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Abstract Gröbner bases are nowadays central tools for solving various problems
in commutative algebra and algebraic geometry. A typical use of Gröbner bases is
the multivariate polynomial system solving, which enables us to construct algebraic
attacks against post-quantum cryptographic protocols. Therefore, the determination
of the complexity of computing Gröbner bases is very important both in theory and
in practice: One of the most important cases is the case where input polynomials
compose an (overdetermined) affine semi-regular sequence. The first part of this
paper aims to present a survey on Gröbner basis computation and its complexity. In
the second part, we shall give an explicit formula on the (truncated) Hilbert-Poincaré
series associated to the homogenization of an affine semi-regular sequence. Based
on the formula, we also study (reduced) Gröbner bases of the ideals generated by
an affine semi-regular sequence and its homogenization. Some of our results are
considered to give mathematically rigorous proofs of the correctness of methods for
computing Gröbner bases of the ideal generated by an affine semi-regular sequence.

1 Introduction

Let 𝐾 be a field, and 𝑅 = 𝐾 [𝑥1, . . . , 𝑥𝑛] the polynomial ring in 𝑛 variables over 𝐾 .
For a polynomial 𝑓 in 𝑅, let 𝑓 top denote its maximal total degree part which is called
the top part of 𝑓 here, and let 𝑓 ℎ denote its homogenization in 𝑅′ = 𝑅[𝑦] by an
extra variable 𝑦, see Subsection 3.1.1 below for details. We denote by ⟨𝐹⟩𝑅 (or ⟨𝐹⟩
simply) the ideal generated by a non-empty subset 𝐹 of 𝑅. For a finitely generated
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graded 𝑅-(or 𝑅′-)module 𝑀 , we also denote by HF𝑀 and HS𝑀 its Hilbert function
and its Hilbert–Poincaré series, respectively. A Gröbner basis of an ideal 𝐼 in 𝑅 is
defined as a special kind of generating set for 𝐼, and it gives a computational tool to
determine many properties of the ideal 𝐼. A typical application of computing Gröbner
bases is solving the multivariate polynomial (MP) problem: Given 𝑚 polynomials
𝑓1, . . . , 𝑓𝑚 in 𝑅, find (𝑎1, . . . , 𝑎𝑛) ∈ 𝐾𝑛 such that 𝑓𝑖 (𝑎1, . . . , 𝑎𝑛) = 0 for all 𝑖 with
1 ≤ 𝑖 ≤ 𝑚. A particular case where polynomials are all quadratic is called the
MQ problem, and its hardness is applied to constructing public-key cryptosystems
and digital signature schemes that are expected to be quantum resistant. Therefore,
analyzing the complexity of computing Gröbner bases is one of the most important
problems both in theory and in practice.

An algorithm for computing Gröbner bases was proposed first by Buchberger [6],
and so far a number of its improvements such as the 𝐹4 [19] and 𝐹5 [20] algorithms
have been proposed, see Subsection 3.1 below for a summary. In general, it is very
difficult to determine the complexity of computing Gröbner bases, but in some cases,
we can estimate it with several algebraic invariants such as the solving degree, the
degree of regularity, the Castelnuovo–Mumford regularity, and the first and last fall
degrees; we refer to [8] for the relations between these invariants.

The first part of this paper aims to survey Gröbner basis computation, and to re-
view its complexity in the case where input polynomials generate a zero-dimensional
ideal. For this, in Section 2, we first recall foundations in commutative algebra such
as Koszul complex, Hilbert-Poincaré series, and semi-regular sequence, which are
useful ingredients to estimate the complexity of computing Gröbner bases. Then,
we overview existing Gröbner basis algorithms in Subsection 3.1. Subsequently, it
will be described in Subsection 3.2 how to estimate the complexity of computing
the reduced Gröbner basis of a zero-dimensional ideal, with the notion of homoge-
nization.

In the second part, we focus on affine semi-regular polynomial sequences, where
a sequence 𝑭 = ( 𝑓1, . . . , 𝑓𝑚) ∈ 𝑅𝑚 of (not necessarily homogeneous) polynomials
is said to be affine (cryptographic) semi-regular if 𝑭top = ( 𝑓 top

1 , . . . , 𝑓
top
𝑚 ) is (crypto-

graphic) semi-regular, see Definitions 4, 7, and 8 for details. Note that homogeneous
semi-regular sequences are conjectured by Pardue [32, Conjecture B] to be generic
sequences of polynomials, and affine (cryptographic) semi-regular sequences are
often appearing in the construction of multivariate public key cryptosystems and
digital signature schemes. In Section 4 below, we relate the Hilbert-Poincaré series
of 𝑅′/⟨𝑭ℎ⟩ with that of 𝑅/⟨𝑭top⟩. As a corollary, we obtain an explicit formula of
the truncation at degree 𝐷 −1 of the Hilbert-Poincaré series of 𝑅′/⟨𝑭ℎ⟩, where 𝐷 is
the degree of regularity for ⟨𝑭top⟩. The following theorem summarizes these results:

Theorem 1 (Theorem 7, Corollaries 1 and 2) With notation as above, assume that
𝑭 is affine cryptographic semi-regular. Then HF𝑅′/⟨𝑭ℎ ⟩ (𝑑) =

∑𝑑
𝑖=0 HF𝑅/⟨𝑭 top ⟩ (𝑖)

and (⟨LM(⟨𝑭ℎ⟩)⟩𝑅′ )𝑑 = (⟨LM(⟨𝑭top⟩)⟩𝑅′ )𝑑 for each 𝑑 with 𝑑 < 𝐷, where we use
a DRL ordering on the set of monomials in 𝑅 and its homogenization on that in 𝑅′.
Hence, we also obtain HS𝑅′/⟨𝑭ℎ ⟩ (𝑧) ≡

∏𝑚
𝑖=1 (1− 𝑧𝑑𝑖 )/(1− 𝑧)𝑛+1 (mod 𝑧𝐷), so that

𝑭ℎ is 𝐷-regular (see Definition 4 for the definition of 𝑑-regularity).
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As an application of this theorem, we explore reduced Gröbner bases of ⟨𝑭⟩,
⟨𝑭ℎ⟩, and ⟨𝑭top⟩ in Section 5 below, dividing the cases into the degree less than
𝐷 or not. In particular, we rigorously prove some existing results, which are often
used for analyzing the complexity of computing Gröbner bases, and moreover extend
them to our case.

2 Preliminaries

In this section, we recall definitions of Koszul complex, Hilbert–Poincaré series, and
semi-regular polynomial sequences, and collect some known facts related to them.
Throughout this section, let 𝑅 = 𝐾 [𝑋] = 𝐾 [𝑥1, . . . , 𝑥𝑛] be the polynomial ring of 𝑛
variables 𝑋 = (𝑥1, . . . , 𝑥𝑛) over a field 𝐾 . As a notion, for a polynomial 𝑓 in 𝑅, we
denote its total degree by deg( 𝑓 ). As 𝑅 is a graded ring with respect to total degree,
for a polynomial 𝑓 , its maximal total degree part, denoted by 𝑓 top, is defined as its
graded component of deg( 𝑓 ), that is, the sum of all terms of 𝑓 whose total degree
equals to deg( 𝑓 ).

2.1 Koszul complex and its homology

Let 𝑓1, . . . , 𝑓𝑚 ∈ 𝑅 be homogeneous polynomials of degrees 𝑑1, . . . , 𝑑𝑚, and put
𝑑 𝑗1 · · · 𝑗𝑖 :=

∑𝑖
𝑘=1 𝑑 𝑗𝑘 . For each 0 ≤ 𝑖 ≤ 𝑚, we define a free 𝑅-module of rank

(𝑚
𝑖

)
𝐾𝑖 ( 𝑓1, . . . , 𝑓𝑚) :=


⊕

1≤ 𝑗1<· · ·< 𝑗𝑖≤𝑚
𝑅(−𝑑 𝑗1 · · · 𝑗𝑖 )e 𝑗1 · · · 𝑗𝑖 (𝑖 ≥ 1)

𝑅 (𝑖 = 0),

where e 𝑗1 · · · 𝑗𝑖 is a standard basis. We also define a graded homomorphism

𝜑𝑖 : 𝐾𝑖 ( 𝑓1, . . . , 𝑓𝑚) −→ 𝐾𝑖−1 ( 𝑓1, . . . , 𝑓𝑚)

of degree 0 by

𝜑𝑖 (e 𝑗1 · · · 𝑗𝑖 ) :=
𝑖∑︁
𝑘=1

(−1)𝑘−1 𝑓 𝑗𝑘e 𝑗1 · · · 𝑗𝑘 · · · 𝑗𝑖 .

Here, 𝑗𝑘 means to omit 𝑗𝑘 . For example, we have e12̂3 = e13. To simplify the notation,
we set 𝐾𝑖 := 𝐾𝑖 ( 𝑓1, . . . , 𝑓𝑚). Then,

𝐾• : 0 → 𝐾𝑚
𝜑𝑚−−→ · · ·

𝜑3−−→ 𝐾2
𝜑2−−→ 𝐾1

𝜑1−−→ 𝐾0 → 0 (1)

is a complex, and we call it the Koszul complex on ( 𝑓1, . . . , 𝑓𝑚). The 𝑖-th homology
group of 𝐾• is given by
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𝐻𝑖 (𝐾•) = Ker(𝜑𝑖)/Im(𝜑𝑖+1).

In particular, we have
𝐻0 (𝐾•) = 𝑅/⟨ 𝑓1, . . . , 𝑓𝑚⟩𝑅 .

The kernel and the image of a graded homomorphism are both graded submodules in
general, so that Ker(𝜑𝑖) and Im(𝜑𝑖+1) are graded 𝑅-modules, and so is the quotient
module 𝐻𝑖 (𝐾•). In the following, we denote by 𝐻𝑖 (𝐾•)𝑑 the degree-𝑑 homogeneous
part of 𝐻𝑖 (𝐾•).

Note that Ker(𝜑1) = syz( 𝑓1, . . . , 𝑓𝑚) (the right hand side is the module of syzy-
gies), and that Im(𝜑2) ⊂ 𝐾1 =

⊕𝑚

𝑗=1 𝑅(−𝑑 𝑗 )e 𝑗 is generated by

{t𝑖, 𝑗 := 𝑓𝑖e 𝑗 − 𝑓 𝑗e𝑖 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑚}.

Hence, putting

tsyz( 𝑓1, . . . , 𝑓𝑚) := ⟨t𝑖, 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑚⟩𝑅,

we have
𝐻1 (𝐾•) = syz( 𝑓1, . . . , 𝑓𝑚)/tsyz( 𝑓1, . . . , 𝑓𝑚). (2)

Definition 1 (Trivial syzygies) With notation as above, we call each generator t𝑖, 𝑗
(or each element of tsyz( 𝑓1, . . . , 𝑓𝑚)) a trivial syzygy for ( 𝑓1, . . . , 𝑓𝑚). We also call
tsyz( 𝑓1, . . . , 𝑓𝑚) the module of trivial syzygies.

We also note that 𝐻𝑚 (𝐾•) = 0, since 𝜑𝑚 is clearly injective by definition.

Remark 1 When 𝐾 = F𝑞 , a vector of the form 𝑓
𝑞−1
𝑖

e𝑖 is also referred to as a
trivial syzygy, in the context of Ding-Schmidt’s definition for first fall degree [16]
(see [7, Section 4.2] or [30, Section 3.2] for reviews). More concretely, putting
𝐵 := 𝑅/⟨𝑥𝑞1 , . . . , 𝑥

𝑞
𝑛⟩𝑅 and 𝑓 𝑖 := 𝑓𝑖 mod ⟨𝑥𝑞1 , . . . , 𝑥

𝑞
𝑛⟩, we define the Koszul complex

on ( 𝑓 1, . . . , 𝑓 𝑚) ∈ 𝐵𝑚 similarly to that on ( 𝑓1, . . . , 𝑓𝑚) ∈ 𝑅𝑚, and denote it by
𝐾• = 𝐾• ( 𝑓 1, . . . , 𝑓 𝑚). Then, the vectors 𝑓 𝑖e 𝑗 − 𝑓 𝑗e𝑖 and 𝑓

𝑞−1
𝑖 e𝑖 in 𝐵𝑚 for 1 ≤

𝑖 < 𝑗 ≤ 𝑚 are syzygies for ( 𝑓 1, . . . , 𝑓 𝑚). Each 𝑓 𝑖e 𝑗 − 𝑓 𝑗e𝑖 is called a Koszul
syzygy, and the Koszul syzygies together with 𝑓

𝑞−1
𝑖 e𝑖’s are referred to as trivial

syzygies for ( 𝑓 1, . . . , 𝑓 𝑚). The first fall degree 𝑑ff ( 𝑓1, . . . , 𝑓𝑚) is defined as the
minimal integer 𝑑with syz( 𝑓 1, . . . , 𝑓 𝑚)𝑑 ⊋ tsyz+ ( 𝑓 1, . . . , 𝑓 𝑚)𝑑 in (𝐵𝑑−𝑑𝑖 )𝑚, where
tsyz+ ( 𝑓 1, . . . , 𝑓 𝑚) denotes the submodule in 𝐵𝑚 generated by the trivial syzygies
for ( 𝑓 1, . . . , 𝑓 𝑚).

Note that, for each 𝑖, a homomorphism 𝐻𝑖 (𝐾•) → 𝐻𝑖 (𝐾•) is canonically induced
by taking modulo ⟨𝑥𝑞1 , . . . , 𝑥

𝑞
𝑛⟩𝑅. In particular, we have the following composite

𝐾-linear map:

𝜂𝑑 : 𝐻1 (𝐾•)𝑑 → 𝐻1 (𝐾•)𝑑 → syz( 𝑓 1, . . . , 𝑓 𝑚)𝑑/tsyz+ ( 𝑓 1, . . . , 𝑓 𝑚)𝑑 .

for each 𝑑. Putting 𝑑 = 𝑑ff ( 𝑓1, . . . , 𝑓𝑚) and letting 𝐷 to be the minimal integer with
𝐻1 (𝐾•)𝐷 ≠ 0, it is straightforward to verify the following:
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• If 𝑞 > 𝐷, then 𝜂𝐷 is injective, and syz( 𝑓 1, . . . , 𝑓 𝑚)𝐷 ⊋ tsyz+ ( 𝑓 1, . . . , 𝑓 𝑚)𝐷 ,
whence 𝐷 ≥ 𝑑.

• If 𝑞 > 𝑑, then 𝜂𝑑 is surjective. In this case, 𝐻1 (𝐾)𝑑 ≠ 0, so that 𝐷 ≤ 𝑑.

See [30, Lemmas 4.2 and 4.3] for a proof. Therefore, we have 𝑑 = 𝐷 for sufficiently
large any 𝑞.

2.2 Hilbert–Poincaré series and semi-regular sequences

Definition 2 (Hilbert–Poincaré series) For a finitely generated graded 𝑅-module
𝑀 , we define the Hilbert function HF𝑀 of 𝑀 , given by

HF𝑀 (𝑑) = dim𝐾𝑀𝑑

for each 𝑑 ∈ Z≥0. The Hilbert–Poincaré series HS𝑀 of 𝑀 is defined as the formal
power series

HS𝑀 (𝑧) =
∞∑︁
𝑑=0

HF𝑀 (𝑑)𝑧𝑑 ∈ Z⟦𝑧⟧.

Theorem 2 (cf. [4, Chapter 10]) Let 𝐼 be a homogeneous ideal of 𝑅 generated by
a set 𝐺 ⊂ 𝑅 of homogeneous elements of degree not greater than a non-negative
integer 𝑑. Let LM( 𝑓 ) denote the leading monomial of 𝑓 ∈ 𝑅 ∖ {0} with respect to a
graded ordering ≺ on the set of monomials in 𝑅. For a non-empty subset 𝐹 ⊂ 𝑅∖{0},
put LM(𝐹) := {LM( 𝑓 ) : 𝑓 ∈ 𝐹}. Then, the following are equivalent:

1. ⟨LM(𝐺)⟩≤𝑑 = ⟨LM(𝐼)⟩≤𝑑 .
2. Every 𝑓 ∈ 𝐼≤𝑑 is reduced to zero modulo 𝐺.
3. For every pair of 𝑓 , 𝑔 ∈ 𝐺 with deg(LCM(LM( 𝑓 ),LM(𝑔))) ≤ 𝑑, the 𝑆-

polynomial 𝑆( 𝑓 , 𝑔) is reduced to zero modulo 𝐺.

In this case, 𝐺 is called a 𝑑-Gröbner basis of 𝐼 with respect to ≺.

We also review the notion of semi-regular sequence defined by Pardue [32].

Definition 3 (Semi-regular sequences, [32, Definition 1]) Let 𝐼 be a homogeneous
ideal of 𝑅. A degree-𝑑 homogeneous element 𝑓 ∈ 𝑅 is said to be semi-regular on 𝐼
if the multiplication map (𝑅/𝐼)𝑡−𝑑 −→ (𝑅/𝐼)𝑑 ; 𝑔 ↦→ 𝑔 𝑓 is injective or surjective,
for every 𝑡 with 𝑡 ≥ 𝑑. A sequence ( 𝑓1, . . . , 𝑓𝑚) ∈ 𝑅𝑚 of homogeneous polynomials
is said to be semi-regular on 𝐼 if 𝑓𝑖 is semi-regular on 𝐼 + ⟨ 𝑓1, . . . , 𝑓𝑖−1⟩𝑅, for every
𝑖 with 1 ≤ 𝑖 ≤ 𝑚.

Throughout the rest of this subsection, let 𝑓1, . . . , 𝑓𝑚 ∈ 𝑅 be homogeneous
elements of degree 𝑑1, . . . , 𝑑𝑚, respectively, and put 𝐼 = ⟨ 𝑓1, . . . , 𝑓𝑚⟩𝑅. Furthermore,
put 𝐼 (0) := {0} and 𝐴(0) := 𝑅/𝐼 (0) = 𝑅. For each 𝑖 with 1 ≤ 𝑖 ≤ 𝑚, we also set
𝐼 (𝑖) := ⟨ 𝑓1, . . . , 𝑓𝑖⟩𝑅 and 𝐴(𝑖) := 𝑅/𝐼 (𝑖) . The degree-𝑑 homogeneous part 𝐴(𝑖)

𝑑
of
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each 𝐴(𝑖) is given by 𝐴(𝑖)
𝑑

= 𝑅𝑑/𝐼 (𝑖)𝑑 , where 𝐼 (𝑖)
𝑑

= 𝐼 (𝑖) ∩ 𝑅𝑑 . We denote by 𝜓 𝑓𝑖 the
multiplication map

𝐴(𝑖−1) −→ 𝐴(𝑖−1) ; 𝑔 ↦→ 𝑔 𝑓𝑖 ,

which is a graded homomorphism of degree 𝑑𝑖 . For every 𝑡 ≥ 𝑑𝑖 , the restriction map

𝜓 𝑓𝑖 |𝐴(𝑖−1)
𝑡−𝑑𝑖

: 𝐴(𝑖−1)
𝑡−𝑑𝑖 −→ 𝐴

(𝑖−1)
𝑡

is a 𝐾-linear map. On the other hand, as for the surjective homomorphism

𝜙𝑖−1 : 𝐴(𝑖−1) −→ 𝐴(𝑖) ; 𝑓 + 𝐼 (𝑖−1) ↦→ 𝑓 + 𝐼 (𝑖) ,

it is straightforward to see that for each 𝑡 with 0 ≤ 𝑡 ≤ 𝑑𝑖 − 1, the restriction map

𝜙𝑖−1 |𝐴(𝑖−1)
𝑡

: 𝐴(𝑖−1)
𝑡 −→ 𝐴

(𝑖)
𝑡

is an isomorphism of 𝐾-linear spaces, whence

dim𝐾 𝐴
(𝑖−1)
𝑡 = dim𝐾 𝐴

(𝑖)
𝑡 (0 ≤ 𝑡 ≤ 𝑑𝑖 − 1).

Lemma 1 With notation as above, for each 1 ≤ 𝑖 ≤ 𝑚 and for each 𝑡 ≥ 𝑑𝑖 , we have
the following equalities:

dim𝐾 𝐴
(𝑖)
𝑡 = dim𝐾 𝐴

(𝑖−1)
𝑡 − dim𝐾 Im

(
𝐴
(𝑖−1)
𝑡−𝑑𝑖

× 𝑓𝑖−−−→ 𝐴
(𝑖−1)
𝑡

)
, (3)

dim𝐾 Im
(
𝐴
(𝑖−1)
𝑡−𝑑𝑖

× 𝑓𝑖−−−→ 𝐴
(𝑖−1)
𝑡

)
= dim𝐾 𝐴

(𝑖−1)
𝑡−𝑑𝑖 − dim𝐾 (0 : 𝑓𝑖)𝑡−𝑑𝑖 , (4)

where we set (0 : 𝑓𝑖) = {𝑔 ∈ 𝐴(𝑖−1) : 𝑔 𝑓𝑖 = 0}. Hence,

• The multiplication map 𝐴(𝑖−1)
𝑡−𝑑𝑖

× 𝑓𝑖−−−→ 𝐴
(𝑖−1)
𝑡 is injective if and only if

dim𝐾 𝐴
(𝑖)
𝑡 = dim𝐾 𝐴

(𝑖−1)
𝑡 − dim𝐾 𝐴

(𝑖−1)
𝑡−𝑑𝑖 . (5)

In this case, one has dim𝐾 𝐴
(𝑖−1)
𝑡−𝑑𝑖 ≤ dim𝐾 𝐴

(𝑖−1)
𝑡 .

• The multiplication map 𝐴(𝑖−1)
𝑡−𝑑𝑖

× 𝑓𝑖−−−→ 𝐴
(𝑖−1)
𝑡 is surjective if and only if

dim𝐾 𝐴
(𝑖)
𝑡 = 0. (6)

In this case, one has dim𝐾 𝐴
(𝑖−1)
𝑡−𝑑𝑖 ≥ dim𝐾 𝐴

(𝑖−1)
𝑡 .

Proof. Let 𝑖 and 𝑡 be integers such that 1 ≤ 𝑖 ≤ 𝑚 and 𝑡 ≥ 𝑑𝑖 . Since we have
(0 : 𝑓𝑖)𝑡−𝑑𝑖 = {𝑔 ∈ 𝐴(𝑖−1)

𝑡−𝑑𝑖 : 𝑔 𝑓𝑖 = 0}, the sequence

0 −→ (0 : 𝑓𝑖)𝑡−𝑑𝑖 −→ 𝐴
(𝑖−1)
𝑡−𝑑𝑖

× 𝑓𝑖−→ 𝐴
(𝑖−1)
𝑡 −→ 𝐴

(𝑖)
𝑡 −→ 0
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of 𝐾-linear maps is exact, where (0 : 𝑓𝑖)𝑡−𝑑𝑖 → 𝐴
(𝑖−1)
𝑡−𝑑𝑖 is an inclusion map. The

exactness of this sequence implies the desired equalities (3) and (4). ⊓⊔

The semi-regularity is characterized by equivalent conditions in Proposition 1
below. In particular, the fourth condition enables us to compute the Hilbert–Poincaré
series of each 𝐴(𝑖) easily.

Proposition 1 (cf. [32, Proposition 1]) With notation as above, the following are
equivalent:

1. The sequence ( 𝑓1, . . . , 𝑓𝑚) ∈ 𝑅𝑚 is semi-regular.
2. For each 1 ≤ 𝑖 ≤ 𝑚 and for each 𝑡 ≥ 𝑑𝑖 , we have (5) or (6), namely

dim𝐾 𝐴
(𝑖)
𝑡 = max{0, dim𝐾 (𝐴(𝑖−1)

𝑡 ) − dim𝐾 (𝐴(𝑖−1)
𝑡−𝑑𝑖 )}.

3. For each 𝑖 with 1 ≤ 𝑖 ≤ 𝑚, we have

HS𝐴(𝑖) (𝑧) = [HS𝐴(𝑖−1) (𝑧) (1 − 𝑧𝑑𝑖 )],

where [·] means truncating a formal power series over Z after the last consecutive
positive coefficient.

4. For each 𝑖 with 1 ≤ 𝑖 ≤ 𝑚, we have

HS𝐴(𝑖) (𝑧) =
[∏𝑖

𝑗=1 (1 − 𝑧𝑑 𝑗 )
(1 − 𝑧)𝑛

]
.

When 𝐾 is an infinite field, Pardue also conjectured in [32, Conjecture B] that
generic polynomial sequences are semi-regular.

2.3 Cryptographic semi-regular sequences

We here review the notion of cryptographic semi-regular sequence, which is de-
fined by a condition weaker than one for semi-regular sequences. The notion of
cryptographic semi-regular sequence is introduced first by Bardet et al. (e.g., [2],
[3]) motivated to analyze the complexity of computing Gröbner bases. Diem [14]
also formulated cryptographic semi-regular sequences, in terms of commutative and
homological algebra. The terminology “cryptographic” was named by Bigdeli et al.
in their recent work [5], in order to distinguish such a sequence from a semi-regular
one defined by Pardue (see Definition 3 in the previous subsection).

Definition 4 ([2, Definition 3]; see also [14, Definition 1]) Let 𝑓1, . . . , 𝑓𝑚 ∈ 𝑅

be homogeneous polynomials of positive degrees 𝑑1, . . . , 𝑑𝑚 respectively, and put
𝐼 = ⟨ 𝑓1, . . . , 𝑓𝑚⟩𝑅. The notations 𝐼 (𝑖) and 𝐴(𝑖) are also the same as in the pre-
vious subsection. For each integer 𝑑 with 𝑑 ≥ max{𝑑𝑖 : 1 ≤ 𝑖 ≤ 𝑚}, we call a
sequence ( 𝑓1, . . . , 𝑓𝑚) ∈ 𝑅𝑚 of homogeneous polynomials 𝑑-regular if it satisfies
the following condition:
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• For each 𝑖 with 1 ≤ 𝑖 ≤ 𝑚, if a homogeneous polynomial 𝑔 ∈ 𝑅 satisfies
𝑔 𝑓𝑖 ∈ ⟨ 𝑓1, . . . , 𝑓𝑖−1⟩𝑅 and deg(𝑔 𝑓𝑖) < 𝑑, then we have 𝑔 ∈ ⟨ 𝑓1, . . . , 𝑓𝑖−1⟩𝑅. In
other word, the multiplication map 𝐴(𝑖−1)

𝑡−𝑑𝑖 −→ 𝐴
(𝑖−1)
𝑡 ; 𝑔 ↦→ 𝑔 𝑓𝑖 is injective for

every 𝑡 with 𝑑𝑖 ≤ 𝑡 < 𝑑.

Diem [14] determined the (truncated) Hilbert-Poincaré series of 𝑑-regular se-
quences as in the following proposition:

Theorem 3 (cf. [14, Theorem 1]) With the same notation as in Definition 4, the
following are equivalent for each 𝑑 with 𝑑 ≥ max{𝑑𝑖 : 1 ≤ 𝑖 ≤ 𝑚}:

1. The sequence ( 𝑓1, . . . , 𝑓𝑚) ∈ 𝑅𝑚 is 𝑑-regular. Namely, for each (𝑖, 𝑡) with 1 ≤
𝑖 ≤ 𝑚 and 𝑑𝑖 ≤ 𝑡 < 𝑑, the equality (5) holds.

2. We have

HS𝐴(𝑚) (𝑧) ≡
∏𝑚
𝑗=1 (1 − 𝑧𝑑 𝑗 )
(1 − 𝑧)𝑛 (mod 𝑧𝑑).

3. 𝐻1 (𝐾• ( 𝑓1, . . . , 𝑓𝑚))≤𝑑−1 = 0.

Proposition 2 ([14, Proposition 2 (a)]) With the same notation as in Definition 4,
let 𝐷 and 𝑖 be natural numbers. Assume that 𝐻𝑖 (𝐾 ( 𝑓1, . . . , 𝑓𝑚))≤𝐷 = 0. Then, for
each 𝑗 with 1 ≤ 𝑗 < 𝑚, we have 𝐻𝑖 (𝐾 ( 𝑓1, . . . , 𝑓 𝑗 ))≤𝐷 = 0.

Definition 5 A finitely generated graded 𝑅-module 𝑀 is said to be Artinian if there
exists a sufficiently large 𝐷 ∈ Z such that 𝑀𝑑 = 0 for all 𝑑 ≥ 𝐷.

Definition 6 ([2, Definition 4], [3, Definition 5]) For a homogeneous ideal 𝐼 of 𝑅,
we define its degree of regularity 𝑑reg (𝐼) as follows: If the finitely generated graded
𝑅-module 𝑅/𝐼 is Artinian, we set 𝑑reg (𝐼) := min{𝑑 : 𝑅𝑑 = 𝐼𝑑}, and otherwise we
set 𝑑reg (𝐼) := ∞.

As for an upper-bound on the degree of regularity, we refer to [23, Theorem 21].

Remark 2 In Definition 6, since 𝑅/𝐼 is Noetherian, it is Artinian if and only if
it is of finite length. In this case, the degree of regularity 𝑑reg (𝐼) is equal to the
Castelnuovo-Mumford regularity reg(𝐼) of 𝐼 (see e.g., [17, §20.5] for the definition),
whence 𝑑reg (𝐼) = reg(𝐼) = reg(𝑅/𝐼) + 1.

Definition 7 ([2, Definition 5], [3, Definition 5]; see also [15, Section 2]) A se-
quence ( 𝑓1, . . . , 𝑓𝑚) ∈ 𝑅𝑚 of homogeneous polynomials is said to be cryptographic
semi-regular if it is 𝑑reg (𝐼)-regular, where we set 𝐼 = ⟨ 𝑓1, . . . , 𝑓𝑚⟩𝑅.

The cryptographic semi-regularity is characterized by equivalent conditions in
Proposition 3 below. In particular, the second condition enables us to compute the
Hilbert–Poincaré series of 𝐴(𝑖) easily.

Proposition 3 ([14, Proposition 1 (d)]; see also [3, Proposition 6]) With the same
notation as in Definition 4, we put 𝐷 = 𝑑reg (𝐼). Then, the following are equivalent:

1. ( 𝑓1, . . . , 𝑓𝑚) ∈ 𝑅𝑚 is cryptographic semi-regular.
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2. We have

HS𝑅/𝐼 (𝑧) =
[∏𝑚

𝑗=1 (1 − 𝑧𝑑 𝑗 )
(1 − 𝑧)𝑛

]
. (7)

3. 𝐻1 (𝐾• ( 𝑓1, . . . , 𝑓𝑚))≤𝐷−1 = 0.

Remark 3 By the definition of degree of regularity, if ( 𝑓1, . . . , 𝑓𝑚) ∈ 𝑅𝑚 is cryp-
tographic semi-regular, 𝑑reg (𝐼) coincides with deg(HS𝑅/𝐼 (𝑧)) + 1, where we set
𝐼 = ⟨ 𝑓1, . . . , 𝑓𝑚⟩.

In 1985, Fröberg already conjectured in [22] that, when 𝐾 is an infinite field,
a generic sequence of homogeneous polynomials 𝑓1, . . . , 𝑓𝑚 ∈ 𝑅 of degrees
𝑑1, . . . , 𝑑𝑚 generates an ideal 𝐼 with the Hilbert-Poincaré series of the form (7),
namely ( 𝑓1, . . . , 𝑓𝑚) is cryptographic semi-regular. It can be proved (cf. [32]) that
Fröberg’s conjecture is equivalent to Pardue’s one [32, Conjecture B] introduced in
Subsection 2.2. We also note that Moreno-Socı́as conjecture [29] is stronger than
the above two conjectures, see [32, Theorem 2] for a proof.

It follows from the fourth condition of Proposition 1 together with the second
condition of Proposition 3 that the semi-regularity implies the cryptographic semi-
regularity.

Definition 8 (Affine semi-regular sequences) A sequence 𝑭 = ( 𝑓1, . . . , 𝑓𝑚) ∈ 𝑅𝑚
of not necessarily homogeneous polynomials 𝑓1, . . . , 𝑓𝑚 is said to be semi-regular
(resp. cryptographic semi-regular) if 𝑭top = ( 𝑓 top

1 , . . . , 𝑓
top
𝑚 ) is semi-regular (resp.

cryptographic semi-regular). In this case, we call 𝑭 an affine semi-regular (resp.
affine cryptographic semi-regular) sequence.

Remark 4 For an affine cryptographic semi-regular sequence 𝑭 = ( 𝑓1, . . . , 𝑓𝑚) ∈
𝑅𝑚 with𝐾 = F𝑞 , it follows from Proposition 3 that 𝑑reg (⟨𝑭top⟩) ≤ 𝑑ff ( 𝑓 top

1 , . . . , 𝑓
top
𝑚 )

for 𝑞 ≫ 0, where 𝑑ff ( 𝑓 top
1 , . . . , 𝑓

top
𝑚 ) is the first fall degree defined in Remark 1.

3 Quick review on the computation of Gröbner basis

In this section, we first review previous studies on the computation of Gröbner bases
for polynomial ideals.

3.1 Overview of existing Gröbner basis algorithms

Since Buchberger [6] discovered the notion of Gröbner basis and a fundamental
algorithm for computing them, many efforts have been done for improving the
efficiency of Gröbner basis computation based on Buchberger’s algorithm. In his
algorithm, S-polynomials play an important role for Gröbner basis computation and
give a famous termination criterion called Buchberger’s criterion, that is, for a given
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ideal 𝐼 of a polynomial ring over a field, its finite generating subset 𝐺 is a Gröbner
basis of 𝐼 with respect to a monomial ordering if and only if the S-polynomial
𝑆(𝑔, 𝑔′) for any distinct pair 𝑔, 𝑔′ ∈ 𝐺 is reduced to 0 modulo 𝐺. For details on
Buchberger’s algorithm and monomial orderings, see e.g., [4].

In the below, we list effective improvements for algorithms which are, at the
same time, very useful to analyze the complexity of Gröbner basis computation.
Here we note that the choice of a monomial ordering is also very crucial for the
efficiency of Gröber basis computation, but we here do not discuss about its choice.
(In general, the degree reverse lexicographical (DRL) ordering1 is considered as the
most efficient ordering for the computation.)

(1) Related to S-polynomial:

(1-1) Strategy for selecting S-polynomial: It is considered to be very effective
to apply the normal strategy, where we choose a pair (𝑔, 𝑔′) for which the least
common multiple (LCM) of the leading monomials LM(𝑔) and LM(𝑔′) with
respect to the fixed ordering ≺ as smaller as possible. (See [4, Chapter 5.5].)
The strategy is very suited for a homogeneous ideal with a graded2 ordering
such as DRL, as we can utilize the graded structure of a homogeneous ideal.
Also, the sugar strategy is designed for a non-homogeneous ideal generated by
𝐹 to make the computational behavior very close to that for the ideal generated
by the homogenization 𝐹ℎ. See Subsection 3.1.1 below for some details on
homogenization. (See also [12, Chapter 2.10].)
(1-2) Avoiding unnecessary S-polynomial computation: In Buchberger’s
algorithm, we add a polynomial to a generating set 𝐺 which is computed
from an S-polynomial by possible reduction of elements in 𝐺. Since the cost
of the construction of S-polynomials and their reduction dominate the whole
computation, S-polynomials which are reduced to 0 are very harmful for the
efficiency. Thus, it is highly desired to avoid such unnecessary S-polynomials
as many as possible.

(A) Based on simple rules: At earlier stages, there are easily computable
rules, called Buchberger’s criterion and Gebauer-Möller’s one. Those are
using the relation of the LMs of a pair and those of a triple, see [4, Chapter
5.5]. Then, in 2002, Faugére [20] introduced the notion of signature and
proposed his 𝐹5 algorithm based on a general rule among signatures. We
call algorithms using signatures including variants of 𝐹5 signature-based
algorithms (SBA). See a survey [18] and Subsection 3.1.2 below for details.
(B) Using invariants of polynomial ideal: For a homogeneous ideal 𝐼 of
a polynomial ring 𝑅, when its Hilbert function HF𝑅/𝐼 (𝑧) is known before
the computation, we can utilize the value HF𝑅/𝐼 (𝑑) for each 𝑑 ∈ N (cf.
[37]). Because, by the value HF𝑅/𝐼 (𝑑), we can check whether we can stop
the computation of S-polynomials of degree 𝑑 or not. We call an algorithm
using Hilbert functions a Hilbert driven (Buchberger’s) algorithm. See [37],
[12, Chapter 10.2] or [13, Section 3.5].

1 This ordering is also called the graded reverse lexicographical (grevlex) ordering.
2 We also call a graded ordering a degree-compatible ordering.
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(2) Efficient computation of S-polynomial reduction: Since the computation
of S-polynomial reduction is a dominant step in the whole Gröbner basis com-
putation, its efficiency heavily affects the total efficiency. As the reduction for a
polynomial by elements of 𝐺 is sequentially applied, we can transform the whole
reduction to a Gaussian elimination of a matrix. This approach was suggested
in form of Macaulay matrices by Lazard [27] and the first efficient algorithm
was given by Faugére [19], which is called the 𝐹4 algorithm. Of course, we
can combine the 𝐹4 and 𝐹5 algorithms effectively, which is called the matrix-𝐹5
algorithm.
(3) Solving coefficient growth: For a polynomial ideal over the rational number
fieldQ, the computation may be suffered by certain growth of coefficients in poly-
nomials appearing during Gröbner basis computation. To resolve this problem,
several modular methods were proposed. As a typical one, we can use Chinese
remainder algorithm (CRA), where we first compute the reduced Gröbner bases
𝐺 𝑝 over several finite fields F𝑝 and then recover the reduced Gröbner basis from
𝐺 𝑝’s by CRA. See [31] for details about choosing primes 𝑝.

Remark 5 For several public key cryptosystems based on polynomial ideals over
finite fields or the elliptic curve discrete logarithm problem, estimating the cost
of finding zeros of polynomial ideals is important to analyze the security of those
systems, where the computation of their Gröbner bases is a fundamental tool. In
this situation, the 𝐹5 algorithm and matrix-𝐹5 algorithm as its efficient variant with
an efficient DRL ordering are considered, as not only those can attain efficient
computation but also they are suited for estimating the computational complexity.

In the following, we introduce the notion of homogenization and an algorithm for
Gröbner basis computation based on signatures (𝐹5 or its variants), which will be
used for our study in Section 5 below.

3.1.1 Homogenization of polynomials and monomial orderings

We begin with recalling the notion of homogenization. (See [24, Chapter 4] for
details.) Let 𝐾 be a field, 𝑋 = {𝑥1, . . . , 𝑥𝑛} a set of variables, and T the set of all
monomials in 𝑋 . 3

(1) For a non-homogeneous polynomial 𝑓 =
∑
𝑡∈T 𝑐𝑡 𝑡 in 𝐾 [𝑋] with 𝑐𝑡 ∈ 𝐾 , its

homogenization 𝑓 ℎ is defined, by introducing a new variable 𝑦, as

𝑓 ℎ =
∑︁
𝑡∈T

𝑐𝑡 𝑡𝑦
deg( 𝑓 )−deg(𝑡 ) .

Thus 𝑓 ℎ is a homogeneous polynomial in 𝑋 ∪ {𝑦} over 𝐾 with total degree
𝑑 = deg( 𝑓 ). Also for a set 𝐹 (or a sequence 𝑭 = ( 𝑓1, . . . , 𝑓𝑚) ∈ 𝐾 [𝑋]𝑚) of
polynomials, its homogenization 𝐹ℎ (or 𝑭ℎ) is defined as 𝐹ℎ = { 𝑓 ℎ | 𝑓 ∈ 𝐹} (or
𝑭ℎ = ( 𝑓 ℎ1 , . . . , 𝑓

ℎ
𝑚) ∈ 𝐾 [𝑋 ∪ {𝑦}]𝑚). We also write 𝑋ℎ for 𝑋 ∪ {𝑦}.

3 As the symbol 𝑚 is used for the size of a generating set, we use T instead of M.
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(2) Conversely, for a homogeneous polynomial ℎ in𝐾 [𝑋∪{𝑦}], its dehomogenization
ℎdeh is defined by substituting 𝑦 with 1, that is, ℎdeh = ℎ(𝑋, 1). (It is also
denoted by ℎ|𝑦=1.) For a set 𝐻 of homogeneous polynomials in 𝐾 [𝑋 ∪ {𝑦}],
its dehomogenization 𝐻deh (or 𝐻 |𝑦=1) is defined as 𝐻deh = {ℎdeh | ℎ ∈ 𝐻}. We
also apply the dehomogenization to sequences of polynomials.

(3) For an ideal 𝐼 of 𝐾 [𝑋], its homogenization 𝐼ℎ, as an ideal, is defined as
⟨𝐼ℎ⟩𝐾 [𝑋∪{𝑦} ] . We remark that, for a set 𝐹 of polynomials in 𝐾 [𝑋], we have
⟨𝐹ℎ⟩𝐾 [𝑋ℎ ] ⊂ 𝐼ℎ with 𝐼 = ⟨𝐹⟩𝐾 [𝑋] , and the equality does not hold in general.

(4) For a homogeneous ideal 𝐽 in 𝐾 [𝑋 ∪ {𝑦}], its dehomogenization 𝐽deh, as a set, is
an ideal of 𝐾 [𝑋]. We note that if a homogeneous ideal 𝐽 is generated by 𝐻, then
𝐽deh = ⟨𝐻deh⟩𝐾 [𝑋] and for an ideal 𝐼 of 𝐾 [𝑋], we have (𝐼ℎ)deh = 𝐼.

(5) For a monomial (term) ordering ≺ on the set of monomials T in 𝑋 , its homoge-
nization ≺ℎ on the set of monomials T ℎ in 𝑋 ∪ {𝑦} is defined as follows: For two
monomials 𝑋𝛼𝑦𝑎 and 𝑋𝛽𝑦𝑏 in T ℎ, we say 𝑋𝛼𝑦𝑎 ≺ℎ 𝑋𝛽𝑦𝑏 if and only if one of
the following holds: (i) 𝑎 + |𝛼 | < 𝑏 + |𝛽 |, or (ii) 𝑎 + |𝛼 | = 𝑏 + |𝛽 | and 𝑋𝛼 ≺ 𝑋𝛽 ,
where 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛≥0 and , |𝛼 | = 𝛼1 + · · · + 𝛼𝑛, and where 𝑋𝛼 denotes
𝑥
𝛼1
1 · · · 𝑥𝛼𝑛𝑛 . Here, for a monomial 𝑋𝛼𝑦𝑎, we call 𝑋𝛼 and 𝑦𝑎 its 𝑋-part and its
{𝑦}-part (or 𝑦-part simply), respectively. If a monomial ordering ≺ is graded, the
restriction ≺ℎ |T of ≺ℎ on T coincides with ≺.

It is well-known that for a Gröbner basis 𝐻 of ⟨𝐹ℎ⟩ with respect to ≺ℎ, its
dehomogenization {ℎdeh | ℎ ∈ 𝐻} is also a Gröbner basis of ⟨𝐹⟩ with respect to ≺.

3.1.2 Signature and 𝑭5 algorithm

Here we briefly outline the 𝐹5 algorithm, which is an improvement of Buchberger’s
algorithm. For details, see a survey [18]. Let 𝐹 = { 𝑓1, . . . , 𝑓𝑚} ⊂ 𝑅 = 𝐾 [𝑋] be a
given generating set. For each polynomial ℎ constructed during the Gröbner basis
computation of ⟨𝐹⟩, the 𝐹5 algorithm attaches a special label called a signature as
follows: Since ℎ belongs to ⟨𝐹⟩, it can be written as

ℎ = 𝑎1 𝑓1 + 𝑎2 𝑓2 + · · · + 𝑎𝑚 𝑓𝑚 (8)

for some 𝑎1, . . . , 𝑎𝑚 ∈ 𝑅. Then, we assign ℎ to 𝑎1e1 + · · · + 𝑎𝑚e𝑚 ∈ 𝑅𝑚 and we
call its leading monomial 𝑡e𝑖 with respect to a monomial (module) ordering in 𝑅𝑚
the signature of ℎ. As the expression (8) is not unique, in order to determine the
signature, we construct the expression procedurally or use the uniquely determined
residue in 𝑅𝑚/syz( 𝑓1, . . . , 𝑓𝑚) by a module Gröbner basis of syz( 𝑓1, . . . , 𝑓𝑚). (For
the latter case, we call it the minimal signature.) Here we denote the signature of ℎ
by sig(ℎ). Anyway, in the 𝐹5 algorithm, we can meet the both by carefully choosing
S-polynomials and by applying restricted reduction steps (called Σ-reductions) for S-
polynomials without any change of the signature. (So, we need not compute a module
Gröbner basis of syz( 𝑓1, . . . , 𝑓𝑚).) We note that for the S-polynomial 𝑆(ℎ1, ℎ2) =

𝑐1𝑡1ℎ1 − 𝑐2𝑡2ℎ2 with 𝑐1, 𝑐2 ∈ 𝐾 and 𝑡1, 𝑡2 ∈ T , the signature sig(𝑆(ℎ1, ℎ2)) is
determined as the largest one between sig(𝑐1𝑡1ℎ1) and sig(𝑐2𝑡2ℎ2). Then, we have
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the following criteria, which are very useful to avoid the computation of unnecessary
S-polynomials. (The latter one is called the syzygy criterion.)

Proposition 4 (cf. [12], [18]) In the 𝐹5 algorithm, we need not compute an S-
polynomial if some S-polynomial of the same signature was already proceeded,
since both are reduced to the same polynomial. Moreover, we need not compute an
S-polynomial of signature 𝑠 if there is a signature 𝑠′ such that 𝑠′ divides 𝑠 and some
S-polynomial with the signature 𝑠′ is reduced to 0.

3.2 Complexity of the Gröbner basis computation

In general, determining the complexity of computing a Gröbner basis is very hard; in
the worst-case, the complexity is doubly exponential in the number of variables, see
e.g., [10], [28], [33] for surveys. It is well-known that a Gröbner basis with respect
to a graded monomial ordering (in particular, DRL ordering) can be computed quite
more efficiently than ones with respect to other orderings in general. Moreover,
in the case where the input polynomials generate a zero-dimensional ideal, once
a Gröbner basis with respect to an efficient monomial ordering is computed, one
with respect to any other ordering can be computed easily by the FGLM basis
conversion algorithm [21]. From this, we focus on the case where the monomial
ordering is graded, and if necessary we also assume that the ideal generated by the
input polynomials is zero-dimensional.

A typical way to estimate the complexity of computing a Gröbner basis for a
sequence 𝑭 of polynomials is to count the number of S-polynomials that are reduced
during the Gröbner basis computation. In the case where the chosen monomial
ordering is graded, the most efficient strategy to compute Gröbner bases is the
normal strategy, on which we proceed degree by degree, namely increase the degree
of critical pairs defining S-polynomials, as in the 𝐹4 and 𝐹5 algorithms. For an
algorithm adopting this strategy, several S-polynomials are dealt with consecutively
at the same degree, which is called the step degree. The highest step degree at which
an intermediate ideal basis contains a minimal Gröbner basis is called the solving
degree of the algorithm, and it is denoted by sdhsd

≺ (𝑭). Determining (or finding a
tight bound for) the solving degree is difficult without computing any Gröbner basis.
Once it is specified, we may estimate the complexity of the algorithm, as in [36].

On the other hand, for a linear algebra-based algorithm, such as an 𝐹4-family in-
cluding the (matrix-)𝐹5 algorithm and the XL family (cf. [11]), that follows Lazard’s
strategy [26] to reduces S-polynomials by the Gaussian elimination on Macaulay
matrices, Caminata-Gorla [7] defined another solving degree in a different manner.
Specifically, it is defined as the lowest degree 𝑑 at which the reduced row echelon
form (RREF) of the Macaulay matrix 𝑀≤𝑑 (𝑭) produces a Gröbner basis, see [7] for
details. In this case, the complexity is estimated to be𝑂 (𝑁𝜔) with 𝑁 =

(𝑛+𝑑
𝑛

)
, where

𝜔 is the matrix multiplication exponent with 2 ≤ 𝜔 < 3. For a given polynomial
sequence 𝑭 = ( 𝑓1, . . . , 𝑓𝑚) ∈ 𝑅𝑚 and a graded monomial ordering ≺, we denote
by sdmac

≺ (𝑭) this solving degree. In a series of works (cf. [7], [5], [8]) by Gorla et
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al., they provided a mathematical formulation for the relation between the solving
degree sdmac

≺ (𝑭) (or sdmut
≺ (𝑭) described below) and algebraic invariants coming

from 𝑭, such as the maximal Gröbner basis degree, the degree of regularity, the
Castelnuovo–Mumford regularity, the first and last fall degrees, and so on. Here, the
maximal Gröbner basis degree of the ideal ⟨𝑭⟩𝑅 is the maximal degree of elements
in the reduced Gröbner basis of ⟨𝑭⟩𝑅 with respect to a fixed monomial ordering ≺,
and is denoted by max.GB.deg≺ (𝑭).

In the following, we recall some of Caminata et al.’s results. We set ≺ as the DRL
ordering on 𝑅 with 𝑥𝑛 ≺ · · · ≺ 𝑥1, and fix it throughout the rest of this subsection.
Let 𝑦 be an extra variable for homogenization as in the previous subsection, and ≺ℎ
the homogenization of ≺, so that 𝑦 ≺ 𝑥𝑖 for any 𝑖 with 1 ≤ 𝑖 ≤ 𝑛. Then, we have

max.GB.deg≺ (𝑭) ≤ sdmac
≺ (𝑭) = sdmac

≺ℎ (𝑭ℎ) = max.GB.deg≺ℎ (𝑭ℎ),

see [7] for a proof. Here, we also recall Lazard’s bound for the maximal Gröbner
basis degree of ⟨𝑭ℎ⟩𝑅′ with 𝑅′ = 𝑅[𝑦]:

Theorem 4 (Lazard; [26, Theorem 2]) With notation as above, we assume that
the number of projective zeros of 𝑭ℎ is finite (and therefore 𝑚 ≥ 𝑛), and that
𝑓 ℎ1 = · · · = 𝑓 ℎ𝑚 = 0 has no non-trivial solution over the algebraic closure 𝐾 with
𝑦 = 0, i.e., 𝑭top has no solution in 𝐾𝑛 other than (0, . . . , 0). Then, supposing also
that 𝑑1 ≥ · · · ≥ 𝑑𝑚 and putting ℓ := min{𝑚, 𝑛 + 1}, we have

max.GB.deg≺ℎ (𝑭ℎ) ≤ 𝑑1 + · · · + 𝑑ℓ − ℓ + 1 (9)

Lazard’s bound given in (9) is also referred to as the Macaulay bound, and it
provides an upper-bound for the solving degree of 𝑭 with respect to a DRL ordering.

As for the maximal Gröbner basis degree of ⟨𝑭⟩, if ⟨𝑭top⟩ is Artinian, we have

max.GB.deg≺′ (𝑭) ≤ 𝑑reg (⟨𝑭top⟩)

for any graded ordering ≺′ on 𝑅, see [7, Remark 15] or Lemma 4 below for a proof.
Both 𝑑reg (⟨𝑭top⟩) and sdmac

≺ (𝑭) are greater than or equal to max.GB.deg≺ (𝑭),
whereas the degree of regularity (or the first fall degree) used in the cryptographic
literature as a proxy (or a heuristic upper-bound) for the solving degree. However,
it is pointed out in [5], [7], and [8] by explicit examples that any of the degree
of regularity and the first fall degree does not produce an estimate for the solving
degree in general, even when 𝑭 is an affine (cryptographic) semi-regular sequence.
In [8], Caminata-Gorla provided yet another solving degree, denoted by sdmut

≺′ (𝑭),
with respect to algorithms based on the mutant strategy (see [9] for details), and
they proved that it is nothing but the last fall degree if it is greater than the maximal
Gröbner basis degree:

Theorem 5 ([8, Theorem 3.1]) With notation as above, for any graded monomial
ordering ≺′ on 𝑅, we have the following inequality:

sdmut
≺′ (𝑭) = max{𝑑𝑭 ,max.GB.deg≺′ (𝑭)},
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where 𝑑𝑭 denotes the last fall degree of 𝑭 defined in [8, Definition 1.5].

By this theorem, if 𝑑reg (⟨𝑭top⟩) < 𝑑𝑭 , the degree of regularity is no longer an
upper-bound on the solving degree.

On the other hand, Semaev and Tenti claimed (see Tenti’s thesis [36] for a proof)
that the solving degree sdhsd

≺ (𝑭) (in terms of the highest step degree) is linear in the
degree of regularity, if 𝐾 is a (large) finite field, and if the input system contains
polynomials related to the field equations, say 𝑥𝑞

𝑖
− 𝑥𝑖 for 1 ≤ 𝑖 ≤ 𝑛:

Theorem 6 ([35, Theorem 2.1], [36, Corollary 3.67]) With notation as above,
assume that 𝐾 = F𝑞 , and that 𝑭 contains 𝑥𝑞

𝑖
−𝑥𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Put 𝐷 = 𝑑reg (⟨𝑭top⟩).

If 𝐷 ≥ max{deg( 𝑓 ) : 𝑓 ∈ 𝑭} and 𝐷 ≥ 𝑞, then we have

sdhsd
≺ (𝑭) ≤ 2𝐷 − 2. (10)

In Subsection 5.2 below, we will prove a similar inequality (10) for the case where
𝑭 not necessarily contains a field equation but is cryptographic semi-regular.

4 Hilbert-Poincaré series of affine semi-regular sequence

As in the previous section, let 𝐾 be a field, and 𝑅 = 𝐾 [𝑋] = 𝐾 [𝑥1, . . . , 𝑥𝑛] denote
the polynomial ring of 𝑛 variables over 𝐾 . We denote by 𝑅𝑑 the homogeneous part
of degree 𝑑, that is, the set of homogeneous polynomials of degree 𝑑 and 0. Recall
Definition 7 for the definition of cryptographic semi-regular sequences.

The Hilbert-Poincaré series associated to a (homogeneous) cryptographic semi-
regular sequence is given by (7). On the other hand, the Hilbert-Poincaré series
associated to the homogenization 𝑭ℎ of 𝑭 = ( 𝑓1, . . . , 𝑓𝑚) ∈ 𝑅𝑚 not necessarily
homogeneous polynomials cannot be computed without knowing its Gröbner basis
in general, but we shall prove that it can be computed up to the degree 𝑑reg (⟨𝑭top⟩) if
𝑭 is affine cryptographic semi-regular, namely 𝑭top is cryptographic semi-regular.

Theorem 7 Let 𝑅 = 𝐾 [𝑥1, . . . , 𝑥𝑛] and 𝑅′ = 𝑅[𝑦], and let 𝑭 = ( 𝑓1, . . . , 𝑓𝑚) be a
sequence of not necessarily homogeneous polynomials in 𝑅. Assume that 𝑭 is affine
cryptographic semi-regular. Then, for each 𝑑 with 𝑑 < 𝐷 := 𝑑reg (⟨𝑭top⟩), we have

HF𝑅′/⟨𝑭ℎ ⟩ (𝑑) = HF𝑅/⟨𝑭 top ⟩ (𝑑) + HF𝑅′/⟨𝑭ℎ ⟩ (𝑑 − 1), (11)

and hence

HF𝑅′/⟨𝑭ℎ ⟩ (𝑑) = HF𝑅/⟨𝑭 top ⟩ (𝑑) + · · · + HF𝑅/⟨𝑭 top ⟩ (0), (12)

whence we can compute the value HF𝑅′/⟨𝑭ℎ ⟩ (𝑑) from the formula (7).

Proof. Let 𝐾• = 𝐾• ( 𝑓 ℎ1 , . . . , 𝑓
ℎ
𝑚) be the Koszul complex on ( 𝑓 ℎ1 , . . . , 𝑓

ℎ
𝑚), which

is given by (1). By tensoring 𝐾• with 𝑅′/⟨𝑦⟩𝑅′ � 𝐾 [𝑥1, . . . , 𝑥𝑛] = 𝑅 over 𝑅′, we
obtain the following exact sequence of chain complexes:
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0 // 𝐾•
×𝑦 // 𝐾•

𝜋• // 𝐾• ⊗𝑅′ 𝑅 // 0,

where ×𝑦 is a graded homomorphism of degree 1 multiplying each entry of a
vector with 𝑦, and where 𝜋𝑖 is a canonical homomorphism sending 𝑣 ∈ 𝐾𝑖 to
𝑣𝑖 ⊗ 1 ∈ 𝐾𝑖 ⊗𝑅′ 𝑅. Note that there is an isomorphism

𝐾𝑖 ⊗𝑅′ 𝑅 �
⊕

1≤ 𝑗1<· · ·< 𝑗𝑖≤𝑚
𝑅(−𝑑 𝑗1 · · · 𝑗𝑖 )e 𝑗1 · · · 𝑗𝑖 ,

via which we can interpret 𝜋𝑖 : 𝐾𝑖 → 𝐾𝑖 ⊗𝑅′ 𝑅 as a homomorphism that projects
each entry of a vector in 𝐾𝑖 modulo 𝑦. In particular, we have

𝐾0 ⊗𝑅′ 𝑅 = 𝑅′/⟨ 𝑓 ℎ1 , . . . , 𝑓
ℎ
𝑚⟩𝑅′ ⊗𝑅′ 𝑅′/⟨𝑦⟩𝑅′

� 𝑅′/⟨ 𝑓 ℎ1 , . . . , 𝑓
ℎ
𝑚, 𝑦⟩𝑅′

� 𝑅/⟨ 𝑓 top
1 , . . . , 𝑓

top
𝑚 ⟩𝑅

for 𝑖 = 0. This means that the chain complex 𝐾• ⊗𝑅′ 𝑅 gives rise to the Koszul
complex on ( 𝑓 top

1 , . . . , 𝑓
top
𝑚 ). We induce a long exact sequence of homology groups.

In particular, for each degree 𝑑, we have the following long exact sequence:

𝐻𝑖+1 (𝐾•)𝑑−1
×𝑦 // 𝐻𝑖+1 (𝐾•)𝑑

𝜋𝑖+1 // 𝐻𝑖+1 (𝐾• ⊗𝑅′ 𝑅)𝑑
𝛿𝑖+1

ss
𝐻𝑖 (𝐾•)𝑑−1 ×𝑦

// 𝐻𝑖 (𝐾•)𝑑 𝜋𝑖
// 𝐻𝑖 (𝐾• ⊗𝑅′ 𝑅)𝑑 ,

where 𝛿𝑖+1 is the connecting homomorphism produced by the Snake lemma. For
𝑖 = 0, we have the following exact sequence:

𝐻1 (𝐾• ⊗𝑅′ 𝑅)𝑑 −→ 𝐻0 (𝐾•)𝑑−1
×𝑦
−→ 𝐻0 (𝐾•)𝑑 −→ 𝐻0 (𝐾• ⊗𝑅′ 𝑅)𝑑 −→ 0.

From our assumption that 𝑭top is cryptographic semi-regular, it follows from Propo-
sition 3 that 𝐻1 (𝐾• ⊗𝑅′ 𝑅)≤𝐷−1 = 0 for 𝐷 := 𝑑reg (⟨𝑭top⟩). Therefore, if 𝑑 ≤ 𝐷 − 1,
we have an exact sequence

0 // 𝐻0 (𝐾•)𝑑−1
×𝑦 // 𝐻0 (𝐾•)𝑑 // 𝐻0 (𝐾• ⊗𝑅′ 𝑅)𝑑 // 0

of 𝐾-linear spaces, so that

dim𝐾𝐻0 (𝐾•)𝑑 = dim𝐾𝐻0 (𝐾• ⊗𝑅′ 𝑅)𝑑 + dim𝐾𝐻0 (𝐾•)𝑑−1

by the dimension theorem. Since𝐻0 (𝐾•) = 𝑅′/⟨𝑭ℎ⟩ and𝐻0 (𝐾• ⊗𝑅′ 𝑅) � 𝑅/⟨𝑭top⟩,
we have the equality (11), as desired. ⊓⊔

Remark 6 With notation as in Theorem 7, assume that 𝐷 < ∞ (and thus 𝑚 ≥ 𝑛).
In the proof of Theorem 7, the multiplication map 𝐻0 (𝐾•)𝑑−1 → 𝐻0 (𝐾•)𝑑 by 𝑦
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is injective for all 𝑑 < 𝐷, whence HF𝑅′/⟨𝐹ℎ ⟩ (𝑑) is monotonically increasing for
𝑑 < 𝐷 − 1. On the other hand, since 𝐻0 (𝐾• ⊗𝑅′ 𝑅)𝑑 = (𝑅/⟨𝐹 top⟩)𝑑 = 0 for
all 𝑑 ≥ 𝐷 by the definition of the degree of regularity, the multiplication map
𝐻0 (𝐾•)𝑑−1 → 𝐻0 (𝐾•)𝑑 by 𝑦 is surjective for all 𝑑 ≥ 𝐷, whence HF𝑅′/⟨𝐹ℎ ⟩ (𝑑) is
monotonically decreasing for 𝑑 ≥ 𝐷 − 1. By this together with [10, Theorem 3.3.4],
the homogeneous ideal ⟨𝑭ℎ⟩ is zero-dimensional or trivial, i.e., there are at most a
finite number of projective zeros of 𝐹ℎ (and thus there are at most a finite number
of affine zeros of 𝑭).

By Theorem 4, it can be proved that the Hilbert-Poincaré series of 𝑅′/⟨𝑭ℎ⟩
satisfies the following equality (13), which may correspond to [3, Proposition 6]:

Corollary 1 Let 𝐷 = 𝑑reg (⟨𝑭top⟩). Then we have

HS𝑅′/⟨𝑭ℎ ⟩ (𝑧) ≡
∏𝑚
𝑖=1 (1 − 𝑧𝑑𝑖 )
(1 − 𝑧)𝑛+1 (mod 𝑧𝐷). (13)

Therefore, by Theorem 3 ([14, Theorem 1]), 𝑭ℎ is 𝐷-regular. Here, we note that
𝐷 = deg(HS𝑅/⟨𝑭 top ⟩) + 1 = deg

( [∏𝑚
𝑖=1 (1−𝑧𝑑𝑖 )
(1−𝑧)𝑛

] )
+ 1.

Proof. Let HS′ (𝑧) =

∏𝑚
𝑖=1 (1−𝑧𝑑𝑖 )
(1−𝑧)𝑛+1 mod 𝑧𝐷 and let HF′ (𝑑) denote the coefficient of

HS′ (𝑧) of degree 𝑑 for 𝑑 < 𝐷. First we remark that, as 𝑭top is a cryptographic semi-
regular sequence, the Hilbert-Poincaré series of 𝑅/⟨𝑭top⟩ satisfies the following:

HS𝑅/⟨𝑭 top ⟩ (𝑑) =
[∏𝑚

𝑖=1 (1 − 𝑧𝑑𝑖 )
(1 − 𝑧)𝑛

]
=

∏𝑚
𝑖=1 (1 − 𝑧𝑑𝑖 )
(1 − 𝑧)𝑛 mod 𝑧𝐷 ,

since HF𝑅/⟨𝑭 top ⟩ (𝑑) = 0 for 𝑑 ≥ 𝐷. Then we have

HS′ (𝑧) mod 𝑧𝐷 =

∏𝑚
𝑖=1 (1 − 𝑧𝑑𝑖 )
(1 − 𝑧)𝑛+1 mod 𝑧𝐷

=

∏𝑚
𝑖=1 (1 − 𝑧𝑑𝑖 )
(1 − 𝑧)𝑛 × (1 + 𝑧 + · · · + 𝑧𝐷−1) mod 𝑧𝐷

= HS𝑅/⟨𝑭 top ⟩ (𝑧) · (1 + 𝑧 + · · · + 𝑧𝐷−1) mod 𝑧𝐷 .

Therefore, for 𝑑 < 𝐷, the equation (12) gives

HF′ (𝑑) = HF𝑅/⟨𝑭 top ⟩ (𝑑) + · · · + HF𝑅/⟨𝑭 top ⟩ (0) = HF𝑅′/⟨𝑭ℎ ⟩ (𝑑),

which implies the desired equality (13). ⊓⊔

To prove the following corollary, we use a fact that, for a homogeneous ideal
𝐼 in 𝑅, the equality

∑𝑑
𝑖=0 dim𝐾 𝐼𝑖 = dim𝐾 (𝐼𝑅′)𝑑 holds for each 𝑑 ≥ 0. Also we

take a graded ordering ≺ (preferably a DRL ordering) on monomials in 𝑋 and its
homogenization on monomials in 𝑋 ∪ {𝑦}.
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Corollary 2 With notation as above, assume that 𝑭 = ( 𝑓1, . . . , 𝑓𝑚) ∈ 𝑅𝑚 is affine
cryptographic semi-regular. Put 𝐼 := ⟨𝑭top⟩𝑅 and 𝐼 := ⟨𝑭ℎ⟩𝑅′ . Then, we have
(⟨LM(𝐼)⟩𝑅′ )𝑑 = (⟨LM(𝐼)⟩𝑅′ )𝑑 for each 𝑑 with 𝑑 < 𝐷 := 𝑑reg (𝐼).

Proof. We prove (⟨LM(𝐼)⟩𝑅′ )𝑑 ⊂ (⟨LM(𝐼)⟩𝑅′ )𝑑 by the induction on 𝑑. The case
where 𝑑 = 0 is clear from Theorem 7, and so we assume 𝑑 > 0. Any element in
(⟨LM(𝐼)⟩𝑅′ )𝑑 is represented as a finite sum of elements in 𝑅′ of the form 𝑔 ·LM(ℎ)
with 𝑔 ∈ 𝑅′, ℎ ∈ 𝐼, and deg(𝑔ℎ) = 𝑑. Hence, we can also write each 𝑔 · LM(ℎ)
as a 𝐾-linear combination of elements of the form LM(𝑡ℎ) for a monomial 𝑡 in 𝑅′

of degree deg(𝑔), where 𝑡ℎ is an element in 𝐼 of degree 𝑑. Therefore, it suffices for
showing “⊂” to prove that LM( 𝑓 ) ∈ (⟨LM(𝐼)⟩𝑅′ )𝑑 for any 𝑓 ∈ 𝐼 with deg( 𝑓 ) = 𝑑.
We may assume that 𝑓 is homogeneous. It is straightforward that 𝑓 |𝑦=0 ∈ 𝐼≤𝑑 . If
LM( 𝑓 ) ∈ 𝑅 = 𝐾 [𝑥1, . . . , 𝑥𝑛], then we have LM( 𝑓 ) = LM( 𝑓 |𝑦=0) ∈ LM(𝐼). Thus,
we may also assume that 𝑦 | LM( 𝑓 ). In this case, it follows from the definition of
the DRL ordering that any other term in 𝑓 is also divisible by 𝑦, so that 𝑓 ∈ ⟨𝑦⟩𝑅′ .
Thus, we can write 𝑓 = 𝑦ℎ for some ℎ ∈ 𝑅′, where ℎ is homogeneous of degree
𝑑 − 1. As in the proof of Theorem 7, the multiplication map

(𝑅′/𝐼)𝑑′−1 → (𝑅′/𝐼)𝑑′ ; ℎ′ mod 𝐼 ↦→ 𝑦ℎ′ mod 𝐼

is injective for any 𝑑′ < 𝑑reg (𝐼), since 𝐹 is cryptographic semi-regular. Therefore, it
follows from 𝑓 ∈ 𝐼𝑑 that ℎ ∈ 𝐼𝑑−1, whence 𝑓 = 𝑦ℎ ∈ 𝑦𝐼𝑑−1. By the induction hypoth-
esis, there exists 𝑔 ∈ 𝐼 such that LM(𝑔) | LM(ℎ), whence LM( 𝑓 ) ∈ (⟨LM(𝐼)⟩𝑅′ )𝑑 .

Here, it follows from Theorem 7 that

dim𝐾 (𝑅′)𝑑 − dim𝐾 𝐼𝑑 =

𝑑∑︁
𝑖=0

(
dim𝐾𝑅𝑖 − dim𝐾 𝐼 𝑖

)
=

𝑑∑︁
𝑖=0

dim𝐾𝑅𝑖 −
𝑑∑︁
𝑖=0

dim𝐾 𝐼 𝑖

= dim𝐾 (𝑅′)𝑑 − dim𝐾 (𝐼𝑅′)𝑑 ,

and thus dim𝐾 𝐼𝑑 = dim𝐾 (𝐼𝑅′)𝑑 . Hence, it follows from ⟨LM(𝐼)⟩𝑅′ = ⟨LM(𝐼𝑅′)⟩𝑅′

that
dim𝐾 (⟨LM(𝐼)⟩𝑅′ )𝑑 = dim𝐾 (⟨LM(𝐼)⟩𝑅′ )𝑑 ,

whence (⟨LM(𝐼)⟩𝑅′ )𝑑 = (⟨LM(𝐼)⟩𝑅′ )𝑑 , as desired. ⊓⊔

Example 1 We give a simple example. Let 𝑝 = 73, 𝐾 = F𝑝 , and

𝑓1 = 𝑥2
1 + (3𝑥2 − 2𝑥3 − 1)𝑥1 + 𝑥2

2 + (−2𝑥3 − 2)𝑥2 + 𝑥2
3 + 𝑥3,

𝑓2 = 4𝑥2
1 + (3𝑥2 + 4𝑥3 − 2)𝑥1 − 𝑥2 + 𝑥2

3 + 2𝑥3,

𝑓3 = 3𝑥2
1 − 𝑥1 + 9𝑥2

2 + (−6𝑥3 + 1)𝑥2 + 𝑥2
3 − 𝑥3,

𝑓4 = 𝑥2
1 + (−6𝑥2 + 2𝑥3 − 2)𝑥1 + 9𝑥2

2 + (−6𝑥3 + 1)𝑥2 + 2𝑥2
3 .

Then, 𝑑1 = 𝑑2 = 𝑑3 = 𝑑4 = 2. As their top parts (maximal total degree parts) are
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𝑓
top
1 = 𝑥2

1 + (3𝑥2 − 2𝑥3)𝑥1 + 𝑥2
2 − 2𝑥3𝑥2 + 𝑥2

3,

𝑓
top
2 = 4𝑥2

1 + (3𝑥2 + 4𝑥3)𝑥1 + 𝑥2
3,

𝑓
top
3 = 3𝑥2

1 + 9𝑥2
2 − 6𝑥3𝑥2 + 𝑥2

3,

𝑓
top
4 = 𝑥2

1 + (−6𝑥2 + 2𝑥3)𝑥1 + 9𝑥2
2 − 6𝑥3𝑥2 + 2𝑥2

3,

one can verify that 𝑭top is a cryptographic semi-regular sequence. Moreover, its
degree of regularity is equal to 3. Indeed, the reduced Gröbner basis𝐺 top of the ideal
⟨𝑭top⟩ with respect to the DRL ordering 𝑥1 ≻ 𝑥2 ≻ 𝑥3 is

{𝑥2
3𝑥2, 𝑥

3
3, 𝑥

2
1+68𝑥3𝑥2+55𝑥2

3, 𝑥2𝑥1+27𝑥3𝑥2+29𝑥2
3, 𝑥

2
2+𝑥3𝑥2+71𝑥2

3, 𝑥3𝑥1+3𝑥3𝑥2+33𝑥2
3}.

Then its leading monomials are 𝑥3
3, 𝑥

2
3𝑥2, 𝑥

2
1, 𝑥1𝑥2, 𝑥

2
2, 𝑥3𝑥1 and its Hilbert-Poincaré

series satisfies

HS𝑅/⟨𝑭 top ⟩ (𝑧) = 2𝑧2 + 3𝑧 + 1 =

(
(1 − 𝑧2)4

(1 − 𝑧)3 mod 𝑧3
)
,

whence the degree of regularity of ⟨𝑭top⟩ is 3.
On the other hand, the reduced Gröbner basis𝐺hom of the ideal ⟨𝑭ℎ⟩ with respect

to the DRL ordering 𝑥1 ≻ 𝑥2 ≻ 𝑥3 ≻ 𝑦 is

{𝑦3𝑥1, 𝑦
3𝑥2, 𝑦

3𝑥3, 60𝑦2𝑥1 + (𝑥2
3 + 22𝑦2)𝑥2 + 39𝑦2𝑥3,

72𝑦2𝑥1 + 14𝑦2𝑥2 + 𝑥3
3 + 56𝑦2𝑥3, 16𝑦2𝑥1 + (𝑦𝑥3 + 55𝑦2)𝑥2 + 38𝑦2𝑥3,

72𝑦2𝑥1 + 66𝑦2𝑥2 + 𝑦𝑥2
3 + 70𝑦2𝑥3, 𝑥

2
1 + 72𝑦𝑥1 + (68𝑥3 + 40𝑦)𝑥2 + 55𝑥2

3 + 14𝑦𝑥3,

(𝑥2 + 20𝑦)𝑥1 + (27𝑥3 + 37𝑦)𝑥2 + 29𝑥2
3 + 12𝑦𝑥3,

57𝑦𝑥1 + 𝑥2
2 + (𝑥3 + 3𝑦)𝑥2 + 71𝑥2

3 + 52𝑦𝑥3,

(𝑥3 + 22𝑦)𝑥1 + (3𝑥3 + 5𝑦)𝑥2 + 33𝑥2
3 + 14𝑦𝑥3}

and its leading monomials are 𝑦3𝑥1, 𝑦3𝑥2, 𝑦3𝑥3, 𝑥2
3𝑥2, 𝑥3

3, 𝑦𝑥2𝑥3, 𝑦𝑥2
3, 𝑥2

1, 𝑥1𝑥2, 𝑥2
2,

and 𝑥1𝑥3. Then the Hilbert-Poincaré series of 𝑅′/⟨𝑭ℎ⟩ satisfies(
HS𝑅′/⟨𝑭ℎ ⟩ (𝑧) mod 𝑧3

)
=

(
6𝑧2 + 4𝑧 + 1 mod 𝑧3

)
=

(
(1 − 𝑧2)4

(1 − 𝑧)4 mod 𝑧3
)
.

We note that HF𝑅′/⟨𝑭ℎ ⟩ (3) = 4 and HF𝑅′/⟨𝑭ℎ ⟩ (4) = 1. We can also examine
LM(𝐺hom)𝑑<𝐷 = LM(𝐺 top)𝑑<𝐷 and, for 𝑔 ∈ 𝐺hom, if LM(𝑔) is divided by 𝑦,
then deg(𝑔) ≥ 𝐷 = 3. Thus, at the degree 3, there occurs a degree-fall. See [8,
Sebsection 2.1] for details. Also, the reduced Gröbner basis of ⟨𝑭⟩ with respect to ≺
is {𝑥, 𝑦, 𝑧} and we can examine that the dehomogenization of𝐺hom is also a Gröbner
basis of ⟨𝑭⟩.
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5 Application to Gröbner bases computation

We use the same notation as in the previous section, and assume that 𝑭 is crypto-
graphic semi-regular such that 𝐷 := 𝑑reg (⟨𝑭top⟩) < ∞. Here we apply results in the
previous section to the computation of Gröbner bases of the ideals ⟨𝑭⟩ and ⟨𝑭ℎ⟩.
Let 𝐺, 𝐺hom, and 𝐺 top be the reduced Gröbner bases of ⟨𝑭⟩, ⟨𝑭ℎ⟩, and ⟨𝑭top⟩,
respectively, where their monomial orderings are DRL ≺ or its extension ≺ℎ.

As to the computation of 𝐺, in special settings on 𝑭 such as 𝑭 containing field
equations or 𝑭 appearing in a multivariate polynomial cryptosystem, methods using
the value 𝐷 or those of the Hilbert function for degrees less than 𝐷 were proposed.
(See [35, 34].) Our results in the section can be considered as a certain extension
and to give exact mathematical proofs for the correctness of the methods.

Here, we extend the notion of top part to a homogeneous polynomial ℎ in 𝑅′ =
𝑅[𝑦]. We call ℎ|𝑦=0 the top part of ℎ and denote it by ℎtop. Thus, if ℎtop is not zero,
it coincides with the top part (ℎ|𝑦=1)top of the dehomogenization ℎ|𝑦=1 of ℎ. We
remark that 𝑔top = (𝑔ℎ)top for a polynomial 𝑔 in 𝑅.

5.1 Gröbner basis elements of degree less than 𝑫

Here we show relations between (𝐺hom)<𝐷 and (𝐺 top)<𝐷 with proofs, which are
useful for the computations of 𝐺hom and 𝐺.

Since 𝑭top is cryptographic semi-regular and 𝑭ℎ is 𝐷-regular by Corollary 1,
𝐻1 (𝐾• (𝑭top))<𝐷 = 𝐻1 (𝐾• (𝑭ℎ))<𝐷 = 0. As 𝐻1 (𝐾• (𝑭ℎ)) = syz(𝑭ℎ)/tsyz(𝑭ℎ)
and 𝐻1 (𝐾• (𝑭top)) = syz(𝑭top)/tsyz(𝑭ℎ) (see (2)), we have the following corollary,
where tsyz(𝑭ℎ) denotes the module of trivial syzygies (see Definition 1).

Corollary 3 ([14, Theorem 1]) It follows that syz(𝑭top)<𝐷 = tsyz(𝑭top)<𝐷 and
syz(𝑭ℎ)<𝐷 = tsyz(𝑭ℎ)<𝐷 .

This implies that, in the Gröbner basis computation𝐺hom with respect to a graded
ordering ≺ℎ, if an S-polynomial 𝑆(𝑔1, 𝑔2) = 𝑡1𝑔1 − 𝑡2𝑔2 of degree less than 𝐷 is
reduced to 0, it comes from some trivial syzygy, that is,

∑𝑚
𝑖=1 (𝑡1𝑎

(1)
𝑖

− 𝑡2𝑎 (2)𝑖 − 𝑏𝑖)e𝑖
belongs to tsyz(𝑭ℎ)<𝐷 , where 𝑔1 =

∑𝑚
𝑖=1 𝑎

(1)
𝑖
𝑓 ℎ
𝑖

, 𝑔2 =
∑𝑚
𝑖=1 𝑎

(2)
𝑖
𝑓 ℎ
𝑖

, and 𝑆(𝑔1, 𝑔2) =∑𝑚
𝑖=1 𝑏𝑖 𝑓

ℎ
𝑖

is obtained by Σ-reduction in the 𝐹5 algorithm (or its variant such as the
matrix 𝐹5 algorithm) with the Schreyer ordering. Thus, since the 𝐹5 algorithm (or its
variant such as the matrix-𝐹5 algorithm) with the Schreyer ordering automatically
discards an S-polynomial whose signature is the LM of some trivial syzygy, we can
avoid unnecessary S-polynomials. See Subsection 3.1.2 for a brief outline of the 𝐹5
algorithm and the syzygy criterion (Proposition 4).

In addition to the above facts, as mentioned (somehow implicitly) in [1, Section
3.5] and [3], when we compute a Gröbner basis of ⟨𝑭ℎ⟩ for the degree less than 𝐷 by
the 𝐹5 algorithm with respect to ≺ℎ, for each computed non-zero polynomial 𝑔 from
an S-polynomial, say 𝑆(𝑔1, 𝑔2), of degree less than 𝐷, its signature does not come
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from any trivial syzygy and so the reductions of 𝑆(𝑔1, 𝑔2) are done only at its top
part. This implies that the Gröbner basis computation process of ⟨𝑭ℎ⟩ corresponds
exactly to that of ⟨𝑭⟩ for each degree less than 𝐷, see [25] for details. Especially,
the following lemma holds. Here we give a concrete and easy proof using Corollary
2. We also note that the argument and the proof of Lemma 2 can be considered as
corrected versions for those of [34, Theorem 4].

Lemma 2 For each degree 𝑑 < 𝐷, we have

LM(𝐺hom)𝑑 = LM(𝐺 top)𝑑 . (14)

Proof. We can prove the equality (14) by the induction on 𝑑. Assume that the equality
(14) holds for 𝑑 < 𝐷 − 1.

Consider any 𝑡 ∈ LM(𝐺hom)𝑑+1. Then, there is a polynomial 𝑔 ∈ 𝐺hom such that
LM(𝑔) = 𝑡. By Corollary 2, for 𝑑 + 1 < 𝐷, we have

(⟨LM(⟨𝑭ℎ⟩)⟩𝑅′ )𝑑+1 = (⟨LM(⟨𝑭top⟩𝑅)⟩𝑅′ )𝑑+1

and LM(𝑔) is divided by LM(𝑔′) for some 𝑔′ ∈ 𝐺 top. Since𝐺hom is reduced, LM(𝑔)
is not divisible by any monomial in LM(𝐺hom)≤𝑑 = LM(𝐺 top)≤𝑑 , so that deg(𝑔′) =
𝑑 + 1. Then we have LM(𝑔) = LM(𝑔′), and so LM(𝐺hom)𝑑+1 ⊂ LM(𝐺 top)𝑑+1.

By the same argument, LM(𝐺hom)𝑑+1 ⊃ LM(𝐺 top)𝑑+1 can be shown. We note
that for each 𝑡 ∈ LM(𝐺 top)𝑑+1, there is a polynomial 𝑔 ∈ (𝐺 top)𝑑+1⊂ ⟨𝑭top⟩𝑑+1 such
that 𝑡 = LM(𝑔). In this case, there are homogeneous polynomials 𝑎1, . . . , 𝑎𝑚 such
that 𝑔 =

∑𝑚
𝑖=1 𝑎𝑖 𝑓

top
𝑖

. Then 𝑔′ =
∑𝑚
𝑖=1 𝑎𝑖 𝑓

ℎ
𝑖

in ⟨𝑭ℎ⟩𝑑+1 has 𝑡 as its LM. ⊓⊔

Next we consider (𝐺hom)𝐷 .

Lemma 3 For each monomial 𝑡 in 𝑋 of degree 𝐷, there is an element 𝑔 in (𝐺hom)≤𝐷
such that LM(𝑔) divides 𝑡. Therefore,

⟨LM((𝐺hom)≤𝐷)⟩𝑅′ ∩ 𝑅𝐷 = 𝑅𝐷 . (15)

Moreover, for each element 𝑔 in (𝐺hom)𝐷 with 𝑔top ≠ 0, the top-part 𝑔top consists of
one term, that is, 𝑔top = LT(𝑔), where LT denotes the leading term of 𝑔. (We recall
LT(𝑔) = LC(𝑔)LM(𝑔).)

Proof. Since ⟨𝑭top⟩𝐷 = 𝑅𝐷 , for each monomial 𝑡 in 𝑋 of degree 𝐷, there are
homogeneous 𝑎1, . . . , 𝑎𝑚 ∈ 𝑅 with 𝑡 =

∑𝑚
𝑖=1 𝑎𝑖 𝑓

top
𝑖

. Now consider ℎ =
∑𝑚
𝑖=1 𝑎𝑖 𝑓

ℎ
𝑖

,
which belongs to ⟨𝑭ℎ⟩. Then, as 𝑓 ℎ

𝑖
= 𝑓

top
𝑖

+ 𝑦ℎ𝑖 for some ℎ𝑖 in 𝑅′, we have

ℎ =

𝑚∑︁
𝑖=1

𝑎𝑖 ( 𝑓 top
𝑖

+ 𝑦ℎ𝑖) =
𝑚∑︁
𝑖=1

𝑎𝑖 𝑓
top
𝑖

+ 𝑦
𝑚∑︁
𝑖=1

𝑎𝑖ℎ𝑖 = 𝑡 + 𝑦
𝑚∑︁
𝑖=1

𝑎𝑖ℎ𝑖

and LM(ℎ) = 𝑡. As 𝐺hom is the reduced Gröbner basis of ⟨𝑭ℎ⟩, there is some 𝑔 in
(𝐺hom)≤𝐷 whose LM divides LM(ℎ), as desired.

Next we prove the second assertion. Let 𝑔1, . . . , 𝑔𝑘 be all elements of (𝐺hom)𝐷
which have non-zero top parts, and set LM(𝑔1) ≺ · · · ≺ LM(𝑔𝑘). We show that
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𝑔
top
𝑖

= LT(𝑔𝑖) for all 𝑖. Suppose, to the contrary, that our claim does not hold for
some 𝑔𝑖 . Then, 𝑔top

𝑖
can be written as = LT(𝑔𝑖)+𝑇2+· · ·+𝑇𝑠 for some terms𝑇2, . . . , 𝑇𝑠

in 𝑅𝐷 . Since LM(𝑇𝑗 ) ≺ LM(𝑔𝑖) for 2 ≤ 𝑗 ≤ 𝑠, it follows from equality (15) that
each LM(𝑇𝑗 ) is equal to LM(𝑔ℓ) for some ℓ < 𝑖 or is divisible by LM(𝑔′) for some
𝑔′ ∈ (𝐺hom)<𝐷 . This contradicts to the fact that 𝐺hom is reduced. ⊓⊔
Remark 7 If we apply a signature-based algorithm such as the 𝐹5 algorithm or its
variant to compute the Gröbner basis of ⟨𝑭ℎ⟩, its Σ-Gröbner basis is a Gröbner
basis, but is not always reduced in the sense of ordinary Gröbner basis, in general.
In this case, we have to compute so called inter-reduction among elements of the
Σ-Gröbner basis for obtaining the reduced Gröbner basis.

5.2 Gröbner basis elements of degree not less than 𝑫

In this subsection, we shall extend the upper bound on solving degree given in [35,
Theorem 2.1] to our case.

Remark 8 In [35], polynomial ideals over F𝑞 [𝑋] are considered. Under the condition
where the generating sequence 𝑭 contains the field equations 𝑥𝑞

𝑖
− 𝑥𝑖 for 1 ≤ 𝑖 ≤ 𝑛,

recall from Theorem 6 ([36, Theorem 6.5 & Corollary 3.67]) that the solving degree
sdhsd

≺ (𝑭) with respect to a Buchberger-like algorithm for ⟨𝑭⟩ is upper-bounded by
2𝐷 − 2, where 𝐷 = 𝑑deg (⟨𝑭top⟩). In the proofs of [36, Theorem 6.5 & Corollary
3.67], the property ⟨𝑭top⟩𝐷 = 𝑅𝐷 was essentially used for obtaining the upper-
bound. As the property also holds in our case, we may apply their arguments. Also
in [5, Section 3.2], the case where 𝑭ℎ is cryptographic semi-regular is considered.
The results on the solving degree and the maximal degree of the Gröbner basis are
heavily related to our result in this subsection.

Now we show an upper-bound on the solving degree of 𝑭 by using the set
𝐻 := {𝑔 |𝑦=1 : 𝑔 ∈ (𝐺hom)≤𝐷}, that is, at the pre-process of the computation of
𝐺, we first compute 𝐻 = (𝐺hom)≥𝐷 , and at the latter process, we continue the
computation from 𝐻. We remark that, when we use the normal selection strategy
on the choice of S-polynomials, the Gröbner basis computation of ⟨𝑭⟩ proceeds
along with the graded structure of 𝑅 in its early stages, By Lemma 2 it simulates
faithfully that of ⟨𝑭top⟩ until the degree of computed polynomials becomes 𝐷 − 1,
that is, it produces {𝑔 |𝑦=1 : 𝑔 ∈ (𝐺hom)<𝐷}. Also, by Lemma 3, it may also produce
{𝑔 |𝑦=1 : 𝑔 ∈ (𝐺hom)𝐷 , 𝑔top ≠ 0} by carefully choosing S-polynomials, see [25] for
details. We also note that the 𝐹5 algorithm actually uses the normal strategy.

Lemma 4 If 𝐷 ≥ max{deg( 𝑓 ) : 𝑓 ∈ 𝑭}, then the maximal Gröbner basis degree
and the solving degree sdhsd

≺ (𝑭) (see Subsection 3.2 for the definition of sdhsd
≺ (𝑭))

are bounded as follows:

max.GB. deg≺ (𝑭) ≤ 𝐷 and sdhsd
≺ (𝑭) ≤ 2𝐷 − 2.
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Proof. Recall from Lemma 3 that ⟨LM(𝐻)⟩ contains all monomials in 𝑋 of degree
𝐷. We continue the Gröbner basis computation from 𝐻. In this latter process, all
polynomials generated from S-polynomials are reduced by elements of𝐻. Therefore,
their LM’s are reduced with respect to any monomial (in 𝑋) of degree 𝐷 and thus,
their degrees are not more than 𝐷 − 1. Thus, the maximal Gröbner basis degree is
upper-bounded by𝐷, and the degree of S-polynomials dealt in the whole computation
is upper-bounded by 2𝐷.

Next we show that we can avoid any S-polynomial of degree 2𝐷 or 2𝐷 − 1.
• If an S-polynomial 𝑆(𝑔1, 𝑔2) has its degree 2𝐷, then we have deg(𝑔1) = deg(𝑔2) =
𝐷 and gcd(LM(𝑔1),LM(𝑔2)) = 1. Then, Buchberger’s criterion predicts that
𝑆(𝑔1, 𝑔2) is always reduced to 0.

• If an S-polynomial 𝑆(𝑔1, 𝑔2) has its degree 2𝐷 − 1, then one has deg(𝑔1) =

deg(𝑔2) = 𝐷, deg(𝑔1) = 𝐷, deg(𝑔2) = 𝐷 − 1 or deg(𝑔1) = 𝐷 − 1, deg(𝑔2) = 𝐷.
For the case where deg(𝑔1) = 𝐷, deg(𝑔2) = 𝐷 −1 or deg(𝑔1) = 𝐷 −1, deg(𝑔2) =
𝐷, we have gcd(LM(𝑔1),LM(𝑔2)) = 1, and hence 𝑆(𝑔1, 𝑔2) is always reduced to
0 by Buchberger’s criterion.
Finally, we consider the remaining case where deg(𝑔1) = deg(𝑔2) = 𝐷. In this
case, 𝑔1 and 𝑔2 should belong to 𝐻 and recall from Lemma 3 that both of (𝑔1)top

and (𝑔2)top are single terms. Then 𝑆(𝑔1, 𝑔2) cancels the top parts of 𝑡1𝑔1 and
𝑡2𝑔2, where 𝑆(𝑔1, 𝑔2) = 𝑡1𝑔1 − 𝑡2𝑔2 for some terms 𝑡1 and 𝑡2. Thus, the degree of
𝑆(𝑔1, 𝑔2) is less than 2𝐷 − 1.

⊓⊔
Remark 9 We refer to [7, Remark 15] for another proof of max.GB. deg≺ (𝑭) ≤ 𝐷.
We also note that, if 𝐷 = 𝑑reg (𝑭top) is finite, Lemma 3 and Lemma 4 hold without
the assumption that 𝑭top is cryptographic semi-regular.

As to the computation of 𝐺hom, we have a result similar to Lemma 4. Since
⟨LM(𝐺hom)≤𝐷⟩ contains all monomials in 𝑋 of degree 𝐷, for any polynomial 𝑔
generated in the middle of the computation of 𝐺hom the degree of the 𝑋-part of
LM(𝑔) is less than 𝐷. Because 𝑔 is reduced by (𝐺hom)≤𝐷 . Thus, letting U be the
set of all polynomials generated during the computation of 𝐺hom, we have

{The 𝑋-part of LM(𝑔) : 𝑔 ∈ U} ⊂ {𝑥𝑒1
1 · · · 𝑥𝑒𝑛𝑛 : 𝑒1 + · · · + 𝑒𝑛 ≤ 𝐷}.

As different 𝑔, 𝑔′ ∈ U can not have the same 𝑋 part in their leading terms, the size
#U is upper-bounded by the number of monomials in 𝑋 of degree not greater than 𝐷,
that is

(𝑛+𝐷
𝑛

)
. By using the 𝐹5 algorithm or its efficient variant, under an assumption

that every unnecessary S-polynomial can be avoided, the number of computed S-
polynomials during the computation of 𝐺hom coincides with the number #U and is
upper-bounded by

(𝑛+𝐷
𝑛

)
.

Example 2 When 𝑚 = 𝑛 + 1 and 𝑑1 = · · · = 𝑑𝑚 = 2, the Hilbert-Poincáre series of
𝑅/⟨𝑭top⟩ is

[
(1−𝑧2 )𝑛+1

(1−𝑧)𝑛
]
. Since (1−𝑧2 )𝑛

(1−𝑧)𝑛 = (1 + 𝑧)𝑛 = ∑𝑛
𝑖=0

(𝑛
𝑖

)
𝑧𝑖 , we have

(1 − 𝑧2)𝑛+1

(1 − 𝑧)𝑛 = (1 + 𝑧)𝑛 (1 − 𝑧2) = 1 + 𝑛𝑧 +
𝑛∑︁
𝑖=2

((
𝑛

𝑖

)
−
(
𝑛

𝑖 − 2

))
𝑧𝑖 − 𝑛𝑧𝑛+1 − 𝑧𝑛+2,
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so that 𝐷 = 𝑑reg (⟨𝑭top⟩) = min
{
𝑖 :

(𝑛
𝑖

)
−
( 𝑛
𝑖−2

)
≤ 0

}
= ⌊(𝑛 + 1)/2⌋ + 1, see [5,

Theorem 4.1]. In this case, it follows from

2𝐷 − 2 = 2(⌊(𝑛 + 1)/2⌋ + 1) − 2 =

{
𝑛 + 1 (𝑛: odd),
𝑛 (𝑛: even)

that sdhsd
≺ (𝑭) ≤ 𝑛 + 1 in Lemma 4; see [5, Theorem 4.2, Therorem 4.7] for the bound

in the case where 𝑭ℎ is a generic sequence.
We note that, in the homogeneous case, the solving degree sdhsd

≺ℎ (𝑭ℎ) is equal to
the maximal Gröbner basis degree of 𝑭ℎ (for an appropriate setting in the algorithm
one adopts), so that we can apply Lazard’s bound, see Theorem 4. It also follows
(see [25] for details) that the solving degree sdhsd

≺ (𝑭) can be upper-bounded by
max.GB. deg≺ℎ (𝑭ℎ) = sdhsd

≺ℎ (𝑭ℎ), and we can apply Theorem 4, as our case satisfies
its conditions. Then, for the case where 𝑚 = 𝑛 + 1 and 𝑑1 = · · · = 𝑑𝑛+1 = 2, Lazard’s
bound gives the bound 𝑛 + 2 for max.GB. deg≺ℎ (𝑭ℎ) = sdhsd

≺ℎ (𝑭ℎ) ≥ sdhsd
≺ (𝑭).
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