
Defining and Controlling Information Leakage in US Equities Trading

Arthur Américo1 Allison Bishop1,2 Paul Cesaretti3,1 Garrison Grogan
Adam McKoy1 Robert Moss1 Lisa Oakley4,1 Marcel Ribeiro1

Mohammad Shokri3,1

1Proof Trading
2City College, CUNY

3Graduate Center, CUNY
4Northeastern University

Abstract

We present a new framework for defining information leakage in the setting of US equities trading, and
construct methods for deriving trading schedules that stay within specified information leakage bounds.
Our approach treats the stock market as an interactive protocol performed in the presence of an adversary,
and draws inspiration from the related disciplines of differential privacy as well as quantitative information
flow. We apply a linear programming solver using examples from historical trade and quote (TAQ) data
for US equities and describe how this framework can inform actual algorithmic trading strategies.

1 Introduction
Sometimes failures of science turn out to be failures of imagination. This is often the case in cryptography
and cybersecurity, where it is crucial to formulate achievable definitions of security that anticipate all
relevant avenues of attack. This is very difficult to do, and Turing awards have been given for foundational
work on security definitions in this field [12]. Clear and achievable security definitions typically address
questions like: 1. what capabilities might an adversary have? 2. what specific goals must the adversary be
prevented from accomplishing? Answers to these questions drive the design of proposed solutions. When
failures occur, it can easily be decided whether the failure is attributable to a “solution” not achieving the
desired definition, or to the definition itself not addressing an important scenario. In this way, specific
and verifiable definitions are necessary catalysts for further development.

Without foundational definitions, a scientific discipline can become stuck. The state of public discourse
around execution quality in trading US equities seems to be stuck, as real intellectual progress is hard
to make in an environment where everyone is throwing around phrases like liquidity, information leakage,
and best execution without committing to any concrete definitions.

Economic theory, in contrast, offers clear definitions, the organizing concept of the “rational actor,”
and a framework for analyzing tradeoffs by maximizing weighted combinations of potentially conflicting
goals in a single utility function. This framework has been applied to decision making around trading at
many levels. At first glance, this seems to formalize the informal, however it does not fully capture the
competitive ethos of equities trading and human nature of traders.

For example, high level decisions about spreading out a large trade over multiple days are often
attributed to the desire to “minimize price impact,” where price impact refers to prices rising while a
trader is buying or falling while a trader is selling. But this cannot be the full story, as minimizing impact
alone has a simple answer: never trade! The well-known Almgren-Chriss model [1] attempts to capture
trade urgency by introducing price variance as a counterbalancing force. At a high level, it suggests
that we should choose mathematical models for price impact (reason to wait) and price variance (reason
to trade) over time, and seek to optimize a single utility function combining the two, controlling the
variance with a “risk aversion” parameter. From a pure economic theory perspective, this makes sense: to
wait longer to trade is to expose oneself to risk that the price will change substantially in the meantime.
Without this consideration, the Almgren-Chriss model would devolve into paralysis, since the only way
to be guaranteed to have no impact is to push off trading indefinitely. In this way, “risk aversion” is the
Almgren-Chriss model’s answer to the apparent mystery of why people seeking to “minimize impact” ever
manage to trade at all.

The instincts of traders, however, do not seem to fit this theoretical framework. On the whole, they may
not think of themselves as “risk averse.” What is stock trading if not the most exulted form of gambling,
where natural born risk takers gather to channel their otherwise potentially destructive tendencies into
fueling innovation? Perhaps the framing of pure rationality and cold utility functions is more than a little

1

bit wrong here, as it is in many other contexts. To anyone who spends time with traders, the mystery
isn’t why they ever trade, the mystery is why they ever wait.

Having made a decision to buy X shares of a particular stock S, a human may innately want this
to be implemented quickly, if only so they can cross it off a list and move on to other things. It seems
wrong to ascribe this fully to fears that the stock price will change substantially in the meantime. If the
price were guaranteed to stay stagnant, surely the trader would still prefer to get the trade done today
rather than tomorrow. Immediacy feels more like the default that does not need economic justification,
while patience needs to be economically incentivized to appear. Perhaps when the perception of the cost
of market impact is small in a psychological sense, the trader is likely to act aggressively. Only when the
cost is perceived to be substantial will the trader feel compelled to exercise patience.

To be fair, this is not so different from the Almgren-Chriss model in practice, but the differing in-
terpretation does lead us to a new approach for studying and modeling market behavior. If not price
variance, what is it that the trader is actually afraid of? What psychological force is compelling enough
to convince the trader to hold back? One possibility is the specter of “information leakage.” Since there
is unlikely to be a single counter-party magically waiting to sell the same number of shares at the same
moment our trader enters the market to buy, the total volume is likely to take many trades to accomplish.
While these trades are happening, the activity may be noticeable to various market participants, who may
suspect that there is a large buyer active in the market for stock S. If another market participant can
infer this with reasonable confidence, they might exploit this knowledge to make a profit at the buyer’s
expense. This is perhaps the underlying phenomenon that drives traders to lessen “impact.” They are not
really competing against the kind of unknowable, random market forces that words like “variance” bring
to mind. That’s just the arena. They are competing against each other - adversaries of flesh and blood
that are familiar and far from random or wholly rational.

The stochastic processes that economists imagine as the engine of the impersonal “market,” and the
rational “agents” that they imagine interacting with those processes, do not account for the competitive
and paranoid nature of human psychology. Crucially, this is not a reason to retreat to fuzzier and ill-
defined discourse. It is a good feature of economic theory’s clear definitions that this limitation is laid
bare. In this way, it might prove to be a catalyst that can drive other (but still firm!) definitions that
can more directly reflect how traders actually make decisions.

In this paper, we will attempt to flesh out the concept of “information leakage” in US equities trading
in more scientific and quantitative ways, as compared to its typical casual usage. We do not claim to
arrive at the “right” definition(s), but we will make some progress down what we think is a promising
path. Along the way, we’ll present some examples using historical trade and quote (TAQ) data for US
equities, and describe how this research can inform an algorithmic trading strategy.

Our work here will be driven by the question: if we were the adversary, looking for evidence of a big
buyer/seller active in the market, what would we look for? This perspective can be helpful to use in the
algorithmic design process: if we want our actions to fly under the radar, then we can design various forms
of radar ourselves and see to what extent we can avoid our own detection methods. In Figure 1 we give an
example of how defining information leakage as a bound on market activity can help us develop resilient
strategies in real market conditions. Obviously, this perspective on its own is limited by the fact that we
may fail to anticipate someone else’s detection methods. Nonetheless, it’s better to anticipate and avoid
some traps rather than none. This represents an early stage of scientific development that we likely must
pass through to gain better intuition before being able to formulate more comprehensive definitions and
defenses.

1.1 The Challenge of Formalizing Information Leakage in Financial Settings
The phrase “information leakage” may seem intuitive on the surface. And many might assume that an “I
know it when I see it” philosophy is functional enough. But the scientific history of “information” is much
more nuanced. The rigorous science of information theory that began with Claude Shannon’s seminal
paper in 1948 [13] established quantitative definitions of information that revealed deep connections to
probability theory and random processes. Shannon’s notion of entropy captured the crucial point that
things that are constant (and jointly understood) need not be communicated between parties. And
hence the true information content of a communication can be reduced to that which was previously
uncertain. This suggested that an inverse relationship between frequency of events and the means of
their communication could lead to more efficient communication overall. Very likely/frequent occurrences
could be conveyed by short messages, hence reducing the burden of communication in common cases,
while very unlikely/infrequent occurrences would require longer messages to communicate. This is the
underlying principle of Huffman codes [14], a form of data compression that provides provably minimal
average message lengths.

If you explore the state of information theory as a scientific discipline today, you will find many vari-
ants of the definition of entropy, many situationally optimal coding techniques for various contexts and
constraints, and many remaining open questions that various assortments of bushy-tailed and disgrun-

2

(a) Strategy 1: Alice minimizes price
impact and information leakage by not
trading at all, i.e. DX = DX̃

.

(b) Strategy 2: Alice prioritizes im-
mediacy of trade and trades all 30,000
shares in one time window.

(c) Strategy 3: Alice follows a model
like Almgen-Chriss, minimizing a joint
function of price impact and variance.

(d) Strategy 4: Alice maximizes the
number of shares traded in the time
window, constrained by the informa-
tion leakage bound.

Figure 1: Let Alice be an equities trader attempting to trade 30,000 shares of MSFT as quickly as possible
without competitor Eve noticing. Let be DX the typical market volume distribution for MSFT at 10am on
a Monday, and DX̃ the market volume distribution when trader Alice is acting in the market. We introduce
a privacy leakage bound around DX such that if Eve gets a sample x from DX and a sample x̃ from DX̃
within the bound, she will not be able to easily distinguish which distribution each sample came from. In
Strategy 1, Alice does not trade and thus leaks no information, but also makes no progress toward her goal.
In the other extreme, Strategy 2, Alice prioritizes immediacy and trades all 30,000 shares at once, resulting
in information leakage that Eve can use for a competitive advantage. In Strategy 3, Alice considers some
mathematical notions of price impact and variance. This metric has no notion of privacy leakage and may
result in “risk-averse” strategies that still give an advantage to competitor Eve. Defining an information
leakage bound allows us to model Strategy 4 that has the same expected value as the “risk-averse” strategy,
but which better captures Alice’s desire to make “risky” moves while not leaking information to Eve.

tled graduate students are still writing dissertations about. Why? Because, as with any good science,
Shannon’s theory is as much a framework for generating new questions as it is for generating answers.
People and machines communicate information in many different contexts, for many different purposes,
with many different constraints. As these variables change, the “right” metrics and the “optimal” solutions
tend to change with them. For this reason, we should perhaps already be warned that the development
of a scientific definition of “information leakage” is a task that should be approached with some humility
and some deference to the complexity of such topics.

There is one over-arching challenge to our task that we should highlight that differentiates our problem
from other information leakage frameworks. Many of the foundational definitions that power the disci-
plines of information theory and cryptography benefit from the imposed unit of communication: short
strings of bits. There are many highly convenient things about short strings of bits. For one, they can only
take on so many values. Reasoning about the probability of them taking on a particular value is thus a
meaningful exercise. Stock trading, however, is a different beast entirely. The record of all trading activity
on a given day is likely to be essentially unique, and reasoning about the “probability” of a particular full
transcript of activity is likely a meaningless exercise. What’s tricky is that we don’t really believe that
all of the available details are important, so we typically start analyses by making some decisions about
what features of the trading data to track and what features to ignore. This is necessary for us to group
data in ways that build up sample sizes large enough to infer meaningful patterns. Naturally these feature
decisions affect everything we do from then on, and these decisions are subjective. This is a limitation we
have to be consistently aware of and sensitive to, as there are no obvious alternatives at this point.

There are several lessons here to be drawn from related disciplines that we should keep in mind in
our attempt to define “information leakage” in useful ways in the context of stock trading: 1. We should

3

expect rigorous definitions to be nuanced and context-dependent, 2. We should expect that rarer events
convey more information than more common events, and 3. it may be helpful to think hard about who
the adversary is, what information they are likely to already know and observe, and what exactly we want
to prevent them from accomplishing by means of information leakage.

The framework we introduce for studying information leakage treats the market as a random process
- a process whose distribution changes as a result of the additional trading activity of a single participant
who is concerned about potential leakage. If the activity of this participant makes certain outcomes
much more likely, then an adversary observing such outcomes could begin to infer the presence of the
participant. The adversary may take action based on such probabilistic inferences, and this may be to the
detriment of the participant. Our goal will be to prescribe the level of activity that our wary participant
can accomplish without increasing the probability that the adversary takes a detrimental action by too
much. This is highly reminiscent of differential privacy, a connection we discuss heavily below. We
note, however, that unlike canonical differential privacy guarantees that cover worst-case scenarios, we
will be assuming/deriving particular distributions of market activity and bounding information leakage
within these. We also note that our framework can measure and contain information leakage even before
someone takes advantage of it in a real trading scenario. We believe this is a fundamentally more proactive
approach than waiting for exploitation to become apparent in noisy price movements.

1.2 Related Work
In defining our framework for information leakage, we will draw our most direction inspirations from the
fields of differential privacy and quantitative information flow. Our problem definition also has connections
to distribution testing.

Almgren-Chriss and Related Financial Models Almgren and Chriss [1] model price evolution
as an artihmetic random walk, with a term for temporary price impact based on linearly on a trader’s
rate of activity. They then suggest taking a weighted average of expected price impact and price variance
as a utility function for a trading schedule to minimize. Forsyth et. al. [4] model price evolution as a
geometric random walk and similarly minimize a joint function of price impact and variance in this model.
Gatheral and Schied [5] propose a related model, with a different “risk” term in place of the variance. One
can also deviate from the Almgren-Chriss in modeling how temporary price impact decays, as in [6]. A
classical non-linear model of price impact is the sigma-root-liquidity model, described in [10]. Empirical
evidence for this in given in [9]. Further models of price impact and derivation of optimal strategies under
them can be found in [3, 7, 8], for example, though our references here are by no means exhaustive.

In contrast, our work does not center on the notion of price, but rather looks directly at metrics of
trading activity that an adversary might use to infer the presence of a large buyer or seller. Our goal is
to limit an adversary’s ability to leverage such metrics by making sure that the distribution an adversary
observes under general market activity is “close” to the distribution they observe when our trading activity
is present. We believe that bypassing price modeling in this way may lead to more robust models (since
price is notoriously noisy), and more proactive models (since we don’t have to wait for exploitation to be
noticeable in price behavior before we can measure leakage). We note that a recent empirical study of
price impact [11] gives credence to the relative importance of optimizing trading behavior at this level.

Differential Privacy The study of differential privacy (DP) was launched by Dwork, McSherry,
Nissim and Smith [16], and was motivated by questions like: how can we protect privacy of individuals
while releasing aggregate statistics about a population? Previous answers to questions like this, such
as definitions of Personally Identifying Information or k-anonymity [46], have proven unsatisfying in a
modern context where auxiliary information is abundant. What counts as “personally identifying” in a
practical (rather than legal) sense is too heavily context dependent. To someone who knows us well (or
someone who looks up our public IMDB profile), even a few movie ratings may be enough to identify a
person [17]. Implicitly, many definitions of anonymous, aggregated, or “privacy-preserving” data assume
that an adversary trying to violate privacy knows basically nothing else except the particular sanitized
data at hand. This is an increasingly false assumption.

Differential privacy, on the other hand, avoids making such constraining assumptions about the adver-
sary’s knowledge. Instead, it requires that the effect of a single individual’s data is hidden by randomness,
even from an adversary who knows exactly what to look for. More specifically, DP promises that the
likelihood of any particular outcome is not too significantly increased by the fact of any single individual’s
participation in the data collection. This strong property can be achieved, for example, by adding appro-
priate amounts of randomness to aggregated statistics before they are released, hence creating plausible
cover for the contribution of an particular individual to the final result.

Our DP-inspired approach allows us to define guardrails that we do not want our trading to cross, lest
we give an adversary too great an advantage in inferring our presence. More precisely, we will define a
set of metrics that an adversary could use to try to detect our presence, and we will ensure that the joint

4

distributions of those metrics does not change too drastically when we choose to trade. This will bound
an adversary’s advantage in inferring our presence through these metrics.

In particular, our definition is similar to (ε, δ)-Differential Privacy (also known as approximate DP)
[16] in our use of ε and δ privacy parameters. We similarly consider eε to be a bound on the ratio between
the probability of an event occurring in two “neighboring” worlds, and we consider δ to be a parameter
which allows for a set of very low-probability events to be ignored when evaluating this ratio. In Section
5 we draw also on theoretical principles from the proof of the composition theorem [47] and prior work on
the analysis of differentially private streaming queries [48, 49] to prove our result in the case of of iterating
over multiple time steps.

The main difference between our framework and traditional DP is that we do not consider all pairs
of neighboring datasets when evaluating privacy. Instead, we only consider the world with a trader Alice
making trades in the noisy market, and the “neighboring” world where Alice is not trading at all and an
adversary Eve only sees the market noise. This narrowing of the scope means we can develop different
strategies which are more relevant to the equities trading scenario, and we have more control over our
privacy budget in the case of iterating over time steps.

Our solution is also different from traditional DP mechanisms in that we are not adding noise to hide
our trading activity, but instead we are hiding our trades in the “natural” market noise. Some works have
also considered leveraging existing noise in the data, otherwise known as “noiseless DP” [50], however
their analysis is also based on the traditional differential privacy definitions that compare all neighboring
datasets, and therefore is not directly applicable to our framework.

Quantitative Information Flow (QIF) The beneficial qualities derived from the DP definitions
on their own do not tell us how we might trade as much as possible within these guardrails. To approach
this question, we draw additional inspiration from the field of Quantitative Information Flow (QIF) [21,
22], which has been developed over the last two decades and concerns itself with developing mathematical
methods to quantify the leakage of information in systems.

Since the seminal work by Chatzikokolakis et al [23], discrete memoryless channels have been widely
used in QIF to model security systems. These channels, which are also commonly used in the field of
information theory [20, Chapter 7], are mathematical objects which abstract away irrelevant particular-
ities of the problem in question, while maintaining those that affect the leakage of information. After
introducing our core framework in the next subsection in more colloquial terms, we will re-formulate it
using the aforementioned channels, and then present a broad solution for many practical cases using linear
programming. The solutions to the linear programs we set up in this way can be viewed as strategies that
optimize particular trading goals within the confines of our information leakage guardrails.

In QIF literature, it is often the case that a complex system can be better understood as a collection
of smaller, simpler systems which interact in some manner. As a result, much effort in the field has been
dedicated to defining ways of composing channels, and studying their properties [22, Chapter 8]. These
compositionality results have been useful in studying the leakage of information in anonymity protocols
[24, 25, 26], timing attacks against cryptosystems [27], two-player games [28], and in scenarios where the
sensitive data that is correlated to the input [29]. We adopt this compositional approach in our work,
using the parallel and cascading compositions [22, Chapter 8] to obtain, from simpler and more intuitive
channels, a comprehensive model of the effect a trader Alice’s actions have in the market.

It is important to note that, despite using some of the same mathematical tools, our problem is in
principle quite different than the ones usually studied in QIF. In QIF, it is often assumed that a secret
input, whose value is of interest to an adversary, is fed to the system. The system, in turn, produces an
output which is visible to said adversary. By using the model discussed above, one is able to measure
the amount of information the adversary has before and after the execution of the system, and use this
information to quantify the leakage of information. This is achieved with information measures, such
as Shannon entropy [35, 34, 23], min-entropy [36, 37] and, more recently, generalizing frameworks that
allow for a more robust analysis, such as the g-leakage framework [38] and core-concave entropies [31].
By comparing these quantities before and after the adversary observes Y , one can quantify the amount
of information leaked.

In our setting, on the other hand, the system is receiving as input the activity of the market, and
producing an output that is a modified version of this activity, depending on our trader Alice’s actions.
The objective of our model is not quantifying the information leakage about the state of the market,
but instead minimizing the probability that the adversary will notice that the system is executing —
i.e., making the output of the channel behave similarly to the input. Therefore, while the channel model
is quite useful for our problem, the traditional QIF approach to measuring information leakage is not
directly applicable to the situation at hand.

With this distinction in mind, we note that the problem of designing a channel that leaks as little
information as possible under certain constraints — which is similar to our goal of designing a channel
maximizing Alice’s actions while respecting some information leakage constraints — has recently been
object of much research in QIF. Perhaps the approach most similar to ours is the one of Khouzani

5

and Malacaria [30], in which they show one may obtain such an optimal channel by solving a convex
optimization problem, in which appropriate constraints are introduced in order to guarantee that this
minimally-leakage system still serves its intended purposes. Two other papers, one from the same authors
[31] and one from Américo et al [32], showed that, in some particular cases, this optimization problem
has a “universal” solution: a single channel that minimizes leakage for different information measures
commonly used in the literature. Another channel optimization problem was studied by Alvim et al
[28], arising as solutions for what the authors called “information leakage games”. These are two-player
games in which one player (the user) is interested in minimizing the leakage of information, whereas the
other player (the adversary) is interested in maximizing it. They are able to prove the existence a Nash
equilibrium for these games, both under QIF information-theoretic and differential privacy metrics.

Besides the aforementioned result from Alvim et al [28], other works in the literature have investigated
the connection between QIF metrics and differential privacy. Barthe and Kopf [39] and Alvim et al [40]
derived min-entropy leakage bounds for differentially private mechanisms, and Chatzikokolakis et al [41]
studied the relationship between differential privacy guarantees and some channel preorders usually used
in QIF, and showed that a mechanism satisfies ε-differential privacy if, and only if, its leakage under an
appropriately chosen information measure is upper-bounded by ε.

Distribution Testing Distribution testing (or more generally, property testing) is a well studied sub-
field of computer science. Traditional distribution testing settings rely on having an unknown distribution
from which a fixed number of samples can be drawn to compute or test for properties. Algorithms are
designed to test for properties with the goal of minimizing queries to the distribution while also minimizing
error/maximizing confidence in the computed property. Algorithms are then compared against results for
adversarial models in which a information theoretic adversary bounded only by the number of independent
samples that can be drawn from the distribution computes the property being tested for [51]. The goal
of these models is primarily to find efficient methods of testing properties of very large distributions in
which only local access to a fixed number of samples is feasible [51].

On first glance, our problem appears deeply related to distribution testing. Indeed, we have an
information theoretic adversary looking to detect Alice’s market activity, and the adversary ultimately
must distinguish between two discrete probability distributions, one where Alice makes actions and one
where she does not. However our problem setting is differentiated from traditional distribution testing
because we are working in an interactive setting where the distribution being sampled is not fixed, but is
rather allowed to depend in a known way on prior sampled values.

1.3 Organization
In section 2, we give the necessary background on US equities trading, DP, and QIF. In section 3, we
provide a more technical overview of our basic definitions and approach. In section 4, we formulate our
problem as a linear program, using the channel structure of QIF. In section 5, we extend our framework
to iterate over consecutive time periods of trading activity. In section 6, we apply our framework and
linear programming solver to various examples from TAQ historical market data. In section 7, we discuss
directions for future work.

2 Preliminaries

2.1 U.S. Equities Trading Glossary
We later rely on some definitions and terminology related to U.S. Equities trading:

U.S. Equities Market The U.S. Equities Market is an umbrella term for the many venues where
one can trade public stocks and stock-like securities, such as ETFs. The collection of these public stocks
and stock-like objects is known as “equities.” The composition and structure of this decentralized market
changes over time, but it currently consists of 16 stock exchanges and over 30 Alternative Trading Systems
(often colloquially called dark pools). Largely, the same set of equities can be traded at one of these venues
on any given trading day.

Symbol We will refer to the equities to be traded as symbols. A symbol can be specified in any of
several different naming conventions. We will use tickers, which are the short letter combinations typically
displayed on websites where people look at financial data. For example, Microsoft shares are referred to
under the ticker/symbol “MSFT.”

6

Trade A trade occurs when a trading venue (e.g. an exchange or dark pool) matches a buyer and
seller of the same equity at terms acceptable to both. A trade has a size, which is the number of shares
being traded, and a price, which is the amount in dollars paid per share. When a trade happens, it is
quickly reported and basic parameters like time of trade, size, and price are made available to all market
participants through various data feeds. The identities of the parties trading, however, are not publicly
reported.

Quote A quote is an expression of interest to buy or sell a symbol. It specifies a price as well as a size,
and is considered binding until it is canceled or results in a trade. Quotes submitted to exchanges are
disseminated to market participants through various data feeds.

Ask/Offer An ask (also known as an offer) is a quote issued by a seller.

Bid A bid is a quote issued by a buyer.

NBO/NBB/NBBO The National Best Offer (NBO) is the lowest price currently being advertised in
a quote by a seller across the exchanges. The calculation of this is nuanced, as quote updates do not reach
all market participants simultaneously. This means that one’s view of the current “best” quote depends on
one’s geographic location relative to the exchanges, as well the mechanisms used to transmit the relevant
data from point to point. The Securities Information Processors (SIPs) are tasked with collecting real-
time quote updates from exchanges and consolidating them into NBBOs that are then disseminated. It
is these NBBOs that appear in our historical market data set. There are currently two SIPs that cover
disjoint sets of symbols.

TAQ data A common source of historical market data is Trade and Quote (TAQ) data as provided by
the New York Stock Exchange (NYSE). Somewhat confusingly, this is a data product offered by NYSE,
containing data from the SIPs (one of which is operated by NYSE), and that data includes trades and
quotes across all exchanges, of which NYSE is one. The trade data includes the date, time, symbol, size,
and price of every trade, as well as a code that indicates which exchange (if any) the trade occurred on.
Trades occurring on dark pools are reported under a single code for all such venues. The quote data
similarly includes the date, time, symbol, size, price, and exchange code for each consolidated “top-of-
book” quote at an exchange. In the case of an offer, a top-of-book quote is one that is at the current
lowest price being offered at that exchange. In the case of a bid, a top-of-book quote is one that is at
the current highest price being bid at that exchange. The consolidation means that we get a record in
the data for each time the total size or price at the top-of-book changes. Our data also includes NBBOs
(date, time, symbol, price, total size) as computed by the SIPs.

Crossing the Spread At any given moment, the NBB is typically lower than the NBO. If not, the
potential buyer willing to pay up to the NBB price could simply trade with the potential seller willing
to accept as low as the NBO price. [Aside: this is not perfectly true, as there are complex fee structures
at various exchanges that can affect the “all in” prices for potential buyers and sellers in ways that break
symmetry here.] The difference between the NBO and the NBB is called the spread. When a buyer buys
at the NBO or a seller sells at the NBB, this is called crossing the spread.

2.2 (ε, δ) Differential Privacy
While our framework and analysis differ from traditional differential privacy in key ways, we will refer to
differential privacy as a notion which we draw from for our information leakage framework. It is therefore
useful to provide the traditional definition of (ε, δ)-differential privacy for reference.

Definition 1 A randomized algorithm M defined over datasets in D is considered to be (ε, δ)-differentially
private for δ ∈ [0, 1], ε > 0 if for all adjacent (also referred to as neighboring) datasets D,D′ ∈ D and
∀S ∈ range(M),

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S) + δ (1)

where ε and δ are privacy parameters. Intuitively, eε bounds the ratio between probabilities of an outcome
of the algorithm on adjacent datasets, and δ provides slack that allows for low-probability events to be
ignored. Our framework will draw inspiration from these notions of privacy ratios and parameters, however
in our context we will define adjacent random variables determined by a turn-based game, rather than
considering a randomized algorithm quantified over all possible neighboring inputs.

7

2.3 The Channel Framework
As discussed in Section 1.2, discrete memoryless channels [20, Chapter 7] (referred henceforth simply as
channels) have been successfully applied in the field of Quantitative Information Flow (QIF) to model
diverse scenarios. In this section, we introduce the basic notions of this framework necessary for modeling
our problem, which will be done in Section 4. For a throughout treatment of QIF, we refer to the recent
book by Alvim et al [22]. Despite their simplicity, these channels are incredible powerful tools for modeling
even complex systems. The most basic illustration of this can be seen in Figure 2.

Channel KX X̃

Figure 2: Schematic illustration of the channel model.

Given a random variable (r.v.) X, we represent its probability mass function (p.m.f.) by PX , writing
PX(x) to denote the probability of X = x. Similarly, we write PX,X̃ for the p.m.f. of the joint r.v. (X, X̃)

and, given x ∈ X with PX(x) > 0, we write PX̃|x for the conditional distribution over X̃ given x,

PX̃|x(x̃) =
PX,X̃(x, x̃)

PX(x)
.

A channel is a mathematical representation of a system who receives as input a discrete random
variable (r.v.) X, and producing an output X̃, in such a way that the realization of X̃ may depend on
that of X. It is given by a triple (X , X̃ ,K), where X and X̃ are nonempty, finite sets (called input and
output sets, respectively) and K is a nonnegative real-valued function (x, x̃) 7→ K(x̃|x) such that, for all
x ∈ X ,

∑
x̃∈X̃ K(x̃|x) = 1. We often use K to refer to a channel instead of the triple (X , X̃ ,K), and we

write K : X → X̃ to signify that K is a channel with X and X̃ as input and output sets, respectively.
Notice that a distribution PX and a channel K : X → X̃ uniquely define a joint distribution PX,X̃ , by
PX,X̃(x, x̃) = PX(x)K(x̃|x). From this, one may also obtain PX̃(x̃) =

∑
x∈X PX,X̃(x, x̃) and, whenever

PX̃(x̃) > 0, PX|x̃(x) = PX,X̃(x,x̃)/PX̃(x̃).
A channel can be succinctly represented in a matrix form, in which the rows and columns are indexed

by the elements of the input and output sets, as in Figure 3.

K x̃1 x̃2 x̃3 x̃4

x1 1/3 1/3 1/6 1/6

x2 1/5 1/10 1/5 1/2

x3 1/6 0 1/2 1/3

Figure 3: A channel K : X → X̃

Channels are often useful for modeling situations in which an agent is interested in knowing some
information related to X, but only has access to the realization of X̃. In QIF, X usually models some secret
or sensitive information that an adversary has some interest in. This adversary knows the distribution PX ,
the transition matrix K, and is able to observe the realization X̃ = x̃. With this information, he is able
to perform a Bayesian updating on his knowledge of X, substituting PX with PX|x̃. On the other hand,
information theory [13, 20] commonly uses the model discussed above to reason about communication
systems, in which a party wants to send a message X to a destinatary that has access to the channel
output X̃. This formalism is capable of capturing a vast number of real-life scenarios, such as transmitting
data via Ethernet cables or the process of storing it in physical media.

Example 1 To illustrate the concepts discussed above, let’s model a simple communication scenario.
Consider a channel that transmits one bit at a time. Ideally, we would have X̃ = X with 100 % certainty
— that is, the communication channel would be.

8

K 0 1

0 1 0

1 0 1

However, this ideal scenario rarely occurs in the real world. For example, in the case of the common
Ethernet cable, there is a small probability (≈ 10−12) of each bit flipping during transmission. In this
case, an appropriate channel would be what is known in the information theory literature as the binary
symmetric channel BSC(α) [20, Chapter 7], which is defined in terms of a probability of error α ∈ [0, 1].

BSC(α) 0 1

0 1− α α

1 α 1− α

(2)

A BSC(α) is a channel in which there is a probability p of the input bit flipping during transmission.
Therefore, the channel BSC(10−12) provides a good model for an Ethernet cable.

2.4 Composition of Channels
In real-life systems, we often have multiple interacting parts that are better understood on their own.
These can be, for example, different functions in a program, or different wires on a large communication
network. In many of these scenarios, it is possible to obtain a channel that models the larger system by
first obtaining the channels modeling its parts, and then composing them in some manner.

In this section, we introduce two different ways to compose channels which have been used in the
QIF literature [37], [22, Chapter 8]. These compositions will be useful when modeling our problem using
channels in Section 4.

2.4.1 Cascading

The most straightforward composition of channels can be achieved by using the output of a first channel
as input of a second channel, as illustrated in Figure 4.

K3

X Z
Y

K1 K2

Figure 4: A channel K3 obtained by cascading K1 and K2

Definition 2 Let K1 : X → Y and K2 : Y → Z. We say that K3 : X → Z is the cascading of K1 and
K2, and write K3 = K1K2, if

K3(z|x) =
∑
y∈Y

K1(y|x)K2(z|y). (3)

Notice that equation (3) is just regular matrix multiplication — that is, K3 is simply the result of
multiplying the matrix of K1 by the matrix of K2.

2.4.2 Parallel Composition

When two channels share the same input and the execution of one does not interfere with the other, we
can combine them using the parallel composition operator, as depicted in Figure 5.

9

K3

((X1,X (Y1, Y2)

K1

K2

Figure 5: A channel K3 obtained by the parallel composition of K1 and K2

Definition 3 Let K1 : X → Y1 and K2 : X → Y2. We say that K3 : X → (Y1,Y2) is their parallel
composition, and write K3 = K1 ∥ K2, if

K3(y1, y2|x) = K1(y1|x)K2(y2|x).

The intuition behind this definition is straightforward: notice that, as their execution is independent
of each other, we will have that the joint conditional probability rY1,Y2|x, for each x ∈ X , will be given by

PY1,Y2|x(y1, y2) = PY1|x(y1)PY2|x(y2) = K1(y1|x)K2(y2|x),

which is precisely the transition matrix of K1 ∥ K2 in Definition 3.

2.4.3 Using Channel Composition to Model a Communication Protocol

We finish this section with a toy example, illustrating how the operations defined above can be helpful in
modeling more complex systems.

As we mentioned in Example 1, it is hardly the case that communication channels will be error free.
One way to mitigate the errors caused by those channels is to add redundancy — that is using more than
one execution of the channel for each symbol to be transmitted.

Suppose someone is transmitting a message using a BSC(α), and consider the following communication
protocol: each bit is transmitted not once but twice, and the bits are compared by the receiver. If they are
equal, the transmission is considered successful. Otherwise, an error symbol ⊥ is generated. A schematic
depiction of the protocol is depicted in Figure 6.

X Comparison X̃

BSC(p)

BSC(p)

Figure 6: A diagram for the communication protocol described

Where the channel Comparison is defined as follows.

Comparison 0 1 ⊥

(0, 0) 1 0 0

(0, 1) 0 0 1

(1, 0) 0 0 1

(1, 1) 0 1 0

10

We will now use the cascading and parallel composition operations to obtain a channel describing the
whole protocol. First, notice that the two executions of the BSC(α) channel occur under the same input
(that is, the transmitted bit is the same) and are independent of each other. Thus, they can be combined
using the parallel operator, obtaining the channel BSC(α) ∥ BSC(α) . The output of this channel is
then fed to Comparison, and thus the whole system can be modelled by the channel

Protocol = (BSC(α) ∥ BSC(α))Comparison,

which is depicted below. Notice that, by using this protocol, the probability that a bit will be flipped
without the knowledge of the receiver is only α2, instead of α in a straightforward execution of BSC(α).

Protocol 0 1 ⊥

0 1− 2α+ α2 α2 2α− 2α2

1 α2 1− 2α+ α2 2α− 2α2

3 A Proposed Framework for Defining Information Leakage
With all of these preliminaries in place, let’s get to the problem at hand. We’ll consider a trader, Alice,
who wants to accomplish a certain activity (e.g. buying 1 million shares of “MSFT”, the ticker symbol
for Microsoft stock on the US equity market) without being noticed. Let’s suppose there is an adversary,
Eve, who may act in a way that is detrimental to Alice (e.g. she acts to raise the price of MSFT). We
assume here that Eve does not have direct knowledge of what Alice is doing, but is instead reacting to
observable data feeds. We would like to avoid making too many assumptions on how Eve determines her
actions, but some amount of imposed structure is necessary to make the problem tractable. In fact, any
specific action Alice takes creates a specific addition to the full transcript of available data feeds, and a
hypothetical Eve could have a hard-coded reaction to this. This is the kind of hypothetical that seems
silly to worry about in practice, but can frustratingly scuttle attempts at systemic understanding.

Let’s start with a warm-up where we limit Eve’s observations to a single measurement at a set time
during the trading day. For example, Eve might look at the sum of volume that traded on the NBO
for MSFT over the regular day. If Alice does nothing at all, there is some ambient distribution to Eve’s
measurement that arises from general market activity. Since trends in such measurements over historical
data can be modeled by anyone who purchases market data, we will assume that the ambient distribution is
known (to Alice, to Eve, to everyone). We’ll let X denote the ambient distribution for Eve’s measurement
(in an Alice-less world), and let X̃ denote Eve’s actual measurement (in an Alice-full world).

If Alice does nothing, the distribution of Eve’s measurement will be X (i.e. X̃ = X), where the
randomness is over external market forces. A simple model of Alice’s actions and their affect on Eve’s
measurement could be X̃ = X + A, where A is a random variable sampled independently from X. This
models a case where Alice decides what to do before learning anything about the sampled value of X. The
randomness of A here is over the market’s reaction to Alice’s decision. For example, if Alice decides she
wants to buy 10,000 shares of MSFT in the first 10 minutes, the randomness in A reflects the variation in
how much she will have to cross the spread to accomplish this. It could potentially also model additional
market activity that is a response to Alice’s activity. The additive structure of the model here seems
reasonable for measurements like volume, but may be inappropriate for other kinds of measurements that
Eve could make. A more general model in this sense would be X̃ = f(X,A) where f is allowed to be
from some larger function class. Non-linear functions f could encompass more complicated interactions
between Alice’s activity and the wider market.

We might imagine, however, that Alice has some auxiliary information about the sampled value of
X available to her before she commits to her actions in this time period. Perhaps she is observing
contemporaneous qualities of the market while inserting her own volume, and hence knows something
about the sampled value of X while deciding how much to trade herself. For example, we might imagine
Alice as having a last-mover advantage: she sees the sampled value of X and then decides how much
volume to insert herself just before the time is up. A more general model is to allow A to depend on
aux(X), a value that represent Alice’s auxiliary information at the time of her choice. In this context, we
could set X̃ = f(X,Aaux(X)).

Let’s summarize our framework so far by viewing this as a game presented to Alice in the following
steps. When we say that a value is “published,” we mean that it is revealed to both Alice and Eve.

1. The distribution of X is published −→ DX ;

2. X is sampled from DX with randomness rX −→ x;

3. Alice gets auxiliary information about the sample x −→ aux(x);

4. Alice selects a distribution from DA from a family {DAi}i∈I of allowable distributions;

11

5. A is sampled from DA with randomness rA −→ a;
6. Alice is given a. The value of x+ a is published.

Steps 2 through 6 above consist of a sampling procedure that defines a new distribution DX̃ , observable
by the adversary Eve. The randomness values rX and rA are assumed to be independent.

This sequence of events defines a continuum of possibilities with respect to the amount of information
at Alice’s disposal as well as the family of distributions for A that she gets to choose from. If no auxiliary
information is available to Alice, then she must choose one distribution blindly. If she has full information
(i.e. aux(x) = x), she can potentially choose a different distribution for A for each value of x.

If Alice can exert full control over the value of a, then this is reflected by the inclusion of point
distributions in the family DAi

. However, since Alice’s trading activity is an interaction with a non-
deterministic market, there are many situations where it is more plausible to limit Alice’s choices to
distributions that all have some minimal entropy.

Alice’s goal is to maximize her own trading goals in this game, subject to some limitation on Eve’s
ability to distinguish between X and X̃ based on the published information. Alice’s trading goals may
include maximizing her expected volume, as well as reducing her variance or otherwise concentrating her
activity around the expectation for a smoother trading experience.

In terms of information leakage, what Alice may want to avoid is the ability of Eve to take action based
on the X̃ value that she would not have taken based on the original X value with a similar probability.
To express this formally, we’ll let PX(E) denote the probability of an event E under the distribution DX ,
and we’ll let PX̃(E) denote the probability of E under the distribution DX̃ . Then Alice can impose a
criterion like

PX̃(E) ≤ eεPX(E)

for all events E, where ε is some small positive value. Thus eε is some multiplicative factor that is a bit
larger than 1. This definition is very closely inspired by differential privacy (e.g. compare to the typical
DP definition as given in the Preliminaries). We could symmetrically require a lower bound,

PX̃(E) ≥ e−εPX(E),

if we are similarly concerned about favorable events becoming less likely due to Alice’s actions.
There are many extensions and modifications we may want to make to this basic framework as we

apply it to real trading situations. First, we may consider repeated rounds where Eve makes measurements
at the end of every round and Alice makes iterative choices. Second, we may consider Eve as making
several simultaneous measurements in each round, meaning that X will become vector-valued instead of
scalar-valued. In such cases, we will want to analyze the differential privacy-style guarantee over the joint
probability space of all rounds and all coordinates of the measurement vector.

Depending on the interplay of DX , Alice’s choices, and the auxiliary information, we could find
ourselves in situations where the eε multiplier on probabilities does not allow us sufficient room to make
trading progress. For example, if there is no auxiliary information (i.e. aux is a constant function) and
DX has a vanishing tail, then Alice cannot know when it is “safe” to add any fixed amount of trading
activity and will be stuck doing nothing.

This problem can be overcome in a few different ways. One way is to introduce a small additive error
parameter δ (a typical extension of differential privacy), and require that

PX̃(E) ≤ eεPX(E)

only hold for events E contained in a subset S of outcomes such that PX̃(S) ≥ 1 − δ. A similar but
perhaps more empirical approach is to group all values in the tail together beyond a certain point into a
single outcome that +a does not affect.

Alice’s functional goals (e.g. buying 1 million shares of MSFT) will be in tension with her goal of
avoiding information leakage. If she picks small values of ε and δ and demands a high value of information
leakage protection, there may be no way to accomplish her functional goals. To study this tradeoff, we
will be interested in questions like: given values of ε and δ, what is the most trading volume that Alice
can accomplish while staying inside the eε constraint on Eve’s actions with probability 1 − δ, and how
should she go about doing it? Conversely, given a trading volume that Alice wants to accomplish, what’s
the lowest ε,δ she can achieve? We will focus in this paper on the first formulation of the question, but
our framework can be rearranged to answer questions of the second formulation as well.

Alice may also be interested in more than just her expected trading volume and her information
leakage. She may want to control the variance of her trading strategy, for example, so that she isn’t left
trying to trade very heavily in some conditions while trading virtually nothing in others.

The answers to such questions will depend heavily on the nature of the distributions for A and X, the
functions f (additive for now), and the auxiliary information. In this paper, we will begin to flesh out
the study of these questions by solving a few basic cases. We will also work through some examples using
historical trade and quote (TAQ) data for US equities.

12

4 Modelling our Problem with the Channel Framework
We are now ready to model our problem with the channel framework introduced in Section 2.3. Let X,
taking values on X = {x1, . . . , xn} be the ambient distribution, and recall that PX is known to everyone.

We start by considering Alice’s point of view. First, she observes the realization of some aux(X), with
is a (perhaps probabilistic) function of X. This aux(X) can be a estimation of the realization of X, a
subset, or nothing at all. Generally, we can denote by O = {o1, . . . , om} the set of observables that Alice
has access to, and model this process by a channel Aux : X → O, which implements the function aux(X).

If Alice has access to the exact value of X (i.e., if she has knowledge of X), then O = X and

Aux x1 x2 · · · xn

x1 1 0 · · · 0

x2 0 1 · · · 0

...
...

...
. . .

...

xn 0 0 · · · 1

(4)

On the other hand, if Alice has absolutely no information about X, we take O to be a singleton and

Aux o

x1 1

x2 1

...
...

xn 1

(5)

Depending on the observable value, Alice decides on a distribution over a set of possible values A =
{a1, . . . , an}. This can be modeled by a channel Alice : O → A, which associates to each O the distribution
over A chosen by Alice.

For example, suppose that O = {o1, o2, o3}, where the observable o1 means that the realization of X
is on the lower end, the observable o2 that it is on the middle, and o3 that it is in the higher end of the
range of X. And let a1 and a2 be actions representing “buy a lot of” or “buy a few” shares. In that case,
one of the possible strategies of Alice, could be to select a1 if she observes o1, a2 if she observes o3, and
choose randomly between the two if she observes o2. That can be modeled by the following channel.

Alice a1 a2

o1 1 0

o2 1/2 1/2

o3 0 1

Finally, Alice action interacts with the realization of X, and the result X̃ is made public to everyone.
This can be modeled simply by a channel Public : (X,A) → X̃, which takes X and A as input and outputs
the corresponding result. As an example, supposing that A is Alice’s volume and the public output is
X̃ = X +A, the channel can be defined as

Public(x̃|x, a) =

{
1, if x̃ = x+ a,

0, otherwise.
(6)

4.1 Deriving the Composed Channel
Now that we have defined all the parts of the system, it is time to derive the composed channel. A first
schematic view of our system is given in Figure 7.

In order to obtain a single channel using the operations in Section 2.4, we use a small “trick” by adding
a channel I : X → X , whose matrix is the identity matrix, on the upper path. That is,

I(x|x′) =

{
1, if x = x′,

0, otherwise.

13

X

AliceAux

Public X̃

Figure 7: A schematic illustration of our problem with the channels discussed

Note that adding I does not change the value of the upper input to Public, being merely a necessary
modification in order to compose the higher and the lower paths into a single one. The result is depicted
in Figure 8

Aux

X

I

Alice

Public X̃

Figure 8: The schematic illustration of the problem with the channel I added

Notice that, if we cascade the channels Aux and Alice, we obtain an illustration similar to Figure 6.
Similarly to what was done in Section 2.4.3, we apply a parallel composition of the cascade AuxAlice with
I, and we cascade the resulting channel with Public. Thus, using the cascading and parallel operations,
we obtain the following channel modeling the entire system from X to X̃.

System = (I ∥ (AuxAlice))Public. (7)

4.2 A Solution via Linear Programming
Notice that in the framework introduced in this section, the only parameters Alice has control over are
the entries of the channel matrix Alice. Here we formulate a linear program that solves the following
problem: supposing that the set A are real numbers representing Alice’s market activity, what is the
choice of matrix Alice that maximizes Alice’s actions while satisfying the privacy guarantees of Section
3? Our first step towards this goal will be to obtain the distribution PX̃ from PX and (7).

Recall that PX,X̃(x, x̃) = PX(x)System(x̃|x). The matrix of this joint distribution can be simply
obtained by

PX,X̃ = ΠXSystem,

where

ΠX =


PX(x1) 0 · · · 0

0 PX(x2) · · · 0
...

...
. . .

...
0 0 · · · PX(xn)


The row vector representing PX̃ can then be simply obtained by marginalizing the columns of PX,X̃ ,

which is equivalent to multiplying PX,X̃ on the left side by the row vector 1⃗ = (1, 1, . . . , 1)

PX̃ = 1⃗PX,X̃ .

Notice that all the operations above, as well as the cascading and parallel operations in (7), are linear
operations w.r.t. the entries of Alice

Similarly, letting A be the r.v. of Alice’s actions, we may derive the vector PA, by

PA = 1⃗ΠXAuxAlice.

Assuming that X̃ = X , we may obtain the optimal values for Alice by solving the following linear
programming problem, which has its entries as variables.

14

• maximize: E[A] =
∑

a∈A aPA(a)

• subject to:

–
∑

a∈A Alice(a|o) = 1 ∀o ∈ O
– Alice(a|o) ≥ 0 ∀a ∈ A, o ∈ O
– e−εPX(x) ≤ PX̃(x) ≤ eεPX(x) ∀x ∈ X ;x < xh

–
∑

x≥xh
PX̃(x) ≤ mδ

Where the value of m ≥ 1 is a bound on how large the probability mass of the ignored tail can get in
terms of δ, and

xh = min

x

∣∣∣∣∣ ∑
x′≥x

PX(x′) ≤ δ

 .

The first two constraints guarantee that Alice is indeed a channel, the third one is the differential privacy
condition, and the last one is the bound on the cumulative distribution of the right tail, for which the
differential privacy bounds are ignored. We note that an analogous condition on the left tail can be added
with its own parameter δ.

4.2.1 Minimizing the Variance of Alice’s Actions

Besides maximizing the expected value of her actions, a second goal of Alice might be to minimize their
variance. One reason for that is to establish a more consistent trading strategy which, while not necessarily
better from a privacy standpoint, might be preferred. In fact, there might even be an argument to forego
of some gain in E[A] in order to diminish the variance of Alice’s results.

Given the discussion above, this can be achieved as follows. Recall that the variance of A can be
calculated as

V ar(A) = E[(A− E[A])2] (8)

This quantity, unfortunately, is concave w.r.t. the entries of Alice. However, letting Emax be the
solution of the linear program above, we may use a proxy of V ar(A) by substituting Emax for E[A] in
(8), obtaining

E[(A− Emax)
2] =

∑
a

PA(a)(a− Emax)
2, (9)

which is linear w.r.t. Alice.
Therefore, we may obtain the solution of the first linear programming problem and then minimize (9)

in a second one. In order to do so, we add another constraint, guaranteeing that the value of E[A] is at
least tEmax, for some t ∈ [0, 1]. Notice that in the case t = 1, this constraint becomes E[A] ≥ Emax, and
the LP below minimizes the actual variance V ar(A).

• minimize:
∑

a PA(a)(a− Emax)
2

• subject to:

–
∑

a∈A Alice(a|o) = 1 ∀o ∈ O
– Alice(a|o) ≥ 0 ∀a ∈ A, o ∈ O
– e−εPX(x) ≤ PX̃(x) ≤ eεPX(x) ∀x ∈ X ;x < xh

–
∑

x≥xh
PX̃(x) ≤ mδ

– E[A] ≥ tEmax

4.3 Implementation and Some Toy Experiments
We implemented the linear programming problems presented in this section using CVXPY [42, 43], a
domain-specific language for convex optimization. CVXPY supports many different solvers, the one being
used in this paper being the linear optimization solver from SciPy [44]. The code with our implementation,
accompanied by a user guide, will be made publicly available before publication.

In this section, we explore some basic behavior of the linear programming solutions generated by our
implementation. Our main objective in doing so is to provide some intuition in a simplified setting, before
discussing the results obtained with real-life stock market data, which will be done in Section 6.

For these experiments, we take X = X̃ = {0, 1, . . . , 50}, A = {0, 1, . . . , 20}. We generate PX by
sampling 107 times a normal distribution with mean 25 and standard deviation 8, rounding the results to
the nearest integer, ignoring the values that fall outside of X and normalizing the frequencies to obtain a
probability distribution. The channel Public used is similar to (6), with the difference that we truncate
the results that fall outside of X , that is

15

Public(x̃|x, a) =

{
1, if x̃ = x+ a or (x+ a > 50 and x̃ = 50)

0, otherwise.

Finally, we define the Aux channel in terms of a parameter q ∈ [0, 1] which we call noise. [Note: this
is channel noise, not to be confused with the market “noise” that will be reflected in the distribution X
in trading scenarios.] When q = 0, the channel used is (4), and when q = 1, (5).

For values between 0 and 1, we let O = X and make the Aux channel increasingly noisier by using a
truncated two-sided geometric distribution:

Aux(j|i) = αi(1− q)(q)|i−j|,

where αi is a normalizing factor, so that each row of Aux sums to one. The behavior of this channel tends
to the two channels given above, when q goes to 0 or 1, respectively.

As an example, if the range of X is {0, 1, 2, 3}, the channel obtained by setting q = 0.5 is

Aux 0 1 2 3

0 8/15 4/15 2/15 1/15

1 2/9 4/9 2/9 1/9

2 1/9 2/9 4/9 2/9

3 1/15 2/15 4/15 8/15

First, we take δ = 0 and eε = 1.3, varying the values for the noise parameter q. The results can be
seen in Figure 9 1. Unsurprisingly, the expected value of Alice’s actions decreases as the Aux channel
becomes less informative.

0 10 20 30 40 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Noise: 0.0 E[A]: 1.674
PX

e PX

e PX

PX

0 10 20 30 40 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Noise: 0.8 E[A]: 1.637

0 10 20 30 40 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Noise: 0.85 E[A]: 1.559

0 10 20 30 40 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Noise: 0.87 E[A]: 1.382

0 10 20 30 40 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Noise: 0.9 E[A]: 0.987

0 10 20 30 40 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Noise: 1.0 E[A]: 0.208

Figure 9: The solution of our implementation for varying values of the noise parameter, and the corresponding
value of E[A].

As can be seen in Figure 9, there is very little that Alice can do in the scenario where she has no
information about X. This is because the lack of information forces her to adopt the same strategy
independent of the realization of X, and the small gap between PX and eεPX at the right-hand tail of the
distribution forces Alice to choose A = 0 most of the time in order not to violate the privacy constraints.

To mitigate this effect, we can use the parameters δ and m of the linear programming problem. In
Figure 10 we can see that by setting δ = 0.01 and m = 1.3, we are able to significantly increase Alice’s
performance on the high-noise scenarios. Notice that, when the noise is very low, our implementation
allows Alice to take advantage of these parameters by maximizing the entire distribution after the cutoff
point xh.

1All graphs in this section and subsequent sections were produced using matplotlib [45].

16

0 10 20 30 40 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Noise: 0.0 E[A]: 1.911
PX

e PX

e PX

PX

0 10 20 30 40 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Noise: 0.8 E[A]: 1.682

0 10 20 30 40 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Noise: 0.85 E[A]: 1.658

0 10 20 30 40 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Noise: 0.87 E[A]: 1.647

0 10 20 30 40 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Noise: 0.9 E[A]: 1.592

0 10 20 30 40 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Noise: 1.0 E[A]: 0.642

Figure 10: The solution of our implementation for varying values of the noise parameter, and the corre-
sponding value of E[A], with δ = 0.01 and m = 1.3.

5 Iterating Over Time Periods
The linear programming solution we presented in the prior section applies to a single time period of market
interaction, viewed holistically. But now let’s imagine that our six step game repeats in a sequence of n
rounds, where the random sampling performed in steps 2 and 5 of every round is independent. In this
case, we can let X1, X2, . . ., Xn denote the sequence of random variables in a scenario without Alice, and
let X̃1, X̃2, . . ., X̃n denote the sequence of random variables in a scenario with Alice present. In either
scenario, the distribution of Xi that is announced in the first step of round i is allowed to be a function
only of the history of the published values x1 + a1, . . ., xi−1 + ai−1 so far.

Alice’s leakage minimization goal over these n rounds may be formulated relative to the joint distri-
bution of the full series of random variables. For example, she may want

P{X̃i}(E) ≤ eεP{Xi}(E)

to hold for a certain set of events E in the joint probability space. For simplicity, let’s assume for now
that δ = 0 and she wants this to hold for the entire probability space.

To achieve this, Alice could choose some values ε1, . . . , εn such that ε1 + · · ·+ εn = ε. She could then
treat each round i as a fresh occurrence of the one round game with εi as her bound. In this case, we
would like to decompose the joint probability of any set of published values y1, . . ., yn as follows:

P{X̃i}(y1, . . . , yn)
?
=
∏
i

PX̃i
(yi|y1, . . . yi−1).

We may think this should hold due to the independent sampling of Xi and Ai in steps 2. and 5. of our
game, once y1, . . . , yi−1 determine the distribution of Xi. However, there is an important subtlety here,
since X̃i is also influenced by Alice’s selection in step 4. of the game, and she could make this selection in
a way that depends on her prior knowledge of x1, . . . , xi−1 and a1, . . . , ai−1 individually, for example. So
we’re going to make a stipulation here that Alice does not do this, but rather the entirety of her strategy
in round i is a function only of the prior published values y1, . . . , yi−1, and does not depend upon any
private knowledge of the earlier history. (Note that the published distributions X1, . . . , Xi are themselves
assumed to be known functions of y1, . . . , yi−1.)

This certainly holds if Alice plays the new round i with no dependence on the prior history, other than
that implicit in the definition of Xi. In this case, we have:

P{X̃i}(y1, . . . , yn) =
∏
i

PX̃i
(yi|y1, . . . yi−1) ≤

∏
i

eεiPXi(yi|y1, . . . , yi−1) ≤ eεP{Xi}(y1, . . . , yn).

Here we have used the fact that Alice stays within the εi bound in round i, and we have similarly leveraged
the independence of each Xi once we condition on the prior published values.

We assumed here that the εi values were chosen ahead of time to sum to ε, but Alice can also choose
her εi values more adaptively, hence stretching her total ε budget further. For example, let’s suppose that

17

εi can be chosen as a function of ε, i, and the previous history of published values y1, . . . , yi−1 from the
prior rounds.

At the conclusion of each round i− 1 once yi−1 has been determined, Alice can define:

ε̃i−1 := ln

(
PX̃i−1

(yi−1)

PXi−1
(yi−1)

)
.

Crucially, we can assert by induction here that Alice’s strategy in round i−1 depends only on y1, . . . , yi−2,
so PX̃i

(yi−1) here only depends on y1, . . . , yi−1. Hence this value of ε̃i−1 also depends only on y1, . . . , yi−1.
Alice can then choose her parameter εi for round i in any way that maintains the invariant:

ε̃1 + · · ·+ ε̃i−1 + εi ≤ ε,

as long as her method of choice depends only i, ε, and the public history. We note that ε̃i (which is
determined at the end of round i) will always turns out to be ≤ εi (which is determined at the beginning
of round i), as long as Alice behaves to ensure her desired bound in round i.

Now, if we let y1, . . . , yn denote any possible series of output values for x1 + a1, . . ., xn + an, we then
have:

P{X̃i}(y1, . . . , yn) =
∏
i

PX̃i
(yi|y1, . . . , yi−1) ≤

∏
i

eε̃iPXi
(yi|y1, . . . , yi−1) ≤ eεP{Xi}(y1, . . . , yn).

We note that if Alice applies our linear programming solution in an iterative fashion, setting her εi
values dynamically in this way, her linear programs will still be functions solely of the published history,
and hence this tighter analyses of the joint probability space of outcomes y1, . . . , yn applies. This will
allow her to stretch her overall privacy budget of ε much further than a methodology that determines
each εi statically before the repeated game is played.

6 Examples with TAQ Data
Naturally, we want to see how this framework behaves when we apply it to real historical stock market
data. There are many different ways we could go about doing this, so we start with a few concrete
examples that are narrow in scope but relevant to the way that large institutional orders may be traded.

There are several metrics that we can imagine our adversary measures as the variable X. A basic
one is total trading volume, while a slightly more nuanced one is volume pressure as defined in [2]. The
volume pressure is computed by looking only at volume that happens when a trader crosses the spread:
namely trading that occurs at the prevailing NBB or the prevailing NBO. Over a specified time period,
we can sum up all of the trading that happens at the NBB, sum up all of the trading that happens at
the NBO, and compute the difference between these sums. We can then put this number is context by
dividing by the average daily volume (ADV) in that symbol, computed over a trailing 20-day period. The
end result of this is called volume pressure, and it is correlated with contemporaneous price movement.

In the below subsections, we will explore a few different examples of empirically observed volume
pressure distributions. We will also see how the settings of leakage parameters like ε affect Alice’s results.
All of the examples below were produced using our linear programming implementation. The software
can take in a probability distribution for X, as well as parameter settings like a value of eε and a desired
level of channel noise. It then follows the steps detailed in prior sections to express our problem in terms
of channels, and ultimately in terms of linear programs. It outputs a strategy for Alice that maximizes
her trading activity subject to the specified constraints, as well as summary information like the expected
values of X, A, and X̃. [Technical note: the software enforces a lower probability bound in terms of e−ε

in addition to the eε upper bound.]

6.1 Volume Pressure Distributions Over Ten Minutes
For example, let’s suppose that our adversary Eve measures this volume pressure in aggregate over ten
minute intervals. We let X denote the measured volume pressure in a single time interval. In this case,
Alice’s trading activity will affect the volume pressure when she crosses the spread, and she would like
to do so only in a way that stays under a particular budget for leakage. The constraints this implies for
Alice’s activity, as well as the resulting strategy that she can solve for by using our linear programming
formulation, depend upon her choices for the various parameters, as well as the underlying distribution
of volume pressure for the particular symbol she is trading.

We can observe an empirical distribution for this X for various stocks over various time periods to get a
sense of what kinds of behavior we might expect. Here is the data for SPY (a popular ETF that is intended
to track the S&P 500) collected over 10-minute intervals in Q1 2023. The raw data of volume pressure

18

measurements is converted to a probability distribution by viewing each measurement as representing an
amount of probability mass proportional to the notional value that was traded in that time interval. We
also round volume pressure to the nearest multiple of 0.0001, and we cap the values at 0.01 in absolute
value. When we plot our distribution, this means that the y-axis for probability mass at each tail is going
to display the full mass of the tail on the endpoint of our capped range. In other words, the probability
mass that is graphed for the value of +0.01 represents the total probability mass associated to values
≥ +0.01, and the probability mass that is graphed for the value of −0.01 represents the total probability
mass associated to values ≤ −0.01. For visual simplicity, we index the rounded volume pressure values in
our range as 0,1,.., 200, rather writing the values as −0.01, −0.0099, −0.0098, ..., etc.:

As we might expect from empirical data, this distribution looks a bit wiggly. In this raw form, it
doesn’t reflect what we really believe about the underlying distribution. For example, we suspect the
spikes in the tails are artifacts of our sample size and outliers, rather than true spikes in the underlying
probabilities. We first look at the effect of our framework in this raw setting, but we will evaluate the
effect of fitting or smoothing the distribution before applying our framework later on in the paper.

We set a high value of ε first (eε = 2), just to make things a bit easier to see visually. We also set the
channel noise to 0, so we are assuming Alice has maximal visibility of the sampled value of x. We also
assume that Alice has maximal control over the value of A. For now, we set δ to 0 and ignore variance
as well, trying only to maximize Alice’s expected value. We assume that the sign of volume pressure and
Alice’s trading desire (buying or selling) are aligned so that Alice’s activity should add a positive quantity
to the volume pressure. Here is what our results look like:

The blue curve here is the empirical distribution for X that we graphed by itself above, while the
green and orange curves are the e−ε and eε bounds respectively. The red distribution represents the
distribution of X̃ that results from Alice’s strategy if she solves the corresponding linear program in this
way. Intuitively, the shape of this makes sense, as Alice should want to move probability mass to the right
as much as she can to accomplish more trading, subject to the bounds she imposes by the choice of ε.

The expected values of the market without Alice is E[X] = 100.92 and with Alice is E[X̃] = 111.56.
Alice’s expected value is E[A] = 10.64.

This shows us that Alice can afford to contribute a little more than 10% of the overall volume pressure
on average before violating her ε-based bounds in this scenario. We might wonder, how much of this is

19

due to her perfect knowledge of x? To see, let’s consider the same scenario, but with the channel noise
turned up to 1 (which corresponds to Alice getting no auxiliary information about the sampled value of
x):

Here the expected value of A is less than 0.01, and we can see that the distribution of X̃ is basically
hugging the distribution of X. Unsurprisingly, Alice’s blindness here to the sampled value of X, combined
with the presence of small probabilities in the tails, leaves her unable to meaningfully trade while staying
inside these bounds. Intuitively, she can’t make good use of the extra space inside the orange upper
bound because it converges too close to the blue distribution of X in the tails, and her blindness means
that whatever strategy she pursues needs to be “safe” even the sampled value x lands in the right tail, for
example.

This issue could be mitigated in a few ways. Smoothing of the raw empirical distribution before
plugging into the linear programming solver would help (we discuss this more below), but only to the
extent that the smoothed probabilities didn’t dip to be too tiny. Allowing δ > 0 can also help considerably
here.

As a somewhat extreme example, let’s see what happens when we set δ higher and allow Alice to
violate the ε bounds for up to 15% of the probability mass on each tail. We bound the total mass in these
“bad” tail regions to be at most 1.5 times what it was originally:

Here, we have E[A] = 6.33. Even just examining this visually, we can see that smoothing the dis-
tributions before applying our linear programming techniques is likely to give Alice better outcomes for
such a case. In fact, smoothing the distribution X with splines first allows Alice to get close to the same
expected value (E[A] = 5.52) while only violating the ε bounds for up to 5% of the probability mass on
each tail:

20

Next, let’s look at what happens in the noiseless regime as we vary the value of epsilon. We can see
how Alice can achieve higher values of E[A] as eε grows:

We can also examine results for other symbols. To make it more meaningful to compare across symbols,
we plot the ratio E[A]/E[X]:

These symbols were chosen somewhat arbitrarily among symbols that relatively highly traded, so this
is merely a spot check rather than a comprehensive or particularly representative sample.

6.2 Robustness Checks
We view the examples above as a proof of concept that our framework can produce reasonable and
actionable results in the context of US equities data. But there are many additional checks we would do

21

before using such a framework to inform real trading decision-making. For one, we would like to more
broadly check: how fragile are these results? In other words, how much do they depend on outliers and
idiosyncrasies in the underlying data or our exact choices of parameters?

6.2.1 Smoothing Distributions

We already saw above that smoothing distributions can give Alice more favorable results in the absence
of auxiliary information. Arguably, smoothed distributions are a better representation of our real beliefs
about the underlying distributions than the raw empirical distributions, and we will probably want to
perform this kind of step generally in applications.

In the setting of high auxiliary information (a.k.a. low or no channel noise), we might expect that
smoothing should not have a dramatic effect on Alice’s results, and we can test this expectation as a
robustness check. More precisely, we will smooth the empirical distributions using splines before defining
and solving our linear program, and we can then observe how much this changes our results when the
channel noise is set to 0.

Let’s see this in action by returning to our example of SPY trading over the first quarter of 2023. Here
is the same volume pressure distribution we observed above, but now with a spline fit:

We should note, when we fit a spline to a distribution in this way, the result is not exactly a distribution
(there is no constraint that the spline fit values must sum to 1). However, we can still throw the spline
fit into our linear programming solver, as it normalizes its input to ensure that it is working with a valid
distribution. Here’s what happens when we define and solve the linear program based on the spline fit
instead of the raw distribution, with the same parameters eε = 2, δ = 0, and noise = 0 that we used
before:

Here, we have E[A] = 10.41, while before the smoothing we had E[A] = 10.64. This is pretty close.

6.2.2 Perturbing Distributions

We can also perturb the empirical distributions to get a sense of how much these such perturbations can
affect the output. Here we will perform two types of perturbation checks: first we randomly perturb the

22

X distribution by uniformly adding weight to it. The total amount of added weight is total weight ×
perturb ratio. We first solve the problem for the existing X distribution to get a baseline for Alice’s
market activity, then we perturb the distribution by adding a uniform distribution to see how the solver’s
output reacts to it in different noisy conditions. We gather the empirical distribution for SPY and perturb
it by four different values(ratios), 0.01, 0.05, 0.10, and 0.20. In all our experiments, all parameters are kept
fixed, except for noise and perturb ratio. Noise 0 represents the case where the perturbed X distribution
is known to Alice, and noise 1 represents the fully blind case where Alice is blind to the underlying X
distribution.

Second, instead of randomly adding weight to X, we perturb the X distribution by uniformly de-
ducting weight from it. Analogously to the first scenario, the weight deducted is equal to total weight×
perturb ratio. Our experiments in this section are done with ε = 1.5 and δ = 0.95.

The blue line in all the graphs shows the baseline experiment and the other colored lines are separate
independent experiments. The graphs on the left correspond to the zero-noise case where Alice has full
visibility of the sample value from the X distribution. Graphs on the right correspond to the fully blind
case (Alice has no auxiliary information). The top left plot is showing and upward trend in expected
Alice activity by increasing the perturb ratio which is expected since we are adding more weight to the
underlying distribution. The top right plot however, isn’t indicating of any specific trend in Alice activity.

Same as previous figure, the blue line in all graphs represents the baseline experiment and the other colored
lines are separate independent experiments. The top left plot depicts a downward trend in expected Alice
activity as we might expect due to deducting weight from the underlying distribution. There’s no visible
trend in the top right graph.

These few robustness checks give us some confidence that their is some relatively stable meaning in
our results in useful parameter ranges, but admittedly we have only scratched the surface of what a full
battery of robustness tests should look like for real applications.

23

7 Future Work
In the previous section, we provided some examples of what it looks like to apply our framework to
historical market data for US equities, but a fuller exploration of the parameter space would likely yield
much greater insight into the behavior of our solutions, their general applications, and their limitations.
We also expect that our linear programming software could be made more efficient and robust, though it
currently suffices for our initial purposes.

There are a few other large categories of further work here that we have barely touched on, but
that we expect to be crucial for developing this line of thinking in impactful ways. The first is feature
selection for what should go into the random variable X. Though our python code for solving the linear
programs we derive from our framework assumes a single scalar measurement for X, this limitation is
artificial. Visualization of a distribution X over a higher dimensional space of simultaneous measurements
is clunkier and we didn’t implement it, but conceptually our framework extends seamlessly to a vector-
valued X. This gives us a lot of freedom to choose a suite of metrics across market data that an adversary
may jointly monitor to try to sniff out activity from a large buyer or seller.

Naturally, it can be hard to collect precise information from trading professionals about what metrics
an adversary may realistically use here, as traders do not want to reveal their strategies. Additionally,
some data sources that an adversary may use, like exchange proprietary depth-of-book feeds, are fairly
expensive to obtain even on a historical basis, and hence costly to study. Nonetheless, we think an
exploratory study of TAQ data (and other sources) could reveal some very interesting potential patterns
of leakage. Such studies could inspire new features to include as a components of X.

We should be wary that we will never anticipate everything that an adversary might measure to try
to detect a large trading interest, and adding too many spurious metrics to X will result in untenable
constraints. But an important feature of this problem space is that we don’t need to be perfect to do
better: certainly rigorously controlling some forms of leakage is preferable to controlling none, and making
a knowing decision to trade despite potential leakage is preferable to not knowing the potential.

The second category of future work is to flesh out the applications of this in trading products and
other areas. There are several different forms this could take:

Pretrade Analytics Pretrade models are usually intended to model the expected price of a proposed
trading activity, based on parameters like the size of the order relative to average daily volume in that
symbol and the typical volatility of that symbol. However, price models are notoriously noisy, and
pretrade estimates can become unusably inaccurate very quickly as the size of the trading activity or the
time horizon of trading increases. One could view our information leakage framework as a complement
to such approaches, since it doesn’t have to rely on price. Instead, one could model the trade’s expected
contribution to metrics like volume pressure, and then quantify the anticipated information leakage by
looking at what values of ε, δ would be compatible with this amount of activity for these metrics. If
pretrade models are being used to decide, for example, how to break up a large trade over more days to
avoid large anticipated costs, it may be useful to additionally consider how the accumulated leakage over
days can be controlled in terms of overall ε, δ parameters. Especially if we are modeling leakage through
features that are less noisy than price, there is reason to believe that such multi-day calculations could
be more stable and meaningful than extending price-based models across days.

Algo Scheduler Design It is also plausible that this framework could be used to derive a scheduler
for orders intended to trade as a much possible while staying within certain bounds on information leakage
as reflected in a vector-valued set of metrics comprising X. Real-time market conditions and resulting
quantitative models could be incorporated into the successive definitions of each Xi and aux as time
periods progressed, and Alice could solve linear programs on the fly to decide what to do in the next time
interval.

Trading Simultaneously Across Symbols The measurements comprising X could also cross
symbols, giving us a framework for measuring joint leakage of trading activity across several orders at
once. Such a framework could be used to monitor accumulating ε̃ values in real time, and we could
re-budget across symbols dynamically as they trade. This could operate, for example, as an overlay over
trading algorithms that operate only within each symbol. The overlay could adjust the parameters of the
underlying individual orders to stay within overall leakage goals. One could imagine similar overlays based
on price impact models rather than leakage, but the noise in such models makes them rather precarious
to extend in this way. Our hope is that a leakage-inspired overlay could be more robust.

Transaction Cost Analysis Transaction Cost Analysis (TCA) is typically used to assess trading
performance after the fact, usually comparing the average prices achieved on orders to benchmarks like
the prevailing NBBO at the time the order started trading, or the volume-weighted average price in the
market across the lifetime of the order. One could also apply a version of this framework after the fact

24

and compare the distributions X̃ resulting from past trading behavior to comparable X distributions
in the market generally. It would be interesting to see, for example, if orders that ended up violating
generous bounds on ε, δ experienced worse pricing than comparable orders that did not. This could be
evidence that the metrics in X can and do result in exploitable leakage. An analysis like this, however,
would require a lot of data to yield robust and meaningful results. If we had sufficient data, however, this
could be a useful for shedding light on which features of X actually seem to be exploited by adversaries
in practice.

Applications beyond Equities Trading Lastly, although designed with the particular constraints
of US Equities trading in mind, the information leakage model we present is defined for arbitrary discrete
probability distributions. It can be applied as a framework to any scenario in which an agent has the
ability to modify a discrete probability distribution via some set of actions constrained by a boundary
distribution, and there may be rich applications of variants of our interactive distributional information
leakage game. Additionally, while the constraints given by the boundary distribution in our setting have
been interpreted as being a privacy bound, there’s no reason in other settings to not think of it as just a
very general limitation imposed on an agent.

References
[1] Almgren, R. and Chriss, N. "Optimal Execution of Portfolio Transactions," in Journal of Risk, 3, 5-40

(2001).
[2] Bishop, A. "Rejecting the Black Box: an Inside Look at the Design of Proof Trading’s New Algorithm."

(2021) https://www.prooftrading.com/docs/main-algo.pdf
[3] Alfonsi, A., Fruth, A., and Schied, A. "Optimal execution strategies in limit order books with general

shape functions," in Quantitative Finance 10(2), 143-157 (2010).
[4] Forsyth, P.A., Kennedy, J.S., Tse, S.T, and Windcliff, H. "Optimal Trade Execution: A Mean-

Quadratic-Variation Approach," University of Waterloo (2011).
[5] Gatheral, J. and Schied, A. "Optimal Trade Execution under Geometric Brownian Motion in the

Almgren and Chriss Framework," in International Journal of Theoretical and Applied Finance 14(3)
353-368 (2011).

[6] Obizhaeva, A. and Wang, J. "Optimal trading strategy and supply/demand dynamics," MIT working
paper (2005).

[7] Weiss, A. "Executing large orders in a microscopic market model," https://arxiv.org/abs/0904.
4131v2

[8] Predoui, S., Shaikhet, G., and Shreve, S. "Optimal execution in a general one-sided limit-order book,"
in SIAM Journal on Finance Mathematics 2 183-212 (2011).

[9] Toth, B. Lemperiere, Y. Deremble, C., de Lataillade, J., Kockelkoren, J. and Bouchaud, J.P. "Anoma-
lous price impact and the critical nature of liquidity in financial markets." https://arxiv.org/abs/
1105.1694v3

[10] R. C. Grinold, R. N. Kahn, Active Portfolio Management (New York: The McGraw-Hill Companies,
Inc., 1999).

[11] Frazzini, A., Israel, R., and Moskowitz, T.J. "Trading Costs." (2018) https://ssrn.com/abstract=
3229719

[12] https://news.mit.edu/2013/goldwasser-and-micali-win-turing-award-0313.

[13] Shannon, Claude E. (July–October 1948). ”A Mathematical Theory of Communication”. Bell System
Technical Journal 27 (3): 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x.

[14] D. A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes," in Proceedings
of the IRE, vol. 40, no. 9, pp. 1098-1101, Sept. 1952, doi: 10.1109/JRPROC.1952.273898.

[15] D.Brumley and D. Boneh, "Remote timing attacks are practical", at
crypto.stanford.edu/ dabo/papers/ssl-timing.pdf

[16] Dwork, C., McSherry, F., Nissim, K., Smith, A. (2006). Calibrating Noise to Sensitivity in Private
Data Analysis. In: Halevi, S., Rabin, T. (eds) Theory of Cryptography. TCC 2006. Lecture Notes in
Computer Science, vol 3876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11681878_14

[17] A. Narayanan and V. Shmatikov, "Robust De-anonymization of Large Sparse Datasets," 2008
IEEE Symposium on Security and Privacy (sp 2008), Oakland, CA, USA, 2008, pp. 111-125, doi:
10.1109/SP.2008.33.

[18] Lee, Timothy B. "Why the Census Invented Nine Fake People in One House". SLATE, MARCH 07,
2022. https://slate.com/technology/2022/03/privacy-census-fake-people

25

https://www.prooftrading.com/docs/main-algo.pdf
https://arxiv.org/abs/0904.4131v2
https://arxiv.org/abs/0904.4131v2
https://arxiv.org/abs/1105.1694v3
https://arxiv.org/abs/1105.1694v3
https://ssrn.com/abstract=3229719
https://ssrn.com/abstract=3229719
https://news.mit.edu/2013/goldwasser-and-micali-win-turing-award-0313.
https://doi.org/10.1007/11681878_14
https://slate.com/technology/2022/03/privacy-census-fake-people

[19] Cynthia Dwork and Aaron Roth (2014), "The Algorithmic Foundations of Differential Privacy",
Foundations and Trends® in Theoretical Computer Science: Vol. 9: No. 3–4, pp 211-407.
http://dx.doi.org/10.1561/0400000042

[20] Cover, T. and Thomas, J. "Elements of Information Theory." (J. Wiley & Sons, Inc., 2006)
[21] Clark, D., Hunt, S. & Malacaria, P. Quantitative Analysis of the Leakage of Confidential Data. Elec-

tronic Notes In Theoretical Computer Science. 59, 238-251 (2002), QAPL’01, Quantitative Aspects of
Programming Laguages (Satellite Event of PLI 2001)

[22] Alvim, M., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C. & Smith, G. The Science
of Quantitative Information Flow. (Springer International Publishing,2019)

[23] Chatzikokolakis, K., Palamidessi, C. & Panangaden, P. Anonymity protocols as noisy channels.
Information And Computation. 206, 378 - 401 (2008)

[24] Kawamoto, Y., Chatzikokolakis, K. & Palamidessi, C. On the Compositionality of Quantita-
tive Information Flow. Logical Methods In Computer Science. Volume 13, Issue 3 (2017,8),
https://lmcs.episciences.org/3860

[25] Engelhardt, K. A Better Composition Operator for Quantitative Information Flow Analyses. Com-
puter Security – ESORICS 2017. pp. 446-463 (2017)

[26] Américo, A., Alvim, M. & McIver, A. An Algebraic Approach for Reasoning About Information
Flow. Formal Methods. pp. 55-72 (2018)

[27] Köpf, B. & Smith, G. Vulnerability Bounds and Leakage Resilience of Blinded Cryptography under
Timing Attacks. Proc. Of CSF. pp. 44-56 (2010)

[28] Alvim, M., Chatzikokolakis, K., Kawamoto, Y. & Palamidessi, C. Information Leakage
Games: Exploring Information as a Utility Function. ACM Trans. Priv. Secur.. 25 (2022,4),
https://doi.org/10.1145/3517330

[29] Bordenabe, N. & Smith, G. Correlated Secrets in Quantitative Information Flow. 2016 IEEE 29th
Computer Security Foundations Symposium (CSF). pp. 93-104 (2016,6)

[30] Khouzani, M. & Malacaria, P. Leakage-Minimal Design: Universality, Limitations, and Applications.
Proc.IEEE 30th Computer Security Foundations Symposium (CSF). pp. 305-317 (2017)

[31] Khouzani, M. & Malacaria, P. Generalised Entropies and Metric-Invariant Optimal Countermeasures
for Information Leakage under Symmetric Constraints. IEEE Transactions On Information Theory.
(2018)

[32] Américo, A., Khouzani, M. & Malacaria, P. Channel-Supermodular Entropies: Order Theory
and an Application to Query Anonymization. Entropy. 24 (2022), https://www.mdpi.com/1099-
4300/24/1/39

[33] Cover, T. "Broadcast channels" IEEE Transactions On Information Theory. 18, 2-14 (1972)
[34] Köpf, B. & Basin, D. An information-theoretic model for adaptive side-channel attacks. Proc. Of

CCS. pp. 286-296 (2007)
[35] Clark, D., Hunt, S. & Malacaria, P. Quantified Interference for a While Language. Electron. Notes

Theor. Comput. Sci.. 112, 149-166 (2005,1)
[36] Smith, G. On the Foundations of Quantitative Information Flow. Proc. 12th Int. Conf. Foundations

Of Software Science And Computational Structures (FOSSACS). 5504 pp. 288-302 (2009)
[37] Espinoza, B. & Smith, G. Min-entropy as a resource. Inf. And Comp.. 226 pp. 57-75 (2013)
[38] Alvim, M., Chatzikokolakis, K., Palamidessi, C. & Smith, G. Measuring Information Leakage Using

Generalized Gain Functions. Proc. IEEE 25th Computer Security Foundations Symposium (CSF). pp.
265-279 (2012)

[39] Barthe, G. & Kopf, B. Information-Theoretic Bounds for Differentially Private Mechanisms. 2011
IEEE 24th Computer Security Foundations Symposium. pp. 191-204 (2011)

[40] Alvim, M., Andrés, M., Chatzikokolakis, K., Degano, P. & Palamidessi, C. On the Infor-
mation Leakage of Differentially-Private Mechanisms. J. Comput. Secur.. 23, 427-469 (2015,9),
https://doi.org/10.3233/JCS-150528

[41] Chatzikokolakis, K., Fernandes, N. & Palamidessi, C. Comparing Systems: Max-Case Refinement
Orders and Application to Differential Privacy. 2019 IEEE 32nd Computer Security Foundations
Symposium (CSF). pp. 442-457 (2019)

[42] Diamond, S. & Boyd, S. CVXPY: A Python-embedded modeling language for convex optimization.
Journal Of Machine Learning Research. 17, 1-5 (2016)

[43] Agrawal, A., Verschueren, R., Diamond, S. & Boyd, S. A rewriting system for convex optimization
problems. Journal Of Control And Decision. 5, 42-60 (2018)

26

[44] Virtanen, P., Gommers, R., Oliphant, T., Haberland, M., Reddy, T., Cournapeau, D., Burovski,
E., Peterson, P., Weckesser, W., Bright, J., Van der Walt, S., Brett, M., Wilson, J., Millman, K.,
Mayorov, N., Nelson, A., Jones, E., Kern, R., Larson, E., Carey, C., Polat, İ., Feng, Y., Moore,
E., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E., Harris, C.,
Archibald, A., Ribeiro, A., Pedregosa, F., Van Mulbregt, P. & SciPy 1.0 Contributors SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods. 17 pp. 261-272 (2020)

[45] Hunter, J. Matplotlib: A 2D graphics environment. Computing In Science & Engineering. 9, 90-95
(2007)

[46] Sweeney, L., 2002. K-Anonymity: A Model for Protecting Privacy. International journal of uncer-
tainty, fuzziness and knowledge-based systems, 10(05), pp.557-570.

[47] Kairouz, P., Oh, S. and Viswanath, P., 2015, June. The composition theorem for differential privacy.
In International conference on machine learning (pp. 1376-1385). PMLR.

[48] Chan, T.H.H., Shi, E. and Song, D., 2011. Private and continual release of statistics. ACM Transac-
tions on Information and System Security (TISSEC), 14(3), pp.1-24.

[49] Dwork, C., Naor, M., Pitassi, T. and Rothblum, G.N., 2010, June. Differential privacy under continual
observation. In Proceedings of the forty-second ACM symposium on Theory of computing (pp. 715-
724).

[50] Bassily, R., Groce, A., Katz, J. and Smith, A., 2013, October. Coupled-worlds privacy: Exploiting
adversarial uncertainty in statistical data privacy. In 2013 IEEE 54th Annual Symposium on Founda-
tions of Computer Science (pp. 439-448). IEEE.

[51] Canonne, Clément L., 2020. A Survey on Distribution Testing: Your Data is Big. But is it Blue? In
Graduate Surveys. Theory of Computing Library.

27

	Introduction
	The Challenge of Formalizing Information Leakage in Financial Settings
	Related Work
	Organization

	Preliminaries
	U.S. Equities Trading Glossary
	(,) Differential Privacy
	The Channel Framework
	Composition of Channels
	Cascading
	Parallel Composition
	Using Channel Composition to Model a Communication Protocol

	A Proposed Framework for Defining Information Leakage
	Modelling our Problem with the Channel Framework
	Deriving the Composed Channel
	A Solution via Linear Programming
	Minimizing the Variance of Alice's Actions

	Implementation and Some Toy Experiments

	Iterating Over Time Periods
	Examples with TAQ Data
	Volume Pressure Distributions Over Ten Minutes
	Robustness Checks
	Smoothing Distributions
	Perturbing Distributions

	Future Work

