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Abstract

We present new formulas for computing greatest common divisors (GCDs) and extracting the
prime factors of semiprimes using only elementary arithmetic operations: addition, subtraction,
multiplication, floored division, and exponentiation. Our GCD formula simplifies a result of
Mazzanti, and is derived using Kronecker substitution techniques from our previous work. We
utilize the GCD formula, along with recent developments on arithmetic terms for square roots
and factorials, to derive explicit expressions for the prime factors of a semiprime n = pq.

1 Introduction

The greatest common divisor (GCD) of two integers a and b, denoted gcd(a, b), is the largest
positive integer that divides both a and b. Euclid’s algorithm for computing the GCD is one of the
oldest known algorithms, dating back to ancient Greece [1].

Semiprimes, which are numbers with exactly two prime factors, also play a key role in number
theory and cryptography. The problem of factoring a semiprime n = pq into its constituent primes
p and q is believed to be computationally intractable for large n and forms the basis for widely used
cryptosystems such as RSA [2]. Efficient algorithms for factoring semiprimes would have major
implications for the security of these systems.

An “arithmetic term” is a mathematical expression which uses only the operations of addition
(a + b), subtraction (a − b), multiplication (ab), floored division (⌊a/b⌋), and exponentiation ab.
Note that the modulo operation (a mod b) is implied, since it can be expressed using subtraction,
multiplication, and floored division as

a mod b = a− b ⌊a/b⌋ .

Let A denote the class of arithmetic terms. Formally, we have

A = [{1, a+ b, a− b, ab, ⌊a/b⌋ , ab}].

In this paper, we present new results on arithmetic term formulas for the GCD and semiprime fac-
torization. Building on work by Mazzanti and Marchenkov [3, 4], we derive a simplified polynomial
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form for the GCD that can be expressed in terms of an arbitrary integer base. We also obtain
arithmetic term formulas for the prime factors of a non-square semiprime n = pq, using only the
operations of addition, subtraction, multiplication, floored division, and exponentiation.

1.1 Background

Our new arithmetic term formulas for GCDs and semiprime factors, while entirely impractical, are
of theoretical importance. We provide a brief overview and some historical context to demonstrate
their significance.

1.2 Kalmar Functions

Firstly, we denote by P the class of primitive recursive functions. The class of Kalmar functions,
denoted by K, is an elementary class of functions, which is a subclass of P, defined as

K = [{1, a+ b, a−̇b, ab, ⌊a/b⌋ , ab}],

where the notation −̇ represents so-called “bounded” or “modified” subtraction (See [3] for a precise
definition).

Kalmar functions were introduced by Laszlo Kalmar in the 1940s as a subclass P. Kalmar aimed
to characterize the class of functions that can be computed using a certain restricted form of recur-
sion, known as “Kalmar elementary recursion” or “bounded recursion” (hence the term “bounded
subtraction” in the definition of K) [5]. It is well-established that K contains many important
functions, such as the arithmetic operations, the exponential function, and the bounded µ operator
(which is used to define the floored division operation). However, it does not contain all primitive
recursive functions.

It was long conjectured, and finally proved by Mazzanti, that the class A generates the class K
[3, 6]. As mentioned above, K is known to be a proper subclass of P. In summary, we have

[A] = K ⊂ P.

In 1970, Matiyasevich, building on the work of Davis et al [7], proved that all computable functions
can be expressed as Diophantine equations [8, 9]. Matiyasevich’s result implies that there exists
a Diophantine equation for calculating the n-th prime number. However, no arithmetic term for
the n-th prime is known [10]. Similarly, while Matiyasevich’s theorem suggests the existence of an
Diophantine equation formula for semiprime factorization, an arithmetic term that computes the
factors remained to be discovered. Our work presents the first explicit arithmetic term formulas
for this problem.

1.3 Latest Discoveries

Recently, Prunescu and Sauras-Altuzarra (2024) discovered an arithmetic term for computing the
factorial function n! [10]. Coincidentally, at approximately the same time, we discovered an arith-
metic term for the n-th roots of positive integers n

√
a [11]. By combining these results, along with
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a simplified version of Mazzanti’s GCD formula (Lemma 1), we obtain the first explicit arithmetic
terms for semiprime factors. This answers a question from Shamir (1978), who first hypothesized
the existence of such a formula when describing an algorithmic approach to integer factorization
using arithmetic terms [12].

2 Greatest Common Divisor

Lemma 1 (Mazzanti).

∀a, b ∈ Z+, gcd(a, b) =

⌊
(2a

2b(b+1) − 2a
2b)(2a

2b2 − 1)

(2a2b − 1)(2ab2 − 1)2a2b2

⌋
mod 2ab.

Proof. The lemma and proof belong to Mazzanti (2002) [3].

Applying Kronecker substitution techniques from our previous works [13, 11], we find that Maz-
zanti’s formula can be simplified and expressed in a polynomial form.

Theorem 2.

∀a, b ∈ Z+, gcd(a, b) =

⌊
xa+ab

(xa − 1)(xb − 1)

⌋
mod x.

Proof. Consider Mazzanti’s greatest common divisor formula (Lemma 1), which is given by

gcd(a, b) =

⌊
(2a

2b(b+1) − 2a
2b)(2a

2b2 − 1)

(2a2b − 1)(2ab2 − 1)2a2b2

⌋
mod 2ab.

Observe that all integer powers in the arithmetic term are divisible by 2ab. Factoring these, we
obtain

gcd(a, b) =

⌊
((2ab)a(b+1) − (2ab)a)((2ab)ab − 1)

((2ab)a − 1)((2ab)b − 1)(2ab)ab

⌋
mod 2ab.

Substituting with 2ab = x yields

gcd(a, b) =

⌊
(xa(b+1) − xa)(xab − 1)

(xa − 1)(xb − 1)xab

⌋
mod x.

The substitution is valid, since 2ab > gcd(a, b) and the substitution 2ab = x essentially inverts the
Kronecker substitution with the base 2ab (See Theorem 1 in [13]).

Simplifying the fraction, we see

gcd(a, b) =

⌊
xa−ab(xab − 1)2

(xa − 1)(xb − 1)

⌋
mod x.
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This fraction can be expanded as the sum

gcd(a, b) =

⌊
xa−ab

(xa − 1)(xb − 1)
+

xa+ab

(xa − 1)(xb − 1)
+

−2xa

(xa − 1)(xb − 1)

⌋
mod x.

Since we are reducing the quotient mod x, we need only consider the term in the fraction which
yields the constant term in the polynomial, which is gcd(a, b). We find

gcd(a, b) =

⌊
xa+ab

(xa − 1)(xb − 1)

⌋
mod x.

Corollary 3. Let a, b, n ∈ Z+ such that n > 2 and n > gcd(a, b). Then

gcd(a, b) =

⌊
na+ab

(na − 1)(nb − 1)

⌋
mod n.

Proof. Consider the polynomial formula given by Theorem 2. Substituting with x = n yields the
given formula. By Theorem 2 in [11], the substitution is valid since n is greater than the evaluation,
which is gcd(a, b).

However, we also have to consider the form of the fraction. Suppose n = 2, then⌊
2a+ab

(2a − 1)(2b − 1)

⌋
=

⌊
2a+ab

2ab+a − 2a − 2b + 1

⌋
= 2k,

for some k ∈ Z+. That is, the fraction always yields an even number of the form 2k. This would
imply

gcd(a, b) =

⌊
2a+ab

(2a − 1)(2b − 1)

⌋
= 2k ≡ 0 (mod 2) (contradiction),

which is a contradiction, since gcd(a, b) is nonzero by definition.

Theorem 4.

∀a, b ∈ Z+, gcd(a, b) ≡ −
(
xa+ab mod (xa+b − xa − xb + 1)

)
(mod x).

Proof. Consider the formula given by Theorem 2, which is

gcd(a, b) =

⌊
xa+ab

(xa − 1)(xb − 1)

⌋
mod x.

Recall the following well-known identity for the floor function⌊a
b

⌋
=

a− (a mod b)

b
.

Applying this to the formula from Theorem 2, we get

gcd(a, b) ≡
xa+ab −

(
xa+ab mod (xa+b − xa − xb + 1)

)
xa+b − xa − xb + 1

(mod x).
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Taking the numerator and denominator mod x, we find

gcd(a, b) =
(xa+ab mod x)−

((
xa+ab mod (xa+b − xa − xb + 1)

)
mod x

)
(xa+b − xa − xb + 1) mod x

=
0−

((
xa+ab mod (xa+b − xa − xb + 1)

)
mod x

)
1

= −
(
xa+ab mod (xa+b − xa − xb + 1)

)
mod x.

Hence, we can say

gcd(a, b) ≡ −
(
xa+ab mod (xa+b − xa − xb + 1)

)
(mod x).

Corollary 5. Let a, b, n ∈ Z+ such that n > 2 and n > gcd(a, b). Then

gcd(a, b) ≡ −
(
na+ab mod (na+b − na − nb + 1)

)
(mod n).

Proof. Consider the polynomial formula given by Theorem 2. Substituting with x = n yields the
given formula. By Theorem 2 in [11], the substitution is valid since n is greater than the evaluation,
which is gcd(a, b).

However, we also have to consider the form of the remainder. Suppose n = 2, then the expression

2a+ab mod (2a+b − 2a − 2b + 1)

can yield either an even or odd remainder, depending on the choice of (a, b). Now, suppose the
remainder is even and of the form 2k for some k ∈ Z+. This would imply

gcd(a, b) = 2k ≡ 0 (mod 2) (contradiction),

which is a contradiction, since gcd(a, b) is nonzero by definition.

3 Semiprime Factors

Using our results on the greatest common divisor function (§ 2), as well as results from our earlier
works [13, 11] and those of Mazzanti [3], Prunescu and Sauras-Altuzarra [10], we discover arithmetic
term formulas for the prime factors of a non-square semiprime n = pq.

Theorem 6. Let n ∈ Z+ such that n = pq is a non-square semiprime and p < q are the prime
factors of n.

Define

ω =

⌊
(n2n + 1)2n+1 mod (n4n − n)

(n2n + 1)2n mod (n4n − n)

⌋
− 1.
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Then, set

γ =

 (ω + 1)ω·(ω+2)⌊
((ω+1)ω·(ω+2)+1)

(ω+1)ω+2

(ω+1)ω
2·(ω+2)

⌋
mod (ω + 1)ω·(ω+2)

 .

Finally, we have

p =

⌊
nn+nγ

(nn − 1)(nγ − 1)

⌋
mod n.

Proof. From Shunia (2024) [11], for n that is not a square, we get the arithmetic term⌊√
n
⌋
=

⌊
(n2n + 1)2n+1 mod (n4n − n)

(n2n + 1)2n mod (n4n − n)

⌋
− 1,

which matches our definition of ω. Hence, ω = ⌊
√
n⌋.

From Prunescu and Sauras-Altuzarra (2024) [10], we also have the factorial formula

n! =

⌊
2n·(n+1)·(n+2)/

(
2(n+1)·(n+2)

n

)⌋

=

 2n·(n+1)·(n+2)⌊(
22

(n+1)·(n+2)−n + 2−n
)2(n+1)·(n+2)

⌋
mod 22

(n+1)·(n+2)

 .

The factorial formula of Prunescu and Sauras-Altuzarra is derived from an identity of Matiyasevich
(1993) [9], which is

∀r ∈ Z : r ≥ (n+ 1)n+2, n! =

⌊
rn/

(
rn

n

)⌋
.

Hence, the formula is also valid for r = (n + 1)n+2, which grows more slowly than 2(n+1)·(n+2) as
n → ∞. Making the substitutions and simplifying, we find

n! =

 (n+ 1)n·(n+2)⌊
((n+1)n·(n+2)+1)

(n+1)n+2

(n+1)n
2·(n+2)

⌋
mod (n+ 1)n·(n+2)


Considering ω!, this becomes

ω! =

 (ω + 1)ω·(ω+2)⌊
((ω+1)ω·(ω+2)+1)

(ω+1)ω+2

(ω+1)ω
2·(ω+2)

⌋
mod (ω + 1)ω·(ω+2)

 ,
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which matches the definition for γ. Hence, γ = ω! = ⌊
√
n⌋!.

Applying Corollary 3, we have

gcd(n,
⌊√

n
⌋
!) = gcd(n, γ) =

⌊
nn+nγ

(nn − 1)(nγ − 1)

⌋
mod n.

Since n is a non-square semiprime and p < q, we must have p ≤ ⌊
√
n⌋ and q > ⌊

√
n⌋. Hence,

p = gcd(n, ⌊
√
n⌋!), which we showed is equivalent to the formula in the theorem.

Corollary 7. Let n = pq be a non-square semiprime. Then

q =
n⌊

nn+nγ

(nn−1)(nγ−1)

⌋
mod n

.

Proof. The proof follows immediately from Theorem 6, since n
p = q in this case.

Corollary 8. Let φ(n) represent Euler’s totient function for n = pq, a non-square semiprime.
Then

φ(n) =

((⌊
nn+nγ

(nn − 1)(nγ − 1)

⌋
mod n

)
− 1

) n⌊
nn+nγ

(nn−1)(nγ−1)

⌋
mod n

− 1

 .

Proof. The proof follows immediately from Theorem 6, since φ(n) = (p− 1)(q− 1) in this case.

References

[1] D. E. Knuth. The Art of Computer Programming, 3rd Edition, volume 1. Addison Wesley
Longman Publishing Co., Inc., USA, 1997. ISBN 0201896834.

[2] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Commun. ACM, 21(2):120–126, feb 1978. ISSN 0001-0782. URL
https://doi.org/10.1145/359340.359342.

[3] S. Mazzanti. Plain Bases for Classes of Primitive Recursive Functions. Mathematical Logic
Quarterly, 48(1):93–104, 2002. ISSN 0942-5616.

[4] S. S. Marchenkov. A Superposition Basis in the Class of Kal’mar Elementary Functions.
Mathematical Notes of the Academy of Sciences of the USSR, 27(3):161–166, 1980. ISSN
0001-4346.

[5] G. T. Herman. A New Hierarchy of Elementary Functions. Proceedings of the American
Mathematical Society, 20(2):557–562, 1969. ISSN 0002-9939.

[6] S. S. Marchenkov. Superpositions of Elementary Arithmetic Functions. Journal of Applied
and Industrial Mathematics, 1(3):351–360, 2007. ISSN 1990-4789.

[7] M. Davis, H. Putnam, and J. Robinson. The Decision Problem for Exponential Diophantine
Equations. Annals of Mathematics, 74(3):425–436, 1961. ISSN 0003-486X.

7

https://doi.org/10.1145/359340.359342


[8] Y. Matiyasevich. A New Proof of the Theorem on Exponential Diophantine Representation
of Enumerable Sets. Journal of Soviet Mathematics, 14(5):1475–1486, 1980. ISSN 0090-4104.

[9] Y. Matiyasevich. Hilbert’s Tenth Problem. MIT press, 1993. ISBN 0-262-13295-8. See p. 46,
formula 3.4.6.

[10] M. Prunescu and L. Sauras-Altuzarra. An Arithmetic Term for the Factorial Function.
Examples and Counterexamples, 5:100136, 2024. ISSN 2666-657X. URL
https://sciencedirect.com/science/article/pii/S2666657X24000028.

[11] J. M. Shunia. Polynomial Quotient Rings and Kronecker Substitution for Deriving
Combinatorial Identities, 2024. URL https://arxiv.org/abs/2404.00332.

[12] A. Shamir. Factoring Numbers in O(log n) Arithmetic Steps. Information Processing Letters,
8(1):28–31, 1979. ISSN 0020-0190. URL
https://sciencedirect.com/science/article/pii/0020019079900875.

[13] J. M. Shunia. A Simple Formula for Single-Variable Multinomial Coefficients, 2023. URL
https://arxiv.org/abs/2312.00301.

8

https://sciencedirect.com/science/article/pii/S2666657X24000028
https://arxiv.org/abs/2404.00332
https://sciencedirect.com/science/article/pii/0020019079900875
https://arxiv.org/abs/2312.00301

	Introduction
	Background
	Kalmar Functions
	Latest Discoveries

	Greatest Common Divisor
	Semiprime Factors

