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Abstract. Proxy re-encryption is a cryptosystem that achieves efficient
encrypted data sharing by allowing a proxy to transform a ciphertext
encrypted under one key into another ciphertext under a different key.
Homomorphic proxy re-encryption (HPRE) extends this concept by in-
tegrating homomorphic encryption, allowing not only the sharing of en-
crypted data but also the homomorphic computations on such data. The
existing HPRE schemes, however, are limited to a single or bounded
number of hops of ciphertext re-encryptions. To address this limitation,
this paper introduces a novel lattice-based, unbounded multi-hop fully
homomorphic proxy re-encryption (FHPRE) scheme, with constant-size
ciphertexts. Our FHPRE scheme supports an unbounded number of re-
encryption operations and enables arbitrary homomorphic computations
over original, re-encrypted, and evaluated ciphertexts. Additionally, we
propose a potential application of our FHPRE scheme in the form of a
non-interactive, constant-size multi-user computation system for cloud
computing environments.

Keywords: Proxy re-encryption · Fully homomorphic encryption · Un-
bounded multi-hop · Bootstrapping · Lattice-based cryptography.

1 Introduction

Consider a scenario where Alice (delegator) wishes to securely share some en-
crypted data with Bob (delegatee) from a cloud server. One trivial but risky
method is that Alice directly tells Bob her decryption key, compromising the
security of all her encrypted data. Alternatively, Alice can download, decrypt,
encrypt again with Bob’s public key, then re-upload the data. This approach
is inefficient and bandwidth-heavy. Proxy re-encryption (PRE), introduced by
Blaze et al. [4], offers an elegant solution that allows Alice to delegate the de-
cryption rights of her ciphertext to Bob. Specifically, given a re-encryption key
from Alice, a semi-trust third party proxy can transform a ciphertexts under
Alice’s public key to a ciphertext decryptable by Bob, ensuring the proxy learns
no knowledge about the underlying data. PRE has important applications in
⋆ Corresponding author.
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cloud computing, secure email forwarding [32], and distributed file system [3].
According to the number of re-encryption can be performed, PRE is categorized
into multi-hop PRE (MH-PRE) [9, 22], where ciphertexts can be successively
re-encrypted (e.g., from Alice to Bob, then to Carol), and single-hop PRE [2, 19,
21], where further re-encryptions are not supported.

Homomorphic encryption (HE) enables computations on encrypted data with-
out the need of decryption. Gentry proposed the first fully homomorphic encryp-
tion (FHE) scheme [17] that supports evaluating arbitrary functions over en-
crypted data by using the bootstrapping technique. Specifically, bootstrapping
allows a ciphertext to be refreshed to a lower error state by homomorphically
evaluating the decryption circuit on it with an encrypted secret key.

Homomorphic proxy re-encryption (HPRE) is an extension of PRE that sup-
ports homomorphic computation. HPRE realizes not only efficient secure data
sharing but also the computability of encrypted data, making HPRE particu-
larly potential in cloud computing, where data security is increasingly impor-
tant. However, the existing HPRE schemes are limited to support single-hop [23,
29] or bounded multi-hop (with a predefined limit) [25, 26] re-encryptions. An
unbounded hop HPRE scheme, offering an unrestricted number of re-delegations
and enabling continuous computations, would be much more desirable and prac-
tical than a bounded one. Despite the requirement to support homomorphic com-
putation, there are no known lattice-based unbounded multi-hop PRE schemes
by far. This gap is an essential factor hindering the development of PRE.

1.1 Our Contributions

To address the problems of current HPRE schemes that are constrained by
a limited or bounded number of re-encryption hops, this paper introduces a
lattice-based unbounded multi-hop FHPRE (MH-FHPRE) scheme. This scheme
has the advantages in: (1) supporting an unbounded number of re-encryptions,
(2) enabling arbitrary circuit evaluations on original, re-encrypted and evalu-
ated ciphertexts, and (3) maintaining constant-size ciphertexts throughout the
computation process. In the following section, we present an overview of our
MH-FHPRE scheme:

• This scheme starts with a learning with errors (LWE) form of public key
encryptions:

c = (a = Ar+ e, b = r⊤b+
q

4
m+ e) ∈ Zn+1

q ,

and the decryption runs as: m =

⌊
4

q
(b− a · s)

⌉
.

• This form supports the FHEW-style homomorphic NAND evaluation as:

cf = (a, b) = Eval.NAND((a0, b0), (a1, b1)) = (−a0 − a1,
5

8
q − b0 − b1).

• A single-hop proxy re-encryption is achieved by a re-encryption key:

rki→j =

[
(AjRj)

⊤ + (E′
j)

⊤ R⊤
j bj − P2(si) + (e′j)

⊤

01×n 1

]
,
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which can transform the ciphertext from user i to user j as: c′
j = (a′j , b

′
j)

where ((a′j)
⊤, b′j) ← [BD(a⊤i )|bi] · rki→j . More details of the algorithms BD

and P2 will be introduced in Section 2.5.
• The problem of this single-hop re-encrypted ciphertext c′

j is the accumula-
tion of errors, which is uncontrollable and prevents subsequent re-encryptions
and computations. To resolve this problem, we adapt this ciphertext to a new
one, c′′

j = (a′′j , b
′′
j ), on which the FHEW-style fast bootstrapping can work.

• The adapted ciphertext can be refreshed by bootstrapping: cj = (aj , bj)←
Bootstrap(c′′), with reduced noise for further re-encryptions or computations.

Based on the proposed FHPRE, we suggest a potential application of our
scheme in the form of a multi-user computation system in cloud computing en-
vironments. This system addresses the scenarios involving k users wishing to col-
laboratively compute a function f over a set of encrypted data originating from
different users, i.e. c1, · · · , ck where ci = Encpki

(mi), to obtain f(m1, · · · ,mk).
Multi-key homomorphic encryption (MKHE) [27, 31, 6, 11] offers a solution to
such a task. However, these MKHE schemes face two major limitations: (1) It
necessitates interactive protocols like MPC protocol for joined decryption, and
(2) the ciphertext size and computation complexity of the joined ciphertexts
grows linearly or quadratically with the number of involved users. In Section 7,
we present that our FHPRE scheme can be used to construct a non-interactive
and scalable multi-user computation system.

1.2 Related Works

The notion of PRE was first introduced by Blaze et al. [4] with a single-hop
bidirectional scheme based on DDH assumption. Following this study, Aono et al.
[2] and Kirshanova [21] made significant breakthroughs by constructing the first
CPA secure and first CCA secure single-hop unidirectional PRE schemes from
lattice, which is believed to be quantum secure. This led to further developments
by Chandran el al. [10] who proposed a multi-hop PRE scheme that is collusion
resistant. Jiang [20] also proposed a lattice-based multi-hop PRE scheme.

Gentry [17] first presents the feasibility of FHE that supports evaluation
of arbitrary functions on encrypted data by using the bootstrapping theorem.
Following this line, a series of optimized (leveled) HE schemes [5, 7, 8, 13] were de-
veloped. Subsequently, Gentry el al. [18] proposed the GSW scheme with “quasi-
additive” error growth in homomorphic multiplication, leading to a more practi-
cal bootstrapping [1]. A substantial progress was made by Ducas and Micciancio
[16], and Chillotti et al. [14], who presented a fast bootstrapping procedure tak-
ing less than a second, making an important step towards practical FHE for
arbitrary NAND circuits. To improve the bootstrapping efficiency, Micciancio
and Sorrell [30] suggested a ring packing and amortized bootstrapping method.

Zhong el al. [35] introduced the first HPRE scheme under GCD assump-
tion. Ma et al. [29] later provided the first lattice-based single-hop unidirectional
HPRE scheme. Improved from [29], Li et al. [23] proposed a more flexible single-
hop leveled HPRE where the maximum depth of the evaluated circuit had to
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be predefined. Following this line, Li et al. [25] gave a lattice-based multi-hop
identity-based HPRE via branching program. Recently, [24] proposed a LWE-
based multi-hop leveled HPRE scheme with collusion resistance. However, these
multi-hop schemes only support a bounded number of re-encryption operations,
thereby fixing the maximum number of re-encryptions after setup. This causes
a loss of system’s flexibility. Table 1 summarizes the results of these classical
HPRE schemes.

Table 1: Comparison of the lattice-based HPRE schemes

Schemes Assumption FHE Hop Security

MLO16 [29] LWE ✓ Single CPA

LMZ+19 [23] LWE Leveled HE Single CPA

LMW17 [25] LWE ✓ Multi(bounded) CPA

LQZ+21 [24] LWE Leveled HE Multi(bounded) CPA

Our Scheme LWE ✓ Multi(unbounded) CPA

2 Preliminaries

2.1 Notations

Throughout this paper, we use [n] to denote the set {1, 2, · · · , n} for a positive
integer n. We use x ← X to denote the process of sampling a value x over the
distribution X, and x

$← X to denote the uniformly random sampling process.
We use bold lower-case letters like a to denote column vectors and bold upper-
case letters like A to denote matrices. We denote the transpose of a vector
(matrix) as a⊤(A⊤). The horizontal concatenation of elements a1, · · · , am is
denoted as its ordered set like (a1, a2, · · · , am) or sometimes as [a1| · · · |am] for
clearer presentation. We define ∥a∥ as the l2 norm of the vector a and ∥a∥∞
as ∥ai∥max. We denote the process of rounding x to its nearest integer as ⌈x⌋,
rounding x up as ⌈x⌉, and rounding x down as ⌊x⌋. We identify the set of integers
modulo q as Zq and the group of invertible elements modulo q as Z∗

q .

2.2 Gaussian Distributions

A variable X has sub-Gaussian distribution with a parameter σ > 0 if for all
t ∈ R, it holds E[e2πtX ] ≤ eπσ

2/t2 . A sub-Gaussian distribution X is called B-
bounded if its support is in [−B,B] with a parameter σ = B

√
2π. A variable

X is called sub-Gaussian with a parameter σ if Pr[|X| ≥ t] ≤ 2e−πt2/σ2

holds
for all t ≥ 0. A vector x (matrix X) is called sub-Gaussian with parameter σ if
for unit vectors v,w, it satisfies that ⟨v,x⟩ (v⊤Xw) is also sub-Gaussian with
parameter σ.
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2.3 Cyclotomic Rings

Let ΦN (X) =
∏

i∈Z∗
N
(X−ωi

N ) be the Nth cyclotomic polynomial for which ωN is
the complex Nth root of unity. We have ΦN (X) is a monic polynomial of degree
φ(N) = |Z∗

N | and Φ2N (x) = XN + 1 for any power of 2 integer N . The Nth
cyclotomic ring isRN = Z[X]/ΦN (X). For an ring element a ∈ RN = a0+a1X+
· · · ,+aφ(N)X

φ(N), we define the Euclidean length of a as ∥a∥ =
√∑

i |ai|2 and
the spectral norm of a matrix R ∈ Rn×m

N as s1(R) = supx∈Rm\0 ∥R · x∥ / ∥x∥.
We define R = R2N = Z[X]/(XN + 1) and write Rq to denote its residue ring,
Zq[X]/(XN + 1).

We define the map η mapping a ring element to its coefficient vector. For a
ring element a ∈ R =

∑N−1
i=0 aiX

i, η(a) → (a0, · · · , aN−1). We also define the
map M : M(a)→ (η(a ·X0), · · · , η(a ·XN−1)) for a ∈ R. We have M(a) ·η(b) =
η(a · b), which will be used in the following LWE extraction algorithms.

Fact 1 (Adapted from [15] Fact 6) If D is a sub-Gaussian distribution of
parameter σ over R, and R ← Dm×k has independents coefficients, we have
s1(R) ≤ σ

√
N ·O(

√
m+

√
k + ω(

√
logN)) with overwhelming probability.

2.4 (Ring) Learning with Errors Problem

The decisional LWE (DLWE) problem introduced by Regev [33] is defined as:

Definition 1 For a secret s← Zn
q , integers n, m, q, and a noise distribution χ

over Z, the DLWEn,q,χ problem is to distinguish the following two distributions:

(ai, bi = ai · s+ ei) and (ai, ui)

where ai
$← Zn

q , ei ← χ, and ui
$← Zq are independently chosen. The DLWE

assumption is that the DLWEn,q,χ problem is infeasible.

The decisional ring-LWE (RLWE) problem [28] is defined as:

Definition 2 For a secret s ← Rq, a ring Rq, and a noise distribution χ over
Z, the decisional RLWER,q,χ problem is to distinguish the following two distribu-
tions:

(ai, bi = ai · s+ ei) and (ai, ui)

where ai
$← Rq, ui

$← Zq, and each coefficient of ei ∈ Rq is chosen from χ. The
RLWE assumption is that the RLWER,q,χ problem is infeasible.

2.5 BD and P2 Algorithms

In the following sections, we use two useful algorithms BD and P2 [5] :

• BD(x): Takes a vector x ∈ Zn
q , outputs the vector y = (y0,y1, · · · ,y⌈log q⌉−1) ∈

{0, 1}n⌈log q⌉, such that x =
∑⌈log q⌉−1

i=0 2i · yi.
• P2(v): Takes a vector v ∈ Zn

q , outputs the vector w = (v, 2v, · · · , 2⌈log q⌉−1v) ∈
Zn⌈log q⌉
q .

It holds that: for any vectors x,y ∈ Zn
q , BD(x) · P2(y) = x · y (mod q).
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2.6 LWE Public Key Encryption

In this section, we introduce a basic LWE public key encryption scheme on which
the bootstrapping works. The LWE encryption public key scheme is parameter-
ized by a dimension n, a ciphertext modulus q, m = Θ(n log q), a B-bounded
noise distribution χ over Z, and a message modulus t ≤ q (we use t = 4). The
secret key of the scheme is a ternary vector s← {−1, 0, 1}n and the public key is
(A,b), where A

$← Zn×m
q and b← A⊤s+ e for some e← χm. The encryption

of a message µ ∈ {0, 1} is computed by:

LWEt/q
s (µ) = (a, b) = (Ar+ e1, r

⊤b+
q

t
µ+ e2) ∈ Zn+1

q .

where r
$← {−1, 0, 1}m, e1 ← χm, e2 ← χ. The ciphertext can be decrypted by:

µ′ =

⌊
t

q
(b− a · s) = t

q
(
q

t
µ+ r⊤e+ e2 − e1 · s)

⌉
(mod t)

A correct decryption requires that
t

q
(r⊤e+ e2 − e1 · s) <

1

2
.

2.7 Key Switching

Key switching is a procedure that transforms a LWE ciphertext under a key s′

to a LWE ciphertext under another key s, encrypting the same message. Let Bks

be a key switching base, k
(S)
h,i,j ∈ LWEq/q

s (hs′iB
j
ks) be an encryption of hs′iB

j
ks

under s where h ∈ [0, Bks − 1], i ∈ [n], j ∈ [0, dks − 1] for dks = ⌈logBks
q⌉. Taking

c′ = (a′, b′) ∈ LWEt/q
s′ (µ) and an auxiliary key switch key K(S) = {k(S)

h,i,j}, the
key switching algorithm KeySW(K(S), (a′, b′))→ (a, b) proceeds as follows:

– For i ∈ [n], j ∈ [0, · · · , dks], compute a′i,j such that a′i =
∑

j a
′
i,jB

j
ks.

– Output (a, b) = (0n, b′)−
∑

i,j k
(S)
a′
i,j ,i,j

.

Fact 2 (Adapted from [16] Lemma 6) For a ciphertext c′ ∈ LWEt/q
s′ (µ) with

a sub-Gaussian error distribution with parameter α and a key switch key K(S) =
{LWEq/q

s (hs′iB
j
ks)} with a sub-Gaussian error distribution with parameter σ, the

output of KeySW(K(S), c) ∈ LWEt/q
s (µ) has a sub-Gaussian error distribution

with parameter
√
α2 + ndksσ2.

Note that key switching is different from re-encryption. Key switching is used
for evaluating encrypted data, involving the conversion of ciphertexts between
two different decryption keys, both of which are generated by the same user.
In contrast, re-encryption is intended to achieve data sharing, involving the
transformation of ciphertexts between two keys from different users.
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2.8 Modulus Switching

Here we define a scale rounding function as: [x]p/q = ⌊(q/p)x⌉. We have | ⌊(q/p)x⌉−
(q/p)x| < 1/2. The modulus switching algorithm that transforms a LWE cipher-
text from modulus p to modulus q is defined as:

ModSWp/q((a, b)) = ([a1]p/q, [a2]p/q, · · · , [an]p/q, [b]p/q).

According to the central limit heuristic theorem, we have the following fact:

Fact 3 (Adapted from [16] Lemma 5) For any s← Zn
q , a sub-Gaussian er-

ror distribution χ with parameter σ, and a ciphertext c = (a, b) ∈ LWEt/p
s (m),

The output of ModSWp/q(c) is a ciphertext in LWEt/q
s (m) with an error sub-

Gaussian distribution with parameter
√
(q/p)2σ2 + (∥s∥2 + 1)/12.

3 Homomorphic Computation and Bootstrapping

In this section we provide an introduction of the homomorphic computation and
bootstrapping in our scheme. Following the line of FHEW-style FHE [16, 14], we
consider the NAND gate. We denote an encryption of m ∈ Zt under a secret key
s, a modulus q and a δ-bound error distribution as LWEt/q

s (m, δ).

3.1 Homomorphic NAND Gate Evaluation

For ciphertexts ci = (ai, bi) ∈ LWE4/q
s (mi, q/16) where i = 0, 1 and mi ∈ {0, 1},

the homomorphic NAND gate function for:

(LWE4/q
s (m0, q/16), LWE4/q

s (m1, q/16))→ LWE2/q
s (m0 ⊼m1, q/4)

is computed by

cf = (a, b) = Eval.NAND((a0, b0), (a1, b1)) = (−a0 − a1,
5

8
q − b0 − b1)

Correctness The new ciphertext cf = (a, b) satisfies:

b− a · s− q

2
(1−m0m1) =

q

4
(
1

2
− (m0 −m1)

2)− (e0 + e1) = ±
q

8
− (e0 + e1).

Since |ei| <
q

16
, it holds

∣∣∣±q

8
− (e0 + e1)

∣∣∣ < q

4
, which proves the correctness.

3.2 Bootstrapping

In this section, we first present an overview of the implemented bootstrapping
that produces a refreshed ciphertext with reduced error in our FHPRE scheme.

• For an evaluated ciphertext (a′, b′) ∈ LWE2/q
s (m0 ⊼ m1, q/4), we compute

(a, b)← Bootstrap((a′, b′)) ∈ LWE4/q
s (m0 ⊼m1, q/16) for further operations.

• For an re-encrypted ciphertext generated as (a′, b′) ∈ LWE4/q
s (m, q/8), we

first transform the ciphertext to be bootstrappable by computing 2(a′, b′) ∈
LWE2/q

s (m, q/4). Then we compute the final re-encrypted ciphertext cr =

(a, b)← Bootstrap(2(a′, b′)) ∈ LWE4/q
s (m, q/16) for subsequent operations.
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Homomorphic Accumulator [16] The bootstrapping is based on the homo-
morphic accumulator scheme parameterized by a modulus p, a message modulus
q, and a degree N = 2k̄ where q|2N . We use the rings R and Rp. For correctness,
we use p = B

dg
g where Bg = 3w for some w, and u ∈ Zp for which |u− p/8| < 1.

We use a gadget matrix G = (I, BgI, · · · , B
dg−1
g I) ∈ R2dg×2

p , and G−1 maps
a matrix to its Bg-base bit representation. The accumulator use a GSW-style
encryption scheme as follows:

• Es̄(m): For a key s̄ ∈ Rp, a message m ∈ Zq, a
$← R2dg

p , and e ∈ R2dg where
each coefficient of ei is sampled from χ̄ with parameter σ̄, the encryption is:

Es̄(m) = (a,a · s̄+ e) + uY mG ∈ R2dg×2
p , where Y = X2N/q.

Now we define two algorithms used in the accumulator:

• Init(ACC← v): On input v ∈ Zq, set ACC = uY v ·G ∈ R2dg×2
p .

• Update(ACC +←− C ): On input C = Es̄(v
′) and ACC = Es̄(v), proceeds:

- Compute G−1(u−1ACC) = H = [H1, · · · ,Hdg
]: Hi ∈ R2dg×2 whose

coefficients are in [(1−Bg)/2, (Bg − 1)/2] and u−1ACC =
∑dg−1

i=0 Bi
gHi.

- Output ACC = [H1, · · · ,Hdg
] ·C .

It satisfies that Update(ACC +←− C ) = Es(v+v′) = (a′′,a′′ ·s̄+e′′)+uY v+v′
G

for which a′′ = H · a′ + a · Y v′
and e′′ = e+ [H1, · · · ,Hdg

] · e′.

Correctness. For ACC = (a,a · s̄+ e)+ uY vG and C = (a′,a′ · s̄+ e′)+ uY v′
G,

it holds that HC = H(a′,a′ · s̄+ e′) +G−1(u−1ACC) · uY v′
G = H · (a′,a′ · s̄+

e′) + (a,a · s̄+ e) · Y v′
+ uY v+v′

G = (a′′,a′′ · s̄+ e′′) + uY v+v′
G.

We present the bootstrapping algorithm Bootstrap (Algorithm 1) followed
by the LWE extraction algorithm ExtLWE (Algorithm 2) based on [16].

Algorithm 1 Bootstrap(K(S),K(B), c = (a, b))

Input: A key switch key K(S) = {k(S)
h,i,j ∈ LWEq/q

s (hs̄iB
j
ks)}h∈[0,Bks−1],i∈[0,N−1],j∈[0,dks],

a bootstrapping key K(B) = {k(B)
h,i,j ∈ Es̄([hsiB

j
bs]q)}h∈[0,Bbs−1],i∈[n],j∈[0,dbs] where

dbs = ⌈logdbs
q⌉ − 1, and a LWE encryption c = (a, b) ∈ LWE2/q

s (m, q/4).
Output: A LWE encryption c′ = (a′, b′) ∈ LWE4/q

s (m, q/16).
1: Initialization ACC← b+ q/4
2: for i = 1, · · · , n do
3: Compute ai,j for Bbs-based bit representation of −ai: −ai =

∑
j ai,jB

j
bs (mod q)

4: for j = 0, · · · , dbs do
5: ACC +←− k

(B)
ai,j ,i,j

6: Output (a′, b′)← ExtLWE(K(S),ACC).
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Theorem 1 (from [16]). If (E, Init,Update,ExtLWE) is a correct Homomor-
phic Accumulator scheme, on input a valid bootstrapping key K(B) and a ci-
phertext c ∈ LWE2/q

s (m, q/4), the Bootstrap algorithm outputs a LWE ciphertext
Bootstrap(c) ∈ LWE4/q

s (m, ℓ(ndbs)), where ℓ is a polynomial function.

Proof. For a correct Homomorphic Accumulator scheme (E, Init,Update,ExtLWE)
and a ciphertext c = (a, b) ∈ LWE2/q

s (m, q/4), the for loop of the ACC updates
outputs an encryption: Es̄(v) ∈ R

2dg×2
p , where

v = b+
q

4
+
∑
i,j

ai,jsiB
j
bs = b+

q

4
− a · s = q

2
m+ e+

q

4
, where |e| < q

4

It holds v ∈ (0, q/2) if m = 0, and v ∈ (q/2, q) if m = 1. Thus, the correctness is
guaranteed if the extraction algorithm ExtLWE correctly extracts an encryption
of msb(v) as LWE4/q

s (msb(v), ℓ(ndbs)) satisfying ℓ(ndbs) < q/16.

Algorithm 2 ExtLWE(K(S),ACC)

Input: A key switch key K(S) = {k(S)
h,i,j ∈ LWEq/q

s (hs̄iB
j
ks)} from η(s̄) to s, and ACC←

(a′,a′ · s̄+ e′) + uY vG ∈ R2dg×2
p

Output: A LWE encryption c ∈ LWE4/q
s (msb(v))

1: (a⊤,b⊤)← (0⊤,v⊤,0⊤, · · · ,0⊤) ·M(ACC) ∈ Z2N
p ▷ v = (−1, · · · ,−1) ∈ ZN , and

M(ACC) ∈ Z2Ndg×2N .
2: Compute c(1) = (a, b0 + u) ∈ LWE4/p

η(s̄)(msb(v)).

3: Compute c(2) ← KeySW(K(S), c(1)) ∈ LWE4/p
s (msb(v))

4: Output c ← ModSW(c(2)) ∈ LWE4/q
s (msb(v))

LWE Extraction For Step 2 in Algorithm 2, (a⊤, b0) ← v⊤ · (M(ā), η(b̄)),
where (ā, b̄) ∈ R2 is the second row of ACC and v = (−1, · · · ,−1) is a test
vector, satisfies η(b̄) = M(ā) · η(s̄) + u · η(Y v) + ē for some ē, such that

(a, b0 + u) = (a,a · η(s̄) + v · ē+ u(1 + v⊤ · η(Y v))

As Y = X2N/q, η(Y v) = η(X2Nv/q) = (0, · · · , xi, 0, · · · , 0), where xi = 1 for
i = 2Nv/q if v ∈ (0, q/2) and xi = −1 for i = 2Nv/q − N if v ∈ (q/2, q). So
v⊤ · η(Y v) = −(−1)msb(v) and u(1 + v⊤ · η(Y v)) = 2u ·msb(v). Since u ≈ p/8,

(a, b0 + u) ≈ (a,a · η(s̄) + v · ē+ p

4
msb(v))

is an encryption of msb(v), where a = v⊤ ·M(ā). Combining the Algorithm 1 and
Algorithm 2, and according to the central limit heuristic, we have the theorem:
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Theorem 2 (From [16]). Assuming the hardness of RLWER,p,χ̄, the error dis-
tribution of the output from the algorithm Bootstrap has the parameter:

δ = ℓ(ndbs) =

√
q2

p2
(σ̄2

B2
bs

12
dbsqnN(Bg +

p

B
dg
g

− 1) + σ2Ndks) +
∥s∥2 + 1

12

4 Fully Homomorphic Proxy Re-Encryption (FHPRE)

An unbounded multi-hop fully homomorphic proxy re-encryption (MH-FHPRE)
scheme consists of the following seven algorithms:

• SetUp(1λ)→ pp: For a security parameter λ, outputs a public parameter pp.
• KeyGen(pp) → (pk, sk): On input a public parameter pp, outputs a public

key pk that includes the information of encryption, bootstrapping, and key
switching, and a secret decryption key sk.

• ReKeyGen(pp, ski, pkj) → rki→j : On input a secret key ski of user i and a
public key pkj of user j, outputs a re-encryption key rki→j from i to j.

• Enc(pp, pk, µ)→ c: On input the public key pk and a message µ, outputs a
ciphertext c.

• Dec(pp, sk, c) → µ: On input the secret key sk and a ciphertext c, outputs
the message µ.

• ReEnc(pp, pkj , rki→j , c(i)) → c(j): On input the public key pkj of user j, a
re-encryption key rki→j , and a ciphertext c(i) of user i, outputs a ciphertext
c(j) that can be decrypted by user j, with the same underlying message.

• Eval(pp, f, pk, {c1, · · · , cn})→ cf : On input a circuit f , a public key pk, and
n ciphertexts under sk, c1, · · · , cn where ci ∈ Encpk(µi) for i ∈ [n], outputs
a ciphertext cf that is an encryption of f(µ1, · · · , µn) under sk.

Correctness A correct FHPRE scheme requires that over the choice of (pk, sk)←
KeyGen(pp) where pp ← SetUp(1λ) for some security parameter λ, and a negli-
gible function negl(·), it holds:

• For a message µ ∈M and c ← Enc(pp, pk, µ), it holds that Pr[Dec(pp, sk, c) =
µ] > 1− negl(λ).

• For a circuit f , messages µ1, · · · , µn ∈M, and cf ← Eval(f, pk, {c1, · · · , cn}),
where {ci ← Enc(pp, pk, µi) for i ∈ [n], it holds that Pr[Dec(pp, sk, cf ) =
f(µ1, · · · , µn)] > 1− negl(λ).

• For a message µ ∈M, a re-encrypted ciphertext c(j) ← ReEnc(pp, rki→j , c(i)),
where rki→j ← ReKeyGen(pp, ski, pkj) and c(i) ← Enc(pp, pki, µ), it holds
that Pr[Dec(pp, skj , c(j)) = µ] > 1− negl(λ).

Security of HPRE. Let Π = (SetUp,KeyGen,ReKeyGen,Enc,Dec,ReEnc, Eval)
be a HPRE scheme and λ be a security parameter. The IND-CPA-HPRE security
game, ExpCPA

A,Π(λ), is defined between a PPT adversary A and a challenger as:
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Initial. Initialize key-value sets H to store key pairs (pk, sk) of honest users,
and CU for (pk, sk) of corrupted users. A selects and outputs a target user id i∗.
SetUp. The challenger runs pp ← SetUp(1λ) and (pki∗ , ski∗) ← KeyGen(pp),
adds (i∗, (pki∗ , ski∗)) to the set H, then outputs pp and pki∗ to A.
Query Phase 1. A can make polynomial times the following queries:

• Honeset key query OKeyGen
H : On input an i as a honest id, if i ∈ CU , output ⊥;

If i ∈ H, output the value pki for the key i in H; Otherwise, run (pki, ski)←
KeyGen(pp), add (i, (pki, ski)) to H, and output pki to A.

• Corrupted key query OKeyGen
CU : On input i as a corrupted id, if i ∈ H, output

⊥; If i ∈ CU , output the value (pki, ski) for key i in CU ; Otherwise, run
(pki, ski)← KeyGen(pp), add (i, (pki, ski)) to CU , and return (pki, ski) to A.

• Re-encryption key query OReKey: On input a pair ((i, pki), (j, pkj)), if i ∈
H, j ∈ CU , output ⊥; If both i, j ∈ H, run rki→j ← ReKeyGen(pp, ski, pkj)
and output rki→j to A. Note that for any i ∈ CU , j ∈ H∪CU , A can generate
the re-encryption key rki→j using ski and pkj by itself.

Challenge. A chooses and outputs two messages µ0 and µ1. The challenger
chooses a random bit β ← {0, 1} and outputs C∗

β ← Enc(pp, pki∗ , µβ) as the
challenge ciphertext to A.
Query Phase 2. A can continue to make queries as in Query Phase 1.
Guess. A outputs a bit β′, this oracle outputs 1 if β′ = β and 0 otherwise.

Definition 3 (CPA Security) An unidirectional multi-hop fully homomorphic
proxy re-encryption scheme is IND-CPA-HPRE secure, if any PPT adversary A
wins the game ExpCPA

A,Π(λ) with only negligible advantage.

Circular Security. Like previous FHE schemes, our FHPRE construction requires
a circular security assumption introduced in [17], in order to include a public
bootstrapping key to achieve ciphertexts refresh.

5 FHPRE Scheme

In this section, we present the algorithms that will be used in our unbounded
multi-hop fully homomorphic proxy re-encryption scheme.

• SetUp(1λ) → pp: On input a security parameter λ, lets n = poly(λ) be the
dimension of the LWE encryption, q = 2k be the LWE modulus, t = 4 be
the message modulus, m = Θ(n log q), χ be a Bχ-bounded sub-Gaussian
distribution with parameter σ satisfying the hardness of the DLWEn,q,χ, χ̄
be a sub-Gaussian distribution with parameter σ̄ satisfying the hardness of
RLWER,p,χ̄, p = B

dg
g be the RLWE modulus where Bg = 3w is the gad-

get base, N = 2k̄ be the ring dimension such that q|2N , Bbs ∈ Zq be the
bootstrapping base, Bks ∈ Zq be the key switching base, and u ≈ p/8, sets
rings R = Z[X]/(XN + 1) and Rp = Zp[X]/(XN + 1), outputs the public
parameter:

pp = (n,m, q, t, χ, χ̄, p,N, u,Bbs, Bks, Bg).
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• KeyGen(pp)→ (pk, sk): On input pp, proceeds as follows:
- Randomly choose s← {−1, 0, 1}n and A← Zn×m

q .
- Compute b = A⊤s+ e ∈ Zm

q where e← χm.
- Choose a key s̄ ← Rp, generate K(B) = {k(B)

h,i,j = Es̄([hsiB
j
bs]q)}, for

h ∈ [0, Bbs − 1], i ∈ [n], j ∈ [0, dbs], where dbs = ⌈logBbs
q⌉ − 1.

- Generate a key switch key K(S) = {k(S)
h,i,j = LWEs(hs̄iB

j
ks)} for h ∈

[0, dks], i ∈ [0, N − 1], j ∈ [0, dks − 1], where dks = ⌈logBks
q⌉.

- Output pk = (A,b,K(B),K(S)) and sk = s.

• ReKeyGen(pp, ski, pkj) → rki→j : On input ski = si of user i and pkj =

((Aj ,bj),K(B)
j ,K(S)

j ) of user j, chooses Rj
$← {1,−1}m×m, samples E′

j ←
χn×m and e′j ← χm, computes and outputs a re-encryption key:

rki→j =

[
(AjRj)

⊤ + (E′
j)

⊤ R⊤
j bj − P2(si) + (e′j)

⊤

01×n 1

]
∈ Z(m+1)×(n+1)

q .

• Enc(pp, pk, µ) → c: On input pk = ((A,b),K(B),K(S)) and a message
µ ∈ {0, 1}, randomly chooses r

$← {−1, 0, 1}m×1, samples e1 ← χn and
e2 ← χ, computes a = Ar + e1 ∈ Zn

q , b = r⊤b +
q

4
µ + e2 ∈ Zq, outputs

ciphertext c = (a, b) ∈ Zn+1
q .

• Dec(pp, sk, c)→ µ: On input sk = s and c = (a, b), outputs:

µ =

⌊
4

q
(b− a · s)

⌉
(mod 4).

• ReEnc(pp, pkj , rki→j , c(i))→ c(j): On input pkj = (Aj ,bj ,K(B)
j ,K(S)

j ), rki→j ,
and c(i) = (ai, bi) ∈ LWE4/q

si (µ, q/16), proceeds as follows:
- Compute: (a′⊤j , b′j) =

[
BD(a⊤i ) bi

]
· rki→j and let c′(j) = (a′j , b

′
j) ∈

LWE4/q
sj (µ, q/8).

- Compute an adapted ciphertext c′′(j) = 2c′(j) ∈ LWE2/q
sj (µ, q/4).

- Run c(j) ← Bootstrap(K(S)
j ,K(B)

j , c′′(j)) ∈ LWE4/q
sj (µ, q/16), output c(j).

Note that the last two steps include a bootstrapping process with higher
computation complexity to refresh c′′(j) for subsequent operations. If only a
single-hop of re-encryption is required, i.e. no subsequent re-encryptions or
computations is needed, the algorithm can just output c′(j) ∈ LWE4/q

sj (µ, q/8)
as a final single-hop ciphertext, for better re-encryption efficiency.

In the Eval algorithm, any circuit can be evaluated homomorphically by
proper interpretation of the NAND gates. Thus, we describe the computation
of a NAND gate.

• Eval.NAND(pp, pk, c1, c2)→ cf : On input pk = (A,b,K(B),K(S)) and ci =

(ai, bi) ∈ LWE4/q
s (µi, q/16) for i = 0, 1 and µi ∈ {0, 1}, proceeds as follows:
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- Compute c′
f = (a′, b′) = (−a1−a2,

5

8
q−b1−b2) ∈ LWE2/q

s (µ0⊼µ1, q/4).

- Output cf = (a, b)← Bootstrap(K(S),K(B), c′
f ) ∈ LWE4/q

s (µ0⊼µ1, q/16).

Theorem 3 (Correctness). A multi-hop FHPRE scheme is correct with respect
to µ ∈ Z4 if the chosen parameters satisfies: (m2+nm+2m+n+1)σ/

√
2π < q/8

and

√
q2

2πp2
(σ̄2

B2
bs

12
dbsqnN(Bg +

p

B
dg
g

− 1) + σ2Ndks) +
n+ 1

24π
<

q

16
.

Proof. We consider the correctness of decryptions for the original ciphertexts,
evaluated ciphertexts, and re-encrypted ciphertexts.

• For an original ciphertext (a = Ar+ e1, b = r⊤(A⊤s+ e) +
q

4
µ+ e2) where

e ← χm, e1 ← χn, e2 ← χ for a χ with bound Bχ = σ/
√
2π . We have

b− a · s = q

4
µ+ (r · e+ e2− e1 · s), such that the correct decryption requires

|r · e+ e2 − e1 · s| < (n+m+ 1)Bχ < q/8. (1)

• For an evaluated ciphertext (a, b), we consider the ciphertext after NAND
gate evaluation since the algorithm Bootstrap refreshes the ciphertext to the
original state after each gate evaluation. As section 3.2 shows, the correct
decryption requires: (1) The noise of an original ciphertext before computa-
tions satisfies

|r · e+ e2 − e1 · s| < (m+ n+ 1)Bχ < (m+ n+ 1)σ/
√
2π < q/16 (2)

(2) The noise ∆ of a refreshed ciphertext produced by Bootstrap satisfies

∆ ≤

√
q2

2πp2
(σ̄2

B2
bs

12
dbsqnN(Bg +

p

B
dg
g

− 1) + σ2Ndks) +
n+ 1

24π
<

q

16
(3)

• For a multi-hop re-encrypted ciphertext, let (a′j , b
′
j) ∈ LWE4/q

sj (µ, δ′) where

(a′⊤j , b′j) =
[
BD(a⊤i ) bi

]
·
[
(AjRj)

⊤ + (E′
j)

⊤ R⊤
j bj − P2(si) + (e′j)

⊤

01×n 1

]
satisfying b′j − a′j · s = (q/4)µ + e′ and |e′| < δ′. It holds that for the
adapted ciphertext (a′′j , b′′j ) = 2(a′j , b

′
j), b′′j −a′′j ·s = (q/2)µ+e′′ where |e′′| <

2δ′. Thus, (1) A correct ciphertext for bootstrapping requires: (a′′j , b
′′
j ) ∈

LWE2/q
s (µ, q/4), which means δ′ = q/8. (2) A single-hop re-encrypted ci-

phertext, (a′j , b′j), has the same correctness requirement: δ′ = q/8. So that
for a′j = (BD(a⊤i )(AjRj)

⊤ +BD(a⊤i )(E
′
j)

⊤)⊤ and b′j = BD(a⊤i )R
⊤
j (A

⊤
j sj +

ej) − BD(a⊤i )P2(si) + BD(a⊤i )(e
′
j)

⊤ + bi, it holds: b′j − a′j · sj = (q/4)µ +

(BD(a⊤i )R
⊤ej+BD(a⊤i )(e

′
j)

⊤−e⊤i,1si+r⊤i ei+ei,2−BD(a⊤i )(E
′
j)

⊤sj). There-
fore, the correctness of a re-encrypted ciphertext requires:

e′ = BD(a⊤i )R
⊤
j ej + BD(a⊤i )(e

′
j)

⊤ − e⊤i,1si + r⊤i ei + ei,2 − BD(a⊤i )(E
′
j)

⊤sj

< m2Bχ +mBχ + nBχ +mBχ +Bχ + nmBχ

< (m2 + nm+ 2m+ n+ 1)σ/
√
2π < δ′ = q/8 (4)
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In summary, an unbounded multi-hop FHPRE scheme is correct if the parameters
chosen satisfying (3) and (4), which completes the proof.

6 Security Proof

Theorem 4. The above FHPRE scheme is CPA-secure assuming circular secu-
rity, the hardness of DLWEn,q,χ, and the hardness of RLWER,p,χ̄.

Proof. The proof proceeds with a sequence of games as follows:

Game 0. This game is the original IND-CPA-HPRE game from Definition 3.
Game 1. In this game, the challenger changes the way in answering the key
queries for honest users as: A $← Zn×m

q , b $← Zq.
We note that the secret key s is not required in key queries for honest users.

Game 1 and Game 0 are indistinguishable for any PPT A. This is because the
distributions (A,b = A⊤s+ e) and (A,u) are indistinguishable for some A

$←
Zn×m
q , s← {−1, 0, 1}n, e← χm and u

$← Zm
q based on the hardness assumptions

of DLWEn,q,χ.
Game 2. In this game, the challenger changes the way in generating the chal-
lenge ciphertext C∗

β = (a∗, b∗) in Challenge phase as: a∗ = Ai∗r
∗ + e∗1 ∈ Zn

q and

b∗
$← Zq, where r∗

$← {−1, 0, 1}m×1 and e∗1 ← χn.
Game 2 and Game 1 are also indistinguishable with the only difference:

the generation of b∗. b∗ of the challenge ciphertext in Game 1 is generated by
b∗ ← ⟨b$, r∗⟩+ q

4
µβ + e∗2, where r∗

$← {−1, 0, 1}m×1, b$ $← Zq and e∗2 ← χ. Ac-

cording to the hardness assumption of DLWEn,q,χ, the distributions ⟨b$, r∗⟩+ e∗2

and u
$← Zq are indistinguishable. Therefore, ⟨b$, r∗⟩+ q

4
µβ+e2 in Game 1 is also

indistinguishable from any random element in Zq, as b∗ in Game 2. Because the
challenge ciphertext generated in Game 2 is completely independent of the bit
β, any PPT adversary has 0 advantage in winning the game. Also, the circular
security assumption guarantees the security with the usage of bootstrapping key
and key switch key. Therefore, any PPT adversary will have negligible advan-
tage in the original IND-CPA-HPRE game while any two consecutive games are
indistinguishable, which completes the proof.

7 Multi-User Computation System based on FHPRE

In this section we present a multi-user computation system that is built upon
the proposed FHPRE scheme. This system is designed for scenarios involving a
group of users, namely, user 1, · · · , user L, wishing to collaboratively compute a
function f over their encrypted data, c1, · · · , cL, where ci is an encryption of mi

under pki from user i. The goal is to compute the result: f(m1, · · · ,mL), without
disclosing each user’s underlying message. To accomplish this computation task,
the system (Fig 1) proceeds with the following phases:
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1. Preparation. The system first selects an intermediate user (i.e. L). Each
user i in [L − 1], runs rki→L ← ReKeyGen(pp, ski, pkL), then sends the re-
encryption key rki→L to the proxy. For each user i in [L − 1], user L runs
rkL→i ← ReKeyGen(pp, skL, pki) then sends {rkL→i}i∈[L−1] to the proxy.

2. Unified Re-Encryptions. For each ci, where i ∈ [L − 1], the proxy runs
ci,L ∈ EncpkL

(mi)← ReEncrki→L
(pp, pkL, ci), for subsequent computations.

3. Computation. The cloud server computes cf ∈ EncpkL
(f(m1, · · · ,mL))←

Eval(pp, f, pkL, cL, {ci,L}i∈[L−1]), where ci,L ∈ EncpkL
(mi).

4. Distribution. After computing cf , for each user i for i ∈ [L− 1], the proxy
runs cf,i ← ReEncrkL→i

(pp, pki, cf ) where cf,i ∈ Encpki
(f(m1, · · · ,mL)).

Thus, cf,i can be downloaded from the cloud and decrypted independently
by user i with its own secret key to recover the message f(m1, · · · ,mL).

Fig. 1: The Multi-User Computation System Based on FHPRE.

Our proposed system effectively addresses the mentioned limitations inherent
in MKHE schemes: (1) the need for interactive joined decryption, and (2) the
growth of ciphertexts is, at least linearly, with the number of involved users.
Our solution to the first limitation involves one round of re-encryptions in phase
4, where the evaluated ciphertext is re-encrypted from the intermediate user
to all other participants, allowing each user to independently recover the result
by their own keys, thus eliminating the joined decryption process. As noted in
phase 3, all ciphertexts are evaluated under a single key of the intermediate user,
negating the need for computing a joined ciphertext as in MKHE. This property,
combined with the bootstrapping, remains the ciphertext a constant size after
computations, reducing storage and computational costs. Table 2 summarizes
the comparison of the ciphertext size and computational costs based on the
number of scalar operations, between MKHE schemes and our FHPRE system.
Notably, the NAND gate evaluation, that takes O(n2) scalar operations in our
system, includes the bootstrapping procedure, while other MKHE schemes treat
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bootstrapping as a separate process. If taking bootstrapping into account, these
MKHE schemes would have a rise in the time complexity per evaluation.

The security of this system is based on the FHPRE scheme. However, we note
that it places reliance on a semi-trust third-party proxy. Potential risks like the
collusion of a compromised proxy and malicious delegatees should be considered.

Table 2: Comparison of ciphertext size and computational costs (number of scalar
operations) between MKHE schemes and our FHPRE multi-user computation
system. k is the number of users and n is the dimension of LWE/RLWE.

Scheme Interactive Decryption Ciphertext Size Evaluation Complexity

BP16 [6] (MKHE) Required O(kn) O(kn) (NAND)

CCS19 [11] (MKHE) Required O(kn) O(k2n2) (NAND)

CDKS19 [12] (MKHE) Required O(kn) O(k2n) (Mult)

Our FHPRE System Not required O(n) O(n2) (NAND)

8 Performance Analysis

In this section, we present the space and time complexity performance analysis
of the proposed FHPRE scheme. The asymptotic data size of ciphertext, re-
encryption key, and the evaluation keys, and the time complexity of homomor-
phic NAND evaluation, re-encryption, and evaluation key generation are sum-
marized in Table 3. As shown, the size of ciphertext is a linear function of the
dimension n of the LWE encryption. The asymptotic size of the re-encryption
key is O(n2 log q) where q is the LWE encryption modulus. The asymptotic size
of the evaluation keys is a linear function in n,N, log q, and log p, where N and
p are the degree and the modulus of the RLWE encryption respectively.

Regarding time performance, the homomorphic NAND computation is dom-
inated by the loop of O(n log q) ACC Update operations, ACC +←− k

(B)
ai,j ,i,j

, in

Bootstrap algorithm. Each ACC +←− k
(B)
ai,j ,i,j

takes O(log2 p) ring multiplica-
tions, where each multiplication takes O(N logN) using FFT techniques. The
re-encryption operation, dominated by the computation:

[
BD(a⊤i ) bi

]
· rki→j ,

requires (n + 1)(m + 1) multiplications in Zq, taking O(n2 log q) time. And it
takes O(n log q) RLWE encryptions, cumulatively amounting to O(n log q log p)
ring multiplications in total to generate the evaluation keys.

Optimization by Ring Packing and Amortized Bootstrapping It is
worth mentioning that the ring packing and amortized bootstrapping techniques,
as in [30], can be naturally applied to our FHPRE scheme for optimization. Amor-
tized bootstrapping allows to refresh multiple ciphertexts simultaneously in one
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Table 3: Asymptotic Space and Computation Performance of FHPRE
Space Time

Type Complexity Type Complexity

Ciphertext O(n) Hom NAND O(nN logN log q log2 p)

Re-Encryption Key O(n2 log q) Re-Encryption O(n2 log q)

Evaluation Key O(nN log q log p) Evaluation KeyGen O(nN logN log q log p)

bootstrapping operation, reducing the total number of executions. This process
amortizes the bootstrapping cost over a large number, yielding a cost reduction
per message of O(n1−ϵ) for some ϵ < 1/2. This property is particularly benefi-
cial for the FHPRE multi-user computation system as described in Section 7. For
example, L− 1 ciphertexts must be refreshed for subsequent computations after
being re-encrypted to an intermediate user in phase 2, Unified Re-Encryptions. In
such cases, amortized bootstrapping can be an effective optimization approach.

9 Conclusions and Future Works

To address the problem of the existing homomorphic proxy re-encryption schemes
that support only a single or bounded number of re-encryption operations, we in-
troduce a novel lattice-based constant-size unbounded multi-hop FHPRE scheme.
This scheme supports an unbounded number of re-encryption operations and en-
ables arbitrary homomorphic computations with constant-size ciphertexts. Uti-
lizing our FHPRE scheme, we have conceptualized a potential application in the
form of a non-interactive multi-user computation system in cloud computing
environments. This system facilitates a group of users to collaboratively homo-
morphically evaluate a function over a set of ciphertexts from them. Compared
to the current multi-key homomorphic encryption schemes, our system obviates
the need for interactive joint decryption and maintains constant size ciphertexts
throughout the computations process, leading to a cost reduction in both storage
requirements and computational complexity.

However, it is worthy to acknowledge that our scheme relies on a semi-trust
third-party proxy to perform re-encryptions. This introduces risks like collusion
between a compromised proxy and dishonest delegatees. Therefore, developing a
collusion-resistant unbounded FHPRE scheme would be a subsequent direction.
Exploring strategies like threshold PRE [34], can also be a potential approach
to mitigate collusion risks. Another interesting problem is the construction of
a FHPRE scheme that is secure against honest re-encryption attacks (HRA) or
chosen ciphertext attacks (CCA).
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A Homomorphic Gates Evaluation

In this section, we describe the basic logic gate functions that are compatible
with the bootstrapping algorithm.

• NOT Gate The homomorphic NOT gate for c′ ∈ LWE4/q
s (m, q/16) where

m ∈ {0, 1}, is defined as: Let c′ = (a′, b′), (a, b) is computed by

Eval.NOT((a′, b′)) = (−a′, q
4
− b′) ∈ LWE4/q

s (¬m,
q

16
).

It satisfies: b − a · s − q

4
(1 − m) = −e′, with |−e′| < q

16
. No subsequent

bootstrapping is needed for a NOT gate since there is no error increase.

• AND Gate The homomorphic AND gate for ci ∈ LWE4/q
s (mi, q/16), where

i = 0, 1,mi ∈ {0, 1}, is defined as: Let ci = (ai, bi), (a, b) is computed by

Eval.AND((a0, b0), (a1, b1)) = (a0+a1,−
q

8
+ b0+ b1) ∈ LWE2/q

s (m0 ∧m1,
q

4
).

It satisfies: b−a·s− q

2
(m0m1) =

q

4
(m0−m1)

2+(e0+e1)−
q

8
= ±q

8
+(e0+e1),

with
∣∣∣±q

8
+ (e0 + e1)

∣∣∣ < q

4
.

• OR Gate The homomorphic OR gate for ci ∈ LWE4/q
s (mi, q/16), where

i = 0, 1,mi ∈ {0, 1}, is defined as: Let ci = (ai, bi), (a, b) is computed by

Eval.OR((a0, b0), (a1, b1)) = (a0 + a1,
q

8
+ b0 + b1) ∈ LWE2/q

s (m0 ∨m1,
q

4
).

It satisfies: b−a ·s− q

2
(m0+m1−m0m1) = −

q

4
(m0−m1)

2+(e0+e1)+
q

8
=

±q

8
+ (e0 + e1), with

∣∣∣±q

8
+ (e0 + e1)

∣∣∣ < q

4
.

• XOR Gate The homomorphic XOR gate for ci ∈ LWE4/q
s (mi, q/16), where

i = 0, 1,mi ∈ {0, 1}, is defined as: Let ci = (ai, bi), (a, b) is computed by

Eval.XOR((a0, b0), (a1, b1)) = (2a0 + 2a1, 2b0 + 2b1) ∈ LWE2/q
s (m0 ⊕m1,

q

4
).

It satisfies: b− a · s− q

2
(m0 +m1 − 2m0m1) = q(m0m1) + 2(e0 + e1), with

|q(m0m1) + 2(e0 + e1)| <
q

4
(mod q).


