
Efficient Instances of Docked Double Decker
With AES, and Application to Authenticated

Encryption

Christoph Dobraunig1, Krystian Matusiewicz2, Bart Mennink3, and Alexander
Tereschenko2

1 Intel Labs, Hillsboro, USA
christoph.dobraunig@intel.com

2 Intel Corporation, Gdańsk, Poland
krystian.matusiewicz@intel.com, aleksandr.v.tereschenko@intel.com

3 Radboud University, Nijmegen, The Netherlands
b.mennink@cs.ru.nl

Abstract. A tweakable wide blockcipher is a construction which be-
haves in the same way as a tweakable blockcipher, with the difference
that the actual block size is flexible. Due to this feature, a tweakable
wide blockcipher can be directly used as a strong encryption scheme
that provides full diffusion when encrypting plaintexts to ciphertexts and
vice versa. Furthermore, it can be the basis of authenticated encryption
schemes fulfilling the strongest security notions. In this paper, we present
three instantiations of the docked double decker tweakable wide block-
cipher: ddd-AES , ddd-AES+, and bbb-ddd-AES . These instances exclu-
sively use similar building blocks as AES-GCM (AES and finite field mul-
tiplication), are designed for maximal parallelism, and hence, can make
efficient use of existing hardware accelerators. ddd-AES is a birthday
bound secure scheme, and ddd-AES+ is an immediate generalization to
allow for variable length tweaks. bbb-ddd-AES achieves security beyond
the birthday bound provided that the same tweak is not used too often.
Moreover, bbb-ddd-AES builds upon a novel conditionally beyond birth-
day bound secure pseudorandom function, a tweakable variant of the
XOR of permutations, facilitating in the need to include a tweak in the
AES evaluations without sacrificing flexibility in docked double decker.
We furthermore introduce an authenticated encryption mode aaa specif-
ically tailored to be instantiated with ddd-AES and bbb-ddd-AES , where
special attention is given to how the nonce and associated data can be
processed. We prove that this mode is secure in the nonce-respecting set-
ting, in the nonce-misuse setting, as well as in the setting where random
nonces are used. We finally present a comparison with other tweakable
wide blockciphers, give a high-level idea of the efficiency potential of our
schemes, and provide benchmarks that confirm this idea.

Keywords: symmetric cryptography, tweakable wide blockcipher, ac-
cordion cipher mode, docked double decker, tweakable XOR of permu-
tations, authenticated encryption.

1 Introduction

1.1 Motivation

The US NIST (National Institute of Standards and Technology) has standardized
a number of pure confidentiality modes of operation, like ECB, CBC, CFB, OFB,
and CTR in NIST SP 800-38A [20], and XTS-AES in NIST SP 800-38E [21].
Although these modes see a wide-spread use in applications, they come with
their own limitations. Most notably, none of the above-mentioned encryption
methods provides full diffusion for encryption as well as decryption if the data
to be encrypted exceeds a few blocks. This stands in sharp contrast with the fact
that for modes that just provide confidentiality, full diffusion behavior is often
a practical security benefit, since it limits the ability of an attacker to target
specific fractions of the encrypted data [5].

In addition, with modern Internet- and cloud-scale data creation and process-
ing volumes being routinely measured in exabytes and approaching zettabytes,
many existing ciphers become a bottleneck and sometimes even a security risk,
because they were not designed to be used at such scale. As indicated in some
cloud service provider (CSP) comments [32, 35, 47], the limitations of block size
and corresponding birthday bounds lead to many standardized mainstream ci-
phers and modes becoming too brittle when used for such large data sets. To
protect that data while complying with cipher key/nonce pair uniqueness re-
quirements and data processing volume limitations, CSPs are forced to either
employ inefficient techniques like frequent rekeying (every week or two, down to
potentially mere seconds), or use tricks like having a static nonce and rekeying
for every message.

1.2 Tweakable Wide Blockciphers (Accordion Cipher Modes)

A very suitable solution, or building block for a solution to the aforementioned
problems, are tweakable wide blockciphers (also referred to as accordion cipher
mode [12]) with beyond birthday security (e.g. more than 264 blocks in case
AES is used as a building block). Not surprisingly, in the recent third NIST
workshop on blockcipher modes of operation in 2023, the organizers stated that
“NIST is particularly interested in discussing the possibility of standardizing a
tweakable wide block encryption technique that could support a large range of
input lengths.” [41].

Indeed, a tweakable wide blockcipher extends the definition of a tweakable
blockcipher [34] to arbitrarily large input and output size, this way allowing for
flexibility in the block size. Note that such a tweakable wide blockcipher also,
unlike existing modes such as ECB, CBC, CFB, OFB, CTR, and XTS-AES,
allows for full diffusion. This way, it serves as viable drop-in replacement of
these modes in many applications.

Furthermore, it can serve as the basis of an authenticated encryption scheme,
or directly as authenticated encryption scheme, by either appending the nonce
to the plaintext or putting the nonce in the tweak and appending zeros to the

2

plaintext to strengthen authenticity [28]. The resulting construction essentially
allows for flexibly sized tags and nonces, and has the potential to be misuse
resistant and context committing.

Other desirable properties are performance and beyond birthday bound se-
curity, and this brings us to our contribution.

1.3 Our Contributions

We present three different tweakable wide blockciphers: ddd -AES , ddd -AES+,
and bbb-ddd -AES . These are all based on the same components as used in many
NIST standardized schemes. Notably, they are based on the AES blockcipher [16,
17], as well as on operations in binary extension fields as used by GHash in AES-
GCM [37,52].

Our schemes are based on the docked double decker mode of Gunsing et
al. [23] (see Fig. 1). Docked double decker operates on top of a universal hash
function H and a pseudorandom function F , and has the feature that it allows to
provide beyond birthday bound security assuming it is not used with the same
tweak too often. All our instances ddd -AES , ddd -AES+, and bbb-ddd -AES take
Polyval [22] as universal hash function. The choice of pseudorandom function is
different for the constructions:

– In ddd -AES , the pseudorandom function is based on an XE -style [50] tweak-
able blockcipher using a fixed length tweak, itself built on top of AES, eval-
uated in counter mode (see Sec. 4.2). The resulting construction achieves
birthday bound security;

– ddd -AES+ is very similar to ddd -AES but is designed to accommodate
variable-length tweaks.4 Its pseudorandom function is again based on an
XE -style tweakable blockcipher, but where the mask is replaced by a sum
of blockcipher calls on individual tweak blocks. We prove that the resulting
construction achieves birthday bound security;

– In bbb-ddd -AES , to accommodate the fixed length tweak, we wished to in-
stantiate the pseudorandom function with a slightly compressing construc-
tion on top of AES that achieves beyond birthday bound security. To this
end, we took the XORP construction as used in CENC [30], and extended

it to include a tweak. In detail, this construction X̃ORP extends XORP by

including the tweak in an XE -style [50] manner (Sec. 4.4). Although X̃ORP
also achieves birthday bound security in the general case, it achieves beyond
birthday bound 2n/3-bit security assuming it is, just like ddd , not used with
the same tweak too often. We remark that this result — the introduction
and security analysis of X̃ORP as a “tweakable PRF” — is of independent
interest.

On top of this, we also introduce an authenticated encryption mode aaa.
aaa is specifically designed to work well when using tweakable wide blockciphers

4 We remark that, at the NIST workshop on the requirements for an accordion mode
in 2024, there was significant support for variable-length tweaks [55].

3

with a fixed tweak length like ddd -AES and bbb-ddd -AES (see Sec. 8). The
design is inspired by the idea [28] to concatenate τ zeros to the plaintext before
encrypting, but we significantly extended this idea to (i) capture associated data
and (ii) to accommodate for nonces that could be larger than the limited tweak
size of ddd -AES and bbb-ddd -AES . We prove that the aaa mode is secure in the
nonce-respecting setting, in the nonce-misuse setting, as well as in the setting
where random nonces are used. We remark that ddd -AES+ already natively
allows for larger tweaks, and the construction of Hoang et al. [28] (which we also
revisit in Sec. 8) already does the job.

We furthermore demonstrate that ddd -AES and bbb-ddd -AES compare fa-
vorably with existing designs [9,10,15,25–27,36,39,53]. In fact, there is no other
blockcipher based scheme to date achieving beyond birthday bound security
in a reasonably efficient way (there does exist a number of tweakable block-
cipher based schemes [8, 54]). We also provide a high-level intuition why the
bbb-ddd -AES design can be implemented efficiently, and we back this up with
implementation figures.

1.4 Outline

We first discuss some preliminaries in Sec. 2. The docked double decker construc-
tion of Gunsing et al. [23] is recalled in Sec. 3. We specify ddd -AES , ddd -AES+,
and bbb-ddd -AES in Sec. 4, with the description of Polyval (as used in each
of ddd -AES , ddd -AES+, and bbb-ddd -AES) in Sec. 4.1, the description of the
pseudorandom function used in ddd -AES in Sec. 4.2, the description of the
pseudorandom function used in ddd -AES+ in Sec. 4.3, and the description of
the pseudorandom function used in bbb-ddd -AES in Sec. 4.4. The security of
ddd -AES , ddd -AES+, and bbb-ddd -AES is analyzed in Sec. 5, with the security
proof of the pseudorandom function of ddd -AES+ in Sec. 6 and the security proof

of X̃ORP (which is of independent interest) in Sec. 7. We present the application
of our scheme to authenticated encryption in Sec. 8. We give interpretations of
the bound of bbb-ddd -AES in Sec. 9. In Sec. 10, we provide a high-level compar-
ison of our schemes with state-of-the-art blockcipher based constructions. We
discuss the efficiency of our schemes in Sec. 11. We conclude in Sec. 12.

2 Preliminaries

For n ∈ N, {0, 1}n denotes the set of bit strings of length n, and {0, 1}∗ =
∪∞n=0{0, 1}n denotes the set of bit strings of arbitrary length. For a bit string
X ∈ {0, 1}n and for m ∈ N such that m ≤ n, we denote by leftm(X) the leftmost
m bits of X and by rightm(X) the rightmost m bits of X. For a finite set S, we
denote by s

$←− S the uniform random selection of s from S. For n, p ∈ N, we
denote by (n)p = n(n− 1) · · · (n− p+ 1) the falling factorial.

4

2.1 Tweakable Wide Blockciphers

Our tweakable wide blockciphers will be parameterized by a value n ∈ N. This
will also be called the block size. They will require plaintexts of size at least
2n bits. Our tweakable wide blockciphers will also be parameterized by a key
size κ ∈ N and a tweak size w ∈ N. Finally, to formally argue security, we also
limit the maximum size of an input plaintext or output ciphertext to some value
ℓmax ∈ N such that ℓmax ≥ 2n. We define the plaintext and ciphertext space to

S :=

ℓmax⋃
i=2n

{0, 1}i . (1)

A tweakable wide blockcipher TWBC : {0, 1}κ × {0, 1}w ×S → S is a family of
permutations on S indexed by key K ∈ {0, 1}κ and tweak W ∈ {0, 1}w. In other
words, TWBC satisfies the property that for fixed K ∈ {0, 1}κ and W ∈ {0, 1}w,

TWBCK,W (·) := TWBC (K,W, ·)

is a length-preserving bijection. Its inverse for fixed K and W is denoted by
TWBC−1

K,W . We slightly abuse notation and denote by TWBCK and TWBC−1
K

the interfaces where the adversary still has the freedom to choose the tweak.
Define by perm(w, 2n : ℓmax) the family of all length-preserving bijections

on S of (1). The security of a tweakable wide blockcipher TWBC is defined by
how hard it is for an adversary A to distinguish TWBCK for a random and

secret key K
$←− {0, 1}κ from a tweakable wide random permutation TWRP

$←−
perm(w, 2n : ℓmax):

Advstwprp
TWBC (A) =

∣∣∣Pr
(
ATWBCK ,TWBC−1

K = 1
)
−Pr

(
ATWRP,TWRP−1

= 1
)∣∣∣ ,
(2)

where the probabilities are taken over K
$←− {0, 1}κ, TWRP

$←− perm(w, 2n :
ℓmax), and the random coins of A. The adversary is typically bounded by a
certain number of queries q, and a total data complexity σ that counts the total
amount of output data bits. Here, we remark that the amount of input data bits
equals the amount of output data bits plus the tweak, the latter of which is of
fixed size for each of the q queries. The adversary is also bounded by a certain
amount of time in which it can make offline evaluations, but this time is not
explicitly included.

2.2 Pseudorandom Permutations

A blockcipher E : {0, 1}κ × {0, 1}n → {0, 1}n is a family of permutations on
{0, 1}n indexed by key K ∈ {0, 1}κ. We denote EK(·) = E (K, ·), and its inverse
for fixed K is denoted by E−1

K .
Define by perm(n) the family of all bijections on {0, 1}n. The security of a

blockcipher E is defined by how hard it is for an adversary A to distinguish

5

EK for a random and secret key K
$←− {0, 1}κ from a random permutation

RP
$←− perm(n):

Advprp
E (A) =

∣∣Pr
(
AEK = 1

)
−Pr

(
ARP = 1

)∣∣ , (3)

where the probabilities are taken over K
$←− {0, 1}κ, RP $←− perm(n), and the

random coins of A. The adversary is typically bounded by a certain number of
queries q. Note that each query is of fixed size n bits.

2.3 Pseudorandom Functions

Let a, b ∈ N ∪ {∗}. A pseudorandom function F : {0, 1}κ × {0, 1}a → {0, 1}b
is a family of functions from {0, 1}a to {0, 1}b indexed by key K ∈ {0, 1}κ. We
denote FK(·) = F (K, ·).

Define by func(a, b) the family of all functions from {0, 1}a to {0, 1}b. The
security of a pseudorandom function F is defined by how hard it is for an ad-

versary A to distinguish FK for a random and secret key K
$←− {0, 1}κ from a

random function RF
$←− func(a, b):

Advprf
F (A) =

∣∣Pr
(
AFK = 1

)
−Pr

(
ARF = 1

)∣∣ , (4)

where the probabilities are taken over K
$←− {0, 1}κ, RF $←− func(a, b) (lazily-

sampled), and the random coins of A. The adversary is typically bounded by a
certain number of queries q, and a total output data complexity σ that counts
the total amount of output data bits. Here, we remark that we will always use
F on fixed input size and on varying output size.

In our case, the input to the function F may consist of a comma-separated
list of multiple inputs. To be precise, we will use a function F that operates on a
κ-bit key K, an n-bit input I, a domain separator nibble B, and a w-bit tweak
W , that produces a variable length output O:

F (K, I,B,W) = O .

The function F internally concatenates I, B, and W .

2.4 Universal Hash Functions

Let a, b ∈ N ∪ {∗}. A family of hash functions H : {0, 1}κ × {0, 1}a → {0, 1}b
is called ϵ-XOR-universal if for any two distinct X,X ′ ∈ {0, 1}a and any Y ∈
{0, 1}b,

Pr (H (K,X)⊕H (K,X ′) = Y) ≤ ϵ ,

where the probability is taken over K
$←− {0, 1}κ. It is called ϵ-universal if this

condition holds for Y = 0b.

6

2.5 Patarin’s H-Coefficient Technique

Consider any two oracles O and P, and a deterministic adversary A that has
query access to either of these oracles, and write

Adv(A) =
∣∣Pr

(
AO = 1

)
−Pr

(
AP = 1

)∣∣ . (5)

The adversary can make q queries, and its communication with its oracle is
recorded in a transcript τ . Denote by XO the probability distribution of tran-
scripts in interaction with O, and similarly XP the probability distribution of
transcripts in interaction with P. A transcript τ is called attainable ifPr (XP = τ) >
0, and we denote by T the set of all attainable transcripts.

Patarin’s H-coefficient technique [11,42,44] states the following:

Theorem 1 (H-coefficient technique). Let δ, ε ∈ [0, 1]. Consider a partition
T = Tbad ∪ Tgood of the set of attainable transcripts such that

– Pr (XP ∈ Tbad) ≤ δ,

– for all τ ∈ Tgood,
Pr (XO = τ)

Pr (XP = τ)
≥ 1− ε.

Then, the distinguishing advantage of (5) satisfies Adv(A) ≤ δ + ε.

3 Docked Double Decker

Let κ,w, n, ℓmax,mmax ∈ N such that 2n ≤ ℓmax and mmax = ⌈ℓmax/n⌉. In this
paper, we propose instantiations of the docked double decker (ddd) of Gunsing
et al. [23]. The scheme is depicted in Fig. 1. It gets as input two keys K ∈ {0, 1}κ,
and L ∈ {0, 1}n, a tweak W ∈ {0, 1}w, and a plaintext P ∈ S of size at least 2n
bits and at most ℓmax bits (see (1)). The plaintext P is parsed as P = T∥U∥V ,
where T and V are both n-bit long. Then, a four-round structure based on two
independent instances of a pseudorandom function FK : {0, 1}n+4+w → {0, 1}∗
and two instances of a universal hash functionHL : {0, 1}∗ → {0, 1}n is evaluated
to obtain the ciphertext C = X∥Y ∥Z, where X and Z are n-bit long and Y
matches the size of U . We denote this as

dddF,H
K,L(W,T∥U∥V) = X∥Y ∥Z . (6)

We remark that we have slightly deviated from the specification of Gunsing
et al. [23] in the sense that we do not use two different keys for F but rather
use domain separation. However, their analysis directly carries over. In detail,
Gunsing et al. [23] proved security under the assumption that the function F is a
pseudorandom function (PRF) and H a blinded keyed hash function. An XOR-
universal hash function is a specific type of blinded keyed hash function, and we
will adopt a simplification of their result to XOR-universal hash functions.

7

HL

FK

HL

∗

∗

n

nn

n

T U V

X Y Z

W

W

0001

0010

FK

Fig. 1: The docked double decker construction.

Theorem 2 (Gunsing et al. [23, Theorem 1]). Consider the docked dou-
ble decker construction ddd on top of a pseudorandom function F : {0, 1}κ ×
{0, 1}n+4+w → {0, 1}∗ and an ϵ-XOR-universal hash function family H : {0, 1}n×
{0, 1}∗ → {0, 1}n. For any adversary A making at most q queries, each of size
at least 2n and at most ℓmax bits, and in total of size at most σ bits, and where
qW is the number of queries made for tweak W ∈ {0, 1}w, we have

Advstwprp
ddd (A) ≤ Advprf

F (A′) +
∑

W∈{0,1}w

(
qW
2

)
·
(
2ϵ+

1

22n

)
,

for some adversary A′ with a total query complexity q′ = 2q and a total data
complexity σ′ = σ bits.

We remark that A′ in fact makes q queries whose output is of size n bits, and
q queries whose output is of arbitrary size but that add up to σ − qn bits.
We furthermore highlight the fact that the result of Gunsing et al. guarantees
beyond birthday bound security in case (i) the number of reuses per tweak is
limited, and (ii) F achieves beyond birthday bound security at least as long as
the number of reuses per tweak is limited.

8

4 Specification of ddd-AES , ddd-AES+, and
bbb-ddd-AES

We will describe how we suggest to instantiate ddd using AES to obtain a birth-
day bound secure ddd -AES and ddd -AES+, and a beyond birthday bound secure
bbb-ddd -AES (if the number of tweak reuses is limited). For both of them, we
suggest the same instantiation of H , as described in Sec. 4.1. The main bottle-
neck, however, will be the design of F , which gets an input of size n+4+w bits
and should operate on top of AES with a block size of n = 128 bits. We will
assume that 4+w ≤ n. The instantiation of F for ddd -AES , including rationale,
is given in Sec. 4.2. The extension of this construction to ddd -AES+ is given and
explained in Sec. 4.3. The instantiation of F for bbb-ddd -AES , again including
rationale, is given in Sec. 4.4.

4.1 Instantiation of H

Due to the addition of carry-less multiplication instructions on modern CPUs,
instances for HL based on polynomial evaluation are a viable option. Hence, we
decided to instantiate HL using Polyval [22]. On input of a key L and a list of
s field elements Ii, all elements of GF (2128)[x]/(x128 + x127 + x126 + x121 + 1),
it is defined as

PolyvalL(I1, I2, . . . , Is) =

s∑
i=1

(
Ls−i+1 · Ii · x−128·(s−i+1)

)
, (7)

We will use it for arbitrary-length bit strings, always of length at most ℓmax−n
bits. To process such string using PolyvalL, it is first 0-padded to the nearest
multiple of n bits. Then, an n-bit string encoding the bit length of I is ap-
pended. The resulting bit string then represents I1∥I2∥ · · · ∥Is, noting that we
can uniquely map elements from this field to bit strings in {0, 1}128. Particularly,
in our case, s ≤ mmax, and for this case, Polyval is an ϵ-XOR-universal hash
function with ϵ = mmax/2

n [22, Lemma 3].

4.2 Instantiation of F for ddd-AES

We realize F by turning the AES-128 blockcipher EK into an XE -style [50]
tweakable blockcipher, where B and W function as tweak, and plugging this
tweakable blockcipher into counter mode to obtain a keystream of arbitrary
length. Note that the XE -style is sufficient as opposed to the XEX -style, as the
primitive is never evaluated in inverse direction.

In detail, we define FK : {0, 1}n+4+w → {0, 1}∗ as

FK(I,B,W) =
⌊
EK(I ⊕ 20S)∥EK(I ⊕ 21S)∥ . . . ∥EK(I ⊕ 2mmax−1S)

⌋
ℓmax

,

(8)

where S = EK(B∥W) serves as tweak-dependent subkey. In this case, we can
support a tweak with a length of w = 124 bits. The keylength κ depends on the
actual instance chosen for AES [16,17].

9

4.3 Instantiation of F for ddd-AES+

To realize a function F that can achieve a similar level of security as that of
Sec. 4.2 but that can instead accommodate arbitrary-length tweaks, we again
turn the AES-128 blockcipher EK into an XE -style [50] tweakable blockcipher,
where B andW function as tweak. The difference is only in the subkey S: instead
of S = EK(B∥W) as in Sec. 4.2, we concatenate W∥B′, with B′ = B ⊕ 1000,
pad it with 0s into w-bit blocks W0,W1, . . . ,Wl−1∥B′∥0∗, and define

S = EK(W0∥0)⊕ EK(W1∥1)⊕ · · · ⊕ EK(Wl−1∥B′∥0∗∥(l − 1)) , (9)

where 0, . . . , l − 1 function as an (n − w)-bit counter. Here, it is important to
note that this padding is injective, as in ddd we have B ∈ {0001, 0010}. In case
of AES, where n = 128, we suggest to use 32 bits for the counter. We can then
support a tweak with a length of at most 232 · 96 − 4 bits, which we assume
to be at least ℓmax. The keylength κ depends on the actual instance chosen for
AES [16,17].

4.4 Instantiation of F for bbb-ddd-AES

To realize a function F that achieves beyond birthday bound security (in case of
limited tweak reuse, cf., comment below Theorem 2), we extend the XORP [v] [31]
that underlies CENC [30] to include a tweak.

Our tweak inclusion will be similar to the XE -style approach, albeit with
counter included in the subkey. In detail, we assume F to have two keys instead
of one, K = K1∥K2 ∈ {0, 1}2κ, and we consider the following approach for the
subkey computation:

Sj = EK2
(B∥W∥c∥j) , (10)

where j will function as “inner counter” in the evaluation of F and c as “outer
counter” for the mode employing F .

We subsequently define X̃ORP [v] for v ∈ N on top of a blockcipher E :
{0, 1}κ × {0, 1}n → {0, 1}n as

X̃ORP [v]EK(I,B,W, c) =
(
EK1

(I ⊕ S0)⊕ EK1
(I ⊕ S1)

)
∥ . . .

. . . ∥
(
EK1

(I ⊕ S0)⊕ EK1
(I ⊕ Sv)

)
. (11)

This construction is depicted in Fig. 2. This approach leaves us with n− 4 bits
that can be distributed between the outer counter c, the inner counter j, and
the tweak W . In case of AES, where n = 128, we suggest to use 28 bits split
between the counters c and j, where j occupies ⌈log2(v + 1)⌉ ≤ 28 bits and c
gets 28− ⌈log2(v+ 1)⌉ bits of space. This leaves room for a (w = 96)-bit tweak.

We finally define FK : {0, 1}n+4+w → {0, 1}∗ as counter mode on top of

X̃ORP [v] truncated to the required length:

FK(I,B,W) =
⌊
X̃ORP [v]EK(I,B,W, 0)∥ . . . ∥X̃ORP [v]EK(I,B,W, ⌈mmax/v⌉)

⌋
ℓmax

.

(12)

10

EK1

S0

EK1

S1

I

Z1

EK1

S0

EK1

Sv

I

Zv

R0 R1 R0 Rv

Fig. 2: The X̃ORP [v] construction. Here, Sj = EK2(B∥W∥c∥j) of (10). The
parameters Rj will be used of the proof of Theorem 3 in Sec. 7.

5 Security of ddd-AES , ddd-AES+, and bbb-ddd-AES

We will discuss the security of ddd -AES , ddd -AES+, and bbb-ddd -AES in the
security model of Sec. 2.1. The security analyses of all three functions have in
common that they rely on the XOR-universality of H, which is already briefly
stated in Sec. 4.1, but which we formally repeat here for convenience.

Lemma 1 (Gueron et al. [22, Lemma 3]). The universal hash function
Polyval of (7) is ϵ-XOR-universal with ϵ = mmax/2

n.

Security of ddd -AES is now treated in Sec. 5.1, security of ddd -AES+ in Sec. 5.2,
and security of bbb-ddd -AES in Sec. 5.3.

5.1 Security of ddd-AES

The ddd -AES scheme is based on the XE construction that operates on a block-
cipher E : {0, 1}κ × {0, 1}n → {0, 1}n:

XEE
K(I,B,W, j) = EK(I ⊕ 2jEK(B∥W)) . (13)

Rogaway [50] proved that this XE construction5 behaves like a random tweakable
permutation as long as the total number of evaluations q satisfies 4.5q2/2n and
as long as E is PRP-secure after at most q queries. However, we will rather use
the XE construction as a PRF, and looking at the proof of [50, Theorem 1],
which can be found in the full version [51, Appendix B], it first proves XE to
be PRF-secure and then as last step makes an RF-to-(T)RP switch at the cost
of 0.5q2/2n. We will require PRF-security of the XE construction, thus allowing
us to use a slightly tighter bound.

5 A small change is in the split of the nonce into B and W , and in the fact that the
subkey EK(B∥W) is multiplied only by 2j .

11

Lemma 2 (Rogaway [50, Theorem 1]). Consider the construction XE of
(13) on top of a pseudorandom permutation E : {0, 1}κ×{0, 1}n → {0, 1}n. For
any adversary A making at most q queries, each of output size n bits, we have

Advprf
XE (A) ≤ Advprp

E (A′) +
4q2

2n
,

for some adversary A′ with a total query complexity q′ = 2q.

Looking ahead, XE is a simplification of XE+ of Section 5.2 and the proof of
Lemma 3 carries over, although it is slightly worse due to generality.

The security of ddd -AES is now a direct corollary of Theorem 2, Lemma 1,
and Lemma 2, the only work actually being the data complexity translation
from bits queried in ddd -AES to actual evaluations of the underlying AES . To
be precise, in ddd the underlying F is evaluated 2q times with a total output
data complexity of σ bits. These amount to at most ⌈σ/n⌉ evaluations of XE of
(13).

Corollary 1. Consider ddd-AES, the docked double decker construction ddd on
top of Polyval : {0, 1}κ×{0, 1}∗ → {0, 1}n and AES : {0, 1}κ×{0, 1}n → {0, 1}n
through XE of (13). For any adversary A making at most q queries, each of size
at least 2n and at most ℓmax bits, and in total of size at most σ bits, we have

Advstwprp
ddd-AES (A) ≤ Advprp

E (A′) +
4(⌈σ/n⌉)2

2n

+
∑

W∈{0,1}w

(
qW
2

)
·
(
2mmax

2n
+

1

22n

)
,

for some adversary A′ with a total query complexity q′ = 2⌈σ/n⌉, and where qW
is the number of queries made for tweak W ∈ {0, 1}w.

5.2 Security of ddd-AES+

The ddd -AES+ scheme is based on the XE construction that operates on a
blockcipher E : {0, 1}κ × {0, 1}n → {0, 1}n, but using a different and more
involved mask. Let us call this construction XE+:

XE+E
K(I,B,W, j) = EK(I ⊕ 2jS) , (14)

with S of (9). As this subkey is more involved, we cannot directly rely on the
result of Rogaway (Lemma 2). Nevertheless, we can derive a comparable bound:

Lemma 3. Consider the construction XE+ of (14) on top of a pseudorandom
permutation E : {0, 1}κ × {0, 1}n → {0, 1}n. For any adversary A making at
most q queries, each of output size n bits, in total of tweak input size σ bits, and
where the total number of padded tweak blocks is at most ρ, we have

Advprf
XE+(A) ≤ Advprp

E (A′) +
3ρq + 3

(
q
2

)
2n

,

for some adversary A′ with a total query complexity q′ = ρ+ q.

12

The proof of Lemma 3 is a bit technical, and is given in Sec. 6. Note that ρ ≥ q.
In case we would restrict to a masking consisting of one blockcipher call, we
would have ρ = q, and in this case, Lemma 3 is only marginally worse than
Lemma 2 (due to generality of the proof).

The security of ddd -AES+ is now a direct corollary of Theorem 2, Lemma 1,
and Lemma 3, identical to the reduction in Sec. 5.1.

Corollary 2. Consider ddd-AES+, the docked double decker construction ddd
on top of Polyval : {0, 1}κ × {0, 1}∗ → {0, 1}n and AES : {0, 1}κ × {0, 1}n →
{0, 1}n through XE+ of (14). For any adversary A making at most q queries,
each of size at least 2n and at most ℓmax bits, in total of size at most σ bits, and
where the total number of padded tweak blocks is at most ρ, we have

Advstwprp
ddd-AES+(A) ≤ Advprp

E (A′) +
3ρ(⌈σ/n⌉) + 3

(⌈σ/n⌉
2

)
2n

+
∑

W∈{0,1}w

(
qW
2

)
·
(
2mmax

2n
+

1

22n

)
,

for some adversary A′ with a total query complexity q′ = ρ+ ⌈σ/n⌉, and where
qW is the number of queries made for tweak W ∈ {0, 1}w.

Note that here, ρ ≥ ⌈σ/n⌉ by definition.

5.3 Security of bbb-ddd-AES

We will consider the security of the bbb-ddd -AES scheme. However, this analysis
is not as simple as that of ddd -AES of Sec. 5.1. The reason for this is that

bbb-ddd -AES is based on a new pseudorandom function design, namely X̃ORP [v]

of (11). Thus, we first have to analyze the PRF-security of X̃ORP [v].

Theorem 3. Let v ∈ N. Consider the construction X̃ORP [v] of (11) on top of
a pseudorandom permutation E : {0, 1}κ×{0, 1}n → {0, 1}n. For any adversary
A making at most q queries, each of output size vn bits, and where qBWc is the
number of queries made for tweak B∥W∥c ∈ {0, 1}n−⌈log2(v+1)⌉, we have

Advprf

X̃ORP [v]
(A) ≤ 2Advprp

E (A′)

+
∑
BWc

(
qBWc

2

)
2(v + 1)2

2n
+

(v + 1)4q3

5 · 22n
+

(
v+1
2

)
q

2n
+

2
(
v+1
2

)2
q2

22n
,

for some adversary A′ with a total query complexity q′ = (v + 1)q, where we
assume that n(2v + 1)2 + (2v + 1) ≤ 2n/2 and (2v + 1)2(v + 1)q ≤ 2n/12.

The proof of Theorem 3 is technically involved, and is given in Sec. 7.
The security of bbb-ddd -AES is now a direct corollary of Theorem 2, Lemma 1,

and Theorem 3, the only work actually being the data complexity translation
from bits queried in bbb-ddd -AES to actual evaluations of the underlying AES .

13

Consider a single evaluation of bbb-ddd -AES on input of ℓi bits and mi =
⌈ℓi/n⌉ blocks. One evaluation of F is for 1 n-bit output block: it makes 1 evalu-

ation of X̃ORP [v] that costs 2 calls to each blockcipher. One evaluation of F is

for mi − 1 n-bit output blocks: it makes ⌈(mi − 1)/v⌉ evaluations of X̃ORP [v]
that cost at most (v + 1)⌈(mi − 1)/v⌉ calls to each blockcipher. Summing over
all q queries, bbb-ddd -AES incurs

q∑
i=1

(⌈
mi − 1

v

⌉
+ 1

)
≤ 1

v
⌈σ/n⌉+ v + 1

v
q =: qx (15)

evaluations of X̃ORP [v] with a total amount of at most

q∑
i=1

(
(v + 1)

⌈
mi − 1

v

⌉
+ 2

)
≤ v + 1

v
⌈σ/n⌉+ 3v + 1

v
q =: qe (16)

calls to each blockcipher, where we used that
∑q

i=1 ℓi ≤ σ and thus
∑q

i=1 mi ≤
⌈σ/n⌉+ q.

Finally, we remark that∑
BWc

(
qBWc

2

)
≤ 2

∑
W∈{0,1}w

(
qW
2

)
,

and we will use this observation to slightly simplify the bound further.

Corollary 3. Consider bbb-ddd-AES, the docked double decker construction
ddd on top of Polyval : {0, 1}κ×{0, 1}∗ → {0, 1}n and AES : {0, 1}κ×{0, 1}n →
{0, 1}n through X̃ORP of (11). Let v ∈ N and let qx and qe be as in (15) and
(16). For any adversary A making at most q queries, each of size at least 2n and
at most ℓmax bits (equivalent to mmax n-bit blocks), and in total of size at most
σ bits, and where qW is the number of queries made for tweak W ∈ {0, 1}w, we
have

Advstwprp
bbb-ddd-AES (A) ≤ 2Advprp

E (A′) +
(v + 1)4q3x
5 · 22n

+

(
v+1
2

)
qx

2n
+

2
(
v+1
2

)2
q2x

22n

+
∑

W∈{0,1}w

(
qW
2

)
·
(
4(v + 1)2

2n
+

2mmax

2n
+

1

22n

)
,

for some adversary A′ with a total query complexity q′ = qe, where we assume
that n(2v + 1)2 + (2v + 1) ≤ 2n/2 and (2v + 1)2(v + 1)qx ≤ 2n/12.

We refer to Sec. 9 for an interpretation of the bound.

6 Proof of Lemma 3

A proof overview is given in Sec. 6.1, with the definition of bad transcripts in
Sec. 6.2, and probability analyses in Sec. 6.3 and Sec. 6.4. The proof is concluded
in Sec. 6.5.

14

6.1 Proof Overview

Let K
$←− {0, 1}κ. We consider an adversary A that makes q queries to either

XE+E
K of (14) on top of a pseudorandom permutation E : {0, 1}κ × {0, 1}n →

{0, 1}n, or to a random function RF with the same domain and range of XE+E
K ,

and it aims to distinguish them:

Advprf
XE+(A) =

∣∣∣Pr
(
AXE+E

K = 1
)
−Pr

(
ARF = 1

)∣∣∣ . (17)

Each query induces at most li (padded) tweak blocks, and we have
∑q

i=1 li ≤ ρ.

As a first step, we replace the blockcipher evaluation EK by a random per-

mutation π
$←− perm(n). This serves as key in the construction, and we abuse

notation and denote it by XE+
π . We have

Advprf
XE+(A) ≤

∣∣∣Pr
(
AXE+

π = 1
)
−Pr

(
ARF = 1

)∣∣∣+Advprp
E (A′) , (18)

for some adversary A′ with a total query complexity q′ = ρ+ q.

Transcripts. The adversary A makes q queries to its construction (either XE+
π

or RF) and these are summarized in a transcript

τ = {(Ii, Bi,Wi, ji, Zi)}qi=1 .

Without loss of generality, we assume that (Ii, Bi,Wi, ji) ̸= (Ii′ , Bi′ ,Wi′ , ji′)
whenever i ̸= i′. For each query, denote the padded blocks by Wi,k for k =
0, . . . , li − 1. (We recall that the padding is injective, cf., Sec. 4.3.)

Note that in the real world, there are additional values related to the evalu-
ation of XE+

π , namely

Si,k = π(Wi,k∥k) (19)

for i ∈ {1, . . . , q} and k ∈ {0, . . . , li − 1}. We extend the transcript by adding
those values:

τext = {(Ii, Bi,Wi, ji, Si,0∥ · · · ∥Si,li−1, Zi)}qi=1 . (20)

In the ideal world, the values Si,k will be placeholder values sampled uniformly
without replacement whenever the value Wi,k∥k is different (simply said, in the

ideal world we will use a random permutation π′ $←− perm(n) to draw those
values Si,k, independently of the Zi’s).

Finally, we write for i ∈ {1, . . . , q}:

Si = Si,0 ⊕ · · · ⊕ Si,li−1 . (21)

These values are implicit in the extended transcript τext.

15

Meaning of Transcripts. In the real world, each transcript tuple (Ii, Bi,Wi, ji,
Si,0∥ · · · ∥Si,li−1, Zi) ∈ τext basically consists of two portions.

Firstly, there are the li distinct evaluations of π of the form (19):
π(Wi,0∥0) = Si,0 ,
...

π(Wi,li−1∥(li − 1)) = Si,li−1 .

(22)

If two queries i, i′ ∈ {1, . . . , q} have the same kth (padded) tweak block Wi,k =
Wi′,k, their permutation evaluations coincide; otherwise they are all distinct.

Secondly, there is a single evaluation of π of the form:

π(Ii ⊕ 2jiSi) = Zi . (23)

6.2 Bad Transcripts

We will define bad events that would make the H-coefficient technique inapplica-
ble. Intuitively, we have to assure that (i) within isolated queries, the evaluations
of the form (22) and (23) do not have two evaluations with the same input and
different output, or vice versa, and (ii) the same holds between any two eval-
uations of different queries. However, what simplifies in our case is that if two
different queries have the same kth (padded) tweak block, their evaluations co-
incide by definition, and if they are different, their outputs will also differ. In
other words, the q sets of evaluations of the form (22) never conflict. We only
have to deal with cross-collisions: a masking block generation within (22) that
coincides with a final transformation (23). Furthermore, we have to deal with
collisions among the q final transformations (23).

In detail, for the case of problems within queries, case (i) of above paragraph,
the H-coefficient technique is inapplicable if a transcript in τext satisfies the
following event:

BAD⋆
cross There exist i ∈ {1, . . . , q} and k ∈ {0, . . . , li − 1}, such that Wi,k∥k =

Ii ⊕ 2jiSi or Si,k = Zi.

For the case of problems among queries, case (ii) of above paragraph, the event
generalizes as follows:

BAD⋆⋆
cross There exist distinct i, i′ ∈ {1, . . . , q} and k ∈ {0, . . . , li− 1}, such that

Wi,k∥k = Ii′ ⊕ 2ji′Si′ or Si,k = Zi′ .

Finally, we have the following for collisions among the evaluations of (23).

BAD⋆⋆
final There exist distinct i, i′ ∈ {1, . . . , q} such that Ii⊕2jiSi = Ii′⊕2ji′Si′

or Zi = Zi′ .

We write

BAD = BAD⋆
cross ∨ BAD⋆⋆

cross ∨ BAD⋆⋆
final . (24)

16

6.3 Probability of Bad Transcripts

Following Theorem 1, we have to upper bound the probability that a bad tran-
script occurs in the ideal world, i.e., for RF . By basic probability theory,

Pr (XRF ∈ Tbad) ≤ Pr (BAD⋆
cross) +Pr (BAD⋆⋆

cross) +Pr (BAD⋆⋆
final) . (25)

We investigate the probabilities separately.

Pr (BAD⋆
cross). Consider any of the q choices for i and any of the li choices for

k (at most ρ choices in total). From (21), we can conclude that the bad event is
set if

Si,0 = 2−ji
(
Wi,k∥k ⊕ Ii ⊕ 2ji

⊕
k′ ̸=0

Si,k′
)
or Si,k = Zi .

The value Si,0 is drawn uniformly randomly from a set of size at least 2n − ρ
elements, and Zi from a set of size 2n elements, and thus, above equation is
satisfied with probability at most 1

2n−ρ + 1
2n .

In conclusion, the bad event is set with probability at most

ρ

2n − ρ
+

ρ

2n
≤ 3ρ

2n
,

using that ρ ≤ 2n−1 for the inequality.

Pr (BAD⋆⋆
cross). Consider any of the

(
q
2

)
choices for i, i′ and any of the li choices

for k (at most ρ(q − 1) choices in total). From (21), we can conclude that the
bad event is set if

Si′,0 = 2−ji′
(
Wi,k∥k ⊕ Ii′ ⊕ 2ji′

⊕
k′ ̸=0

Si′,k′
)
or Si,k = Zi′ .

The value Si′,0 is drawn uniformly randomly from a set of size at least 2n − ρ
elements, and Zi′ from a set of size 2n elements, and thus, above equation is
satisfied with probability at most 1

2n−ρ + 1
2n .

In conclusion, the bad event is set with probability at most

ρ(q − 1)

2n − ρ
+

ρ(q − 1)

2n
≤ 3ρ(q − 1)

2n
,

using that ρ ≤ 2n−1 for the inequality.

Pr (BAD⋆⋆
final). Consider any of the

(
q
2

)
choices for i, i′. From (21), we can conclude

that the bad event is set if

Si,0 = 2−ji
(
Ii ⊕ Ii′ ⊕ 2ji′Si′ ⊕ 2ji

⊕
k′ ̸=0

Si,k′
)
or Zi = Zi′ .

17

The value Si,0 is drawn uniformly randomly from a set of size at least 2n − ρ
elements, and Zi from a set of size 2n elements, and thus, above equation is
satisfied with probability at most 1

2n−ρ + 1
2n .

In conclusion, the bad event is set with probability at most(
q
2

)
2n − ρ

+

(
q
2

)
2n
≤

3
(
q
2

)
2n

,

using that ρ ≤ 2n−1 for the inequality.

Conclusion. We obtain from (25) and the individual bounds that

Pr (XRF ∈ Tbad) ≤
3ρ

2n
+

3ρ(q − 1)

2n
+

3
(
q
2

)
2n

=
3ρq + 3

(
q
2

)
2n

, (26)

provided ρ ≤ 2n−1. We set δ equal to this value.

6.4 Probability Ratio for Good Transcripts

Consider any good transcript τext. Following Theorem 1, we have to compute

a lower bound on the fraction
Pr

(
X

XE
+
π
=τext

)
Pr(XRF=τext)

. We will first compute the ac-

tual probabilities in the numerator and the denominator, and then combine and
bound them.

For the derivation of each of the two probabilities, below, consider any
good transcript τext = {(Ii, Bi,Wi, ji, Si,0∥ · · · ∥Si,li−1, Zi)}qi=1. For any W∥k ∈
{0, 1}n, let qWk denote the number of queries where the kth padded tweak block
satisfies Wi,k = W . Let q′ denote the number of strings W∥k for which qWk > 0
(i.e., q′ denotes the number of different padded tweak block and counter combi-
nations).

Pr
(
XXE+

π
= τext

)
. For the computation of this probability, we have to compute

the probability that π
$←− perm(n) could have resulted in the transcript. The

transcript defines exactly q′ input-output tuples for π through (22) and exactly
q through (23), and as the transcript is good, these q′ + q tuples are all distinct.
Thus, there are exactly (2n − q′ − q)! permutations π that could have yielded
this transcript.

We obtain that

Pr
(
XXE+

π
= τext

)
=

(2n − q′ − q)!

2n!
=

1

(2n)q′+q
.

Pr (XRF = τext). For the computation of this probability, we can split the tran-
script into the two portions, either that corresponding to (22) and that corre-
sponding to (23). For the former, by definition, the ideal world generates values
Si,k without replacement, and the probability that the random world yields these

18

values is exactly (2n)q′ . For the latter, the values Zi are randomly generated and
the probability that the random world yields these values is exactly (2n)q.

We obtain that

Pr (XRF = τext) =
1

(2n)q′(2n)q
.

Conclusion. We obtain from the individual bounds that

Pr
(
XXE+

π
= τext

)
Pr (XRF = τext)

=
(2n)q′(2

n)q

(2n)q′+q
≥ 1 . (27)

We set ε = 0.

6.5 Conclusion

From the H-coefficient technique of Theorem 1, the initial steps (17) and (18)
of the proof, and from the values δ obtained in (26) and ε obtained in (27), we
obtain

Advprf
XE+(A) ≤

3ρq + 3
(
q
2

)
2n

+Advprp
E (A′) ,

assuming that ρ ≤ 2n−1.

7 Proof of Theorem 3

The XORP [v] construction was introduced by Iwata [30] and proven to achieve
2n/3-bit security.6 Later, Iwata et al. [31] demonstrated that n−log2(w) security
was achieved using the mirror theory [38, 40, 43, 45, 46], and Bhattacharya and
Nandi [7] proved a similar bound using the χ2 technique [18]. Very recently,
a concise proof of the mirror theory (for a very large limit on the maximum
component size) was delivered [13] and the authors also applied it to XORP [v].
In fact, this mirror theory result considers sums of permutations, where each
sum can be defined as an edge in a graph between two vertices, and where it is
required that there is no circle in the graph and no too large tree. For XORP [v]
this is the case: each evaluation of XORP [v] defines v edges over v + 1 vertices
that form a tree, basically even a star, and different evaluations of XORP [v] are
disconnected. Thus, XORP [v] is a fairly simple application of this main mirror
theory result.

It turns out that the exact same mirror theory result can also be used to

argue security of X̃ORP [v], but the application is a bit more subtle. The reason

is that, in our case, again any evaluation of X̃ORP [v] defines a star on v edges

6 A variant of XORP [v] based on a public permutation was introduced and analyzed
by Bhattacharjee et al. [6].

19

over v + 1 vertices (basically as the masking values Sj of (1) are different for
j = 1, . . . , v) but any two different stars may collide and they may collide in
(v + 1)2 ways. Excluding any such collision would force us into birthday bound
security, but there is no need to exclude such collisions as any such collision
merely implies a maximum tree size up to 2v + 1 elements. In general, as long
as there is no too large tree of stars, the maximum component is still “small
enough” for the mirror theory result of [13] to apply.

This will also be the main proof strategy: in a nutshell, we will demonstrate
that (i) there is no too large tree of stars except with a small probability, (ii)
there is no cycle of stars except with a small probability, and (iii) the mirror
theory of [13] can be applied akin to the example of [13, Section 4.2], with the
maximum component size roughly v times the largest tree of stars.

To do this rigorously, we first describe the mirror theory in Sec. 7.1. A proof
overview is given in Sec. 7.2, with the definition of bad transcripts in Sec. 7.3, and
probability analyses in Sec. 7.4 and Sec. 7.5. The proof is concluded in Sec. 7.6.

7.1 Mirror Theory

Patarin’s mirror theory [38, 40, 43, 45, 46] can be used to prove close to optimal
security of constructions that can be described as the sum of permutations, or
bijections. We adopt the notation and result of Cogliati et al. [13], albeit in their
graph representation rather than in their matrix representation.

Let m, p ∈ N. Consider p distinct n-bit unknowns {X1, . . . , Xp}. A system of
m difference equations over these unknowns is defined as

Xa1 ⊕Xb1 = λ1 ,
...

Xam
⊕Xbm = λm ,

(28)

where ai, bi ∈ {1, . . . , p} (ai ̸= bi for all i) and λi ∈ {0, 1}n for i = 1, . . . ,m. We
associate a graph G = (V, E) to this system of equations, where the unknowns
are represented by vertices V = {X1, . . . , Xp} and equations by edges E , where
Xa

λ←→ Xb if (a, b, λ) = (ai, bi, λi) for some i ∈ {1, . . . ,m}.
The graph is called p.d.-consistent (pairwise distinct consistent) if there is

no path whose labels λi sum to 0. In addition, the graph is called acyclic if it is
cycle-free. Finally, for a graph G, we define the maximum component size, i.e.,
the size of the largest component, by ξmax vertices. The mirror theory result of
Cogliati et al. [13] states the following:

Theorem 4 (Mirror theory). Consider a graph G = (V, E) that is p.d.-
consistent, acyclic, and whose largest component is at most of size ξmax. As long
as nξ2max+ξmax ≤ 2n/2 and p ≤ 2n/(12ξ2max), the number of solutions for V such
that the equations of E are satisfied is at least

(2n)p
2nm

.

20

7.2 Proof Overview

Let K = K1∥K2
$←− {0, 1}2κ. We consider an adversary A that makes q queries

to either X̃ORP [v]EK of (11) on top of a pseudorandom permutation E : {0, 1}κ×
{0, 1}n → {0, 1}n, or to a random function RF with the same domain and range

of X̃ORP [v]EK , and it aims to distinguish them:

Advprf

X̃ORP [v]
(A) =

∣∣∣Pr
(
AX̃ORP [v]EK = 1

)
−Pr

(
ARF = 1

)∣∣∣ . (29)

It makes at most qBWc queries per tweak B∥W∥c ∈ {0, 1}n−⌈log2(v+1)⌉.
As a first step, we replace the blockcipher evaluations EK1 , EK2 by random

permutations π1, π2
$←− perm(n), respectively. These serve as key in the construc-

tion, and we abuse notation and denote it by X̃ORP [v]π for π = (π1, π2). We
have

Advprf

X̃ORP [v]
(A) ≤

∣∣∣Pr
(
AX̃ORP [v]π = 1

)
−Pr

(
ARF = 1

)∣∣∣+ 2Advprp
E (A′) ,

(30)

for some adversary A′ with a total query complexity q′ = (v + 1)q.

Transcripts. The adversaryAmakes q queries to its construction (either X̃ORP [v]π
or RF) and these are summarized in a transcript

τ = {(Ii, Bi,Wi, ci, Zi,1∥ · · · ∥Zi,v)}qi=1 .

Without loss of generality, we assume that (Ii, Bi,Wi, ci) ̸= (Ii′ , Bi′ ,Wi′ , ci′)
whenever i ̸= i′.

Note that in the real world, there are additional values related to the evalu-

ation of X̃ORP [v]π, namely

Si,j = π2(Bi∥Wi∥ci∥j) (31)

for i ∈ {1, . . . , q} and j ∈ {0, 1, . . . , v}. We extend the transcript by adding those
values:

τext = {(Ii, Bi,Wi, ci, Si,0∥ · · · ∥Si,v, Zi,1∥ · · · ∥Zi,v)}qi=1 . (32)

In the ideal world, the values Si,j will be placeholder values sampled uniformly
without replacement whenever the value Bi∥Wi∥ci∥j is different (simply said, in
the ideal world we will also use π2 to draw those values Si,j).

Finally, we write for i ∈ {1, . . . , q} and j ∈ {0, 1, . . . , w}:

Ri,j = Ii ⊕ Si,j . (33)

These values are implicit in the extended transcript τext.

21

Meaning of Transcripts. In the real world, each transcript tuple (Ii, Bi,Wi, ci,
Si,0∥ · · · ∥Si,v, Zi,1∥ · · · ∥Zi,v) ∈ τext basically consists of two portions.

Firstly, there are the v + 1 distinct evaluations of π2 of the form (31):
π2(Bi∥Wi∥ci∥0) = Si,0 ,
...

π2(Bi∥Wi∥ci∥v) = Si,v .

(34)

If two queries i, i′ ∈ {1, . . . , q} are made for the same tweak Bi∥Wi∥ci =
Bi′∥Wi′∥ci′ , these v + 1 evaluations coincide; otherwise they are all distinct.

Secondly, there is the relation between the values Ri,j (implicitly defined by
the transcript as (33)) and the values Zi,j , which corresponds to v equations
over v+ 1 unknowns (note, here, the outputs of the function π1 are regarded as
unknowns): 

π1(Ri,0)⊕ π1(Ri,1) = Zi,1 ,
...

π1(Ri,0)⊕ π1(Ri,v) = Zi,v .

(35)

In graph-speak, these form a star with v edges, as Ri,j ̸= Ri,j′ whenever j ̸= j′.

As a matter of fact, if we were not considering X̃ORP [v] but rather XORP [v],
the q tuples in τext together form a forest of q stars with v edges. In the case

of X̃ORP [v], however, cross-star collisions may occur, turning two or more stars
into a tree or even a cycle. See also the explanation in Fig. 3. We will thus define
a neat ensemble of bad events to avoid cycles and too large trees.

R1,0

R1,1R1,2

R1,v

R2,2 R2,1

R2,0

R2,v

R3,0

R3,1

R3,2 R3,3

R3,v

R2,3

Fig. 3: Graph structure representing the evaluations of X̃ORP [v]. Here, each

evaluation of X̃ORP [v] defines a star (solid edges), but these stars may be con-
nected to each other in case, e.g., R1,0 = R2,3 and R2,v = R3,2 (dashed circle
around them, meaning that they represent a single vertex).

22

7.3 Bad Transcripts

We will define bad events that would make the mirror theory inapplicable. Intu-
itively, we have to assure that (i) within stars, the system of difference equations
is p.d.-consistent and acyclic, and (ii) among stars, the system of difference equa-
tions is p.d.-consistent and acyclic too. In addition, (iii) we require that there
is no too large tree of stars, the reason being that any tree of µ stars basically
results in a component in the graph of size exactly µ(v + 1) − µ + 1 = µv + 1
vertices (assuming no cycles, of course).

In detail, for the case of problems within isolated stars, case (i) of above
paragraph, the mirror theory is inapplicable if a transcript in τext satisfies one
of the following events:

BAD⋆
pdinc There exist i ∈ {1, . . . , q} and j ∈ {1, . . . , v}, such that Zi,j = 0n, or

i ∈ {1, . . . , q} and distinct j, j′ ∈ {1, . . . , v}, such that Zi,j = Zi,j′ ;
BAD⋆

cycle There exist i ∈ {1, . . . , q} and distinct j, j′ ∈ {0, . . . , v}, such that
Ri,j = Ri,j′ .

We note that the index sets for j, j′ are not a typo: for Zi,j , j, j
′ run from 1 to

v, whereas for Ri,j , j, j
′ run from 0 to v. Note that any star contains paths of

length 1 and length 2 only, and BAD⋆
pdinc covers p.d.-inconsistencies over any of

those paths. Event BAD⋆
cycle will be used to excludes cycles, both of length 1 (if

j or j′ equals 0) and of length 2 (if both j and j′ are unequal to 0).
For the case of problems among stars, case (ii) of above paragraph, these two

events generalize as follows:

BAD⋆⋆
pdinc There exist ℓ ≥ 2, distinct i1, . . . , iℓ ∈ {1, . . . , q}, and distinct jα, kα ∈

{0, . . . , v} for each α ∈ {1, . . . , ℓ}, such that

∀ℓ−1
α=1 : Riα,jα = Riα+1,kα+1

,

and

ℓ∑
α=1

(
Ziα,jα ⊕ Ziα,kα

)
= 0 ,

where Zi,0 = 0n for all i by definition;
BAD⋆⋆

cycle There exist ℓ ≥ 2, distinct i1, . . . , iℓ ∈ {1, . . . , q}, and distinct jα, kα ∈
{0, . . . , v} for each α ∈ {1, . . . , ℓ}, such that

∀ℓα=1 : Riα,jα = Riα+1,kα+1
,

where (iℓ+1, kℓ+1) = (i1, k1) by definition.

Event BAD⋆⋆
pdinc considers the case that there is a path of ℓ distinct stars and

considers all vertex paths that are included within this path of stars. Note that
for any such path, for any individual inner star (so α = 2, . . . , ℓ− 1) the vertex
path cannot traverse freely but has to traverse from Riα,jα to Riα,kα

, adding
exactly Ziα,jα ⊕Ziα,kα to the checksum, noting that Zi,0 = 0n by definition. For

23

the outer stars, so α = 1, ℓ, it may or may not traverse further to any Ri1,k1

or Riα,jα respectively, again adding exactly Ziα,jα ⊕ Ziα,kα
to the checksum.

Likewise, event BAD⋆⋆
cycle considers the case that there is a cycle over ℓ distinct

stars. Note that for both events, the condition that jα ̸= kα is reasonable to
make: in case of equality, there would have been a shorter path or cycle without
equality at the αth indices; in case of equality for all indices, both bad events
would become meaningless.

Finally, there is the case of a too large tree of stars, case (iii) of above para-
graph. Basically, we have to define any threshold µ ∈ N and state the event that
there is a tree that connects µ+1 stars. This is quite cumbersome to define. On
the other hand, looking ahead, we will only be able to bound the probability of
this event to occur for µ = 2. In this case, the event is more straightforward to
define (as a tree of 3 stars is necessarily a path of 3 stars):

BAD⋆⋆
tree There exist distinct i1, i2, i3 ∈ {1, . . . , q} and j1, j2, k2, k3 ∈ {0, . . . , v}
(with no further distinctness condition), such that

Ri1,j1 = Ri2,k2
,

Ri2,j2 = Ri3,k3
.

Bad event BAD⋆⋆
tree differs from BAD⋆⋆

pdinc and BAD⋆⋆
cycle in that there is no dis-

tinctness condition on the values jα, kα. After all, BAD⋆⋆
tree is meant to capture,

basically to upper bound, the size of the largest component in the graph. To de-
rive this bound, all that matters is to figure out the maximum number of stars
that are connected, and it is irrelevant how they are connected.

We write

BAD = BAD⋆
pdinc ∨ BAD⋆

cycle ∨ BAD⋆⋆
pdinc ∨ BAD⋆⋆

cycle ∨ BAD⋆⋆
tree . (36)

7.4 Probability of Bad Transcripts

Following Theorem 1, we have to upper bound the probability that a bad tran-
script occurs in the ideal world, i.e., for RF . By basic probability theory,

Pr (XRF ∈ Tbad) ≤ Pr
(
BAD⋆

pdinc

)
+Pr

(
BAD⋆

cycle

)
+Pr (BAD⋆⋆

tree)

+Pr
(
BAD⋆⋆

pdinc | ¬BAD
⋆⋆
tree

)
+Pr

(
BAD⋆⋆

cycle | ¬BAD
⋆⋆
tree

)
.

(37)

We investigate the probabilities separately.

Pr
(
BAD⋆

pdinc

)
. The event is set whenever Zi,j = 0 for some i, j (vq choices) or

whenever Zi,j = Zi,j′ for some i, j, j′ with j ̸= j′ (
(
v
2

)
q choices). As the values

Zi,j are uniformly randomly generated, this bad event happens with probability
at most

(v +
(
v
2

)
)q

2n
=

(
v+1
2

)
q

2n
.

(As a matter of fact, the derivation and bound are identical to that of [13, Section
4.2] with the difference that they bound

(
v
2

)
to v2/2.)

24

Pr
(
BAD⋆

cycle

)
. The event is set whenever Ri,j = Ri,j′ for some i, j, j′ with j ̸= j′.

However, from (33), we see that this happens whenever

Ii ⊕ Si,j = Ii ⊕ Si,j′ ,

i.e., whenever Si,j = Si,j′ . As in the ideal world, the placeholder values Si,j

and Si,j′ are drawn randomly without replacement, the event happens with
probability 0.

Pr (BAD⋆⋆
tree). Recall that we will perform the analysis for µ = 2. Consider any

of the
(
q
3

)
choices for i1, i2, i3 and any of the (v + 1)4 choices for j1, j2, k2, k3.

The event is set if

Si1,j1 ⊕ Si2,k2
= Ii1 ⊕ Ii2 ,

Si2,j2 ⊕ Si3,k3
= Ii2 ⊕ Ii3 .

As the three queries are distinct, and the adversary never repeats queries, we
necessarily have (Ii1 , Bi1 ,Wi1 , ci1) ̸= (Ii2 , Bi2 ,Wi2 , ci2), which implies that the
first equation can only be satisfied if Bi1∥Wi1∥ci1∥j1 ̸= Bi2∥Wi2∥ci2∥k2. This
means that, necessarily, Si1,j1 ̸= Si2,k2 and the two sources of randomness in
the first equation do not cancel each other out. Likewise, the second equation
can only be satisfied if Bi2∥Wi2∥ci2∥j2 ̸= Bi3∥Wi3∥ci3∥k3, and the two sources
of randomness Si2,j2 and Si3,k3

do not cancel each other out.
Finally, we have to argue that both equations are sufficiently independent,

i.e., that neither

– Si1,j1 = Si2,j2 and Si2,k2 = Si3,k3 , nor
– Si1,j1 = Si3,k3

and Si2,k2
= Si2,j2 .

Suppose, to the contrary, that one of these two conditions holds. The condi-
tion particularly implies that (Bi1 ,Wi1 , ci1) = (Bi3 ,Wi3 , ci3). The condition also
implies, by addition of the two equations of the event, that Ii1 = Ii3 . This
contradicts with the condition that the queries are distinct.

Thus, there are at least three sources of randomness in the two equations
(note that, if j2 = k2, Si2,k2

= Si2,j2). The values Si,j are drawn uniformly
randomly from a set of size at least 2n − (v + 1)q elements, and thus, the two

equations are satisfied with probability at most
(

1
2n−(v+1)q

)2

.

In conclusion, the bad event is set with probability at most(
q

3

)
(v + 1)4

(
1

2n − (v + 1)q

)2

≤ (v + 1)4q3

5 · 22n
,

using that (v + 1)q ≤ 2n−6 for the inequality. (We remark that this condition is
more stringent than the “usual” ≤ 2n−1, but this more stringent condition is in
fact implied by a condition that we will need for the application of the mirror
theory anyway.)

25

Pr
(
BAD⋆⋆

pdinc | ¬BAD
⋆⋆
tree

)
. We have to consider any ℓ ≥ 2, but w.l.o.g., ℓ ≤ µ = 2

by negation of BAD⋆⋆
tree. Consider any of the

(
q
2

)
choices for i1, i2 and any of the(

v+1
2

)2
choices for jα, kα for α = 1, 2. The event is set if

Si1,j1 ⊕ Si2,k2
= Ii1 ⊕ Ii2 ,

Zi1,j1 ⊕ Zi1,k1
⊕ Zi2,j2 ⊕ Zi2,k2

= 0 ,

where we recall that Zi,0 = 0n for all i by definition.
As in the case of BAD⋆⋆

tree above, the two sources of randomness Si1,j1 and
Si2,k2 in the first equation do not cancel each other out, as the adversary never re-
peats queries. Thus, this equation is satisfied with probability at most 1

2n−(v+1)q .

For the second equation, which is independent of the first one, note that at least
one of the values j1, k1, j2, k2 is non-zero, meaning that for this index, we can
rely on the random drawing of the Z-value. The equation is set with probability
at most 1/2n.

In conclusion, the bad event is set with probability at most(
q

2

)(
v + 1

2

)2
1

2n − (v + 1)q

1

2n
≤

(
v+1
2

)2
q2

22n
,

using that (v + 1)q ≤ 2n−1 for the inequality.

Pr
(
BAD⋆⋆

cycle | ¬BAD
⋆⋆
tree

)
. We have to consider any ℓ ≥ 2, but w.l.o.g., ℓ ≤ µ = 2

by negation of BAD⋆⋆
tree. Consider any of the

(
q
2

)
choices for i1, i2 and any of the(

v+1
2

)2
choices for jα, kα for α = 1, 2. The event is set if

Si1,j1 ⊕ Si2,k2
= Ii1 ⊕ Ii2 ,

Si2,j2 ⊕ Si1,k1
= Ii1 ⊕ Ii2 .

As in the case of BAD⋆⋆
tree above, the two sources of randomness Si1,j1 and Si2,k2

in the first equation do not cancel each other out, as the adversary never repeats
queries. The same holds for Si2,j2 and Si1,k1

in the second equation.
For the rest, we make a distinction between whether the two queries i1, i2

are selected to have the same tweaks (Bi1 ,Wi1 , ci1) = (Bi2 ,Wi2 , ci2) or not.

– Clearly, if they have the same tweaks, then it is plausible that Si1,j1 =
Si2,j2 and Si2,k2

= Si1,k1
, which means that the two equations of the event

are identical. That equation, w.l.o.g., the first one, still has two sources of
randomness, which are the values Si,j that are drawn uniformly randomly
from a set of size at least 2n − (v + 1)q elements. The two equations are
then satisfied with probability at most 1

2n−(v+1)q . Note that in this case the

choice of j2 and k1 is redundant, we just consider any of the (v+1)2 choices
for j1, k2;

– On the other hand, assume that the two queries i1, i2 have distinct tweaks
(Bi1 ,Wi1 , ci1) ̸= (Bi2 ,Wi2 , ci2). We have to argue that both equations are
sufficiently independent, i.e., that neither

26

• Si1,j1 = Si2,j2 and Si2,k2
= Si1,k1

, nor
• Si1,j1 = Si1,k1

and Si2,k2
= Si2,j2 .

The first condition cannot hold by the condition that the tweaks are distinct.
The second condition cannot hold in the first place as j1 ̸= k1 and j2 ̸= k2.
Thus, there are four sources of randomness in the two equations. The values
Si,j are drawn uniformly randomly from a set of size at least 2n − (v + 1)q
elements, and thus, the two equations are satisfied with probability at most(

1
2n−(v+1)q

)2

.

In conclusion, the bad event is set with probability at most

∑
BWc

(
qBWc

2

)(
(v + 1)2

2n − (v + 1)q

)
+

(
q

2

)(
v + 1

2

)2 (
1

2n − (v + 1)q

)2

≤
∑
BWc

(
qBWc

2

)
2(v + 1)2

2n
+

(
v+1
2

)2
q2

22n
,

using that (v + 1)q ≤ 2n−2 for the inequality.

Conclusion. We obtain from (37) and the individual bounds that

Pr (XRF ∈ Tbad) ≤
∑
BWc

(
qBWc

2

)
2(v + 1)2

2n
+

(v + 1)4q3

5 · 22n
+

(
v+1
2

)
q

2n
+

2
(
v+1
2

)2
q2

22n
,

(38)

provided (v + 1)q ≤ 2n−6. We set δ equal to this value.

7.5 Probability Ratio for Good Transcripts

Consider any good transcript τext. Following Theorem 1, we have to compute a

lower bound on the fraction
Pr

(
X

X̃ORP[v]π
=τext

)
Pr(XRF=τext)

. We will actually derive a lower

bound on the probability in the numerator and the actual value for the proba-
bility in the denominator, and then combine them.

For the derivation of each of the two probabilities, below, consider any
good transcript τext = {(Ii, Bi,Wi, ci, Si,0∥ · · · ∥Si,v, Zi,1∥ · · · ∥Zi,v)}qi=1. For any
B∥W∥c ∈ {0, 1}n−⌈log2(v+1)⌉, let qBWc denote the number of tuples in τext such
that Bi∥Wi∥ci = B∥W∥c. Let q′ denote the number of strings B∥W∥c for which
qBWc > 0 (i.e., q′ denotes the number of different domain separator and tweak
combinations).

Pr
(
X

X̃ORP [v]π
= τext

)
. For the computation of this probability, we have to

compute the probability that π = (π1, π2)
$←− perm(n)2 could have resulted in

the transcript. The transcript consists of two portions, namely

τ2ext = {(Bi,Wi, ci, Si,0∥ · · · ∥Si,v)}qi=1

27

corresponding to the evaluation of π2, and

τ1ext = {(Ri,0∥ · · · ∥Ri,v, Zi,1∥ · · · ∥Zi,v)}qi=1

corresponding to the evaluation of π1, where we recall that Ri,j of (33) is implicit
in the transcript. As for τ2ext, this sub-transcript defines exactly vq′ input-output
tuples for π2, namely (34) for all q′ different domain separator and tweak combi-
nations that occur in the transcript. There are exactly (2n − vq′)! permutations
π2 that could have yielded this sub-transcript. As for τ1ext, as the transcript is
good, this sub-transcript defines a graph on m := vq equations and p ≤ (v+1)q
unknowns (we do not need an exact value of p) that is p.d.-consistent, acyclic,
and whose largest component is of size ξmax := µv+1 = 2v+1. We can thus apply
Theorem 4 and obtain that, provided nξ2max+ξmax ≤ 2n/2 and p ≤ 2n/(12ξ2max),
there are at least

(2n)p
2nvq

solutions to the p unknowns. For any of these solutions, we have exactly (2n−p)!
permutations π1 that could have yielded any of these solutions.

We obtain that

Pr
(
X

X̃ORP [v]π
= τext

)
≥

(2n)p
2nvq (2

n − vq′)!(2n − p)!

2n!2n!
=

1

(2n)vq′(2n)vq
.

Pr (XRF = τext). For the computation of this probability, we can likewise split
the transcript into the two portions τ2ext and τ1ext, with the difference that, now,
τ2ext is generated by randomly selecting placeholder variables Si,j and τ1ext is
generated through RF . The probability that the random world yields τ2ext equals
(2n)vq′ by definition of how the placeholder values Si,j are generated, and the
probability that RF yields τ1ext equals 1/(2

n)vq.
We obtain that

Pr (XRF = τext) =
1

(2n)vq′(2n)vq
.

Conclusion. We obtain from the individual bounds that

Pr
(
X

X̃ORP [v]π
= τext

)
Pr (XRF = τext)

≥
1

(2n)vq′ (2
n)vq

1
(2n)vq′ (2

n)vq

= 1 . (39)

We set ε = 0.

7.6 Conclusion

From the H-coefficient technique of Theorem 1, the initial steps (29) and (30)
of the proof, and from the values δ obtained in (38) and ε obtained in (39), we

28

obtain

Advprf

X̃ORP [v]
(A) ≤

∑
BWc

(
qBWc

2

)
2(v + 1)2

2n
+

(v + 1)4q3

5 · 22n
+

(
v+1
2

)
q

2n
+

2
(
v+1
2

)2
q2

22n
+ 2Advprp

E (A′) ,

assuming that (v + 1)q ≤ 2n−6, and nξ2max + ξmax ≤ 2n/2 and (v + 1)q ≤
2n/(12ξ2max) for ξmax := 2v + 1. These three conditions simplify to n(2v + 1)2 +
(2v + 1) ≤ 2n/2 and (2v + 1)2(v + 1)q ≤ 2n/12.

8 Application to Authenticated Encryption

The ddd -AES , ddd -AES+, and bbb-ddd -AES tweakable wide blockciphers are in
essence “just” blockciphers. Given that they are wide blockciphers, one can use
them to achieve confidentiality of data. For authenticity, however, some more
work needs to be done. At first sight, the most logical solution would be the ap-
proach described by Hoang et al. [28], where one appends τ zeros to the plaintext
P , encrypts the entire message using ddd -AES , ddd -AES+, or bbb-ddd -AES , and
outputs the resulting (|P | + τ)-bit result as ciphertext-tag combination. Upon
decryption, it is first checked whether the plaintext contains τ trailing zeros
before the plaintext is released. This approach works well with ddd -AES+, as
this design allows for arbitrary length tweaks that could be used to compress
the nonce and associated data. On the other hand, ddd -AES and bbb-ddd -AES
only allow for tweaks that are too small to accommodate associated data in ad-
dition to a nonce: up to 124 bits in the case of ddd -AES (see Sec. 4.2) and up
to 96 bits in the case of bbb-ddd -AES (see Sec. 4.4). Thus, we will introduce an
alternative mode of use for authenticated encryption with associated data that
is specifically tailored to work well on ddd -AES and bbb-ddd -AES . We dub this
mode aaa (advanced authenticated encryption with associated data).

We first recall the security model for authenticated encryption in Sec. 8.1.
The aaa mode is specified in Sec. 8.2. We state security of the aaa mode and
discuss instantiation with ddd -AES or bbb-ddd -AES in Sec. 8.3. The security
proof is given in Sec. 8.4. We finally present an interpretation of our bounds in
Sec. 9.

8.1 Security Model

An authenticated encryption scheme AE consists of a pair of functions (enc, dec):
the encryption function enc gets as input a key K ∈ {0, 1}κ, a nonce N ∈
{0, 1}ν , associated data A ∈ {0, 1}∗, and plaintext P ∈ {0, 1}∗, and it outputs
a ciphertext C ∈ {0, 1}∗ of the same size as P and a tag T ∈ {0, 1}τ . We
write encK(·, ·, ·) = enc(K, ·, ·, ·). The decryption function dec gets as input a
key K ∈ {0, 1}κ, a nonce N ∈ {0, 1}ν , associated data A ∈ {0, 1}∗, ciphertext
C ∈ {0, 1}∗, and a tag T ∈ {0, 1}τ , and it outputs either a plaintext P ∈ {0, 1}∗

29

of the same size as C or a dedicated ⊥ symbol if verification fails. We write
decK(·, ·, ·, ·) = dec(K, ·, ·, ·, ·). We require completeness, in the sense that

decK(N,A, encK(N,A, P)) = P .

Slightly extending earlier definition, define by func′(ν + ∗ + ∗, ∗ + τ) the
family of all functions from {0, 1}ν × {0, 1}∗ × {0, 1}∗ to {0, 1}∗ × {0, 1}τ that
are restricted to output values whose length equals the size of their third input
plus τ . The security of an authenticated encryption scheme AE = (enc, dec) is
defined by how hard it is for an adversary A to distinguish (encK , decK) for a

random and secret key K
$←− {0, 1}κ from ($,⊥), where $ $←− func′(ν+∗+∗, ∗+τ)

and where ⊥ is a dedicated function that always returns the ⊥ symbol:

Advae
AE (A) =

∣∣∣Pr
(
AencK ,decK = 1

)
−Pr

(
A$,⊥ = 1

)∣∣∣ , (40)

where the probabilities are taken over K
$←− {0, 1}κ, $ $←− func′(ν + ∗+ ∗, ∗+ τ)

(lazily-sampled), and the random coins of A.
The adversary is not allowed to make a decryption query using the result

of an earlier encryption query. In addition, we call A nonce-respecting if every
encryption query is made for a nonce N that is different from all nonces used
in earlier encryption queries under the same key. We call A nonce-misusing if it
may reuse nonces for encryption queries. We call A nonce-randomizing if every
encryption query is made for a random nonce N . Note that A may always freely
choose the nonce in decryption queries. The adversary is typically bounded by
a certain number of encryption queries qe and decryption queries qd, and a total
data complexity σ that counts the total amount of associated data bits plus
plaintext/ciphertext bits.

8.2 Specification of aaa

Let κ, κ′, w, n, ℓmax, ν, τ ∈ N such that 2n ≤ ℓmax and ν ≥ w. Let TWBC :
{0, 1}κ×{0, 1}w×S → S be a tweakable wide blockcipher operating on S of (1).
Let J : {0, 1}κ′ ×{0, 1}∗ → {0, 1}τ be a universal hash function family. The aaa
authenticated encryption mode is defined by the following functions (enc, dec).
Encryption enc operates as follows:

encTWBC ,J
K,L (N,A, P) = TWBCK

(
leftw(N), JL

(
rightν−w(N)∥A

)
∥P

)
, (41)

parsed into C∥T where |C| = |P | and |T | = τ . The scheme is depicted in Fig. 4.
Decryption dec first computes S∥P = TWBC−1

K (leftw(N), C∥T), where |S| = τ
and |P | = |C|, and is then defined as

decTWBC ,J
K,L (N,A,C, T) =

{
P , if S = JL

(
rightν−w(N)∥A

)
,

⊥ , otherwise .
(42)

30

TWBCK

P

JL

rightν−w(N)∥A

leftw(N)

C∥T

Fig. 4: The advanced authenticated encryption with associated data construc-
tion.

8.3 Security of aaa-ddd-AES and aaa-bbb-ddd-AES

We will prove security of aaa as an authenticated encryption mode, against
nonce-respecting, nonce-misusing, and nonce-randomizing adversaries.

Theorem 5. Consider the advanced authenticated encryption with associated
data construction aaa on top of a tweakable wide blockcipher TWBC : {0, 1}κ×
{0, 1}w×S → S and an ϵ-universal hash function family J : {0, 1}κ′×{0, 1}∗ →
{0, 1}τ . For any adversary A making at most qe encryption queries and at most
qd decryption queries, with q = qd + qe, where each query has a nonce and
associated data of size at most ℓmax bits, and plaintext of size at least 2n−τ and
at most ℓmax − τ bits, and in total of size at most σ bits, we have the following
result:

– If A is nonce-respecting on the first w bits of the ν-bit nonce, then

Advae
aaa(A) ≤ Advstwprp

TWBC (A′) + qd max

{
ϵ,

1

2τ − 1

}
;

– If A is nonce-misusing, then

Advae
aaa(A) ≤ Advstwprp

TWBC (A′) +

(
qe
2

)(
ϵ+

1

22n

)
+ qd max

{
ϵ,

1

2τ − qe

}
;

– If A is nonce-randomizing on the entire ν-bit nonce, then

Advae
aaa(A) ≤ Advstwprp

TWBC (A′)

+ 3qe

(
ϵ+

1

22n

)
+ qd max

{
ϵ,

1

2τ − 7

}
+

(
qe
8

)
1

27w
,

for some adversary A′ with a total query complexity q′ = qe + qd, where each
query is of size at least 2n and at most ℓmax bits, and total data complexity
σ′ = σ + qτ .

31

The proof of Theorem 5 is given in Sec. 8.4 and an interpretation of the bound
can be found in Sec. 9.

To get a security bound for aaa-ddd -AES and aaa-bbb-ddd -AES , we simply
have to plug the bounds of Corollary 1 or Corollary 3 respectively into the
Advstwprp

TWBC (A′) term in Theorem 5.

Remark 1. Please note that all needed different keys could be derived from a
single key by using the underlying blockcipher in, e.g., the sum of permuta-
tions [2, 3, 18] or the summation truncation hybrid [24].

8.4 Proof of Theorem 5

Let K
$←− {0, 1}κ and L

$←− {0, 1}κ′
. Consider a tweakable wide blockcipher

TWBC : {0, 1}κ × {0, 1}w × S → S and a universal hash function family J :
{0, 1}κ′ × {0, 1}∗ → {0, 1}τ . We consider an adversary A that makes qe queries

to either encTWBC ,J
K,L of (41) or to a random function $ that outputs a random

string of appropriate length for each query, and that makes qd queries to either
decTWBC ,J

K,L of (42) or ⊥, and it aims to distinguish them:

Advae
aaa(A) =

∣∣∣Pr
(
AencTWBC ,J

K,L ,decTWBC ,J
K,L = 1

)
−Pr

(
A$,⊥ = 1

)∣∣∣ . (43)

As a first step, we replace the tweakable wide blockcipher evaluations TWBCK

by tweakable wide random permutation TWRP
$←− perm(w, 2n : ℓmax). This

serves as key in the construction, and we abuse notation and denote it by
encJTWRP,L and decJTWRP,L. We have

Advae
aaa(A) ≤

∣∣∣Pr
(
AencJ

TWRP,L,decJ
TWRP,L = 1

)
−Pr

(
A$,⊥ = 1

)∣∣∣+Advstwprp
TWBC (A′) ,

(44)

for some adversary A′ with a total query complexity q′ = qe + qd, where each
query is of size at least 2n and at most ℓmax bits, and total data complexity
σ′ = σ + qτ .

We will apply the triangle inequality on the remaining difference with inter-
mediate world “encJTWRP,L,⊥”, which gives

Advae
aaa(A) ≤

∣∣∣Pr
(
AencJ

TWRP,L,decJ
TWRP,L = 1

)
−Pr

(
AencJ

TWRP,L,⊥ = 1
)∣∣∣

+
∣∣∣Pr

(
AencJ

TWRP,L,⊥ = 1
)
−Pr

(
A$,⊥ = 1

)∣∣∣+Advstwprp
TWBC (A′) .

(45)

The first difference in (45) in fact corresponds to the authenticity of aaa (noting
thatA can only distinguish by forging decJTWRP,L), whereas the second difference
in (45) corresponds to the confidentiality of aaa (noting that the oracle ⊥ is
pointless in both worlds). We now make a distinction between nonce-respecting
and nonce-randomizing adversaries. We note that the nonce-misuse setting is
implicit in the analysis of nonce-randomizing adversaries.

32

Nonce-Respecting Setting. In this case, the adversary A takes a unique nonce
leftw(N) for each encryption query (it has free choice of the rest of N , which
thus basically serves as additional associated data).

For the confidentiality of aaa, this means that each evaluation of TWRP
within encJTWRP,L is made for a different tweak, results in a uniform random
reply, and thus ∣∣∣Pr

(
AencJ

TWRP,L,⊥ = 1
)
−Pr

(
A$,⊥ = 1

)∣∣∣ = 0 .

For the authenticity of aaa, consider any forgery attempt (N,A,C, T). The
forgery attempt allows A to distinguish both worlds if

JL(rightν−w(N)∥A) = leftτ (TWRP−1(leftw(N), C∥T)) . (46)

Denote all earlier encryption queries (w.l.o.g., qe of them) by {(Ni, Ai, Pi, Ci, Ti)}qei=1.
We distinguish among the following cases:

– For all i ∈ {1, . . . , qe}, leftw(N) ̸= leftw(Ni). In this case, the evaluation of
TWRP−1 within decJTWRP,L is done for a new tweak, and thus it generates
a uniform random string. The condition (46) is set with probability 1/2τ ;

– There exists i ∈ {1, . . . , qe}, such that leftw(N) = leftw(Ni). As the adver-
sary is nonce-respecting, this value i is unique. We make a further distinction:
• |C∥T | ≠ |Ci∥Ti|. In this case, the evaluation of TWRP−1 within decJTWRP,L

is done for a repeated tweak but on different input size, and thus it gener-
ates a uniform random string. The condition (46) is set with probability
1/2τ ;

• |C∥T | = |Ci∥Ti| but C∥T ̸= Ci∥Ti. In this case, the evaluation of
TWRP−1 within decJTWRP,L is done for a repeated tweak and on iden-
tical input size, and thus it generates a uniform random string with-
out replacement. The condition (46) is set with probability at most
2|C|/(2|C|+τ − 1) ≤ 1/(2τ − 1);

• C∥T = Ci∥Ti. In this case, the evaluation of TWRP−1 within decJTWRP,L

is identical to that of the ith encryption query. This case also implies that,
necessarily, rightν−w(N)∥A ̸= rightν−w(Ni)∥Ai, as otherwise the forgery
would be trivial. The condition (46) is set only if

JL(rightν−w(N)∥A) = JL(rightν−w(Ni)∥Ai) ,

which happens with probability at most ϵ as J is ϵ-universal.

Thus, summing over all qd forgery attempts,∣∣∣Pr
(
AencJ

TWRP,L,decJ
TWRP,L = 1

)
−Pr

(
AencJ

TWRP,L,⊥ = 1
)∣∣∣ ≤ qd max

{
ϵ,

1

2τ − 1

}
.

Together, we obtain from (45) that in the case of a nonce-respecting adver-
sary,

Advae
aaa(A) ≤ Advstwprp

TWBC (A′) + qd max

{
ϵ,

1

2τ − 1

}
.

33

Nonce-Randomizing Setting. In this case, the adversary A takes a random ν-bit
nonce N for each encryption query.

For the confidentiality of aaa, we can note that different evaluations of
encJTWRP,L behave independently for different values leftw(N) and different
lengths of |P |. Denote the qe encryption queries by {(Ni, Ai, Pi, Ci, Ti)}qei=1. For
any W ∈ {0, 1}w and ℓ ∈ N such that ℓ ≥ 2n− τ , let qW ℓ denote the number of
encryption queries such that leftw(Ni) = W and |P | = ℓ. Let q′ denote the num-
ber of strings W and lengths ℓ for which qW ℓ > 0 (i.e., q′ denotes the number
of different left parts of the nonces and length, and thus different independent
instances of TWRP that are invoked). Note that

∑
W,ℓ qW ℓ = qe.

Clearly, the evaluations of TWRP within encJTWRP,L are independent if the
tweak or the input length differs. We can thus focus on a fixed choice of W ∈
{0, 1}w and ℓ ∈ N, consider the case of the adversary making qW ℓ queries with
leftw(N) = W and |P | = ℓ, and finally sum over all choices of W and ℓ. The
adversary can distinguish encJTWRP,L from $ in two different ways:

– There exist distinct i1, i2 ∈ {1, . . . , qe}, such that

JL
(
rightν−w(Ni1)∥Ai1

)
∥Pi1 = JL

(
rightν−w(Ni2)∥Ai2

)
∥Pi2 .

This necessarily means that rightν−w(Ni1)∥Ai1 ̸= rightν−w(Ni2)∥Ai2 and

JL(rightν−w(Ni1)∥Ai1) = JL(rightν−w(Ni2)∥Ai2) ,

which happens with probability at most ϵ as J is ϵ-universal. Summing over
all

(
qW ℓ

2

)
choices, this happens with probability at most

(
qW ℓ

2

)
ϵ;

– For all distinct i1, i2 ∈ {1, . . . , qe},

JL
(
rightν−w(Ni1)∥Ai1

)
∥Pi1 ̸= JL

(
rightν−w(Ni2)∥Ai2

)
∥Pi2 .

In this case, the qW ℓ evaluations of TWRP within encJTWRP,L result in a dif-
ferent (ℓ+τ)-bit string without repetition, and the adversary can distinguish
from random with probability at most

(
qW ℓ

2

)
/2ℓ+τ ≤

(
qW ℓ

2

)
/22n.

Together, we obtain that∣∣∣Pr
(
AencJ

TWRP,L,⊥ = 1
)
−Pr

(
A$,⊥ = 1

)∣∣∣ ≤ ∑
W∈{0,1}w

∑
ℓ∈N

ℓ≥2n−τ

(
qW ℓ

2

)(
ϵ+

1

22n

)
.

We bound qW ℓ later on.
For the authenticity of aaa, as the adversary can choose nonces in decryption

queries, the analysis is identical to that in the nonce-respecting setting, with
the exception that in case “|C∥T | = |Ci∥Ti| but C∥T ̸= Ci∥Ti” there may be
up to qW ℓ earlier queries for the same left w bits of the nonce and the same
ciphertext length, leading to the fact that this case sets (46) with probability
at most 2|C|/(2|C|+τ − qW ℓ) ≤ 1/(2τ − qW ℓ). Thus, summing over all qd forgery
attempts,∣∣∣Pr

(
AencJ

TWRP,L,decJ
TWRP,L = 1

)
−Pr

(
AencJ

TWRP,L,⊥ = 1
)∣∣∣ ≤ qd max

{
ϵ,

1

2τ − qW ℓ

}
.

34

Together, we obtain from (45) that in the case of a nonce-randomizing ad-
versary,

Advae
aaa(A) ≤ Advstwprp

TWBC (A′)

+
∑

W∈{0,1}w

∑
ℓ∈N

ℓ≥2n−τ

(
qW ℓ

2

)(
ϵ+

1

22n

)
+ qd max

{
ϵ,

1

2τ − qW ℓ

}
.

(47)

We can use
∑

W,ℓ qW ℓ = qe to obtain a naive bounding

Advae
aaa(A) ≤ Advstwprp

TWBC (A′) +

(
qe
2

)(
ϵ+

1

22n

)
+ qd max

{
ϵ,

1

2τ − qe

}
.

This naive bounding is, in fact, matching the idea of an adversary freely choos-
ing nonces. In other words, this bound applies to the case of nonce-misusing
adversaries.

However, it is very unlikely that all qe queries are for the same left w bits of
the nonce. In particular, we can observe that for any W ∈ {0, 1}w and ℓ ∈ N,

Pr (qW ℓ > γ) ≤
(

qe
γ + 1

)
1

2γw

(here, the length ℓ is not used in the probability computation as it can be freely
chosen by the adversary), and we can assume that qW ℓ ≤ γ except for this loss.
Concluding, we obtain from (47) that

Advae
aaa(A) ≤ Advstwprp

TWBC (A′)

+
qe
γ

(
γ

2

)(
ϵ+

1

22n

)
+ qd max

{
ϵ,

1

2τ − γ

}
+

(
qe

γ + 1

)
1

2γw
.

In our case, we always assume that the tag size τ and the tweak size w are large
enough for γ = 7 to be sufficient (i.e., no 8-fold collision), and we finally obtain

Advae
aaa(A) ≤ Advstwprp

TWBC (A′) + 3qe

(
ϵ+

1

22n

)
+ qd max

{
ϵ,

1

2τ − 7

}
+

(
qe
8

)
1

27w
.

9 Interpretation of the Bounds

We will give an interpretation of our bounds of Corollary 3 and Theorem 5. In
both comparisons, we assume that AES is secure, and we ignore the Advprp

E

term.

Memory Encryption. First, we consider memory encryption. Here, we assume
that we have memory organized in 512-bit lines that are accessed at once. For
this example, we want to explore how much data can be processed if we compare
AES-XTS [21] with bbb-ddd -AES , while limiting the advantage to ≤ 2−32.

35

The advantage of AES-XTS is bounded by the birthday bound ρ2

2n , where ρ
denotes the number of 128-bit blocks, and this means that we can encrypt ≈ 248

blocks. In other words, if we have 4 Terabyte of RAM (240 lines) encrypted with
one key, we can write each line 26 times.

For comparison, let us have a look at bbb-ddd -AES . We can operate it for
v = 3 and mmax = 4 to match the 512-bit lines. In this way, we can write, e.g.,
260 lines (4 Exabyte) of RAM 211 times, because (from Corollary 3)

44271·3

5 · 2256
+

(
4
2

)
271

2128
+

2
(
4
2

)2
271·2

2256
+ 260

(
211

2

)(
4 · 42

2128
+

2 · 4
2128

+
1

2256

)
≤ 1

237
+

1

254
+

1

2107
+

1

241
+

1

244
+

1

2175
≤ 2−36 .

More interestingly, bbb-ddd -AES allows for a much heavier write load to a part
of the lines of the RAM. Let us assume that a part of all the 260 lines, namely
220 lines, are not written 211 times but 230 times each. This does not have a
significant impact on the total data complexity. Hence, we can continue from
the bound above and just re-evaluate the additional complexity coming from
the enhanced tweak reuse. This results in an additional term of at most

220
(
230

2

)(
4 · 42

2128
+

2 · 4
2128

+
1

2256

)
1

243
+

1

246
+

1

2177
≤ 2−42 ,

and we still have an advantage smaller than 2−32. We want to remark that,
when considering 220 lines written 230 times each alone, AES-XTS’ bound on
the advantage would be larger than 2−32.

Authenticated Encryption. If we follow the recommendation for AES-GCM in
TLS 1.3 [49], one is allowed to encrypt 224.5 records of size up to 214 + 1 bytes,
while keeping the advantage below 2−57. We will now investigate how many
records we can encrypt using aaa-bbb-ddd -AES . Here, we have a block size of a
maximum of 214 + 1 + 16 bytes with a 16-byte tag, which are in total approxi-
mately 210.002 128-bit blocks. This means that we can allow for 251 records, be-
cause (from Theorem 5 and Corollary 3, with v = 210.002 ≤ 210.1, mmax = 210.1,
and qx = 251)

(210.1)4251·3

5 · 2256
+

(
210.1

2

)
251

2128
+

2
(
210.1

2

)2
251·2

2256
+ 251

(
1

2

)(
4(210.1)2

2128
+

211.1

2128
+

1

2256

)
+ qd max

{
ϵ,

1

2128 − 1

}
≤ 1

264.2
+

1

257.8
+

1

2114.6
+ qd max

{
ϵ,

1

2128 − 1

}
≤ 2−57 + qd max

{
ϵ,

1

2128 − 1

}
,

36

assuming that we use a good universal hash function such as Polyval , i.e., with
low ϵ, and that the number of decryption queries qd is bounded. In conclu-
sion, with these parameters, AES-GCM can encrypt up to 362 Gigabytes, while
aaa-bbb-ddd -AES can encrypt up to 32 Exabytes.

10 High-Level Comparison

While bbb-ddd -AES is the only tweakable wide blockcipher based on a blockcipher
known to us that can reach beyond birthday bound security, we still provide a
comparison with other tweakable wide blockciphers. Before doing so, we remark
that we do not compare ddd -AES and bbb-ddd -AES with other constructions
that do not by default allow for arbitrary-length inputs, like CTET+ [14], or that
are based on tweakable blockciphers, like PIV [54], THCTR [19] (see also [1,33]),
and ZCZ* [8].

10.1 General Comparison

We start with the compact Table 1, that shows the workload in terms of block-
cipher calls and finite field multiplications for processing n · m bits of input,
where n is the block size. For Table 1, we assume that the tweak is available
before the rest of the data (e.g., the plaintext). This means that all processing
just depending on the tweak has already been done. An example use case where
this applies to is when loading data from memory and storage, where the tweak
is just the location (address) that indicates which data needs to be fetched.

As we can see in Table 1, ddd -AES , ddd -AES+, and bbb-ddd -AES all roughly
need m blockcipher calls and 2m multiplications. Hence, they are in line with
most of the other so-called hash-encrypt-hash constructions, which is remarkable
considering that bbb-ddd -AES is the only scheme that achieves security beyond
the birthday bound. There exist hash-encrypt-hash constructions that use so-
called BRW polynomials [4, 48] to instantiate their universal hash functions.
This allows to do the hashing with m multiplications instead of 2m. Although
ddd -AES , ddd -AES+, and bbb-ddd -AES could be instantiated with such hash
function, we did not do so, since this leads to more complex implementations
and the benefit in terms of speed seems to be limited [9].

The other category of schemes shown in Table 1 are the encrypt-mix-encrypt
constructions. Those constructions do not use universal hash functions but have
two full encryption layers and a mixing layer in the middle, which does not appear
in this rough comparison, as we only consider blockcipher calls and multiplica-
tions. Furthermore, those schemes need to have the inverse of the blockcipher
implemented, as we can see in Table 2.

10.2 Detailed Comparison

To be more specific, Table 2 shows a more detailed comparison of the different
tweakable wide blockciphers. We can see that all our schemes are inverse free

37

Table 1: High-level comparison of ddd -AES , ddd -AES+, and bbb-ddd -AES with
other blockcipher based tweakable wide blockciphers, assuming that all compu-
tations that only depend on the tweak are already processed. Here, we remark
that bbb-ddd -AES is the only scheme achieving (conditional) beyond birthday
bound security.

type scheme blockcipher calls multiplications ref.

hash-encrypt-hash

ddd-AES m 2m− 2 4.2
ddd-AES+ m 2m− 2 4.3
bbb-ddd-AES m+ 2 2m− 2 4.4
HCTR2 m 2m− 2 [15]
HCH m+ 1 2m− 2 [10]
HSE2 m 2m− 2 [39]
HEH[BRW] m 2 + 2⌊m−1

2
⌋ [53]

HEH[Poly] m 2m− 2 [53]
XCB m+ 1 2m− 2 [36]
FAST[BRW] m+ 1 2 + 2⌊m−1

2
⌋ [9]

FAST[Horner] m+ 1 2m [9]

encrypt-mix-encrypt
CMC 2m 0 [26]
EME 2m+ 1 0 [27]
EME∗ 2m+ ⌈m

n
⌉ 0 [25]

and have 4 individually fully parallel layers, where the last two can be partially
executed in parallel. Furthermore, we see that bbb-ddd -AES is indeed the only
scheme in the table that can be secure beyond the birthday bound. We can also
observe from Table 2 that, without tweak pre-computation, bbb-ddd -AES needs
roughly 2m blockcipher calls compared to ddd -AES needing roughly m.

This sounds like an overkill, but we will next show why, in many cases, im-
plementations having access to dedicated hardware support can amortize those
costs (we will confirm this intuition in Sec. 11). This means that the overhead of
bbb-ddd -AES is not that big compared to ddd -AES . This comparison will also
make clear why we opted to process the arbitrary length tweak of ddd -AES+

using blockcipher calls instead of processing it via a universal hash function.

In detail, in Fig. 5, we see an instance of bbb-ddd -AES processing a 512-bit

plaintext. We can clearly see that the mask generation for X̃ORP just depends
on the tweak, and the blockcipher calls associated with those are colored in
blue (l) and purple (‽). Furthermore, we also see that a single multiplication
of the bottom universal hash (shown in dark blue (℧)) can be computed once
the computation of the associated PRF block (shown in orange (§)) is finished.
Hence, the computation of these two layers can be interleaved.

In Fig. 6a, we show the execution flow of bbb-ddd -AES , assuming that we
have support of two engines for computing the blockcipher calls and two engines
doing the finite field multiplications. For this example, we assume that the ex-
ecution time of the multiplications and the calls to the blockcipher are roughly

38

Table 2: High-level comparison of ddd -AES , ddd -AES+, and bbb-ddd -AES with
other blockcipher based tweakable wide blockciphers. For simplicity of notation,
we only consider block lengths that are a multiple m of the underlying n-bit
blockcipher. Furthermore, for designs supporting arbitrary length tweaks, we
also count the data in terms of multiple t of n-bit blocks. Parallel layers indicates
the number of layers that can in themselves be computed in parallel, but have
to be computed after each other. In brackets, we give a relaxed condition on
numbers of layers that can be computed in parallel if after partial completion of
one layer, the next one can already be computed.

scheme BC calls multiplications inverse tweak bbb parallel ref.
free length layers

ddd-AES m+ 2 2m yes fixed no 4 (3) 4.2
ddd-AES+ m+ t+ 1 2m yes arbitr. no 4 (3) 4.3
bbb-ddd-AES 2m+ 4 2m yes fixed yes 4 (3) 4.4
HCTR2 m 2m+ t− 1 no arbitr. no 4 (3) [15]
HCH m+ 3 2m− 2 no fixed no 5 (4) [10]
HSE2 m 2m+ t− 1 no arbitr. no 4 (3) [39]
HEH[BRW] m+ 1 2 + 2⌊m−1

2
⌋ no fixed no ≥4 (3) [53]

HEH[Poly] m+ 1 2m− 2 no fixed no 4 (3) [53]
XCB m+ 1 2m+ t− 1 no arbitr. no 4 [36]
FAST[BRW] m+ 1 2+2⌊m−1

2
⌋+⌊ t

2
⌋ yes arbitr. no ≥5 (4) [9]

FAST[Horner] m+ 1 2m+ t yes arbitr. no 5 (4) [9]
CMC 2m+ 1 0 no fixed no m+ 2 [26]
EME 2m+ 1 0 no fixed no 3 [27]
EME∗ 2m+⌈m

n
⌉+t 0 no arbitr. no 3/4/5 [25]

the same. We can see that many of the masks (blue (l) and purple (‽) blocks)
can be processed in parallel to the execution of the first universal hash function
(red (♪) blocks). The processing of the part of the first PRF (shown in green
(※)) that depends on the result of the first universal hash can only start after
the first universal hash function can be computed entirely. The computation of
the parts of the second PRF (shown in orange (§)) that depend on the first PRF
can only start after the green blocks are finished. However, the computation of
the last universal hash (shown in dark blue (℧)) can already start when the first
blocks of the second PRF are ready. Hence, those computations are interleaved.

If we now compare the execution flow of bbb-ddd -AES shown in Fig. 6a with
the execution flow of ddd -AES shown in Fig. 6b, we see that bbb-ddd -AES is
only marginally slower than ddd -AES in this scenario. This is essentially because
the resources saved by saving blockcipher calls for mask generation are not fully
translated to saving execution time: the engines for AES are just underutilized
in this case. This is also the reason why we opted to process the arbitrary length
tweak for ddd -AES+ using blockcipher calls. This allows us to make use of those
potentially underutilized AES engines.

39

128 128128 128

EK2

1∥W∥0∗0

EK2

1∥W∥0∗1
L4

L3

L2

EK1 EK1

EK2

2∥W∥0∗0

EK2

2∥W∥0∗1

EK2

2∥W∥0∗2

EK2

2∥W∥0∗3

EK1 EK1

EK1

EK1

L2

L3

L4

128 128

128 128 128 128

L

len

L

len

P1 P2 P3 P4

C1 C2 C3 C4

♪

♪

♪

♪

l l

‽ ‽ ‽ ‽

※ ※

§

§

§ §

℧

℧

℧

℧

Fig. 5: bbb-ddd -AES processing 512-bit blocks.

11 Software Implementation

We implemented ddd -AES and bbb-ddd -AES with AES-128 in C using intrin-
sics to access the AES-NI instructions and carry-less multiplication instruc-
tions PCLMULQDQ. We implemented different approaches for ddd -AES and
bbb-ddd -AES , essentially allowing to compute from 1 to 6 executions of AES
and carry-less multiplication in parallel for most of the execution. Comparing the
benchmarks of those, the ones with 3 or 4 possible parallel executions performed
best, which is not surprising given the information on latency and throughput
we got from the Intel® Intrinsics Guide [29]. The results of our benchmarks are
given in Table 3. Note that we do not benchmark bbb-ddd -AES against other
tweakable wide blockciphers because, as demonstrated in Section 10, there is no
other blockcipher based scheme achieving security beyond the birthday bound.

Our results indicate that our postulations of Sec. 10 also translate into real-
ity. For larger block sizes, the differences between ddd -AES and bbb-ddd -AES
in performance are indeed small seeing 1.0 cycles/byte for ddd -AES versus 1.1
cycles/byte for bbb-ddd -AES considering large messages. To compare our re-
sults, we have also benchmarked CBC encryption with AES, which also pro-
vides at least a limited diffusion capability beyond one block. We observed that

40

AES 1

AES 2

Mul 1

Mul 2

1 2 3 4 5 6 7

l l

‽ ‽ ‽ ‽

§ §

§ §

※ ※

♪ ♪

♪ ♪

℧ ℧

℧ ℧

(a) bbb-ddd-AES .

AES 1

AES 2

Mul 1

Mul 2

1 2 3 4 5 6 7

l ※ § §

§‽

♪ ♪

♪ ♪

℧ ℧

℧℧

(b) ddd-AES .

Fig. 6: Execution flow processing 512-bit blocks.

CBC encryption already needs 1.4 cycles/byte when encrypting messages of 2048
bytes measured with our toolchain, while arguably having worse properties than
bbb-ddd -AES . In particular, CBC just provides diffusion in forward direction.

We also want to note that we expect better performance numbers on newer
architectures that can make use of vectorized AES-NI and PCLMULQDQ in-
structions due to the high degree of parallelism of bbb-ddd -AES .

12 Conclusion

In this paper, we explored instances of the docked double decker construction
that can make efficient use of already existing hardware that speeds up the ex-
ecution of AES and GHash. We did this, so that the resulting tweakable wide
blockcipher is essentially just a mode of operation for the AES blockcipher. We
have also introduced a method to instantiate authenticated encryption with a
tweakable wide blockcipher having a fixed length tweak, called aaa. This method
shows good security bounds even in the case that the nonce is selected randomly.
We hope that our work provides additional insights into the trade-offs of vari-
able tweak length, security, and efficiency, and will foster the research of more
tweakable wide blockcipher modes of operations.

In the process of designing the beyond birthday bound secure tweakable wide
blockcipher bbb-ddd -AES , we also designed an efficient blockcipher based PRF

called X̃ORP , which is able to process up to 2n-bit inputs. We proved that this
construction achieves around 2n/3-bit security, provided tweaks are not reused

too often. Since we do not have an attack matching the bound of X̃ORP , it
remains future work to see if such an attack can be found, or if the bound can
be improved.

41

Table 3: Performance in cycles/byte of ddd -AES and bbb-ddd -AES on an
Intel® Core™ i7-10610U using RDTSC to get the value for cycles. Your costs
and results may vary.

Message length (bytes) 32 48 64 96 128 256 512 1024 2048

ddd-AES x1 6 4.3 3.4 2.8 2.5 2.3 2.2 2.1 2.1
ddd-AES x2 6 3.9 3.2 2.5 2.0 1.7 1.5 1.3 1.3
ddd-AES x3 9 4.6 3.1 2.5 2.1 1.4 1.2 1.1 1.0
ddd-AES x4 7 4.3 3.5 2.6 2.3 1.6 1.3 1.1 1.0
ddd-AES x5 8 4.6 3.8 2.4 2.2 1.5 1.2 1.1 1.0
ddd-AES x6 7 4.6 3.6 2.9 2.1 1.7 1.2 1.1 1.0

bbb-ddd-AES x1 8 5.0 4.0 3.2 2.9 2.6 2.5 2.5 2.5
bbb-ddd-AES x2 9 5.1 3.9 3.0 2.6 1.9 1.6 1.4 1.3
bbb-ddd-AES x3 8 5.2 3.8 3.0 2.5 1.7 1.4 1.2 1.1
bbb-ddd-AES x4 8 5.0 4.1 3.0 2.8 1.9 1.4 1.2 1.1
bbb-ddd-AES x5 9 5.9 4.1 2.8 2.8 1.7 1.5 1.3 1.2
bbb-ddd-AES x6 9 5.2 4.4 3.3 2.6 2.0 1.4 1.3 1.2

Acknowledgements. Bart Mennink is supported by the Netherlands Organ-
isation for Scientific Research (NWO) under grant VI.Vidi.203.099. We thank
Samuel Neves for sharing his thoughts on the impossibility to replace the block-

cipher calls in the masking of X̃ORP by finite field multiplication of input and
a key, or more generally a universal hash function. We thank the anonymous
reviewer of CRYPTO 2024 who pointed out a mistake in an earlier version of
the proof, as well as all other reviewers for their useful feedback.

References

1. Andreeva, E., Bhati, A.S., Preneel, B., Vizár, D.: 1, 2, 3, Fork: Counter Mode
Variants based on a Generalized Forkcipher. IACR Trans. Symmetric Cryptol.
2021(3), 1–35 (2021), https://doi.org/10.46586/tosc.v2021.i3.1-35

2. Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of pseu-
dorandom function based constructions, with applications to PRP to PRF conver-
sion. Cryptology ePrint Archive, Report 1999/024 (1999), http://eprint.iacr.
org/1999/024

3. Bellare, M., Krovetz, T., Rogaway, P.: Luby-Rackoff Backwards: Increasing Secu-
rity by Making Block Ciphers Non-invertible. In: Nyberg, K. (ed.) Advances in
Cryptology - EUROCRYPT ’98, International Conference on the Theory and Ap-
plication of Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998,
Proceeding. Lecture Notes in Computer Science, vol. 1403, pp. 266–280. Springer
(1998), https://doi.org/10.1007/BFb0054132

4. Bernstein, D.J.: Polynomial evaluation and message authentication. https://cr.
yp.to/papers.html#pema (2007)

5. Bhargavan, K., Leurent, G.: On the Practical (In-)Security of 64-bit Block Ci-
phers: Collision Attacks on HTTP over TLS and OpenVPN. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of

42

https://doi.org/10.46586/tosc.v2021.i3.1-35
http://eprint.iacr.org/1999/024
http://eprint.iacr.org/1999/024
https://doi.org/10.1007/BFb0054132
https://cr.yp.to/papers.html#pema
https://cr.yp.to/papers.html#pema

the 2016 ACM SIGSAC Conference on Computer and Communications Secu-
rity, Vienna, Austria, October 24-28, 2016. pp. 456–467. ACM (2016), https:

//doi.org/10.1145/2976749.2978423

6. Bhattacharjee, A., Dutta, A., List, E., Nandi, M.: CENCPP∗: beyond-birthday-
secure encryption from public permutations. Des. Codes Cryptogr. 90(6), 1381–
1425 (2022), https://doi.org/10.1007/s10623-022-01045-z

7. Bhattacharya, S., Nandi, M.: Revisiting Variable Output Length XOR Pseudo-
random Function. IACR Trans. Symmetric Cryptol. 2018(1), 314–335 (2018),
https://doi.org/10.13154/tosc.v2018.i1.314-335

8. Bhaumik, R., List, E., Nandi, M.: ZCZ - Achieving n-bit SPRP Security with
a Minimal Number of Tweakable-Block-Cipher Calls. In: Peyrin, T., Galbraith,
S.D. (eds.) Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and Information Se-
curity, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part I. Lec-
ture Notes in Computer Science, vol. 11272, pp. 336–366. Springer (2018), https:
//doi.org/10.1007/978-3-030-03326-2_12

9. Chakraborty, D., Ghosh, S., López, C.M., Sarkar, P.: FAST: Disk encryption and
beyond. Adv. Math. Commun. 16(1), 185–230 (2022), https://doi.org/10.3934/
amc.2020108

10. Chakraborty, D., Sarkar, P.: HCH: A New Tweakable Enciphering Scheme Us-
ing the Hash-Encrypt-Hash Approach. In: Barua, R., Lange, T. (eds.) Progress in
Cryptology - INDOCRYPT 2006, 7th International Conference on Cryptology in
India, Kolkata, India, December 11-13, 2006, Proceedings. Lecture Notes in Com-
puter Science, vol. 4329, pp. 287–302. Springer (2006), https://doi.org/10.1007/
11941378_21

11. Chen, S., Steinberger, J.P.: Tight Security Bounds for Key-Alternating Ciphers.
In: Nguyen, P.Q., Oswald, E. (eds.) Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8441, pp. 327–350. Springer (2014),
https://doi.org/10.1007/978-3-642-55220-5_19

12. Chen, Y.L., Davidson, M., Dworkin, M., Kang, J., Kelsey, J., Sasaki,
Y., Turan, M.S., Chang, D., Mouha, N., Thompson, A.: Proposal of Re-
quirements for an Accordion Mode: Discussion Draft for the NIST Accor-
dion Mode Workshop 2024. https://csrc.nist.gov/pubs/other/2024/04/10/

proposal-of-requirements-for-an-accordion-mode-dis/iprd (2024)

13. Cogliati, B., Dutta, A., Nandi, M., Patarin, J., Saha, A.: Proof of Mirror Theory
for a Wide Range of ξmax. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology
- EUROCRYPT 2023 - 42nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Pro-
ceedings, Part IV. Lecture Notes in Computer Science, vol. 14007, pp. 470–501.
Springer (2023), https://doi.org/10.1007/978-3-031-30634-1_16

14. Cogliati, B., Ethan, J., Lallemand, V., Lee, B., Lee, J., Minier, M.: CTET+:
A Beyond-Birthday-Bound Secure Tweakable Enciphering Scheme Using a Sin-
gle Pseudorandom Permutation. IACR Trans. Symmetric Cryptol. 2021(4), 1–35
(2021), https://doi.org/10.46586/tosc.v2021.i4.1-35

15. Crowley, P., Huckleberry, N., Biggers, E.: Length-preserving encryption with
HCTR2. Cryptology ePrint Archive, Report 2021/1441 (2021), http://eprint.
iacr.org/2021/1441

43

https://doi.org/10.1145/2976749.2978423
https://doi.org/10.1145/2976749.2978423
https://doi.org/10.1007/s10623-022-01045-z
https://doi.org/10.13154/tosc.v2018.i1.314-335
https://doi.org/10.1007/978-3-030-03326-2_12
https://doi.org/10.1007/978-3-030-03326-2_12
https://doi.org/10.3934/amc.2020108
https://doi.org/10.3934/amc.2020108
https://doi.org/10.1007/11941378_21
https://doi.org/10.1007/11941378_21
https://doi.org/10.1007/978-3-642-55220-5_19
https://csrc.nist.gov/pubs/other/2024/04/10/proposal-of-requirements-for-an-accordion-mode-dis/iprd
https://csrc.nist.gov/pubs/other/2024/04/10/proposal-of-requirements-for-an-accordion-mode-dis/iprd
https://doi.org/10.1007/978-3-031-30634-1_16
https://doi.org/10.46586/tosc.v2021.i4.1-35
http://eprint.iacr.org/2021/1441
http://eprint.iacr.org/2021/1441

16. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer (2002), https://doi.
org/10.1007/978-3-662-04722-4

17. Daemen, J., Rijmen, V.: The Design of Rijndael - The Advanced Encryption Stan-
dard (AES), Second Edition. Information Security and Cryptography, Springer
(2020), https://doi.org/10.1007/978-3-662-60769-5

18. Dai, W., Hoang, V.T., Tessaro, S.: Information-Theoretic Indistinguishability via
the Chi-Squared Method. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology -
CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 20-24, 2017, Proceedings, Part III. Lecture Notes in Computer
Science, vol. 10403, pp. 497–523. Springer (2017), https://doi.org/10.1007/978-
3-319-63697-9_17

19. Dutta, A., Nandi, M.: Tweakable HCTR: A BBB Secure Tweakable Encipher-
ing Scheme. In: Chakraborty, D., Iwata, T. (eds.) Progress in Cryptology - IN-
DOCRYPT 2018 - 19th International Conference on Cryptology in India, New
Delhi, India, December 9-12, 2018, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 11356, pp. 47–69. Springer (2018), https://doi.org/10.1007/978-3-
030-05378-9_3

20. Dworkin, M.: Recommendation for Block Cipher Modes of Operation Methods
and Techniques (2001-12-01 2001), https://tsapps.nist.gov/publication/get_
pdf.cfm?pub_id=51031

21. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: The XTS-
AES Mode for Confidentiality on Storage Devices (2010-01-18 2010), https://
tsapps.nist.gov/publication/get_pdf.cfm?pub_id=904691

22. Gueron, S., Langley, A., Lindell, Y.: AES-GCM-SIV: Specification and Analysis.
Cryptology ePrint Archive, Report 2017/168 (2017), http://eprint.iacr.org/
2017/168

23. Gunsing, A., Daemen, J., Mennink, B.: Deck-Based Wide Block Cipher Modes
and an Exposition of the Blinded Keyed Hashing Model. IACR Trans. Symmetric
Cryptol. 2019(4), 1–22 (2019), https://doi.org/10.13154/tosc.v2019.i4.1-22

24. Gunsing, A., Mennink, B.: The Summation-Truncation Hybrid: Reusing Discarded
Bits for Free. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology
- CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO
2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 12170, pp. 187–217. Springer (2020), https://
doi.org/10.1007/978-3-030-56784-2_7

25. Halevi, S.: EME∗: Extending EME to Handle Arbitrary-Length Messages with
Associated Data. In: Canteaut, A., Viswanathan, K. (eds.) Progress in Cryptology -
INDOCRYPT 2004, 5th International Conference on Cryptology in India, Chennai,
India, December 20-22, 2004, Proceedings. Lecture Notes in Computer Science,
vol. 3348, pp. 315–327. Springer (2004), https://doi.org/10.1007/978-3-540-
30556-9_25

26. Halevi, S., Rogaway, P.: A Tweakable Enciphering Mode. In: Boneh, D. (ed.)
Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceed-
ings. Lecture Notes in Computer Science, vol. 2729, pp. 482–499. Springer (2003),
https://doi.org/10.1007/978-3-540-45146-4_28

27. Halevi, S., Rogaway, P.: A Parallelizable Enciphering Mode. In: Okamoto, T. (ed.)
Topics in Cryptology - CT-RSA 2004, The Cryptographers’ Track at the RSA
Conference 2004, San Francisco, CA, USA, February 23-27, 2004, Proceedings.

44

https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-60769-5
https://doi.org/10.1007/978-3-319-63697-9_17
https://doi.org/10.1007/978-3-319-63697-9_17
https://doi.org/10.1007/978-3-030-05378-9_3
https://doi.org/10.1007/978-3-030-05378-9_3
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=51031
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=51031
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=904691
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=904691
http://eprint.iacr.org/2017/168
http://eprint.iacr.org/2017/168
https://doi.org/10.13154/tosc.v2019.i4.1-22
https://doi.org/10.1007/978-3-030-56784-2_7
https://doi.org/10.1007/978-3-030-56784-2_7
https://doi.org/10.1007/978-3-540-30556-9_25
https://doi.org/10.1007/978-3-540-30556-9_25
https://doi.org/10.1007/978-3-540-45146-4_28

Lecture Notes in Computer Science, vol. 2964, pp. 292–304. Springer (2004), https:
//doi.org/10.1007/978-3-540-24660-2_23

28. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust Authenticated-Encryption AEZ
and the Problem That It Solves. In: Oswald, E., Fischlin, M. (eds.) Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-
30, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9056, pp.
15–44. Springer (2015), https://doi.org/10.1007/978-3-662-46800-5_2

29. Intel: Intel® Intrinsics Guide Version 3.6.9. https://www.intel.com/content/

www/us/en/docs/intrinsics-guide/index.html (July 2024)
30. Iwata, T.: New Blockcipher Modes of Operation with Beyond the Birthday Bound

Security. In: Robshaw, M.J.B. (ed.) Fast Software Encryption, 13th International
Workshop, FSE 2006, Graz, Austria, March 15-17, 2006, Revised Selected Papers.
Lecture Notes in Computer Science, vol. 4047, pp. 310–327. Springer (2006), https:
//doi.org/10.1007/11799313_20

31. Iwata, T., Mennink, B., Vizár, D.: CENC is Optimally Secure. Cryptology ePrint
Archive, Report 2016/1087 (2016), http://eprint.iacr.org/2016/1087

32. Kampanakis, P., Campagna, M., Crocket, E., Petcher, A.: Practical Chal-
lenges with AES-GCM and the need for a new mode and wide-block
cipher (Oct 2023), https://csrc.nist.gov/Presentations/2023/practical-

challenges-with-aes-gcm

33. Khairallah, M.: A note on “Tweakable HCTR: A BBB Secure Tweakable En-
ciphering Scheme”. Cryptology ePrint Archive, Report 2024/600 (2024), http:
//eprint.iacr.org/2024/600

34. Liskov, M.D., Rivest, R.L., Wagner, D.A.: Tweakable Block Ciphers. In: Yung,
M. (ed.) Advances in Cryptology - CRYPTO 2002, 22nd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002, Pro-
ceedings. Lecture Notes in Computer Science, vol. 2442, pp. 31–46. Springer (2002),
https://doi.org/10.1007/3-540-45708-9_3

35. Mattsson, J.P., Smeets, B., Thormarker, E.: Proposals for Standardization of
Encryption Schemes (Oct 2023), https://csrc.nist.gov/Presentations/2023/
proposal-for-standardization-of-encryption-schemes

36. McGrew, D.A., Fluhrer, S.R.: The Security of the Extended Codebook (XCB)
Mode of Operation. In: Adams, C.M., Miri, A., Wiener, M.J. (eds.) Selected Ar-
eas in Cryptography, 14th International Workshop, SAC 2007, Ottawa, Canada,
August 16-17, 2007, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 4876, pp. 311–327. Springer (2007), https://doi.org/10.1007/978-3-540-
77360-3_20

37. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter
Mode (GCM) of Operation. In: Canteaut, A., Viswanathan, K. (eds.) Progress
in Cryptology - INDOCRYPT 2004, 5th International Conference on Cryptology
in India, Chennai, India, December 20-22, 2004, Proceedings. Lecture Notes in
Computer Science, vol. 3348, pp. 343–355. Springer (2004), https://doi.org/10.
1007/978-3-540-30556-9_27

38. Mennink, B., Neves, S.: Encrypted Davies-Meyer and Its Dual: Towards Opti-
mal Security Using Mirror Theory. In: Katz, J., Shacham, H. (eds.) Advances
in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III.
Lecture Notes in Computer Science, vol. 10403, pp. 556–583. Springer (2017),
https://doi.org/10.1007/978-3-319-63697-9_19

45

https://doi.org/10.1007/978-3-540-24660-2_23
https://doi.org/10.1007/978-3-540-24660-2_23
https://doi.org/10.1007/978-3-662-46800-5_2
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://doi.org/10.1007/11799313_20
https://doi.org/10.1007/11799313_20
http://eprint.iacr.org/2016/1087
https://csrc.nist.gov/Presentations/2023/practical-challenges-with-aes-gcm
https://csrc.nist.gov/Presentations/2023/practical-challenges-with-aes-gcm
http://eprint.iacr.org/2024/600
http://eprint.iacr.org/2024/600
https://doi.org/10.1007/3-540-45708-9_3
https://csrc.nist.gov/Presentations/2023/proposal-for-standardization-of-encryption-schemes
https://csrc.nist.gov/Presentations/2023/proposal-for-standardization-of-encryption-schemes
https://doi.org/10.1007/978-3-540-77360-3_20
https://doi.org/10.1007/978-3-540-77360-3_20
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-319-63697-9_19

39. Minematsu, K., Matsushima, T.: Tweakable Enciphering Schemes from Hash-Sum-
Expansion. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) Progress in Cryptol-
ogy - INDOCRYPT 2007, 8th International Conference on Cryptology in India,
Chennai, India, December 9-13, 2007, Proceedings. Lecture Notes in Computer
Science, vol. 4859, pp. 252–267. Springer (2007), https://doi.org/10.1007/978-
3-540-77026-8_19

40. Nachef, V., Patarin, J., Volte, E.: Feistel Ciphers - Security Proofs and Cryptanal-
ysis. Springer (2017), https://doi.org/10.1007/978-3-319-49530-9

41. NIST: The Third NIST Workshop on Block Cipher Modes of Oper-
ation 2023. https://csrc.nist.gov/events/2023/third-workshop-on-block-

cipher-modes-of-operation, accessed: 2023-12-12
42. Patarin, J.: Étude des Générateurs de Permutations Basés sur le Schéma du D.E.S.

Ph.D. thesis, Université Paris 6, Paris, France (Nov 1991)
43. Patarin, J.: On Linear Systems of Equations with Distinct Variables and Small

Block Size. In: Won, D., Kim, S. (eds.) Information Security and Cryptology -
ICISC 2005, 8th International Conference, Seoul, Korea, December 1-2, 2005, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 3935, pp. 299–321.
Springer (2005), https://doi.org/10.1007/11734727_25

44. Patarin, J.: The “Coefficients H” Technique. In: Avanzi, R.M., Keliher, L., Sica, F.
(eds.) Selected Areas in Cryptography, 15th International Workshop, SAC 2008,
Sackville, New Brunswick, Canada, August 14-15, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 5381, pp. 328–345. Springer (2008), https://doi.
org/10.1007/978-3-642-04159-4_21

45. Patarin, J.: Introduction to Mirror Theory: Analysis of Systems of Linear Equalities
and Linear Non Equalities for Cryptography. Cryptology ePrint Archive, Report
2010/287 (2010), http://eprint.iacr.org/2010/287

46. Patarin, J.: Mirror Theory and Cryptography. Cryptology ePrint Archive, Report
2016/702 (2016), http://eprint.iacr.org/2016/702

47. Public Comments on FIPS 197 - Advanced Encryption Standard (AES) (2021),
https://csrc.nist.gov/csrc/media/Projects/crypto-publication-review-

project/documents/initial-comments/fips-197-initial-public-comments-

2021.pdf
48. Rabin, M.O., Winograd, S.: Fast evaluation of polynomials by rational preparation.

Communications on Pure and Applied Mathematics 25, 433–458 (1972)
49. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. Request for

Comments (RFC) 8446 (August 2018), https://tools.ietf.org/html/rfc8446
50. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements to

Modes OCB and PMAC. In: Lee, P.J. (ed.) Advances in Cryptology - ASIACRYPT
2004, 10th International Conference on the Theory and Application of Cryptology
and Information Security, Jeju Island, Korea, December 5-9, 2004, Proceedings.
Lecture Notes in Computer Science, vol. 3329, pp. 16–31. Springer (2004), https:
//doi.org/10.1007/978-3-540-30539-2_2

51. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. https://www.cs.ucdavis.edu/~rogaway/papers/

offsets.pdf (2004), full version of [50]
52. Salowey, J., Choudhury, A., McGrew, D.: AES Galois Counter Mode (GCM) Ci-

pher Suites for TLS. Request for Comments (RFC) 5288 (August 2008), https:
//tools.ietf.org/html/rfc5288

53. Sarkar, P.: Efficient tweakable enciphering schemes from (block-wise) universal
hash functions. IEEE Trans. Inf. Theory 55(10), 4749–4760 (2009), https://doi.
org/10.1109/TIT.2009.2027487

46

https://doi.org/10.1007/978-3-540-77026-8_19
https://doi.org/10.1007/978-3-540-77026-8_19
https://doi.org/10.1007/978-3-319-49530-9
https://csrc.nist.gov/events/2023/third-workshop-on-block-cipher-modes-of-operation
https://csrc.nist.gov/events/2023/third-workshop-on-block-cipher-modes-of-operation
https://doi.org/10.1007/11734727_25
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/978-3-642-04159-4_21
http://eprint.iacr.org/2010/287
http://eprint.iacr.org/2016/702
https://csrc.nist.gov/csrc/media/Projects/crypto-publication-review-project/documents/initial-comments/fips-197-initial-public-comments-2021.pdf
https://csrc.nist.gov/csrc/media/Projects/crypto-publication-review-project/documents/initial-comments/fips-197-initial-public-comments-2021.pdf
https://csrc.nist.gov/csrc/media/Projects/crypto-publication-review-project/documents/initial-comments/fips-197-initial-public-comments-2021.pdf
https://tools.ietf.org/html/rfc8446
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf
https://www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf
https://tools.ietf.org/html/rfc5288
https://tools.ietf.org/html/rfc5288
https://doi.org/10.1109/TIT.2009.2027487
https://doi.org/10.1109/TIT.2009.2027487

54. Shrimpton, T., Terashima, R.S.: Salvaging Weak Security Bounds for Blockcipher-
Based Constructions. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology -
ASIACRYPT 2016 - 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 10031, pp. 429–454
(2016), https://doi.org/10.1007/978-3-662-53887-6_16

55. Thompson, A., Turan, M.S.: NIST Workshop on the Requirements for an Ac-
cordion Cipher Mode 2024: Workshop Report. https://csrc.nist.gov/pubs/ir/
8537/final (2024)

47

https://doi.org/10.1007/978-3-662-53887-6_16
https://csrc.nist.gov/pubs/ir/8537/final
https://csrc.nist.gov/pubs/ir/8537/final

	Efficient Instances of Docked Double Decker With AES, and Application to Authenticated Encryption
	Introduction
	Motivation
	Tweakable Wide Blockciphers (Accordion Cipher Modes)
	Our Contributions
	Outline

	Preliminaries
	Tweakable Wide Blockciphers
	Pseudorandom Permutations
	Pseudorandom Functions
	Universal Hash Functions
	Patarin's H-Coefficient Technique

	Docked Double Decker
	Specification of ddd-AES, ddd-AES+, and bbb-ddd-AES
	Instantiation of H
	Instantiation of F for ddd-AES
	Instantiation of F for ddd-AES+
	Instantiation of F for bbb-ddd-AES

	Security of ddd-AES, ddd-AES+, and bbb-ddd-AES
	Security of ddd-AES
	Security of ddd-AES+
	Security of bbb-ddd-AES

	Proof of Lemma 3
	Proof Overview
	Bad Transcripts
	Probability of Bad Transcripts
	Probability Ratio for Good Transcripts
	Conclusion

	Proof of Theorem 3
	Mirror Theory
	Proof Overview
	Bad Transcripts
	Probability of Bad Transcripts
	Probability Ratio for Good Transcripts
	Conclusion

	Application to Authenticated Encryption
	Security Model
	Specification of aaa
	Security of aaa-ddd-AES and aaa-bbb-ddd-AES
	Proof of Theorem 5

	Interpretation of the Bounds
	High-Level Comparison
	General Comparison
	Detailed Comparison

	Software Implementation
	Conclusion

