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Abstract. In this work, we construct a second price (Vickrey) auction protocol (SPA), which does
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highest bidder are protected. We model the bidders participating in the second price auction as
rational, computationally bounded and privacy-sensitive parties. These are self-interested agents
who care about winning the auction more than learning about the private bids of other parties. A
rational party does not deviate from the protocol arbitrarily but does so only for its own individual
‘advantage’ – without any consideration for others. Such an advantage is modelled using suitable
utility functions.
We show that for rational and computationally bounded parties participating in our second-price
auctions protocol, there exists a privacy-preserving dominant strategy equilibrium in which every
party prefers to follow the protocol rather than to deviate.
Our protocol is implemented using open-source cryptographic constructs. Running our SPA protocol
on commodity hardware with 15 bidders, with bids of length 10 bits, completes in 1.26sec and has
total communication of 0.77MB whereas, under similar conditions, Atlas (semi-honest) protocol
takes 40% more time (2.11 sec) and 87% more communication (6.09MB).
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1 Introduction

Auctions are mechanisms where buyers compete to purchase goods by bidding. Auctions are characterized
by their ability to efficiently allocate goods to those buyers who value them the most while fetching profit
to the sellers. Digital auctions are a billion-dollar industry with companies like Google, Meta, etc. running
as many auctions daily in order to auction out their ad space. Almost every sector makes use of them
– auctions are used for fundraising, spectrum allocations by governments, and trading commodities in
financial markets. Typically, it is the highest bidder who wins the auction. Depending on the price paid
by the winner of the auction, we can have either first price auctions where the winner pays the highest
bid or second price auctions (Vickrey auctions) where the winner pays the second highest bid.
Second price auctions (SPA) are known to be strategy-proof; that is, while participating in second price
auctions, the bidders are incentivized to bid their true valuation [Kri09], without considering the bids of
other parties. This is in contrast to first price auctions, where bidders may choose their bids strategically.

Second price auctions satisfy the requirements of both auctioneer and bidders. The auctioneer is able
to elicit true valuations from bidders and, hence, sells the item to the bidder who values the item most.
The winning bidder gets to purchase the auctioned item at a discount (compared to its valuation). Often,
an important goal for auctions is to ensure the privacy of bids: for this, there are sealed bid auctions.
Privacy is especially critical for second price auctions, where bidders use their true valuation as their
bids. The bidders may not want to divulge any information about their bids. In particular, the highest
bidder, too would not want to divulge its own bid. Similarly, while the highest bidder pays the bid of the
second highest bidder, the latter would wish to keep its own identity secret. A secure second price auction
protocol should only output the winner’s identity and the second highest bid. The protocol should protect
the confidentiality of the highest bid, the identity of the second highest bidder, and losing bids.

When auctions are executed by trusted auctioneers, it is trivial to ensure such privacy requirements.
However, such trust is difficult to realize in practice. Moreover, even when privacy is ensured, second price
auctions are vulnerable to manipulation by a corrupt auctioneer who can enhance its utility by declaring
a higher value for the second highest bid. Hence, designing a protocol that can function without needing
an auctioneer is desirable.

All existing protocols for second-price auctions either need a trusted auctioneer or use generic Multi-
Party Computation (MPC) protocols; therefore, they assume some parties to be completely honest. In
this work, we build a second price auction protocol secure in the rational setting that guarantees privacy
and does not require any trusted auctioneer.

Rational security model. In traditional cryptography, every party is either honest or malicious. How-
ever, there are many scenarios where parties are simply rational agents who have a clearly specified end
goal they are trying to achieve. In the case of auctions, for example, it is fair to assume that the primary
goal of parties (bidders) is to win the auction. At a high level, a rational party deviates from the protocol
only if it has something to ‘gain’. This gain is defined by a utility function associated with the party.
Assuming all parties are rational, any party participating in an auction protocol would do so to win it. If
they cannot win the auction, a secondary goal of a party may be to learn about the bids of other parties
involved in a sealed bid auction.

Our contribution. This work presents a concretely efficient protocol for Second Price Auction with
guaranteed privacy. Our protocol achieves Computational Weakly Dominant Strategy Equilibrium for
rational, computationally bounded parties without the need for any trusted auctioneer to maintain the
privacy of bids. In our security model, the bidders are modelled as privacy-sensitive, self-interested agents
using appropriate utility functions to capture their motivation to maximize their individual gains. Our
protocol ensures that a) being honest is a weakly dominant strategy equilibrium for parties b) when
parties stay honest, the protocol leaks nothing except for the output and c) parties have no incentive to
form collusion to either gain monetarily or learn private inputs of other parties.

We stress that the rational security model is incomparable with standard secure computation models
like semi-honest and malicious. Notably, the rational model does not insist on honest behavior from every
party. However, in both semi-honest and malicious models, there is a single adversary controlling a certain
threshold of parties. Such a threshold assumption implies that there should exist at least some honest
parties in the protocol. In contrast, the rational security model is more realistic, and there need be no
honest parties in it; all parties are rational and may act strategically for better gains.

We have implemented our SPA protocol in C++, using OpenSSL and Boost open-source libraries.
Running our rational secure protocol on a commodity hardware, with 15 bidders, 10-bit length bids re-
sulted in 0.77MB communication and took 1.26s. We show that our protocol is concretely more efficient
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than secure second price auction implementations realized using generic MPC protocols.

Outline. The rest of the paper is organized as follows. Related works are presented in Section 1.1, where
we provide a survey of prior works related to rational security and auctions. Section 1.2 presents an
overview of our work, specifically highlighting the challenges and design decisions for the SPA protocol.
Preliminaries are described in Section 2. Section 3 describes the rational security model used in our work.
Section 4 provides a detailed description of the protocol divided into multiple phases. We analyze the
strategy space available to rational parties along with security proofs in Section 6. For each strategy, we
argue why it is rational for parties to stay honest. In Section 6.5 we introduce our modelling of collusion
and analyze the same in greater detail. Lastly, we summarize the experimental results in Section 7 and
conclude.

1.1 Related work

Game theoretic tools for cryptography. The intersection of game theory and cryptography has
attracted interest from the cryptographic research community for the past two decades. Dodis, Halevi
and Rabin [DHR00] initiated a line of work capturing notions of incentives in cryptographic defini-
tions. Halpern and Teague [HT04] considered secret sharing and secure computation in the rational
setting. They define a solution concept that is a variant of Nash equilibrium. Subsequent works de-
fine further variants of equilibrium, like computational versions, for modeling collusion and mechanism
design [IML05,ADGH06,GK06,Hal08,KN08,HP10,Mic14,DM16]. A noteworthy contribution in rational
cryptography is the Rational Protocol Design (RPD) framework introduced by Garay, Katz, Maurer,
Tackmann and Zikas [GKM+13] and employed subsequently in [GKTZ15,BGM+18]. RPD models the
protocol design as a two party game between a protocol designer and an external attacker, where the
attacker’s goal is to break security properties, and the goal of the protocol designer is to prevent the
attacker from succeeding. Biçer, Yildiz and Küpçü [BYK21] make use of Weakly dominant strategy for
coalitions in their work to develop the notion of m-stability which offers threshold security against a
coalition of size m.

Auctions. Miltersen, Nielsen and Triandopoulos [MNT09] defined a rational security framework for first
price auctions wherein the bidders care more about the monetary payoffs than learning about bids of
other parties. Important contributions of their work are a novel notion of information utility and Privacy
enhanced computational Nash Equilibrium for modelling rational security. They use generic MPC proto-
cols to run the first price auction and show that their protocol achieves this equilibrium. However, Nash
equilibrium ensures honesty for a rational party only when all other parties are also honest. Instead,
we make use of a stronger notion of dominant strategy equilibrium wherein honest strategy is the best
response irrespective of others’ strategic choices. Moreover, our solution concept also guarantees privacy
by exhibiting a simulator.
In SEAL [BHSR19], Bag, Hao, Shahandashti and Ray propose auction protocols without needing auction-
eers. They make use of Anonymous Veto Protocol (AVP) [HZ06]. FAST [DGP22] is a similar protocol by
David, Gentile and Pourpouneh, which also uses AVP. However, both these works have a non-trivial leak-
age. Their first price auction protocol leaks the first few bits of the second highest bid, and their second
price auction protocol leaks the first few bits of the highest bid. Ganesh, Kanukurthi and Shankar [GKS22]
have introduced a first price auction protocol without requiring auctioneers that also uses a variant of
AVP, but ensuring total privacy in a rational setting.

Second price auctions. Brandt introduced the protocol for second price auctions in [Bra01]. In this
protocol, the auctioneer is privy to bids from all parties. This is avoided in the work of Kurosawa and
Ogata [KO02], who use bit-slice approach with multiple auctioneers, the majority of whom are honest,
to determine the highest bid, bit by bit. Nojoumian and Stinson [NS14], use a setting with m bidders
and n auctioneers in addition to a trusted party.
Naor, Pinkas and Sumner [NPS99] require the role of an auctioneer for running the auction, apart from the
auction-issuer who sets up the auction. These two entities are expected not to collude. Their protocol uses
garbled circuits prepared by the auction-issuer. In a similar setting, Lipmaa, Asokan and Neimi [LAN02]
introduce a second price auction protocol which requires the roles of auctioneer and seller who do not
collude. They use a pre-specified set of bids to run the auction. In Boaz and Herzberg [CH13], the
auctioneer is not trusted. Instead, a trusted supervisor ensures that the auctioneer does not deviate by
running random checks on the computation. Rational setting is used to argue the security.
Omote et al. [OM03] introduced a protocol using two non-colluding auctioneers – AM1 and AM2. AM1
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is used during the setup stage and AM2 for the computation stage. Similar to Lipmaa et al. [LAN02],
bidders can use only pre-specified points as bids. Another similar work is by Hso and Miyaji [HM21], who
use smart contracts to run generalized Vickrey auctions on a pre-specified number of bid points.
All works mentioned above require the presence of one or more auctioneers and/or some additional entities
for running the auction. In some cases, bidders are allowed to choose the bids only from a pre-specified
set of bids. Our work stands out in that it does not require any auctioneer and has flexibility for bidders
to choose their bids while offering full privacy. To the best of our knowledge, ours is the first such protocol
to implement second price auctions in a rational security model.

1.2 Technical overview

Threat model. In our rational security model, every party may deviate from the protocol to meet
their most desired goal of winning the auction. Other considerations, such as learning information about
other parties, do exist but are secondary. Parties can either act in their individual capacity or collude
strategically to enhance their gains. The utility function captures these considerations.

FPA to SPA: Challenges. In first price auctions (FPA), the auction is won by the highest bidder who
pays the highest bid. Therefore, it suffices to design a secure computation protocol for the “max” function.
A trivial, though insecure, solution for SPA would be to run the FPA till the end to identify the winner
and then rerun the auction without the winner’s participation to identify the second highest bid. (In
bit-by-bit protocols for max, it would suffice to run the protocol until the highest bidder is identified and
then rerun the computation appropriately. In fact, this is precisely the approach used in SEAL [BHSR19]
and FAST [DGP22].)

Such approaches using FPA to compute SPA are insecure as they would reveal non-trivial information
about the highest bid. Recall that for SPA, we need to keep private a) the value of the highest bid and
b) the identity of the second highest bidder. Therefore, the main challenges in building SPA are two-fold:
How do we identify the highest bidder without revealing their bid? How do we compute the second highest
bid without revealing bidder’s identity?

We overcome these challenges by designing an “oblivious winner discovery” (OWD) mechanism. In
OWD, the parties communicate with each other so as to learn only if they are the highest bidders.
The fact that the highest bidder has made this discovery remains oblivious to all other parties till the
end of the protocol. Once this discovery happens, the highest bidder effectively drops out from the max
computation. Therefore, the second highest bidder believes that it has still not lost and thus, the protocol
reveals the value of the second highest bidder. Here’s the tricky part: once the highest bidder drops out,
the second highest bidder may, at some point, wrongly interpret that it is the highest bidder as every
party runs their own winner discovery. We need to come up with a mechanism where the highest bidder
not only drops out of the race but then actively needs to trick the second highest bidder into believing
that there may be a higher bidder who continues to be in the race.

We accomplish this by having a two step process. Each party first checks to see if they have the highest
bid via an interactive process. Once the highest bidder discovers that it has the highest bid, it ”tricks”
in this interaction with the other bidders: whenever they have a ’1’ to contribute, it convinces them that
it too has a ’1’, effectively sabotaging their winner discovery phase. We now offer more details.

Anonymous Bidding Protocol (ABP). This is a sub-protocol that computes the max function bit-by-
bit using a bulletin board, as described next. The parties start by contributing bits from their bids, MSB
onward. In the first round, they learn the logical OR of the first bit of parties’ individual bids. If a party
has contributed a 0, but the output of the first round was 1, it does not have the highest bid and hence
drops out of the “race”. However, such a party continues to participate1 in the protocol and contributes
a 0 bit for all subsequent rounds of computation. This process continues, with parties dropping out of the
race once they realize they no longer have the highest bid. Thus, the computed output is the max of all
bids. This sub-protocol is called the Anonymous Bidding Protocol (ABP) (see Appendix A). In our work,
we use ABP, which has also found applications in prior works such as SEAL [BHSR19], FAST [DGP22]
and [GKS22].

For the case of SPA, our goal is to compute the second highest bid and not the max value – i.e., we
cannot use ABP as is. To enable computation of the second highest bid, the highest bidder, too, needs to
drop out of the race during the ABP run. However, this poses few challenges: a) we need to ensure the
highest bidder’s dropping off must be concealed from all other parties (OWD). b) once the highest bidder
drops off, the second highest bidder should not conclude incorrectly that it is the highest bidder.

1 The security-deposit collected up front in the protocol ensures such participation
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(a) Protocol flow for an arbitrary party

(b) Protocol flow post winner-discovery

Fig. 1

We overcome the first challenge by leveraging one key property of the ABP protocol: a party that
contributes a 1 bit can compute logical OR of contributing bits of other parties. In fact, this is the cause
of leakage mentioned above in SEAL [BHSR19] and FAST [DGP22]. However, we utilize this leakage to
build a “winner discovery mechanism” where the highest bidder can (privately) learn that it has the high-
est bid. We enable only the winner to obtain the leakage information while other parties obtain dummy
values (which are required to prove honest computation in the end). For this, we make use of Oblivious
Transfer (OT), with the contributing bit used as OT choice bit. To overcome the second challenge, the
winner needs to keep the second highest bidder in the race. For this, the winner contributes bits to the
protocol in such a way that the second highest bidder neither drops out of the race nor assumes it is the
winner. To ensure that the second highest bidder does not drop out of the race, the winner contributes
the same bit as that of the second highest bidder and writes it to BB. This requires the winner to learn
the bit being contributed by the second highest bidder. The winner accomplishes the same by using the
OT choice bit to be 1 for all rounds after the winner discovery. In order to ensure that the second highest
bidder does not consider itself to be the highest bidder, the winner sends encoding of 1 bit to all par-
ties after the winner discovery. This thwarts the second highest bidder from assuming that it is the winner.

Here is a high-level overview of our protocol. We begin by listing its salient features :

1. The protocol runs for l rounds, starting from the MSB of the bid. Here l is the number of bits used
in binary representation of bids.

2. There exists a unique j̄ ∈ [l] (winner discovery round) such that bits of the second highest bid are
the same as bits of the highest bid for the first j̄− 1 rounds. In j̄th round, the highest bid has 1, and
the second highest bid has 0.

3. In all the rounds after j̄th round, the highest bid identified in j̄th round is ignored for further
computation.

Now we present the overview of the SPA protocol, which is divided into 3 phases. In the following we
consider n parties, (P1, . . . , Pn) with respective bids (b1, . . . , bn). jth bit of bi is denoted by bij and Pi’s
contribution during round j is denoted as dij .

Set-up Phase: Each party Pi registers for auction by paying a deposit D and receives the public
parameters pp. Pi commits to bits of its bid – used to generate NIZK proofs to verify the correctness of
computations of the losing bidder.

Auction Phase: The protocol proceeds for l rounds. A typical round j for an arbitrary party Pi is
depicted in Figure 1a. In each round, parties run the SPA protocol as follows.

– Exchange of encoded bits: Every pair of parties communicates privately with each other using
OT. To receive an encoded bit from Pk in round j, as an OT receiver, Pi uses dij as its choice bit.
As a sender, Pk uses encoding of dkj as M (1) and a 0-token as M (0) for OT.

– Winner discovery: Each party checks if it is the only party contributing 1 in that round. As the
OT receiver, every party gets the encoded bits from other parties and deduces that it has won if
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product of other parties’ encoded bits is 1 (see Appendix A). If so, party transitions to winner
state.

– Post winning actions: (Refer to Figure 1b.) Once Pi knows it has won the auction during round
j̄, it uses dij = 1 in all subsequent OT rounds j = j̄ to l, both as choice bit and for generating M (1).
This design choice helps the winner to obtain the contribution bit of the second highest bidder during
each round j. This also prevents the second highest bidder from assuming that it has the highest bid.

– Every party writes the encoding of its contribution bit to the BB so that all parties involved in the
protocol can compute the output of the current round. The winner (if already discovered) writes the
same bit as that of the second highest bidder.

Verification phase:

– The winner comes forward to claim the auction by producing the private randomness used for encoding
the bits.

– Each losing party provides NIZK proof of correct computation for each round. It also produces the
0-tokens for the rounds which have computed output to be 0 to prove the correct usage of OT choice
bit.

– In case there are multiple claimants for the auction – which can happen if there are deviating parties,
the protocol has a winner resolution mechanism. In this case, each claimant needs to open all OT
message randomness, thus exposing the cheating party.

– Whenever a party’s deviation is detected, the protocol terminates, and that party forgoes its deposit,
which gets distributed among honest parties.

Security. In order to argue security, we note that a rational party sees value in a) increasing its monetary
utility by winning the auction and b) learning information about other players’ inputs. To capture these,
we use monetary and information utilities (similar to earlier works in [MNT09,GKS22]). We also use
the notion of Privacy preserving computational dominant strategy equilibrium for analyzing the privacy
concerns of rational parties. We show that as long as parties value monetary utility much more than
information utility, they have no incentive to deviate from the protocol. Then, for parties that do not
deviate from the protocol, we argue privacy using the simulation paradigm.

Handling collusion. Rational parties can collude strategically to enhance their utilities. We consider
privacy-sensitive parties who value their individual privacy over learning the private inputs of other
parties. Such parties prefer to learn about the private inputs of other parties only if there is no loss of
individual privacy in the process. Our modelling has two important consequences: a) parties who are
not part of collusion are not restricted, to be honest – but rational, strategically deciding to stay out of
collusion. b) this model helps to get collusion-resistance for free in our protocol.
In our setting, a group of privacy-sensitive parties come together to form a collusion if each of them is
better off as a part of the group rather than acting alone. We believe that such a notion of collusion
is more natural in a rational framework. Moreover, we consider the formation of collusion to take place
only after the bid values are chosen (and committed). In particular, collusion formed even before the first
message of protocol gets sent is beyond the scope of the protocol. However, we would like to emphasise
that collusion can be formed at any time during the protocol or after the protocol ends. Using our model,
we argue that no collusion is rational as opposed to providing a threshold guarantee.

2 Preliminaries

Notation. We denote the security parameter by λ. Let G be the description of the group of prime order
q, and with generators g, h. A function negl is said to be negligible if negl(n) < 1/p(n) for all positive
polynomial functions p(·) and for all n > n0 for some n0 ∈ N. We denote Probabilistic Polynomial Time by
PPT. We also use ≈c to denote computational indistinguishability between two probability distributions.

2.1 Building blocks

Here we describe some key building blocks that are used in our protocol.

Definition 1 (Commitment scheme). Let M,C,R denote the message space, commitment space and
randomness space respectively.
A commitment scheme consists of a tuple (Setup,Com,Open) of PPT algorithms where:
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– Setup(1λ)→ pp generates public parameters pp.

– Com(m, r) → c takes input pp (implicitly), message m ∈ M, randomness r ∈ R and outputs a
commitment c ∈ C.

– Open(c,m, r) → B ∈ {0, 1} checks if the commitment c opens to the message m, given randomness
r. If so, outputs 1 and 0 otherwise.

The security of a commitment scheme guarantees two properties: hiding and binding. Informally, the
hiding property guarantees that for any two messages m0 and m1, no PPT algorithm can distinguish
between commitments to m0 and m1. The binding property guarantees that no PPT algorithm can open
a commitment to two different messages.

Oblivious transfer. Oblivious Transfer (OT) is a two-party protocol with sender S having two secret
messages and receiver R with a single choice bit. The goal of the protocol is for R to learn the message of
its choice without learning about the other message from the sender. In addition, OT protocol demands
that S does not learn about the choice exercised by R. Let M,R be the message space and randomness
space, respectively. An OT protocol proceeds as follows for two PPT parties, R and S:

– OT.R1(α, β) → (otr1, state) is invoked by R with inputs: choice bit α ∈ {0, 1}, randomness β ∈ R.
otr1 is the first message sent by R to S. state is the internal state of R.

– OT.S(otr1,M (0),M (1), γ) → otsS,R takes otr1, messages M (0), M (1) ∈ M, randomness γ ∈ R and
outputs message otsS,R to be sent by S to R.

– OT.R2(otsS,R, state) → M (α) Invoked by R with otsS,R from S and internal state to retrieve the
message M (α).

The security of OT protocol ensures that the receiver does not learn about M (1−α) and the sender does
not learn about α.

Bulletin board. The Bulletin Board (BB) is an abstraction for an authenticated broadcast channel
with memory. We assume the existence of such a broadcast channel for our protocol. We do acknowledge
that the implementation of such broadcast channels can have different threat models than ours. However,
in this work we do not concern ourselves with the problem of handling broadcast in a rational setting,
which is of independent interest and can be considered for future works. In our protocol, parties can write
messages on to the BB for public consumption. The BB is expected to satisfy the following properties: (i)
Every message written on the BB is associated with a unique party and is readable by all other parties.
(ii) The messages written on BB are immutable.

A BB can be realized through a public chat-room, shared web-page, or even a private blockchain. Our
protocol does not rely upon any specific realization of BB.

Contract Functionality. Our protocol uses security deposits from the bidders to enforce honest be-
havior. Any deviation from a bidder that affects the protocol described in Section 4.2 results in the
forfeiture of the security deposit, which is redistributed among the non-deviating parties. Such a penalty
mechanism requires the use of contracts with the parties in the auction and assumes the use of certain
transferable utility (TU) among parties. Such contracts can be drawn within a legal framework or they
could be smart-contracts on a block-chain. If the contracts are using the traditional legal framework, then
the TU can be realized using fiat currency that is common among all parties in the protocol. In such a
case, there needs to be a trusted entity to receive, manage and redistribute the deposits. Such a trust can
also be a threshold trust wherein a set of entities need to come together to operate on the deposits. On
the other hand, if one were to make use of smart-contracts on a block-chain, then the native currency
(coin) of the block-chain can serve as the TU among the parties. In this case, the smart-contract would
receive the deposits from parties before the protocol. At the end of the protocol, depending on the proofs
submitted, would either return the deposits for an honest run of protocol or redistribute the deviating
parties’ deposits when cheating is detected. Schwartzbach [Sch22] proposes a mechanism for realizing
payments to facilitate deposits in a rational setting.

2.2 Equilibrium notions

We now describe some game theoretic notations and definitions used in our work. We assume that there
are n parties (P1, . . . , Pn) participating in a game.

Definition 2 (Normal Form Game [Kat08]). A normal form game is a tuple {{Γi}ni=1, {Ui}ni=1}
where for each party Pi, a space of possible actions Γi along with a utility function Ui are specified.
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Each party Pi can be associated with a certain strategy πi ∈ Φ where Φ is a strategy space available
for the parties to choose their strategies from while playing the game. πi is essentially an algorithm that
takes as input the private inputs of Pi, the current state of the game and outputs the action si ∈ Γi
to be taken by Pi. We denote the outcome of the game using the strategy profile of parties (πi, π−i)
where π−i = (π1, . . . , πi−1, πi+1, . . . , πn). We also assign utility functions Ui(πi, π−i) to each party Pi.
These functions represent the perceived utility of different outcomes of the game for the party. We
say that a party Pi prefers a certain outcome (πi, π−i) over another outcome (π′i, π−i) if and only if
Ui(π

′
i, π−i) < Ui(πi, π−i).

Definition 3 (Dominant Strategy [Kat08]). Given a normal form game: {{Γi}ni=1, {Ui}ni=1} we say,
πi ∈ Φ is a Dominant Strategy for Pi if Ui(π

′
i, π−i) < Ui(πi, π−i), ∀π′i(6= πi) ∈ Φ and ∀π−i ∈ Φn−1.

Such a strategy πi guarantees that a party Pi can accrue the best utility among all strategies available
to it. In the above case, π′i is also termed as Dominated Strategy. The parties typically avoid dominated
strategies, whereas dominant strategies are pursued. We also have a weaker notion of Dominant Strategy
known as Weakly Dominant Strategy.

Definition 4 (Weakly Dominant Strategy [Kat08]). Given a normal form game: {{Γi}ni=1, {Ui}ni=1}
we say πi ∈ Φ is a Weakly Dominant Strategy for Pi if Ui(π

′
i, π−i) ≤ Ui(πi, π−i),∀π′i( 6= πi) ∈ Φ,∀π−i ∈

Φn−1. In addition, ∀π′i( 6= πi) there exists some π−i ∈ Φn−1 such that Ui(π
′
i, π−i) < Ui(πi, π−i).

Definition 5 (Weakly Dominant Strategy Equilibrium (W-DSE) [Nar14]). For a normal form
game {{Γi}ni=1, {Ui}ni=1}, the strategy profile π = (π1, . . . , πn) ∈ Φn is a Weakly Dominant Strategy
Equilibrium if ∀Pi, i ∈ [n], πi is a Weakly Dominant Strategy for party Pi.

A Dominant Strategy Equilibrium, whenever it exists, guarantees that every party has a unique Dom-
inant Strategy available to it. Thus, each party can realize maximum utility by adopting its Dominant
Strategy. Since such a strategy becomes a preferred choice for every party, irrespective of the strategic
choices of other parties in the game, the chosen strategy profile is an equilibrium.

3 Rational Security model

We model the second price auction to be a game in which participating bidders are rational PPT parties
with their individual utility functions. A rational party does not deviate from the protocol arbitrarily but
does so only for its own individual ‘advantage’ – without any consideration for others.

We consider a setting in which parties value their individual privacy over learning the private inputs
of other parties. This means that parties would prefer to learn about the private inputs of other parties
only if there is no loss of individual privacy in the process.

Moreover, for the case of auctions, our utility function will capture the view that the parties are
self-interested agents who care most about winning the auction. A secondary incentive may be to learn
about the private bids of other parties. To formalize this, we consider monetary utility and information
utility [MNT09]. We assume that parties pay a deposit, which they may lose if they are detected to be
deviating. The monetary utility is calculated based on this cost and the monetary gain from winning the
auction. The information utility captures the fact that parties prefer to reveal as little as possible about
their inputs while learning as much as possible about other parties’ inputs.

Since we are considering rational parties, we let the parties choose suitable strategies for enhancing
their utilities. The protocol demands that parties choose the honest strategy and follow the protocol.
However, depending on their utilities, rational parties may choose deviating strategies as well. Moreover,
parties can strategically collude to either make monetary gains or to learn about the private bids of other
parties.

We are interested in those strategies which are self-enforcing on the parties. Such a state, where
parties do not have any incentive to deviate from their chosen set of strategies, is also referred to as an
equilibrium. To demonstrate security in the rational setting, we first show that following the protocol is
a weakly dominant strategy equilibrium. Consequently, to show privacy, it suffices to show that when
parties do follow the protocol, they learn nothing beyond the output of the protocol. We show this using
the existence of a simulator in the ideal world-real world paradigm.

Privacy-preserving (Computational) Dominant Strategy Equilibrium. Our definition of rational
security is identical to the one introduced in the context of first price auctions by Ganesh et al. [GKS22].
Specifically, they define the solution concept called Privacy enhanced computational dominant strategy
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equilibrium (PECDSE) for analyzing rational security. In short, parties participating in a game using
a cryptographic protocol prefer to follow the protocol honestly while learning nothing more about the
private inputs of other parties than what the protocol outputs. Notice that this is not just about the
equilibrium but encompasses the security property of the protocol.

While we make use of this solution concept to show the rational security of our protocol, we rename
the definition to Privacy preserving computational dominant strategy equilibrium (PPCDSE) for reasons
that we now explain. The PECDSE definition was motivated by the definition of Privacy enhanced Nash
equilibrium defined in [MNT09]. However, compared to the definition in [MNT09], PECDSE definition
features an added condition for privacy (point (2) in the definition). Consequently, contrary to what
one would expect, replacing Nash equilibrium in the definition from [MNT09] with dominant strategy
equilibrium does not lead to PECDSE.

To resolve this ambiguity, we rename the PECDSE solution concept to Privacy preserving computa-
tional dominant strategy equilibrium (PPCDSE).

Definition 6 (Privacy preserving computational dominant strategy equilibrium). Let (P1, . . . , Pn)
be a set of rational PPT parties with their respective efficiently computable utility functions Ui, while par-
ticipating in a n-party protocol Π which computes the functionality F . Let Φ denote the space of strategies.
Let πi ∈ Φ be the strategy for Pi of following Π. Let π′i ∈ Φ be an arbitrary, efficiently computable strategy.

We say that Π is a Privacy preserving computational dominant strategy equilibrium if the following
hold.

1. Π is a Weakly Dominant Strategy Equilibrium (W-DSE) with probability (1 − negl(λ)), where λ is
the security parameter; i.e.,

Ui(π
′
i, π−i) ≤ Ui(πi, π−i)

for all arbitrary efficiently computable π−i ∈ Φn−1.

2. When every Pi, i ∈ [n] uses πi ∈ Φ as the strategy following Π, for each Pi there exists a simulator
SFi such that the view of Pi in a real execution of the protocol is computationally indistinguishable
from the output of the simulator:

ViewΠi ≈c SFi

where ViewΠi is the random variable of the transcript of Pi in the protocol Π. The probability is over the
choice of private random coins of the parties.

Thus, in order to show rational security, we show that the following properties hold:

1. Equilibrium (Part (1) of Definition 6). We first show that the dominant strategy for parties is to
follow the protocol. This property relies on the security of the bit encoding scheme, binding property
of the commitment scheme, malicious security of the OT protocol ΠOT and soundness of NIZK proofs.

2. Simulation (Part (2) of Definition 6). When parties follow the protocol, we show privacy using the
simulation paradigm. Specifically, we show the existence of a simulator for every party such that the
view of the party in the real world is indistinguishable from the output of the simulator. Here, we use
the hiding property of the commitment scheme, semi-honest security of the OT protocol, security of
the bit encoding scheme (14) and zero-knowledge property of NIZK proofs.

3.1 Utilities

We assume there are n parties that participate in the auction protocol modelled as the game, denoted
by P1, P2, . . . , Pn. Each party Pi has its bid denoted by bi, with a corresponding l-bit decomposition
(bi1||bi2|| . . . ||bil). Let

– vi: Perceived private valuation of the auction item for Pi.

– bi: bid of party Pi. Each bid is a l bit integer. Note that, for second price auctions, rational bidders
prefer to use bi = vi [Kri09]. We denote b = (b1, . . . , bn).

– w denotes the index of the winning party, and s denotes the same for the second highest bidder.

– Ui : Φn 7→ R is the monetary utility function of a party Pi mapping a strategy profile to a value. Here
Φ represents the strategy space.

– Zi ∈ R: is the information utility2 of party Pi.

2 The information utility captures subjective valuation of privacy information by a party. Hence, we do not treat
it as a function.
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– A: Set of parties caught deviating.

A rational party’s utility function evaluates the gains or losses incurred by the party because of its
strategic choices. In addition to monetary considerations, parties are also curious to learn information
about the bids of other parties, provided their own privacy is not compromised in the process. For this,
we consider information utility Zi similar to the notion used in [GKS22].

The monetary utility function of an individual party Pi from participating in our protocol Π is as
follows (where D is the security deposit paid by the bidder for participation in the auction):

Ui =



vi − bs arg max(b) = i and Pi doesn’t deviate

0 arg max(b) 6= i and Pi doesn’t deviate

−D Pi deviates and gets caught
D|A|

(n−|A|) Pi doesn’t deviate, A is set of parties caught

deviating or abort from protocol.

(1)

In an ideal execution with a trusted party, each party Pi learns the second highest bid bs and the
identity of the winning party Pw. Let this information be valued at zi ∈ R+ by Pi. By correctness of our
protocol, the information utility realized by Pi by following the protocol honestly is zi.
Let A be an arbitrary set of parties other than Pi i.e., A ⊆ [n] \ {i}. Let bA represent the bids of parties
in set A. Then Pi would be interested to learn about some function fi(bA). On the other hand, being
privacy-sensitive, Pi would be wary of some j 6= i such that Pj learns fj(bi) for some function fj . We
capture these considerations as below:

Zi


= zi if Pi learns no more than output of auction protocol.

> zi if Pi learns fi(bA) (as described above)

< 0 if ∃j 6= i such that Pj learns fj(bi) for some function fj .

< zi if protocol aborts.

(2)

The negative information utility holds even if Pi has additionally learned about fi(bA). This is to empha-
sise that parties do not prefer to lose their privacy even if it helps in learning about other parties’ bids.
We refer to such parties as Privacy-sensitive rational parties.

We further consider a dictionary order of utility for each party:

(Ui, Zi) < (U ′i , Z
′
i), if

{
(Ui < U ′i)∨(
(Zi < Z ′i) ∧ (Ui = U ′i)

) (3)

This order captures the assumption regarding rational parties that they value monetary utility to be
higher than the information utility.

4 Our protocol

We now present a description of our second price auction protocol Π, which does not require any auc-
tioneer and guarantees full privacy in the presence of privacy-sensitive rational parties.

4.1 Notation

We use a fixed publicly known value of the security deposit amount, D, for all parties. This value of
D can be, for instance, the reserve price of the auctioned item. We use as building blocks a maliciously
secure OT protocol ΠOT , a secure commitment scheme Com and non-interactive zero-knowledge (NIZK)
proofs. We use a group G of prime order q where the DDH assumption holds.

The protocol uses a Bulletin Board (BB) for all communication. We use the notation Aij,k to denote
the message or random value A generated by the party Pi while interacting with the party Pk during the
round j. The protocol proceeds in l rounds. In each round j, a party Pi computes the bit it contributes,
denoted by dij , as per Anonymous Bidding Protocol (ABP). We denote the encoding of dij as Bij . ABP
and its bit encoding scheme are described in Appendix A. The protocol also uses a fixed maximum time τ
that a party gets to post its message, beyond which the party is considered to have aborted the protocol.

We use [0]ij , [1]ij to denote encoding of bits 0 and 1 respectively by Pi during round j.
$←− denotes

uniform sampling from a certain distribution,
pay←− denotes payment and

write←− denotes writing to BB.
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4.2 Construction

We describe our second price auction protocol as a set of algorithms. During the setup phase (Algo-
rithm 1), parties allocate their secret keys, construct commitments and publish the public keys and
commitments to the BB.

Algorithm 1 Setup Phase

1: Each Pi:
2: Pi(vi, bi) // Initialize

3: Deposit
pay←− D // Register for auction

4: pp = (G, q, g, h, l, τ) // Receive public parameters
5: for j = 1 to l do

6: xij , rij
$←− Zq

7: // Secret keys: xij for encoding 0 and rij for encoding 1
8: Xij = gxij // Public key

9: aij
$←− Zq // Randomness for commitment

10: cij = Com(bij , aij)
11:
12: BB

write←− (Xij , cij)

13: Yij =

∏i−1
k=1Xkj∏n

k=i+1Xkj

14: end for
15: statei ← in-race

Auction phase (Algorithm 2) runs for l rounds. During each round, parties use ABP to determine
their contribution bit for the round and exchange encoded bits through OT. At the end of each round,
parties compute the output bit.

Algorithm 2 Auction Phase

1: Phase runs for j = 1 to l rounds.
2: Each Pi receiving from Pk through OT during round
j:

3: if statei = in-race then
4: dij = bij
5: end if
6: if statei = winner then
7: dij = 1
8: end if
9: if statei = not-in-race then

10: dij = 0
11: end if
12: if dij = 0 then
13: Bij = Y

xij

ij // [0]ij
14: else
15: Bij = grij // [1]ij
16: end if
17: OT Receiver:(Pi)

18: αij,k = dij , βij,k
$←− R

19: otr1ij,k = OT.R1(αij,k, βij,k), BB
write←− otr1ij,k

20: //Write OT receiver randomness to BB for Pi ← Pk

21: OT Sender: (Pk)

22: M
(1)
kj,i = Bkj

23: ωkj,i
$←− Zq, M

(0)
kj,i = gωkj,i .

24: // 0-Token of Pk → Pi

25: δkj,i
$←− Zq, Ωkj,i = Com(ωkj,iδkj,i), BB

write←−
Ωkj,i

26: // Write commitment to 0-token to BB

27: otskj,i = OT.S
(
otr1ij,k,M

(0)
kj,i,M

(1)
kj,i, γkj,i

$←− R
)

28: BB
write←− otskj,i // OT sender randomness of Pk →

Pi

29: Pi retrieves Pk’s message as Bkj,i =
OT.R2(otskj,i, βij,k).

30: DO Winner Discovery (Algorithm 4)
31: DO Write to BB (Algorithm 5)
32: DO Cheater Detection (Algorithm 3)
33: DO Compute Output (Algorithm 6)

Each party contributing a 1 during a round checks locally if it is the winner, as in Algorithm 4.
The winner discovery happens oblivious to other parties. After a successful winner discovery, winner’s
behavior is different from other parties as can be seen in Algorithm 5.

After l rounds of auction phase, verification phase (Algorithm 7) is initiated to check if the parties
had been honest in their computation. If any cheating is detected or if there is any timeout noticed, the
protocol terminates. The aborted and cheating parties lose their deposits which is redistributed among
the honest parties. Honest parties get back their deposits.
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Algorithm 3 Cheater Detection

1: Each Pi during round j with (dij = 1):
2: if Bkj,i 6= Bkj then
3: // Bit-code received through OT doesn’t match with one on BB.
4: // Pi, Pk open OT randomness, commitment and secret key for round j

5: BB
write←− (βij,k, aij , xij , rij)

6: BB
write←− (γkj,i, akj , xkj , rkj)

7: otr′ ← OT.R1(1, βij,k)

8: M
$←− G, ots′ ← OT.S1

(
otr1ij,k,M,Bkj , γkj,i

)
9: if (otr = otr1ij,k)

∧
(ots′ 6= otskj,i) then

10: Pk forfeits deposit to Pi // Pk is cheater
11: else
12: Pi forfeits deposit to Pk // Pi is cheater
13: end if
14: statei = terminate
15: end if
16: Each Pi during round j
17: if Messages not received from Pk within τ units OR Messages received from Pk are malformed then
18: Declare timeout against Pk

19: Pk forfeits deposit to honest parties // Pk is cheater
20: statei = terminate
21: end if

Algorithm 4 Winner Discovery

1: Each Pi during round j with dij = 1:
2: B =

∏
k∈[n],k 6=iBkj · [0]ij

3: if B = 1 then
4: statei = winner
5: end if

Remark 1: Our protocol assumes a unique highest bidder. If there are multiple highest bidders, then the
computed output also happens to be the highest bid. In such a case, we can use arbitrary tie-breaking
mechanisms to choose the winner. The chosen winner pays the computed price.
Remark 2: We would like to emphasize that the Winner resolution procedure in Algorithm 7.6 acts as

a deterrent for any rational party from cheating. A rational party does not use this mechanism to learn
about the bid of another. This follows from our assumption that each party values its monetary utility
to be higher than the information utility.

We show that the above protocol correctly computes the second highest bid in Section 5. In the
following section, We analyze the strategies of a party participating in the protocol. There, we show that
the honest strategy is weakly dominant for any party Pk. We then prove that this protocol does not
leak anything, other than the protocol output, to any party that does not deviate from the protocol in
Section 6.4. Transactions related to security deposits are handled outside the protocol (see Section 2.1).

5 Correctness of protocol Π

In this section, we will show that the protocol specified in Section 4.2 correctly computes the second
highest bid and identifies the highest bidder.

Lemma 1. In round j of SPA, for j ∈ [l], the computed bit bsj is the OR of contributed bits from all
parties i.e., bsj = ∨ni=1dij, for i ∈ [n]. Consequently, the computed bit is maxi(dij), for j ∈ [l].

Proof. This follows directly from the property of the encoding scheme (as described in Appendix A). If at
least one of the parties Pi has contributed 1-bit code Bij , the product

∏n
i=1Bij 6= 1 and thus computed

output bsj = 1. On the other hand, if Bij is 0-bit code for all i ∈ [n] then
∏n
i=1Bij = 1 and thus

computed output bsj = 0. Since the OR function outputs the maximum of the input bits, the computed
bit is maxi(dij), for j ∈ [l]. ut
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Algorithm 5 Write to BB

1: if state = winner then
2: // Winner Pw with (statew = winner) during round j:
3: B =

∏
k∈[n],k 6=w Bkj · [0]wj

4: if B = 1 then
5: BB

write←− [0]wj

6: else
7: BB

write←− [1]wj

8: end if
9: else// Not a winner

10: BB
write←− Bij

11: end if

Algorithm 6 Compute Output

1: Each Pi during round j:
2: B =

∏
k∈[n]Bkj

3: if B = 1 then
4: bsj = 0
5: else
6: bsj = 1
7: end if
8: if bsj = 1 ∧ dij = 0 then
9: statei = not-in-race

10: end if
11: After l rounds, bs = (bs1|| · · · ||bsl)

Lemma 2. In the protocol specified in Section 4.2, there is exactly one party (denoted by Pw) that enters
post winning phase, when all the parties follow the protocol honestly and have distinct bids.

Proof. Suppose there is no j ∈ [l] such that j is the winning round for any party. Then, we have that
for every j, it is not the case that exactly one party contributes 1-bit. Also, note that an honest party
contributes 1-bit only if they have not yet lost the auction. Now, Let us denote by Sk, the set of all
parties who have not yet lost in the auction till round k. Then we have |Sk| ≥ |Sk+1|, ∀k ∈ [l − 1]. And
we have, since no party has reached the post winning phase, Sl ≥ 2. But this implies that all the parties
in Sl have the same bid, which is contrary to our assumption that no parties have the same bids.
Now, suppose more than two parties reach the post winning phase. Then, one of the following cases
occurs:

– Both parties reach post winning phase in same round: In the protocol, a party reaches the post
winning phase only if it is the only party that contributes 1-bit in the OT phase of that round.
Hence, two parties cannot reach post winning phase in the same round.

– One party reaches post winning phase before other party: If one party reaches post winning phase,
then it always contributes 1 in the OT phase in all the subsequent rounds. Hence, after a party has
reached the post winning phase, no other party can be the only party contributing 1 in any subsequent
rounds.

ut

Theorem 1. The protocol specified in Section 4.2 computes the second highest bid correctly when all
parties follow the protocol.

Proof. From Lemma 1, we have that the computed output during each round is the highest of bit con-
tributed from the bidders. Moreover, recall that the unique winner in the protocol writes the same bit
codes to BB as that of the second highest bidder. This prevents the second highest bidder from assuming
that it is the winner and also ensures that the second highest bidder does not drop out of the race all
through the protocol. Thus, during every round, the computed bit corresponds to that of the second
highest bid. ut

Theorem 2. The protocol specified in Section 4.2 correctly identifies the highest bidder when all parties
follow the protocol.
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Algorithm 7 Verification phase

1: Winner Claim:
2: For Pw claiming auction: // write private keys used for encoding

3: BB
write←− xwj , ∀j ∈ [l],with bsj = 0 and

4: BB
write←− rwj , ∀j ∈ [l],with bsj = 1

5:
6: Winner resolution:
7: Each Pi claiming auction, for all j ∈ [l] and k ∈ [n], k 6= i:

8: BB
write←− (βij,k, γij,k)

9: BB
write←− (cij , aij)

10: Public verification of the consistency of claimant’s messages
11:
12: Proof of correct choice bit:
13: Each Pi, i 6= w, for all j ∈ [l] with bsj = 0 and k ∈ [n], k 6= i:

14: BB
write←− M

(0)
kj,i // 0-token received from Pk

15: BB
write←− (ωij,k, δij,k) // 0-token Commitments sent to Pk

16:
17: Proof of correct computation:
18: Each Pi, i 6= w, for all j ∈ [l]:

19: BB
write←− NIZK proof for relation in equation 8 of Appendix B.

20:
21: Honest parties get back their deposit.
22: Parties failing to provide 0-token or accepting NIZK proof are considered cheating and forfeit deposits, which

are distributed among the honest parties.

Proof. From Lemma 2 we have a unique winner in the protocol. During the winner discovery round,
the winner alone has a 1 bit to contribute, while every other party has a 0 bit to contribute. Thus, the
winner’s bid is higher than all other bidders. ut

6 Analysis of strategies of rational parties in the protocol

We now present how our SPA protocol ties cryptography and game theory together to give stronger
guarantees than conventional cryptographic MPC style protocols. To analyse all strategies available to
a party, we describe how a deviation in the strategy of a party affects the protocol and view of such a
party.

At any point during the protocol, a party’s action (contribution to protocol) is decided by the strategy
and the partial transcript available (its view). To analyse these coherently while maintaining ease of
reading, we divide the set of all the deviating actions into the following partitions:

– DS1: Deviations by sending malformed messages: These are detected, and senders lose their deposit.

– DS2: Deviations in actions listed in Table 1:

We use mix of rationality and cryptographic arguments to show these deviations are weakly dominated
by honest actions.

– DS3a: Deviations that are not part of Table 1, but leads to aborting of protocol (e.g. false winner
claim, providing invalid proofs of computation etc). Here, we use various cryptographic constructs to
detect the cheating.

– DS3b: All other actions that do not affect the correctness of protocol but are deviations that can
affect the privacy of the deviating party. Here, we use the privacy sensitivity of parties to argue that
it is not rational for parties to deviate.

For the DS1, DS2, deviations have to occur in the Auction phase (Algorithm 2). The parties go through
the auction phase in l-rounds, where each round comprises of three parts, exchanging encoded bits through
OT, local computation to update state, and writing to BB. Correspondingly, in each round of protocol,
every party Pi with strategy πi contributes three types of input, namely, cbij,k, bcotij,k and bcbbij . Here
cbij,k denotes the choice bit used by the Pi as an OT receiver with Pk in round j of protocol; bcotij , k
denotes the encoding of dij that Pi uses as OT sender in round j with Pk, and bcbbij is the encoding of
dij that Pi writes on BB in round j. There is a unique honest strategy for each party. We describe all
other strategies of a party as deviations from the honest strategy.
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For the DS3a, we consider deviations that are other than changing the contributing bit in a round.
These deviations include false winner claim, and deviations in the proofs sought by the protocol. Here,
we argue that such deviations are protected by the security of cryptographic primitives.

The DS3b only comprises of deviations that are not included in the above two cases. For such devi-
ations, verification goes through (protocol does not abort), and there is no deviation as per Table-1. In
this case, protocol correctness is not affected, and so we argue such deviations can not increase the utility
of the deviating party.

We denote the action selected by Pi in round j using honest strategy πi while interacting with Pk
as sij,k and action selected using the deviating strategy as s′ij,k. We also denote the winner discovery

round by j̄. For example, suppose Pi is interacting with Pk during round j. Then an action ta→b ∈
{cbij,k, bcotij,k, bcbbij}, a, b ∈ {0.1} means Pi is supposed to use the bit a in honest run of protocol,
but chooses the bit b during action t. In each case, we show that the parties realize the best utility by
following the protocol honestly.

Actions using honest
strategy

Actions using dishonest
strategy

Choice bit selection cb1→1, cb0→0 cb1→0, cb0→1

Bit code sent to other parties
using OT

bcot1→1, bcot0→0 bcot1→0, bcot0→1

Bit codes written to BB bcbb1→1, bcbb0→0 bcbb1→0, bcbb0→1

Table 1: Actions available for parties.

Remark 3: Only the highest bidder can come forward to claim the auction by paying the computed
output. This is because, for any other bidder participating in a second price auction, it is not rational to
pay the second highest bid.

Remark 4: In the following, where we show that honest strategies dominate over the deviations, we
assume PPT rational parties. Hence, the inequalities (for the utilities of weakly dominant strategy) hold
with an overwhelming probability. In other words, there exists only a negligible probability by which the
parties can make gains with deviation.
We first prove a result that would be useful for subsequent proofs.

Lemma 3. Let Pk be an arbitrary party who uses actions bcota→b and bcbba→d such that b 6= d during
some round j. Let Pi be the honest party who uses dij = 1. Assuming the correctness of ΠOT protocol,
Pi will successfully identify Pk’s cheating with overwhelming probability.

Proof. Consider a cheating party Pk who uses actions bcota→b and bcbba→d such that b 6= d during some
round j. Then the party Pi with dij = 1 can show that Pk has indeed sent some bit code during OT and
written another bit code to BB as described in step 3 cheater detection part of the protocol specification.

Firstly we claim that no cheating party Pi can implicate an honest party Pk. Suppose, on the contrary,
that Pi claims Pk is cheating. In response, honest Pk successfully opens its OT sender randomness γkj,i

such that otskj,i = OT.S
(
otr1ij,k,M

(0)
kj,i, Bkj , γkj,i

)
. Now Pi has to produce a valid bit code B′kj to have

been received from Pk through OT, such that,

B′kj = OT.R2(otskj,i, β
′
ij,k)

=⇒ otskj,i = OT.S
(
otr1ij,k,M

(0)
kj,i, B

′
kj , γkj,i

)
However, this would contradict the correctness of ΠOT .

Likewise, cheating Pk can not refute honest Pi’s claim by producing different sender randomness to
show that the two bit codes are the same. Again, suppose on the contrary that Pk is able to produce two
different OT sender randomness γkj,i, γ

′
kj,i ∈ R such that

otskj,i = OT.S
(
otr1ij,k,M

(0)
kj,i, Bkj , γkj,i

)
= OT.S

(
otr1ij,k,M

(0)
kj,i, B

′
kj , γ

′
kj,i

)
This means OT sender Pk is able to produce two different OT sender randomness, both of which generate
the same OT sender message otskj,i for two different messages Bkj , B

′
kj – contradicting the correctness

of ΠOT . ut
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Lemma 4. If no party in the protocol deviates corresponding to actions in Table 1 and the protocol does
not abort, then the protocol computes the correct output.

Proof. Suppose the protocol does not abort but outputs a wrong winning price. Note that the winning
price is only a function of bcbb in the protocol. But since there is no deviation in bcbb by assumption,
the winning price is computed correctly. If any other person comes forward or the winner does not come
forward, then protocol leads to abort. ut

Theorem 3. Let Pi, i ∈ [n] be any PPT party participating in the second price auction protocol Π
described in Section 4.2. Then, assuming the security of the bit encoding scheme, Com is a secure com-
mitment scheme and ΠOT is a malicious secure OT implementation, the protocol Π is a weakly dominant
strategy equilibrium as per Definition 5.

Proof. Consider an arbitrary rational PPT party Pi. Let πi be the honest strategy (of following the pro-
tocol Π), and π′i be the strategy in which Pi deviates during some round j.

We will now show that deviations as per the partitions DS1, DS2, DS3, DS4 are dominated by honest
actions.

1. DS1: This is the case where there exists a party that deviates by sending malformed messages during
their protocol interactions. However, as per Algorithm 3, line 17, such actions result in protocol abort,
and parties sending such messages lose their deposit. Thus, these actions are dominated by honest
actions.

2. DS2: This is the case where there exists a party that deviates with respect to actions in Table 1.
From Lemmas 5, 6 and 7, we have that these deviations are dominated by the honest strategy for all
parties.

3. DS3: This is the case where no party deviates with respect to actions in Table 1

(a) DS3a : There exists a party that deviates in a way that leads to protocol abort. This happens
when one or more parties are caught cheating as per Algorithms 3, 7. In each case, the deviating
parties lose their deposit. Thus, the honest strategy πi dominates over the deviating strategy for
each Pi.

(b) DS3b : This is the case where protocol does not output abort. The protocol completes with correct
output (by Lemma 4). Thus, there is no change in monetary utility for any party (monetary utility
is a function of protocol output). The only thing such a deviation can hope to achieve is to gain
information utility. We argue this does not happen as follows:

– Learn information about other parties: A careful scrutiny of the protocol shows that the only
actions to be considered in this case are when the party samples its private randomness im-
properly (or deviates in sampling a well-formed message that induces an improper distribution
of randomness). We show what information a party Pi can learn about other parties with help
of such a deviation. Other parties’ messages are unaffected by such a deviation by Pi (other
parties’ messages are only a function of dij that they derive since there is no change as per
Table-1, dij is derived correctly by other parties). Thus, Pi cannot get any more information
than it would have gained while being honest.

– Effects on one’s own privacy as a result of such deviation: If the induced distribution of
randomness remains uniform, then no deviation has occurred. In case the induced randomness
is different from uniform, such deviation can potentially lead to loss of information utility of
the deviating party as the private inputs of such a party become vulnerable – since the
commitments may not be hiding and security of bit encoding scheme may not hold. Thus, for
all privacy sensitive Pi, deviating actions are dominated by honest actions.

Thus, for all privacy sensitive Pi, deviating actions are dominated by honest actions.

In case (3), where no party deviates in actions corresponding to Table 1, party may choose a strategy
that leads to abort (case (3a)) or no abort (case 3(b)) with certain probabilities. But such a strategy is
weakly dominated by honest strategy because in no case does the party increase its utility and, in some
cases, decrease its utility. Thus, for all protocol actions of Π, we have:

Ui(π
′
i, π̂−i) ≤ Ui(πi, π̂−i),∀i ∈ [n]

It follows that Π is indeed a Weakly Dominant Strategy Equilibrium as per Definition 5. ut

17



6.1 Choice bit selection

If state = in-race, each party Pi uses bit dij derived from ABP as its choice bit during round j.
If state = winner, the party chooses 1 as the choice bit, and if state = not-in-race, the party
chooses 0 as the choice bit. Let us denote a party’s action by cba→b. A deviating party can choose the
choice bit to learn bit codes from other parties. Thus each party has the following actions available:
{cb0→0, cb1→1, cb1→0, cb0→1} during a particular round for choice bit selection.

Lemma 5. For any rational PPT party Pi, let πi be the honest strategy, and π′i be the strategy in which
Pi deviates using either cb1→0 or cb0→1 in some arbitrary round j. Then, assuming that ΠOT is a
maliciously secure OT protocol, the strategy πi weakly dominates the strategy π′i for all i ∈ [n] during all
rounds 1 ≤ j ≤ l as per the Weakly dominant strategy Definition 4.

Proof. We first note that any strategy followed by Pi for choice bit selection only affects the view of Pi,
and the view of all other parties remains unaffected. Suppose Pi uses a cheating strategy while interacting
with another party Pk. I.e., sij,k ∈ {cb1→0, cb0→1}, for arbitrary i, j and k with i 6= k. The following
cases can occur:

– cb1→0: Suppose j < j̄, where j̄ is the “winning round”. Then, Pi will not be able to perform winner
discovery (Algorithm 7.4) as it has not received the correct bit codes. If Pi can perform winner
discovery, that would require Pi to come up with encoded bits of other parties, and in such a case,
we can construct an adversary who can break the OT sender security of ΠOT protocol. In this case,
the following can occur:

• If Pi does not cheat in bcotij,k and bcbbij , then there is no change in view of other parties, and
this does not affect the protocol. In this case, there is no change in gain in the utility of Pi.

• If Pi cheats in bcotij,k and/or bcbbij , then we will show in the next lemmas that there is a loss
in the utility of Pi.

On the other hand, if j ≥ j̄, Pi will not be able to execute its honest strategy in round j while writing
to BB. Because Pi can not compute the second highest bidder’s contribution during winner discovery
Algorithm 4.2 as Pi cannot recover the contribution of Pk. If it could, we can construct an adversary
who can break the OT sender security of ΠOT protocol. Therefore, with non-zero probability, Pi
cheats in bcotij,k and/or bcbbij and ends up losing deposit. In both the above cases, Pi’s utility is no
better than staying honest, i.e., ∀i ∈ [n], k 6= i:

Ui(π
′
i, π̂−i)s′ij,k=cb1→0

≤ Ui(πi, π̂−i)sij,k=cb1→1

– cb0→1: In this case, observe that Pi will be caught if Pi does not claim the auction, as Pi will not be
able to provide 0-token for round j when bsj = 0 (Algorithm 7. 12). If it could, we can construct an
adversary who can break the OT sender security of ΠOT protocol. . On the other hand, if bsj = 1, it
doesn’t learn any extra information than while being honest. Thus, ∀i ∈ [n], k 6= i:

Ui(π
′
i, π̂−i)s′ij,k=cb0→1

≤ Ui(πi, π̂−i)sij,k=cb0→0

So, let us consider the case when Pi claims the auction. Following are the two cases that can occur:

• Pi is the actual winner: In this case dkj = 0,∀k 6= i. Since Pi would have anyway learned the
encoding of other parties’ bits from the BB round, Pi does not gain any information utility in
this case.

• Pi is not the actual winner: In this case, there is a player Pw with a bid higher than Pi and w 6= i.
The following cases can occur:

* Protocol output (price of the auction) < bw: In this case, Pw will also claim the auction if it
is honest. Pi’s cheating will be caught during winner resolution (Algorithm 7.6). Hence the
monetary utility of Pi reduces in this case.

* Protocol output (price of the auction) ≥ bw: In this case, Pi has to pay more than bi and
hence its monetary utility decreases.

From the above cases, we have ∀i ∈ [n], k 6= i:

Ui(π
′
i, π̂−i)s′ij,k=cb0→1

≤ Ui(πi, π̂−i)sij,k=cb0→0
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To argue that honestly following the protocol is a weakly dominant strategy, consider the strategy
set π̂−i wherein at least one other party Pk deviates using the action cb0→1 during every round, i.e.,
s′kj,i = cb0→1,∀j ∈ [l], i 6= k. In this case, if Pi chooses to be honest, Pi is guaranteed to get the
security deposit redistribution of a cheater. On the other hand, Pi’s deviation would result in either
losing the auction or getting caught to lose the security deposit. Thus in this case,

Ui(π
′
i, π̂−i) < Ui(πi, π̂−i),∀i ∈ [n]

Thus Pi’s weakly dominant strategy is to stay honest and use actions sij,k ∈ {cb0→0, cb1→1}, ∀k ∈ [n]
for all rounds j ∈ [l], irrespective of the strategies π̂−i of other parties. Thus we have,

Ui(π
′
i, π̂−i) ≤ Ui(πi, π̂−i),∀i ∈ [n]

ut

6.2 Bit codes sent to other parties using OT

Each party shares its bit codes through OT to all other parties during each round. Only parties using
a 1 as the choice bit can retrieve these bit codes for their local computation. We denote this action by
bcota→b. A deviating party can choose to send bit codes so as to learn the highest bid. Thus, each party
has the following actions available to it: {bcot0→0, bcot1→1, bcot1→0, bcot0→1} during each round.

Lemma 6. For any rational PPT party Pi, let πi be the honest strategy, and π′i be the strategy in
which Pi deviates using either bcot1→0 or bcot0→1 in some round. Then, assuming the security of the
encoding scheme, ΠOT is a maliciously secure OT protocol and NIZK proofs are sound, the strategy πi
weakly dominates the strategy π′i for all i ∈ [n] during all rounds as per the Weakly dominant strategy
Definition 4.

Proof. Consider an arbitrary round j. Party Pi does not have any information about dkj for any k 6= i
before the OT round. Therefore, the choice of bcotij,k is independent of dkj . Now, the following cases can
arise:

– dkj = 0: In this case, if Pk is honest in cbkj,i selection, then choice of bcotij,k makes no difference
in the protocol. Hence, deviating Pi does not gain any utility in this case. On the other hand, if Pk
cheats, Pk will not be able to produce 0-token for the round and will get caught (Algorithm 7.12).
Else, we can construct an adversary who can break the sender security of ΠOT protocol. In such a
case, Pi would get the redistribution of the security deposit if it does not get caught (also by staying
honest) and loses the security deposit if gets caught. In either case, Pi’s utility does not increase by
cheating.

– dkj = 1: In this case, if Pk chooses to cheat in cbkj,i selection, then Pi’s utility remains at most as
much as its utility without cheating; but in case Pk is honest in the selection of cbkj,i, then by Lemma
3, Pk can catch the cheating behavior of Pi if Pi does not cheat in bcbbij . If Pi cheats in bcbbij , then
Pi would fail to provide accepting NIZK proof (Algorithm 7.17). This is because if Pi can provide
the accepting NIZK proof, one can construct an adversary who can break the soundness of the NIZK
proof. Either way ∀i ∈ [n], k 6= i and a 6= b,

Ui(π
′
i, π̂−i)(sij,k=bcota→b) ≤ Ui(πi, π̂−i)(sij,k=bcota→a)

Lastly, consider the strategy set π̂−i wherein at least one other party Pk uses the action bcot0→1 during
every round, i.e., s′kj,i = bcot0→1,∀j ∈ [l], i 6= k. In this case, if Pi chooses to be honest, Pi is guaranteed
to get the security deposit redistribution of a cheater. On the other hand, Pi’s deviation would result in
either losing the auction or getting caught to lose the security deposit. Thus in this case,

Ui(π
′
i, π̂−i) < Ui(πi, π̂−i),∀i ∈ [n]

Thus Pi’s weakly dominant strategy is to stay honest and choose sij,k ∈ {bcot0→0, bcot1→1} for all rounds
j ∈ [l] while interacting with all parties k ∈ [n], k 6= i, irrespective of the strategies π̂−i of other parties.
Hence we have,

Ui(π
′
i, π̂−i) ≤ Ui(πi, π̂−i),∀i ∈ [n]

ut
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6.3 Bit codes written to BB

Towards the end of each round, every party writes the bit codes used for computation during that round
onto BB. This is to facilitate the computation of the auction-price bit for the round. The actions chosen by
a party for this step are denoted by bcbba→b where a, b ∈ {0, 1}. Since each party evaluates the computed
bit using bit codes on BB to decide whether it stays in the race or not, these actions are decisive. Thus
each party has the following actions available to it: {bcbb0→0, bcbb1→1, bcbb1→0, bcbb0→1} during each
round. We would like to emphasize that no bidder can use the action bcbb0→1 to become a winner. This
is because writing to the BB does not affect winning chances but only affects the price to be paid for the
auction. Moreover, deviating actions bcbb0→1, bcbb1→0 do not help to fetch any extra information than
while being honest.

Lemma 7. For any rational PPT party Pi, let πi be the honest strategy, and π′i be the strategy in which Pi
deviates using either bcbb1→0 or bcbb0→1 in some round. Then, assuming the security of the bit encoding
scheme and NIZK proofs are sound, the strategy πi weakly dominates the strategy π′i for all i ∈ [n] during
all rounds as per the Weakly dominant strategy Definition 4.

Proof. Note that any party Pi that cheats in bcbbij and does not claim the auction gets caught because
they cannot provide an accepting NIZK proof (Algorithm 7.17). This follows because, otherwise, one can
construct a NIZK adversary who can break the soundness of NIZK proofs. Thus,

Ui(π
′
i, π̂−i) ≤ Ui(πi, π̂−i),∀i ∈ [n]

So the only case to be considered is if Pi cheats in bcbbij and claims the auction. The following cases can
occur:

– bcbb0→1: In this case, the computed value (the auction price) is more than Pi’s bid. Hence Pi will
lose monetary utility ∀i ∈ [n], k 6= i:

Ui(π
′
i, π̂−i)(sij,k=bcbb0→1) < Ui(πi, π̂−i)(sij,k=bcbb0→0)

– bcbb1→0: Firstly, observe that this case can occur only when j 6= j̄. However, in this case, there
exists at least another party Pk with dkj = 1. If Pk is honest, the computed output will be 1, and
hence Pi would not be able to provide winning proof due to the security of bit encoding scheme
(Algorithm 7.1) and loses deposit. If Pk is dishonest, Pi’s utility would be no better than staying
honest. Hence ∀i ∈ [n], k 6= i:

Ui(π
′
i, π̂−i)(sij,k=bcbb1→0) ≤ Ui(πi, π̂−i)(sij,k=bcbb1→1)

Thus Pi’s weakly dominant strategy is to honestly choose sij,k ∈ {bcbb0→0, bcbb1→1}, ∀k ∈ [n] for all
rounds j ∈ [l], irrespective of the strategies π̂−i of other parties. Thus for all i ∈ [n] we have:

Ui(π
′
i, π̂−i) ≤ Ui(πi, π̂−i)

ut

6.4 Privacy preserving computational dominant strategy equilibrium

Having established the equilibrium from Theorem 3, to argue privacy, it suffices to show that nothing
beyond the output is learned by parties who are non-deviating. For this, we use the ideal world – real
world paradigm. First, we present the description of a simulator for parties in different roles (winner,
second highest bidder and others). We would like to emphasize that due to the symmetric nature of our
protocol, it suffices to show the simulator for one party, which would be the same for others, too. We then
show that the view of a party Pk in a real run of the protocol is indistinguishable from the output of the
simulator. We denote by ViewΠk , the distribution of the view of party Pk while participating in protocol
Π.

Theorem 4. Assuming security of bit encoding scheme, Com is a secure commitment scheme, ΠOT is a
semi-honest secure OT protocol, and zero knowledge property holds for the NIZK proofs, Π specified in
Section 4.2 securely realizes the functionality F in the presence of non-deviating parties.

Proof. Ideal Functionality. We consider the ideal functionality F to identify the winner and to compute
the second highest bid. The functionality F operates with a set of parties P = {P1, . . . , Pn} as follows:
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– Each party Pi invokes F with input bi.

– Once all n bids are available, F computes:
w = arg maxi(bi) and bs = maxi6=w(bi)

– F returns the tuple (w, bs) to each party.

We will construct a simulator S for a PPT semi-honest party Pk, such that

ViewΠk ≈c SFPk

The simulator is invoked with public parameters pp, and bid bk of Pk.

Setup Phase:

– S samples secret keys and randomness xij , rij
$←− Zq on behalf of all parties Pi, i ∈ [n]. It samples

OT sender randomness γij,m ∈ R and OT receiver randomness βij,m ∈ R for all Pi interacting with
Pm during round j ∈ [l]. Computes the public keys Xij = gxij ,∀i ∈ [n].

– S generates the 0-tokens ωij,m for each party Pi interacting with party Pm, for rounds 1 ≤ j ≤ l.

– S generates the corresponding commitments to 0-tokens: chooses δij,m
$←− Zq, j ∈ [l], computes

Ωij,m = gωij,mhδij,m .

– For each party Pi, i 6= k, i 6= s, i 6= w: S constructs commitments to bits of bids of 0: chooses

aij
$←− Zq, j ∈ [l], computes cij = g0haij .

– S invokes F on behalf of Pk with input bk to obtain (w, bs).

– If bk 6= bs, one of the parties is designated as Ps. For this party, S constructs commitments csj =
Com(bsj , asj). Else commitments are constructed for bits of bk.

If k 6= w, S chooses j̄ to be the smallest value of j such that bsj = 0, 1 ≤ j ≤ l. S chooses bw such
that its first j̄ − 1 bits are equal to corresponding bits of bs, bwj̄ = 1 and remaining bits are all 0. S
computes bit commitments for party Pw for bits bwj and party Pk for bits bkj , j ∈ [l].
If k = w, S computes bit commitments for party Pk for bits bkj , j ∈ [l].
All commitments are written to BB.

Auction phase: For this phase, we need to distinguish three cases.

1. Pk is the winner :

– In this case, bw = bk. S identifies the round j̄ in which bw differs from bs.

– For 1 ≤ j < j̄ and each i 6= k, S invokes OT.R1(bkj , βkj,i) to obtain otr1kj,i. For j̄ ≤ j ≤ l, S
invokes OT.R1(1, βkj,i) to obtain otr1kj,i.

– For the party Ps, 1 ≤ j ≤ l and i 6= s, S invokes OT.R1(bsj , βsj,i) to obtain otr1sj,i.

– For all other parties Pm, for 1 ≤ j ≤ l and i 6= m, S invokes OT.R1(0, βmj,i) to obtain otr1mj,i.

All otr1 messages are written to BB.

– For the winner, S generates Bwj for the bits corresponding to bs for all rounds 1 ≤ j ≤ l.
S generates bit codes Bsj for the bits corresponding to bs for all rounds 1 ≤ j ≤ l. For the
remaining bidders, S generates 0-bit codes for all rounds. All bit codes are written to BB at the
end of each round.

– For Pw, S computes
OT.S(otr1ij,w, g

ωwj,i , Bwj , γwj,i) to obtain otswj,i for all parties i 6= w and for 1 ≤ j < j̄. For rounds

j̄ ≤ j ≤ l, S samples M ′wj
$←− G and runs OT.S(otr1ij,w, g

ωwj,i , M ′wj , γwj,i) to obtain otswj,i for
all parties i 6= w.

– For Ps, using γsj,i, S invokes OT.S(otr1ij,s, g
ωsj,i , Bsj , γsj,i) to obtain otssj,i for each OT receiver

Pi.

– For Pm where m 6= w,m 6= s, using γmj,i, S runs OT.S(otr1ij,m, g
ωmj,i , Bmj , γmj,i) to obtain otsmj,i

for each OT receiver Pi.
All ots messages are written to BB.

2. Pk is the second highest bidder:

– In this case, the input bk = bs. S chooses j̄ to be the smallest value of j such that bsj = 0.

– For 1 ≤ j < j̄ and i 6= w, S invokes OT.R1(bsj , βwj,i) to obtain otr1wj,i for OT sender Pi. For

j̄ ≤ j ≤ l and i 6= w, S invokes OT.R1(1, βwj,i) to obtain otr1wj,i.
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– For the party Pk, 1 ≤ j ≤ l and i 6= s, S invokes OT.R1(bsj , βsj,i) to obtain otr1sj,i.

– For all other parties Pm m 6= w,m 6= s, for 1 ≤ j ≤ l, S invokes OT.R1(0, βmj,i) to obtain otr1mj,i.

All otr1 messages are written to BB.

– For the winner Pw, S generates Bwj for the bits corresponding to bsj for all rounds. S generates bit
codes Bsj for the bits corresponding to bs for all rounds. For the remaining bidders, S generates
0-bit codes for all rounds. All bit codes are written to BB at the end of each round.

– For Pw, S computes
OT.S(otr1ij,w, g

ωwj,i , Bwj , γwj,i) to obtain otswj,i for all parties i 6= w and for 1 ≤ j < j̄. For rounds

j̄ ≤ j ≤ l, S samples M ′wj
$←− G and runs OT.S(otr1ij,w, g

ωwj,i , M ′wj , γwj,i) to obtain otswj,i for
all parties i 6= w.

– For Ps, S invokes OT.S(otr1ij,s, g
ωsj,i , Bsj , γsj,i) to obtain otssj,i for each OT receiver Pi, i 6= s.

– For Pm where m 6= w,m 6= s, S runs OT.S(otr1ij,m, g
ωmj,i , Bmj , γmj,i) to obtain otsmj,i for each

OT receiver Pi, i 6= m.
All ots messages are written to BB.

3. Pk is neither winner nor second highest bidder.

– In this case bk 6= bs, bk 6= bw. S chooses j̄ to be the smallest value of j such that bsj = 0, 1 ≤ j ≤ l.
– S compares the value bk with bs and identifies the round when Pk would drop out of race and

computes the values of dkj for 1 ≤ j ≤ l.
– For 1 ≤ j < j̄ and i 6= w, S invokes OT.R1(bsj , βwj,i) to obtain otr1wj,i. For j̄ ≤ j ≤ l and i 6= w,

S invokes OT.R1(1, βwj,i) to obtain otr1wj,i.

– For the party Ps, 1 ≤ j ≤ l and i 6= s, S invokes OT.R1(bsj , βsj,i) to obtain otr1sj,i.

– For the party Pk, 1 ≤ j ≤ l and i 6= k, S invokes OT.R1(dkj , βkj,i) to obtain otr1kj,i.

– For all other parties Pm m 6= w,m 6= s,m 6= k, for 1 ≤ j ≤ l and for all other Pi, S invokes
OT.R1(0, βmj,i) to obtain otr1mj,i.

All otr1 messages are written to BB.

– For the winner Pw, S generates Bwj for the bits corresponding to bs for all rounds 1 ≤ j ≤ l. S
generates bit codes Bsj for the bits corresponding to bs for all rounds 1 ≤ j ≤ l. Then S generates
bit codes Bkj for the bits corresponding to dkj for all rounds 1 ≤ j ≤ l. For the remaining bidders,
S generates 0-bit codes for all rounds. All bit codes are written to BB at the end of each round.

– For Pw, using γwj,i S computes
OT.S(otr1ij,w, g

ωwj,i , Bwj , γwj,i) to obtain otswj,i for all parties i 6= w and for 1 ≤ j < j̄. For rounds

j̄ ≤ j ≤ l, S samples M ′wj
$←− G and runs OT.S(otr1ij,w, g

ωwj,i , M ′wj , γwj,i) to obtain otswj,i for
all parties i 6= w.

– For Ps using γsj,i, S computes
OT.S(otr1ij,s, g

ωsj,i , Bsj , γsj,i) to obtain otssj,i for each OT receiver Pi.

– For Pk using γkj,i, S computes
OT.S(otr1ij,k, g

ωkj,i , Bkj , γkj,i) to obtain otskj,i for each OT receiver Pi.

– For Pm where m 6= w,m 6= s,m 6= k using γmj,i, S runs OT.S(otr1ij,m, g
ωmj,i , Bij , γmj,i) to obtain

otsmj,i for each OT receiver Pi.
All ots messages are written to BB.

For each of the above cases, during Verification Phase, S does the following:

– S generates NIZK proofs for all losing parties for the decider rounds as per their bids and writes to
BB.

– S opens the private keys xwj , rwj used for encoding the bit codes of winner Pw for all rounds, 1 ≤ j ≤ l
and writes them to BB.

– S provides the 0-tokens on behalf of all losing parties for the rounds when computed output is 0, and
writes them to BB. Corresponding 0-token commitments for each party are also opened onto BB.

In order to argue indistinguishability, we consider the following hybrids.
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– H0: This is the real run of the protocol where parties generate actual public keys, bit commitments to
the bits of their bids, bit codes corresponding to their bids, 0-tokens and their commitments, NIZK
proofs and generate OT messages as per their contributed bits for the round.

– H1: This is same as H0 except for following. In the verification phase, NIZK proofs are replaced
with simulated proofs by invoking the Zero Knowledge simulator that is guaranteed by the NIZK
construction.
By the zero knowledge property of NIZK proofs, H1 is indistinguishable from H0 for all PPT distin-
guishers.

– H2: This is same as H1 except for following. During the auction phase, βij,m ∈ R are sampled for
each party Pi acting as OT receiver while interacting with OT sender Pm where i 6= k, i 6= s, i 6= w.
OT.R1(0, βij,m) is used to compute otr1ij,m and written to BB.
By receiver security of ΠOT , H2 is indistinguishable from H1 for all PPT distinguishers.

– H3: This is same as H2 except for following. During auction phase, for each OT sender Pi interacting
with OT receiver Pm, OT.S(otr1mj,i, g

ωij,m , Bij , γij,m) is invoked with Bij being 0-bit code, to compute
otsij,m for all parties i 6= k, i 6= s, i 6= w and for 1 ≤ j < l and written to BB. Moreover, at the end
of the round same 0-bit codes Bij are written to the BB.
By security of the bit encoding scheme, H3 is indistinguishable from H2 for all PPT distinguishers.

– H4: This is same as H3 except for following. During the setup phase, commitments are for 0-bits for
all parties Pi, i 6= k, i 6= s, i 6= w and written to BB.
By hiding property of the commitment scheme Com, H4 is indistinguishable from H3 for all PPT
distinguishers.

Observe that the hybrid H4 does not have any information about the bids of parties other than Pk and
Ps. Thus Pk cannot learn anything about losing bids in H4. Also, in H0, the view of Pk corresponds to
the real run, whereas H4 corresponds to S’s output. Moreover, by transitivity, H0 ≈c H4. Thus, it follows
that,

ViewΠk ≈c SFPk

ut

The following Theorem stating that Π is a Privacy preserving computational dominant strategy equi-
librium, follows as a corollary of Theorems 3 and 4.

Theorem 5. Let Pi, i ∈ [n] be rational parties with respective utility functions (U1, . . . , Un) as described
above. Assuming security of bit encoding scheme, Com is a secure commitment scheme and ΠOT is a
maliciously secure OT protocol, and zero knowledge property holds for the NIZK proofs, the protocol
Π described in Section 4.2 is a Privacy enhanced computational dominant strategy equilibrium as per
Definition 6.

6.5 Colluding parties

We consider bidders participating in the auction to be individually rational and can strategically act to
enhance their utilities. One such action would be to collude with other bidders. There have been different
approaches to model and tackle such collusion in the literature. Micali and Rabin [MR14] discuss the
prevention of collusion among bidders to reduce the auction price. They propose rewarding the second
highest bidder. As a result, parties would strive to be either highest or second highest bidders, thus stay
truthful and prevent collusion among bidders. However, their scheme requires a central auctioneer and
leaks the identity of the second highest bidder. Some works treat collusion to be managed by a single
rational adversary [GKTZ12] while other parties are treated as honest. Other works demand that Nash
equilibrium be achieved even if some of the parties deviate, referred to as t−resilient Nash equilibrium
by Katz [Kat08] and m-stability in the work of Biçer, Yildiz and Küpçü [BYK21]. Instead, we treat the
formation of collusion as a strategic move that rational parties choose. Our modelling has two important
consequences: a) parties who are not part of collusion are not restricted, to be honest – but rational,
strategically deciding to stay out of the collusion. b) As we will show in Lemma 8, this model helps to
get collusion-resistance for free in our protocol.
In our setting, a group of parties come together to form a collusion if each of them is better off as a
part of the group rather than acting alone. We believe that such a notion of collusion is more natural
in a rational framework. Since each party joins a collusion for individual gains, the utility of a collusion
inherently depends on utilities of individual players. In this work for auctions, where we model players
as privacy-sensitive, we consider the utility of parties in a collusion as follows:
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– Monetary utility: A collusion may choose to redistribute the total monetary utility gain in any ar-
bitrary fashion. In such redistribution, no party should lose their monetary utility as compared to
them acting alone.

– Information utility: Since colluding parties are individually rational, no such party prefers to lose any
information utility by colluding. Hence, we define information utility of collusion to be positive only
when no colluding party loses individual information utility. For this, we consider privacy-sensitive
parties (a refinement of Equation 2) who value their privacy more than the information gained from
learning about the private inputs of other parties. Such parties would not take up any action in the
protocol that might result in leakage of their private inputs.

To summarize, we consider individually rational parties who do not form any collusion unless they can
make gains from such a collusion and their private information is protected. Let Pi be an arbitrary privacy
sensitive PPT rational party. Let C be an arbitrary collusion with Pi ∈ C and C̄ be set of parties not in C.
Let bC̄ represent the bids of parties in set A. Then each Pi ∈ C would be interested to learn about some
function fi(bC̄). On the other hand, being privacy-sensitive, Pi would be wary of some j 6= i such that
Pj learns fj(bi) for some function fj . These considerations are captured by modifying the information
utility of Equation 2 as below:

Zi



= zi if Pi learns no more than output of auction protocol.

> zi if Pi learns fi(bC̄)

< z′i if ∃j 6= i such that Pj learns fj(bi) for some function fj .

< z′′i same as previous case, but Pj also associates it with Pi.

< zi if protocol aborts.

(4)

We let z′i, z
′′
i < 0 and z′′i < z′i, emphasising that letting another party learn the identity of Pi along with

its private bid information bi is considered bigger information utility loss for Pi. The negative information
utility holds even if Pi has additionally learned about fi(bC̄). This is to emphasise that parties in collusion
do not prefer to lose their privacy even if it helps in learning about other parties’ bids. We refer to such
parties as Privacy-sensitive rational parties.

We present the following Lemma for an arbitrary collusion C formed after the commitments to bids
(Algorithm 1.12). This does not weaken the adversarial model since if collusion were to change these
commitments, the inputs to the protocol would be changed (which is out of the scope of any protocol
design).

Lemma 8. For any privacy-sensitive (Equation 2) rational PPT party Pi, let πi be the honest strategy,
and π′i be the strategy induced on Pi while being part of collusion. Then, assuming security of bit encoding
scheme, Com is a secure commitment scheme and NIZK proofs are sound, the strategy πi weakly dominates
the strategy π′i for all i ∈ [n] as per Definition 4.

Recall that we consider rational parties participating in the SPA protocol to be privacy sensitive,
regarding collusion. That is,

1. Parties join collusion only if they can make gains in their monetary/information utility.

2. Parties like to learn the information only if there is no loss of their own private information.

We will make use of these assumptions about the rational parties for the proof.
We prove this Lemma 8 in two parts. We first show that no deviation as a part of collusion increases

monetary utility.

Lemma 9. For any privacy-sensitive (Equation 4) rational PPT party Pi, let πi be the honest strategy,
and π′i be the strategy induced on Pi while being part of collusion. Then, assuming security of bit encoding
scheme, Com is a secure commitment scheme and NIZK proofs are sound, the strategy πi fetches at least
as much monetary utility as π′i for all i ∈ [n].

Proof. Let C be an arbitrary collusion. We first consider the monetary utility and show that no party in
a collusion can enhance its monetary utility.

The collusion C can only improve its monetary utility by changing the outcome of the protocol. This
can be accomplished in one of the three ways. In each case, we will show that for any deviation from C
which changes the outcome of the protocol, C’s utility does not increase.

1. Change the winner: Suppose C’s deviation changes the winner from Pi to Pj . As a result, one of the
following cases occurs:
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– Pj not in C: In this case, only Pj can have a gain in monetary utility (by Equation 4). Further,
note that such a case arises only when Pi is in C and Pi acts differently compared to its bid
commitment (either for bcbb or bcot in some rounds). Therefore Pi can not provide proofs of
correct computation assuming that ΠOT is a secure OT protocol and NIZK proofs are sound (See
Algorithms 7.17 and 7.12) and loses its security deposit, resulting in decreased monetary utility
of C.

– Pi and Pj are both in C: In this case, either Pi can not provide proof-of-not-winning assuming
soundness of NIZK proofs (See Algorithm 7.17) or Pj can not provide proof of winner claim
assuming security of bit encoding scheme (See Algorithm 7.1), hence C’s utility decreases.

– Pj in C but Pi not in C: In this case, bj < bi. Hence Pj ends up paying higher value than its bid
– resulting in reduced monetary utility for C.

2. Change the winning price: For this, at least one of the parties in collusion say, Pi ∈ C has to deviate
using bcbb, which gets detected through NIZK proofs (See Algorithm 7.17 and Lemma 7) and loses
deposit. Hence the collusion loses utility

3. Attempts to implicate an honest party: One can improve the monetary gains in SPA by receiving the
redistributed deposit amount of a cheating party. For this, a party Pi ∈ C may accuse another party
of using different encodings in bcot and bcbb. However, as shown in Lemma 3 this attempt would
result in Pi losing deposit.

4. Avoid reporting deviation: Suppose Pi 6∈ C deviates in bcot and bcbb which is detectable by C (See
Algorithm 3 and Lemma 3). If C does not have the highest bidder, not reporting this would result in
reduced utility. If C has the highest bidder in it, not reporting the deviation may result in the increased
price of the auction or missing the winner discovery – reducing the overall utility of collusion.

Thus, the monetary utility of collusion only decreases with any attempt to change the outcome of the
protocol. ut

The only other thing a collusion can do is deviate in a way that does not affect the protocol and try to
gain more information. We now show that the collusion cannot gain in information utility in this case
either.

Lemma 10. For any privacy-sensitive (Equation 4) rational PPT party Pi, let πi be the honest strategy,
and π′i be the strategy induced on Pi while being part of collusion. Then, assuming security of bit encoding
scheme, Com is a secure commitment scheme and NIZK proofs are sound, the strategy πi achieves as
much information utility as π′i for all i ∈ [n].

Proof. By Lemma 9, a rational collusion can not increase its monetary utility (specifically, cannot change
the correctness of protocol output). We first prove (in Lemma 13 below) that a deviation that is not
detected and does not change the output does not affect the computation that a collusion can perform.
Hence these deviations are weakly dominated by πi, where all colluding parties stick to the protocol
Π. So it is enough to consider the case when parties do not deviate, but use pool of their views of

protocol
(
ViewΠi

)
i∈C

(input of the computation that a collusion can do) to run arbitrary computation.

We then characterize in Lemma 11 below what extra information a collusion can hope to gain (output
of the computation that a collusion can get), when all parties have individual utilities as mentioned in
Equation 4. Further, in order, for the collusion to increase its information utility, both the Highest bidder
(HB) and the Second highest bidder (SHB) should be part of it (Lemma 12 below).

Now that we have established that a collusion that does not include both SHB and HB is not rational,
and characterized the only computation this collusion can perform (OR of bits of parties outside collusion,
by Lemma 11), we argue that it is irrational for SHB to be a part of this collusion if anyone other than
SHB gets the output (characterizing who can get the output). If anyone apart from SHB gets the output
(OR of non-colluding parties), then they can conclude that SHB is a part of collusion and hence decreases
the information utility of SHB (Equation 4). To summarize, a set of colluding parties can run an MPC
outside the protocol with their views as input and obtain OR of bits of non colluding parties as output,
where this output is given only to SHB. With the above observations, the following cases are possible:

– C formed after protocol: In this case, no party other than SHB would collude as they cannot increase
their information utility. Hence, no party other than SHB would collude.

– C formed during protocol: Let P ′ be a party in C that does not end up as HB or SHB. Since P ′ does
not learn anything, P ′ has no chance to increase its own utility. But Suppose parties, other than P ′,
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in C form another collusion, C ′, to carry out the same exercise. Suppose SHB, as part of C ′, learns
B′. The following cases are possible:

• B′ > B: In this case, SHB would be able to learn that the specific party P ′ has the largest bits
outside C ′. But if P ′ never participated in any collusion to begin with, SHB only learns bits of
P ′ but would not be able to associate it to P ′.

• B′ = B: In this case, SHB learns that bits used by P ′ are strictly lower than B. If P ′ did not
participate in any collusion to begin with, SHB can not learn this information.

Since this argument holds for any party that is not HB or SHB, it is irrational for any privacy sensitive
party to participate in any collusion. Here we note that if the party ends up to be neither HB nor
SHB, then there is a strict reduction in its information utility due to the previous case. Since a party
follows a certain strategy only if that does not reduce its utility, again, such a collusion is irrational.

To summarize, observe that the collusion can be formed either during the protocol run or after the
protocol run. During the protocol run, since parties lose their information utility in case they do not
end up being SHB, they desist from colluding. After the protocol run, no party other than SHB has any
chance to gain information utility by forming collusion and hence no collusion is formed. Thus it follows
that ∀i ∈ C, Zi ≤ zi.

Hence, forming collusion for gains in information utility is weakly dominated by acting individually.
ut

Lemma 11. Suppose every party acts as per Π, i.e., follows the SPA protocol, then as a result of utilities
defined in Equation 4, and assuming security of bit encoding scheme, Com is a secure commitment scheme
and NIZK proofs are zero knowledge, the only information a collusion can learn is OR of bits contributed
by non-colluding parties.

Proof. Because of utilities defined in Equation 4, the output of any joint computation that a collusion
performs on their views should only contain information about parties outside the collusion (as it is
irrational for the colluding party to reveal information about itself). The only information to be learned
about parties outside collusion is to learn about their bids. Now, note that the hiding property of the
commitment scheme Com ensures that the bit commitments written to BB do not leak any information
to PPT parties (and their collusion). Also, by zero knowledge property of the proofs, the NIZK proofs
also do not leak anything about values committed. Hence, we consider the collusion C to use the encoded
bits written to BB for information gain. From Lemma 15 we have that C can learn no more than the bits
contributed by the highest bidder outside C, without learning its identity. ut

Lemma 12. Suppose every party acts as per Π, i.e., follows the SPA protocol, then assuming security
of bit encoding scheme, Com is a secure commitment scheme and NIZK proofs are zero knowledge, a
collusion of parties can not learn anything unless both HB and SHB are part of the collusion.

Proof. Recall that HB contributes exactly the same bits as that of the second highest bid. By the previous
lemma, any collusion that does not have both SHB and HB in it can learn only the SH bid value. ut

Lemma 13. Suppose no party in the collusion deviates such that their deviation is detected or changes
the output of the protocol, then the collusion can not learn anything more about a party outside the
collusion compared to the case where every party in the collusion follows the protocol.

Proof. A careful scrutiny of the protocol shows that the following are the only deviations that neither
get detected by a party outside collusion nor change the output of the protocol:

– Deviations in OT communication between Pi and Pj such that both Pi, Pj ∈ C: Such a deviation does
not affect the view of a non-colluding party and hence does not change messages sent by that party.

– Deviation in sampling randomness: Other parties’ messages are unaffected by such a deviation from
any party in the collusion (their message is only a function of dij computation that they locally
perform, and any deviation to change this computation gets detected)

The above points show that the encodings received (from non colluding parties) by every party in the
collusion remain unaffected. Since the encodings of non-colluding parties remain the same as honest, by
Lemma 15, the collusion can learn no more than OR of bits of non-colluding parties (as in Lemma 11). ut
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7 Experimental results

Our protocol was implemented in C++ and executed on a single machine using Intel core i7 processor with
32GB RAM, 2.9 GHz, running Ubuntu 22.04 operating system. Each bidder is represented by a separate
process. We have used the elliptic curve secp256k1 as the underlying Group from OpenSSL. NUMS
implementation is used for computing the group generators. We have implemented the NIZK proofs
required for our protocol (for relation 8 in Appendix B) using the construction from [CS97,DGP22]. We
instantiate our Oblivious Transfer with the construction in Figure 13 of [CSW20]. In the following, we
compare our protocol’s run time and communication cost with the protocols from MP-SPDZ suite [Kel20]
in Table 2. For each protocol, the measurements are taken for 15 bidders with each bid 100 ≤ b < 1000.
We observe that our protocol runs 1.7X faster than the semi-honest protocol Atlas.

Protocol Threat
model

Run time
(in sec)

Communication
Complexity
(in MB)

Our Protocol Rational 1.26 0.779

Atlas [GLO+21] Semi-honest 2.11 6.09

Mascot [KOS16] Malicious 55.65 4074.5

Semi-
BMR [LPSY19]

Semi-honest 198.77 18462

Real-
BMR [LPSY19]

Malicious 1137.39 109905

Table 2: Comparison of the efficiency of protocols.

(a) Protocol Run times vs number of bidders (b) Protocol Run times for SPA and Atlas compared

Figure 2b shows the plot of run times of various protocols for different numbers of bidders. For BMR
protocols, the maximum number of bidders we could consider while running on our machine was 15, and
for Mascot, it was 35.

8 Conclusion

We construct a protocol for Second Price Auction that is provably secure in the rational setting and
concretely efficient. We utilize the notion of Privacy preserving computational dominant strategy equilib-
rium to establish rational security. Our work leaves open several interesting questions about extending
the protocol to other flavors of auctions, such as multi-unit auctions, analyzing other adversarial models
like adaptive strategies and designing broadcast protocols with rational parties.
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A Anonymous Bidding Protocol

We use the Anonymous Bidding Protocol (ABP) to compute the highest bid, which is a variation of the
Anonymous Veto Protocol (AVP) first described in [HZ06] and later used in [BHSR19,DGP22,GKS22].

ABP runs for l rounds – where l is the number of bits in the binary representation of the bids. The
protocol proceeds as below:

– Let Pi’s bid bi = (bi1|| . . . ||bil).
– Pi participates in jth round of ABP by contributing bij . This continues until Pi keeps contributing a

bit equal to the computed output for the round. If in a round, there is other bidder who contributes
a 1 while the Pi has 0, Pi drops out of the race at the end of that round.

– A party who has dropped out of the race, continues to participate in the protocol but only contributes
a 0 for all remaining rounds.

– Any round 1 ≤ j ≤ l which has at least one bidder bidding a 1 bit is considered as the decider round.

– Thus, a bidder Pi uses the bid dij during round j as

dij =


0, if Pi is not in race

or Pi bid 0 in any of previous decider rounds.

bij , if Pi is in the race

or Pi bid 1 in all previous decider rounds.

– Logical OR of all individual bids used in jth round is evaluated to be the jth computed bit. i.e.,

bsj =

n∨
i=1

dij

– Protocol’s output bid bs is computed as bs = bs1|| · · · ||bsl
Security of encoding: In order to ensure the privacy of the bits used during computation, the con-
tribution bits are encoded such that no PPT party can distinguish between the encoding of 0 and the
encoding of 1. There can be several possible encodings for representing the bits. For example, parties can
use a secret share of 0 to represent 0-bit encoding and a secret share of any non-zero number to represent
1-bit encoding. The reconstructed value would represent the encoding of the computed bit. Notice that
this scheme does indeed satisfy the requirements of ABP computation described above.

However, we use the encoding scheme adopted from [DGP22]. For this, we make use of a group G of
prime order q where DDH assumption holds. Let g ∈ G be a publicly known generator. The encoding
and corresponding computation on the coded bits are performed as follows:

1. Each bidder Pi, i ∈ [n] allocates private keys xij , rij
$←− Zq, i ∈ [n], j ∈ [l]. Public keys Xij = gxij

are published to the bulletin board.

2. Once public keys from all bidders are available, each bidder computes:

Yij =

∏i−1
k=1Xkj∏n
k=i+1Xkj

3. Each contributed bit dij is encoded as :

Bij =

{
0-bit code : Y

xij

ij if dij = 0

1-bit code : grij if dij = 1

4. The jth computed bit is evaluated as the logical-OR of individual bidding bits bij for the jth position:
bsj =

∨n
i=1 bij . This is computed using the encoded bits as follows:

bsj =

{
0, if

∏n
i=1Bij = 1

1, if
∏n
i=1Bij 6= 1

(5)

Assuming DDH assumption holding in G, for all PPT parties, the encoding of 0 and 1 are indistinguish-
able.
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Lemma 14. Assuming DDH assumption holds in G, for all pair of PPT parties Pk, Pi, k 6= i, following
two distributions are indistinguishable:

1. (g, (X1, . . . , Xn) , Yi, Y
xi
i )

2. (g, (X1, . . . , Xn) , Yi, g
ri
i )

where g ∈ G is the generator of group G, Xk = gxk , xk ∈ Zq,∀k ∈ [n], ri ∈ Zq and Yi =

∏i−1
k=1Xk∏n
k=i+1Xk

.

Moreover, Y xi
i and grii are 0 and 1 encodings of party Pi.

Proof. Suppose that there exists a PPT adversary A who can distinguish between the aforementioned
distributions of certain party Pi. We will now construct another adversary B who can break DDH as-
sumption. The reduction is as follows.

– DDH challenger chooses b
$←− {0, 1} and u, v, w

$←− Zq. Sets U = gu, V = gv. If b = 0, sets W = guv

and if b = 1, sets W = gw.

– B playing the DDH attack game receives the challenge (g, U, V,W ).

– For Pi whose encoded bits are to be distinguished, B sets Xi = gu.

B chooses Xk
$←− G,∀k 6= i, k 6= 1. Sets X1 = V ·

∏n
k=i+1Xk∏i−1
k=2Xk

.

– B uses A as a subroutine and sends across
(g, (X1, . . . , U, . . . ,Xn) , V,W ) to A.

– A, being the 0, 1-encoding distinguisher returns its guess b′ to B, who returns same bit as its guess
to DDH challenger.

Notice that since A is assumed to be PPT distinguisher, B also runs in polynomial time. Consider the
two cases:

b = 0 : In this case, view of A is (g, (X1, . . . , Xn) , Yi, Y
xi
i ) which corresponds to distribution with Pi’s 0-bit

encoding where Yi = gv, v =
(∑i−1

k=1 xk −
∑n
i+1 xk

)
, Xk = gxk ,∀k 6= i, Xi = gu and xi = u.

b = 1 : In this case, view of A is (g, (X1, . . . , Xn) , Yi, g
ri) which corresponds to distribution with Pi’s 1-bit

encoding, where Yi = gv, v =
(∑i−1

k=1 xk −
∑n
i+1 xk

)
, Xk = gxk ,∀k 6= i, Xi = gu, xi = u and ri = w.

Pr[A wins the game]

= Pr[b′ = 1|b = 1]Pr[b = 1] + Pr[b′ = 0|b = 0]Pr[b = 0]

=
1

2
(Pr[b′ = 1|b = 1] + Pr[b′ = 0|b = 0])

=
1

2
(Pr[b′ = 1|b = 1] + 1− Pr[b′ = 1|b = 0])

=
1

2
+

1

2
(Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0])

=
1

2
+

1

2
Pr[Distinguishing advantage of DDH adversary B]

However, since DDH assumption holds in G,

Pr[Distinguishing advantage of DDH adversary B] ≤ negl

Hence we have Pr[A wins the game] ≤ 1

2
+ negl ut

In addition, this encoding also ensures that any collusion C of parties does not learn anything more than
the highest bid among the remaining parties C̄.

Lemma 15. Let P1, . . . , Pn be a set of PPT parties. Let each Pi sample bi
$←− {0, 1}, encode Bi as per

the bit encoding scheme mentioned above and write the same to BB. Let C be the set of colluding parties.
Assuming security of bit encoding scheme, the information learnt by C is

∨
k∈C̄ bk where bk are the bits

sampled by Pk ∈ C̄.

Proof. Recall that each party Pi writes the encoded bit Bi to the BB. This enables the parties to evaluate
the OR of the contributed bits as in Equation 5. Also, observe that this is the only computation that
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is defined on these encoded bits. Hence, the possible leakage is when the parties in C use their private
inputs along with the encoded bits written on BB.

Parties in collusion have a choice to either use encoding of 1-bit or 0-bit for such a computation.
However, since the computation in Equation 5 is for the OR of the computed bits, using 1-bit encoding
masks the inputs of parties in C̄. Since parties in collusion C are interested in learning about the bits in
bids of parties in C̄, they pool their 0-encoding and evaluate the product WC̄ as follows:

WC̄ =
∏
k∈C

[0]k ·
∏
k∈C̄

Bk (6)

Two cases to be considered (as per the Equation 5):
In the first case WC̄ = 1, since each party in C has contributed the 0 encoding, it must be the case

that every party in C̄ has also contributed a 0. Thus in this case, the bit learnt by C is indeed
∨
k∈C̄ bk.

In the second case WC̄ 6= 1, at least one party in C̄ has used a 1-bit. In the following, we will argue
that C cannot learn either who from C̄ has contributed 1 or how many parties in C̄ have contributed 1.
For this, we will show that the distribution where some parties in C̄ (say q of them) contribute a 1-bit
encoding is indistinguishable from the distribution where at most one of the parties in C̄ contribute 1.

Let R =
{
Bi | Pi ∈ C̄, Bi = gri

}
, i.e., the set of parties in C̄ who have contributed a 1 during round j.

Let |R| = q. View of the collusion C (excluding elements unrelated to the encoding of bits),

ViewC =
(
(gxi)i∈[n], (Bi)i∈C , (Bi)i∈C̄\R, (Bi)i∈R

)
(7)

We consider the following hybrids:
H0 : ViewC0 =

(
(gxi)i∈[n], (Bi)i∈C , (Bi)i∈C̄\R, (Bi1 , . . . , Biq )

)
=
(
(gxi)i∈[n], (Bi)i∈C , (Bi)i∈C̄\R, (g

ri1 , . . . , griq )
)

H1 : is same as H0 except that Pi1 ’s 1-bit encoding is replaced with 0-bit encoding.
ViewC1 =

(
(gxi)i∈[n], (Bi)i∈C , (Bi)i∈C̄\R, (Y

xi1
i1

, . . . , griq )
)

H1 is indistinguishable from H0 from Lemma 14.

H2 : is same as H1 except that Pi2 ’s 1-bit encoding is replaced with 0-bit encoding.
ViewC2 =

(
(gxi)i∈[n], (Bi)i∈C , (Bi)i∈C̄\R, (Y

xi1
i1

, Y
xi2
i2

, . . . , griq )
)

H2 is indistinguishable from H1 from Lemma 14.
...Hm : is same as Hm−1 except that Pim ’s 1-bit encoding is replaced with 0-bit encoding.
ViewCm =

(
(gxi)i∈[n], (Bi)i∈C , (Bi)i∈C̄\R, (Y

xi1
i1

, Y
xi2
i2j

, . . . , Y
xim
im

, . . . , griq )
)

Hm is indistinguishable from Hm−1 from Lemma 14.
...Hq−1 : is same as Hq−1 except that Piq−1

’s 1-bit encoding is replaced with 0-bit encoding.

ViewCq−1
=
(

(gxi)i∈[n], (Bi)i∈C , (Bi)i∈C̄\R, (Y
xi1
i1

, . . . , Y
xim
im

, . . . , Y
xiq−1

iq−1
, griq )

)
Hq−1 is indistinguishable from Hq−2 from Lemma 14.

Notice that H0 has all members of R contributing 1-bit encoding whereas Hq−1 has all members
except Piq ∈ R contributing 0-bit encoding. By transitivity, H0 ≈c Hq−1. Moreover, the computed value
WC̄ 6= 1 for each of the hybrids. Thus it follows that C cannot learn the number of parties in C̄ who have
contributed 1. Moreover, parties (Pi1 , . . . , Piq−1

) change from using 1-bit encoding in H0 to 0-encoding
in Hq−1. Yet the two distributions remain indistinguishable. Thus C cannot learn the information as to
who amongst C̄ would have contributed 1.

The only bit learnt by C is
∨
k∈C̄ bk. Moreover, as shown in the correctness Theorem 1, the computed

value is the highest bit among the contributed bits. Since the parties in C have contributed a 0 bit
encoding, it follows that the computed values by C are indeed the bits contributed by the highest bidder
in C̄. ut

B NIZK Proofs

This section describes the NIZK proof for losing parties. This proof is used to prove that a party has
correctly computed the bit code written onto BB during every decider round j. For the construction of
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these NIZK proofs, we assume that Pedersen Commitment scheme [Ped92] is used in the protocol. Each
losing bidder Pi needs to prove the following for jth iteration:

– Proof of commitment: cij = Com(bij , aij) = gbijhaij

– Proof of knowledge of secret keys used for computation: Bij = Y
xij

ij for the 0-bit code and Bij = grij

for the 1-bit code.

– Proof of knowledge of secret key used for computation during the previous decider round j̄, Bij̄ = Y
xij̄

ij̄

for the 0-bit code or Bij̄ = grij̄ for the 1-bit code. Along with this, knowledge of actual secret keys
used for computation during iterations j̄, j also need to be proved.

Thus, the relation that is established by this NIZK is:

R =


bij , aij ,

xij , rij̄ ,

rij , xij̄

∣∣∣∣∣

(
cij
g

= haij ∧Bij̄ = grij̄ ∧Bij = grij
) ∨

(
cij = haij ∧Bij = Y

xij

ij ∧Xij = gxij
) ∨cijg = haij ∧Bij̄ = Y

xij̄

ij̄
∧Xij̄ = gxij̄∧

Bij = Y
xij

ij ∧Xij = gxij




(8)

We use the approach in [CS97,DGP22] for constructing NIZK for the above relation. This is accom-
plished by representing the relation in terms of the following clauses:

F1 =DL(h, cij)⊗ [DL(Yij , Bij) ∩DL(g,Xij)]

F2 =DL(h, cij/g)⊗DL(g,Bij̄)⊗DL(g,Bij)

F3 =DL(h, cij/g)⊗
[
DL(Yij̄) ∩DL(g,Xij̄)

]
⊗

[DL(Yij , Bij) ∩DL(g,Xij)]

Thus, the proofs need to be constructed for F = F1 ∪ F2 ∪ F3.

To prove the knowledge of either F1 or F2 or F3, assuming that Fk is known, party Pi proceeds as
follows:

1. Choose v0, v1, v2, v3, v4, v5, v6, v7
$←− Zq.

2. Choose (w0, w1, w2) with wk = 0 and wi
$←− Zq for i 6= k.

3. Compute the commitment tokens:

– t0 = cw0
ij h

v0 , t1 = Bw0
ij Y

v1
ij , t2 = Xw0

ij g
v1

– t3 =

(
cij
g

)w1

hv2 , t4 = Bw1

ij̄
gv3 , t5 = Bw1

ij g
v4 ,

– t6 =

(
cij
g

)w2

hv5 , t7 = Bw2

ij̄
Y v6

ij̄
,

– t8 = Xw2

ij̄
gv6 , t9 = Bw2

ij Y
v7
ij , t10 = Xw2

ij g
v7

4. Compute the random challenge using the public hash function as:

H = H
(
h,cij ,Yij ,Bij ,g,Xij ,

cij
g
,Bij̄ ,Yij̄ ,Xij̄ ,

t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10

)
mod q

5. Compute (γ0, γ1, γ2) as:

γi =

{
H − (w0 + w1 + w2) mod q, if i = k

wi, otherwise

6. Set:

(u0, u1, u2, u3, u4, u5, u6, u7) =


(aij , xij , 0, 0, 0, 0, 0, 0), k = 1

(0, 0, aij , rij̄ , rij , 0, 0, 0), k = 2

(0, 0, 0, 0, 0, aij , xij̄ , xij), k = 3

7. Compute responses R = (s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10) as (all operations are modulo q):
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– s0 = v0 − γku0 s1 = s2 = v1 − γku1

– s3 = v2 − γku2 s4 = v3 − γku3 s5 = v4 − γku4

– s6 = v5 − γku5 s7 = s8 = v6 − γku6 s9 = s10 = v7 − γku7

8. Publish the proof as:
π = (γ0, γ1, γ2, s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10).

9. Proof validity can be checked by reconstructing the commitments:

– t′0 = cγ0

ij h
s0 , t′1 = Bγ0

ij Y
s1
ij , t′2 = Xγ0

ij g
s2

– t′3 = (cij/g)γ1hs3 , t′4 = Bγ1

ij̄
gs4 , t′5 = Bγ1

ij g
s5

– t′6 = (cij/g)γ2hs6 , t′7 = Bγ2

ij̄
Y s7
ij̄

– t′8 = Xγ2

ij̄
gs8 , t′9 = Bγ2

ij Y
s9
ij , t′10 = Xγ2

ij g
s10

10. Evaluate:

H ′ = H

(
h,cij ,Yij ,Bij ,g,Xij ,

cij
g
,Bij̄ ,Yij̄ ,Xij̄ ,

t′0,t
′
1,t
′
2,t
′
3,t
′
4,t
′
5,t
′
6,t
′
7,t
′
8,t
′
9,t
′
10

)
mod q

11. Then check for the following condition:

γ0 + γ1 + γ2
?
= H ′

12. Accept if the check passes.
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