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Abstract SNOVA is a multivariate signature scheme submitted to the ad-
ditional NIST PQC standardization project started in 2022. SNOVA is con-
structed by incorporating the structure of the matrix ring over a finite field
into the UOV signature scheme, and the core part of its public key is the
UOV public key whose coefficients consist of matrices. As a result, SNOVA
dramatically reduces the public key size compared to UOV. In this paper,
we recall the construction of SNOVA, and reconsider its security analysis. In
particular, we investigate key recovery attacks applied to the core part of the
public key of SNOVA in detail. Due to our analysis, we show that some pa-
rameters of SNOVA submitted in the additional NIST PQC standardization
do not satisfy the claimed security levels.
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1 Introduction

It is considered that by Shor’s algorithm, the existing cryptosystems are
broken with a large scale quantum computer. Therefore, it is required to de-
velop cryptosystems resistant to quantum computer attacks, which are called
post-quantum cryptosystems (PQC). Multivariate public key cryptosystems
(MPKC) are based on the difficulty of the problem to find a solution to mul-
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tivariate quadratic equations over a finite field (MQ problem), and are one
of the main candidate of PQC.

NIST started the PQC standardization project [14] in 2016. Via some
rounds, NIST announced in 2022 that the three signature schemes (Dilithium,
Falcon, SPHINCS+) will be standardized. However, in order to ensure the
variety of algorithms, NIST also announced to start the new project of the
PQC standardization of additional digital signature schemes [15] (called the
additional NIST PQC standardization in this paper). In the additional NIST
PQC standardization, 40 signature schemes were accepted to the first round
in June 2023, and 10 among them are multivariate schemes.

In MPKC, UOV [12] is considered to be a fundamental scheme, since it has
no fatal attacks so far, and is constructed using simple algorithms. However,
it has a drawback to be a large public key compared to other PQC such as
lattice-based cryptosystems. SNOVA is a variant of UOV with small public
key proposed by Wang et al. [18] in 2022, and was submitted to the additional
NIST PQC standardization [19]. This is constructed by improving UOV using
a non-commutative ring (mainly a matrix ring). More specifically, SNOVA
is defined by changing the coefficient field Fq of polynomials in UOV into
the matrix ring Ml(Fq). The public key of UOV constructed in such a way
forms the core part of SNOVA. Moreover, by mixing and transforming the
core part with elements of a subfield in Ml(Fq), the public key of SNOVA
is constructed. The papers [18, 19] claim that SNOVA avoids some existing
attacks of UOV because of using such a non-commutative ring, and increases
the security for forgery attacks because of using the technique of mixing and
transforming. As a result, the size of the public key of SNOVA [19] is quite
smaller than that of the UOV scheme in [4]. Since SNOVA is a new proposed
signature scheme, it is necessary to thoroughly analyze its security.

In this paper, we reorganize the construction of SNOVA, and reconsider its
security analysis. First, we explain the construction of the core part without
using the matrix ring Ml(Fq). The paper [18] states that the core part is a
polynomial system whose almost coefficients are zero (i.e.sparse polynomials),
and therefore the technique of mixing and transforming are applied. In fact,
we show in this paper that the core part is vulnerable for a forgery attack.
Next, as a reconsideration of the security analysis, we explain that all existing
key recovery attacks for UOV can be applied to the core part of SNOVA.
Moreover, we propose efficient versions of the reconciliation attack and the
intersection attack for the core part of SNOVA. Finally, due to our analysis,
we show that some parameters of SNOVA [19] for l = 2 submitted in the
additional NIST PQC standardization do not satisfy the claimed security
levels.

This paper is organized as follows. In Section 2, we reorganize the con-
struction of SNOVA. In Section 3, we recall the security analysis of SNOVA
in [19]. In Section 4, we reconsider the security of SNOVA using the result in
Section 2. In Section 5, we conclude our paper.
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2 Reorganizing the construction of SNOVA

In this section, we explain the construction of SNOVA. In particular, we
state it from a different point of view from the original papers [18, 19]. In
2.1, we describe the construction of UOV [12] which is a underlying scheme
of SNOVA. In 2.2-2.4, we explain the construction of SNOVA.

2.1 UOV

We describe the key generation, signature generation and verification of UOV
in this subsection. Let v, o be two positive integers, Fq the finite field with q
elements, and set n := v+ o. We use two variable sets xv = (x1, . . . , xv), and
xo = (xv+1, . . . , xn), and put x = (xv,xo). We call the first variables xv the
vinegar variables and the second variables xo the oil variables.

We explain the key generation of UOV with parameter (q, v, o). Randomly
choose o square matrices F1, . . . , Fo with size n over Fq in the following form:

Fk =



a
(k)
11 . . . a

(k)
1v a

(k)
1v+1 . . . a

(k)
1n

...
. . .

...
...

. . .
...

a
(k)
v1 . . . a

(k)
vv a

(k)
vv+1 . . . a

(k)
vn

a
(k)
v+11 . . . a

(k)
v+1v 0 . . . 0

...
. . .

...
...

. . .
...

a
(k)
n1 . . . a

(k)
nv 0 . . . 0


. (1)

Namely, each Fk (1 ≤ k ≤ o) is a matrix whose lower right components are

zero. Here, each coefficient a
(k)
ij is randomly chosen from the finite field Fq.

We define o quadratic polynomials f1, . . . , fo in n variables x as follows:

fk(x) = x · Fk · tx (1 ≤ k ≤ o). (2)

From the form of Fk, it is clear that fk(x) is a linear polynomial regarding
variables xo when xv is fixed as scalars. We define a quadratic map F =
(f1, . . . , fo) : Fn

q → Fo
q, and randomly choose a linear invertible map T :

Fn
q → Fn

q . Let T be the n × n matrix such that T (x) = x · T . We compute
the following matrices Gk and quadratic polynomials gk (1 ≤ k ≤ o):

Gk := T · Fk · tT, gk(x) := x ·Gk · tx. (3)

It is clear that gk(x) = fk(x·T ). Then, the secret key of UOV with parameter
(q, v, o) is given by (f1, . . . , fo, T ), and the public key is the set of quadratic
polynomials (g1, . . . , go), which is equal to the quadratic map G := F ◦ T :
Fn
q → Fo

q.
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The signature generation and verification processes for UOV are done as
follows. Let m = (m′

1, . . . ,m
′
o) ∈ Fo

q be a message to be signed. First, ran-
domly choose an element c = (c1, . . . , cv) ∈ Fv

q . Next, find a solution d ∈ Fo
q

to the following o linear equations in xo:

f1(c,xo) = m′
1, · · · , fo(c,xo) = m′

o. (4)

If there is no solution, we choose another element c. The obtained vector
(c,d) ∈ Fn

q is a solution to F(x) = m. Finally, s := (c,d) · T−1, which is a
solution to G(x) = m, is a signature of m. The verification process is done
by checking whether G(s) = m or not.

It is known that the size of the public key of UOV can be reduced using
the technique of Petzoldt et al. [17] without declining the security. Moreover,
the secret key T ∈ GLn(Fq) is often taken as follows:

T =

(
1v 0v×o

T0 1o

)
, (5)

where T0 is taken as a random o×v matrix. It is known that even if the form
of T is restricted in this way, it does not affect the security of UOV.

Beullens et al. proposed new parameters (Table 1) of UOV [4] based on
the latest MPKC security analysis, and submitted it to the additional NIST
PQC standardization project [15].

Table 1 The proposed parameters of UOV [4] in the additional NIST PQC stan-
dardization project

Security
(q, v, o)

Public key Signature
level (bytes) (bytes)

I
(256, 68, 44) 43576 128
(16, 96, 64) 66576 96

III (256, 112, 72) 189232 200
V (256, 148, 96) 446992 260

A drawback of UOV is a large public key size compared with other PQC
such as lattice-based and isogeny-based cryptosystems. To reduce such a
drawback, there have been submitted some variants such as MAYO [2, 3],
QR-UOV [9, 8], VOX [16] and SNOVA [18, 19].

2.2 Main technique to reduce the public key size used in
SNOVA

In this subsection, we explain the technique of SNOVA to reduce the size of
the public key of UOV. We note that the explanation here is different from
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the description in [18, 19] (See Remark 1 for the explanation of the difference
as well).

In UOV, a matrix Gk has generated only one quadratic polynomial gk(x)
as in (3). In SNOVA, this one-to-one correspondence (Gk 7→ gk) is improved
as follows. Let l be a positive integer, and F1, . . . , Fo, G1, . . . , Go be matrices
defined as in (1) and (3) with parameter (q, lv, lo). We prepare a matrix

variable X :=

x(1)

...
x(l)

, where x(i) = (x
(i)
1 , . . . , x

(i)
ln ). We also divide x(i) into

two subsets:

x(i)
v = (x

(i)
1 , . . . , x

(i)
lv ), x(i)

o = (x
(i)
lv+1, . . . , x

(i)
ln ).

Then, we define two systems of quadratic polynomials fk,ij = fk,ij(X) and
gk,ij = gk,ij(X) (1 ≤ k ≤ o, 1 ≤ i, j ≤ l):

fk =

fk,11(X) . . . fk,1l(X)
...

. . .
...

fk,l1(X) . . . fk,ll(X)

 := X · Fk · tX,

gk =

gk,11(X) . . . gk,1l(X)
...

. . .
...

gk,l1(X) . . . gk,ll(X)

 := X ·Gk · tX.

We callG1, . . . , Go the core matrices of SNOVA and {gk,ij} the core (quadratic)
polynomials of SNOVA.

It is clear that gk,ij(X) = fk,ij(X · T ), and fk,ij(X) is a linear polynomial

regarding variables x
(1)
o , . . . ,x

(l)
o when x

(1)
v , . . . ,x

(l)
v are fixed as scalars. Thus,

the core polynomials {gk,ij} can be identified with the public key of UOV
with parameter (q, l2v, l2o), and we can execute the same process of UOV in
2.1 as the signature generation. The verification process is done by using the
quadratic map (g1, . . . , go) = {gk,ij} : Ml×ln(Fq) → Ml(Fq)

o.
A verifier can construct l2o quadratic polynomials {gk,ij} in l2n variables

X from only the core matrices G1, . . . , Go. In particular, a core matrix Gk

generates l2 quadratic polynomials. Thus, if the core matrices G1, . . . , Go

are the public key, then the size of the public key is small compared with
{gk,ij}. This is the main technique to reduce the size of the public key used
in SNOVA. Note that, as stated in 2.3 below, the core polynomials are vul-
nerable for a forgery attack. SNOVA will be constructed by further improving
this technique.

Remark 1 Wang et al. [18, 19] explained the technique used in SNOVA in a
slightly different method. They define an n×n matrix Fk = (Fk,ij)1≤i,j≤n as
a matrix over the matrix ring Ml(Fq). Namely, each component Fk,ij is an el-
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ement of Ml(Fq). However, since Mn(Ml(Fq)) = Mln((Fq), their construction
is equivalent to the above our construction.

2.3 A forgery attack for the core polynomials {gk,ij}

As stated in [18], SNOVA is constructed by improving the technique in 2.2,
since the core polynomials {gk,ij} are sparse quadratic polynomials. The au-
thors of SNOVA considered that the core part might be vulnerable. Due
to our analysis, the consideration is right, and the core polynomials {gk,ij}
are actually vulnerable for a forgery attack. In this subsection, we show the
method to forge a signature for the core polynomials {gk,ij}.

Let M = (M (1), . . . ,M (o)) ∈ Ml(Fq)
o be a message to be signed. To forge

a signature for this M, we must solve the quadratic equations

gk,ij(X) = M
(k)
ij , (1 ≤ i, j ≤ l, 1 ≤ k ≤ o). (6)

Here, we note that gk,ij(X) is a polynomial in variables x(i) and x(j) by its
definition.

First, we have gk,11(X) = gk,11(x
(1)). Therefore, the system of equations

g1,11(x
(1)) = M

(1)
11 , . . . , go,11(x

(1)) = M
(o)
11

is o quadratic equations in ln variables x(1). Since the parameter o used in
SNOVA is small, it is efficient to find a solution to this system. Let y(1) ∈ Fln

q

be a solution to this system.
Next, we focus on the system of equations in x(2):

g1,12(y
(1),x(2)) = M

(1)
12 , . . . , go,12(y

(1),x(2)) = M
(o)
12 ,

g1,21(y
(1),x(2)) = M

(1)
21 , . . . , go,21(y

(1),x(2)) = M
(o)
21 ,

g1,22(x
(2)) = M

(1)
22 , . . . , go,22(x

(2)) = M
(o)
22 .

This is equivalent to the system of o quadratic equations in ln− 2o variables
since the first two system are 2o linear equations. Thus, it is also easy to
solve this system. Let y(2) be a solution to this second system.

By repeating similar processes, we finally obtain the system of o quadratic
equations in ln − 2(l − 1)o variables. If v, o satisfy ln − 2(l − 1)o ≥ o, then
the final system has a solution y(l) with a high probability. As a result, we
obtain a solution y = (y(1), . . . ,y(l)) to (6).

Since the parameters v, o satisfy v > o in general, the condition ln− 2(l−
1)o > o are satisfied. Thus, this forgery attack works.
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2.4 Construction of SNOVA

In this subsection, we describe the construction of SNOVA, and explain how
the authors of SNOVA [18] resolve the vulnerability of the core polynomials
{gk,ij}.

There are two techniques in order to resolve the vulnerability of the core
polynomials. First one is mixing the core matrices G1, . . . , Go, and second is
transforming them by elements of a subfield in the matrix ring Ml(Fq).

2.4.1 Mixing the core matrices

Randomly choose l× l matrices A1, . . . , Al2 and B1, . . . , Bl2 . Moreover, ran-
domly choose ln × ln matrices Q11, . . . , Ql21 and Q12, . . . , Ql22. Then we
define the polynomial matrices hk and pk:

hk :=

l2∑
i=1

Ai ·X ·Qi1 · Fk ·Qi2 · tX ·Bi, (1 ≤ k ≤ o).

pk :=

l2∑
i=1

Ai ·X ·Qi1 ·Gk ·Qi2 · tX ·Bi, (1 ≤ k ≤ o).

Here, hk and pk are the sets of l2 quadratic polynomials Hk = {hk,ij}ij and
Pk = {pk,ij}ij in the variables X, respectively. By modifing in this way, it is
considered to be difficult to apply the forgery attack in 2.3 to P = {pk,ij}k,ij .
However, it is also difficult to execute the signature generation algorithm,

since hk,ij is NOT a linear polynomial regarding variables x
(1)
o , . . . ,x

(l)
o be-

cause of the multiplication of Qij . To resolve this issue, it is necessary to use
a subfield in multiplying of Qij .

2.4.2 Transforming by a subfield

First, let S be a symmetric matrix in Ml(Fq) such that its characteristic
polynomial is irreducible over Fq. Then the algebra A generated by S in
Ml(Fq) forms an l-dimensional subfield in Ml(Fq).

Next, randomly choose non-zero l×lmatricesR11, . . . , Rl21 andR12, . . . , Rl22

in A. Set

Qij :=

Rij

. . .

Rij

 ∈ Mn(A) ⊂ Mln(Fq).

Moreover, we choose the secret key T from Mn(A) ⊂ Mln(Fq). Since A is
commutative, we have QijT = TQij . By defining hk, pk using these Qij and
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T , the signature generation algorithm works. In fact, we have

Qi1 ·Gk ·Qi2 = Qi1 · T · Fk · tT ·Qi2 = T ·Qi1FkQi2 · tT.

Here, Qi1FkQi2 is a matrix whose lower right components are zero as in (1).

Thus, hk,ij is a linear polynomial regarding variables x
(1)
o , . . . ,x

(l)
o when

x
(1)
v , . . . ,x

(l)
v are fixed as scalars. Therefore, we can apply the signature gen-

eration algorithm in 2.1.

2.4.3 Summary

As a result, the construction of SNOVA is sumarized as follows. Let {Fk}1≤k≤o

be the set of ln× ln matrices whose lower right is zero. Randomly choose the
following:

1. a matrix T0 ∈ Mo×v(A), and set

T =

(
1lv 0lv×lo

T0 1lo

)
,

2. l × l matrices A1, . . . , Al2 and B1, . . . , Bl2 ,
3. non-zero matrices R11, . . . , Rl21 and R12, . . . , Rl22 in A, and set

Qij :=

Rij

. . .

Rij

 ∈ Mln(Fq).

Then, the secret key is {Fk}k, T , and the public key is {Gk := TFk
tT}k, and

{Ai, Bi, Ri1, Ri2}i.
The signature generation and verification are done as stated in 2.1. The

verifier generates pk from the public key. Here, since the data {Ai, Bi, Ri1, Ri2}
are generated randomly, we can compress them to a seed. As a result, the
public key size almost depends on G1, . . . , Go. Moreover, we can apply the
technique of Petzoldt et al. [17] to G1, . . . , Go. The following table (Table2)
is the parameter set of SNOVA proposed in [19], which was submitted to the
additional NIST PQC standardization.

3 Security analysis of SNOVA in [19]

In this section, we recall the security analysis of SNOVA stated in [19]. In 3.1,
we review the security analysis of UOV. In 3.2, we explain how the authors
of SNOVA [19] analyzed the security of SNOVA.
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Table 2 The proposed parameters of SNOVA [19] in the additional NIST PQC
standardization project

(q, v, o, l)
Public key Signature size
size (bytes) (bytes)

I
(16, 28, 17, 2) 9826 90
(16, 25, 8, 3) 2304 149
(16, 24, 5, 4) 1000 232

III
(16, 43, 25, 2) 31250 240
(16, 49, 11, 3) 5990 270
(16, 37, 8, 4) 4096 360

V
(16, 61, 33, 2) 71874 188
(16, 66, 15, 3) 15188 365
(16, 60, 10, 4) 8000 560

3.1 Review of the security analysis of UOV

Before we state the security analysis of SNOVA in [19], we recall the security
analysis of UOV. The security of UOV with the parameter (q, v, o) is mainly
estimated using the following attacks.

3.1.1 Direct attack

In MPKC, the direct attack tries to directly and algebraically solve an in-
stance of the MQ problem related to the public key P = (p1, . . . , po). This
attack is a forgery attack. For UOV, the direct attack finds a solution to the
underdetermined system of o inhomogeneous quadratic equations P(x) = m
in n = v + o variables. Since it is enough to find a solution to the system
P(x) = m, such a system can be reduced to a system of o homogeneous
quadratic equations in o + 1 variables by fixing v variables in x and by ho-
mogenizing it. To solve such a reduced system, Gröbner basis algorithms such
as F4 [6], F5 [7] and XL [21] are often considered. Then, the complexity of
solving the system of o homogeneous quadratic equations in o + 1 variables
using the XL Wiedemann algorithm with the hybrid approach is given by

min
k

qk · 3
(
o− k +Do+1−k,o

Do+1−k,o

)2 (
o+ 2− k

2

)
, (7)

where 0 ≤ k ≤ o is the number of fixed variables in the hybrid approach, and
Do+1−k,o is given by the smallest integer d for which the coefficient of td in

the function
(1− t2)o

(1− t)o+1−k
is less than or equal to 1.

For the underdetermined case, Thomae-Wolf [20] proposed the technique
to reduce the size of the MQ problem (namely, the numbers of variables and
equations). Moreover, their technique was improved by Furue et al. [10] and
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Hashimoto [11]. To be exact, the complexity of the direct attack for UOV is
given by using such techniques.

3.1.2 Kipnis-Shamir (KS) attack

The KS attack was proposed by Kipnis and Shamir [13], and is a key recovery
attack for UOV. This attack utilizes the special form of F1, . . . , Fo in (1).

First, we recall the matrix representation of quadratic polynomials. Let
h ∈ Fq[x1, . . . , xn] be a homogeneous quadratic polynomial. Then there exists
a unique symmetric matrix H ∈ Mn(Fq) such that

x ·H · ty = h(x+ y)− h(x)− h(y) x,y ∈ Fn
q .

We call H the symmetric representation matrix of h.
Second, we set F ′

k to be the symmetric representation matrix of fk, and
P ′
k that of pk. Moreover, let T be the n × n matrix such that T (x) = x · T .

It is clear that

(P ′
1, . . . , P

′
o) =

(
T · F ′

1 · tT, . . . , T · F ′
o · tT

)
. (8)

Finally, let {e1, . . . , en} be a standard basis of Fn
q , that is, e1 = (1, 0, . . . , 0)

and so on. We set the vinegar space V and the oil space O in Fn
q as follows:

V := Span{e1, . . . , ev}, O := Span{ev+1, . . . , en}.

Then the KS attack tries to find vectors of the twisted oil space

O · T−1 := Span{ev+1T
−1, . . . , enT

−1} (9)

by computing stable subspaces of XY −1 for various two invertible matrices
X,Y ∈ Span{P ′

1, . . . , P
′
o}. If the KS attack succeeds, an attacker can find an

invertible matrix T ′ such that O · T−1T ′ = O, which is an equivalent secret
key. Namely, the attacker can forge a signature for any message using T ′. The
complexity of the KS attack is given by O(qv−o).

3.1.3 Reconciliation attack

Any element in the twisted oil space O · T−1 is a solution to the system of
quadratic equations p1(x) = · · · = po(x) = 0. A key recovery attack that finds
such a solution is called the reconciliation attack [5]. Since the dimension of
O is o, the system p1(x) = · · · = po(x) = 0 can be reduced to a system of
o quadratic equations in n − o = v variables. However, since v is relatively
larger than o, such a reduced system has a lot of solutions which do not
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belong to the twisted oil space O · T−1. Due to this fact, the reconciliation
attack is harder than the direct attack in general .

3.1.4 Intersection attack

The intersection attack was proposed by Beullens [1], and is obtained by
combining with the reconciliation attack and the KS attack.

Assume that the parameters v, o satisfy the condition v < 2o. For simplic-
ity, we set Q = P ′

1 and R = P ′
2. If P

′
1 and P ′

2 are not invertible, then we choose
two invertible linear combinations of P ′

1, . . . , P
′
o as Q and R. The intersection

attack tries to find a non-zero element x of O · T−1Q ∩O · T−1R (⊂ V · tT ).
Since xQ−1,xR−1 ∈ O · T−1, such an element x satisfies the following 3o
quadratic equations in n variables x:

p1(xQ
−1) = · · · = po(xQ

−1) = 0,

p1(xR
−1) = · · · = po(xR

−1) = 0,

x ·Q−1 · P ′
1 ·R−1 · tx = · · · = x ·Q−1 · P ′

o ·R−1 · tx = 0.

(10)

Here, we have

x ·Q−1 · P ′
1 ·R−1 · tx = 2p2(xR

−1), x ·Q−1 · P ′
2 ·R−1 · tx = 2p1(xQ

−1)

when we set Q = P ′
1 and R = P ′

2. Note that even if we choose two invertible
linear combinations of P ′

1, . . . , P
′
o as Q and R, we obtain two linear depen-

dences. Moreover, the dimension of O · T−1Q ∩ O · T−1R is at least 2o − v
under the condition v < 2o. Therefore, the system can be reduced to a system
of 3o− 2 homogeneous quadratic equations in n− (2o− v − 1) = 2v − o+ 1
variables. According to Beullens’ analysis [1], such a reduced system can be
identified with a random system of M := 3o−2 homogenous quadratic equa-
tions in N := 2v− o+1 variables. Then, the complexity to solve the reduced
system is given by

min
k

qk · 3
(
N − k − 1 +DN−k,M

DN−k,M

)2 (
N − k + 1

2

)
, (11)

where 0 ≤ k ≤ N −1 is the number of fixed variables in the hybrid approach.
If the condition v < 1.5o is satisfied, then the intersection attack can be

more efficient. However, since the proposed parameters of UOV and SNOVA
do not satisfy such a condition, we do not explain the attack for v < 1.5o.

The intersection attack for v ≥ 2o is considered as follows. The probability
that O ·T−1Q∩O ·T−1R is non zero is around 1/qv−2o+1. Thus, the system
(10) is a system ofM = 3o−2 quadratic homogeneous equations in n variables
x, and has a solution belonging to O · T−1Q ∩ O · T−1R at the probability
1/qv−2o+1. If the system (10) does not have a non-zero solution in O·T−1Q∩
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O·T−1R, then we reselect Q,R. Therefore, the complexity to find a non-zero
element O · T−1Q ∩ O · T−1R is given by

min
k

qv−2o+1qk · 3
(
n− k − 1 +Dn−k,M

Dn−k,M

)2 (
n− k + 1

2

)
, (12)

where n − M ≤ k ≤ n − 1 is the number of fixed variables in the hybrid
approach.

3.1.5 Collision attack

As a cryptographic attack, the collision attack is considered for UOV. Al-
though omitted in Section 2, strictly speaking, the signature generation of
UOV finds a solution x = s to P(x) = H(m||r) for a given message m and
randomly chosen salt r, and outputs (s, r) as a signature of m. Here, H is a
hash function. Then the collision attack is to try to find a pair (i, j) satisfying
P(si) = H(m||rj) by collecting a lot of vectors {si}i and salts {rj}j . See the
document [4] for the detail.

3.2 Review of the security analysis of SNOVA

In this subsection, we briefly review the attacks used in the SNOVA docu-
ment [19] in order to analyze the security of SNOVA.

3.2.1 Forgery attack

A forgery attack tries to find a valid signature (m, s) such that P(s) = m from
only the information of the public key. The direct attack and the collision
attack explained in 3.1 are applied to SNOVA as forgery attacks. See the
document [19] for the details.

3.2.2 Key recovery attack

A key recovery attack for SNOVA tries to find a secret key T or an equivalent
key. The key recovery attacks in the document [19] are considered using
the information of the core matrices of SNOVA. As stated in Remark 1,
the core matrices G1, . . . , Go are originally defined using the n× n matrices
Fk = (Fk,ij)1≤i,j≤n over Ml(Fq). Moreover, the core quadratic polynomials
{gk,ij} generated by G1, . . . , Go can be seen as the public key of UOV with
the parameter (q, l2v, l2o) as mentioned in 2.2. We call such a UOV instance
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Table 3 The complexity estimation (in log2(#gates)) evaluated in the document of
SNOVA [19]

(q, v, o, l)
Direct Collision KS Intersection Equivalent MinRank
attack attack attack attack attack attack

I
(16, 28, 17, 2) 171 151 181 275 192 151
(16, 25, 8, 3) 175 159 617 819 231 148
(16, 24, 5, 4) 188 175 1221 1439 286 150

III
(16, 43, 25, 2) 231 215 293 439 279 212
(16, 49, 11, 3) 230 213 1373 1631 530 215
(16, 37, 8, 4) 291 271 1861 2192 424 217

V
(16, 61, 33, 2) 308 279 453 727 386 279
(16, 66, 15, 3) 307 285 1841 2178 707 280
(16, 60, 10, 4) 355 335 3205 3602 812 278

{gk,ij} the core polynomial UOV. The authors of SNOVA considered whether
each key recovery attack can be applied to the core matrices G1, . . . , Go and
the core polynomial UOV {gk,ij}, and analyzed their complexity estimations.

(i) KS attack:
The authors of SNOVA considered that since the components of F1, . . . , Fo

are in the non-commutative ring Ml(Fq), the oil space O cannot be defined.
From such a consideration, they concluded that the KS attack can not be
applied to the core matrices G1, . . . , Go. On the other hand, they considered
the KS attack for the core polynomial UOV {gk,ij}. Since the core polynomial
UOV is an instance of UOV with parameter (q, l2v, l2o), its complexity is

given by O(ql
2(v−o)).

(ii) Reconciliation attack:
In the document, the reconciliation attack is applied to only the core poly-

nomial UOV {gk,ij}. Since the core polynomial UOV is an instance of UOV
with parameter (q, l2v, l2o), this attack solves the quadratic system of l2o
equations in l2v variables. They concluded that this attack is not efficient
compared to the direct attack.

(iii) Intersection attack:
As in the case of the KS attack, they considered only the intersection

attack for the core polynomial UOV, that is, the intersection attack for an
instance of UOV with parameter (q, l2v, l2o). Its complexity is given by using
the estimation in 3.1.4.

(iv) Equivalent attack:
This attack tries to recover T using the relation

T−1 ·Gk · tT−1 = Fk (1 ≤ k ≤ o),
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and the fact that the lower right lo × lo submatrix of each Fk is zero. Since

T−1 =

(
1lv 0lv×lo

−T0 1lo

)
and T0 consists of lvo unknowns, this attack forms l2o3

quadratic equations in lvo variables. By solving these quadratic equations,
the secret key T is recovered. See [19] for its complexity estimation.

(v) MinRank attack:
The author of SNOVA discovered that there exists a linear combination of

the representation matrices of the core polynomial UOV {gk,ij} with rank lv.
Then, they estimated the complexity of MinRank problem with l2o square
matrices of size l2v and the target rank lv. While they did not give a method
to recover an equivalent key from a solution to the MinRank problem, they
adopted this complexity to the security estimation of SNOVA from a conser-
vative point of view.

Table 3 shows the proposed parameters of SNOVA in the additional NIST
PQC standardization and the complexity estimations they gave in the doc-
ument [19]. Here, the following formula is used to express the complexity in
gate counts:

#gates = #field multiplication · (2(log2 q)2 + log2 q).

4 Revisiting the security analysis of
SNOVA

In this section, we reconsider the security analysis of SNOVA based on the
construction we reorganized in Section 2.

4.1 Forgery attack

In the document of SNOVA [19], the authors discuss only the direct at-
tack and the collision attack as forgery attacks. As shown in 2.3, the core
polynomials {gk,ij} have a practical forgery attack. Though there exists no
improvement of the forgery attack in 2.3 for {pk,ij} at present, it might be
necessary to prove that any improvement of the forgery attack in 2.3 cannot
be applied to SNOVA.
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4.2 Key recovery attack

As seen in 3.2, the authors of SNOVA claimed that since SNOVA and its core
matrices are constructed using the non-commutative ring Ml(Fq), some key
recovery attacks cannot be applied to SNOVA. However, the core matrices
G1, . . . , Go in 2.2 can be identified with a part of the public key of UOV with
parameter (q, lv, lo). Thus, we can apply some key recovery attacks of UOV
to the core matrices G1, . . . , Go. Moreover, since the secret key T in 2.4.3 is
in Mn(A), we can make some key recovery attacks more efficient.

(i) KS attack:
The core matrices G1, . . . , Go are public information and have the struc-

ture of UOV with parameter (q, lv, lo). Therefore, the KS attack works for
G1, . . . , Go, and its complexity is O(ql(v−o)). This version of the KS attack is
efficient compared with the KS attack in 3.2.2 (i).

(ii) Reconciliation attack:
We can also apply the reconciliation attack to the core matrices G1, . . . , Go

to recover the secret key T or an equivalent key. Moreover, by using the fact
that the secret key T is inMn(A) and G1, . . . , Go are not symmetric matrices,
we can make the reconciliation attack more efficient.

Let x be a non-zero element in the twisted oil space O · T−1, namely
x ∈ O · T−1. Here we define the oil space O as follows:

O := {(
lv︷ ︸︸ ︷

0, . . . , 0,

lo︷ ︸︸ ︷
∗, . . . , ∗) ∈ Fln

q }.

Since T is in Mn(A), the secret key T is commutative with

Sdiag :=

S
. . .

S

 ∈ Mln(Fq),

where S is the l×l symmetric matrix in 2.4.2. Thus, we have for i = 0, . . . , l−1,

x · Si
diag ∈ O · T−1Si

diag = O · Si
diagT

−1 = O · T−1.

From this, we have

x · Si
diag ·Gk · Sj

diag ·
tx = 0, (0 ≤ i, j ≤ l − 1, 0 ≤ k ≤ o). (13)

By solving this system, we might be able to obtain an element in the twisted
oil space O·T−1. Since the dimension of O·T−1 is lo, this system (13) can be
reduced to a system of l2o homogeneous quadratic equations in ln−(lo−1) =
lv + 1 variables, which has only one solution belonging to the twisted oil
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space up to a scalar factor. Here, since Gk is not symmetric, two polynomials
x · Si

diag ·Gk · Sj
diag · tx and x · Sj

diag ·Gk · Si
diag · tx are not necessarily equal.

Therefore, the complexity of the reconciliation attack is evaluated by

min
k

qk · 3
(
lv − k +Dlv+1−k,l2o

Dlv+1−k,l2o

)2 (
lv + 2− k

2

)
, (14)

where max{0, lv + 1 − l2o} ≤ k ≤ lv is the number of fixed variables in the
hybrid approach.

(iii) Intersection attack:
We can apply the intersection attack to the core matrices G1, . . . , Go. Let

Q,R be two randomly chosen invertible linear combinations of G1, . . . , Go.
Let x be an element in O · T−1Q ∩ O · T−1R. Since we have xQ−1,xR−1 ∈
O · T−1, we obtain

x ·Q−1Si
diag, x ·R−1Si

diag ∈ O · T−1 (0 ≤ i ≤ l − 1).

From this, we have for 0 ≤ i, j ≤ l − 1, 0 ≤ k ≤ o

x ·Q−1Si
diag ·Gk · Sj

diag
tQ−1 · tx = 0,

x ·Q−1Si
diag ·Gk · Sj

diag
tR−1 · tx = 0,

x ·R−1Si
diag ·Gk · Sj

diag
tQ−1 · tx = 0,

x ·R−1Si
diag ·Gk · Sj

diag
tR−1 · tx = 0.

(15)

As a result, the intersection attack for the core matrices G1, . . . , Go finds an
element x ·Q−1 in the twisted oil space O ·T−1 by solving the above system,
if O·T−1Q∩O·T−1R 6= 0. Since the system (15) has 2l redundant equations,
it is reduced to a system of 4l2o− 2l homogeneous quadratic equations in ln
variables.

The case v < 2o
In this case, the dimension of O ·T−1Q∩O ·T−1R is at least 2lo− lv > 0.

Thus the system can be reduced a system of M := 4l2o − 2l homogeneous
quadratic equations in N := ln − (2lo − lv − 1) = 2lv − lo + 1 variables.
Moreover, our experiments in Table 4 show that this reduced system behaves
like a random system of M homogeneous quadratic equations in N variables.
Here, Hd is the dimension of degree d part Id of the homogeneous ideal I
generated by a semi-regular system of M homogeneous quadratic equations
in N variables. The dimension Hd is computed by using the coefficient of td

in
1− (1− t2)M

(1− t)N
.
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Moreover, Rankd and #Columnsd mean the rank and the number of columns
of the Macaulay matrix at degree d for the reduced system of (15). For the
case of v < 2o, since the reduced system has only one solution up to a scalar
factor, Rankd is always less than or equal to #Columnsd − 1. Actually, the
marked number by boldface in the table is equal to #Columnsd − 1. The
reduced system can be solved at degree d where Rankd = #Columnsd − 1
using the XL Wiedemann algorithm. The complexity to solve the reduced
system is given by

min
k

qk · 3
(
N − k − 1 +DN−k,M

DN−k,M

)2 (
N − k + 1

2

)
, (16)

where 0 ≤ k ≤ N −1 is the number of fixed variables in the hybrid approach.

The case v ≥ 2o
In this case, the probability that O·T−1Q∩O·T−1R is non zero is around

1/qlv−2lo+1. Thus, the system (15) is a system of M := 4l2o−2l homogeneous
quadratic equations in ln variables, and has a solution belonging to O·T−1Q∩
O · T−1R at the probability 1/qlv−2lo+1. Our experiments in Table 4 show
that the system (15) in the case v ≥ 2o also behaves like a random system
of M homogeneous quadratic equations in ln variables. Note that, for the
case of v ≥ 2o, the reduced system does not have non-zero solutions when
O ·T−1Q∩O ·T−1R = 0. For that reason, Rankd = #Columnsd can happen
with high probability.

The complexity to find a non-zero element in O·T−1Q∩O ·T−1R is given
by

min
k

qlv−2lo+1qk · 3
(
ln− k − 1 +Dln−k,M

Dln−k,M

)2 (
ln− k + 1

2

)
, (17)

where max{0, ln −M} ≤ k ≤ ln − 1 is the number of fixed variables in the
hybrid approach.

(iv) Equivalent attack:
It is clear that the equation system of the equivalent attack in 3.2 (iv) is the

full reconciliation attack (see 3.3 in [1]), and contains that of the reconciliation
attack in 4.2 (ii). The dominant part of the equivalent attack is considered
to be the part of the reconciliation attack . Therefore, it is enough to analyze
the reconciliation attack.

(v) MinRank attack:

For any k, i, j, we have gk,ij(X) = gk,ij(x
(i),x(j)). In particular, gk,ii(X) =

gk,ii(x
(i)). Thus, it is clear that the representation matrix of gk,ii is of rank

lv at most. Therefore, the MinRank problem stated in 3.2.2 (v) is a trivial
MinRank problem. Namely, it seems that solutions to the MinRank problem
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Table 4 The rank and the number of columns of the Macaulay matrix at each degree
d for the system (15), where q = 16. For the case of v < 2o, we consider the reduced
system of M equations in N variables.

(v, o, l) d = 2 d = 3 d = 4 d = 5 d = 6

(7, 4, 2)
Hd 60 1260 10626

Rankd 60 1260 10625
#Columnsd 231 1771 10626

(7, 4, 3)
Hd 138 4278 46376

Rankd 138 4278 46375
#Columnsd 496 5456 46376

(7, 4, 4)
Hd 248 10168 135751

Rankd 248 10168 135750
#Columnsd 861 12341 135751

(9, 5, 2)
Hd 76 2052 25878 169911

Rankd 76 2052 25878 169910
#Columnsd 378 3654 27405 169911

(9, 5, 3)
Hd 174 6960 123410

Rankd 174 6960 123409
#Columnsd 820 11480 123410

(9, 5, 4)
Hd 312 16536 367290

Rankd 312 16536 367289
#Columnsd 1431 26235 367290

(6, 2, 2)
Hd 28 448 3430 15504

Rankd 28 448 3430 15504
#Columnsd 136 816 3876 15504

(6, 2, 3)
Hd 66 1584 17550

Rankd 66 1584 17550
#Columnsd 300 2600 17550

(6, 2, 4)
Hd 120 3840 52360

Rankd 120 3840 52360
#Columnsd 528 5984 52360

(7, 2, 2)
Hd 28 504 4410 25116 100947

Rankd 28 504 4410 25116 100947
#Columnsd 171 1140 5985 26334 100947

(7, 2, 3)
Hd 66 1782 22803 169911

Rankd 66 1782 22803 169911
#Columnsd 378 3654 27405 169911

(7, 2, 4)
Hd 120 4320 72780 658008

Rankd 120 4320 72780 658008
#Columnsd 666 8436 82251 658008

are not useful for an attacker. It is considered not to need to analyze this
MinRank attack.

From the above, we could indeed apply the key recovery attacks to the
core matrices G1, . . . , Go, and it is efficient compared with the key recovery
attacks for the core polynomial UOV {gk,ij}. Thus, it is considered that we
should analyze the security of the core matrices instead of the core polynomial
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UOV. Table 5 shows the complexity estimations of KS attack, reconciliation
attack and intersection attack for the core matrices G1, . . . , Go.

Table 5 Our complexity estimation (in log2(#gates)) evaluated in Section 4

(q, v, o, l)
KS Reconciliation Intersection

attack attack attack

I
(16, 28, 17, 2) 93 132 (k = 2) 87 (k = 0)
(16, 25, 8, 3) 209 209 (k = 15) 221 (k = 0)
(16, 24, 5, 4) 309 270 (k = 30) 349 (k = 0)

III
(16, 43, 25, 2) 149 193 (k = 6) 120 (k = 0)
(16, 49, 11, 3) 461 438 (k = 66) 529 (k = 0)
(16, 37, 8, 4) 469 388 (k = 45) 507 (k = 0)

V
(16, 61, 33, 2) 229 277 (k = 17) 167 (k = 1)
(16, 66, 15, 3) 617 575 (k = 87) 690 (k = 0)
(16, 60, 10, 4) 805 695 (k = 112) 922 (k = 0)

Here, the security level I, III and V mean that all classical attacks require
2143, 2207 and 2272 classical gates to break the scheme, respectively. From this
table, the parameters for l = 2 do not satisfy the claimed security levels.

Remark 2 By using the fact that G1, . . . , Go are not symmetric, we made the
reconciliation attack and the intersection attack more efficient. Thus, if we
choose G1, . . . , Gk as symmetric matrices, then we might be able to improve
the security of SNOVA, and furthermore, make the public key smaller.

5 Conclusion

SNOVA was proposed as an efficient variant of UOV having small public key
by using the structure of a non-commutative matrix ring, and was submit-
ted to the additional NIST PQC standardization project. In this paper, we
reorganized the construction of SNOVA. In particular, we explained its con-
struction without using the structure of the non-commutative matrix ring.
By this explanation, we showed that the key recovery attacks can be applied
to the core part of SNOVA. As a result, by such attacks, some parameters
of SNOVA submitted in the additional NIST PQC standardization do not
satisfy the claimed security levels.
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