
Speeding up elliptic computations for Ethereum Account
Abstraction

Renaud Dubois

®Ledger
6 rue Gretry, 75002 Paris – France

firstname.lastname@ledger.fr
(August 23, 2023)

Abstract. Account Abstraction is a powerful feature that will transform today Web3
onboarding UX. This notes describes an EVM (Ethereum Virtual Machine) imple-
mentation of the well known secp256r1 and ed25519 curves [NIS23], optimized for
the specificities of this EVM environment. Our optimizations rely on EVM dedicated
XYZZ elliptic coordinates system, hacked precomputations, and assembly tricks to cut
the over- all gas cost by a factor 5, reducing it from more than 1M to 200K/62K (with
or without precomputations).
keywords:secp256r1, Secure enclave, FIDO2, WebAuthn, XYZZ coordinates, dedi-
cated formulae, memory hack, precomputations, solidity, Pippenger/Shamir’s trick

1 Introduction

Today, transactions on the Ethereum network are authenticated using the short
Weierstrass curve secp256k1 [Bro10]. Account Abstraction allows users to utilize
smart contract wallets that contain arbitrary verification logic instead of Externally
Owned Accounts (EOAs) as their primary accounts. This feature is described in
EIP4337 [BWG+21] and has been implemented on the mainnet. It enables vari-
ous use cases, including privacy-preserving applications, Vaults (using multisigna-
tures/secret sharing protocols), aggregate signatures, and compatibility with existing
signing mechanisms. The latter feature is particularly significant for improving the
user experience. Currently, Web3 faces challenges due to a cumbersome user expe-
rience (UX), primarily concerning the protection of a user’s seed through BIP39-
like mechanisms [PRVB13], which may be unfamiliar to new users. The ability to
implement any signature scheme to authenticate to a smart contract includes the
utilization of traditional methods like WebAuthn [BBL+21]/FIDO2. By employing
such methods, Web2 users can be onboarded with a familiar UX, such as Face ID
(Apple), Android fingerprint, or a security key implementing FIDO2, like a Yubikey
or Ledger. All of these methods have in common the use of ECDSA as the allowed
authentication algorithm over the secp256r1 curve. Unfortunately, using a non-native
Ethereum curve results in a higher computational (i.e., gas) cost. While using the
native curve incurs a transaction gas cost of 21K, replacing it with the currently
available implementations leads to a 50x factor increase to 1M.

Our contribution The note is structured as follow:

– Section 2 provides a re-evaluation of the cost of elliptic curve representation sys-
tems based on EVM opcode costs. We propose a modified version of XYZZ co-
ordinates, originally introduced by Sutherland, and demonstrate their optimality
for specific use cases. We also highlight additional techniques to further reduce

https://ethglobal.com/showcase/opclave-opstack-impr-erc4337-and-apple-sign-94def

the cost of point multiplication, which is the fundamental operation in most ECC
applications.

– Section 3 describes how precomputations can accelerate ECC using the technique
known as ”Shamir’s trick.” We also discuss how the memory access rules in EVM
render these optimizations ineffective and propose language hacks to restore their
effectiveness.

The result of our work have been open sourced [Dub13] and should aid in inte-
grating the WebAuthn mechanism into EVM chains.

1.1 WebAuthn, FIDO2.

FIDO is a phishing-resistant multi-factor authentication method based on established
public key cryptography standards. It supports various hardware devices such as
iPhones, Yubikeys, and Android phones. Web Authentication (WebAuthn) is a web-
based API built upon FIDO, enabling websites to enhance their login pages with
FIDO-based authentication on supported browsers and platforms. FIDO2 allows users
to conveniently authenticate to online services using commonly available devices. The
specific algorithm we focus on from the FIDO allowed list is ECDSA signature over
secp256r1 (also known as P256).
Note: all results are directly applicable to ed25519, for simplicity sake the paper focus
on secp256r1. Results for ed25519 are given in appendix 10.

1.2 Solidity, ECC and secp256r1.

Ethereum is a blockchain that introduced the concept of programmable smart con-
tracts. Solidity (sol) is a high-level, object-oriented language used for implementing
smart contracts that govern the behavior of accounts within the Ethereum state. El-
liptic curve cryptography is an approach to public key cryptography based on the
challenge of solving the discrete logarithm problem (DLP) over elliptic curves. It
replaces the use of prime field groups (Fp,×) with elliptic curve groups (E(Fp),+).
In most ECC systems, breaking the protocol can be reduced to solving the DLP.
Therefore, scalar multiplication of a point is a crucial operation.

ecmul : Z× E(Fp) 7→ E(Fp)
(λ,G) 7→ Q = λ.G.

It is also generally the most expensive computational part of the protocol. The EVM
uses secp256k1 as native curve for the ECDSA authentication mechanism. While
not being directly available as an opcode, a hacky use of the ecrecover operator
(providing an ECDSA public key recovery function) makes point multiplication over
secp256k1 relatively cheap [But18].

Most of existing implementations use either Projective or Jacobian coordinates to
avoid the use of expensive divisions. While those formulae are optimized for classical
architectures, the very specific weighting of EVM opcodes cost [Gla23] modifies the
constraints for the choice of an optimal EVM solution. Table 1 provides the gas cost
(which is related to the computational complexity of the opcode). A very unusual
property is the fact that modular addition addmod and multiplication mulmod have

1 Only alt bn128 curve
2 Only secp256k1 curve

2

Table 1. Arithmetic operations EVM opcodes [Gla23].

Group Operation Notation EVM opcode EVM cost

(Fp,+) modadd addmod 8

(Fp,×) modmul mulmod 8

(E(Fp), 2) ecDbl - -

(E(Fp)2,+) ecAdd1 ecAdd 150

(Z× E(Fp),×) ecmul ecrecover2 3000

(Z× E(Fp),×) ecmulmuladd ecrecover 3000

the same cost. While elliptic operation formulae are optimized to reduce mulmod at
maximum (considering constants multiplications and addmod negligible), this classic
assumption doesn’t hold in EVM. In the next section, ECC operations formulae are
revisited according to this exceptional set of constraints.

2 Optimized formulae

2.1 Revisiting ECC with EVM opcodes constraints

Optimizing elliptic curve computations has been investigated from a long time by
cryptographers. The reader is refered to [BL10] for a very documented and exhaus-
tive database of formulae. Basically all computations are reduced to two function:
ecadd which implements the law group of adding two points, and ecdbl which im-
plements point doubling. When it comes to the double and add algorithm, in most
cases the input points are given as normalized, ie with extra coordinates (z, zz) be-
ing equal to 1. Using this fact it is more efficient to use mixed coordinates using
the operation ecaddN(P,Q), where P is given as normalized and Q as in the given
projective (or jacobian) form. Tables 2 and 3 compare the 5 coordinates systems for
short Weierstrass curves implementations. In such systems Specialized jacobian co-
ordinates are the better performing. In the context of EVM, as shown in the tables,
using specialized XYZZ coordinates instead save a 13% (resp 6.5%) for ecaddN (resp.
ecdbl).

Table 2. Basic operations calls according to given system coordinates for ecdbl.

Operation #addmod #mulmod #sub # mulcst Total
Coordinates System (gas)

Projective 7 11 5 5 209
Specialized Projective 5 10 4 5 180

Jacobian 6 9 3 5 175
Specialized Jacobian 5 8 4 4 156
Twisted Edwards 8 8 4 1 156

Specialized XYZZ 5 9 2 3 146

The numbers provided assume the utilization of all the techniques described in
this note (specialization, check removals, mixed coordinates). The libraries we exam-
ined employ a more direct implementation (as unnecessary checks are costly). The

3 For Twisted Edwards, eccAdd and ecDbl are one function (complete formulae).

3

Table 3. Basic operations calls according to given system coordinates ecaddN.

Operation #addmod #mulmod #sub # mulcst Total
Coordinates System (gas)

Projective 6 11 5 5 169
Specialized Projective 6 11 5 1 169

Jacobian 6 11 6 1 174
Specialized Jacobian 6 11 6 1 174
Twisted Edwards 3 8 8 4 1 156

Specialized XYZZ 6 10 3 1 151

disparity between the ’optimal’ implementation in the target system and the actual
implementations is presented in the Benchmarking section.

Note: while most modern implementations include Side Channel analysis counter-
measures making CoZ coordinates or Twisted curves the most secure system, this
threat is not addressed in the security objective, as the contracts solely implement
verification.

2.2 Additional dedicated optimizations

Modular inversion over public data is usually performed using the extended eu-
clidean algorithm. However, for prime field, it is possible to compute ap−2 = a−1

instead. Although it is generally less efficient, the modexp precompiled contract per-
form this computation efficiently. Thus, it is used instead for all required modular
inversions.

Reducing number of negations. While negation is almost cost-free in hardware,
it incurs a cost of half a mulmod and shall be minimized. For example, by inspecting
the output of the doubling algorithm, the output value (x, y) may be inverted to
(x,−y) for free simply exchanging the intermediate operators. The first operation in

˜ecadd involves inverting input y, so ecdbl can be tweaked to ecdblneg to avoid two
subtractions. Since implementing a−2b is more expensive using mul and modsub than
modmul and admod, the constant q − 2 (q the curve order) is used instead in various
places.

Special case pruning. Prior to implement Shamir’s trick, pruning point equality
tests was considered. When the order is prime, looking at multiplication main loop of
double and add algorithm, the special case ecadd(P,Q) with P = Q cannot happen.
Thus unnecessary checks may be removed. However, once using Shamir, it is possible
to construct special cases that makes the ecmulmuladd fail.

2.3 Resulting formulae

XYZZ coordinates system is a specific representation of jacobian coordinates. In this
system, a point over E(Fp) is encoded as (x, y, zz, zzz) with zz3 = zzz2 and where its
affine (X,Y) representation is obtained computing X = x

zz and Y = y
zzz .

4

https://www.evm.codes/precompiled?fork=shanghai
//hyperelliptic.org/EFD/g1p/auto-shortw-xyzz-3.html peut-etre pour r\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {e\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: on input line 326.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 19 e\egroup \spacefactor \accent@spacefactor f\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {e\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: on input line 326.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 19 e\egroup \spacefactor \accent@spacefactor rence

ecdblneg

input :(x, y, zz, zzz) ∈ Fp
1 : U = y

2 : V = U2

3 : W = U ∗ V
4 : S = x ∗ V
5 : M ′ = 3 ∗ (zz −X1) ∗ (X1 + zz)

6 : x′ = M2 − 2 ∗ S
7 : − y′ = W ∗ y +M ′ ∗ (S −X3)

8 : zz′ = V ∗ zz
9 : zzz′ = W ∗ zzz

10 : return − 2P = (x′,−y′, zz′, zzz′)

ecnegaddN

input :Qn : (X,Y),−P : (x1,−y1, zz, zzz) ∈ Fp
1 : U2 = X2 ∗ ZZ1

2 : S2 = y2 ∗ zzz
3 : P = U2− x1

4 : R = S2− y1

5 : PP = P2

6 : PPP = P ∗ PP

7 : Q = x1 ∗ PP

8 : x′ = R2− PPP − 2 ∗Q
9 : y′ = R ∗ (Q− x3)− y1 ∗ PPP

10 : zz′ = zz ∗ PP

11 : zzz′ = zzz ∗ PPP

12 : return R = P +Q = (x′, y′, zz′, zzz′)

3 Pippenger/Straus/Shamir’s trick

3.1 Description

In ECDSA, Schnorr and its variant, the verification process implies the computation
of the addition of two point multiplication, refered later as ecmulmuladd:

ecmulmuladd : (Z× E(Fp))2 7→ E(Fp)
(λ,G)× (µ,Q) 7→ R = λ.G+ µ.Q

As elliptic curves are noted additively, it is equivalent to a dual base exponentiation.
This is a classic problem referred as product of powers or multibase exponentiations
when the number of bases is any. This problem has been consecutively studied by
Brauer (1939), Straus (1964) and Pippenger (1976) and later renamed as the ’Straus-
Shamir’s trick’ when the number of bases is two. The basic trick consists in comput-
ing the sum P + Q, and then replacing the classic double and add algorithm by a
single scan of the exponent chains. The number of ecmul sub operations drops from
(n2ecadd+ necdbl) to (3n4 ecadd+

n
2ecdbl) (n being scalar bitlength). The following

algorithm describes the multi-input version (basic trick being an instance with k =
2).

StrausShamir

input :P1 . . . Pk ∈ E(Fp), (e0 . . . ek) ∈ Fp
1 : for j = 0 . . . 2k−1 do // Precomputations of all possible Pi sums

2 : T [j] =

k∑
i=0

bi(j)Pi

3 : endfor

4 : for j = l − 1 . . . 0 do // Scan scalars from MSB to LSB

5 : R = 2R

6 : e =
k∑

i=0

ei(j).2
i

7 : R = R+ T [e]

8 : endfor

9 : return R

5

It is also possible to interleave the Shamir’s trick with a windowing method, where
k is the window size. When no precomputations is possible, interleaving Shamir with
a windowing method. For a bitsize of 256 bits, dual base with k = 4 is a common
choice (openssl, ours on starknet).

Window method

input :P ∈ E(Fp), α =

l∑
i=0

αi.2
i.k ∈ N

1 : for j = 1 . . . 2k−1 do // Precomputations of all possible αi.Pi sums

2 : T [j] = T [j − 1] + P

3 : endfor

4 : R = T [αl]

5 : for j = l . . . 0 do // mainloop over window of k bits

6 : R = 2k.R // k successive ecdbl

7 : R = R+ T [αi]

8 : endfor

9 : return R

3.2 Precomputations.

When the input to ecmulmuladd is constant it is possible to improve algorithm 1 by
externalizing the precomputations (step 3). For signature verification those constant
are the base point P and public key Q. The basic trick doesn’t require precomputa-
tions as it requires a single ecadd(P , Q) which costs less than the computations of
1 bit of the exponent. If precomputations are allowed, it is possible to improve the
trick by increasing the number of inputs: the number of bases may be increased to w
by providing

{2
j·n
k Pj , ∀j ∈ [1..k]}.

Table 4. ecmulmuladd complexities in term of numbers of ec operations according
to number of input #Pi, #Qi and window size w.

Implementation #Pi #Qi ω Prec #ecadd Prec #ecadd #ecadd

Naive 1 1 1 0 0 n 2n

Shamir-(2,1) 4 1 1 1 1 64B 3n
4

n

Shamir-(2,2) 1 1 2 16 1KB 15n
16

n
2

Shamir-(2,8)5 4 4 1 768 16KB n n
8

Shamir-(8,1)6 4 4 1 768 16KB n
4

n
4

Shamir-(2,4) 1 1 4 256 16KB n
4

n

4 Our implementation (1) choice
5 alembichtech choice
6 Our implementation (3) with prec. choice

6

3.3 Hacking EVM memory access cost.

The use of precomputations requires the use of large arrays of elliptic points. Unfor-
tunately it is not possible to declare arrays of constant in solidity. The cost of access
to storage as depicted in Table 5 would cost 2100 for each first access to a cell during
verification. For a k = 8 multibase evaluation, the average number of cold access is
around 50. This already has a cost of 100K gas. This kills the expected gain. To get
around this limitation, contracts like sstore2.sol wraps the extcodecopy, deploy-
ing the given table as a contract to access instead of a storage array. The cold access
with extcodecopy is paid only once at first access to the contract. We then devised
a way to use the cheapest codecopy instruction to access a given static array T :

1. declare a string constant with a magic value, of same size as the precomputa-
tions,

2. declare a function that simply return the constant,
3. to compute the contract of a user, parse the dummy contract until magic value,

then override it with the precomputations,
4. deploy the overriden bytecode.

Note that this trick enables to use array of constant in solidity with a x33 more
efficient cost than sstore2.sol.

Table 5. Access costs according to memory type in the EVM.

Instruction Memory Type Cold Access Warm Access

sload Storage 2100 7 100

extcodecopy External code 2100 8 100

codecopy Internal code 3 3

mload Internal memory 3 3

4 Implementation details

Arithmetic. The code has been optimized for Weierstrass curves with coefficient
a = −3. Consequently, it can be easily adjusted and all secp curves. By employing
isogeny, the code can be adapted to any Weierstrass curve with a non-zero value for
a. The coordinates system used is XYZZ , as previously described, employing the
negation trick.

Tradeoff. Two versions are available: the first one utilizes a Shamir’s trick with
P and Q as bases. The second one performs precomputations of the 8 values Pi =
264∗i.P,Qi = 264∗i.P,∀i ∈ [1..8]. The precomputations are conducted off-chain using
js or sagemath.

From solidity to inlined assembly. As for most implementation aiming for effi-
ciency, assembly is necessary. The complete Shamir’s trick has been implemented in
asm. The code is heavily inlined, as initial benchmarks indicate a 20% improvement
simply by inlining ecadd and ecdbl.

7 Once per cell
8 Once per contract

7

https://datatracker.ietf.org/doc/draft-ietf-lwig-curve-representations/

5 Benchmarking

This section provides the benchmark for several solidity ECC libraries. To distinguish
the benefits obtained from algorithmic optimizations and language optimizations,
The measurements were performed in the hardhat and forge environment using same
number of runs (degree of optimization in the solidity compiler).

Note: if any error regarding credits or library names are present, please contact
the author for a prompt update and apologies.

5.1 ECC solidity libraries

Table 6 outlines the algorithmic choices of six solidity libraries (including our own). It
presents : the size of precomputations, the system coordinates used, the existence of
mixed coordinates, specialized coordinates, and utilization of Shamir’s trick (sorted
by columns).

Table 6. Existing libraries characteristics.

Library asm prec. coordinates Mixed specialized Shamir’s trick Link

orbs network × 0 proj. × × × orbs-network

alembich-tech × 16 KB proj. × × ✓ alembich

Numerology 9 × × jacobian ✓ ✓ × Numerology

Maxrobot ✓ × proj. × ✓ × maxrobot

Androlo × × jacobian. ✓ × × Androlo

itsobvioustech ✓ 0 modified jac. × ✓ ✓ itsobvioustech

Ours(1) 0 XYZZ ✓ ✓ ✓
Ours(2) ✓ 128B XYZZ ✓ ✓ ✓ [Dub13]
Ours(3) 16 KB XYZZ ✓ ✓ ✓

Table 7 provides the actual number of basic operations used to implement ecadd.

Table 7. Actual number of opcodes in ecadd solidity implementations.

Operation addmod add mulmod sub mulcst Total

Ours 6 0 10 3 1 151

Androlo 6 0 13 5 0 167

orbs-network 6 0 14 4 0 172
alembich-tech

Numerology 6 0 16 5 1 209

itsobioustech 3 5 19 5 1 214

5.2 Practical Results

While the previous subsection provides an insight into the expected asymptotic gain,
accurately predicting the exact gain is challenging due to various additional factors
involved:

9 Numerology is highly optimized with GLV for secp256k1

8

https://hardhat.org/
https://book.getfoundry.sh/
https://github.com/orbs-network/elliptic-curve-solidity
https://github.com/alembic-tech/P256-verify-signature/blob/main/contracts/EllipticCurve.sol
https://github.com/nucypher/numerology
https://github.com/maxrobot/elliptic-solidity
https://github.com/androlo/standard-contracts/blob/master/contracts/src/crypto/Secp256k1.sol
https://github.com/itsobvioustech/aa-passkeys-wallet

– the cost of handling extra coordinate,
– the cost of memory access,
– extra hidden instructions (e.g., push, pop),

The gas cost was measured using the forge environment with an optimizer set to
a range of steps from 104 to 105. Solidity version is 0.8.20. The only modifications
performed on source library were done to update solidity compatibility. As WebAuthn
is not implemented for all libs, the same implementation with a 40K cost is applied
generically. Table 8 provides the gas cost for all given libraries. Atomic functions
eccAdd and ecDbl costs are provided to separate the different gains. Upon examining
the results the following statements can be made:

1. Using assembly provides a larger speed up than improved formulae.
2. Inlining is crucial in solidity (25%gain), the compiler is not as effective as a gcc

counterpart for example. This leads to a less readable code.
3. Using a larger number of base than 8 is ineffective, as the overhead of handling

masks to compute the element to access approached one third of the ecmulmuladd
operation.

Table 8. Practical gas cost measurement using forge.

Library ecaddN ecDbl ecmulmul WebAuthn Deployment Deployment
(ecdsa) (full) (contract) (precomputations)

orbs-network 2250 1750 1.06M 1.1M 375K 0
Androlo 2073 1229 866K 906K 0
Maxrobot 1949 1502 760K 790K 0
Numerology 1973 1003 422K 462K 0
alembich-tech 2250 1750 335K 375K 2M 3.2M
itsobvioustech 946 578 290K 330K 590K 0

Ours(1) 56610 522 202K 242K 1.03M 0
Ours(3) 69.1 K11 115K 713K 3.2M

Amortization of precomputations. The additional cost of deploying a 16KB con-
tract (3.2M) is compensated after 30 transactions. Note that this cost could be divided
by 2 using a wNAF like approach, at the expense of a little extra computations.

EIP-4844 [BD21] and calldata reduction. When EIP4844 is adopted, with a
calldata cost per byte of 3, passing precomputations as calldata would cost 48K. It
will provide a new tradeoff, avoiding the extra contract deployment in exchange of
this fee plus an integrity verification of the table.

5.3 Testing, Fuzzing

The Wycheproof 9 project is a framework providing many edge cases for crypto-
graphic protocols, including secp256r1. Table 9 provides the results of the extended
Wycheproof tests that are run against the libraries. Some of the test related to integer
length were disabled as by essence an uint256 EVM integer cannot handle number
larger than 2256.

10 Not inlined in main loop
11 Using the hackmem trick

9

https://book.getfoundry.sh/

Table 9. Detected anomalies on target libraries.

Library orbs-network alembich Numerology Androlo Maxrobot itsobvioustech Ours

Detected errors Malleability Null sig Null sig
Duplication Duplication

– Duplication refers to an error occurring when the operation ecadd is called on the
same point. Wycheproof doesn’t detect the itsobvioustech duplication problem,
as it is hidden by Shamir’s trick. Theoretically, a dishonest user could exploit this
flaw to forge invalid signatures that could be accepted or valid signatures refused.
However it doesn’t seems possible to forge such vector without the private key
knowledge, which should reduce the threat to double spend under very specific
assumptions. The impact is low but shall be corrected.

– Null signature is a critical flaw, as it allows to submit any Tx with a valid sig-
natures, potentially stealing all coins of the user. The authors have been warned
and PR submitted to obvious and maxrobot.

– The signature malleability is not compliant to ECDSA specification. It is possible
to submit (r, s+ q), q being the curve order as a valid signature. While no direct
exploit appears (except use requiring Strong Unforgeability property like Mtgox)
it shall be avoided.

6 Conclusion

This notes presents an optimized implementation of ECC computations in the EVM.
The implementation incorporates algorithmic optimizations specifically tailored to
meet EVM constraints, careful memory access considerations, and precomputations,
resulting in a performance approximately six times faster than previous best one. This
optimized implementation facilitates the testing of Webauthn authentication within
smart contracts. While the integration of dedicated opcodes is under discussion, we
believe that this implementation can contribute to the discussions and offer a practical
approach for its implementation in most application chains, including ETH, based
on its usage. Account Abstraction is a powerful tool that simplifies the onboarding
process for the next billion users. By combining traditional tools with EIP4337, it
becomes possible to make the utilization of Web3 as frictionless as Web2, minimizing
the differences between the two worlds to self-custody.

Further work

1. implement a tradeoff with 12 bases incorporating two additions (one with a point
of Tp, one of Tq). This tradeoff would reduce the deployment cost by 75%, while
maintaining equivalent performances. (refer to the algorithm described in ap-
pendix).

2. secp256k1. Some of the methods described here are applicable to secp256k1. While
the use of hacky mul [But18] enables very efficient Schnorr algorithm implemen-
tation, it may be still necessary to have optimized implementation of ecadd as
provided by Numerology library.

3. Schnorr/EdDSA. For now, only a limited set of FIDO devices support EDDSA
which is a Schnorr signature. Schnorr allows easiest integration of MPC signatures

10

https://github.com/itsobvioustech/aa-passkeys-wallet/pull/7
https://github.com/maxrobot/elliptic-solidity/pulls
https://github.com/alembic-tech/P256-verify-signature/pull/2
https://eips.ethereum.org/EIPS/eip-4337

([NRS21]) and partial aggregation. Using the Twisted Edwards coordinates would
have a very limited impact on the speed (foresight around 3%).

4. ZkEVM bench. The benchmarks provided assumed an identical rating of the mem-
ory and opcodes. The final choice (with/without precomputations) and results
may differ if the opcodes cost is modified (for instance by their zkprovability
friendliness or storage cost).

5. non EVM chains. While this note addresses EVM and zkEVM chains as most
promising technology, some of the results described here are available in other
frameworks. A FCL ecmulmuladd implementation is already integrated in Braavos
wallet over Starknet . We plan to introduce the precomputational version next to
obtain the fastest Starknet P256 signer.

Acknowledgments. We would like to express our gratitude to qdqd, the founder of
Ledger’s solidity guild, for his valuable teaching, kind explanations, and advices on
Solidity. We also thank Yannick Seurin and Victor Servant for useful discussions and
comments.

References

BBL+21. John Bradley, Christiaan Brand, Adam Langley, Giridhar Mandyam, Nina Satragno, Nick
Steele, Jiewen Tan, Shane Weeden, Mike West, and Jeffrey Yasskin. web authentica-
tion:an api for accessing public key credentials level 2. FIDO Association, 2021. https:
//www.w3.org/TR/webauthn-2/.

BD21. Vitalik Buterin and Ansgar Dietrichs. ”EIP-4488: Transaction calldata gas cost reduction
with total calldata limit, 11/2021. https://eips.ethereum.org/EIPS/eip-4488.

BL10. Daniel Bernstein and Tania Lange. Explicit elliptic formulas database. NIST, 2010.
//https://https://hyperelliptic.org/EFD/l..

Bro10. Dan Brown. SEC2 : Recommended elliptic curve domain parameters. Certicom research,
01/2010. https://www.secg.org/sec2-v2.pdf.

But18. Vitalik Buterin. you can *kinda* abuse ecrecover to do ec-
mul in secp256k1 today. GitHub, 2018. https://ethresear.ch/t/

you-can-kinda-abuse-ecrecover-to-do-ecmul-in-secp256k1-today/2384.

BWG+21. Vitalik Buterin, Yoav Weiss, Kristof Gazso, Namra Patel, Dror Tirosh, Shahaf Nac-
son, , and Tjaden Hess. ERC-4337: Account Abstraction using alt mempool [draft].
Ethereum Improvement Proposals, no. 4337, 09/2021. https://https://eips.ethereum.
org/EIPS/eip-4337.

Dub13. Renaud Dubois. fresh crypto lib, a cryptographic library for blockchain
uses. GitHub, 10/2013. https://github.com/rdubois-crypto/FreshCryptoLib/blob/

master/solidity/FCL_elliptic.sol.

Gla23. Gray Glacier. an ethereum virtual machine opcodes interactive reference. GitHub, 2023.
https://www.evm.codes/?fork=grayGlacier..

NIS23. NIST. Digital signature standard (DSS, fips186-5. NIST, 2023. https://https://csrc.
nist.gov/publications/detail/fips/186/5/final.

NRS21. Jonas Nick, Tim Ruffing, and Yannick Seurin. Musig2: Simple two-round schnorr multi-
signatures. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16-20, 2021, Proceedings, Part I, volume 12825 of Lecture Notes in Computer
Science, pages 189–221. Springer, 2021.

PRVB13. VMarek Palatinus, Pavol Rusnak, Aaron Voisine, and Sean Bowe. Mnemonic code for-
generating deterministic keys. EBitcoin Improvment Proposal 39, 10/2013. //github.

com/bitcoin/bips/blob/master/bip-0039.mediawiki..

11

https://github.com/myBraavos/efficient-secp256r1/blob/develop/src/secp256r1/ec_mulmuladd.cairo
https://github.com/qd-qd
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://eips.ethereum.org/EIPS/eip-4488
//https://https://hyperelliptic.org/EFD/l.
https://www.secg.org/sec2-v2.pdf
https://ethresear.ch/t/you-can-kinda-abuse-ecrecover-to-do-ecmul-in-secp256k1-today/2384
https://ethresear.ch/t/you-can-kinda-abuse-ecrecover-to-do-ecmul-in-secp256k1-today/2384
https://https://eips.ethereum.org/EIPS/eip-4337
https://https://eips.ethereum.org/EIPS/eip-4337
https://github.com/rdubois-crypto/FreshCryptoLib/blob/master/solidity/FCL_elliptic.sol
https://github.com/rdubois-crypto/FreshCryptoLib/blob/master/solidity/FCL_elliptic.sol
https://www.evm.codes/?fork=grayGlacier.
https://https://csrc.nist.gov/publications/detail/fips/186/5/final
https://https://csrc.nist.gov/publications/detail/fips/186/5/final
//github.com/bitcoin/bips/blob/master/bip-0039.mediawiki.
//github.com/bitcoin/bips/blob/master/bip-0039.mediawiki.

A Appendix

A.1 Ed25519

The FreshCryptoLib also implements mulmuladd with basic trick for the ed25519
curve. As expected results are very close to secp256r1.

Table 10. ed25519 implementation.

Implementation #Bases ecmulmul Deployment Comment
(measured) (Prec.) asm+basic trick

Ours 2 206K 0

ed25519-solidity 1 1.25M 0 no asm, no trick

A.2 Further tradeoffs

Table 11 compares the number of basic operations of current implementations with
futures. It also provides some estimation over the expected resulting gas cost of those
implementations. It is assumed that the target curve has a 256 bits modulus. Those
projections shall be taken with cautious as we tried to integrate the increased com-
plexity of mask computations and hybrid memory access.

Splitting. It is possible to reduce the number of precomputations at the expense of
extra addition in the multibase exponentiation. For instance it is possible to compute
separately all the possible sums of multiple of G of the base on one side, and multiples
of Q on the other side. A single look-up table to compute a sum of bases is replaced
by two look up and additions in the step 6 of Straus-Shamir. The multiple of G being
shared by all users, this table deployment is paid only once.

Windowing/NAF. The last implementation shall interleaved a 1-NAF computation
with a 4 bases Straus-Shamir. It shall take the value 2128Q and (2128+1)Q in calldata
and 2128G as a contract constant.

Table 11. Estimation of alternative tradeoffs implementations.

Implementation #Bases ecdbl ecadd ecmulmul Deployment Comment
(measured) (Prec.)

Ours(1) 2 256 192 201K 0
Ours(3) 8 64 64 61.6K 3.2M

(estimated)
Future(1) 8 64 32 130K 200K 1+1Kb of precomputations
Future(2) 12 43 86 85K 800K 4+4Kb of precomputations
Future(3) 4 128 128 160K 0 2128Q in calldata

12

https://github.com/javgh/ed25519-solidity

	Speeding up elliptic computations for Ethereum Account Abstraction
	 Renaud Dubois

