x⊕G(seed)
to everyone, where G is a PRG. If the PRG runs in linear time, the share size and runtime of
sharing are clearly O(|x|)+poly(λ). Then, to get shares of f(x), the parties homomorphically evaluate
gu(seed) := f(u⊕G(seed)) = f(x). This approach works as long as gu ∈ F . In particular, this means
that if the HSS scheme supports a very low function class F , the PRG G needs to belong to a very
low complexity class.

The recent work of [BCM23] showed how to achieve sublinear secure computation and compact
HSS from assumptions that were not previously known to imply it. In particular, they show:

Theorem 6.3 (Theorem 32 in [BCM23]). Assuming the superpolynomial hardness of DCR and
the existence of PRGs with constant locality, there exists a four-party HSS scheme for the class of
loglog-depth circuits with n inputs; the HSS scheme has share size n · (1 + o(1)). Furthermore, there
exists a protocol with communication complexity n·(4+o(1)) (for large enough n) for securely realizing
the four-party functionality that generates HSS shares of the concatenation of the parties’ inputs.

It is immediate from the description of the construction that Theorem 32 in [BCM23] extends
directly to the setting where a structured-seed constant-locality PRG (with arbitrarily small polyno-
mial stretch) is used instead: in their construction, each party locally samples a short seed seedi and a
generic secure computation protocol is ran on their concatenation (seed1||seed2||seed3||seed4). The only

22 Dung Bui, Geoffroy Couteau, and Nikolas Melissaris

impact of using a structured-seed local PRG is that the parties will locally run SampleSeed instead of
sampling their seed uniformly, which has no influence on the correctness, security, of communication
efficiency of the protocol. As a consequence, we immediately obtain the following corollary:

Corollary 6.4. Assuming the superpolynomial hardness of DCR and the hardness of the regular
sparse-LPN assumption (or, alternatively, of the H-conditioned sparse-LPN assumption), there exists
a four-party HSS scheme for the class of loglog-depth circuits with n inputs; the HSS scheme has share
size n · (1 + o(1)). Furthermore, there exists a protocol with communication complexity n · (4 + o(1))
(for large enough n) for securely realizing the four-party functionality that generates HSS shares of
the concatenation of the parties’ inputs.

Combining this corollary with the compiler of [BCM23] from N -party compact HSS to (N + 1)-
party secure computation with sublinear communication yields a 5-party protocol with sublinear
communication O(s/ log log s) for all layered circuits of size s under the same assumptions as above.5

6.4 Hardness of learning

PAC learning [Val84] is the algorithmic problem of finding a hypothesis that predicts the output of
an unknown class of functions with high probability. The hardness of learning focuses on showing
a learning algorithm’s ability to return a hypothesis. Daniely and Vardi in [DV21] recently proved
several hardness of learning results based on the assumption that local PRGs with polynomial stretch
and constant distinguishing advantage exist. We show that our structured seed local PRG can be
used in place of their PRG, obtaining hardness-of-learning results from the sparse-LPN assumption.

Definition 6.5 (Predicate). Given a structured-seed ℓ-local PRG (Setup,SampleSeed,PRG) with
input size k, and stretch n, we let P denote the predicate such that for all i ∈ [n], there exists a subset
Si ⊂ [k] of size |Si| ≤ ℓ such that for all x ∈ Supp(SampleSeed(pp)), defining y = PRG(x), we have
yi = P (x[Si]).

Remark 6.6. In general, an ℓ-local PRG only guarantees that for each output bit yi, there is a predicate
Pi and a size-ℓ subset Si of the bits of the seed x such that yi = Pi(x[Si]). However, assuming a single
predicate P is without of generality when the PRG has polynomial stretch: since there are at most
22

ℓ

possible predicates Pi on ℓ-bit inputs, and ℓ is a constant, setting P to be the most frequent Pi

and keeping only the output bits computed using P yields an ℓ-local PRG with polynomial stretch
(reduced by a constant factor at most 22

ℓ

) and a single global predicate P . Furthermore, we note
that our constructions from sparse-LPN directly have a single global predicate.

DNFs. We prove that formulas in disjunctive normal form with ω(1) terms cannot be efficiently
PAC-learned assuming the sparse-LPN assumption:

Theorem 6.7 (Theorem 3.1 in [DV21]). Under the assumptions of Theorem 5.8, for every
q(n) = ω(1) there is no efficient algorithm that PAC-learns DNF formulas with n variables and q(n)
terms.

We note that, contrary with the other applications discussed in this section, we only need to
assume a structured-seed local PRG with constant (ε, δ). Therefore, we can rely directly on sparse-
LPN rather than regular sparse-LPN via our reduction from Lemma 4.9. However, the result also
crucially requires a local PRG with arbitrary polynomial stretch. Fortunately, one can achieve an
arbitrary polynomial stretch under sparse-LPN via the construction of Theorem 5.8.

At the heart of the proof of Theorem 3.1 in [DV21] is the following clever idea: let ℓ be a constant,
and let P : {0, 1}ℓ → {0, 1} be an ℓ-local predicate. Given a size-ℓ subset S = {s1, · · · , sℓ} ⊂ [n],
write vi := unitn(si) ∈ {0, 1}n for i = 1 to ℓ. Then, consider the following formula ψ:

ψ(v1, · · · ,vℓ) =
∨

x:P (x)=1

∧
i≤ℓ

∧
j:seedj ̸=xi

v̄i,j .

5 The compiler of [BCM23] requires assuming the hardness of DCR and LPN as it relies on the (DCR+LPN)-
based construction of correlated symmetric PIR from [BCM22]. However, their construction can be instan-
tiated with any suitable variant of LPN, including sparse-LPN, hence it requires only assumptions that are
redundant with the one we already assume.

Structured-Seed Local PRGs and their Applications 23

We have

ψ(v1, · · · ,vℓ) = 1 ⇐⇒ ∃x ∈ P−1(1),∀i ≤ ℓ,∀seedj ̸= xi, v̄i,j = 1

⇐⇒ ∃x ∈ P−1(1),∀i ≤ ℓ,∀seedj ̸= xi, unitn(si)j = 0

⇐⇒ ∃x ∈ P−1(1),∀i ≤ ℓ,∀seedj ̸= xi, si ̸= j

⇐⇒ ∃x ∈ P−1(1),∀i ≤ ℓ, seedsi = xi

⇐⇒ ∃x ∈ P−1(1), seedS = x

⇐⇒ P (seedS) = 1.

This means that given a predicate P and a seed x, it is possible to hardcode (P,x) in a DNF
ϕ such that for every size-ℓ subset S, there is an encoding Encode(S) = (v1, · · · ,vℓ) such that
ψ(Encode(S)) = P (x[S]).

Now, we explain how to adapt the proof of Theorem 3.1 in [DV21] to structured-seed local PRGs.
We need the following assumption:

Assumption 2 For every constant s > 1, there exists a constant ℓ such that there exists a (T, 1/6, 1/6)-
secure structured-seed ℓ-local PRG (Setup,SampleSeed,PRG) with predicate P , mapping k bits to ks
bits, for every T = poly(λ).

By Theorem 5.8, the assumption above is implied by the sparse-LPN assumption. Then, let A be
a PPT adversary that PAC-learns DNF formulas with k variables and q = ω(1) terms. Let Q denote
the number of queries to the DNF oracle made by A, and set s such that ks > 100Q2. Define the
following distribution D:

– Sample pp← Setup(1λ)
– For any index i ≤ ks, let Si denote the size-ℓ subset of the bits of seed used by PRGpp(seed) (note

that Si is independent of the particular choice of seed, but might depend on pp).
– Define D = Dpp to be the distribution that samples i $← [ks] and outputs z = Encode(Si).

Now, sample seed ← SampleSeed(pp), and let ψ be the DNF (with seed, P hardcoded) encoding
the computation of the mapping PRGpp(seed)i = P (seedSi

) = ψ(Encode(Si)). Note that ψ is a DNF
formula with at most 2ℓ terms. Given Q samples (zi, ψ(zi))i≤Q (the training set), the adversary A
returns a hypothesis h with, with small probability, has a small error on the training set. Note that
except with probability at most 1/100, there are no collisions among the queries. Now, given h, it is
straightforward to distinguish the next sample (zQ+1, ψ(zQ+1) from random with high probability.

Other classes. Because any function represented by a DNF formula with q(n) terms can also be
represented by a polynomial threshold function over {0, 1}n with q(n) monomials, assuming sparse-
LPN, the following corollary follows from Theorem 6.7.

Corollary 6.8 (Corollary 3.2 in [DV21]). For all q(n) = ω(1) there is no efficient algorithm that
learns q(n)-sparse polynomial threshold functions over {0, 1}n.

One can also consider ω(1)-sparse GF (2) polynomials over {0, 1}n which are simply a sum of ω(1)
monomials modulo 2.

Theorem 6.9. For all q(n) = ω(1) there is no efficient algorithm that learns q(n)-sparse GF(2)
polynomials over {0, 1}n.

References

ABG+14. A. Akavia, A. Bogdanov, S. Guo, A. Kamath, and A. Rosen. Candidate weak pseudorandom
functions in AC0 o MOD2. In ITCS 2014, pages 251–260. ACM, January 2014.

ABR16. B. Applebaum, A. Bogdanov, and A. Rosen. A dichotomy for local small-bias generators. Journal
of Cryptology, 29(3):577–596, July 2016.

ADI+17. B. Applebaum, I. Damgård, Y. Ishai, M. Nielsen, and L. Zichron. Secure arithmetic computation
with constant computational overhead. In CRYPTO 2017, Part I, LNCS 10401, pages 223–254.
Springer, Heidelberg, August 2017.

24 Dung Bui, Geoffroy Couteau, and Nikolas Melissaris

AIK04. B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. In 45th FOCS, pages 166–175.
IEEE Computer Society Press, October 2004.

AIK08. B. Applebaum, Y. Ishai, and E. Kushilevitz. On pseudorandom generators with linear stretch in
nc 0. Computational Complexity, 17(1):38–69, 2008.

AK19. B. Applebaum and E. Kachlon. Sampling graphs without forbidden subgraphs and unbalanced
expanders with negligible error. In 60th FOCS, pages 171–179. IEEE Computer Society Press,
November 2019.

AL16. B. Applebaum and S. Lovett. Algebraic attacks against random local functions and their coun-
termeasures. In 48th ACM STOC, pages 1087–1100. ACM Press, June 2016.

Ale03. M. Alekhnovich. More on average case vs approximation complexity. In 44th FOCS, pages 298–
307. IEEE Computer Society Press, October 2003.

App12. B. Applebaum. Pseudorandom generators with long stretch and low locality from random local
one-way functions. In 44th ACM STOC, pages 805–816. ACM Press, May 2012.

App15. B. Applebaum. The cryptographic hardness of random local functions – survey. Cryptology ePrint
Archive, Report 2015/165, 2015. https://eprint.iacr.org/2015/165.

BBC+24. M. Bombar, D. Bui, G. Couteau, A. Couvreur, C. Ducros, and S. Servan-Schreiber. Foleage: F4
ole-based multi-party computation for boolean circuits. Cryptology ePrint Archive, 2024.

BCCD23. M. Bombar, G. Couteau, A. Couvreur, and C. Ducros. Correlated pseudorandomness from the
hardness of quasi-abelian decoding. LNCS, pages 567–601. Springer, Heidelberg, 2023.

BCG+17. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, and M. Orrù. Homomorphic secret sharing: Optimiza-
tions and applications. In ACM CCS 2017, pages 2105–2122. ACM Press, October / November
2017.

BCG+20. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Correlated pseudorandom
functions from variable-density LPN. In 61st FOCS, pages 1069–1080. IEEE Computer Society
Press, November 2020.

BCG+22. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, N. Resch, and P. Scholl. Correlated pseudo-
randomness from expand-accumulate codes. LNCS, pages 603–633. Springer, Heidelberg, 2022.

BCG+23. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, N. Resch, and P. Scholl. Oblivious transfer
with constant computational overhead. LNCS, pages 271–302. Springer, Heidelberg, 2023.

BCGI18. E. Boyle, G. Couteau, N. Gilboa, and Y. Ishai. Compressing vector OLE. In ACM CCS 2018,
pages 896–912. ACM Press, October 2018.

BCM22. E. Boyle, G. Couteau, and P. Meyer. Sublinear secure computation from new assumptions. LNCS,
pages 121–150. Springer, Heidelberg, 2022.

BCM23. E. Boyle, G. Couteau, and P. Meyer. Sublinear-communication secure multiparty computation
does not require FHE. LNCS, pages 159–189. Springer, Heidelberg, 2023.

BCM+24. D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia. Fast public-key silent OT and
more from constrained Naor-Reingold. LNCS, pages 88–118. Springer, Heidelberg, 2024.

Bea92. D. Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO’91, LNCS
576, pages 420–432. Springer, Heidelberg, August 1992.

BGI+01. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. In CRYPTO 2001, LNCS 2139, pages 1–18. Springer,
Heidelberg, August 2001.

BGI16. E. Boyle, N. Gilboa, and Y. Ishai. Breaking the circuit size barrier for secure computation under
DDH. In CRYPTO 2016, Part I, LNCS 9814, pages 509–539. Springer, Heidelberg, August 2016.

BKR23. A. Bogdanov, P. K. Kothari, and A. Rosen. Public-key encryption, local pseudorandom generators,
and the low-degree method. LNCS, pages 268–285. Springer, Heidelberg, 2023.

BKW00. A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the
statistical query model. In 32nd ACM STOC, pages 435–440. ACM Press, May 2000.

BM97. M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: Incrementality at reduced
cost. In EUROCRYPT’97, LNCS 1233, pages 163–192. Springer, Heidelberg, May 1997.

BQ09. A. Bogdanov and Y. Qiao. On the security of goldreich’s one-way function. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 392–
405. Springer, 2009.

BR17. A. Bogdanov and A. Rosen. Pseudorandom functions: Three decades later. Cryptology ePrint
Archive, Report 2017/652, 2017. https://eprint.iacr.org/2017/652.

Can97. R. Canetti. Towards realizing random oracles: Hash functions that hide all partial information.
In CRYPTO’97, LNCS 1294, pages 455–469. Springer, Heidelberg, August 1997.

CDM+18. G. Couteau, A. Dupin, P. Méaux, M. Rossi, and Y. Rotella. On the concrete security of Goldreich’s
pseudorandom generator. In ASIACRYPT 2018, Part II, LNCS 11273, pages 96–124. Springer,
Heidelberg, December 2018.

CEMT14. J. Cook, O. Etesami, R. Miller, and L. Trevisan. On the one-way function candidate proposed by
goldreich. ACM Transactions on Computation Theory (TOCT), 6(3):14, 2014.

https://eprint.iacr.org/2015/165
https://eprint.iacr.org/2017/652

Structured-Seed Local PRGs and their Applications 25

CM01. M. Cryan and P. B. Miltersen. On pseudorandom generators in nc 0. In International Symposium
on Mathematical Foundations of Computer Science, pages 272–284. Springer, 2001.

CRR21. G. Couteau, P. Rindal, and S. Raghuraman. Silver: Silent VOLE and oblivious transfer from
hardness of decoding structured LDPC codes. LNCS, pages 502–534. Springer, Heidelberg, 2021.

CRS03. A. Czumaj, C. Riley, and C. Scheideler. Perfectly balanced allocation. In International Workshop
on Randomization and Approximation Techniques in Computer Science, pages 240–251. Springer,
2003.

DIJL23. Q. Dao, Y. Ishai, A. Jain, and H. Lin. Multi-party homomorphic secret sharing and sublinear
MPC from sparse LPN. LNCS, pages 315–348. Springer, Heidelberg, 2023.

DMR23. A. Dupin, P. Méaux, and M. Rossi. On the algebraic immunity—resiliency trade-off, implications
for goldreich’s pseudorandom generator. Designs, Codes and Cryptography, pages 1–45, 2023.

DV21. A. Daniely and G. Vardi. From local pseudorandom generators to hardness of learning. In
Proceedings of Thirty Fourth Conference on Learning Theory, Proceedings of Machine Learning
Research 134, pages 1358–1394. PMLR, 15–19 Aug 2021.

EKM17. A. Esser, R. Kübler, and A. May. LPN decoded. In CRYPTO 2017, Part II, LNCS 10402, pages
486–514. Springer, Heidelberg, August 2017.

GK05. S. Goldwasser and Y. T. Kalai. On the impossibility of obfuscation with auxiliary input. In 46th
FOCS, pages 553–562. IEEE Computer Society Press, October 2005.

GMW87. O. Goldreich, S. Micali, and A. Wigderson. How to prove all NP-statements in zero-knowledge,
and a methodology of cryptographic protocol design. In CRYPTO’86, LNCS 263, pages 171–185.
Springer, Heidelberg, August 1987.

Gol00. O. Goldreich. Candidate one-way functions based on expander graphs. Cryptology ePrint Archive,
Report 2000/063, 2000. https://eprint.iacr.org/2000/063.

Had00. S. Hada. Zero-knowledge and code obfuscation. In ASIACRYPT 2000, LNCS 1976, pages 443–457.
Springer, Heidelberg, December 2000.

HMS07. D. Hofheinz, J. Malone-Lee, and M. Stam. Obfuscation for cryptographic purposes. In TCC 2007,
LNCS 4392, pages 214–232. Springer, Heidelberg, February 2007.

HRsV07. S. Hohenberger, G. N. Rothblum, a. shelat, and V. Vaikuntanathan. Securely obfuscating re-
encryption. In TCC 2007, LNCS 4392, pages 233–252. Springer, Heidelberg, February 2007.

IKOS04. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Batch codes and their applications. In 36th
ACM STOC, pages 262–271. ACM Press, June 2004.

IKOS08. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography with constant computational
overhead. In 40th ACM STOC, pages 433–442. ACM Press, May 2008.

JLS21. A. Jain, H. Lin, and A. Sahai. Indistinguishability obfuscation from well-founded assumptions.
pages 60–73. ACM Press, 2021.

JLS22. A. Jain, H. Lin, and A. Sahai. Indistinguishability obfuscation from LPN over Fp, DLIN, and
PRGs in NC0. LNCS, pages 670–699. Springer, Heidelberg, 2022.

Kir11. P. Kirchner. Improved generalized birthday attack. Cryptology ePrint Archive, Report 2011/377,
2011. https://eprint.iacr.org/2011/377.

LF06. É. Levieil and P.-A. Fouque. An improved LPN algorithm. In SCN 06, LNCS 4116, pages 348–359.
Springer, Heidelberg, September 2006.

LPS04. B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and techniques for obfuscation. In
EUROCRYPT 2004, LNCS 3027, pages 20–39. Springer, Heidelberg, May 2004.

LV17. A. Lombardi and V. Vaikuntanathan. Limits on the locality of pseudorandom generators and
applications to indistinguishability obfuscation. In TCC 2017, Part I, LNCS 10677, pages 119–
137. Springer, Heidelberg, November 2017.

LWYY24. H. Liu, X. Wang, K. Yang, and Y. Yu. The hardness of lpn over any integer ring and field for pcg
applications. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 149–179. Springer, 2024.

Lyu05. V. Lyubashevsky. The parity problem in the presence of noise, decoding random linear codes,
and the subset sum problem. 2005.

Méa. P. Méaux. On the fast algebraic immunity of threshold functions. crypt. commun. 13 (5), 741–762
(2021).

Méa22. P. Méaux. On the algebraic immunity of direct sum constructions. Discrete Applied Mathematics,
320:223–234, 2022.

MST03. E. Mossel, A. Shpilka, and L. Trevisan. On e-biased generators in NC0. In 44th FOCS, pages
136–145. IEEE Computer Society Press, October 2003.

NN90. J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications. In
22nd ACM STOC, pages 213–223. ACM Press, May 1990.

OST19. I. C. Oliveira, R. Santhanam, and R. Tell. Expander-based cryptography meets natural proofs.
In ITCS 2019, pages 18:1–18:14. LIPIcs, January 2019.

Ove06. R. Overbeck. Statistical decoding revisited. In ACISP 06, LNCS 4058, pages 283–294. Springer,
Heidelberg, July 2006.

https://eprint.iacr.org/2000/063
https://eprint.iacr.org/2011/377

26 Dung Bui, Geoffroy Couteau, and Nikolas Melissaris

OW14. R. ODonnell and D. Witmer. Goldreich’s prg: evidence for near-optimal polynomial stretch. In
Computational Complexity (CCC), 2014 IEEE 29th Conference on, pages 1–12. IEEE, 2014.

Pie12. K. Pietrzak. Cryptography from learning parity with noise. In International Conference on
Current Trends in Theory and Practice of Computer Science, pages 99–114. Springer, 2012.

Pra62. E. Prange. The use of information sets in decoding cyclic codes. 1962.
PRTY19. B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. SpOT-light: Lightweight private set intersection

from sparse OT extension. In CRYPTO 2019, Part III, LNCS 11694, pages 401–431. Springer,
Heidelberg, August 2019.

PSWW18. B. Pinkas, T. Schneider, C. Weinert, and U. Wieder. Efficient circuit-based PSI via cuckoo hashing.
In EUROCRYPT 2018, Part III, LNCS 10822, pages 125–157. Springer, Heidelberg, April / May
2018.

RS98. M. Raab and A. Steger. "balls into bins" - a simple and tight analysis. In Proceedings of the
Second International Workshop on Randomization and Approximation Techniques in Computer
Science, RANDOM ’98, page 159–170, Berlin, Heidelberg, 1998. Springer-Verlag.

RVV24. S. Ragavan, N. Vafa, and V. Vaikuntanathan. Indistinguishability obfuscation from bilinear maps
and lpn variants. Cryptology ePrint Archive, 2024.

Saa07. M.-J. O. Saarinen. Linearization attacks against syndrome based hashes. In INDOCRYPT 2007,
LNCS 4859, pages 1–9. Springer, Heidelberg, December 2007.

SEK03. Sanders, Egner, and Korst. Fast concurrent access to parallel disks. Algorithmica, 35:21–55, 2003.
SGRP19. P. Schoppmann, A. Gascón, M. Raykova, and B. Pinkas. Make some ROOM for the zeros: Data

sparsity in secure distributed machine learning. In ACM CCS 2019, pages 1335–1350. ACM Press,
November 2019.

SGRR19. P. Schoppmann, A. Gascón, L. Reichert, and M. Raykova. Distributed vector-OLE: Improved
constructions and implementation. In ACM CCS 2019, pages 1055–1072. ACM Press, November
2019.

Üna23a. A. Ünal. New baselines for local pseudorandom number generators by field extensions. Cryptology
ePrint Archive, 2023.

Üna23b. A. Ünal. Worst-case subexponential attacks on PRGs of constant degree or constant locality.
LNCS, pages 25–54. Springer, Heidelberg, 2023.

Val84. L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, nov 1984.
Wag02. D. Wagner. A generalized birthday problem. In CRYPTO 2002, LNCS 2442, pages 288–303.

Springer, Heidelberg, August 2002.
Wee05. H. Wee. On obfuscating point functions. In 37th ACM STOC, pages 523–532. ACM Press, May

2005.
YGJL21. J. Yang, Q. Guo, T. Johansson, and M. Lentmaier. Revisiting the concrete security of goldreich’s

pseudorandom generator. IEEE Transactions on Information Theory, 68(2):1329–1354, 2021.

A Proof of Theorem 4.5

We restate the Theorem for convenience:

Theorem A.1. For any constants c ≥ 3 and η > 0, for any large enough k = k(λ), there is a
constant γ(c) such that for any n ≤ k(1−η)c/2+η,

Pr

[
A

$←Wc : dd(A) ≥ kη

γ(c)
− 1

]
≥ 1−

(
γ(c)

kη

)c−2

.

The proof is a direct adaptation (and slight generalization) of the analysis of [MST03, Section 5.3].
Part of the proof is taken essentially verbatim from [CRR21], and adapted to our parameter setting.
Near-identical proofs of essentially the same theorems can be found in other works, e.g. [BCG+23,
DIJL23].

Proof. Given a matrix A ∈ Fn×k
2 , we denote by (a1, · · · ,an) the rows of A, and by (a1, · · · ,ak) its

columns. For any subset S ⊆ [n] of the rows of A, we call column-neighbors of S in A, and write
Nc

A(S) ⊆ [k], the subset of the columns of A which have at least one 1 in a row of S. For any integer
d, we say that A has the d-unique column-neighbor property if for any set S ⊆ [n] with |S| ≤ d, there
exists a column Aj of A such that Aj [S] contains exactly a single 1.

Lemma A.2 ([MST03]). If A ∈ Fn×k
2 has d-unique column-neighbor, then dd(A) ≥ d− 1.

Proof. For any subset S of [n] with |S| ≤ d, there exists a column of A that has exactly one 1 in a
row indexed by S, hence

⊕
i∈S ai ̸= 0k.

Structured-Seed Local PRGs and their Applications 27

In the following, we show that a randomly sampled sparse matrix A has d-right unique column-
neighbor with high probability, for a certain d. This follows from the fact that A has certain expansion
properties. We say that a matrix A is (d, α)-expanding if for every subset S ⊆ [n] with |S| ≤ d, it
holds that |NA(S)| > α · |S| (in other words, a matrix A is (d, α)-expanding if it is the adjacency
matrix of a (d, α)-expanding bipartite graph).

Lemma A.3 ([MST03]). Let A ∈ Supp(Wc) be a c-sparse matrix. If A is (d, c/2)-expanding, then
it has d-unique column-neighbor.

Proof. Assume that A does not have d-unique column-neighbor. Let S ⊆ [n] be any subset with
|S| ≤ d. Then for every j ∈ Nc

A(S), a
j [S] contains at least two 1’s. Since the rows in S contain c · |S|

1’s in total, this implies that |Nc
A(S)| ≤ (c/2) · |S|.

To prove Theorem 4.5, it remains to show that a random sample fromWc is sufficiently expanding
with high probability.

Lemma A.4. For any large enough k = k(λ), any constants c ≥ 3 and η > 0, there is a constant
γ(c) such that for any n ≤ k(1−η)c/2+η,

Pr

[
A

$←Wc : A is
(
kη

γ(c)
, c/2

)
-expanding

]
≥ 1−

(
γ(c)

kη

)c−2

.

Proof. For any subset S ⊂ [n] and any size c · |S|/2 subset T ⊂ [k], the probability over the random
choice of A $←Wc that Nc

A(S) ⊆ T is at most (c · |S|/2k)c·|S|. Since there are
(

n
|S|
)

choices for S and(
k

c|S|/2
)

choices for T , the probability that A fails to be (d, c/2)-expanding is at most

d∑
i=2

(
n

i

)
·
(

k

c · i/2

)
·
(
c · i
2k

)c·i

,

where the sum starts at 2 because any single row j always satisfies Nc
A({j}) = c > c/2. Using the

inequality
(
a
b

)
≤ (ae/b)b, we get

d∑
i=2

(en
i

)i
·
(
2ek

ci

)ci/2

·
(
ci

2k

)ci

=

d∑
i=2

(
en

i
·
(
2ek

ci

)c/2

·
(
ci

2k

)c
)i

=

d∑
i=2

(
n

k
· ec/2+1 · (c/2)c/2 ·

(
i

k

)c/2−1
)i

=

d∑
i=2

((n
k

) 1
c/2−1 ·

(c
2

) c/2
c/2−1 · e

c/2+1
c/2−1 · i

k

)i·(c/2−1)

≤
d∑

i=2

(
γ(c) · i

2kη

)i·(c/2−1)

,

where γ(c) denotes the constant 2 · (c/2)
c/2

c/2−1 · e
c/2+1
c/2−1 . Now, setting d = k2/(γ(c) · n), the above

is upper bounded by(
γ(c)

kη

)c−2

+

(
3γ(c)

2kη

)3(c/2−1)

+ log2 k ·
(
γ(c)2 log2 k

kη

)2c−4

+ d ·
(

1

klog k

)c/2−1

,

where the first two terms are the terms for i = 2, 3 in the sum, the third term bounds the terms
i = 4, · · · , log2 k in the sum, and the last term bounds the sum of the remaining terms. For a large
enough k and any integer c > 2, this sum is therefore dominated by its first term. The lemma follows.

	Structured-Seed Local Pseudorandom Generators and their Applications

