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Abstract. In recent years, there has been much focus on developing core crypto-
graphic primitives based on lattice assumptions, driven by the NIST call for post-
quantum key encapsulation and digital signature algorithms. However, more work
must be conducted on efficient privacy-preserving protocols based on quantum-safe
assumptions.
Electronic voting is one such privacy-preserving protocol whose adoption is increasing
across the democratic world. E-voting offers both a fast and convenient alternative to
postal voting whilst further ensuring cryptographic privacy of votes and offering full
verifiability of the process. Owing to the sensitivity of voting and its infrastructure
challenges, it is crucial to ensure security against quantum computers is baked into
e-voting solutions.
We present an e-voting scheme from quantum-safe assumptions based on the hardness
of the RLWE and NTRU lattice problems, providing concrete parameters and an
efficient implementation. Our design achieves a factor 5.3× reduction in ciphertext size,
2.5× reduction in total communication cost, and 2× reduction in total computation
time compared to the state-of-the-art lattice-based voting scheme by Aranha et al.
(ACM CCS 2023). We argue that the efficiency of this scheme makes it suitable for
real-world elections.
Our scheme makes use of non-ternary NTRU secrets to achieve optimal parameters.
In order to compute the security of our design, we extend the ternary-NTRU work of
Ducas and van Woerden (ASIACRYPT 2021) by determining the concrete fatigue
point (for general secrets) of NTRU to be q = 0.0058 · σ2 · d 2.484 (above which
parameters become overstretched) for modulus q, ring dimension d, and secrets drawn
from a Gaussian of parameter σ. We consider this relation to be of independent
interest and demonstrate its significance by improving the efficiency of the (partially)
blind signature scheme by del Pino and Katsumata (CRYPTO 2022).
Keywords: Lattice Cryptography · Electronic Voting · NTRU

1 Introduction
With the advent of quantum computers, all public key primitives based on the hardness of
factoring or computing discrete logarithms will be deemed insecure.

To mitigate this, there has been an international effort to replace these primitives with
ones based on assumptions conjectured to be secure against quantum adversaries. This
process, led by the National Institute of Standards and Technology (NIST) in the US, has
recently concluded with the selection of standards for post-quantum key encapsulation
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and digital signature algorithms. Three of four standards [SAB+22, LDK+22, PFH+22]
are built from structured lattice assumptions; Ring Short Integer Solution (RSIS) [Ajt96,
PR06, LM06], Ring Learning With Errors (RLWE) [Reg05, LPR10], and NTRU [HPS98],
or the module versions of the two former assumptions (MSIS/MLWE) [LS15]. Despite
this standardization effort, there is still much work to be done in designing privacy-
preserving primitives from quantum-safe assumptions. In this work, we focus on one of
these; electronic voting (e-voting). More precisely, we consider internet voting which allows
for fully remote ballot casting via a voter’s device as opposed to voting machines at a
polling station, though our framework could in theory be implemented in this setting also.
Herein, ‘e-voting’ should be read as synonymous with internet voting.

Electronic Voting. E-voting has become increasingly prevalent with the first experi-
ments for democratic elections beginning around the turn of the millennium. The first
binding election to be carried out online was for the Arizona primary in 2000 [CBS00]. In
2005, Estonia offered internet voting nationally [Vin15] and in 2023, over 63% of the votes
cast in Estonian parliamentary elections were cast online1. Switzerland used its Swiss Post
voting system in the 2023 national elections for the first time [Swi23] and continues to be
one of the leaders in e-voting uptake. Ontario, Canada increasingly offers online voting with
177 municipalities exclusively using online voting in the 2018 municipal elections [CAE19].
In Australia, over 650,000 online voters participated in the 2021 state election in New
South Wales [New21]. E-voting is also used in the cryptographic community, where the
International Association for Cryptologic Research (IACR) is using Helios [Adi08] for their
elections2.

E-voting has a number of attractive advantages. Analysis of Estonian local elections
in 2017 showed the per-vote cost of online ballots was a factor 2× to 10× cheaper than
election-day paper ballots [KCK+18]. Moreover, the 2023 Estonian parliamentary elections
revealed that the environmental impact (CO2 emissions) of paper ballots was 180 times
higher than that for online ballots and its adoption has resulted in a high voter satisfaction
and turnout rate [Sol01, SMPS16].

E-voting offers to enhance both the integrity and privacy of voting. The first attractive
property is verifiability; both individual and universal. Individual verifiability allows a
voter to check that their ballot was recorded correctly in the final count, whilst universal
verifiability allows anyone to check that parties involved in ballot processing carried out
their tasks correctly. While this represents a great bolstering to the integrity of the voting
process, it can be executed whilst preserving the privacy of voters and their ballots. The
second significant property enabled by e-voting is the distribution of the ballot processing.
A distributed decryption ensures privacy of ballots since a single honest decryption server
prevents a connection between voters and ballots.

Moreover, we emphasise the importance of long-term privacy of electronically cast
ballots, where encrypted ballots submitted today potentially can be tied to users in the
future if we can break the encryption scheme. The increasing deployment of e-voting
protocols currently outpaces solutions providing security against quantum computers.
Evidenced by the rapid adoption of the PQC NIST standards, the urgency to defend
against a potential quantum adversary is plain to see. One possible solution for e-voting is
to deploy schemes providing everlasting privacy [HMMP23], however, these schemes do
not offer integrity against quantum computers, creating problems down the road whenever
quantum computers are available. It is not certain that the public will be the first to know
when classical assumptions are breakable, and it is thus essential that quantum security be
baked into the designs for e-voting from the outset, and particularly to construct e-voting
schemes based on assumptions conjectured to be secure against quantum adversaries.

1valimised.ee/en/archive/statistics-about-internet-voting-estonia
2iacr.org/elections/eVoting

https://www.valimised.ee/en/archive/statistics-about-internet-voting-estonia
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From a desire to achieve these privacy enhancements has emerged the ‘mix-and-decrypt’
paradigm. Here, multiple servers verifiably shuffle encrypted ballots before they are
decrypted in a distributed manner. This is commonly achieved by combining a verifiable
mix-net [Cha81] with a distributed public-key encryption scheme. Many previous voting
designs have used this structure and in 2019, Switzerland (via its national postal service
Swiss Post), deployed a national e-voting infrastructure using this paradigm and the
Bayer-Groth mix-net [BG12].

Voting from Quantum-Safe Assumptions. Despite much success in developing e-
voting protocols, only a few are based on assumptions believed to be quantum-safe. The
most notable works are the schemes by del Pino et al. [dPLNS17], Aranha et al. [ABG+21],
Farzaliyev et al. [FWK21], and Aranha et al. [ABGS23], the latter being the most efficient
scheme based on (Ring) SIS and (Ring) LWE. Of these schemes, only the last one satisfies
the golden mix-and-decrypt standard for general ballots. Even then, the communication
cost of this scheme is around two orders of magnitude greater than the one employed by
Swiss Post based on classical assumptions.

The inefficiency of the state-of-the-art scheme in [ABGS23] stems from the need to
decrypt ballots correctly being hindered by a few key features of their design.

1. In order to optimise the computational cost of lattice-based protocols and to rely
on reductions to worst-case problems, one would like to use polynomial rings whose
dimension is a power of two. This imposes the first constraint on parameters
([ABGS23] uses ring dimension 4096).

2. The mixing and distributed decryption stages both use homomorphic operations on
encrypted ballots. This has the effect of increasing the noise within each ciphertext.
To accommodate this, one must use a ring with a larger modulus to ‘soak up’ this
extra noise. This larger modulus itself increases the size of objects in the scheme
and decreases the security of the underlying assumption, in turn requiring a larger
ring dimension to ensure that the concrete instantiation is still secure.

3. The distributed decryption process requires decryption servers to use so-called
‘noise-drowning’ [BD10] to ensure that decryption shares do not leak anything
about the server’s decryption key. Further, each decryption server must prove,
in zero-knowledge, that they have applied this noise drowning operation. So far,
proving knowledge of such a large element over lattices, can only be done using
‘approximate’ proofs where one can give only approximate guarantees about the size
of the noise-drowning term [BBC+18]. The noise drowning hugely increases the noise
in ciphertexts, and the loose zero-knowledge proof further pushes up parameters if
correct ballot decryption is to be ensured.

Unfortunately, all three of these features appear to be crucial in realising the coveted
mix-and-decrypt framework in a quantum-secure fashion; the power-of-two ring dimension
allows for a highly optimised implementation and the noise-growing and homomorphic
operations are fundamental to constructing their mix-net and distributed decryption
building blocks. Despite two decades of lattice-based distributed decryption design, no
efficient alternative to noise-drowning has been found.

Given the large efficiency gap between classical schemes and the work in [ABGS23], it is
hard to see how significant efficiency improvements can be found without a new approach.

Voting from NTRU. In privacy-preserving protocols, zero-knowledge proofs (ZKPs) are
deployed to verify the honest actions of parties, and usually dominate the communication
cost. Observation of the recent NIST PQC standards reveals that both the RLWE and
RSIS problems are used, however, there is a third long-standing problem which appears in
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the Falcon digital signature [PFH+20]; NTRU. Crucially, NTRU ciphertexts contain only
a single ring element with three secret elements, giving rise to simpler ZKP relations when
compared to their two-component RLWE-based counterparts such as the BGV encryption
scheme [BGV12], as used in [ABGS23], which contains five secret elements. Thus, NTRU
might appear to be an attractive candidate problem from which to design a voting protocol.

However, whilst the hardness of the RLWE and RSIS problems are well understood,
the picture for NTRU is less clear. Recall, the NTRU problem [HPS98]. Let Rq be a
polynomial ring of dimension d and modulus q and sample polynomials f and g with
coefficients from some discrete Gaussian Dd

σ. Informally, the NTRU problem is to recover
f and g given h, where h = g/f ∈ Rq. In recent years, it has been shown that NTRU is
vulnerable to a unique attack when defined for so-called ‘overstretched’ parameters [ABD16,
CJL16] i.e. when the modulus q is very large compared to d. Whilst a line of recent
works [KF17, DvW21] has made progress in understanding the parameters for which this
attack applies, it is not clear how the size of the secrets f and g (parametrized by σ)
influence the feasibility of the attack. Thus, designs using large parameters as found in
privacy-preserving lattice constructions tend to use the RLWE and RSIS problems for
which such behaviour is well understood.

1.1 Our Contribution
We propose an electronic voting protocol in the mix-and-decrypt paradigm based on the
RLWE and NTRU lattice assumptions. We construct each building block from the ground
up by presenting an NTRU-RLWE-based verifiable distributed decryption scheme and
verifiable mix-net. Moreover, via an in-depth analysis of the NTRU problem, we provide a
concrete description of the hardness of the NTRU problem for general secret sizes. We
demonstrate the significance of this relation in allowing optimal parameter selection for
our scheme and other NTRU-RLWE-based works in which large parameters are necessary.
Finally, we give an efficient implementation of our voting scheme demonstrating significant
efficiency gains over the state-of-the-art in both communication and computational cost.

Verifiable Mix-Net from NTRU. We present a verifiable mix-net for NTRU cipher-
texts comprising a series of shuffle servers that each apply a secret permutation to the
set of input ciphertexts. As long as at least one shuffle server is honest, the set of input
ciphertexts cannot be pair-wise matched to the set of output ciphertexts. Our mix-net is
simpler than the one in [ABGS23] owing to the single-element NTRU ciphertexts which
yield a cleaner protocol than two-element BGV ciphertexts do. Furthermore, one proves
knowledge of fewer secret objects when applying ZKPs for verifiability.

Verifiable Distributed Decryption from NTRU. We present a distributed decryp-
tion protocol based on a variant of the NTRUEncrypt scheme of Steinfeld and Stehlé [SS11],
proving its security using both the RLWE and NTRU assumptions. This allows for more
favourable parameters owing to a computationally secure public NTRU key (vs. a sta-
tistically secure one in [SS11]). We then apply an exact zero-knowledge proof (ZKP) in
order to prove the well-formedness of decryption shares. In particular, this proof proves
knowledge of the large noise drowning term needed to prevent leakage of the decryption
key and does so in an exact fashion. That is, our ZKP (which is a modification of the
one by Bootle et al. [BLNS21]) proves a tight bound on the size of the noise drowning
term. To our knowledge, this is the first exact amortized ZKP of a ‘large’ secret vector for
lattice relations and may be of independent interest. We note that while this makes the
proof of distributed decryption larger, it allows for a less restrictive correctness condition,
leading to better global parameters throughout the scheme, more than making up for any
additional communication cost incurred by this proof.
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Table 1: Per vote comparison to [ABGS23] of ciphertexts, shuffle proofs, decryption proofs,
and overall with four servers. Shuffles are sequential, while decryption is done in parallel.

Scheme Ciphertexts Shuffle Dist. Dec. Total

[ABGS23] [KB] 80 370 157 2188

Our [KB] 15 130 85 875

[ABGS23] [ms] 0.74 261 138 1182

Our [ms] 0.20 62 328 576

NTRU Security Analysis. We build upon the work of Ducas and van Woerden [DvW21],
on NTRU hardness, to analyse the so-called ‘overstretched attack’ against NTRU when
the norm of the secrets grows with respect to the dimension and modulus. We stress
that [DvW21] does give an asymptotic fatigue point for general NTRU but only a concrete
relation for ternary secrets. Employing the scripts provided in [DvW21], our analysis shows
that when we increase the standard deviation σ, then q can be increased with the square
of this increase before reaching the fatigue point. Concretely, for σ and ring dimension d
our experiments suggest a fatigue point for modulus q given by the following expression

q = 0.0058 · σ2 · d 2.484.

Note, by following a similar asymptotic analysis to that in [DvW21], we confirm that the
influence of σ on the fatigue point must indeed manifest only in the leading constant and
not in the exponent of d.

To demonstrate the importance of this quadratic relationship, we recompute parameters
for the recent (partially) blind signature by del Pino and Katsumata [dPK22], improving its
efficiency compared to the original scheme, which uses ternary secrets. Most significantly,
for this work, the fatigue relation’s quadratic nature allows parameters to reach the required
security level without needing to increase the ring dimension used in our voting protocol
(which would significantly impact performance).

A New Lattice-Based E-Voting Design from NTRU. Our main contribution is
presenting a new lattice-based e-voting protocol following the standard mix-and-decrypt
framework which also supports general ballots. Our design combines our NTRU-based
verifiable mix net and distributed decryption schemes. Moreover, we call on our analysis
of the NTRU problem to choose fine-tuned concrete parameters. Crucially, when choosing
the NTRU secret keys, we can drop the ring dimension down to 2048 from 4096 and
modulus down to 59 bits from 78 bits as used in [ABGS23] whilst maintaining a 128-bit
security level. This would not have been possible without the quadratic nature of the
fatigue relation. We provide an efficient C++ implementation of our design.

Overall, we reduce the voting protocol’s communication by 2.5× and computation
by 2× over [ABGS23], see Table 1 for a comparison and Section 5 for more details.
It is interesting to note that, when compared to their classically secure counterparts,
quantum-safe replacements typically come with a 30× communication cost (e.g. ECDH vs
CRYSTALS Kyber/ML-KEM). Comparing our voting scheme to ElGamal-based schemes
often used in practice, we incur a cost of at most 20× in ciphertext size, suggesting that
our design may be approaching what can be optimally achieved.
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1.2 Related Works
Lattice-Based Electronic Voting. In [ABGS23], the authors provide a verifiable
mix-net and verifiable distributed decryption protocol based on BGV, showing for the
first time that lattice-based electronic voting can be practical for real-world systems. We
build directly upon their framework and conduct a more detailed comparison in Section 5.
This work utilises the verifiable shuffle of known commitment openings by [ABG+21]; a
building block we adopt3. del Pino et al. [dPLNS17] gives a practical scheme based on
homomorphic counting, but it does not scale well for systems with more complex ballots.

A shuffle by [CMM19] was implemented in [FWK21]; however, it is less efficient
than [ABGS23]. More theoretical works include [HMS21], [Str19], and [CGGI16], but none
of these are efficient enough to be considered for practical deployment. Moreover, [CMM19,
FWK21, HMS21] do not consider the decryption of ballots, which would heavily impact
the parameters of the protocols in practice. Finally, [BHM20] gives a fast decryption
mix-net, but it cannot achieve universal verifiability and is thus unsuitable for real-world
elections.

NTRU Cryptanalysis. The most relevant work analysing NTRU fatigue is that of
Ducas and van Woerden [DvW21]. It is important to acknowledge that this sits atop a
line of work in recent years. The concurrent works [ABD16, CJL16] showed, for the first
time, that NTRU security is more subtle than simply finding a notably short vector in a
lattice. These works exploit the specific algebraic structure of the NTRU lattice to gain an
advantage on standard lattice reduction for so-called ‘overstretched’ parameter regimes.

This work was closely followed by Kirchner and Fouque [KF17], who showed that
improved attacks were, in fact, only due to the geometric existence of an unusually dense
sublattice of large dimension within the NTRU lattice. Moreover, their analysis concludes
that q larger than d 2.783+o(1) already lies in the overstretched range (for ternary secrets).
This bound was improved upon by the work of [DvW21] as discussed in Section 4.

1.3 Paper Organization
We begin in Section 2 by introducing some background material including notation, the
NTRU, RSIS, and RLWE lattice assumptions, and the necessary building blocks used in
our e-voting design; NTRU encryption, and the BDLOP commitment scheme.

In Section 3 we present our electronic voting scheme. Section 3.1 provides an overview of
the well-established mix-and-decrypt framework. Section 3.2 introduces the core, passively-
secure e-voting construction ΠPVote. This is included to aid the reader’s intuition before
presenting the full scheme. Section 3.3 contains the full, actively-secure construction ΠAVote
whose constituent algorithms are detailed in Figs. 5 and 6. This subsection also makes
explicit, the implicit verifiable mixing ΠAMix and verifiable distributed decryption ΠADDec
building blocks at the core of our design. The section is rounded off with a security analysis
of the ΠAMix and ΠADDec building blocks. We dedicate Section 3.4 to providing the details
of zero-knowledge proofs used in our actively secure voting scheme.

Before we can set concrete parameters for our voting scheme, Section 4 takes a necessary
interlude to closely examine the NTRU assumption, providing a fatigue point relation
for general NTRU secrets (Eq. (3)) supported by experimental data displayed in Figs. 7
and 8. This section closes with a discussion of the implications of Eq. (3) for existing
NTRU-based constructions in the literature.

3We remark that in an unpublished work by Jonathan Bootle, Vadim Lyubashevsky, and Antonio
Merino-Gallardo (shared over private communication), they found a flaw in the shuffle proof by Aranha et
al. [ABG+21, ABGS23] that we build upon. However, they also propose a solution similar to the product
proof by Costa, Martínez, and Morillo [CMM19], where the verifier sends two more public challenges at
the start of the protocol, which are incorporated in the proofs of linearity that follows. This change is
needed for soundness, but it does not impact the performance of the shuffle.
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In Section 5 we show how, informed by the analysis of Section 4, one can set concrete
parameters for our voting scheme. We give a sample parameter set yielding the commu-
nication costs shown in Table 3. Additionally, we provide an efficient implementation
and display the resulting timings in Table 4. We close by discussing some related future
research paths.

2 Preliminaries
Here we detail the essential tools employed in our constructions. We recall standard lattice
results and necessary cryptographic building blocks. We begin with some notation.

Notation. For a set S and distribution D, “← S” and “← D” denote the processes of
uniformly sampling from S and sampling from (or executing) D, respectively. We denote
by Perm[i] the set of permutations of the integers {1, ..., i}.

Adversarial Model. We assume a static, active adversary who has full control of
corrupted parties including access to their internal tapes and the ability to determine
outputs. When analysing the security of our voting scheme, properties relating to ballot
privacy are proven assuming all but one shuffle server and one decryption server are
corrupt4. Properties relating to integrity (correctness) hold even if all parties are corrupt.

We assume a trusted setup whereby a single trusted entity creates the public key under
which votes are encrypted and secret key shares that are passed to decryption servers.
This is common in many voting systems but we note that one could use the techniques of
[RST+22] to create a distributed key generation for NTRU.

While our work constructs and implements a voting scheme from quantum-safe as-
sumptions, we do not claim that it is post-quantum secure. Particularly, we do not prove
security in the Quantum Random Oracle Model (QROM). See [ABGS23, Appendix B] for
a more detailed discussion on this distinction as it relates to the building blocks we use.

2.1 Lattices
The Ring Z[x]/(xd + 1). Consider the rings R = Z[x]/ϕ and Rq = Zq[x]/ϕ, where
ϕ = (xd + 1) for d an integer power of 2 and q a prime. Elements in both rings are
polynomials of degree at most d − 1, with those in the latter ring having coefficients
between −(q − 1)/2 and (q − 1)/2. We denote elements of Z and R by lower-case letters,
vectors in Rk by bold lower-case letters, and matrices in R(k×ℓ) by bold upper-case letters.
For a positive real σ, let DZd,σ denote the discrete Gaussian distribution over Zd. To
make the notation simple, we denote a ← Dσ to mean that the coefficient vector of
a ∈ Rq is sampled from DZd,σ. For a, b ∈ R, we have that ∥ab∥∞ ≤ ∥a∥1 · ∥b∥∞ and
∥ab∥∞ ≤ ∥a∥2 · ∥b∥2. Let Sν denote the set of all elements a ∈ R such that the absolute
norm is ∥a∥∞ ≤ ν.

We use the following standard results for Gaussian vectors:

Lemma 1 (Tail Bounds [MR04, Lyu12]). For any real t > 0 and t′ > 1, we have

Pr[x← DZn,σ : ∥x∥∞ > tσ] < 2n · 2− log e
2 ·t2

,

Pr[x← DZn,σ : ∥x∥2 > t′σ
√
n] < 2n·( log e

2 (1−t′2)+log t′).
4In many real-world designs, each server may perform both a shuffling and decryption operation and

thus privacy holds if at least one of these servers is honest
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Rejection Sampling. In lattice-based cryptography in general, and in our zero-knowledge
protocols in particular, we would like to output vectors z = y+v such that z is independent
of v, and hence, v is masked by the vector y. Here, y is sampled according to a Gaussian
distribution N k

σ with standard deviation σ and we want the output vector z to be from
the same distribution. The procedure is shown in Figure 1.

Here, 1/M is the probability of success, and M is computed as

max N
k
σ (z)

N k
v,σ(z) ≤ exp

[
24σ∥v∥2 + ∥v∥2

2
2σ2

]
= M (1)

where we use the tail bound from Lemma 1, saying that |⟨z,v⟩| < 12σ∥v∥2 with probability
at least 1 − 2−100. Hence, for σ = 11∥v∥2, we get M ≈ 3. This is the standard way to
choose parameters, see e.g. [BLS19]. However, if the procedure is only done once for the
vector v, we can decrease the parameters slightly, to the cost of leaking only one bit of
information about v from given z.

In [LNS21], Lyubashevsky et al. suggest to require that ⟨z,v⟩ ≥ 0, and hence, we can
set M = exp(∥v∥2/2σ2). Then, for σ = 0.675∥v∥2, we get M ≈ 3. In Fig. 1, we use the
pre-determined bit b to denote if we only use v once or not, with the effect of rejecting
about half of the vectors before the sampling of uniform value µ in the case b = 1 but
allowing a smaller standard deviation.

Rej(z,v, b,M, σ)

1. if b = 1 and ⟨z,v⟩ < 0, return 0

2. µ $← [0, 1)

3. if µ > 1
M · exp

[
−2⟨z,v⟩+∥v∥2

2
2σ2

]
, return 0

4. return 1

Figure 1: Rejection Sampling.

The NTRU Problem. We give the historical presentation of the NTRU problem as
it is more convenient for our analysis in Section 4. We note that some works refer to
this problem as the ‘search/decisional short polynomial ratio’ problem [LTV12, SXY18]
Furthermore, one can consider the so-called ‘module’ NTRU problem [CKKS19, CPS+20],
which considers the ratio of matrices of polynomials F and G. Our analysis and applications
can naturally be extended to the module setting, so for ease of presentation, we use the
basic (polynomial) NTRU formulation [HPS98].

Definition 1 (Search/Decision NTRU). Let q > 2 be a prime, d be the ring dimension,
and DσNTRU be a distribution over Rq. Sampling (f, g) ← D2

σNTRU
with rejection if f is

not invertible in Rq, define h = g/f ∈ Rq. The search-NTRUq,d,σNTRU,t problem is, given
h, to recover any pair (f ′, g′) such that h = g′/f ′ ∈ Rq and ∥f ′, g′∥2 ≤ t · σNTRU. The
decision-NTRUq,d,σNTRU problem is, given h, to decide if h is computed as h = g/f for
(f, g)← D2

σNTRU
or if h is sampled uniformly from Rq.

The RLWE and RSIS Problems. We define the standard lattice-hardness problems
over rings [Ajt96, Reg05, LPR10].

Definition 2 (Ring Learning with Errors). Let q > 2 be a prime, d be the ring dimension,
DσRLWE be a distribution over Rq, and A a PPT algorithm that makes at most Q oracle
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queries. Then the advantage of A in solving the ring learning with errors RLWEd,q,Q,σRLWE

problem is defined as

AdvRLWE
d,q,Q,σRLWE

(A) =
∣∣Pr[AORLWE(d, q, σRLWE)→ 1]− Pr[AO$(d, q, σRLWE)→ 1]

∣∣ ,
where oracles ORLWE and O$ are defined as

- ORLWE : Samples a← Rq, (s1, s2)← D2
σRLWE

, and then output (a, as1 + s2);

- O$ : Samples (a, b)← Rq ×Rq, and then output (a, b).

Definition 3 (Ring Short Integer Solutions). Let q > 2 be a prime, d be the ring dimension,
∥ · ∥ a norm, and β ∈ R+ a positive integer. The RSISd,q,β problem is, given a uniformly
random a ∈ Rq, find s1, s2 ∈ Rq such that as1 + s2 = 0 ∈ Rq and 0 ≤ ∥s1, s2∥ ≤ β.

2.2 Building Blocks
NTRU Encryption. In this work, we will use the provably secure variant of the NTRU
cryptosystem first presented by Steinfeld and Stehlé in [SS11]. This scheme relies on
the hardness of both the RLWE and NTRU assumptions. Note we make two minor
modifications to ensure perfectly correct decryption: (1) encryption randomness is sampled
from a bounded distribution, and (2) the secret keys f and g are rejected unless their
ℓ2 norm is below a given bound. When sampled accordingly, this limitation has only a
negligible effect on the completion probability of the key generation algorithm and the
entropy of resulting keys.

Setup. Let p ≪ q be primes and d a power of two which define the rings Rp and Rq.
Messages lie in Rp. Let σNTRU ∈ R+ and DσNTRU a discrete Gaussian distribution over
R with standard deviation σNTRU, t ∈ (1, 2] and ν ∈ N. Let the setup parameters be
sp = (d, p, q, σNTRU, t, ν). The encryption scheme is described in Fig. 2.

Key Generation KeyGenNTRU(sp). Given input sp = (d, p, q, σNTRU, t, ν):

1. f, g ← DσNTRU ; if f /∈ R×
q or f ̸≡ 1 ∈ Rp, resample.

2. If ∥f∥2, ∥g∥2 > t ·
√
d · σNTRU, restart.

3. Return sk = f , pk = h := g/f ∈ Rq.

Encryption EncNTRU(m, pk). Given message m ∈ Rp and public key pk = h:

1. Sample encryption randomness s, e← Sν .

2. Return ciphertext c = p · (hs+ e) +m ∈ Rq.

Decryption DecNTRU(c, sk). Given ciphertext c and key sk = f :

1. Return message m = (f · c mod q) mod p.

Figure 2: Adapted NTRUEncrypt [SS11].

Lemma 2 (NTRUEncrypt Security). Let p · d · t · σNTRU(2ν + 1/2) < ⌊q/2⌋. Then the
encryption scheme in Fig. 2 is (perfectly) correct. Moreover, assuming the hardness of the
NTRUq,d,σNTRU and RLWEd,q,Q,χ problems, the scheme is IND-CPA secure.
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The proof of Lemma 2 closely follows the one given in [SS11] and a similar scheme
(also assuming the NTRU assumption) is presented in [LTV12]. We provide a sketch proof
of our scheme for completeness.

Proof. We first consider correctness. Examine the decryption operation (f · c mod q)
mod p. For messages to be recovered correctly, we need that no modular reduction
occur modulo q inside the bracket. That is, for perfectly correct decryption we require
∥f · c∥∞ ≤ ⌊q/2⌋. We have that

∥f · c∥∞ ≤ p∥gs∥∞ + p∥fe∥∞ + ∥fm∥∞

≤ p · ∥g∥1 · ν + p · ∥f∥1 · ν + ∥f∥2 ·
√
d · ∥m∥∞

≤ p ·
√
d · ∥g∥2 · ν + p ·

√
d · ∥f∥2 · ν + ∥f∥2 ·

√
d · ∥m∥∞

≤ p · dt · σNTRU · (2ν + 1/2),

as assumed in the statement of the lemma. IND-CPA security is proven using a hybrid
argument, in two steps:

1. The hardness of the NTRUq,d,σNTRU allows the simulator to change the public key
h = g/f ∈ Rq to a uniformly sampled h.

2. The simulator next changes the challenge ciphertext c∗ = p · (hs+ e) +m ∈ Rq to
c∗ = u+m ∈ Rq, where u is sampled uniformly at random from Rq. This change is
indistinguishable by the RLWEd,q,1,χ assumption.

In this final hybrid, the advantage of the adversary is exactly 1/2 since c∗ is uniform over
Rq independent of the message m. Thus, we have

AdvIND-CPA(A) ≤ Advdecision-NTRU
q,d,σNTRU,t (A) + AdvRLWE

d,q,1χ(A)

The BDLOP Commitment Scheme. Here we recall the BDLOP commitment scheme
from [BDL+18]. For simplicity, we present the scheme instantiated over rings instead of
modules, committing to only one ring element at a time. The scheme is parametrised by
BCom, σCom ∈ R+, and challenge space C whose difference set is C̄.

Setup : Samples uniformly random a1, a2, a3 from Rq and outputs the public commitment
key pkC defined as:

pkC =
[
a⃗1 0
a⃗2 1

]
=

[
1 a1 a2 0
0 1 a3 1

]
.

Com(pkC , x) : On input a public commitment key pkC and an element x in Rq, samples a
vector r⃗ ∈ R3

q such that ∥r⃗∥∞ ≤ BCom, and computes the commitment as:

com =
[
c⃗1
c⃗2

]
=

[
1 a1 a2 0
0 1 a3 1

] 
r1
r2
r3
x

 = [[x]].

It outputs the commitment com and the opening d = (x, r⃗, 1).
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Open(pkC , com, d) : On input a public commitment key pkC, the commitment com and
the opening d = (x, r⃗,f) where f ∈ C̄. It verifies:

f · com ?=
[
1 a1 a2 0
0 1 a3 1

] 
r1
r2
r3
f · x

 ,

and ∀i ∈ [3] : ∥ri∥2
?
≤ 4 · σCom

√
d. It outputs 1 if the relations hold and 0 otherwise.

Lemma 3 (Commitment Security [BDL+18]). The BDLOP commitment scheme is hiding
if the RLWE problem is hard for vectors of ℓ∞ norm BCom over a lattice of dimension 2 · d
and binding if the RSIS problem is hard for vectors of ℓ2 norm 16σCom

√
κd over a lattice

of dimension 2 · d.

3 The Voting Scheme
A cryptographic voting scheme is usually defined in terms of the algorithms for election
setup, casting ballots, and counting cast ballots. We need algorithms for shuffling and
distributed decryption to model the counting process accurately. To make such a scheme
verifiable (actively secure), we also need a mechanism to enforce the fact that the encryption,
shuffling, and decryption algorithms are computed honestly. This section presents an NTRU-
based voting protocol in the well-established ‘mix-and-decrypt’ paradigm, comprising new
verifiable distributed decryption and mix-net protocols. We refer to Chapter 14 in the
book by Gjøsteen [Gjo22] and Appendix H in the full version of Aranha et al. [ABGS22]
for a more thorough description of e-voting schemes.

3.1 Voting Scheme Overview
Setup Phase. A trusted party runs the key generation algorithm for the PKE scheme
with distributed decryption. In this work, we will assume a trusted key generation and
leave the design of a distributed key generation algorithm for NTRU to future work, as a
trusted setup is typical for many voting schemes5. The generated public parameters sp are
given to every participant, while the decryption key shares dkj are distributed amongst
the decryption servers.

Casting Phase. Each voter instructs their voting device to cast their chosen ballot. The
device encrypts the ballot under the public key pk to create a ciphertext c, and it computes
a ballot proof. The standard way to do this is to use a verifiable encryption scheme such
as the one presented in [LNP22], proving that the submitted ciphertext contains a genuine
ballot in zero-knowledge. We remark that it is indeed required for the voters to prove
plaintext knowledge to ensure security of the voting scheme, to prevent attacks such as
copying and re-randomizing ballots from other voters.

Counting Phase. This is divided into three sequential processes. First, encrypted
ballots are passed through a series of shuffle servers.

The ξ1 shuffle servers S1, . . . ,Sξ1 consecutively run the shuffle algorithm of the set of
encrypted ballots {c(k−1)

i }, passing the shuffled and re-encrypted ballots {c(k)
i } to the next

shuffle server. They also generate a shuffle proof which anyone can verify. We may refer to
this whole shuffle process as the mix-net.

5One could adapt the techniques of [RST+22] to create a distributed key generation for NTRU.
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S1 S2 . . . Sξ1

{c(0)
i } {c(1)

i } {c(2)
i }

πS1 πS2 πSξ1

D1

...

Dj

...

Dξ2

{mi}

{c(ξ1)
i }

{c(ξ1)
i }

{c(ξ1)
i }

({dsi,1}, πD1)

({dsi,j}, πDj )

({dsi,ξ2}, πDξ2
)

Figure 3: The voting protocol with verifiable mix-net and distributed decryption, adapted
from [ABGS23, Figure 1] with shuffle servers Si and decryption servers Dj .

Each of the ξ2 decryption servers Dj receives the output of each shuffle server and
verifies the corresponding shuffle proofs. Only after verifying each proof does a decryption
server begin decryption. Dj then computes a set of partial decryption shares {dsij}, one
for each of the ciphertexts. Finally, it creates a proof of decryption to guarantee that it
computed its shares correctly. Each decryption server passes its shares to the combining
algorithm Comb.

The Comb algorithm performs the task of recovering the ballots. The Comb algorithm
verifies the decryption proofs after receiving all decryption shares from decryption servers.
If all decryption proofs are verified, the ballots are recovered by combining the decryption
shares.

A schematic of these processes, in the malicious setting, is shown in Fig. 3. This figure
is adapted from [ABGS23] and shows the voting protocol beginning with input of a set
of encrypted ballots and finishing with a set of ballots in plaintext. We note that some
works consider an auditor who verifies the processes at each step by checking the proofs
provided. This is a stylistic design choice. For the purposes of this paper, it is helpful to
think of the proofs as providing verifiability of each phase by any third party and by the
component servers before carrying out their roles.

3.2 Passively Secure Scheme
Here we present our passively secure voting scheme. Whilst our ultimate goal is to give
a verifiable (actively secure) voting scheme, we first isolate the core, passively secure
skeleton for clarity of presentation. We begin by defining the algorithms and syntax of
this construction.

Definition 4 (Passively Secure Voting Scheme). Let τ be the number of voters, ξ1 the
number of shuffle servers, and ξ2 the number of decryption servers. A passively secure cryp-
tographic voting scheme ΠPVote consists of five algorithms (KeyGen,Cast,Mix,DDec,Comb).

KeyGen(sp)→ (pk, sk, {dkj}j∈[ξ2]) : On input setup parameters sp, it returns a public
encryption key pk, a secret key sk and a set of ξ2 secret decryption key shares
{dkj}j∈[ξ2].
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Cast(pk, v)→ c : On input a public key pk and vote v it returns an encrypted ballot c.

Mix({ci}i∈[τ ])→ {ĉi}i∈[τ ] : On input a set of encrypted ballots {ci}i∈[τ ] it returns a set of
encrypted ballots {ĉi}i∈[τ ].

DDecj({ci}i∈τ , dkj)→ {dsi,j} : On input a set of encrypted ballots {ci}i∈[τ ] and a decryp-
tion key dkj , it returns a set of decryption shares dsj = {dsi,j}i∈[τ ].

Comb({ci}i∈[τ ], {dsj}j∈[ξ2])→ {v}i∈[τ ] : On input a set of encrypted ballots {ci}i∈[τ ] and
a set of decryption shares {dsj}j∈[ξ2], it outputs a set of votes {v}i∈[τ ].

We instantiate the algorithms, present our passively secure voting scheme and give an
overview in Fig. 4.

Setup. Let p ≪ q be primes and d a power of two which define the rings Rp and
Rq. Votes lie in Rp. Let σNTRU, BDec, BDrown ∈ R+, t ∈ (1, 2], and ν, τ, ξ1, ξ2 ∈ N. Let
sp = (d, p, q, σNTRU, t, ν, τ, ξ1, ξ2).

3.3 Actively secure scheme
We present our actively secure (verifiable) voting scheme. This can be seen as a natural
extension of the passive protocol ΠPVote by adding verifiability to the mixing and distributed
decryption processes. This is done by applying the zero-knowledge proofs of Section 3.4
so that the outputs of MixA and DDecA, now include a proof of shuffle πS and a proof of
decryption πD respectively. Note the use of ‘A’ in algorithm/protocol suffixes to indicate
the actively-secure variant (as opposed to those using ‘P’ i.e. passively-secure variants).

Now, any third party can verify that the mixing and distributed decryption processes
were carried out correctly without compromising the privacy or integrity of the voting
system. As usual, we assume a trusted dealer for key generation and leave the construction
of an NTRU-based distributed key generation for other applications to future work.

This construction implicitly defines a verifiable mixing with verifiable distributed
decryption from NTRU. We consider these to be of independent interest and give an
overview as stand-alone protocols.

Verifiable Mixing. Our aim here is, given a set of input ciphertexts, to generate a
new set of ciphertexts that decrypts to the same set of plaintexts. Crucially, input-output
ciphertext correspondence must be obscured. Additionally, we would like any third party
to verify that this process has been performed correctly without compromising the privacy
of the mix.

For this, we apply the proof of [ABG+21], which allows one to prove a shuffle of openings
of the lattice commitments in Section 2.2. We denote this proof system ΠShuf . Since NTRU
ciphertexts only contain a single element, we can import their scheme without modification
where the committed messages are ciphertexts. We also employ the ΠSmall proof systems
described in Section 3.4 to prove that the new ciphertext noise is sufficiently bounded. At
a high level, our verifiable mixing of NTRU ciphertexts c1, ..., cτ re-randomises the input
ciphertexts and then permutes their order where the permutation is only known to the
shuffle server:

1. The mixing server creates encryptions c′
1, ..., c

′
τ of 0 and commits to these as [[c′

i]] for
each i ∈ [τ ]. Run the ΠSmall protocol to prove that each committed ciphertext is
honestly computed.

2. Adding the original ciphertexts ci to these commitments homomorphically yields
commitments [[ĉi]] to ciphertexts with the same plaintext as in c1, ..., cτ , now with
fresh randomness.
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KeyGen(sp). On input system parameters sp:

1. (sk = f, pk = h)← KeyGenNTRU(d, p, q, σNTRU, t).

2. For j ∈ [ξ2 − 1], dkj ← U(Rq) and set dkξ2 = sk−
∑ξ2−1

j=1 dkj mod q.

3. Return (pk, sk) and key shares {dkj}j∈[ξ2].

Cast(pk, v). On input the public key pk and a vote v ∈ Rp:

1. Compute c = EncNTRU(pk, v).

2. Return encrypted ballot c.

Mix({ci}i∈[τ ]). On input encrypted ballots {ci}i∈[τ ]:

1. For each i ∈ [τ ], compute c′
i = EncNTRU(pk, 0).

2. For each i ∈ [τ ], compute ĉi = ci + c′
i mod q.

3. Sample a random permutation π ← Perm[τ ].

4. Return re-encrypted ballots {ĉπ(i)}i∈[τ ].

DDecj({ci}i∈τ , dkj). On input a set of encrypted ballots {c}i∈τ and a decryption key
share dkj :

1. For each i ∈ [τ ], sample Eij ← SBDrown and compute share dsij = dkj · ci + p · Eij

mod q.

2. Return the set of decryption shares dsj = {dsij}i∈[τ ].

Comb({ci}i∈[τ ], {dsj}j∈[ξ2]). On input encrypted ballots {ci}i∈[τ ] and decryption shares
{dsj = {dsij}i∈[τ ]}j∈[ξ2]:

1. For each i ∈ [τ ], vi =
(∑

j∈[ξ2] dsij mod q
)

mod p.

2. Return the set of votes {vi}i∈[τ ].

Figure 4: The passively-secure voting scheme ΠPVote.

3. The server now reveals the openings ĉi in a randomly permuted order and runs the
ΠShuf protocol to prove that these are indeed a permutation of the correct openings
of the commitments.

We note that verification of the shuffle proof should be done before any ballot decryption
begins. This can be seen as a first step of the DDec algorithm or as part of a global
verification process carried out by an auditor. For simplicity of presentation and since this
is covered in [ABGS23], we omit this from the full protocol.

Verifiable Distributed Decryption. Our aim here is, given a set of input ciphertexts,
to generate a set of decryption shares to extract the encrypted plaintexts when all the shares
are combined. Furthermore, each decryptor must prove they decrypted their decryption
share correctly using their secret key share. Therefore, in the active setting, the public
key contains a commitment [[dkj ]] to each secret key share dkj , and each decryptor holds
an opening to precisely one of the commitments. The verifiable distributed decryption
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protocol works as follows:

1. For each i ∈ [τ ], the decryptor samples a noise value Eij ← SBDrown , computes a
decryption share dsij = dkj · ci + p · Eij and commits to the noise as [[Eij ]].

2. For each i ∈ [τ ], it uses the ΠLin protocol to prove that the linear decryption equation
above is computed honestly with respect to [[dkj ]] and [[Eij ]].

3. For each i ∈ [τ ], it uses the ΠBnd protocol to prove that [[Eij ]] is an honestly created
commitment and the committed value is bounded by BDrown.

We wish to emphasise the importance of our ΠBnd proof system. ΠBnd is a modification of
the ZKP by Bootle et al. in [BLNS21]). Crucially, it proves a tight bound on the size of
the noise drowning term Eij . To our knowledge, this is the first exact ZKP of a ‘large’
secret vector for lattice relations and may be of independent interest. Though a more
costly proof, proving an exact bound on Eij will lead to more efficient global parameters
in Section 5. We remark that one might consider using the LNP proof system of [LNP22]
for ΠBnd. However, proofs arising from the LNP framework scale linearly with the witness
while our design saves a square root factor by comparison. Furthermore, LNP is designed
for proving 2-norms directly and one would need to perform some witness encoding to
prove infinity norms, further reducing efficiency.

Setup. Let p ≪ q be primes and d a power of two which define the rings Rp and Rq.
Votes lie in Rp. Let σNTRU, BDec, BDrown, BCom, BSmall ∈ R+, t ∈ (1, 2], and ν, τ, l, ξ1, ξ2 ∈ N.
Let sp = (d, p, q, σNTRU, t, ν, τ, l, ξ1, ξ2, BDec, BDrown, BCom).

3.4 Zero-Knowledge Proofs
We present the proof systems needed in the actively secure voting protocol. We wish
to highlight, in particular, how we adapt the amortised proof of boundedness ΠBnd as
compared to previous works [ABGS23]. The crucial observation here is that whilst we get
slightly larger proofs there, the exact guarantees provided by the proof allow for better
parameters to be chosen for the overall voting scheme. This leads to a net reduction in
communication costs.

Amortized Proof of Shortness. In Step 2 of the shuffle, we use ΠSmall to prove that
we have committed to well-formed encryptions of zero. The protocol ΠSmall produces a
proof that a batch of equations A⃗s⃗i = t⃗i for i ∈ [ℓ] is satisfied for a set of secret vectors s⃗i

with ℓ∞ norm bounded by ν. The exact relation for the proof system is:

RSmall :=
{

(x,w)
∣∣∣∣ x := (pkC , {comi}i∈[ℓ]) ∧ w := ({di = (ui, r⃗i, fi)}i∈[ℓ]) :

∀i ∈ [ℓ] : ∥ui∥∞ ≤ ν ∧ Open(pkC , comi, di)

}
.

The proof of shortness πSmall is quite involved, combining error-correcting codes, Merkle
trees, Lagrange interpolation and proximity testing, and we refer to [ABGS23] for details.
For batch size ℓ of ternary secret vectors, the proof size is given in [ABGS23, Eq. (1)] as

(3vd+ (3ℓ+ 2)η) log2 q + 2λη(1 + log2 γ) bits,

using an [γ, µ, ι] Reed-Solomon Code with code-length γ, message length µ and minimal
distance ι where µ = d(k + 2) + η ≤ γ < q for encoding randomness of length η. λ is the
security parameter. The soundness error of the proof is given as

2 ·max
{

2
(

µ′

γ − η

)η

,
1

q − ℓ
+

(
1− µ′ − µ

6γ

)η

, 2 ·
(

1− 2(µ′ − µ)
3γ

)η

,
18ℓ
q − ℓ

}
,

for a choice of message length µ′ such that µ ≤ µ′ ≤ γ < q.
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KeyGenA(sp). On input system parameters sp:

1. Run
(
(pk, sk), {dkj}j∈[ξ2]

)
← KeyGen(sp).

2. For j ∈ [ξ2], compute the commitments and openings ([[dkj ]], r⃗dkj
)← Com(dkj).

3. Return pkA = (pk, [[dk1]], ..., [[dkξ2 ]]), skA = sk, and key shares
{dkA,j =

(
dkj , r⃗dkj

)
}j∈[ξ2].

CastA(pkA, v). On input a public key pkA and a vote v in Rp, retrieving pk from pkA:

1. Return c← Cast(pk, v).

MixA({ci}i∈[τ ]). On input a set of encrypted ballots {ci}i∈[τ ] :

1. For i ∈ [τ ], compute c′
i ← EncNTRU(pk, 0) using encryption randomness (s′

i, e
′
i).

2. For i ∈ [τ ], commit to c′
i as com′

i := [[c′
i]]← Com(pkC, c

′
i) where r⃗c′

i
is the

commitment randomness used. Then denoting

AM =
[
1 a1,1 a1,2 0 0
0 1 a2,2 ph p

]
,

and sc′
i

= [r⃗c′
i
, s′

i, e
′
i]T compute πSmalli ← ΠSmall for matrix AM, input vector sc′

i
,

targets com′
i, and bound BSmall. Set πSmall := {πSmalli}i∈[τ ].

3. For i ∈ [τ ], compute ĉi = ci + c′
i. Sample π ← Perm([τ ]), and compute

πShuf ← ΠShuf with input commitments {[[ĉi]]}i∈[τ ], randomness {r⃗c′
i
}i∈[τ ],

ciphertexts {ĉi}i∈τ ], and permuted ciphertexts {ĉπ(i)}i∈[τ ].

4. Return
(
{ĉπ(i)}i∈[τ ], πS

)
, where πS =

(
{com′

i}i∈[τ ], πSmall,πShuf
)
.

Figure 5: ΠAVote key generation, casting, and shuffle.

Proof of Shuffle. In Step 3 of the shuffle, we use ΠShuf to prove that a set of committed
values is a permutation of public values.

The committed values will be the ĉi values in our context. The verifier can construct
these from the ci and the [[c′

i]]. The public values are the ĉi. The proof then convinces
the verifier that output ciphertexts are a genuine permutation of the re-randomized input
ciphertexts. The exact relation for the proof system is:

RShuf :=
{

(x,w)
∣∣∣∣ x := ({(comi, ūi)}i∈[τ ]) ∧ w := ({di = (ui, r⃗i, fi)}i∈[τ ], ρ) :
ρ ∈ Perm[τ ] ∧ ∀i ∈ [τ ] : ui = ūρ(i) ∧ Open(pkC , comi, di)

}
.

The proof of shuffle πShuf is computed as follows [ABG+21, Section 4]:

1. Hash the statement to get a uniform value and then convert all commitments and
messages to u′

i and ū′
i (the commitments are additionally homomorphic).

2. For all i ∈ [τ−1], sample random values θi and commit to random linear combinations
of the form [[Di]] = [[θi−1 · u′

i + θi · ū′
i]] (where θ0 = θτ = 0).

3. Hash the commitments to get a uniform challenge β. Then for all i ∈ [τ ] compute si

to solve the linear system for β.

4. For all i ∈ [τ ], compute proofs of linearity for the commitment equations of the form
[[Di]] = si−1[[u′

i]] + si · ū′
i (where s0 = β and sτ = (−1)τβ).
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DDecA,j({ci}i∈[τ ], dkA,j). On input a set of ciphertexts {ci}i∈[τ ] and decryption key share
dkA,j =

(
dkj , r⃗dkj

)
:

1. For i ∈ [τ ], sample Eij ← SBDrown , and compute dsij = dkj · ci + p · Eij .

2. For i ∈ [τ ], compute
(
[[Eij ]], r⃗Eij

)
← Com(Eij , pkC) and use the ΠLin protocol to

compute a proof πLinij for the linear relation dsij = dkj · ci + p · Eij .

3. Apply the amortized proof of boundedness ΠBnd, to create a proof πBnd that, for all
i ∈ [τ ], ∥Eij∥∞ ≤ BDrown and ∥r⃗Eij

∥∞ ≤ BCom.

4. Return dsj :=
(
{dsij}i∈[τ ], πD

)
, where πD =

(
{[[Eij ]]}i∈[τ ], {πLinij}i∈[τ ], πBnd

)
.

CombA({ci}i∈[τ ], {dsj}j∈[ξ2]). On input encrypted ballots {ci}i∈[τ ] and decryption shares
{dsj}j∈[ξ2]:

1. Parse dsj as
(
{dsij}i∈[τ ], πDj

)
, and verify the proofs πLinij and πBnd,ij , returning ⊥ if

either fails to verify.

2. Compute
vi = (

∑
j∈[ξ2]

dsij mod q) mod p.

3. Return the set of votes {vi}i∈[τ ].

Figure 6: ΠAVote distributed decryption and combining.

The verifier accepts if all proofs of linearity are valid. This proof πShuf consists of one ring
element, one commitment and one proof of linearity per shuffled element. Using the proof
of linearity πLin from above, the size of πShuf is τd(2k log2(4σLin) + 3 log2 q) bits.

We use the following challenge set in our proof of linearity ΠLin.

Challenge Set. Let κ be such that
(

d
κ

)
· 2κ > 2λ and define Cκ = {c ∈ Rq | ∥c∥∞ =

1 ∧ ∥c∥1 = κ} and C̄κ = {c− c′ | c, c′ ∈ Cκ ∧ c ̸= c′}.

Proof of Linearity. In Step 2 of DDec, we prove well-formedness of the linear decryption
share. The protocol ΠLin produces a proof that a committed value v is a multiple of
another committed value u with respect to a public scalar g. In our setting, we will prove
[[Eij − p−1dsij ] = −p−1ci[[dkj ]].

The exact relation for the proof system is:

RLin :=

(x,w)

∣∣∣∣∣∣
x := (pkC , comu, comv, g) ∧

w := (du = (u, r⃗u, fu), dv = (v, r⃗v, fv)) :
u = g · v ∧ Open(pkC , comu, du) ∧ Open(pkC , comv, dv)

 .

The proof of linearity πLin is computed as follows [BDL+18]:

1. Sample vectors y⃗u and y⃗v of length k over Rq according to DσLin and compute
w⃗u = a⃗1 · y⃗u and w⃗v = a⃗1 · y⃗v and t = g · a⃗2 · y⃗u − a⃗2 · y⃗v.

2. Hash (w⃗u, w⃗v, t) to c in Cκ, and compute z⃗u = y⃗u + c · r⃗u, z⃗v = y⃗v + c · r⃗v.

3. Rejection sample with respect to (y⃗u, z⃗u), and (y⃗v, z⃗v). If it outputs 1 then output
πLin = (c, z⃗u, z⃗v) and otherwise restart by sampling new (y⃗u, y⃗v).
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The verifier checks if ∥z⃗u, z⃗v∥2 ≤ 2σLin
√
k · d and if the hash of (⃗a1 · z⃗u − c · cu,1, a⃗1 ·

z⃗v − c · cv,1, g · a⃗2 · z⃗u − a⃗2 · z⃗v + cv,2 + g · cu,2) equals c. It outputs 1 if all checks verify,
and otherwise it outputs 0.

Using the improved rejection sampling techniques from [LNS21], we set σLin = BCom ·
κ
√
d. The size of πLin is 2kd log2(4σLin) bits.

Amortized Proofs of Boundedness. In Step 3 of DDec, we use ΠBnd to prove bound-
edness on noise drowning terms Eij . The main idea is that we use a bit-decomposition Ei

to produce a long vector with small entries, allowing the application ΠSmall to prove an
exact bound on E. We define ΠBnd as an adapted version of the ΠSmall protocol.

The previous work by Aranha et al. [ABGS23] used the amortised relaxed proofs by
Baum et al. [BBC+18] to get smaller proof sizes at the cost of slightly increasing the overall
parameters of the voting scheme because of the slack inherent in the proof system. In
practice, this leads to a slightly larger modulus q but does not impact the ring dimension
d. However, in our setting, we get better parameters in practice for the whole scheme
when giving exact proofs of boundedness, even though the proofs themselves are larger.
The precise relation of the proof system, with batch size ℓ′ and secret vectors bounded in
the ℓ∞ norm by BDrown, is:

RBnd :=
{

(x,w)
∣∣∣∣ x := (pkC , {comi}i∈[ℓ′]) ∧ w := ({di = (ui, r⃗i, fi)}i∈[ℓ′]) :

∀i ∈ [ℓ′] : ∥ui∥∞ ≤ BDrown ∧ Open(pkC , comi, di)

}
.

Since ΠSmall is a proof system that scales with the number of possible values of the
secret vectors, we use bit decomposition techniques to limit a blow-up in terms of running
time, memory usage and proof size, to the cost of proving knowledge of longer secret
vectors.

Any integer E between 0 and q can be represented in base b as E = [b0 b1 ... bζ ]◦[1 b ... bζ ]
for unique coefficients bi between 0 and b − 1 and ζ = ⌈logb q⌉ − 1 where ◦ is the dot
product. This can be naturally extended to vectors, matrices and modules, particularly for
our commitment matrix A. Since the commitment randomness is already short, we only
need to decompose the last element in the secret vector, and we can do so in the following
way (note that we abuse notation, where after (∗) the elements before | are in Rq and the
elements after are in Zq, but any element in Rq can be represented in Zd

q):

Aijsij =
[
1 a1,1 a1,2 |0
0 1 a2,2 |1

] [
r⃗Eij

Eij

]

(∗)=
[
1 a1,1 a1,2 |0 . . . 0
0 1 a2,2 |1 . . . bζ

] 
r⃗Eij

E0ij

...
Eζij

 = Āij s̄ij .

Here, the ring element Eij is decomposed, and elements E0ij , . . . , Eζij have integer values
between 0 and b− 1. We note that these statements are equivalent and that the length of
Āij is d(k + ζ + 1) over Zq instead of d(k + 2).

Finally, we use the ΠSmall protocol to prove ternary secret values as above but with
a tweak: the public matrix input to the protocol is Āij instead of Aij , and we change
the coefficient values that we are checking for in the proof. For the first d · k values we
are checking for (0, 1,−1) coefficients but for the next d(ζ + 1) values we are checking for
(0, 1, 2) coefficients instead (this is a minor tweak of line 3 in [ABGS23, Figure 5] that
does not impact the performance of the protocol in any way, these values are initially
arbitrary to the proof system). Since the other secret parts are ternary, we have that
ζ = ⌈log3 BDrown⌉ − 1.
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3.5 Security Analysis
We analyse the security of our verifiable voting scheme presented in Figs. 5 and 6. We
examine the shuffle and distributed decryption protocols individually and prove their
security. We emphasise that this is the standard approach in modern e-voting schemes
based on mix-nets and is similar to the protocol used by Swiss Post for voting in Switzerland
(they have a mix-net with key-switching so that there is only one decryption server needed
in the end, while we only do mixing and then provide a distributed decryption protocol;
these approaches are equivalent). Then, these standard primitives can be composed
into a secure voting scheme as described in Chapter 14 in the book by Gjøsteen [Gjo22]
and Appendix H in the full version of Aranha et al. [ABGS22]. Hence, we inherit their
arguments for integrity, privacy and verifiability of the overall e-voting scheme. Our main
contribution is more efficient building blocks that fit into this gold standard framework for
e-voting, leading to a lattice-based e-voting scheme with improved performance over the
state-of-the-art by Aranha et al. [ABGS23]. We do not propose a new model for e-voting.

Verifiable Mixing Protocol. We analyse the security of the verifiable shuffle protocol
implicitly defined by the tuple of algorithms ΠAMix := (KeyGenA,CastA,MixA,DecNTRU).
We conduct this analysis against the set of standard definitions in Appendix A for verifiable
mixing. Thus, our security results refer to ‘mixing’ properties, but we emphasise that this
is another term for shuffling in this context. Note that security is analysed concerning a
single shuffle server. In the context of our voting protocol, ballot privacy requires that at
least one shuffle server is honest. We say that ΠAMix is secure if it satisfies the properties
of mixing completeness, mixing soundness, and mixing simulatability.

Lemma 4 (ΠAMix Completeness). If the protocols ΠSmall and ΠShuf are complete then
ΠAMix always terminates. Moreover, if the input ciphertexts ci have noise bounded by BDec,
and the total noise added in MixA is bounded by BMix such that (BMix + BDec) ≤ ⌊q/2⌋,
then the output ciphertexts ĉi decrypt to the same messages as ci.

Proof. Since ΠSmall and ΠShuf are complete, the protocol will finish and the verifier will
accept the output of the mix. Since (BMix +BDec) ≤ ⌊q/2⌋, it follows that decryption is
correct. Thus, ΠAMix is complete.

Lemma 5 (ΠAMix Soundness). Suppose the input ciphertexts, output ciphertexts, and
commitments in the shuffle are

(c1, . . . , cτ , ĉ1, . . . , ĉτ , Jc′
1K, . . . , Jc

′
τ K) ,

respectively. Let Ext1 be a knowledge extractor for the protocol ΠSmall with success probability
ϵ1 and let Ext2 be a knowledge extractor for the protocol ΠShuf with success probability ϵ2.
Then we can construct a knowledge extractor Ext0 that succeeds with probability ϵ0 ≤ ϵ1 · ϵ2
in extracting (1) a permutation π, (2) encryption randomness s′

i, e
′
i for i ∈ [τ ], and (3)

commitment randomness rc′
i

for i ∈ [τ ] such that

• The Jc′
iK are commitments, using commitment randomness rc′

i
, to ciphertexts of 0,

say c′
i, with encryption randomness s′

i, e
′
i.

• ∥(s′
i, e

′
i)∥∞ ≤ BMix

• ĉπ(i) = ci + c′
i

Proof. First, note that the conditions above exactly constitute a correct mix so that if an
adversary provides us

(c1, . . . , cτ , ĉ1, . . . , ĉτ , Jc′
1K, . . . , Jc

′
τ K) ,



20 More Efficient Lattice-Based Electronic Voting from NTRU

and we are able to extract as in the statement of the Lemma, then the adversary must
have performed a correct mix. The main observation is that both extractors Ext1 and
Ext2 must succeed. Before verifying the shuffle proof πShuf , the verifier sets

JĉiK := JciK0 + Jc′
iKrc′

i

Here 0 and rc′
i

are the commitment randomness values resp. The verifier then runs the πShuf
verification checks against this set of commitments. This ensures that, if the proof verifies,
the commitments comi in the shuffle proof statement use exactly the same commitment
randomness as used in the commitments to the c′

i.
If the extractor Ext1 succeeds, we are able to extract τ randomness vectors sc′

i
bounded

by BSmall, which gives us the randomness for both the commitments and ciphertexts used in
the protocol. However, if the adversary is able to cheat in ΠShuf then the output ciphertexts
will be different to the ciphertexts we extract from ΠSmall, and hence, we have not yet
extracted all objects as in the Lemma.

If the extractor Ext2 succeeds, we are able to extract both the permutation π and τ
randomness vectors rc′

i
used in the commitments. However, if the adversary is able to

cheat in ΠSmall then the output ciphertexts might have more noise than (BDec +BMix) and
lead to decryption failures, and hence, we have not yet extracted all objects in the Lemma.

We conclude that it is both necessary and sufficient that both extractors succeed at
the same time to extract witnesses with respect to the same set of output ciphertexts and
proofs to extract both the randomness used to encrypt, the randomness used to commit,
and the permutation used to shuffle, and hence, to extract all objects in the Lemma. We
thus conclude that ϵ0 ≤ ϵ1 · ϵ2.

Lemma 6 (ΠAMix Simulatability). Suppose the protocols ΠSmall and ΠShuf are honest-
verifier zero-knowledge and that Com is hiding, Then there exists a simulator for ΠAMix
such that for any distinguisher Adv0 with advantage ϵ0, there exist adversaries Adv1,Adv2
against the HVZK of the ΠSmall and ΠShuf protocols, and an adversary Adv3 against hiding
of the commitment scheme with advantage ϵ3, with advantages ϵ1, ϵ2, and ϵ3 respectively
such that ϵ0 ≤ ϵ1 + ϵ2 + ϵ3. The runtime of Adv1,Adv2, Adv3 are the same as of Adv0.

Proof. The simulator is given a set of input ciphertexts and a set of output ciphertexts
from an honest mix. The simulator simulates the zero-knowledge proofs ΠSmall and ΠShuf
using the appropriate simulators and replaces the commitments to the ciphertexts with
commitments to zero.

The claim about the simulator follows from a hybrid argument. In the following games,
we denote by Ei the event that the adversary wins in Game i.
Game 0. This is the real-world protocol. We have that

Pr[E0] = ϵ0.

Game 1. Here, we replace the ΠShuf arguments with simulated arguments. We have that,
by the honest verifier zero-knowledge property of ΠShuf ,

|Pr[E1]− Pr[E0]| ≤ ϵ1.

Game 2. Here we replace the ΠSmall by simulated arguments. We have that by the honest
verifier zero-knowledge of ΠSmall

|Pr[E2]− Pr[E1]| ≤ ϵ2.

Game 3. Here we replace the commitments to ciphertexts with commitments to zero. We
have that by the hiding property the commitment scheme that

|Pr[E3]− Pr[E2]| ≤ ϵ3.
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After the changes, we are left with a simulator for the actively secure protocol that outputs
a proof that is independent of any secrets, and so the advantage ϵ0 of the adversary Adv0
is thus

ϵ0 ≤ ϵ1 + ϵ2 + ϵ3,

as claimed.

Verifiable Distributed Decryption Protocol. We now analyse the security of the
PKE with distributed decryption implicitly defined by the tuple of algorithms ΠADDec :=
(KeyGenA,CastA,DecNTRU,DDecA,,CombA). We say that ΠADDec is secure if it satisfies
the properties of threshold correctness, threshold verifiability, and distributed decryption
simulatability. For completeness, we give the full definitions of these notions in Appendix B.
Since many of these properties rely on building blocks used in previous works, we provide a
proof sketch here and refer the reader to [ABGS23] for the full arguments. We will however
make parameter constraints explicit to aid in the performance analysis of Section 5.

Lemma 7 (ΠADDec Threshold Correctness). Suppose ΠLin and ΠBnd are complete, and
the total noise in each ciphertext (1 + 2sec/pξ2)BDec is less than ⌊q/2⌋, then ΠADDec is
threshold correct.

Proof. Examining the threshold correctness, define the predicate PskA(·) so that PskA(c) = 1
if and only if ∥skA · c∥∞ < BDec. Then given a set of adversarially generated ciphertexts
{c}i∈[τ ] satisfying PskA(ci) = 1 for all i ∈ [τ ], we have that

∥∥∥∑
j∈[ξ2] dsij

∥∥∥
∞
< q/2 and so

the Comb algorithm will return the correct decryption of ci. The completeness of ΠLin and
ΠBnd ensure that the arguments will be accepted, thus, ΠADDec is threshold correct.

Lemma 8 (ΠADDec Threshold Verifiability). Let Adv0 be an adversary against threshold
verifiability of ΠADDec with advantage ϵ0. Then there exists adversaries Adv1 and Adv2
against soundness for ΠLin and ΠBnd, respectively, with advantages ϵ1 and ϵ2, such that
ϵ0 ≤ ϵ1 + ϵ2.

Proof. As in the definition of threshold verifiability, we only consider ciphertexts such
that PskA(c) = 1. That is, ciphertexts whose noise is bounded by BDec. Note that if
Comb accepts a ciphertext for which decryption is incorrect then, for some j, no relation
dsij = dkj · ci + pEij holds for an Eij of norm at most BDrown.

This can happen in one of two ways. Either the proof of the linear relation dsij =
dkj · ci +pEij is incorrect or the proof of the bound on Eij is incorrect. In the first case one
has an adversary Adv1 against the soundness of ΠLin and in the second case an adversary
Adv2 against the soundness of ΠBnd.

Lemma 9 (ΠADDec Simulatability). Suppose NTRUEncrypt cryptosystem is IND-CPA
secure, ΠLin and ΠBnd are honest-verifier zero-knowledge, and Com is hiding. Then there
exists a simulator such that for any distinguisher Adv0 for this simulator with advantage
ϵ0, there exists an adversary Adv1 against the HVZK of ΠLin, an adversary Adv2 against
the HVZK of ΠBnd, and an adversary Adv3 against the hiding of Com with advantages
ϵ1, ϵ2, ϵ3 respectively such that ϵ0 ≤ ϵ1 + ϵ2 + ϵ3. The runtime of Adv1,Adv2, and Adv3
are the same as of Adv0.

Proof. The claim about the simulator follows from a hybrid argument. In the following
games, we denote by Ei the event that that the adversary wins in Game i.

Game 0 . This is the real world protocol. We have that

Pr [E0] = ϵ0.
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Game 1 . Here, we replace the ΠLin arguments with simulated arguments. We have that,
by the honest verifier zero-knowledge property of ΠLin,

|Pr [E1]− Pr [E0]| ≤ ϵ1.

Game 2 . Here we replace the ΠBnd by simulated arguments. We have that by the honest
verifier zero-knowledge of ΠBnd that

|Pr [E2]− Pr [E1]| ≤ ϵ2.

Game 3 . Here we replace the commitments noise Eij with random commitments. We have
that by the hiding property the commitment scheme that

|Pr [E3]− Pr [E2]| ≤ ϵ3.

Game 4 . Here we replace decryption shares dsij with random shares. By the choice
of the statistical security parameter sec, which is chosen so that dsij is statistically
indistinguishable from uniform, we have that

|Pr [E4] = Pr [E3]| .

After the changes, we are left with a simulator for the actively secure protocol outputting
a proof that is independent of any secrets, and so the advantage ϵ0 of adversary Adv0 is
thus bounded by

ϵ0 ≤ ϵ1 + ϵ2 + ϵ3.

4 NTRU Hardness
Before choosing concrete parameters for implementing our new voting scheme, it is clear
that we needed to better understand the NTRU problem’s hardness. This section contains
that in-depth analysis which informs our parameter choices in Section 5.

Research on the security of the NTRU problem has revealed a significant improvement
in the performance of lattice reduction algorithms when applied to NTRU lattices for
so-called overstretched parameters. More precisely, analysis carried out over a series of
works [ABD16, KF17, LW20] shows this weakening of NTRU occurs when the modulus
q is very large compared to the ring dimension d and when secrets are small. Naturally,
these works seek to determine the turning point at which q becomes large enough for such
attacks to apply. We refer to this as the fatigue point.

4.1 Extending the NTRU Analysis
Until recently, only an asymptotic result was known about the position of the fatigue point,
determined by Kirchner and Fouque as q = d 2.783+o(1) [KF17].

Ducas-van Woerden Analysis. In their recent paper, Ducas and van Woerden [DvW21]
improve on the asymptotic result of Kirchner and Fouque who showed in their analysis that
the NTRU lattice, denoted Λh,q, contains an exceptionally dense sublattice, denoted Λg,f ,
of low volume which gives a constraint on the basis profile via Lemma 10 below6. Thus,
the fatigue point for ternary secrets is narrowed down to q = d 2.484+o(1). Building on this

6Ducas and van Woerden [DvW21] considers both NTRU (see Definition 1), and the module version of
NTRU and use matrix notation in their paper. We continue to use polynomial ring notation to keep this
consistent with our notation.
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result, the authors perform an average-case analysis (rather than a worst-case bound) based
on the volume of the relevant lattices and sublattices to arrive at a concrete prediction of
the fatigue point. To facilitate their analysis, they identify two lattice reduction events
that distinguish standard regimes from their overstretched counterparts.

Secret Key Recovery (SKR): The event in which a vector as short as the secret key
is inserted into the lattice basis.

Dense Sublattice Discover (DSD): The event in which a vector of the dense sublattice
is inserted into the basis.

A DSD event has been shown to shortly precede SKR by a cascading of further DSD
events or enabling decryption of fresh ciphertexts. A further distinction between DSD
events that are triggered at large positions κ ≤ 2d−β in the basis; DSD-LL (lucky lift), and
those triggered at positions κ = d+ k − β for 0 < k ≪ d and BKZ block size β, DSD-PT,
in a run of progressive BKZ on NTRU lattices for fixed parameters d = 127, σ2 = 2/3 and
several moduli q. We redefine them below.

DSD-LL: For a few instances the DSDκ event is triggered at large positions κ, up to
2d− β. The inserted dense vector v is again significantly longer than the secret key,
but it has an unexpectedly short projection πκ(v) on the BKZ block [κ : kβ].

DSD-PT: The DSDκ event is triggered at positions κ = d+ k − β for 0 < k ≪ d. The
inserted dense vector v is often significantly longer than the secret key, but still
shorter than than the q-vectors, and the projection of v, πκ(v) < ∥b∗

κ∥.

They introduce the new DSD-PT event named after the Pataki and Tural in Lemma 10
and give an asymptotic analysis in Section 3 of their paper before giving an average-case
analysis to construct a concrete estimator and compare this estimate with experiments in
Section 4 and Section 5, respectively. The DSD-LL events are found to be a rare occurrence,
and they speculate that the DSD-LL events are artefacts of using modest parameters in
their experiments and are, for the most part, excluded from their analysis [DvW21].

Lemma 10 (Pataki and Tural [PT08]). Let Λ be a d-dimensional lattice with basis
b0, . . . ,bd−1. For any k − dimensional sublattice Λ′ ⊂ Λ we have

vol(Λ
′
) ≥ min

J

∏
j∈J

∥b∗
j∥2,

where J ranges over the k-size subsets of { 0, . . . , d− 1 } and b∗
j is the Gram-Schmidt

orthogonalization of bj.

Ducas and van Woerden give a concrete average-case estimate for the intersection of
lattice volumes and the log-expectation of the volume of the dense NTRU sublattice Λg,f

in Eq. (2). They assume that all coefficients of the dense sublattice basis are sampled
according to an independent continuous Gaussian distribution with standard deviation σ.
They prove this estimate in [DvW21, Section 4.2] and verify these estimates experimentally
with variance σ2 = 2/3.

E[ln(vol(Λgf ))] = 1
2d(ln(2σ2) + ψ(d)) +

d−1∑
i=0

[
ψ

(2d− i
2

)
− ψ(d)

]
, (2)

where ψ is the digamma function.
In [DvW21, Section 5] they compare their concrete predictions with experiments. They

ran progressive BKZ 2.0 with 8 tours on NTRU with parameters d = 127, σ2 = 2/3 for
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several moduli q, accounting for both SKR and DSD-PT events. For BKZ blocksizes β > 30
their experiments correspond nicely to their predictions, while for β ≤ 30 their DSD-PT
estimate is slightly pessimistic compared to the experiments. To further verify their fatigue
point estimate, they did more experiments in larger, but still feasible dimensions. They
found that the concrete estimator for the dense sublattice volume in Eq. (2) reasonably
follows the observed experiments.

Through careful observation of the occurrence of these events, Ducas and van Woerden
use their predictive model to determine the concrete fatigue point of NTRU with ternary
secrets to be q = 0.004 · d 2.484 for d > 100. One can use the scripts provided7 in their
work to estimate the concrete hardness of NTRU. We also affirm their predictive model
by running real experiments on low-dimensional instances to confirm this relation. It is
worth noting that this is not the same NTRU estimator as the one provided in the lattice
estimator8 maintained by Martin Albrecht which implements the 2016 estimate [ADPS16].

Beyond Ternary Secrets. The reader may have noticed that the discussion of the
fatigue point, thus far, only focuses on the modulus and dimension of the ring. Recalling
Definition 1 reminds us that f and g need not always be ternary. Indeed, many NTRU-based
constructions use secrets with non-ternary coefficients. Let us consider f and g generated
according to a Gaussian distribution Dσ of standard deviation σ. For convenience, the
analysis of [DvW21] models the ternary secret case by sampling f, g ← Dσ with σ2 = 2/3.
Varying σ can model any secret key size, and thus we will herein consider that f and g are
always sampled according to some Gaussian Dσ. The natural question arises:

Does the choice of (secret size) σ influence the fatigue point, and if so, what is
its impact?

To get some intuition on this, we recall the work of Steinfeld and Stehlé [SS11] in which the
authors show how selecting σ sufficiently large gives rise to a public key h = g/f that is
statistically indistinguishable from uniform when f and g are sampled from Dσ. Moreover,
they show that using such parameters allows one to remove the NTRU assumption from a
proof of the NTRU cryptosystem. The σ needed for statistical security depends on the size
of q and d. This suggests that fixing q and d and increasing σ makes the NTRU problem
harder.

This observation goes some way to answering the first part of our question since it is
clear that, for a sufficiently large σ, both SKR and DSD become ineffective.

Whilst using statistically uniform public keys provides peace of mind, this practice
comes with significant efficiency losses. In addition to much larger key sizes, conditions for
a cryptosystem’s correctness can become much more constraining. Note that for correct
decryption of the NTRUEncrypt cryptosystem defined in Fig. 2, one needs the relation
∥p(gs+ fe) + fm∥∞ < q/2 to hold. Clearly, using larger secrets f and g thus leads to less
favourable parameters by pushing up the modulus q.

We, therefore, have a balancing act that needs to be performed when setting NTRU
parameters; to keep parameters small whilst avoiding the attacks affecting overstretched
regimes. Fortunately, the script provided in [DvW21] also allows for NTRU hardness
estimations using any choice of σ though no analysis is performed in their work outside the
ternary case. Nevertheless, their estimator provides a tool, much like the LWE estimator
of Albrecht et al. [APS15], to analyse the concrete hardness of any given NTRU parameter
set.

A More General Fatigue Relation. In our analysis, we are interested in answering
the second part of the above question. In particular, we would like to know by how much

7See github.com/WvanWoerden/NTRUFatigue for their code.
8Lattice estimator: github.com/malb/lattice-estimator.

https://github.com/WvanWoerden/NTRUFatigue
https://github.com/malb/lattice-estimator
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an increase in NTRU secret size affects the position of the fatigue point for a given ring
dimension.

A simple calculation, following the analysis of [DvW21], Section 3.2, confirms that the
asymptotic relation q = d 2.484+o(1) holds regardless of the value of σ. This suggests that if
the value of σ plays a role in the concrete, average case relation, it manifests in the leading
constant. We can thus infer that, for some function ψ and constant c, the fatigue point is
given by

q = c · ψ(σ) · d 2.484.

In order to determine the nature of ψ, we consider a range of σ ∈ [2, 22, . . . , 220]. For each
σ, we perform a loglog-linear regression on the estimated fatigue points overall prime ring
dimensions 199, . . . , 499. This mimics the calculations of [DvW21] used in the ternary case.
For a full explanation of why this is a sensible range to examine, we refer the reader to
Section 5.3 of that work.

Next, we consider the predicted fatigue points as a geometric series. This reveals the
predicted average-case fatigue point to be

q = 0.0058 · σ2 · d 2.484. (3)

The precision of this relation across all σ considered is very high. Whilst we could extend
this part of our analysis to larger σ, it is highly unlikely that, for cryptographic applications,
one would need to take σ higher than 220. We note also that, setting σ2 = 2/3, we recover
the fatigue point determined for the ternary case [DvW21].

This gives a definitive answer to our question about the impact of σ on the fatigue
point. To give more gravity to this prediction, we also run a series of experiments for
computable ring dimensions to validate this estimate. The results are displayed in Fig. 7.

We also give a second figure (Fig. 8) in which we plot q/σ2 along the vertical axis.
This reveals the accuracy of the preceding constant by showing how closely bunched the
estimations and experiments are when normalised across varying σ. As Ducas and van
Woerden observed in the ternary case, the estimator is slightly pessimistic, predicting a
fatigue point roughly 15% lower than the one suggested by actual experiments. They give
potential explanations for this discrepancy, pointing to the slope parameter used in the
estimator, which is not well calibrated for such small block sizes. In practice, though, this
small error only translates to a difference of 2-3 in the block size needed to run BKZ and
thus hardly affects the predicted security. Importantly, our experiments show that this
error remains constant even at larger moduli.

The Significance of σ2. Having determined the impact of σ on the concrete fatigue
point for NTRU, we reflect on the structure of Eq. (3). As an illustrating example, let
us return to the decryption correctness constraint for the NTRU cryptosystem. This can
be written as σ · F(p, d, ν) < q for some function F . Suppose for a given parameter set
(d, q, σ), this constraint is satisfied, but the corresponding NTRU instance does not provide
adequate security. Let us then increase q by a constant factor δ, say. According to the
constraint, this gives room for an increase in σ to δ · σ. Then Eq. (3) tells us that the
new fatigue point for the set (d, δ · q, δ · σ) increases by a factor of δ2. The important
observation here is that, while increasing q in the first move might weaken the NTRU
instance, the same increase permitted for σ actually gives rise to a net increase in the
hardness of the instance. In summary, Eq. (3) tells us that it is possible to ‘win’ this
cat-and-mouse game for NTRU that so often arises when setting lattice parameters.

We now consider how our analysis might be applied to existing works to refine parameter
choices.
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Figure 7: Experimental fatigue point values for a range of σ, calculated using BKZ with 8
tours on matrix NTRU instances. The straight-coloured lines show the estimated values
using the (modified) estimator from [DvW21].

Figure 8: Experimental values for q/σ2 illustrate that the fatigue point, when adjusted
for σ, is modelled by q/σ2 = 0.0058 · d 2.484.
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4.2 Implications for Existing Work
While the authors of [DvW21] note that parameters used in the NTRU-based NIST finalists
are still secure to the degrees claimed, many works in the literature use different sets,
some of which may fall foul of the dense sublattice attack, and thus, one needs to use the
techniques described in the previous section to set parameters.

We examine an existing primitive in which the parameters fall short of providing claimed
security levels. However, as suggested by Eq. (3), we can carefully re-select parameters so
that a small increase in the secrets yields the security bump-up needed.

Blind Signatures [dPK22]. del Pino and Katsumata present a lattice-based (partially)
blind signature using trapdoor sampling. In the (round optimal) construction given, a
user passes the message to be signed in a blind way so that the signer does not learn
the message they sign. This is done by committing to the message and then proving the
well-formedness of this commitment. We will call this the first flow. The signer then
creates an output passed back to the user (second flow). Finally, the user computes a
signature for its original message using this response message from the signer.

In the first flow, Pino and Katsumata employ the NTRU-based linear homomorphic
commitment scheme (LinHC) of [Kat21] to ensure the soundness and overall Quantum
Random Oracle Model (QROM) security of the well-formedness proof. One must, therefore,
choose parameters so that the relevant NTRU instance is hard. The choice of d = 2048,
q = 266, and ternary NTRU secrets is informed by the constraint requiring straight-line
extractability of the proof system. However, as we have observed, such large moduli run
the risk of taking a parameter set into overstretched territory. Moreover, these values give
rise to only 63 bits of security when run through the estimator of [DvW21] rather than
128.

To rectify this situation, there are two common strategies; either one can increase the
ring dimension used throughout the scheme or use sufficiently large NTRU secrets that
the corresponding public key is statistically indistinguishable from uniform.

Doubling the ring dimension in [dPK22] from 2048 to 4096 (to retain the implementation
benefits of a power-of-two dimension) and computing the other parameters accordingly, 128
bits of security is reached at the cost of doubling the sign-request flow (69.2MB), doubling
the returned ‘pre-signature’, and doubling the user’s final signature size to 200 KB.

The alternative method, using a statistically uniform public commitment key turns out
to be impossible whilst satisfying all parameter constraints simultaneously.

We now exhibit the benefits of the relation Eq. (3), as revealed by our analysis, when
applied to the problem of setting NTRU parameters with the same ring dimension d = 2048,
we increase σNTRU (secret size). This has the effect of pushing up the modulus needed to
facilitate the straight-line extraction condition. The reader might observe that increasing
q reduces the hardness of the problem again. However, Eq. (3) reveals that it is possible
to ‘win’ this cat-and-mouse game since the fatigue point increases quadratically with the
size of the secrets. We thus propose the following parameters to ensure 128 bit security is
reached:

q ≈ 274, p ≈ 241, σNTRU = 13,

where p is the prime used to commit to the witness in the LinHC protocol. Fortunately, this
change only has a small effect on the total communication cost. In the first flow, the user
signing query increases from 34 MB to 35.4 MB, and the sizes of the user’s pre-signature
and final signature output are unchanged. This significantly improves the sizes that arise
from changing the ring dimension and avoids doubling the final signature.

Summary. Simply increasing the size of the NTRU secrets may be all that is needed to
ensure the correct security threshold is reached. In other settings, this also pushes up the
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modulus over which a scheme is defined, as in the examples above. However, the scheme
may also rely on other hardness assumptions, such as RLWE, as in our voting scheme,
which is defined over the same ring. Now, the RLWE problem may no longer be hard
for the adjusted parameters, and one may need to increase the ring dimension to find
parameters for which both problems are hard. This can make what was an efficient scheme
into one that cannot be deployed in practice.

Clearly, such balancing acts must be approached with a good understanding of the
hardness of NTRU instances. We aim to further demonstrate the advantages of this
approach when setting concrete parameters for our voting scheme in Section 5 where our
fine-grained analysis allows us to dramatically bring down the overall communication cost.

5 Performance
We analyse the practical performance of our voting scheme. We begin by identifying
all system parameters and any constraints that apply to them. These are displayed
in Table 6. Next, we compute a sample set of parameters that satisfy the necessary
constraints and give rise to a minimum of 128 bits of security. Table 2 displays these
values. Finally, using these parameters, we compute the concrete communication cost of
our voting system. The resulting sizes are compared to the previous work of [ABGS23],
revealing a significant improvement in the state-of-the-art for cryptographic voting from
quantum-safe assumptions. These results are displayed in Table 1.

5.1 Setting Parameters
We begin by collecting all parameters of the scheme and noting any constraints applying
to them in Table 6.

Next, we closely examine the constraint needed for the correct (perfect) decryption
of votes as performed by the Comb algorithm. This turns out to be the most influential
constraint on the overall efficiency of the scheme. In particular, this constraint informs
our choice of the global ring dimension d and modulus q, which most directly affect the
communication sizes.

Decryption Correctness. After passing through the mix-net of ξ1 shuffle servers, a
ciphertext is of the form

c = p(h
∑

k∈[ξ1]

sk +
∑

k∈[ξ1]

ek) +m,

where the encryption randomness terms sk and ek are sampled from Sν . Next, this
ciphertext is passed to a decryption server, which computes a decryption share of the form
dsj = fj · c+ pEj . Then the Comb algorithm, on collecting {dsj}j∈[ξ2], outputs

v′ = (
∑

j∈[ξ2]

dsj mod q) mod p.

In order for the result of this process to yield the original ballot cast, we require the infinity
norm of the sum here to be bounded by ⌊q/2⌋. It follows that a sufficient constraint for
this correct decryption is:

p · d · t · σNTRU · (2ξ1 · ν + 1/2)(1 + 2sec) < ⌊q/2⌋, (4)

where t is the rejection parameter in KeyGenNTRU.
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Table 2: Sample parameter set.

Parameter Explanation Value

λ Computational security parameter 128

d Ring dimension 2048

q Ciphertext and commitment modulus ≈ 259

sec Statistical security parameter 40

p Plaintext modulus 2

t KeyGenNTRU rejection parameter 1.058

ν Infinity norm of encryption randomness 1

ξ1, ξ2 Number of shuffle and decryption servers 4

BCom Infinity norm of commitment randomness 1

BDec Noise in ciphertext 262144

BDrown Infinity norm of noise drowning term Eij ≈ 255

σNTRU Standard deviation for encryption secret key 7.12

η Reed-Solomon encoding randomness length 325

ℓSmall Proof batch size in ΠSmall 9830

ℓBnd Proof batch size in ΠBnd 12288

µSmall Reed-Solomon message length in ΠSmall 10565

µBnd Reed-Solomon message length in ΠBnd 8517

µ′
Small Reed-Solomon message dimension in ΠSmall 23988

µ′
Bnd Reed-Solomon message dimension in ΠBnd 181550

γSmall Reed-Solomon code length in ΠSmall 26616

γBnd Reed-Solomon code length in ΠBnd 198668

Computational Security. Having chosen parameters satisfying the constraints of
Table 6, we must ensure that the underpinning lattice problems are sufficiently hard for
these parameters.

For RLWE we follow standard convention by using the estimator [APS15]. This
estimates the cost of BKZ conservatively by focusing only on the cost of a single uSVP
oracle call, a core operation in BKZ. The number of such calls required has been estimated
to be 8d for a lattice dimension d, and we follow this estimate.

To determine the NTRU problem’s hardness, we use the analysis of Section 4. Having
settled on a ring dimension d and modulus q giving sufficient hardness of the RLWE problem,
we use (4) to determine the maximum standard deviation permissible for generating
the NTRU secrets (f, g). Finally, following the procedure described in Section 4, we
calculate the estimated hardness of NTRU. Again, we employ the conservative formula
0.292β + 16.4 + log2(8d) used in [DTGW17, SPL+17, BIP+22] to compute bit-security
from blocksize β.

In order to ensure the binding property of the BDLOP commitment schemes we use,
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Table 3: Ciphertext, commitment, and proof sizes per voter. Note that the two sizes in
[ABGS23] reflect commitments to noise-drowning terms and ciphertexts, respectively.

Scheme ci [[Rq]] πShuf πLin πSmall πBnd

[ABGS23] [KB] 80 80/120 150 35 20 2

Our [KB] 15 30 63 18 22 22

Table 4: Ciphertext and commitment timings. Numbers were obtained averaging over 104

executions measured using the cycle counter available on the platform.

Scheme Com Open Enc Dec DDec

[ABGS23] [ms] 0.45 2.76 0.74 0.64 1.56

Our [ms] 0.17 0.80 0.20 0.21 0.45

the RSIS problem must be hard. We use the relation due to Micciancio and Regev [MR09],
which states that LLL will recover a short vector a vector of 2-norm 2(2

√
d log2 q log2 δ).

δ is the root Hermite factor and δ < 1.0045 gives rise to at least 128 bits of security.
Owing to the horizontally long nature of the commitment matrix used, the hardness of
the corresponding RSIS instance easily meets this threshold.

5.2 Sample Parameters and Total Size
Table 2 gives a sample set of parameters generated by following the process described in
the previous section. In Table 3, we present the total sizes of objects in our voting scheme
and compare them with those of [ABGS23]. We denote the output of each shuffle node by
πSi , including ciphertexts, commitments, proofs of shortness, and shuffle proofs. Similarly,
we denote the total output of each decryption node as πDj

, consisting of decryption shares,
commitments, proofs of linearity and boundedness.

Our scheme reduces ciphertext size by over a factor of five. Moreover, the reduction in
commitment sizes and constituent proofs leads to shuffle server outputs of 130 KB per
vote, which are three times smaller, and decryption server outputs of 85 KB per vote,
which are half of those in [ABGS23]. This represents a 2.5× overall efficiency gain over
[ABGS23] as summarised in Table 1.

5.3 Benchmarks
We adapt the proof-of-concept implementation by [ABGS23] to fit our scheme since the
framework is the same. Our benchmarks were collected on an Intel Kaby Lake Core i7-7700
CPU machine with 64 GB of RAM running single-threaded at 3.6 GHz, with Turbo Boost
disabled to reduce measurement variability. This is a similar machine as in [ABGS23].
Our code is available at https://github.com/carrosa/ntru_voting_impl.

We compare the timings in Table 4 and Table 5. Analysing our experiments, each
shuffle server takes (0.20 + 0.17 + 17.5 + 44.2) = 62 ms and each decryption server takes
(0.17 + 0.45 + 16.9 + 310.5) = 328 ms. Given four servers, where shuffles are performed
sequentially and decryption is performed in parallel, the total time is 576 ms, making our
scheme twice as fast as [ABGS23] as summarized in Table 1.

We finally note that the proofs of linearity in the shuffle and the batched proofs of
shortness and boundedness during shuffles and decryption can be computed in parallel,

https://github.com/carrosa/ntru_voting_impl
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Table 5: Proving and verification times, obtained by computing the average of 100
executions with τ = 1000.

Scheme πLin πShuf πSmall πBnd

[ABGS23] [ms] (43.4 + 6.4) (44.9 + 7.9) (214.4 + 10.0) (92.7 + 23.9)

Our [ms] (16.9 + 2.0) (17.5 + 2.1) (44.2 + 4.0) (310.5 + 4.3)

and that powerful servers dedicated to an election with Turbo Boost enabled would most
likely outperform our numbers by at least an order of magnitude.

5.4 Future Improvements
We provide some directions for interesting future work:

1. Return codes. To extend our scheme and ensure voter verifiability, we need to add
return codes to our scheme. This can be done by extending the work of [HS22] from
BGV to NTRU. This also includes verifiable encryption [LNP22].

2. Improved noise analysis. Our results can possibly be improved using techniques in
[AKSY22, BS23b, CSS+22, KLSS23]. We use 40 bits of statistical noise drowning
to protect the secret key in the distributed decryption protocol. This can possibly
be improved if we choose parameters based on how many ciphertexts we will decrypt
or change noise drowning techniques to be Gaussian distributed, compute the Rényi
divergence, or analyse hints to estimate the leakage.

3. Module assumptions. The new NIST post-quantum key-encapsulation mechanism
ML-KEM [SAB+22] and digital signature ML-DSA [LDK+22] are based on the
module LWE and SIS problems [LS15]. Our scheme could potentially be improved
by instantiating our framework based on these assumptions combined with the more
recent module NTRU assumption [CKKS19, CPS+20].

4. Succing lattice ZKPs. Recent development of succinct proof systems from lattice
assumptions such as LaBRADOR [BS23a] (which can be made zero-knowledge)
could be applied to the shuffle and decryption processes in our scheme to produce
sub-linear proof sizes (the overall communication would stay linear since we need to
send commitments, ciphertexts and decryption shares for each vote).

5. Improved parameters in other schemes. Our extended NTRU analysis might lead to
more efficient FHE parameters in [BIP+22] and [Klu22] using the same methodology
that led to a more efficient instantiation of NTRUEncrypt .
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A Security of Verifiable Mixing
We define completeness, soundness and simulatability for a mixing protocol ΠMix executed
by a prover Prover, with respect to a generic encryption scheme E = (KeyGen,Enc,Dec)
[ABGS23].

Definition 5 (Mixing Completeness). We say that the mixing protocol ΠMix is complete if
for honest PPT parties Prover and Verifier that follows the protocol then Prover on input a
set of honestly generated ciphertexts will output a new set of ciphertexts together with a
proof such that Verifier accepts the proof and the output ciphertexts decrypt to the same set
of messages as the input ciphertexts. Hence, we want that for all (pp, pk, sk)← KeyGen(1κ),
{ci}i∈[τ ] ← Enc(pk, {mi}i∈[τ ]), and ({ĉi}i∈[τ ], π)← Prover(pp, pk, {ci}i∈[τ ]), we have

Pr
[

{mi}i∈[τ ] = Dec(sk, {ĉi}i∈[τ ]
1← Verifier(pp, pk, {ci}i∈[τ ], {ĉi}i∈[τ ], π)

]
≤ 1− ϵ(λ),

where the probability is taken over KeyGen, Enc and Prover.

Definition 6 (Mixing Soundness). We say that the mixing protocol ΠMix is sound if a dis-
honest PPT adversary Adv that can behave arbitrarily on input a set of honestly generated
ciphertexts will not be able to output a new set of ciphertexts together with a proof such that
an honest Verifier accepts the proof but the output ciphertexts decrypt to a different set of
messages than the input ciphertexts. Hence, we want that for all (pp, pk, sk)← KeyGen(1κ),
{ci}i∈[τ ] ← Enc(pk, {mi}i∈[τ ]), and ({ĉi}i∈[τ ], π)← Adv(pp, pk, {ci}i∈[τ ]), we have

Pr
[

{mi}i∈[τ ] ̸= Dec(sk, {ĉi}i∈[τ ]
1← Verifier(pp, pk, {ci}i∈[τ ], {ĉi}i∈[τ ], π)

]
≤ ϵ(λ),

where the probability is taken over KeyGen, Enc and Adv.

Definition 7 (Mixing Simulatability). We say that the mixing protocol ΠMix is simulatable
if a PPT adversary A that on input a set of honestly generated ciphertexts can not
distinguish between a real execution of the mixing protocol with accepting output and a
protocol execution from a PPT simulator S (given a set honestly mixed output ciphertexts)
producing a simulated mixing proof. Hence, we want that∣∣∣∣∣∣∣∣∣∣

Pr

b = b′ :

(pp, pk, sk)← KeyGen(1κ); b $← {0, 1}
{ci}i∈[τ ] ← Enc(pk, {mi}i∈[τ ])

({ĉi}i∈[τ ], π
(0))← Prover(pp, pk, {ci}i∈[τ ])

(π(1))← S(pp, pk, {ci}i∈[τ ], {ĉi}i∈[τ ])
b′ ← Adv(pp, pk, {ci}i∈[τ ], {ĉi}i∈[τ ], π

(b))

− 1
2

∣∣∣∣∣∣∣∣∣∣
≤ ϵ(λ),

where the probability is taken over KeyGen, Enc, Prover, S and Adv.

B Security of Distributed Decryption
Here we define the syntax and security properties for a PKE with distributed decryption
[ABGS23].

Definition 8 (PKE with Distributed Decryption). A PKE scheme with distributed de-
cryption consists of five algorithms: key generation (KeyGen), encryption (Enc), decryption
(Dec), distributed decryption (DDec), and combine (Comb), where

KeyGen. On input security parameter 1λ and number of key-shares ξ2, outputs public
parameters pp, a public key pk, a secret key sk, and key-shares {skj},
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Enc. On input pk and messages {mi}, outputs ciphertexts {ci},

Dec. On input sk and ciphertexts {ci}, outputs messages {mi},

DDec. On input a secret key share skj∗ and ciphertexts {ci}, outputs decryption shares
{dsi,j∗},

Comb. On input ciphertexts {ci} and decryption shares {dsi,j}, outputs either messages
{mi} or ⊥,

and pp are implicit inputs to Enc, Dec, DDec and Comb.
Definition 9 (Chosen Plaintext Security). We say that the public key encryption scheme
is secure against chosen plaintext attacks if an adversary Adv, after choosing two messages
m0 and m1 and receiving an encryption c of either m0 or m1 (chosen at random), cannot
distinguish which message c is an encryption of. Hence, we want that∣∣∣∣∣∣∣∣Pr

b = b′ :

(pp, pk, sk)← KeyGen(1κ)
(m0,m1, st)← Adv(pp, pk)
b

$← {0, 1}, c← Enc(pk,mb)
b′ ← Adv(c, st)

− 1
2

∣∣∣∣∣∣∣∣ ≤ ϵ(λ),

where the probability is taken over KeyGen and Enc.
Definition 10 (Threshold Correctness). We say that the public key distributed encryption
scheme is threshold correct with respect to Psk(·) if the following probability equals 1:

Pr

Comb({ci}i∈[τ ], {dsi,j}j∈[ξ2]
i∈[τ ] )

=
Dec(sk, {ci}i∈[τ ])

:

(pp, pk, sk, {skj}j∈[ξ2])← KeyGen(1λ, ξ2)
{c1, . . . , cτ} ← A(pp, pk)

∀i ∈ [τ ] : Psk(ci) = 1,∀j ∈ [ξ2] :
{dsi,j}i∈[τ ] ← DDec(skj , {ci}i∈[τ ])

 ,
where the probability is taken over KeyGen and DDec.
Definition 11 (Threshold Verifiability). A PKE scheme with distributed decryption is
threshold verifiable with respect to Psk(·) if an adversary A corrupting J ⊆ [ξ2] secret key
shares {skj}j∈J cannot convince Comb to accept maliciously created decryption shares
{dsi,j}i∈[τ ],j∈J . More concretely, the following probability is bounded by a negligible ϵ(λ):

Pr


Dec(sk, {ci}i∈[τ ])

̸=
Comb({ci}i∈[τ ], {dsi,j}j∈[ξ2]

i∈[τ ] )
̸=
⊥

:

(pp, pk, sk, {skj}j∈[ξ2])← KeyGen(1λ, ξ2)
({c1, . . . , cτ})← A(pp, pk, {skj}j∈J)
∀i ∈ [τ ] : Psk(ci) = 1,∀j ̸∈ J :
{dsi,j}i∈[τ ] ← DDec(skj , {ci}i∈[τ ])
{dsi,j}i∈[τ ],j∈J ← A({dsi,j}i∈[τ ],j ̸∈J)

 ,
where the probability is taken over KeyGen and DDec.
Definition 12 (Distributed Decryption Simulatability). A PKE scheme with distributed
decryption is simulatable with respect to Psk(·) if an adversary A corrupting J ⊊ [ξ2] secret
key shares {skj}j∈J cannot distinguish the transcript of the decryption protocol from a
simulation by a simulator Sim which only gets {skj}j∈J as well as correct decryptions as
input. More concretely, the following probability is bounded by a negligible ϵ(sec):∣∣∣∣∣∣∣∣∣∣∣∣

Pr

b = b′ :

(pp, pk, sk, {sk}j∈[ξ2])← KeyGen(1λ, ξ2)
({c1, . . . , cτ})← A(pp, pk, {skj}j∈J)

∀i ∈ [τ ] : Psk(ci) = 1
{ds0

i,j} ← DDec({skj}j∈[ξ2], {ci}i∈[τ ])
{ds1

i,j} ← Sim(pp, {skj}j∈J , {ci,Dec(sk, ci)}i∈[τ ])
b

$← {0, 1}, b′ ← A({dsb
i,j}i∈[τ ],j∈[ξ2])

−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣
,

where the probability is taken over KeyGen,DDec,Sim.
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C Parameter Constraints
Here we describe the parameters used in our electronic voting scheme. Table 6 lists these
and makes explicit any constraints that apply to them. These constraints inform the choice
of concrete values computed in Section 5.2.

Table 6: System parameters and constraints.

Parameter Explanation Constraints

λ Computational security parameter ≥ 128

sec Statistical security parameter ≥ 40

d Ring dimension of Rp and Rq d a power of two

p Plaintext modulus p a small prime

q Ciphertext and commitment modulus Prime q = 1 mod 2d s.t. ∥
∑

j∈ξ2
dsj∥∞

≤ ⌊q/2⌋

t KeyGenNTRU rejection parameter Set for rej. prob. < 1/1000 (Lemma 1)

k Length of binding vector in BDLOP commitment k > 2

C Challenge space for linear ZK proofs of commitments C = {c ∈ Rq | ∥c∥∞ = 1, ∥c∥1 = κ}

κ Maximum ℓ1-norm of elements in C 2κ ·
(

d
κ

)
> 2λ

ξ1, ξ2 Number of shuffle and decryption-servers At least two servers

BCom Bound on the commitment noise So that SIS is hard

BDec Noise in ciphertext BDec = p · d · t · σNTRU · (2ξ1 · ν + 1/2)

BDrown Infinity norm of noise drowning term Eij BDrown = 2sec(BDec/pξ2)

σNTRU Standard deviation for encryption secret key So that NTRU is hard

ν Bound on encryption randomness So that LWE is hard

σCom Standard deviation in ZK proofs of linear relations Chosen to be σCom = κ ·BCom ·
√
kd

τ Total number of messages/number of voters For soundness we need (τ δ + 1)/|Rq| < 2−λ

η Reed-Solomon encoding randomness length Make soundness ≥ 2−λ in ΠSmall and ΠBnd

ℓSmall Proof batch size in ΠSmall Same secret length as in [ABGS23]

ℓBnd Proof batch size in ΠBnd Same secret length as in [ABGS23]

µSmall Reed-Solomon message length in ΠSmall µSmall = (k + 2) · d+ η

µBnd Reed-Solomon message length in ΠBnd µBnd = (k + 1) · d+ η

µ′
Small Reed-Solomon message dimension in ΠSmall µSmall ≤ µ′

Small ≤ γ < q

µ′
Bnd Reed-Solomon message dimension in ΠSmall µBnd ≤ µ′

Bnd ≤ γ < q

γSmall Reed-Solomon code length in ΠBnd µSmall ≤ µ′
Small ≤ γ < q

γBnd Reed-Solomon code length in ΠBnd µBnd ≤ µ′
Bnd ≤ γ < q
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