
Sparsity-Aware Protocol for ZK-friendly ML Models:
Shedding Lights on Practical ZKML

Alan Li alan@brevis.network

Qingkai Liang victor@brevis.network

Mo Dong mdong@brevis.network

Abstract

As deep learning is being widely adopted across various domains, ensuring the integrity of models
has become increasingly crucial. Despite the recent advances in Zero-Knowledge Machine Learning
(ZKML) techniques, proving the inference over large Machine Learning (ML) models is still pro-
hibitive. To enable practical ZKML, model simplification techniques like pruning and quantization
should be applied without hesitation. Contrary to conventional belief, recent development in ML
space have demonstrated that these simplification techniques not only condense complex models into
forms with sparse, low-bit weight matrices, but also maintain exceptionally high model accuracies
that matches its unsimplified counterparts.

While such transformed models seem inherently ZK-friendly, directly applying existing ZK proof
frameworks still lead to suboptimal inference proving performance. To make ZKML truly practical,
a quantization-and-pruning-aware ZKML framework is needed. In this paper, we propose SpaGKR,
a novel sparsity-aware ZKML framework that is proven to surpass capabilities of existing ZKML
methods. SpaGKR is a general framework that is widely applicable to any computation structure
where sparsity arises. It is designed to be modular – all existing GKR-based ZKML frameworks
can be seamlessly integrated with it to get remarkable compounding performance enhancements. We
tailor SpaGKR specifically to the most commonly-used neural network structure – the linear layer, and
propose the SpaGKR-LS protocol that achieves asymptotically optimal prover time. Notably, when
applying SpaGKR-LS to a special series of simplified model - ternary network, it achieves further
efficiency gains by additionally leveraging the low-bit nature of model parameters.

1 Introduction

Over the past decade, deep learning has achieved remarkable success across various applications,
thanks to continuous improvements in model performance [6, 10, 17, 20, 25, 28, 38–40, 42, 46, 48, 49].
This progress has been driven by an explosion in data volume, significant advancements in hardware
computation speeds, and continuous evolution in model architectures. As a byproduct, there has been
a trend of model size increasing over these years. The number of parameters of transformer-based
language models has increased from 60-200 million [49] to 175-540 billion [6, 10], a leap of more than
3 order of magnitudes. As deep learning models are increasingly deployed in sensitive areas such as
healthcare [12, 36], legal [5, 8] and blockchain applications, ensuring the integrity of model predictions
becomes crucial. A straightforward approach to verify model integrity would involve making the
models public and allowing for external verification. Nonetheless, this is often infeasible as commercial
models frequently involve proprietary or sensitive data.

To address the integrity challenge without compromising confidentiality, Zero Knowledge Machine
Learning (ZKML) employs zero-knowledge proofs within the machine learning context [2, 4, 13, 15, 23,
24, 26, 27, 29, 52, 56]. Recently, ZKML has advanced significantly, evolving from models like decision
trees [27, 56] to complex architectures such as CNNs [29, 33] and Transformers [1, 37]. Despite these
advancements, current ZKML systems still face efficiency challenges, particularly with larger models.
For example, a recent study [37] has shown that proving an single-world inference result of an LLM
with 1.5 billion parameters takes 90 hours. Later, [45] managed to prove inference on LLMs of sizes
up to 13 billion with proving time of 1-15 minutes. While this is a huge leap, considering that state-of-
the-art large language models may have hundreds of billions, or even trillions, of parameters, there is
an urgent need for new techniques to accelerate these processes.

1

In machine learning field, the substantial size of these large models presents difficulties in deploying
them in environments with limited computational resources. Not only is hosting these large models
challenging, but inference is also slow and costly. However, such large models are often heavily over-
parameterized, i.e., there exists a huge number of redundant neurons that do not improve the accuracy
of model performance. Moreover, most existing models are trained with 32-bit floating points (FP32),
which provides greater precision than needed. Model pruning and quantization techniques [7, 11,
18, 19, 22, 30, 31, 35, 41, 51, 53] have been developed to address these issues by transforming dense,
high-precision parameters (e.g., FP32) into sparse, lower-bit representations (e.g., 8-bit integers, INT8).
This lead to dramatic reduction in computational demands while still maintaining the original model
performance. As an example, [18] achieved a 10-fold reduction in parameter count through effective
pruning without compromising accuracy.

While mildly-quantized (e.g., INT8) models have already been explored in the context of ZKML to
accelerate proving process (for example, [13, 33]), limited attentions have been put on sparse models
where there exist a large portion of model parameters are zeros and quantizations are done towards
their extreme. In this paper, we explore such a specialized model category known as ternary networks.
These models have parameters that adopt values from {−1, 0, 1} [30, 35]. Despite the apparent sim-
plicity of these models, one might anticipate a significant decline in performance. Surprisingly, recent
studies (e.g., [35]) show that with meticulous quantization and training protocols, ternary networks
can achieve performance levels comparable to their non-quantized counterparts. Such quantization
was applied to models of size 3.9 billion and has not seen its limitation yet, enabling efficient inference
of large models.

Ternary networks (with successful realization as [35] etc.) offer a dramatic increase in computa-
tional efficiency without compromising model accuracy. This efficiency gain is attributed to several
factors:

1. The presence of 0-valued weights introduces sparsity in model parameters, reducing the number
of necessary computations;

2. Operations in element multiplication are simplified to additions and subtractions, eliminating the
need for multiplicative computations;

3. Operations involving 32-bit floating-point (FP32) are transitioned to 8-bit integer (INT8) opera-
tions significantly reduces computational overhead.

These characteristics of ternary networks makes them extremely ZK-friendly, thus making them an
ideal solution for combining the realms of ML and ZK and achiving practical ZKML.

To leverage sparsity that naturally arises in ternary networks, we design a general sparsity-aware
framework called SpaGKR. This approach offers significant efficiency improvements over traditional,
sparsity-ignorant ZKML methods, and is flexible in that any sparsity-aware sumcheck protocols (such
as the one used in Lasso [44] and our new SpaSum protocol) could be plugged in as a protocol sub-
routine. We refine SpaGKR for linear layers – the most prevalent structure in neural networks – by
leveraging their sparse and unique structural properties to enhance efficiency. The resulting SpaGKR-
LS protocol achieves asymptotically optimal prover times, which is proportional to the number of non-
zero entries, making it highly efficient. By applying SpaGKR-LS to ternary networks, the SpaGKR-LS
protocol’s prover efficiency could be greatly improved – a paper-pencil analysis suggests a massive 45x
acceleration compared to direct application of sparsity-ignorant protocols.

We list prover time complexities for linear layers based on existing GKR-related protocols as well
as our proposed SpaGKR and its variants in Tab. 1. Note that while we have ternary networks as our
target application in mind, both SpaGKR and SpaGKR-LS are orthogonal to existing GKR-based ZKML
methods and can be integrated seamlessly to improve the efficiency of existing protocols applied to
various models.

Our Contributions. To the best of our knowledge, we are the first to explicitly study (in the context
of ZKML) ternary networks, a special category of ZK-friendly ML models. We specifically consider

2

Scheme Exploiting Sparsity Linear Layer-Specific Prover work

GKR [47] No No O(m2 · n2)
Giraffe [50] No No O(m · n · log(m · n))
Libra [54] No No O(m · n)

SpaGKR w/ Giraffe [50] Yes No O(log(m · n) · N∅)

SpaGKR w/ Lasso [44] (Thm. 5) Yes No O((
log(m·n)
log(N∅)

+ 1) · N∅)

SpaGKR w/ SpaSum (Thm. 4) Yes No O((log(m·n
N∅) + 1) · N∅)

SpaGKR-LS (Thm. 7) Yes Yes O(N∅)

Table 1: Prover time for proving linear layer based on existing GKR protocols and our sparsity-aware
SpaGKR and its variants. m and n denotes the sizes of weight matrices and N∅ represents number of
nonzeros, which should be a (small) fraction of m · n under sparsity setting.

leveraging sparsity in quantized and prunned models for more practical ZKML prover constructions.
In particular, our contributions include:

1. We study ZKML on ternary networks, which lies on the sweet spot of ZK and ML literatures.
Such networks naturally comes with sparsity property and shift most of field multiplications to
field additions/subtractions, thus being much more efficient than its non-quantized counterparts
while maintaining a competitive model performance. We show a huge potential efficiency gain
when the characteristics of such models are leveraged. Our paper-pencil analysis reveal a massive
45x gain of efficiency in the proving protocols under mild assumptions due to such shift;

2. We propose SpaGKR, a sparsity-aware general GKR protocol to handle general layer struc-
ture where weights are potentially sparse. The protocol could be plugged in with various
sparsity-aware sumcheck as subroutines. Such sumcheck protocols include existing ones like
Spark/Surge [44] and our newly-proposed SpaSum (Thm. 3). The resulting protocol would po-
tentially be much faster when a large portion of model parameters are zeros;

3. We propose SpaGKR-LS, an asymptotically optimal sparsity-aware GKR protocol speicifically
for linear layer, the most widely-used model component in neural networks. The prover time
is linear – only dependent on the number of nonzero entries of model parameters. The gain
of efficiency comes from taking advantage of both sparsity and layer structures. Moreover, our
protocol invokes only one sumcheck procedure, thus will be very efficient when being used.

1.1 Related Work

Our work lies in the intersection of Zero-Knowledge Machine Learning and model pruning/quantization.
We highlight related works in these two fields and defer readers to [26, 31, 55] for a more comprehen-
sive literature review.

Zero-Knowledge Machine Learning (ZKML) ZEN [13] is one of the earliest ZKML work that studies
verifiable inference schemes for neural networks. vCNN [29] combines quadratic arithmetic program
(QAP) with polynomial QAP to support proofs for convolutional neural networks (CNNs). [23] proved
an ImageNet-scale model with help of lookup arguments for non-linearities and reuse of sub-circuits
across layers. zkCNN [33] supports faster CNN proof with GKR variant that has linear-time complex-
ity for proving convolutions layers. [4] introduced a modular framework for sumcheck-based proofs
to verify sequential operations in machine learning and image processing. [56] and [27] proposed effi-
cient zero knowledge proof schemes for decision tree predictions. While many of existing work have
considered leveraging quantization techniques to build faster proof system, rarely did they explicitly
discuss the potential of leveraging sparsity brought by pruning and quantization together.

3

Model Pruning and Quantization Model pruning and quantization are effective techniques to reduce
model size and accelerate inference while maintaining the original model capabilities. It has been ex-
tensively studied on CNNs [7, 18, 22, 30, 32, 41] and Transformer-based language models [11, 35, 51, 53].
Existing work on effective pruning will leave the model with fewer parameters, the ratio of which
ranges from 50% to as few as 2% [14, 18, 22], thus reducing the computational need by a large magni-
tude. Pushing the quantization to extreme results in binary [7, 41, 51] and ternary networks [30, 35],
where model weights are elements in {−1, 1} or {−1, 0, 1}. Although many binary networks experi-
ence a reduction in model performances, ternary networks close this gap by incorporating an addi-
tional zero value as an option, thereby introducing sparsity into model parameters. This adaptation
effectively transforms sum of floating-point multiplications into simple additions and subtractions,
resulting in a substantial gain in efficiency during model inference while preserving overall model
performance.

Zero-Knowledge Proofs Considering Sparsity There have been works considering sparsity setting,
though not under ZKML context. Perhaps the closest one with our work is Spartan [43] and its
subsequent work Lasso [3, 44], where authors proposed polynomial commitment scheme for sparse
polynomials and later used it for lookup arguments and zkVMs. Our linear layer setting resembles
their lookup setting but differs in key assumptions (thus uncomparable), which will be elaborated
in Sec. 3. Notably, these protocols will invoke multiple sumchecks during their proving process, while
our protocol involves a single sumcheck.

2 Preliminaries

2.1 Model Pruning and Quntization

The rapid escalation in model sizes has precipitated considerable redundancy in model parameters,
manifesting either as parameters that minimally influence overall performance or as those providing
excessively high precision. Pruning, a technique designed to eliminate such redundancies, selectively
removes parameters that do not significantly affect model accuracy. Typically, the targeted weights for
pruning are those near zero or those that are redundant. As a result, pruned models often exhibit
sparsity, characterized by a high proportion of zero-valued parameters that are excluded from com-
putations, thus optimizing inference efficiency. Concurrently, quantization simplifies high-precision
values (e.g., FP32 or FP16) into a limited set of discrete values or integers (e.g., INT8), substantially re-
ducing computational demands during inference. While these strategies can be applied across various
neural network components, our focus herein is their implementation within the linear layer, the most
frequently utilized building block in contemporary neural networks.

2.1.1 Sparse Quantized Linear Layers

In the linear layer, the output y is computed by a matrix-vector product for linear transformation of
input and a vector-vector addition for bias term. specifically, we have

y = Wx + z

While this is the original definition of linear layer, we simplify it to just a linear transformation
where W is concatenated with bias term z and x is concatenated with a 1. We slightly abuse the
notation to still use W and x to denote the newly concatenated matrix/vector, resulting in

y = Wx

When pruning and quantization are applied, W become sparse parameters of integers with 8 or less
bits and sum of high-precision products is transformed into sparse sum of low-precision products as
shown in Fig. 1. Throughout this paper, we assume W ∈ Fm×n, x ∈ Fn and y ∈ Fm.

4

(a) In the normal model with FP16 or FP32 parameters, computations of y are sums of
high-precision products;

(b) With mild quantization (e.g., from FP16 to INT8), computations of y are transformed
into sums of low-precision products;

(c) With extreme quantization (ternary networks), computations of y are transformed
into sparse additions/subtractions, excluding all multiplications.

Figure 1: Comparison between normal linear layer, mildly-quantized linear layer and ternary networks.

2.1.2 Ternary Networks

In this paper, we examine a specialized category of models known as ternary networks [30, 35], charac-
terized by extreme quantization where all weights are confined to {−1, 0, 1}. While this approach sig-
nificantly enhances computational efficiency—making inference several times faster than full-precision
variants—it typically incurs a notable reduction in performance, as model capacity and performance
are generally positively correlated. However, the recently proposed model BitNet b1.58 [35] (referred
to as BitNet in the rest of this manuscript) challenges this trend with two notable findings:

1. Contrary to expectations, this level of extreme quantization does not necessarily lead to a signifi-
cant decrease in model capacity or accuracy. BitNet, through careful design and training, matches
the performances of its full-precision (FP16) counterparts.

2. BitNet introduces a novel computation paradigm highly conducive to ZKML. It converts the sum
of field multiplications into solely sparse field additions, eliminating all field multiplications.
This transformation is illustrated in Fig. 1 and represents a paradigmatic shift that significantly
enhances the efficiency of ZKML.

Given that BitNet variants not only recapture full model performance but also exhibit exceptional
compatibility with ZKML, we advocate for their adoption as the go-to option of model choice within
the ZKML framework. Our study aims to exploit the advantageous properties of sparsity and structure
inherent in BitNet, anticipating that this exploration will illuminate the path to efficient ZKML and its
practical application.

2.2 GKR and Sumcheck

Most existing proof systems in ZKML relies on GKR protocols [16] and their variants, of which sum-
check is the core computational process. Improvements on these protocols and computational process

5

will directly lead to improvements on prover efficiency. In this section, we present necessary prelimi-
naries for sumcheck and GKR protocol.

2.2.1 Sumcheck

Sumcheck is a fundamental technique that has been widely used in various applications of zero knowl-
edge proofs includking GKR. The problem is for the prover P to prove to the verifier V the summation
of a polynomial f (·) : {0, 1}ℓ → F on binary hypercube:

∑
b1,...,bℓ∈{0,1}

f (b1, . . . , bℓ)

While a direct computation for verifier will result in exponential time in ℓ, [34] proposed a sumcheck
protocol that allows V to delegate most computation to P , and P will do a series of computations and
communications to convince V the correctness of summation.

sumcheck proceeds by iterations. During each iteration, the P will send to V a univariate poly-
nomial that is a summation of a multivariate polynomial with certain subset of variables binding to
certain values. Speifically, we define f̃ as MLE of f and

fi(x) = ∑
bi+1,...,bℓ∈{0,1}

f̃ (r1, . . . , ri−1, x, bi+1, . . . , bℓ)

= ∑
bi+1,...,bℓ∈{0,1}

gi(x, bi+1, . . . , bℓ)

where we define

gi(bi, . . . , bℓ) = f̃ (r1, . . . , ri−1, bi, . . . , bℓ)

as the bookkeeping table value for the i-th iteration. At the beginning of sumcheck process, g1(b1, . . . , bℓ)
is set to f (b1, . . . , bℓ) for (b1, . . . , bℓ) ∈ {0, 1}ℓ, and the computations of gi’s in the subsequent iterations
follows the following lemma.

Lemma 1. For bookkeeping table {gi}ℓi=1 of vanilla sumcheck, gi+1 could be computed as

gi+1(bi+1, . . . , bℓ) = f̃ (r1, . . . , ri, bi+1, . . . , bℓ)
=(1 − ri) · gi(0, bi+1, . . . , bℓ) + ri · gi(1, bi+1, . . . , bℓ)

Thus for each set of (bi+1, . . . , bℓ) ∈ {0, 1}ℓ−i, gi+1(bi+1, . . . , bℓ) can be computed in O(1) time. It follows that
the whole gi+1 bookkeeping table could be computed in O(2ℓ−i). Further, one could evaluate fi(0) and fi(1) in
O(2 · 2ℓ−i) = O(2ℓ−i+1) time by

fi(0) = ∑
bi+1,...,bℓ∈{0,1}

gi(0, bi+1, . . . , bℓ)

fi(1) = ∑
bi+1,...,bℓ∈{0,1}

gi(1, bi+1, . . . , bℓ)

One could then compute fi(ri) as

fi(ri) = (1 − ri) · fi(0) + ri · fi(1)

Computational cost by field operation counts Throughout this report, we analyze prover costs of
various protocols by both time complexity and more refined field operation counts. We denote the
arithmetic complexity of field multiplication by M and additions/subtractions by A.

In the first iteration of vanilla sumcheck, the g1(b1, . . . , bl) is simply set to f (b1, . . . , bl). It takes
(2ℓ − 2) · A to compute f1(0) and f1(1), and 2 · (A + M) to compute f1(r1). In the i-th iteration of

6

vanilla sumcheck where i > 1, it takes 2l−i+1 · 2 · (A + M) to update the bookkeeping table from gi−1
to gi, (2l−i+1 − 2) · A to compute fi(0) and fi(1) and 2 · (A + M) to compute fi(ri). Such recurrsion
goes on until i = l. Summing everything up, the vanilla sumcheck will invoke the running time of(

2ℓ+1 − 2 · (ℓ+ 1)
)
· A + (2ℓ+1 − 4) · (A + M) + 2 · ℓ · (A + M)

=(4 · 2ℓ − 6) · A + (2 · 2ℓ + 2 · ℓ− 4) · M

2.2.2 Product Sumcheck

A commonly-used variant of vanilla sumcheck is to prove a sum over the product of two functions, the
process of which is called product sumcheck:

∑
b1,...,bℓ∈{0,1}

f (b1, . . . , bℓ) · f ′(b1, . . . , bℓ)

Similar as vanilla sumcheck, we define

fi(x) = ∑
bi+1,...,bℓ∈{0,1}

f̃ (r1, . . . , ri−1, x, bi+1, . . . , bℓ) · f̃ ′(r1, . . . , ri−1, x, bi+1, . . . , bℓ)

= ∑
bi+1,...,bℓ∈{0,1}

gi(x, bi+1, . . . , bℓ) · g′i(x, bi+1, . . . , bℓ)

where we define gi and g′i as the bookkeeping table for f and f ′ for the i-th iteration respectively. At
the beginning of sumcheck procedure, g1(b1, . . . , bℓ) is set to f (b1, . . . , bℓ) and g′1(b1, . . . , bℓ) is set to
f ′(b1, . . . , bℓ) for (b1, . . . , bℓ) ∈ {0, 1}ℓ. Then we have the following lemma.

Lemma 2. For bookkeeping table of product sumcheck we have

gi+1(bi+1, . . . , bℓ) =(1 − ri) · gi(0, bi+1, . . . , bℓ) + ri · gi(1, bi+1, . . . , bℓ)

g′i+1(bi+1, . . . , bℓ) =(1 − ri) · g′i(0, bi+1, . . . , bℓ) + ri · g′i(1, bi+1, . . . , bℓ)

For each set of (bi+1, . . . , bℓ) ∈ {0, 1}ℓ−i, gi+1(bi+1, . . . , bℓ) can be computed in O(1) time, and the whole
gi+1 bookkeeping table could be computed in O(2ℓ−i). Further, one could evaluate fi(0), fi(1), f ′i (0), f ′i (1) in
O(2 · 2ℓ−i) = O(2ℓ−i+1) time by

fi(0) = ∑
bi+1,...,bℓ∈{0,1}

gi(0, bi+1, . . . , bℓ) · g′i(0, bi+1, . . . , bℓ)

fi(1) = ∑
bi+1,...,bℓ∈{0,1}

gi(1, bi+1, . . . , bℓ) · g′i(1, bi+1, . . . , bℓ)

The computation of fi(ri) then follows as

fi(ri) = (1 − ri) · fi(0) + ri · fi(1)

Computational cost by field operation counts Maintaining the bookkeeping tables requires twice
the number of field operations as in vanilla sumcheck, which is 2 · (2ℓ+1 − 4) · (A + M); Comput-
ing fi(0) and fi(1) will require not only addition but also multiplication, which in total will be(

2ℓ+1 − 2 · (ℓ+ 1)
)
· (A+M); Computing fi(ri) will be the same as in vanilla sumcheck. Summing all

things up, the product sumcheck will have the running time of(
2ℓ+1 − 2 · (ℓ+ 1)

)
· (A + M)+2 · (2ℓ+1 − 4) · (A + M) + 2 · ℓ · (A + M)

=(6 · 2l − 10) · (A + M)

7

2.2.3 GKR Protocol

With sumcheck as the core computational tool, [16] proposed an interactive proof protocol for circuits
that are formed by layers. The proof is done recursively layer by layer. Following conventions of
literature, let C be the circuit with d layers over finite field F. In this note, we assume the input of
(i + 1)-th layer only comes from output of the i-th layer. The 0-th layer is the output layer while
the d-th layer is the input layer. Let Si be number of gates on the i-th layer and is a power of 2 and
si = log(Si). Function Vi : {0, 1}si → F takes a binary string b ∈ {0, 1}si and returns output of gate b on
layer i. Originally the wiring predicates addi+1, multi+1 : {0, 1}si+2si+1 → {0, 1} take input of 3 binary
string as inputs and outputs 1 iff the wiring exists. In this note, we use O+

i+1 and O×
i+1 to represent

wiring predicates. Then Vi can be written as

Vi(c) = ∑
a,b∈{0,1}si+1

O+
i+1(c, a, b) · (Vi+1(a) + Vi+1(b)) + O×

i+1(c, a, b) · Vi+1(a) · Vi+1(b)

= ∑
a,b∈{0,1}si+1

f (c, a, b)

General Gates While gates are usually assumed to be of fan-in= 2, in this note we focus on general
gates where each gate can take more than 2 inputs. Such addition and multiplication gates have been
mentioned in [21, 33]:

O+
i+1(c, a) =

{
1, if Vi+1(a) is added to Vi(c)
0, otherwise

O×
i+1(c, a, b) =

{
1, if Vi+1(a) · Vi+1(b) is added to Vi(c)
0, otherwise

Multilinear extension of layer i with generalized gates becomes

Ṽi(c) = ∑
a∈{0,1}si+1

Õ+
i+1(c, a) · Ṽi+1(a) + ∑

a,b∈{0,1}si+1

Õ×
i+1(c, a, b) · Ṽi+1(a) · Ṽi+1(b)

By definition of MLE we have

f̃ (r1, . . . , rl) = ∑
b∈{0,1}l

∏
i
[(1 − ri)(1 − bi) + ribi] · f (b)

= ∑
b∈{0,1}l

β̃(r, b) · f (b)

Plugging this into Õ∗ we have

Õ+(r, u) = ∑
c∈{0,1}si ,a∈{0,1}si+1

β̃(r, c) · β̃(u, a) · O+(c, a)

Õ×(r, u, v) = ∑
c∈{0,1}si ,a,b∈{0,1}si+1

β̃(r, a) · β̃(u, b) · β̃(v, c) · O×(c, a, b)

The Protocol The GKR protocol works as follows. P begins by sending the claimed output to V , then
V defines Ṽ0 and computes Ṽ0(r) for a random r ∈ Fs0 . Then V and P will invoke a sumcheck protocol
to prove the validity of Ṽ0(r), the problem of which will be reduced to P proving specific evaluations
of Ṽ1(·). In the i-th iteration, prover P sends the claimed output of Ṽi(·) to V . P and V then invoke a
sumcheck protocol to prove the validity of the evaluation. At the end of sumcheck, V needs an oracle
access to fi(r, u, v), which is essentially Ṽi+1(u) and Ṽi+1(v). Note that (1) these two claims could be
combined to one using standard techniques (e.g., [9, 16]); and (2) Õ∗(·) could be computed locally by
V since they only depend on the wiring pattern of the circuit. This procedure is done recursively until
layer d, where V queries the oracle evaluations of Ṽd and output accept or reject based on the result.

8

3 GKR Protocol for Linear Layers

We consider GKR protocol applied to linear layer of y = Wx, where W ∈ Fm×n, x ∈ Fn and y ∈ Fm.

Sparsity Assumption In the context of machine learning, it is natural to assume that for each column
of the weight function has at least one nonzero entry. This is because if there exists some all-zero
columns, it is simply ignoring some specific dimension of input and thus this dimension could be
omitted during inference.

Relation to Lookups The definition of linear layer resembles an alternative definition of lookups [44].
In the context of lookups, W is essentially an indexing matrix and x is the lookup table. W is forced
to have one nonzero value (more specifically, value of 1) on each row of the matrix. This makes it
significantly different from our setting.

Layer Definition The only computation involved in linear layer is a sum of products between weights
and data. By definition of GKR, assume Vi is the output of a linear layer, then for c ∈ {0, 1}si ,

Vi(c) = ∑
a,b∈{0,1}si+1

O×
i+1(c, a, b) · Vi+1(a) · Vi+1(b)

3.1 Prover time for GKR on linear layer

By directly applying sumcheck protocol without considering any sparsity or structural information
of the circuit, one would run the sumcheck for 2 · si+1 rounds. By using bookkeeping techniques in
in [47], the prover time would be

O(22·si+1) = O(S2
i+1) = O(m2 · n2)

However, due to the special definition of linear layer, the wiring predicates are sparse, namely
there are only O(m · n) potential nonzero wiring predicates. Thus for r ∈ Fsi+1 , we have the following
transformation:

Vi(r) = ∑
a,b∈{0,1}si+1

∑
c∈{0,1}si

β̃(r, c) · O×
i (c, a, b) · Ṽi+1(a) · Ṽi+1(b)

It suffices for the prover to maintain only nonzero entries in the bookkeeping table [50], the size of
which is O(m · n) given sparsity of wiring predicates. Thus one could run the sumcheck for 2 · si+1 =
O(log(m · n)) rounds, where in each round the summation will involve at most O(m · n) non-zero
terms. The total prover time of GKR [50] would be

O(m · n · log(m · n))

In [54], authors propose a linear-prover-time protocol by dividing the sumcheck into two phases.
Assume the sumcheck to be computed is

∑
x,y∈{0,1}l

f1(g, x, y) f2(x) f3(y)

The central idea is to rewrite the sum into two parts:

∑
x,y∈{0,1}l

f1(g, x, y) f2(x) f3(y) = ∑
x∈{0,1}l

f2(x)

 ∑
y∈{0,1}l

f1(g, x, y) f3(y)

 = ∑
x∈{0,1}l

f2(x)hg(x)

9

where hg(x) = ∑y∈{0,1}l f1(g, x, y) f3(y). By leveraging sparsity of circuits with all fan-in= 2 gates the

bookkeeping table for both f2 and hg could be initialized within O(2l). It follows that the sumcheck
over x ∈ {0, 1}l could be done in O(2l). Similarly summation over y ∈ {0, 1}l could also be done in
O(2l). Thus the total running time of the sumcheck is O(2l).

The whole procedure is built upon the foundation that the wiring is sparse in circuits with gates of
fan-in= 2 In our case, though each gate could be of fan-in ≥ 2, the sparsity still applies. Specifically,
we have

∑
a,b∈{0,1}si+1

Õ×
i (r, a, b) · Ṽi+1(a) · Ṽi+1(b)

= ∑
a∈{0,1}si+1

Ṽi+1(a) · ∑
b∈{0,1}si+1

Õ×
i (r, a, b) · Ṽi+1(b)

= ∑
a∈{0,1}si+1

Ṽi+1(a) · hr(a)

where

hr(a) = ∑
b∈{0,1}si+1

Õ×
i+1(r, a, b) · Ṽi+1(b)

Then the corresponding sumcheck procedure could be divided into two phases.

Phase I In the first si+1 rounds, P and V will run a sumcheck of the product of Ṽi+1(·) and hr(·),
where both functions are on a as b is summed out. As long as the bookkeeping table for both Ṽi+1 and
hr could be initialized in O(2si+1) time, the first si+1 rounds could be done within O(2si+1) time.

By expanding hr(a) we have

hr(a) = ∑
b∈{0,1}si+1 ,c∈{0,1}si

β̃(r, c) · Õ×
i+1(c, a, b) · Ṽi+1(b)

= ∑
(b,c)∈Na

β̃(r, c) · Õ×
i+1(c, a, b) · Ṽi+1(b)

where we define the set Na ⊆ {0, 1}si+si+1 such that Õ×
i+1(c, a, b) ̸= 0. Thus, to initialize bookkeeping

table for hr(a), it suffices to compute hr(a) where a ∈ {0, 1}si+1 . For each a the computation could be
done in O(|Na|) time, and given definition of wiring predicates we have

∑
a∈{0,1}si+1

|Na| = O(m · n)

Thus the initialization of bookkeeping table for phase one could be done within O(m · n) time. It
follows that the sumcheck will take O(m · n) time for Phase I.

Phase II After phase one, variables in a have been bounded to random numbers u. In the second
phase, we need to invoke sumcheck over

∑
b∈{0,1}si+1

Õ×
i+1(r, u, b) · Ṽi+1(u) · Ṽi+1(b) = Ṽi+1(u) ∑

b∈{0,1}si+1

Ṽi+1(b) · hr(b)

where

hr(b) =Õ×
i+1(r, u, b) · Ṽi+1(b)

= ∑
a∈{0,1}si+1 ,c∈{0,1}si

β̃(r, c) · β̃(u, a) · Õ×
i+1(c, a, b) · Ṽi+1(b)

= ∑
(a,c)∈Nb

β̃(r, c) · β̃(u, a) · Õ×
i+1(c, a, b) · Ṽi+1(b)

10

where we define Nb ⊆ {0, 1}si+si+1 such that Õ×
i+1(c, a, b) ̸= 0. By a similar argument as in Phase I, for

each b the computation could be done in O(|Nb|) time, and given definition of wiring predicates we
have

∑
b∈{0,1}si+1

|Nb| = O(m · n)

Thus the initialization of bookkeeping table for Phase II could be done within O(m · n) time. It follows
that the sumcheck will take O(m · n) time for Phase II.

Summing the running time for Phase I and Phase II together, the total running time for GKR [54] is

O(m · n)

4 SpaGKR: A General ZKML Framework Exploiting Sparsity

In the realm of machine learning (ML), the pruning and quantization of large models result in sparsity
among the parameters. This characteristic of sparsity is extensively leveraged in the ML literature to en-
hance the efficiency of model inference. However, its application within the context of Zero-Knowledge
Machine Learning (ZKML) has been underexplored. Particularly, no existing ZKML protocol explic-
itly capitalizes on model sparsity to improve proving efficiency to the best of our knowledge. In this
section, we introduce a general ZKML framework based on GKR protocol exploiting sparsity. This
framework optimizes proving efficiency by harnessing the sparsity inherent in the model. We specifi-
cally study its performance on sparse linear layers, the most widely-used structure in machine learning
models. Our framework, referred to as SpaGKR, incorporates sumcheck as a core subroutine. It is de-
signed to be versatile, allowing for any sparsity-aware sumcheck protocol to be integrated into the
SpaGKR framework to expedite the proving process.

While the vanilla GKR protocol considers no sparsity within parameters, the key to make it sparsity-
aware is to design gates that reflects the sparsity of parameters. Concretely, we modify the definition
of wiring predicates as:

O+
i (c, a) =

{
1, if Vi+1(a) ̸= 0, and is added to Vi(c)
0, otherwise

O×
i (c, a, b) =

{
1, if Vi+1(a) · Vi+1(b) ̸= 0 and is added to Vi(c)
0, otherwise

That is, we only allow for wirings to those gates with nonzero values. Note that such sparse-aware gates
are extremely useful when the certain parts of gates are sparse. For example, most large neural network
models’ weights could be heavily pruned — the pruning rate could be more than 90%, i.e., 90%+ of
weights is forced to be 0, and the sparsity will present in weight matrices. The resulting inference time
would merely be a fraction to what it would be in original dense case, and shortly we will see that
within our SpaGKR framework the prover efficiency will be greatly boosted by explicitly exploiting
sparsity and linear structure. Note that SpaGKR is orthogonal to existing acceleration techniques of
ZKML, and one could simply plug-in our setting in cases where sparsity presents and would result in
better efficiency.

Given such sparsity-aware gates in SpaGKR, the next step is to plug in efficient sumcheck to prove
the following:

Ṽi(r) = ∑
a,b∈{0,1}si+1

∑
c∈{0,1}si

β̃(r, c) · Õ×
i (c, a, b) · Ṽi+1(a) · Ṽi+1(b),

where r is the random challenge given by the verifier. While SpaGKR is flexible in that any sumcheck
protocol could be directly plugged in, the question is how we could leverage sparsity in the sumcheck

11

to make the proving procedure more efficient. For example, given inspirations from sumcheck in
Giraffe [50], in each round of sumcheck there are at most O(N∅

i+1) non-zero entries, where N∅
i+1 =

nnz(Vi+1). As there are in total 2si+1 = O(log(m · n)) rounds, the prover time would be

O(N∅
i+1 · log(m · n))

Note that this could be a huge improvement compared to the naive application of Giraffe on linear
layer (which has the prover time of O(m · n · log(m · n))). If the model is sparse, it means N∅

m·n is small,
thus it will be asymptotically more efficient than direct application of original protocol. If the model
sparsity further satisfies N∅ = o(m·n

log(m·n)), using SpaGKR will be asymptotically more efficient than
direct application of linear-prover-time protocols like Libra [54].

In the following, we will plug in two more efficient and sparsity-aware sumcheck protocols into
SpaGKR and analyze their performance.

4.1 SpaGKR with SpaSum

We consider a sumcheck protocol that explicitly takes sparsity into consideration. Assume f is sparse
on {0, 1}ℓ: it evaluates to nonzero only on nz(f) ⊆ {0, 1}ℓ. Then we propose a sparsity-aware sumcheck
protocol called SpaSum, which is characterized by the following theorem:

Theorem 3. The SpaSum algorithm where f ’s sparsity is characterized by nz(f) will run in time O((c + 1) ·
|nz(f)|), where c = ℓ− log(|nz(f)|)

We leave the concrete construction and proof to Appendix A.
Next, we show how we could efficiently utilize SpaSum to get efficient prover in SpaGKR. We

divide the sumcheck procedure into two phases as follows.

Phase I In Phase I, there are si+1 = m · n rounds and P and V will invoke a sumcheck of the product
of Ṽi+1(·) and hr(·). The bookkeeping table for Ṽi+1 could be initialized in O(N∅

i+1) time since there
are O(N∅

i+1) nonzero entries in Ṽi+1. For hr(a) we have

hr(a) = ∑
(b,c)∈Na

β̃(r, c) · Õ×
i+1(c, a, b) · Ṽi+1(b)

To initialize bookkeeping table for hr(a), it suffices to compute hr(a) where a ∈ {0, 1}si+1 . For each a
the computation could be done in O(|Na|) time, and given definition of wiring predicates we have

∑
a∈{0,1}si+1

|Na| = O(N∅
i+1)

Thus the initialization of bookkeeping table for Phase I could be done within O(N∅
i+1) time. Now

P and V invokes a sumcheck of the product of Ṽi+1(·) and hr(·) where Ṽi+1 is sparse. With Thm. 3,
the prover time will be

O((pi+1 + 1) · N∅
i+1)

where pi+1 = log(m · n)− log(N∅
i+1) = log(m·n

N∅
i+1

).

Phase II As for Phase II, a similar argument could be made and the resulting prover time will be of
the same order of Phase I.

Putting everything together, we have the following theorem:

Theorem 4. By exploiting the sparsity of linear layer problem and applying SpaSum Thm. 3, the SpaGKR will
have the prover time of order

O((pi+1 + 1) · N∅
i+1)

12

4.2 SpaGKR with Sumcheck in Lasso [44]

As we have mentioned, SpaGKR is a general framework where any sparsity-aware sumcheck protocols
can be plugged in as a subroutine. While we could use SpaSum for implementation, one could also
employ existing sparsity-aware sumcheck protocols, e.g., sparse-dense sumcheck used in Lasso as
subroutines as it might be faster under certain cases. Specifically, we have the following theorem:

Theorem 5. In Lasso [44] the authors also consider the case of proving sparse vector inner products. They
propose an algorithm that runs at order of

O(c′ · |nz(f)|)

where c′ = ℓ
log(|nz(f)|)

Comparisons. As mentioned in Thm. 5, the prover time for the sparse-dense sumcheck in Lasso

runs in O(c′ · |nz(f)|) where c′ = ℓ
log(|nz(f)|) =

log(2ℓ)
log(|nz(f)|) while SpaSum runs in O(c · |nz(f)|) where

c = ℓ− log(|nz(f)|) = log(2ℓ
|nz(f)|) (Thm. 3). If |nz(f)| is a constant, then both c and c′ are of order

linear in l; if |nz(f)| is of some polynomial order of 2ℓ then log(|nz(f)|) is bounded by a constant times
ℓ, thus c will scale faster than c′; if |nz(f)| is small, say, of order polylog of 2l , then c′ will scale faster
than c. In reality, one could choose whichever that is fastest under certain cases for implementation.

By similarly dividing the sumcheck into two phases and plugging in sparse-dense sumcheck [44],
we have the following corollary:

Corollary 6. By exploiting the sparsity of linear layer problem and applying Thm. 5, the SpaGKR will have the
prover time of order

O((p′i+1 + 1) · N∅
i+1)

where p′i+1 =
log(m·n)
log(N∅

i+1)
.

Note that till now SpaGKR still remains general and assumes no special structure of model. That
is, even if the inference is not done via a linear layer, it can still be applied with minor modifications.
However, such generalization ability comes at the cost of ignoring the special structure of linear layer.

5 SpaGKR-LS: GKR for Linear Layers Exploiting Structure

While we have the general circuit setting, the fact that linear layer circuit is highly structured is ignored.
We redefine Vi to take circuit structure into consideration. Specifically, we define

Vy
i (·) : {0, 1}log(m) → F;

Vx
i+1(·) : {0, 1}log(n) → F;

VW
i+1(·, ·) : {0, 1}log(m·n) → F;

where function V∗
i encodes values of ∗. For c ∈ {0, 1}log(m), we have

Vy
i (c) = ∑

a∈{0,1}log(n)

VW
i+1(c, a) · Vx

i+1(a)

It suffices for P to prove to V the value

Ṽy
i (r) = ∑

a∈{0,1}log(n)

fi(r, a) = ∑
a∈{0,1}log(n)

ṼW
i+1(r, a) · Ṽx

i+1(a)

13

5.1 SpaGKR-LS Protocol

Expanding with MLE we could reduce the original problem to be a product sumcheck as

Ṽy
i (r) = ∑

a∈{0,1}log(n)
∑

c∈{0,1}log(m)

Ṽx
i+1(a) · β̃(r, c) · ṼW

i+1(c, a)

= ∑
a∈{0,1}log(n)

Ṽx
i+1(a) · hr(a)

where

hr(a) = ∑
c∈{0,1}log(m)

β̃(r, c) · ṼW
i+1(c, a)

= ∑
c∈Na

β̃(r, c) · ṼW
i+1(c, a)

where we define Na ⊆ {0, 1}log(m) as the set of c ∈ {0, 1}log(m) such that there exists some (c, a) ∈
{0, 1}log(m)+log(n) such that ṼW

i+1(c, a) ̸= 0. Thus the bookkeeping table for ṼW
i+1(c, a) could be initialized

in ∑a∈{0,1}n |Na| = O(N∅
i+1) time. As for β̃(r, c), we discuss several cases with settings of N∅

i+1.

Case I: N∅
i+1 ≥ m. This is the most common case in the machine learning context where the number

of nonzeros in a weight matrix is at the order of at least linear in number of rows in the weight matrix.
In such case, β̃(r, c) could be directly computed for all c ∈ {0, 1}log(m), which will take O(m) time.
Thus the total initialization time for bookkeeping tables for hr(a) for a ∈ {0, 1}log(n) is O(N∅

i+1).
After initialization of bookkeeping tables, the sumcheck could be accomplished within O(n) time.

Given N∅
i+1 = Ω(n), the total running time for the prover becomes

O(N∅
i+1)

Case II: N∅
i+1 < m . If N∅

i+1 < m, there exist q ∈ F such that q > 1 and N∅
i+1 = m

1
q . This happens

in some certain cases where m is large and a portion of rows in weight matrices are all zeros. While
this is pretty uncommon in ML context, the setting is interesting in that, while naive initialization
of bookkeeping table for β̃(r, c) will take O(N∅

i+1 · log(m)) time, it could be further accelerated with
specialized algorithm. The new procedure resembles Pippenger’s algorithm for multiexponentiation
and has been discussed in previous works [44] as well.

For all log(m) variables, we decompose them into q chunks where each chunk is of size log(N∅
i+1).

For each chunk, evaluating a subpart of β̃(r, c) will require O(2log(N∅
i+1)) = O(N∅

i+1) time to be fully
computed. All these chunks could be initialized within O(q · N∅

i+1) time and then be stored into
memory.

After computation of each subparts, for each c such that there exists (c, a) ∈ {0, 1}log(m)+log(n) and
ṼW

i+1(c, a) ̸= 0, one could simply compute β̃(r, c) by multiplying each chunk in the memory together.
Since there are q chunks and there are at most N∅

i+1 number of β̃(r, c) to be computed, the total running
time would be O(q · N∅

i+1).
Summing these two stages up, the initialization time for the bookkeeping table of β̃(r, c) is O(q ·

N∅
i+1). The sumcheck afterwards could be accomplished within O(N∅

i+1) time. Hence, the total running
time for the prover becomes

O(q · N∅
i+1)

In both cases, the prover time is linear in the size of input, thus is asymptotically optimal. For a clearer
comparison, we list prover times under general GKR protocols as well as SpaGKR and SpaGKR-LS
in Tab. 1.

14

Theorem 7. By exploiting the sparsity and structure of linear layer problem, the SpaGKR-LS with aforemen-
tioned two phases invokes one sumcheck and will have the prover time of order linear in the sparsity, namely
O(N∅

i+1).

Computational cost by operation counts We further analyze prover cost of the algorithm in Thm. 7

under mild assumption of N∅ > m. During the initialization of bookkeeping table, β̃(r, c) could be
computed for all c ∈ {0, 1}log(m) with by iterating over each dimension of c. In the first iteration, the
computation involves 1 · A computation for computing 1 − r1; In the i-th iteration, the computation
involves 1 · A for computing 1 − ri and 2i · M for computing ‘leaves of the current tree’. Thus the total
computation is log(m) · A + (2 · m − 4) · M for computing β̃. To finish initialization of bookkeeping
table for hr, one should iterate through all a ∈ {0, 1}log(n) to compute hr(a). For each a the computations
involves |Na| ·M+(|Na| − 1)A computation. Summing all things up, the initialization of bookkeeping
table runs within

log(m) · A + (2 · m − 4) · M+ ∑
a∈{0,1}log(n)

(|Na| · M + (|Na| − 1)A)

=(N∅ − n + log(m)) · A + (N∅ + 2 · m − 4) · M

After initialization of bookkeeping tables, V and P will invoke a product sumcheck of dimension
log(n). By Sec. 2.2.2, the running time will be

(6 · n − 10) · (A + M)

Summing everything up, the total running time will be

(N∅ + 5 · n + log(m)− 10) · A + (N∅ + 6 · n + 2 · m − 14) · M

Benefits brought by sparsity-awareness We count number of operations from SpaGKR-LS’s sparsity-
ignorant counterpart to showcase how much benefit does the sparsity-awareness bring in terms of
efficiency. If SpaGKR-LS is unaware of sparsity, the total computation for β̃ is still log(m) ·A+ (2 · m −
4) · M. When iterating through all a ∈ {0, 1}log(n), for each a the computation involves m · M + (m −
1) · A. Thus the total time for bookkeeping table initialization runs within

log(m) · A + (2 · m − 4) · M+ ∑
a∈{0,1}log(n)

(m · M + (m − 1) · A)

=(n · (m − 1) + log(m)) · A + (n · m + 2 · m − 4) · M

Together with the product sumcheck of dimension log(n), the total running time will be

(n · m + 5 · n + log(m)− 10) · A + (n · m + 6 · n + 2 · m − 14) · M

To make the comparison more sensible, we plug a toy problem setting into the analysis. Assume
that m = 512, n = 1, 024 and sparsity ratio is 90%. We further assume that computing a field addition
will take 1 time unit while a field multiplication will takes 10 time units. If we use sparsity-ignorant
GKR, even if we exploit the structure property of the problem, the prover time will be around 5.84
million time units. If we use sparsity-aware SpaGKR-LS, the prover time will be around 653 thousand
time units, a 9x acceleration.

5.2 Application to Ternary Networks

Applying SpaGKR-LS to ternary networks, we carefully study how much efficiency gain we will have
leveraging both sparsity and extreme quantization. It suffices for P to prove to V

Ṽy
i (r) = ∑

a∈{0,1}log(n)

Ṽx
i+1(a) · hr(a)

15

where

hr(a) = ∑
c∈Na

β̃(r, c) · ṼW
i+1(c, a)

While the asymptotic prover time is still O(N∅
i+1), the concrete time will be less than that with general

weights because ṼW
i+1(c, a) ∈ {−1, 0, 1} and will transform the sum of products to be additions and

subtractions. Such savings will happen when we initialize the bookkeeping table for hr, while all
other analysis remain the same. Specifically, after computing β̃, when one iterates through all a ∈
{0, 1}log(n) to compute hr(a), for each a the computation involves (|Na| − 1)A in contrast to the original
|Na| · M + (|Na| − 1)A because all multiplications are eliminated. Thus the total savings would be

∑
a∈{0,1}log(n)

|Na| · M = N∅ · M

Hence the resulting running time will be

(N∅ + 5 · n + log(m)− 10) · A + (6 · n + 2 · m − 14) · M

If we again plug the analysis in a toy example, the running time of SpaGKR-LS on ternary network
will be reduced to 129 thousands. Compared with non-ternary network where weights takes general
values in the field, the acceleration will be already 5x. And compared with sparsity-ignorant protocols,
even they are also exploiting structure, we still see a massive acceleration of 45x.

References

[1] Honey I SNARKed the GPT. URL https://hackmd.io/mGwARMgvSeq2nGvQWLL2Ww?ref=blog.

spectral.finance.
[2] R. E. Ali, J. So, and A. S. Avestimehr. On polynomial approximations for privacy-preserving and

verifiable relu networks. arXiv preprint arXiv:2011.05530, 2020.
[3] A. Arun, S. Setty, and J. Thaler. Jolt: SNARKs for Virtual Machines via Lookups. 2023.
[4] D. Balbás, D. Fiore, M. I. G. Vasco, D. Robissout, and C. Soriente. Modular sumcheck proofs with

applications to machine learning and image processing. (2023/1342). Publication info: Published
elsewhere. Minor revision. ACM CCS 2023.

[5] N. Bansal, A. Sharma, and R. Singh. A review on the application of deep learning in legal domain.
In Artificial Intelligence Applications and Innovations: 15th IFIP WG 12.5 International Conference, AIAI
2019, Hersonissos, Crete, Greece, May 24–26, 2019, Proceedings 15, pages 374–381. Springer, 2019.

[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot
learners. (arXiv:2005.14165).

[7] A. Bulat and G. Tzimiropoulos. XNOR-net++: Improved binary neural networks.
(arXiv:1909.13863).

[8] I. Chalkidis and D. Kampas. Deep learning in law: early adaptation and legal word embeddings
trained on large corpora. Artificial Intelligence and Law, 27(2):171–198, 2019.

[9] A. Chiesa, M. A. Forbes, and N. Spooner. A zero knowledge sumcheck and its applications. 2017.
Publication info: Preprint. MINOR revision.

[10] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung,
C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay,
N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard,
G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra,
K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi,

16

https://hackmd.io/mGwARMgvSeq2nGvQWLL2Ww?ref=blog.spectral.finance
https://hackmd.io/mGwARMgvSeq2nGvQWLL2Ww?ref=blog.spectral.finance

D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira,
R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei,
K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel. PaLM: Scaling language modeling
with pathways. (arXiv:2204.02311).

[11] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer. LLM.int8(): 8-bit matrix multiplication for
transformers at scale. (arXiv:2208.07339).

[12] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Corrado,
S. Thrun, and J. Dean. A guide to deep learning in healthcare. Nature medicine, 25(1):24–29, 2019.

[13] B. Feng, L. Qin, Z. Zhang, Y. Ding, and S. Chu. ZEN: An optimizing compiler for verifiable, zero-
knowledge neural network inferences. (2021/087). Publication info: Preprint. MINOR revision.

[14] E. Frantar and D. Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pages 10323–10337. PMLR, 2023.

[15] Z. Ghodsi, T. Gu, and S. Garg. SafetyNets: Verifiable Execution of Deep Neural Networks on an
Untrusted Cloud. June 2017. arXiv:1706.10268 [cs].

[16] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: Interactive proofs for
muggles. 2018.

[17] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.
[18] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with

pruning, trained quantization and huffman coding. (arXiv:1510.00149), .
[19] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and connections for efficient neural

networks. (arXiv:1506.02626), .
[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

(arXiv:1512.03385).
[21] W. Hu, T. Liu, Y. Zhang, Y. Zhang, and Z. Zhang. Parallel zero-knowledge virtual machine.
[22] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer. SqueezeNet:

AlexNet-level accuracy with 50x fewer parameters and <0.5mb model size. (arXiv:1602.07360).
[23] D. Kang, T. Hashimoto, I. Stoica, and Y. Sun. Scaling up trustless DNN inference with zero-

knowledge proofs. (arXiv:2210.08674), .
[24] D. Kang, T. Hashimoto, I. Stoica, and Y. Sun. ZK-IMG: Attested images via zero-knowledge proofs

to fight disinformation. (arXiv:2211.04775), .
[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional

neural networks. In Advances in Neural Information Processing Systems, volume 25. Curran Asso-
ciates, Inc.

[26] M. Labs. The cost of intelligence: Proving machine learning inference with zero-knowledge. .
[27] M. Labs. Scaling intelligence: Verifiable decision forest inference with remainder. .
[28] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.
[29] S. Lee, H. Ko, J. Kim, and H. Oh. vCNN: Verifiable convolutional neural network based on zk-

SNARKs. (2020/584). Publication info: Preprint. MINOR revision.
[30] F. Li, B. Liu, X. Wang, B. Zhang, and J. Yan. Ternary weight networks. (arXiv:1605.04711).
[31] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang. Pruning and quantization for deep neural

network acceleration: A survey. June 2021.
[32] J. Lin, W.-M. Chen, Y. Lin, C. Gan, S. Han, et al. Mcunet: Tiny deep learning on IoT devices.

Advances in Neural Information Processing Systems, 33:11711–11722, 2020.
[33] T. Liu, X. Xie, and Y. Zhang. zkCNN: Zero knowledge proofs for convolutional neural network

predictions and accuracy. (2021/673). Publication info: Published elsewhere. CCS 2021.
[34] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems.

Journal of the ACM, 39(4):859–868, Oct. 1992. ISSN 0004-5411.
[35] S. Ma, H. Wang, L. Ma, L. Wang, W. Wang, S. Huang, L. Dong, R. Wang, J. Xue, and F. Wei. The

era of 1-bit LLMs: All large language models are in 1.58 bits.
[36] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley. Deep learning for healthcare: review,

opportunities and challenges. Briefings in bioinformatics, 19(6):1236–1246, 2018.
[37] Modulus. Chapter 14: The world’s 1st on-chain LLM. URL https://medium.com/@ModulusLabs/

chapter-14-the-worlds-1st-on-chain-llm-7e389189f85e.

17

https://medium.com/@ModulusLabs/chapter-14-the-worlds-1st-on-chain-llm-7e389189f85e
https://medium.com/@ModulusLabs/chapter-14-the-worlds-1st-on-chain-llm-7e389189f85e

[38] OpenAI. GPT-4 technical report. (arXiv:2303.08774).
[39] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding by

generative pre-training. .
[40] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsu-

pervised multitask learners. .
[41] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-net: ImageNet classification using

binary convolutional neural networks. (arXiv:1603.05279).
[42] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis

with latent diffusion models. (arXiv:2112.10752).
[43] S. Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. 2019. Publica-

tion info: A minor revision of an IACR publication in CRYPTO 2020.
[44] S. Setty, J. Thaler, and R. Wahby. Unlocking the lookup singularity with Lasso. 2023.
[45] H. Sun, J. Li, and H. Zhang. zkllm: Zero knowledge proofs for large language models. arXiv

preprint arXiv:2404.16109, 2024.
[46] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks.

(arXiv:1409.3215).
[47] J. Thaler. Time-Optimal Interactive Proofs for Circuit Evaluation. 2013. Publication info: Published

elsewhere. This is the full version of a Crypto 2013 paper by the same title.
[48] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhar-

gava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes,
J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan,
M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril,
J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poul-
ton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E.
Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kam-
badur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom. Llama 2: Open foundation
and fine-tuned chat models. (arXiv:2307.09288).

[49] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. (arXiv:1706.03762).

[50] R. S. Wahby, Y. Ji, A. J. Blumberg, a. shelat, J. Thaler, M. Walfish, and T. Wies. Full accounting for
verifiable outsourcing. 2017. Publication info: Published elsewhere. Major revision. CCS 2017.

[51] H. Wang, S. Ma, L. Dong, S. Huang, H. Wang, L. Ma, F. Yang, R. Wang, Y. Wu, and F. Wei. BitNet:
Scaling 1-bit transformers for large language models. (arXiv:2310.11453).

[52] C. Weng, K. Yang, X. Xie, J. Katz, and X. Wang. Mystique: Efficient conversions for zero-knowledge
proofs with applications to machine learning. (2021/730). Publication info: Published elsewhere.
Minor revision. USENIX Security 2021.

[53] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han. SmoothQuant: Accurate and efficient
post-training quantization for large language models. (arXiv:2211.10438).

[54] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. Libra: Succinct Zero-Knowledge
Proofs with Optimal Prover Computation. 2019. Publication info: A minor revision of an IACR
publication in CRYPTO 2019.

[55] Z. Xing, Z. Zhang, J. Liu, Z. Zhang, M. Li, L. Zhu, and G. Russello. Zero-knowledge Proof Meets
Machine Learning in Verifiability: A Survey. Oct. 2023. arXiv:2310.14848 [cs].

[56] J. Zhang, Z. Fang, Y. Zhang, and D. Song. Zero knowledge proofs for decision tree predictions
and accuracy. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 2039–2053. ACM. ISBN 978-1-4503-7089-9.

A SpaSum: Sparsity-aware Sumcheck

In this section, we focus on sparsity setting and analyze sparsity-aware sumcheck protocols. Similar
setting has been considered in the literature (e.g., Spartan and Lasso [43, 44]) and we complement them
with our algorithm called SpaSum.

18

Assume f is sparse on {0, 1}ℓ: it evaluates to nonzero only on nz(f) ⊆ {0, 1}ℓ. Then there are
|nz(f)| nonzero entries of initialized bookkeeping table g1. Then we have the following lemma:

Lemma 8. At i-th iteration, while the original bookkeeping table gi is of size 2ℓ−i+1, there should be at most
min(2ℓ−i+1, |nz(f)|) nonzeros.

Proof. The bookkeeping procedure will not increase number of nonzero entries in the bookkeeping
table, thus the number of nonzeros should be always at most |nz(f)| as g1. Meanwhile, by condensing
the bookkeeping table by half at each iteration, the upper limit of number of entries should be 2l−i+1.
Thus, for gi there should be at most min(2l−i+1, |nz(f)|) nonzeros.

Since the nonzero entries are limited for gi, if |nz(f)| is small enough then it is possible for the
original sumcheck to execute in less total time than O(2ℓ). To show this, we define an auxiliary set

Ti = {(bi, . . . , bl) ∈ {0, 1}l−i+1|∃(b1, . . . , bi−1) ∈ {0, 1}i−1 s.t. f (b1, . . . , bl) ̸= 0}

Then we have the following lemma:

Lemma 9. For bookkeeping table gi, it suffices to maintain Ti ⊆ {0, 1}ℓ−i+1 entries for gi since only these
entries could possibly be nonzeros while for all other {0, 1}ℓ−i+1\Ti, gi will evaluate to 0.

Proof. The proof could be done by a simple induction. For i = 1 this is true by definition of f and g1.
Assume that it is true for i ≤ k. For i + 1,

gi+1(bi+1, . . . , bℓ) =(1 − ri) · gi(0, bi+1, . . . , bℓ) + ri · gi(1, bi+1, . . . , bℓ)

If (bi+1, . . . , bℓ) /∈ Ti, then

gi(0, bi+1, . . . , bℓ) = gi(1, bi+1, . . . , bℓ) = 0

This leads to gi+1(bi+1, . . . , bℓ) = 0, which completes the proof.

Theorem 10. The SpaSum algorithm where f ’s sparsity is characterized by nz(f) will run in time O((c + 1) ·
|nz(f)|), where c = ℓ− log(|nz(f)|)

Proof. Given Lemma. 9, in each iteration we only compute and maintain Ti entries of gi, where |Ti| ≤
min(2ℓ−i+1, |nz(f)|). Thus in the i-th iteration,

fi(0) = ∑
bi+1,...,bℓ∈Ti+1

gi(0, bi+1, . . . , bℓ)

fi(1) = ∑
bi+1,...,bℓ∈Ti+1

gi(1, bi+1, . . . , bℓ)

fi(ri) =(1 − ri) · fi(0) + ri · fi(1)

The time spent on the i-th iteration is O(min(2ℓ−i+1, |nz(f)|). For the first c iterations where the size
of bookkeeping table is greater than |nz(f)|, the time cost for each iteration is bounded by O(|nz(f)|).
For the last (ℓ− c) iterations, the time cost for each iteration is bounded by |nz(f)|, |nz(f)|

2 , |nz(f)|
4 ,

Summing them up, the time for sumcheck protocol becomes

c · O(|nz(f)|) +O(|nz(f)|) + O(|nz(f)|)
2

+
O(|nz(f)|)

4
+ . . . = O((c + 1) · |nz(f)|)

Theorem 11. In Lasso [44] the authors also consider the case of proving sparse vector inner products. They
propose an algorithm that runs at order of

O(c′ · |nz(f)|)

where c′ = ℓ
log(|nz(f)|)

19

A.1 Generalizations

We consider a generalization where f (1), . . . , f (k) be ℓ-variate multilinear polynomials whose sparsity
is characterized by nz(f (i)). Let f = ∏k

i=1 f (i). We have the following lemma:

Lemma 12. Applying the SpaSum to f = ∏k
i=1 f (i), the total running time would be

O
(

k

∑
i=1

(ci + 1) · |nz(f (i))|
)

where

ci = ℓ− log(|nz(f (i))|)

Proof. For each i ∈ [k], there are |nz(f (i))| nonzeros in the initial i-th bookkeeping table. It would
suffice for the i-th bookkeeping table to keep track of these nonzeros during the sumcheck process.

A useful special case of aforementioned generalization is to prove the inner product of two vectors

∑
b1,...,bℓ∈{0,1}

f (b1, . . . , bℓ) · g(b1, . . . , bℓ)

If both of them are dense on the hypercube, SpaSum will run in O(ℓ) time, matching that of vanilla
sumcheck. If their sparsities are characterized by nz(f) and nz(g) respectively, then the running time
will become

O
(
(c f + 1)|nz(f)|+ (cg + 1)|nz(g)|

)
where c∗ = ℓ− log(|nz(∗)| which will potentially be much faster than the vanilla (dense) sumcheck.

20

	Introduction
	Related Work

	Preliminaries
	Model Pruning and Quntization
	Sparse Quantized Linear Layers
	Ternary Networks

	GKR and Sumcheck
	Sumcheck
	Product Sumcheck
	GKR Protocol

	GKR Protocol for Linear Layers
	Prover time for GKR on linear layer

	SpaGKR: A General ZKML Framework Exploiting Sparsity
	SpaGKR with SpaSum
	SpaGKR with Sumcheck in Lasso settyunlocking2023

	SpaGKR-LS: GKR for Linear Layers Exploiting Structure
	SpaGKR-LS Protocol
	Application to Ternary Networks

	SpaSum: Sparsity-aware Sumcheck
	Generalizations

