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Abstract. Fully homomorphic encryption (FHE) enables secure data processing
without compromising data access, but its computational cost and slower execution
compared to plaintext operations pose challenges. The growing interest in FHE-based
secure computation necessitates the acceleration of homomorphic computations. While
existing research primarily targets the reduction of the multiplicative depth (MD)
of homomorphic circuits, this paper addresses the trade-off between MD reduction
and the increase in multiplicative complexity (MC), a critical gap often overlooked
during circuit optimization and potentially resulting in suboptimal outcomes. Three
contributions are presented: (a) an exact synthesis paradigm for optimal homomorphic
circuit implementations, (b) an efficient heuristic algorithm named MC-aware MD
minimization, and (c) a homomorphic circuit optimization flow combining MC-aware
MD minimization with existing MD reduction techniques. Experimental results
demonstrate a 21.32% average reduction in homomorphic computation time and
showcase significantly improved efficiency in circuit optimization.
Keywords: Homomorphic Encryption · Multiplicative Depth · Multiplicative Com-
plexity · Logic Synthesis

1 Introduction
First recognized in 1978, the concept of fully homomorphic encryption (FHE) refers to a
revolutionary encryption paradigm that enables direct computation on ciphertexts without
the need for decryption [RAD78]. The groundbreaking bootstrapping theorem by Gentry
marks the birth of the first HE scheme capable of supporting arbitrary computations1,
known as leveled FHE. Whereas continuous developments have significantly improved the
practicality of FHE, homomorphic computation is typically orders of magnitude slower
than its counterpart on plaintexts. Despite the computational challenges, FHE offers
the unique advantage of delegating data processing without compromising data access.
This characteristic positions FHE as a promising solution for securing computations, with
numerous potential applications in scenarios where privacy is paramount. Examples include
outsourcing medical data for diagnosis [CNS+16] and privacy-preserving neural network
inference [DSC+19]. The growing interest in FHE-based secure computation techniques
underscores the need for continuous efforts to accelerate homomorphic computations.

An HE scheme is considered functionally complete if it supports both additions and
multiplications. In leveled FHE schemes, the execution time of each homomorphic oper-
ation is intricately tied to the multiplicative depth (MD) of the circuit representing the
target computation, known as the homomorphic circuit. The circuit’s MD is defined as the
maximum number of sequential homomorphic multiplications in it. Therefore, a significant
challenge in accelerating homomorphic computations lies in the quest for lower-MD circuit
implementations for the target computation. In particular, there has been considerable
research interest in reducing the MD of Boolean circuits [CDS15, CAS17, ACS20, LLOY20].
In this problem, the plaintext space is binary and addition and multiplication on plain-
texts correspond to Boolean XOR and AND operations. The extensive attention the
problem has received is attributed to the inherent support for high-level programming
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language instructions in the binary plaintext space. Such support facilitates a seamless
compilation from common programs written in a high-level programming language to their
homomorphically encrypted counterparts, ensuring secure execution [CDS15].

The time cost of homomorphic computation is determined by both the MD and
the number of the involved homomorphic multiplications, known as the multiplicative
complexity (MC) of a circuit. Achieving a circuit design with lower MD may come at the
expense of a significantly increased MC, potentially prolonging homomorphic computation
time. While existing works acknowledge this trade-off, effective optimization algorithms
addressing it are lacking due to the challenge of jointly considering both aspects in
the optimization process. Consequently, this challenge is often addressed passively by
terminating MD reduction techniques when the circuit’s MC exceeds a predefined upper
bound, leading potentially to sub-optimal designs.

Based on empirical observations, we recognize MC×MD2, termed as HE cost, as the cost
metric to indicate the acceleration obtained by optimizing a homomorphic circuit. Alongside
this proposition, we present three key contributions: (a) an exact synthesis paradigm
designed to identify HE cost-optimal circuit implementations for small-scale functions;
(b) an efficient heuristic algorithm, named MC-aware MD minimization, for finding HE
cost-optimal circuit implementations in practical scenarios; and (c) an optimization flow
incorporating MC-aware MD minimization and ESOP balancing [HS22], the leading MD
reduction algorithm, as core components. Experimental results show that the proposed
MC-aware MD minimization enables the exploration of a design space considerably different
from existing MD reduction techniques. Incorporating MC-aware MD minimization into
the optimization flow leads to significant improvements over the state-of-the-art, reducing
the homomorphic computation time by an average of 21.32% and achieving orders of
magnitude reduction in optimization time.

2 Background
This section provides preliminaries on FHE (Section 2.1) and Boolean circuits (Section 2.2),
a summary of existing research on homomorphic computation acceleration via MD re-
duction (Section 2.3.1), and the motivation of devising MC-aware MD minimization
technique (Section 2.3.2).

2.1 (Leveled) Fully Homomorphic Encryption
Modern FHE schemes share a common cryptographic structure. The security is based
on the (ring) learning with error ((R)LWE) assumption, where noise is introduced in a
linear system of equations to hide a secret. Although noise ensures security, it accumulates
during homomorphic operations. Decryption fails if the accumulated noise in the cipher-
text grows beyond a certain threshold. As such schemes only support computations of
limited complexity, they are classified as somewhat homomorphic encryption (SWHE). The
introduction of the bootstrapping operation elevated SWHE to the realm of FHE, denoted
as leveled FHE. Bootstrapping involves the homomorphic decryption of a ciphertext using
an encrypted secret key, effectively mitigating the noise in the ciphertext and enabling
subsequent computations.

Nevertheless, bootstrapping incurs significant computational costs. In practice, striking
a balance between future noise growth and the expense of bootstrapping is crucial. This
becomes particularly pertinent given that noise in ciphertexts increases linearly after
homomorphic additions but quadratically after homomorphic multiplications. The resulting
prohibitive cost of chaining multiplications underscores the necessity of reducing the
multiplicative depth (MD) of the circuit representing the target computation. Therefore, in
leveled FHE schemes such as BFV [FV12] and BGV [BGV12], the size of ciphertexts and
the execution performance of homomorphic operations are heavily influenced by the MD.

The optimization of both circuit MD and the number of bootstrapping operations
poses a significant challenge due to its complexity. Previous research has endeavored
to address bootstrapping reduction under the assumption of a predefined MD upper
bound [LP13, PV15]. Given the complexity of this problem, our study focuses exclusively
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on enhancing homomorphic circuit design, with bootstrapping operations falling beyond
our scope.

2.2 Boolean circuit
A Boolean circuit can be represented as a logic network, structured as a directed acyclic
graph with a node set V and a directed edge set E. The node set V comprises three distinct
subsets: a set I of primary inputs (PIs) lacking fanin, a set O of primary outputs (POs) with
singular fanin and lacking fanout, and a set G of logic gates chosen from a library. In FHE
schemes with the binary plaintext space configured, multiplications and additions translate
to Boolean AND and XOR operations, respectively. Consequently, a homomorphic circuit
is represented by a logic network featuring a gate library of 2-input AND and 2-input XOR
gates, with optional input negation, commonly referred to as an XOR-AND graph (XAG).
Due to this correspondence, we use the terms network and circuit interchangeably.

x1(0) x2(0)

x3(0)

x4(0)

f(2)

∧
x5(1)

⊕
x6(1)

∧
x7(2)

Figure 1: An XAG implementation of function #2888a000. Nodes display the multiplicative
levels in blue, with a critical path highlighted in red.

An XAG implementing a 4-variable function, whose truth table is #2888a0002, is
depicted in Fig. 1, where “∧” and “⊕” denote AND gate and XOR gate, respectively. It
consists of PIs I = {x1, x2, x3, x4}, POs O = {f}, gates G = {x5, x6, x7}, and a set of
directed edges E connecting the nodes.

Cut is a concept commonly employed to identify a sub-network or circuit. A cut is
characterized by its root (a node) and leaves (a collection of nodes). A valid set of leaves
must satisfy two properties: (1) There is at least one leaf on any path from a PI to the root;
(2) All leaves are on at least one such path. A cut is deemed k-feasible if its number of
leaves does not exceed k, referred to as k-cut. For example, in Fig. 1, there are two 3-cuts
rooted at x7 with leaves {x3, x4, x5} and {x4, x6}, respectively. The process of finding all
k-cuts in the target network is known as cut enumeration [MCB07].

An XAG with |G| gates can be alternatively modeled as a sequence of |G| steps, where
each step can be represented as

xi = xj1 ◦i xj2 , where ◦i ∈ {∧,⊕},
for |I| < i ≤ |I|+ |G| and 1 ≤ j1 < j2 < i. If an XAG has a single PO, i.e., |O| = 1, the
function is computed by the last step x|I|+|G|. With the multiplicative level of each PI
defined as 0, the multiplicative level of step xi, denoted as σi, is recursively defined as

σi =
{

max{σj1 , σj2} if ◦i = ⊕
max{σj1 , σj2}+ 1 if ◦i = ∧ (1)

A PO’s multiplicative level matches that of its fanin. The MD of an XAG, denoted
as d, is defined as the maximal multiplicative level of its steps or gates [CAS17], i.e.,
d = max{σi | |I| < i ≤ |I|+ |G|}. A path, from a PI to a PO, that determines the MD of
an XAG is called the critical path, such as the one marked in Fig. 1. The multiplicative
complexity (MC) of an XAG, denoted as c, is defined as the number of AND gates within
it [BPP00], i.e., c = |{i | ◦i = ∧, |I| < i ≤ |I|+ |G|}|.

2In this paper, truth tables are represented in hexadecimal as a bit-string, and the most significant bit
is on the left-hand side.
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2.3 Homomorphic Computation Acceleration
In leveled FHE schemes, the execution of a homomorphic circuit with a larger MD necessi-
tates a larger ciphertext size. This ensures a larger noise budget, allowing computations
to proceed without relying on computation-intensive bootstrapping to reduce noise in
ciphertexts. As a result, the execution time of a homomorphic circuit correlates with its
MD. Consequently, the pursuit of low-MD circuits has been a central focus in existing
efforts to accelerate homomorphic computation.

2.3.1 MD Reduction

In the early stages, researchers leveraged circuit depth optimization algorithms within
the open-source hardware synthesis tool, ABC [BM10], with the hope that reducing the
depth would lead to a decrease in MD [CDS15]. The movement toward customizing
optimization algorithms for MD reduction gained momentum with Carpov et al.’s seminal
work [CAS17]. This work introduced rules for structurally transforming circuits. For
example, applying the associativity of the AND operation, (a ∧ b) ∧ c = a ∧ (b ∧ c), to
gate a on a critical path could potentially reduce MD by 1 unit. The state-of-the-art
homomorphic circuit optimization tool, LOBSTER [LLOY20], employs two key steps for
MD reduction:(1) offline rule learning, where a set of MD reduction rules is extracted
from a training set of circuits, and (2) online term rewriting, where the learned rules are
maximally applied to the target circuit to minimize its MD. While LOBSTER surpasses
previous techniques as it inherently leverages Boolean properties during the learning stage,
it does have the drawback of requiring a prohibitively long time for learning and inefficient
pattern matching for maximally applying the learned rules.

Although not widely recognized in the cryptographic literature, ESOP balancing stands
out as the most performant MD reduction technique. It was initially proposed for T-depth
minimization, a key aspect of fault-tolerant quantum computing. Leveraging exclusive
sum-of-products (ESOPs)’ potential as a low-MD XAG, researchers introduced the concept
of reducing a circuit’s MD by balancing the ESOP representation of each cut [HS22].

2.3.2 Significance of MC-Aware MD Miminization

Achieving a lower MD at the expense of increased MC results in more homomorphic
multiplications, impacting overall computation speed. Thus, to optimize homomorphic
circuits, MD reduction shall be conducted with MC awareness. This underscores the need
for (1) a plausible cost metric reflecting homomorphic circuit execution time, and (2)
tailored optimization algorithms supporting such a metric.

Given the substantial time cost of homomorphic multiplication compared to addition,
the desired cost metric is the product of the circuit’s MC and the complexity of the
multiplication corresponding to its MD. However, due to the inherent complexity of HE
and the varying characteristics across different schemes, the precise quantitative impact of
MD on the speed of homomorphic computation remains an open question. A quantitative
link between the MD (d) of a homomorphic circuit and the ciphertext size (l) under the
BFV scheme is established by modeling their relationship with a power regression model,
expressed as l = 1.2215·d2.0179[CS16]. Additionally, the asymptotic complexity of homomor-
phic multiplication is recognized as comparable to multiplying arbitrary precision numbers,
whose asymptotic runtime bit complexity is known as O(n · log(n) · log(log(n)))[ACS20].
Stemming from these empirical observations and for practical simplicity, we introduce
MC×MD2, termed as HE cost, as a robust metric signifying the execution efficiency of a
homomorphic circuit. Our experimental findings in Section 6 validate this metric’s efficacy,
demonstrating notable acceleration in homomorphic computation time.

3 HE Cost-Optimal Exact Synthesis for Boolean Functions
Within this section, our initial focus centers on tackling the following problem: “Given
a Boolean function characterized by limited inputs (no more than 5), how to exactly
synthesize its HE cost-optimal circuit implementation?” This dictates the requirement
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for an exact synthesis formulation that is simultaneously aware of both the MD and MC
of the circuit to be synthesized. Our approach leverages the concepts of AND fence and
abstract XAG.

3.1 Overview of the Methodology
When synthesizing XAGs, a joint application of AND fence and abstract XAG makes it
possible to precisely control the usage of AND gates in the objective network [YM23]. We
adopt these concepts from their original contexts and subsequently adapt them to enable
HE cost-optimal synthesis.

3.1.1 AND Fence

In our definition, an XAG’s AND fence, denoted as F , is an ordered set of the number of
AND gates in each multiplicative level:

F = {c1, c2, · · · , cd},

where d is the MD of the XAG and each ci within F is an integer, denoting the number of
ANDs within the XAG whose multiplicative level is i. For example, the AND fence of the
XAG in Fig. 1 is {1, 1}. Based on an XAG’s AND fence, its MC c can be calculated as:

c =
d∑

i=1
ci. (2)

We attribute the MD and MC to an AND fence F , defining them as the MD and MC
of the XAG associated with F . In formal terms, this can be expressed as MD(F) = d
and MC(F) = c. The information within an XAG’s AND fence is adequate for deducing
both its MC and MD, and therefore, its HE cost, without requiring additional information
about node connections.

3.1.2 Abstract XAG

Abstract XAG is a general representation of XAG, in the sense that it removes information
regarding the connections among XOR gates in an XAG. This is realized by using XOR
cloud, an XOR gate whose fanin size is flexible, allowing for any non-zero number of
inputs [Soe20], instead of 2-input XOR, as a network component.

In the original definition, an abstract XAG features that:

(a) Each fanin of an AND gate is an XOR cloud;

(b) Each fanin of an XOR cloud is either a PI or an AND gate in a lower logical level;

(c) Each PO is an XOR cloud.

In an abstract XAG, each step consists of a 2-input AND gate and its two fanin XOR
clouds. Thus, the number of steps in an abstract XAG numerically equals the number of
AND gates, which is the MC c of the network. Symbolically, in an abstract XAG that
implements an n-variable Boolean function f , each step xi can be represented as

xi = (
⊕

xj∈Li,1

xj) ∧ (
⊕

xj∈Li,2

xj), n < i ≤ n + c, 1 ≤ j < i, (3)

where Li,1 and Li,2 are respectively the fanins of the two fanin XOR clouds of the AND
gate in the i-th step. The PO XOR cloud realizes the function f as a linear function over
a set of PIs and steps: denoting L as the fanins of the PO XOR cloud,

f =
⊕
xi∈L

xi, 1 ≤ i ≤ n + c. (4)
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Building upon the original definition, we enhance the awareness of multiplicative levels
in each step by introducing additional constraints on the feasible fanins of the XOR clouds
within a step. This is achieved through overwriting the aforementioned feature (b) with
the following two feature descriptions:

i Each fanin of an XOR cloud is a PI or an AND gate in a lower multiplicative level;

ii Among the fanins of two XOR clouds connected to an AND gate, at least one fanin
should be an AND gate belonging to the preceding multiplicative level.

Through the redefinition, a direct mapping is established between an AND fence F
and the topology of an abstract XAG, thereby extending the definition of an AND fence
to an abstract XAG. This correspondence enables any XAG linked to F to identify its
functionally equivalent abstract XAG by configuring the fan-ins of the XOR clouds within
the topology, as illustrated in the following example.

x1 x2 x3 x4

∧

⊕ ⊕
x5

L5,1 =? L5,2 =?

∧

⊕ ⊕
x6

L6,1 =? L6,2 =?

⊕

L =?

f

(a)

x1 x2 x3 x4

∧

⊕ ⊕
x5

L5,1 = {x1} L5,2 = {x2}

∧

⊕ ⊕
x6

L6,1 = {x3, x5} L6,2 = {x4}

⊕

L = {x6}

f

(b)

Figure 2: Deterministically deriving the abstract XAG counterpart for the XAG in Fig. 1
in two steps: (a) Determining the topology of the abstract XAG based on the XAG’s AND
fence; (b) Configuring fanins of each XOR clouds within the abstract XAG according to
the node connection in the XAG.

Fig. 2 provides an example illustrating the process of deriving the abstract XAG for
an XAG, with the fanins of each XOR cloud explicitly specified beneath it. Given the
AND fence of the XAG in Fig. 1, denoted as F = {1, 1}, the multiplicative levels of steps
x5 and x6 are determined to be σ5 = 1 and σ6 = 2, respectively. This indicates that the
topology of the abstract XAG resembles the depiction in Fig. 2a. By configuring the fanins
of each XOR cloud correspondingly, an abstract XAG functionally equivalent to the XAG
is derived.

Because the abstract XAG counterpart of any XAG with an identical AND fence
shares the same topology, an equivalence between the following two tasks emerges: Given
a Boolean function f and an AND fence F , (1) determining whether there exists an
XAG associated with F while implementing f , and (2) ascertaining whether there exists
a configuration of fanins of the XOR clouds in an abstract XAG topology adhering to
F , such that the resulting abstract XAG implements f . The latter can be intuitively
formulated as a Boolean satisfiability (SAT) problem for efficient solving.

While the conversion of an XAG to an abstract XAG, as depicted in Fig. 2, is deter-
ministic, the reverse process is not. One straightforward approach involves decomposing
XOR clouds into 2-input XOR gates, albeit at the cost of introducing more than minimum
XOR gates in the resulting XAG. However, since the HE cost of an XAG is determined
by its MC and MD — both preserved during such decomposition — if an abstract XAG
implementation is HE cost-optimal, its XAG counterpart obtained through XOR cloud
decomposition is also HE cost-optimal.
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3.1.3 Sketch of Approach

Building upon our redefined concepts of AND fence and abstract XAG, we derive the
following insights:

(1) An XAG’s HE cost can be derived from its AND fence.

(2) Utilizing SAT solving, we can efficiently determine whether there exists an abstract
XAG implementation for a target function while satisfying a specified AND fence.

(3) An abstract XAG can always be converted into an XAG by decomposing XOR clouds,
and this process preserves HE cost.

These observations collectively shape our methodology for synthesizing the HE cost-
optimal XAG implementation for functions. By enumerating AND fences in an HE
cost-ascending manner (leveraging (1)), with each enumeration treated as a SAT problem
(drawing on (2)), the HE cost-optimal abstract XAG implementation can be identified,
which, in turn, translates to the HE cost-optimal XAG implementation, indicated by (3).

3.2 SAT Encoding
We introduce the requisite variables and clauses, and subsequently encode the previously
posited decision problem into a SAT problem.

3.2.1 Variables

Our encoding is based on two kinds of variables: (1) selection variables, which encode the
fanin configurations of XOR clouds within an abstract XAG, and (2) function variables,
which encode the function computed at each step.

Depending on whether an XOR cloud is in a step or is the PO, selection variables can
be further classified, with each denoted as:

i sijk, where n < i ≤ n + c, 1 ≤ j < i, and k ∈ {1, 2}, whose true value indicates that
“step xj connects to the k-th fanin XOR cloud in step xi”, i.e., xj ∈ Li,k.

ii sj , for 1 ≤ j ≤ n + c, whose true value signifies that “xj (a PI when j ≤ n, otherwise a
step) is a fanin to the PO XOR cloud”.

We denote each function variable as fjl, for 1 ≤ j ≤ n + c and 0 ≤ l ≤ 2n. With
(bn, · · · , b1)2 being the binary representation of l, variable fjl’s evaluating to true indicates
that “PI xj is assigned to bj” for j ≤ n, or “step xj produces a true output given the PI
assignment {b1,· · · ,bn}” for j > n.

3.2.2 Clauses

Our encoding includes five types of clauses.
For each step xi, i.e., n < i ≤ n + c, clause 1 ensures the correctness of the Boolean

operations involved in this step:

fil ↔
∧

k∈{1,2}

i−1⊕
j=1

(sijk ∧ fjl).

For each PI xi, where 1 ≤ i ≤ n, fil = bi.
Clause 2 ascertains that the resulting network implements target function f :

f(b1, · · · , bn) =
n+c⊕
j=1

(sj ∧ fjl).
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In clause 2, the two sides are connected by “=” instead of “↔”. This choice is deliberate,
as the left-hand side signifies the fixed output of function f under the input assignment
{b1,· · · ,bn}, which is a constant rather than a variable.

Clause 3 guarantees that each XOR cloud, whether within a step or serving as the PO,
must have a fanin size of at least one:∨

j

sijk, n < i ≤ n + c, 1 ≤ j < i, k ∈ {1, 2}

and ∨
j

sj , 1 ≤ j ≤ n + c.

Clause 4 implements feature (b)-i, introduced in Section 3.1.2, as:∧
j,k

sijk, n < i ≤ n + c, min{j′ | σj′ = σi} ≤ j < i, k ∈ {1, 2}.

Clause 5 incorporates feature (b)-ii as:∨
j,k

sijk, n+1 < i ≤ n+c, min{j′ | σj′ = (σi−1)} ≤ j ≤ max{j′ | σj′ = (σi−1)}, k ∈ {1, 2}.

The case i = n + 1 is excluded from Clause 5 since it is trivially satisfied. Clauses 4 and 5
ensure the abstract XAG topology aligns with AND fence F .

The clauses, if not already in conjunctive normal form (CNF), undergo additional
conversion into CNF formulas using the Tseitin encoding [Tse83] before being resorted
to SAT solving. Using a SAT solver, we can determine whether there exists an abstract
XAG with AND fence F that implements Boolean function f by solving the encoded SAT
instance.

3.3 Identification of AND Fence Candidates
In this sub-section, we detail our strategy for identifying which AND fence candidates
shall be investigated. This pursuit aligns with our goal sketched in Section 3.1.3 — to
ensure the optimality of the synthesized circuit, all AND fences holding the potential shall
be considered as candidates. We ascertain the inclusion of the AND fence candidate linked
to the HE cost-optimal circuit by accurately determining the ranges, within which its MC
and MD may fall. This is realized by first identifying a certain implementation for the
target function, whose MC and MD serve as the baseline for looking for its optimal circuit.

When targeting up to 5-variable functions, with a total amount of 232 distinct functions,
individually profiling each one of them becomes impractical. Therefore, we employ affine
function classification [Edw75], a Boolean classification technique, to effectively narrow
down the problem. Given the invariance of affine-equivalent operations with respect to MC,
the MC-minimum XAG implementation of a Boolean function f can be derived from the
MC-minimum XAG that represents its affine equivalence class [TSAM19]. Moreover, all
5-variable Boolean functions are categorized into 48 affine equivalence classes [TP15], with
the MC-minimum XAG implementation for each representative function already identified
in prior research [Soe20]. We further note that the MD of an XAG obtained in this way
also remains consistent with its representative XAG, formalized as

Theorem 1. Affine-equivalent operations are MD-preserving if the multiplicative levels of
input variables are identical.

Proof. The proof of this theorem is provided in Appendix A.3.

Therefore, for any 5-variable Boolean function f , there always exists an MC-minimum
implementation, the MC and MD of which is known, denoted as cr and dr. Thus, the HE
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cost-optimal implementation of f — unless identical to the MC-minimum one — will have
MC and MD values c and d, which satisfy the conditions

c ≥ cr, d < dr, and c · d2 < cr · d2
r.

Given a target MC c and MD d, we denote the complete set of AND fence candidates
that satisfy Eq. 2 as F(c, d). Finding all AND fences F ∈ F(c, d) is essentially a positive
integer partition problem, a well-studied topic in number theory and combinatorics with
detailed solutions in the literature [Knu13]. By considering all AND fences meeting the
specified conditions in the synthesis procedure, we ensure minimum HE costs in the
synthesized implementations.

3.4 Exact Synthesis Paradigm for Boolean Functions

Algorithm 1: Synthesize Optimal XAGs for Boolean functions
Input: Boolean function f ; MC cr and MD dr of the MC-minimum XAG for f .
Output: Optimal XAG implementation for f , N .

1 d← dr

2 known-minimum HE cost κ← cr · d2
r

3 while d > 1 do
4 d← d− 1
5 cmax ←

⌊
κ
d2

⌋
6 keep_searching ← false
7 for c← cr to cmax do
8 foreach F ∈ F(c, d) do
9 SAT instance ζ ← SAT_encoding(f,F)

10 abstract XAG N ′ ← SAT_solving(ζ)
11 if N ′ ̸= NULL then
12 κ← c · d2

13 keep_searching ← true
14 break
15 if keep_searching then break
16 if not keep_searching then
17 XAG N ← decompose_XOR_clouds(N ′)
18 return N

Combining the aforementioned concepts, Algorithm 1 details our paradigm for syn-
thesizing HE cost-optimal XAG implementations for functions. Commencing with the
known MC-minimum implementation, we systematically explore the potential existence
of an abstract XAG with an MD d one unit smaller than the known solution, denoted
as d = dr − 1. Throughout this exploration, we prioritize AND fences with the same
MD d in MC-ascending order to consider lower-HE cost candidates first. The exploration
extends to AND fences with a further one-unit smaller MD (i.e., decrease d by 1) only if
an abstract XAG is successfully synthesized using an AND fence with currently targeted
MD d. Termination of the exploration occurs if none of the AND fence candidates with the
MD of d leads to a valid implementation. In such cases, it indicates either (a) if d < dr − 1,
the previously synthesized abstract XAG, with an MD of d + 1, is deemed HE cost-optimal;
or (b) the known MC-minimum implementation stands HE cost-optimal.

Intuitively, the HE cost should be the sole determinant guiding the investigation of
AND fences, irrespective of MD, to prioritize the exploration of lower-HE cost candidates,
as sketched in Section 3.1.3. However, Algo. 1 is structured to conduct the exploration
based on MD. Specifically, within the set of AND fence candidates whose MD aligns with
the currently targeted MD d, Algo. 1 guarantees consideration of the lowest-HE cost one
as the initial focus. This strategy is devised based on the observation that aggressively
initiating the exploration from the HE cost-minimum AND fence candidate tends to
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introduce a considerable number of unsatisfiable SAT instances into the paradigm, leading
to an inefficient synthesis procedure. The following observation provides evidence that the
strategy does not compromise the optimality of the synthesized XAG.

Theorem 2. Given a Boolean function f , if there does not exist an abstract XAG
implementation for f using an AND fence F with MD(F) = d, then there is no abstract
XAG implementation for f using any AND fence F ′ with MD(F ′) = d− 1.

Proof. The proof of this theorem is provided in Appendix B.

4 Exact Synthesis for Sub-circuits
While the exact synthesis approach proposed in Section 3 ensures the optimality of
synthesized circuits, scalability concerns limit its application to small-scale functions with
a restricted number of inputs. To deliver high-quality solutions for practical functions, we
shift our focus from finding the optimal circuit for a function to determining the optimal
implementation for each cut, i.e., sub-circuit, within a baseline circuit implementing the
function, ultimately improving the quality of the entire circuit.

4.1 Impacts of Input Levels
The transition in the target problem makes it necessary to explicitly distinguish the
concepts of local multiplicative level and global multiplicative level. When there is no cause
for confusion, we omit the term “multiplicative” hereafter. As the name implies, in each
sub-circuit highlighted by a cut, the local level of each node, denoted as σ, is computed
under the assumption that the leaves operate as PIs, whose levels are regarded as zero. In
an XAG implementing such a cut of a circuit, the MD of the XAG precisely corresponds
to the local level of the root of the cut. On the other hand, the global level of each
node, notated as δ, is calculated concerning the entire circuit. In the problem tackled in
the previous section, i.e., “How to exactly synthesize the optimal circuit for a Boolean
function,” the two concepts are identical. Regarding the problem to address in this section,
“How to exactly synthesize the optimal circuit for a cut,” the fact that the levels of a cut’s
leaves are likely non-zero makes the two concepts distinct.

In a n-cut-highlighted sub-circuit, the global levels of the leaves are referred to as the
input level of the sub-circuit, denoted as

L = {δ1, δ2, · · · , δn},

with δi representing the global level of the i-th leaf. L is balanced, if δ1 = δ2 = · · · = δn;
otherwise, it is imbalanced. Then, the target problem can be viewed as a generalization of
the previous one, where a relaxation that the input level can be imbalanced is introduced.

To ultimately minimize the HE cost of the entire circuit, our goal is to decrease its MD
by optimizing the implementation of each cut rooted on the critical path. Nevertheless,
the presence of non-zero input levels dictates that a lower-MD XAG implementation does
not necessarily correlate with a lower global level of the root of the cut implemented by
the XAG (i.e., the PO of the XAG), as demonstrated in the following example.

Example 1. The two XAGs depicted in Fig. 3, denoted as N1 and N2, both realize a
4-cut C, characterized by the local function f represented in truth table #2888a000. The
AND fences associated with N1 and N2 are designated as F1 = {1, 1} and F2 = {2, 1},
respectively. Notably, it is established that N1 exhibits an MC of 2 and an MD of 2,
whereas N2 is characterized by an MC of 3 and an MD of 2. Undoubtedly, N1 stands as
the more HE cost-efficient implementation of function f , given its lower MC. However,
a nuanced consideration arises when examining the input level of this cut, denoted as
L = {1, 0, 0, 0}. From Fig. 3, it is evident that the global depths of the roots (x7 in Fig. 3a
and x8 in Fig. 3b) are 3 and 2, respectively. This observation points out N2’s potential to
serve as a more efficient implementation than N1 for cut C.
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Figure 3: Two XAG implementations for function #2888a000, under the input level
L = {1, 0, 0, 0}, with each node’s global level remarked in blue: (a) XAG N1; (b) XAG N2.

To examine the impact of input levels on the divergence between an XAG’s MD and
the global level of its PO, denoted as δroot, we establish a symbolic analysis. To enhance
the intuitiveness of our analysis, we leverage abstract XAG as the logic representation; The
conversion from an XAG N to its abstract counterpart N ′ is deterministic, as depicted in
Fig. 2, ensuring generality in our analysis.

Let C represent the target cut with n leaves and an input level denoted as L =
{δ1, · · · , δn}. An c-step abstract XAG, whose topology is characterized by an AND fence
F = {c1, · · · , cd}, is employed to realize the sub-circuit defined by C. The relationship
between F and c adheres to Eq. 2. Given that the PO of an abstract XAG is inherently
an XOR cloud, δroot numerically corresponds to the highest global level attained among
the cd steps whose local level σ equals d. This can be symbolically expressed as

δroot = max{δi | σi = d, n < i ≤ n + c}
= max{δi | (n + c− d + 1) ≤ i ≤ n + c}. (5)

Denoting the difference between the levels of leaf xi and the PO XOR cloud as ∆i, Eq. 5
can be further expressed as:

δroot = max{δi + ∆i | 1 ≤ i ≤ n}. (6)

It is important to note that 0 ≤ ∆i ≤ d: The lower bound is reached when a leaf xi

exclusively serves as a fanin of the PO XOR cloud, not contributing to any other XOR
clouds within the abstract XAG N ′; The upper bound is achieved if a leaf xi contributes
to a step whose local level is 1. While the definition of abstract XAGs guarantees the
upper bound, the lower bound is not guaranteed. This observation underscores the strong
correlation between δroot and the MD of an (abstract) XAG, denoted as MD(N), when
the input level L is balanced, i.e., when δ1 = · · · = δn = a, where a is a positive integer:

δroot = a + d

= a + MD(N) = a + MD(F). (7)

Examining Eq.7 reveals that when L is balanced, δroot is collectively influenced by L
and the AND fence F . Conversely, in cases of imbalanced input levels, a meticulous
examination of each path becomes essential to identify the critical path determining δroot
according to Eq. 6. This necessitates a detailed SAT encoding, extending to the one
proposed in Section 3.2.

4.2 Integrating Scheduling into SAT Encoding
To address the challenges posed by imbalanced input levels and ensure the synthesis of
optimal implementations under these intricacies, we introduce an extended SAT encoding.
In this extended encoding, each SAT instance corresponds not only to a specific AND
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fence but also to a particular value assignment for ∆i for 1 ≤ i ≤ n. Following this setup,
every SAT instance is linked to a distinct δroot, allowing us to leverage the core concept of
Algo. 1 — The iterative solution of a set of SAT instances ensures that the first satisfiable
instance corresponds to the optimal implementation of the target cut.

Within the context of an abstract XAG implementation, for a leaf xi, the statement
that “∆i = a, where 0 ≤ a ≤ d, ” is equivalent to asserting “the lowest local level at which
xi contributes to, is d− a,” where d is the MD of the target AND fence. In simpler terms,
determining the value of ∆i essentially involves scheduling when leaf xi becomes available
to serve as a fanin for a step at that particular local level. Therefore, a specific value
assignment to ∆i for 1 ≤ i ≤ n can be viewed as a scheduling, denoted as

S = {∆1, ∆2, · · · , ∆n}.

A scheduling solution can be incorporated into the SAT encoding as an additional
clause type concerning the selection variables. By definition, leaf xj cannot serve as a
fanin for any step with a local level lower than d−∆j . Therefore, let xi′ represent the last
step with a local level lower than d −∆i, i.e., σi′ = (d −∆i − 1) and σi′+1 = (d −∆i).
The scheduling on leaf xj is ensured by:∧

i,k

sijk, 1 ≤ i ≤ i′, k ∈ {1, 2}.

4.3 Strategic Selection of Scheduling Solutions
With the proposed encoding accommodating a scheduling atop a given AND fence, the
question arises: which scheduling solutions warrant investigation?

The naïve approach to finding the δroot-minimum implementation for an n-cut C under
a given AND fence F involves enumerating all (d + 1)n scheduling solutions. However, this
exhaustive exploration is inefficient. To address the inefficiency, we propose a strategic
selection of promising scheduling solutions, consisting of two key components: (1) Identify-
ing the initial scheduling solution that represents the theoretical minimum δroot under the
AND fence F . (2) Identifying the subsequent scheduling solution for exploration, when no
feasible implementation exisits under the current scheduling.

Without loss of generality, throughout this section, we assume the input level L of cut
C satisfies δ1 ≤ · · · ≤ δn for clarity.

4.3.1 Identification of the Initial Scheduling Solution

Intuitively, the selection of the initial scheduling solution generally aligns with the concept
of allowing each leaf to contribute to a step as late as possible. However, we observe that
this decision-making process must consider a rule: for each local level, there should be a
sufficient number of variables — whether leaves or steps from lower levels — for the steps
at the current level to select from as fanins.

Example 2. Consider a scenario where we explore the optimal implementation of a 4-cut
C, with local function f and input level L = {0, 0, 0, 1}, using an AND fence F1 = {2}.
The topology described by F1 outlines the abstract XAG to be synthesized, featuring two
steps, x5 and x6, both with local levels σ5 = σ6 = 1. Assume the initial scheduling solution
is set as S1 = {1, 1, 0, 0} — meaning steps x5 and x6 are restricted to selecting fanins only
from leaves x1 and x2. This leads to two possible consequences: (1) Both steps x5 and
x6 implement the same function x1 ∧ x2. (2) One of the two steps trivially implements a
linear function over {x1, x2}. In other words, the satisfiability of the current SAT instance
is equivalent to one with the same setup but with an AND fence F2 = {1}. Notably, F2
exhibits a lower MC compared to F1, the exploration of which has already been addressed.
Hence, the current SAT instance is determined to be unsatisfiable without the need for
SAT solving. Judiciously selecting the initial scheduling solution as S2 = {1, 1, 1, 0} can
bypass this trivial case.
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Table 1: Number of non-linear functions a step within an Abstract XAG can implement.
#variables 2 3 4 5
#non-linear functions 1 9 55 285

We identify a reasonable initial scheduling solution by addressing the following question:
“Given a certain number of variables, how many non-linear functions can a step within an
abstract XAG implement?” Recall the general representation of the function implemented
by an arbitrary step xi given by Eq. 3. Our calculation is based on considering all potential
configurations of Li,1 and Li,2, excluding the case where Li,1 = Li,2, leading to linear
functions. We then exclude two cases that result in repetitive functions: (1) Due to the
commutativity of the AND operation, functions realized by exchanging Li,1 and Li,2 are
identical; (2) For any function realized with Li,1 and Li,2, where either Li,1 ⊆ Li,2 or
Li,2 ⊆ Li,1, there always exists an implementation where Li,1 ̸⊆ Li,2 or Li,2 ̸⊆ Li,1 [ÇTP19].
Applying the rules outlined above, we calculate the number of non-linear Boolean functions
a step can realize. While only cases with up to 5 variables are summarized in Table 1, the
proposed calculations are applicable beyond this limit.

Upon observation, we find that among all AND fence candidates, whose identification is
introduced in Section 3.3, the maximum number of steps at the lowest local level does not
exceed 15. Interestingly, a step can already realize 55 non-linear functions with 4 variables.
This observation implies that, when concentrating on cuts with at most 5 leaves, no AND
fence requires initially scheduling all leaves to be available at the lowest local level.

After scheduling the availability of several leaves, ensuring that each step has access to
adequate variables, the remaining unscheduled leaves are then scheduled to be available as
early as possible, with the condition that they would not form the unique critical path.
Assuming leaves x1 to xj′ are already scheduled, the scheduling for an unscheduled leaf xi,
where j′ < i ≤ n, should adhere to the following inequality:

δi + ∆i ≤ max{δj + ∆j | 1 ≤ j ≤ j′}.

The determination of each ∆i ensures that the resulting SAT instance inherently covers
the exploration space, including cases where leaf xi is scheduled to a higher level, thereby
avoiding repetitive SAT solving.

Algorithm 2: Select initial scheduling for AND fence
Input: AND fence F = {c1, · · · , cd}; Input level L = {δ1, · · · , δn}.
Output: Scheduling solution S = {∆1, · · · , ∆n}; Global level of the root, δroot.

1 set of indices of unscheduled leaves s← {1, · · · , n}
2 number of available variables #vars← 0
3 for i← 1 to d do
4 number of leaves to schedule #leaves←look_up(

∑i
i′=1 ci′)-#vars

5 if #leaves > 0 then
6 set of indices of leaves to schedule s′ ←pop the first #leaves elements in s
7 foreach j ∈ s′ do
8 ∆j ← i
9 #vars← #vars + 1

10 #vars← #vars + ci

11 j′ ← n− |s|
12 δroot ← max{δj + ∆j | 1 ≤ j ≤ j′}
13 foreach i ∈ s do
14 ∆i ← δroot − δi

15 return {S, δroot}

The two steps for our initial scheduling solution selection are outlined in Algo. 2. The
function look_up in Line 4 determines, based on the number of steps, the required number
of variables obtained from Table 1. These variables include both leaves scheduled to be
available at the current level (Line 8) and steps belonging to lower levels (Line 10).
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4.3.2 Identification of the Subsequent Scheduling Solution

When a SAT instance turns out to be unsatisfiable, it implies there does not exist an
abstract XAG, whose topology adheres to AND fence F , that implements the target cut C,
under the current scheduling solution S1. Therefore, to find such a F -based implementation,
if it does exist, we have to relax the expectation on the resulting level of the root of C, by
adjusting S1 to make the leaves accessible earlier.

If all elements in S1 are d, indicating all leaves are already scheduled to the lowest
level, it means there is no F-based implementation for cut C. Otherwise, each ∆i in the
subsequent scheduling solution S2 = {∆1, · · · , ∆n} is determined to be max{0, δroot+1−δi},
where δroot is the previously expected level of the root of cut C, calculated with S1 as the
scheduling solution. Given the algorithmic similarity between determining the subsequent
scheduling solution and the second step of identifying the initial scheduling solution (Lines
12-14 in Algo. 2), the corresponding pseudocode is omitted.

4.4 Exact Synthesis Paradigm for Sub-circuits

The aforementioned strategies collectively form the foundation of our exact synthesis
paradigm for synthesizing optimal implementations for sub-circuits, as outlined in Algo. 3.

Algorithm 3: Synthesize Optimal XAGs for Cuts
Input: Cut C; Current XAG implementation of cut C, Nold;

Library of AND fence candidates lib.
Output: Optimal XAG implementation for C, N .

1 N ←exact_synthsis_for_function(C.f)
2 If is_balanced(C.L) then return N
3 δroot ← calculate_global_level(N ,C.L)
4 foreach F ∈ lib do
5 {F .S,F .δroot} ← select_initial_scheduling(F , C.L)
6 target global level at root δtarget ← min{F .δroot | F ∈ lib}
7 while δtarget < δroot do
8 foreach F ∈ lib do
9 if F .δroot = δtarget then

10 SAT instance ζ ← extended_SAT_encoding(C.f ,F)
11 abstract XAG N ′ ← SAT_solving(ζ)
12 if N ′ ̸= NULL then
13 XAG N ← decompose_XOR_clouds(N ′)
14 return N
15 else
16 {F .S,F .δroot} ← update_scheduling(F)
17 δtarget ← δtarget + 1
18 return N

The exact synthesis paradigm for function (Algorithm 1) is initially invoked to generate
a baseline implementation. This implementation is guaranteed to be optimal under the
condition of balanced input levels (Line 2). The baseline implementation establishes a
known lowest global level at the root of the cut, which serves as an upper bound for the
target global level (Line 7). For each AND fence candidate, its initial scheduling solution,
along with the corresponding level at the root, is obtained by applying Algorithm 2. The
optimality of the solution is ensured by prioritizing the investigation of AND fence with
the potential to achieve the lowest global level at the root of the cut. If it turns out to
be infeasible, its scheduling solution and the minimum achievable level at the root are
updated (Line 16).



Mingfei Yu and Giovanni De Micheli 15

4.5 Classifying Exact Synthesis Queries
We address the question: “Under what conditions do two cuts share identical optimal
implementations?” Solving this question enables the identification of exact synthesis
queries with identical optimal solutions, facilitating the reuse of synthesized solutions and
avoiding repetitive SAT solving.

Aligning with our strategy for optimally synthesizing circuits for functions as detailed
in Section 3, Boolean classification technique is utilized. However, recognizing that not
all affine-equivalent operations preserve MD under imbalanced input levels, we have
opted for NPN classification [GT62], as NPN-equivalent operations reliably maintain MD
(see Appendix A.1 for an in-depth introduction to NPN classification). Through NPN
classification, two cuts share the same optimal implementation if: (1) their local functions
belong to the same NPN equivalence class, and (2) their input levels align after reordering
elements following the NPN canonicalization process.

Moreover, we found that the second requirement can be generalized by generating a
signature for the input level of a cut, facilitating identification based on these signatures.
Deriving a signature from the input level of a cut involves two distinct steps.

Lemma 1 (Alignment). Given two n-cuts C1 and C2 with identical local functions and
differing input levels L1 = {δ1, · · · , δn} and L2 = {δ′

1, · · · , δ′
n}, respectively. If, for every

i ∈ [1, n], δi−δ′
i = a holds, where a is a constant integer, then the optimal implementations

of cuts C1 and C2 are identical.

Proof. The proof of this lemma is provided in Appendix C.1.

Lemma 1 lays the groundwork for the first step of the derivation, termed alignment.
This step involves subtracting the minimum element δ1 from each element in L.

Lemma 2 (Dominance). Let C1 be an n-cut with input level L1 = {δ1, · · · , δn} and
an optimal implementation with AND fence MD d. If there exists i ∈ (1, n] such that
δi − δi−1 ≥ d, then C1’s optimal implementation is also the optimal implementation
of C2, where C2 is an n-cut with the same local function as C1, and its input level is
L2 = {0, · · · , 0, (δi+1 − δi), · · · , (δn − δi)}.

Proof. The proof of this lemma is provided in Appendix C.2.

Lemma 2 suggests that in the presence of a substantial “gap” among the global levels
of the leaves of the target cut, attention should be directed only to those with the potential
to form the critical path. The remaining leaves can be treated as if their global levels are
zero. This insight gives birth to the dominance step.

Algorithm 4: Derive Signature of Input Level
Input: Input level of the target n-cut, L = {δ1, · · · , δn}; Threshold θ.
Output: Signature of L, sig.

1 sig ← L
2 foreach δ ∈ sig do
3 δ ← δ − δ1 ▷ Alignment
4 for i← n to 2 do
5 if δi − δi−1 ≥ θ then
6 foreach δ ∈ sig do
7 δ ← max{0, δ − δi} ▷ Dominance
8 break
9 return sig

The two steps jointly facilitate deriving a signature of the input level of a cut, as outlined
in Algo. 4. Especially, when targeting 5-cuts, since the MD of AND fence candidates does
not exceed 3, the parameter θ in Algo. 4 is set to 3. The signature of the input level of a
cut serves as an additional label of an exact synthesis query, as evidenced by Theorem 3.
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Theorem 3. Given two n-cuts C1 and C2 with identical local functions and distinct input
levels L1 = and L2. If the signatures derived from L1 = and L2 following Algo. 4 are the
same, cuts C1 and C2 share the same HE-cost optimal implementation.

Proof. Follows from Lemmata 1 and 2.

Effective classification of exact synthesis queries is realized by labelling each query with
(1) the NPN representative function of the cut’s local function, and (2) the signature of
the cut’s input level, preventing meaningless invocation of the paradigm (Algo. 3).

5 MC-aware MD Optimization
Building upon Algo. 3, we introduce an innovative MC-aware MD minimization algo-
rithm.Also, we engineer a homomorphic circuit optimization flow. Central to this flow
is the MC-aware MD minimization algorithm, complemented by the integration of an
advanced MD reduction algorithm, ESOP balancing.

5.1 Overview of the Algorithm

Algorithm 5: MC-aware MD minimization
Input: XAG implementation of the target function, N .
Output: Optimized XAG Nopt.

1 Nopt ← N
2 cache← optimal circuits of small-scale functions
3 set of cuts C← cut_enumeration(Nopt)
4 foreach node n on Nopt’s critical path in topological order do
5 implnew ← ∅
6 foreach cut C ∈ cuts rooted on n C[n] do
7 f ← local function of cut C
8 {representative function fr, signature sig} ← NPN_classification (f ,C.L)
9 sig ← derive_signature(sig)

10 implnew[C] ← cache[{fr, sig}]
11 if implnew[C] = NULL then
12 implnew[C] ← exact_synthesis_for_cuts(C)
13 cache[{fr, sig}] ← implnew[C]
14 cut C′ ← arg minC∈C[n](C.δn)
15 rewrite C′ with implnew[C′]
16 return Nopt

Algo. 5 outlines the MC-aware MD minimization algorithm. It takes a baseline XAG
implementation of the target function as input and outputs one with minimized HE cost.

A cache is utilized to store determined optimal implementations, preventing redundant
calls to exact synthesis. As introduced in Section 4.5, NPN-equivalent representative
functions and signatures derived from input levels are employed as indices to effectively
categorize queries for optimal implementations of cuts.

The algorithm traverses all nodes forming the critical path in topological order (Lines
4). For a given node n, cuts rooted at it are enumerated, and their optimal implementations
are obtained and collected in implnew. For a cut C with a local function f and input level
L, we determine the NPN-equivalent representative function fr and derive the signature
of L, denoted as sig, which are used to access the cache (Lines 7-8). If the optimal
implementation is not yet in the cache, exact synthesis (Algo. 3) is employed, and the
cache is subsequently updated (Lines 11-12). Among the optimal implementations of all
cuts rooted at node n, the one resulting in the minimum δn, i.e., the lowest global level at
node n, is selected to replace the original implementation of the corresponding cut in the
baseline circuit (Lines 13-14).
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5.2 A Homomorphic Circuit Optimization Flow
Intuitively, the proposed MC-aware MD minimization algorithm and ESOP balancing, the
most advanced MD optimization algorithm in the literature, explore orthogonal design
spaces: In MC-aware MD minimization, the carefully devised AND fence candidate selection
scheme excludes those local moves that reduce MD at the cost of a significant increase
in MC. In contrast, ESOP balancing aggressively minimizes MD by balancing the ESOP
representation of any encountered cut, without any consideration of MC. Their distinct
action logics inspire us to build a flow that combines the strengths of both.

Algorithm 6: Homomorphic Circuit Optimization Flow
Input: XAG implementation of the target function, N .
Output: Optimized XAG N .
Parameter : num_restarts, cost_metric.

1 Nbest ← N , Nopt ← N
2 for i← 1 to num_restarts do
3 N ← Nopt
4 if i ̸= 1 then
5 N ←relaxation(N)
6 while true do
7 optimization algorithm η ← random_engine()
8 Nopt ← apply_opt_algo(N, η)
9 if cost_metric(Nopt) ≥ cost_metric(N) then

10 η ← switch_opt_algo(η)
11 Nopt ← apply_opt_algo(N, η)
12 if cost_metric(Nopt) ≥ cost_metric(N) then
13 break
14 else
15 N ← Nopt
16 if cost_metric(N) < cost_metric(Nbest) then
17 Nbest ← N
18 return Nbest

The homomorphic circuit optimization flow is outlined in Algo. 6. The parameter
num_restarts controls the number of rounds involved in each execution of the flow. In each
round, the decision of which optimization algorithm, out of the two candidates, to apply
is made by the random_engine (Line 7). Once one algorithm is recognized to be unable
to further optimize the circuit, switch_opt_algo intentionally selects the other algorithm
for optimization; If neither of the two algorithms can achieve further optimization, the
round is terminated (Lines 9-15). The best design encountered so far is recorded and is
regarded as the starting point for the following rounds of exploration. To break out of
local optimal, every restart begins with a relaxation (Line 5). This procedure significantly
increases the MC and MD of the circuit by representing all XOR nodes in the XAG as a
combination of three AND nodes, following a⊕ b = (a ∧ b) ∨ (a ∧ b) and a ∨ b = a ∧ b. We
also introduce the parameter cost_metric to enable reconfigurability of the cost metric
in our optimization flow. This setting facilitates straightforward adjustment of the cost
metric, providing a foundation for future research within the community to explore metrics
that better align with specific FHE schemes and security parameters.

6 Experimental Evaluations
In this section, we showcase our experimental results, organized into two main parts: (1)
Evaluation of MC-aware MD minimization as a standalone optimization algorithm. (2)
Assessment of the homomorphic circuit optimization flow, which integrates MC-aware MD
minimization and ESOP balancing, with MD and HE cost employed as cost metrics.
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Table 2: Comparing MC-aware MD minimization against state-of-the-art.
Benchmark Initial LOBSTER ESOP Balancing MC-aware MD Minimization

MC MD MC MD Exec.[s] MC MD #iter. Opt.[s] Exec.[s] MC MD #iter. Opt.[s] Exec.[s]
cardio 109 10 116 8 10.00 120 8 3 0.11 10.37 108 8 3 9.81 9.35
dsort 708 9 793 8 51.84 948 7 2 0.13 50.49 708 8 2 3.22 45.18
msort 810 45 1450 36 1125.30 1569 36 8 0.75 1229.30 774 45 2 0.74 1228.88
isort 810 45 1482 36 1069.88 1569 36 8 0.75 1227.46 774 45 2 0.49 1212.08
bsort 810 45 1482 36 1112.19 1569 36 8 0.75 1226.71 774 45 2 0.49 1213.17
osort 702 25 1404 20 333.97 1404 20 6 0.47 405.50 638 25 2 0.62 273.56
hd01 87 6 87 6 5.52 102 5 2 0.00 3.42 87 6 1 0.27 5.53
hd02 76 6 76 6 5.24 76 6 1 0.00 5.15 76 6 1 0.27 5.13
hd03 27 5 27 5 1.38 30 4 2 0.02 1.45 29 4 2 0.89 1.43
hd04 75 10 78 8 9.20 74 7 3 0.05 5.09 63 8 4 9.53 6.03
hd05 121 7 121 7 8.02 184 6 2 0.01 10.00 121 7 1 0.09 7.95
hd06 121 7 121 7 8.00 184 6 2 0.02 10.02 121 7 1 0.06 8.00
hd07 17 5 13 3 0.99 19 3 2 0.01 0.51 15 3 3 0.78 0.48
hd08 18 6 18 5 1.00 26 4 2 0.01 1.24 16 5 2 0.17 0.94
hd09 134 14 177 10 20.73 173 10 4 0.06 17.60 134 10 4 8.78 14.78
hd10 35 6 36 5 1.71 34 5 1 0.01 1.69 32 5 4 1.51 1.66
hd11 391 18 391 15 93.54 411 13 2 0.08 79.46 385 14 3 9.74 83.46
hd12 116 16 116 15 26.53 126 12 3 0.09 20.25 107 13 3 0.76 24.22
bar 3141 12 3015 11 370.77 2266 8 2 0.15 163.12 1841 9 4 28.85 149.08
cavlc 655 16 668 10 63.88 713 8 7 0.37 52.67 607 11 7 42.89 76.46
ctrl 107 8 120 5 4.15 107 4 5 0.03 3.97 89 4 5 9.85 3.49
dec 304 3 304 3 4.08 304 3 1 0.01 4.13 292 3 2 0.32 3.97
i2c 1157 15 1215 8 93.34 1254 7 9 0.24 71.53 1152 10 6 19.95 109.30
int2float 213 15 234 8 17.43 240 7 5 0.10 14.14 205 10 5 4.34 21.21
router 170 19 190 10 30.18 232 9 5 0.13 19.34 186 13 4 1.95 37.28
Total 4468.87 4634.61 4542.62
Norm. 1.00 1.04 1.02

6.1 Experimental Setups
All experiments were conducted on an Apple M1 Max chip with 32GB memory. The
following details outline the setups.

Implementation: We implemented the proposed MC-aware MD minimization al-
gorithm using the C++ logic network library mockturtle. The exact synthesis solver
is based on the C++ reasoning library bill, with glucose [AS17] chosen as the un-
derneath SAT solver. Both mockturtle and bill are part of the EPFL logic synthesis
libraries [SRHM18]. The back-end executor is built upon the homomorphic encryption
library HElib [HS20], with the BGV scheme selected and the plaintext space configured
to binary. We set the security level to 128-bit(i.e., λ = 128), and other parameters, within
the context of leveled FHE, are configured accordingly by HElib to ensure the entire
computation can be correctly performed without invoking bootstrapping. To manage the
growth of ciphertext size during the computation, we conservatively apply reliearization
after each homomorphic AND operation.

Baseline: LOBSTER [LLOY20], the state-of-the-art homomorphic circuit optimization
tool is chosen as the baseline. Additionally, we introduce an assessment of ESOP balanc-
ing [HS22], recognized as the most advanced MD reduction algorithm. This evaluation
serves as the first exploration of ESOP balancing’s performance in the context of homo-
morphic circuit optimization. As both ESOP balancing and the proposed MC-aware MD
minimization are cut-based, we uniformly set the target cut size as 5.

Benchmark: The 25 involved benchmarks are aligned with [LLOY20]. They are col-
lected from four benchmark suites: Cingulata benchmarks3, homomorphic sorting bench-
marks [ÇDSS15], Hacker’s Delight benchmarks [War13], and EPFL benchmarks [AGM15].
The functions of the benchmarks vary from medical diagnosis, sorting, and bit-twiddling
hacks to random/control logic and are believed to represent computations of interest in
potential FHE applications. See [LLOY20] for a detailed description of the benchmarks.

6.2 Evaluating MC-aware MD minimization
In Table 2, we report MC, MD, the optimization time in seconds (Opt.)4, and the circuit
execution time in seconds (Exec.). Both ESOP balancing and MC-aware MD minimization
are iteratively applied until convergence, and the number of runs is recorded (#iter.). The

3Available at: https://github.com/CEA-LIST/Cingulata
4Runtime shorter than 0.005s is written as 0.00s
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shortest execution time for each benchmark is highlighted in blue. In cases where multiple
algorithms produce designs with identical MC and MD values, all of them are highlighted,
as the difference in circuit execution times falls within a permissible margin of error. If no
improvement over the initial circuit is achieved by any algorithms, no marking is made.

Optimization Time: As MC-aware MD minimization relies on on-the-fly exact
synthesis to provide the optimal implementations for the encountered cuts, the optimization
time is typically longer than ESOP balancing. However, the optimization time proves to
be acceptable. We attribute this achievement to our well-designed SAT encoding, exact
synthesis paradigm, and other innovative strategies to avoid unnecessary SAT solving,
such as the exact synthesis query classification technique. Due to the unavailability of the
source code for LOBSTER, we are unable to measure its optimization time. However, based
on the information provided in [LLOY20], where a time budget of 125 hours is allocated
for the rewriting rule learning phase for each benchmark, and the term rewriting phase
takes around eight hours for relatively large benchmarks such as msort, isort, and bsort, it
is reasonable to conclude that MC-aware MD minimization is orders of magnitude faster
than LOBSTER.

Execution time: Out of the 21 benchmarks where improved designs were generated,
LOBSTER, ESOP balancing, and MC-aware MD minimization are credited with 3, 8, and 10
designs, respectively. Interestingly, compared to the two involved MD reduction algorithms,
MC-aware MD minimization reaches saturation at significantly different design points.
Circuits optimized by MC-aware MD minimization consistently exhibit the lowest MC
among the three, aligning with the algorithm’s philosophy of considering both MC and
MD in the optimization process. Additionally, while both ESOP balancing and LOBSTER
focus exclusively on MD reduction, we observed that ESOP balancing consistently achieves
a lower, or at least equal, MD compared to LOBSTER.

Challenges in Solo Application of MC-aware MD Minimization: Analysis
of cases where the best designs are achieved applying either LOBSTER or ESOP balancing
reveals instances where MC-aware MD minimization fails to produce low-HE cost designs.
This discrepancy may be attributed to the observation that MC-aware MD minimization
typically converges with fewer steps compared to ESOP balancing — when exploring the
design space, the strict adherence to slightly increased MC may overlook intermediate
steps with significantly increased MC, resulting in failure to reach designs with reduced
MD. Therefore, a joint application of MC-aware MD minimization and ESOP balancing is
proposed, as introduced in Section 5.2, leveraging the latter’s ability to reduce MD without
increasing MC to complement MC-aware MD minimization, enabling comprehensive
exploration of the design space.

6.3 Evaluating Homomorphic Circuit Optimization Flow
In Table 3, the two different settings of the cost metric are distinguished as HE cost-oriented
and MD-oriented. The number of restarts is set to 5 times. The fastest execution achieved
on each benchmark, with the results shown in Table 2 considered, is highlighted in blue.
Similarly, in cases where the optimization flow produces superior designs with identical MC
and MD values under both settings, both circuit execution times are highlighted, despite
slight differences. The total execution time is normalized to that achieved by LOBSTER.

Effectiveness of the optimization flow: The optimization flow, with either HE cost
or MD configured as the cost metric, offers the best implementations for 17 out of the 21
benchmarks where designs better than the initial ones are produced. More remarkably, 11
designs have never been discovered before by solely applying one of the three optimization
algorithms, evidencing the flow’s ability to comprehensively explore the design space. For
instance, on benchmarks msort, isort, and bsort, where LOBSTER used to dominate the two
algorithms, with HE cost configured as the cost metric, the flow achieved implementations
with homomorphic execution respectively 21.68%, 14.43%, and 20.84% faster than those
optimized by LOBSTER. Notably, in the MD-oriented setting, the flow discovered designs
with the new lowest MD values for benchmarks bar, ctrl, and int2float. This also provides
convincing evidence that by hybridly applying MC-aware MD minimization and ESOP
balancing, the flow can explore the design space that existing algorithms failed to reach.
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Table 3: Exploring cost metrics within the proposed flow.
Benchmark HE cost-oriented MD-oriented

MC MD Opt.[s] Exec.[s] MC MD Opt.[s] Exec.[s]
cardio 108 8 70.36 9.35 117 8 45.61 10.16
dsort 708 7 26.77 39.42 948 7 38.28 50.50
msort 788 42 53.86 881.38 1391 36 182.86 1180.46
isort 816 42 45.56 915.46 1324 36 88.24 1178.53
bsort 788 42 45.45 880.41 1354 36 107.31 1214.01
osort 750 24 20.54 320.54 1261 20 121.63 394.29
hd01 102 5 0.14 3.42 102 5 0.22 3.38
hd02 76 6 3.53 5.13 76 6 1.89 5.15
hd03 30 4 3.88 1.27 30 4 1.46 1.49
hd04 67 7 17.38 4.81 74 7 14.05 5.11
hd05 121 7 7.95 8.08 184 6 5.66 10.03
hd06 121 7 5.18 7.99 184 6 7.06 10.00
hd07 15 3 1.02 0.48 15 3 0.65 0.49
hd08 21 4 0.67 0.92 21 4 0.62 1.12
hd09 155 10 14.84 16.38 150 10 11.46 16.00
hd10 32 5 1.44 1.67 32 5 0.55 1.71
hd11 423 13 32.12 83.88 410 13 22.90 80.88
hd12 115 12 3.73 19.35 115 12 3.96 19.30
bar 1942 8 127.06 145.10 2710 7 185.75 160.52
cavlc 691 9 122.10 56.19 717 8 85.62 53.05
ctrl 97 4 10.76 3.71 115 3 12.94 2.02
dec 292 3 1.81 3.96 292 3 2.28 3.94
i2c 1252 7 57.85 70.74 1236 8 22.80 91.04
int2float 217 8 32.24 17.24 309 6 10.49 17.10
router 229 9 19.38 19.06 257 9 15.03 22.07
Total 3515.94 4532.35
Norm. 0.79 1.01

Impact of cost metric selection: When utilizing HE cost as the cost metric, the
optimization flow yields optimal implementations for 15 out of the 21 improved benchmarks,
resulting in a 21.32% reduction in homomorphic execution time compared to LOBSTER.
Conversely, when MD is selected as the cost metric, optimal implementations are achieved
for only 7 benchmarks, with a total execution time slightly inferior to LOBSTER. It is
noteworthy that the MD-oriented flow consistently produces circuits with the lowest MD
for nearly all benchmarks, except i2c. Despite its superiority in MD, the resulting designs
exhibit inferior execution times, indicating that HE cost is a more suitable cost metric
than MD for homomorphic circuit optimization.

7 Conclusions
Existing research in homomorphic computation acceleration via circuit optimization has
predominantly focused on reducing the MD of circuits. While MD influences the execution
time of individual homomorphic operations, the overall execution time is contingent not
only on MD but also on MC. Recognizing this intricate relationship necessitates a more
nuanced approach in incorporating the trade-off between MD reduction and MC increase
into the homomorphic circuit optimization problem, to achieve enhanced homomorphic
computation acceleration. This study is the first to undertake this challenge.

Drawing from empirical observations, we propose HE cost, formulated as MC×MD2, as
a refined cost metric to replace MD in homomorphic circuit optimization. To support this
metric, which necessitates simultaneous optimization of circuit MC and MD, we introduce
(a) an exact algorithm for synthesizing HE cost-optimal circuits, (b) an efficient heuristic
algorithm named MC-aware MD minimization, and (c) an optimization flow that integrates
our proposal with existing MD reduction techniques from the literature. Experimental
evaluations demonstrate that homomorphic circuits optimized by our method achieve an
average speedup of 21.32% in execution time, accompanied by substantial reductions in
circuit optimization time.

The golden cost metric for homomorphic circuit optimization varies depending on the
specific FHE scheme and security parameters, a topic that requires broader exploration.
This study offers practical algorithmic tools to tackle this challenge, as both the proposed
MC-aware MD minimization algorithm and the circuit optimization flow can be readily
adjusted for different cost metrics. This groundwork paves the way for further advancements
in homomorphic circuit optimization.
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A Boolean Classification Techniques
Boolean function classification is the process of categorizing Boolean functions into different
classes based on various characteristics and properties of the functions. The two Boolean
classification techniques employed in this paper are NPN classification and affine function
classification.

A.1 NPN Classification
Based on an n-variable Boolean function f(x1, · · · , xi, · · · , xj , · · · , xn), the three NPN-
equivalent operations are:

1. Input negation: f
xi→xi−−−−→ f ′.

2. Input permutation: f
xi↔xj−−−−→ f ′.

3. Output negation: f
f−→ f ′.

Theorem 4. NPN-equivalent operations are MD-preserving.

Proof. Without loss of generality, we consider the impact of input permutation on MD, as
it is evident that input and output negations do not affect the MD of an XAG. Recall that
the MD d of an XAG with n PIs satisfies

d = max{δa + ∆a | 1 ≤ a ≤ n}.

If we permute any two input variables, say xi and xj , the values of δi and δj exchanged,
as are the values of ∆i and ∆j . However, this exchange does not affect the value of d.
Therefore, NPN-equivalent operations are MD-preserving.

A.2 Affine Function Classification
Affine function classification is a more effective Boolean function classification technique,
in the sense that the set of affine-equivalent operations is the superset of the set of NPN-
equivalent operations. Besides the three NPN-equivalent operations, affine-equivalent
operations further include:

1. Translational operation: f
xi→(xi⊕xj)−−−−−−−−→ f ′.

2. Disjoint translational operation: f
⊕xi−−→ f ′.

Due to the inclusion of the translational operation, affine-equivalent operations are
conditionally MD-preserving, as demonstrated in the following sub-section.

A.3 Proof of Theorem 1
Proof. Noting that input negation, input permutation, and output negation have been
demonstrated to be MD-preserving operations, without loss of generality, we focus our
analysis exclusively on the impact of translational operations and disjoint translational
operations on MD.

Recall that the MD d of an XAG with n PIs satisfies

d = max{δa + ∆a | 1 ≤ a ≤ n}.

Considering a translational operation applied to two input variables, xi and xj , the
term δi + ∆i is transformed into max{δi, δj}+ ∆i. This the value of d may change only if:

δj > δi, and δj + ∆i > max{δa + ∆a | 1 ≤ a ≤ n}.
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However, when the multiplicative levels of input variables are identical (δi = δj), the afore-
mentioned condition is excluded, demonstrating the MD-preserving nature of translational
operations.

For disjoint translational operation on any input variable, xi, a direct path from xi to
the PO of the XAG is introduced. This operation does not affect the critical paths in the
XAG, and consequently, it does not alter the value of d.

Thus, we conclude that affine-equivalent operations are MD-preserving if the multi-
plicative levels of input variables are identical.

B Proof of Theorem 2
Proof. Assume, for the sake of contradiction, that there does not exist an abstract XAG
implementation for Boolean function f adhering to any AND fence F such that satisfy
MD(F) = d, but there does exist an abstract XAG implementation N for f , whose AND
fence FN is denoted {c1, · · · , cd−1}.

Upon N , we introduce an additional step xc+1, whose local multiplicative level σc+1 is d.
This addition further involves duplicating the original PO XOR cloud of N and configuring
them as the two XOR clouds within step xc+1. The fanin of the new PO XOR cloud is
exclusively set to xc+1. Terming the new abstract XAG as N ′, the function implemented
by N ′ is f ∧ f = f , and its AND fence FN ′ is {c1, · · · , cd−1, 1}, i.e., MD(N ′) = d.

This construction creates a conflict with our initial assumption, leading to the conclusion
that there does exist such an abstract XAG implementation N . Therefore, the correctness
of the theorem is established.

C Proof of Signature Derivation Rules
C.1 Proof of Lemma 1
Proof. Assume distinct optimal implementations of cuts C1 and C2, denoted as N1 and N2
respectively. Let δC1,N1 and δC1,N2 represent the global multiplicative levels at the root
of C1, when N1 and N2 are respectively applied to cut C1. Since N1 is recognized as the
optimal implementation for C1, we have δC1,N1 < δC1,N2 .

Now, considering the global multiplicative levels at the root of C2 with N1 and N2
respectively applied to C2, denoted as δC2,N1 and δC2,N2 , we observe:

δC2,N1 = δC1,N1 − a < δC1,N2 − a = δC2,N2 ,

This inequality implies that N1 serves as the superior implementation for C2, leading to a
contradiction. Therefore, we conclude the correctness of the lemma.

C.2 Proof of Lemma 2
Proof. Assume distinct optimal implementations of cuts C1 and C2, denoted as N1 and N2
respectively. Denote the global multiplicative level at the root of cut C1, with N1 applied
to cut C1, as δC1,N1 , then

δC1,N1 = max{δa + ∆a | 1 ≤ a ≤ n}

Denote input variable xa′ is on the critical path, i.e.,

δC1,N1 = δa′ + ∆a′ .

Then, if we apply N1 to cut C2, the resulting global multiplicative level at the root of
cut C2, denoted as δC2,N1 , follows

δC2,N1 = max{0 + ∆1, · · · , 0 + ∆i, (δi+1 − δi + ∆i+1), · · · }
= max{δa − δi + δa | 1 ≤ a ≤ n}
= δa′ − δi + ∆a′ .
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Apply N2 to C2 and denote the resulting global multiplicative level at the root of C2,
as δC2,N2 . Denote the input variable on the critical path as xb′ , i.e.,

δC2,N2 = max{0 + ∆′
1, · · · , 0 + ∆′

i, (δi+1 − δi + ∆′
i+1), · · · }

= max{δa − δi + ∆′
a | i + 1 ≤ a ≤ n}

= δb′ − δi + ∆′
b′ .

Note that a′ and b′ are not necessarily distinct. Therefore, if we apply N2 to cut C1, the
resulting global multiplicative level at the root of C1, denoted as δC1,N2 , shall meet

δC1,N2 = max{δa + ∆′
a | 1 ≤ a ≤ n}

= δb′ + ∆′
b′ .

Given that N2 is the optimal implementation of cut C2, we have

δC2,N2 = δb′ − δi + ∆′
b′ < δa′ − δi + ∆a′ = δC2,N1 ,

which suggests that δb′ + ∆′
b′ < δa′ + ∆a′ . Considering the left-hand side and right-hand

side of this inequality are respectively the value of δC1,N2 and δC1,N1 , it implies that N2
serves as the better implementation for C1, leading to a contradiction. Therefore, we
conclude the correctness of the lemma.
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