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Abstract

Given three positive integers n < N and M , we study those vectorial
Boolean (N,M)-functions F which map an n-dimensional affine space A
into an m-dimensional affine space where m < M and possibly m = n.
This provides (n,m)-functions FA as restrictions of F . We show that
the nonlinearity of F must not be too large for allowing this, and we ob-
serve that if it is zero, then it is always possible. In this case, we show
that the nonlinearity of the restriction may be large. We then focus on
the case M = N and F of the form ψ(G(x)) where G is almost perfect
nonlinear (APN) and ψ is a linear function with a kernel of dimension
1. We observe that the problem of determining the D-property of APN
(N − 1, N)-functions GA, where A is a hyperplane, is related to the prob-
lem of constructing APN (N−1, N−1)-functions FA. For this reason, we
introduce the strong D-property defined for (N,N)-functions G. We give
a characterization of this property for crooked functions and their com-
positional inverse (if it exists) by means of their ortho-derivatives, and we
prove that the Gold APN function in dimension N odd big enough has
the strong D-property. We also prove in simpler a way than Taniguchi in
2023 that the strong D-property of the Gold APN function holds for N
even big enough. Then we give a partial result on the Dobbertin APN
power function, and on the basis of this result, we conjecture that it has
the strong D-property as well. We then move our focus to two known
infinite families of differentially 4-uniform (N − 1, N − 1)-permutations
constructed as the restrictions of (N,N)-functions F(x) = ψ(G(x)) or
F(x) = ψ(G(x)) + x where ψ is linear with a kernel of dimension 1 and G
is an APN permutation. After a deeper investigation on these classes, we
provide proofs (which were missing) that they are not APN in dimension
n = N − 1 even. Then we present our own construction by relaxing some
hypothesis on ψ and G.
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1 Introduction

Given a power q of a prime, the known methods for designing infinite classes of
permutations over the space Fnq that admit a simple representation (of any form)
are not numerous. One has been much studied: identifying Fnq with the field Fqn
(thanks to the choice of a basis of the vector space Fqn over Fq). Permutation
polynomials over Fqn provide such bijections having a simple representation
(given by the chosen basis of the vector space Fqn and the polynomial expression
of the permutation). But permutation polynomials having good properties for
applications such as cryptography and coding theory (the two most important
properties being a large nonlinearity and a low differential uniformity) are not
that numerous and this classical method has provided only a few interesting
classes (see [20, 16]), that can be used in such applications. Another method
which has been little investigated (see [19]), surprisingly, is to find permutation
polynomials F over FqN with N > n, or functions from FqN to itself, such that
there exists an n-dimensional affine subspace A of the domain, that is mapped by
F onto an affine subspace A′ of the same dimension in the co-domain; we identify
then A and A′ with Fnq through choices of bases, and we obtain a permutation
over Fnq with a simple representation over FqN . This representation consists
again in a basis, but this time, of the affine subspace, which is in FqN and not
in Fqn , and the polynomial expression of the permutation over FqN , which is
now a polynomial over FqN and not over Fqn and a basis of the affine space
containing the image set. This representation is a little less simple than in the
classical case, but it is still quite simple compared to a look-up table; it is also
more informative. If we consider an infinite family of functions F such that
we can choose an affine space A as above, then this provides a second infinite
family. Moreover, we will see that we can estimate the nonlinearity and the
differential uniformity of the restriction. Of course, a particular case of this is
when we know (for instance thanks to a Lagrange interpolation) a polynomial
representation of an (n, n)-function, and we consider, for N a multiple of n,
the (N,N)-function which admits the same polynomial representation. Then
automatically, this (N,N)-function maps the vector subspace Fqn to itself. Such
situation has been studied in the literature. Recall for instance that exceptional
polynomials are those polynomials over finite fields whose associate (N,N)-
functions are bijective for infinitely many values of N . Almost no results seem
known that would relate the nonlinearities of the (n, n)-function and the (N,N)-
function, and apart from an obvious bound, the same happens with differential
uniformity. The same can be said if we do the reverse operation, that is taking
an (n, n)-function, extend it to an (N,N)-function where n divides N and relate
the cryptographic properties of the second function with respect to the first. In
this paper, we wish to find new ways of generating functions with potentially
good cryptographic parameters, without restricting ourselves to when n is a
divisor of N . We study the case q = 2 and we are also more generally interested
in cases where the (n, n)-function is not necessarily bijective.

A particular setting which is surprisingly difficult to study is when the
(N,N)-function F is equal to ψ(G(x)) where G is almost perfect nonlinear
(APN) and ψ is a linear function with a kernel of dimension 1. This setting was
also explored by Beierle et al. in 2022 [3] to find new quadratic APN functions.
One year later, Taniguchi introduced in [26] the D-property as a generaliza-
tion for APN (N,M)-functions of a property proved by Dillon on APN (N,N)-
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functions and being that {F(x)+F(y)+F(z)+F(x+y+z) : x, y, z ∈ FN2 } = FM2 .
Further studies of such property have been done by Abbondati et al. in [1].
A consequence of the work by Taniguchi in [26] is that the restriction of an
APN (N,N)-function G to an affine hyperplane A has the D-property as an
(N − 1, N)-function if and only if for every linear surjective (N,N − 1)-function
ψ, the restriction of F(x) = ψ(G(x)) to A is not an APN (N−1, N−1)-function.
We use this as a motivation for the introduction of the notion of the strong D-
property of an (N,N)-function G, meaning that the restriction of G to A has
the D-property as an (N −1, N)-function for all affine hyperplanes A. Such set-
ting was partially investigated by the same Taniguchi and viewed as a positive
result for some classes of functions (namely, power and quadratic functions; see
also the introduction of Subsection 5.1 where we explain one of its interests);
in our paper, we build upon the fact that its negation is also a rather positive
property since it allows constructing a number of APN (N −1, N −1)-functions
from G. Therefore, it is important to study the strong D-property of all classes
of functions because if they have it, they are stronger cryptographically than
other APN functions, and if they do not, we can construct new APN functions
in dimension N − 1 and this is also important.

The first infinite family defined as the restriction of functions with zero
nonlinearity to affine hyperplanes was constructed by the first author in 2011
[13] by using the multiplicative inverse function. It is composed of 4-uniform
(n, n)-permutations with optimal algebraic degree n−1, and nonlinearity at least
2n−1 − 2

n
2 +1 (that is not optimal) for n even and at least 2n−1 − ⌊2n

2 +1⌋ − 1
for n odd. Three years after, in 2014, Li and Wang [24] constructed many
families of 4-uniform (n, n)-permutations where n is even with optimal known
nonlinearity 2n−1−2

n
2 and algebraic degree n+2

2 , using the compositional inverse
of the Gold APN function. We investigate these constructions deeply and prove
that they do not produce APN permutations in dimension n = N − 1 even,
which had not been done in [13, 24]. We will not study the family from [13] for
the case N even because, in that dimension, the multiplicative inverse function
is not APN and this setting is out of the scope of this paper. The theory
we develop for such proofs helps to understand the problem of constructing
APN permutations in even dimension (for trying to solve the so-called big APN
problem) with this method. We observe that if the (N,N)-permutations used for
constructing these (N−1, N−1)-permutations have the strong D-property, then
any restriction of the (N,N)-permutation to an affine hyperplane is non-APN.
The converse of this implication is not true in general, and we show evidence
that proving the non-APNness of such classes of permutations can be easier than
proving the strong D-property of the APN permutation G. In practice, proving
the strong D-property is a matter of showing that many systems of equations
have at least one solution, while we solve only those systems that are relevant
for the construction of permutations in dimension N − 1. We do this for the
multiplicative inverse function in odd dimension and the compositional inverse
of the Gold APN function.

The paper is organized as follows: In Section 2, we give some preliminaries
on vectorial Boolean functions. In Section 3, we discuss more generally the cryp-
tographic properties of the restriction of any (so-called initial) (N,M)-function
providing an (n,m)-function. The differential uniformity of the restriction is
bounded above by the differential uniformity of the initial function. We give an
explicit form of the Walsh transform and of the nonlinearity of the restriction.
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Then we discuss a sufficient condition such that the nonlinearity of the restric-
tion is nonzero. In Section 4, we discuss the special case of (N,M)-functions
having some affine components that is a sufficient condition for the existence of
a strict affine subspace of its domain that is mapped into a strict affine subspace
of its co-domain. We prove that, up to Extended Affine (EA) equivalence, we
can write these functions in the form F(x) = ψ(G(x)) where ψ is linear, and we
can assume that G has nonzero nonlinearity for the case M = N ≥ 3. With this
easier-to-handle form, we determine some bounds on the cryptographic property
of the restriction. This section has some intersection with [3], but a small one.
In Section 5, we introduce the strong D-property of APN (N,N)-functions. We
give a characterization for crooked functions and prove that the Gold APN func-
tions has the strong D-property forN odd big enough (and thanks to Taniguchi’s
result for N even, we can address all cases). As a Corollary, we give a partial
result on the strong D-property of the Dobbertin APN power function, and we
conjecture the strong D-property of this function. In Section 6, we study the
infinite families introduced in [13, 24] and prove that they can never produce
APN permutations in even dimension. In Section 7, we define many families of
4-uniform permutations with high nonlinearity that are, under some conditions,
complete permutation polynomials when represented in F2n where n = N − 1.

2 Preliminaries

Let N,M ∈ N. We say that F is an (N,M)-function if F is a function from FN2
(which can be identified with F2N ) to FM2 (which can be identified with F2M ).
When we do not wish to specify the values of N and M , we speak of a vectorial
function. We say that F is a permutation over FN2 if F is a bijective (N,N)-
function. We say that f is a Boolean function over FN2 if f is a (N, 1)-function.

A Boolean function f over FN2 has a unique representation as a multivariate
polynomial with coefficients in F2 and of degree at most N called the alge-
braic normal form (ANF). The degree of the ANF of f is called the algebraic
degree of f [16]. We can write an (N,M)-function as F = (f1, f2, . . . , fM ) ,
where the Boolean functions f1, f2, . . . , fM are called the coordinate functions
of F . A component function (briefly, a component) of F is any nonzero linear
combination of its coordinate functions. The algebraic degree of F is equal
to the maximum algebraic degree among its coordinate functions (and then
also, among its component functions). A vectorial Boolean function F is affine,
quadratic, or cubic if its algebraic degree is respectively less than or equal to
1, 2, or 3. Moreover, F is linear if it is affine and F(0) = 0. If we identify
FN2 with the finite field F2N , then any function F over F2N is also uniquely

represented as a univariate polynomial, F(x) =
∑2N−1
i=0 cix

i where ci ∈ F2N ,
called the univariate representation. The algebraic degree of F is equal to the
maximum Hamming weight of the binary expansion of the exponents i of the
terms of the polynomial F(x) such that ci ̸= 0. The monomial functions xi are
also called power functions to avoid any confusion with the monomial functions
involved in the ANF.

Two (N,M)-functions F and F ′ are called affine equivalent if one equals the
other composed on the right by an affine permutation of FN2 and on the left by
an affine permutation over FM2 . More generally, they are called extended affine
(EA) equivalent if one is affine equivalent to the sum of the other and of an affine
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(N,M)-function. Still more generally, they are called Carlet-Charpin-Zinoviev
(CCZ) equivalent if the indicators of their graphs {(x,F(x)) : x ∈ FN2 } and
{(x,F ′(x)) : x ∈ FN2 } are affine equivalent (as (N +M)-variable Boolean func-
tions). A particular case of CCZ equivalence is between any (N,N)-permutation
and its compositional inverse. If a notion is preserved by affine (respectively,
EA, CCZ) equivalence, we shall say that it is affine (respectively EA, CCZ)
invariant.

We denote by the same symbol “·” an inner product in FN2 and an inner
product in FM2 (there will be no ambiguity). For any α ∈ F2N \ {0}, we can

define the inner product x · y = TrN (αxy) over F2N , where TrN (x) =
∑N−1
i=0 x2

i

is the absolute trace function from F2N to F2. If it is clear from the context,
then we write Tr = TrN . For k,N such that k|N we denote by TrNk (x) the

relative trace function from F2N to F2k , equal to x+ x2
k

+ x2
2k · · ·+ x2

N−k

.
We define the adjoint operator in the context of vector spaces over F2. Let

ψ : FN2 → FM2 be a linear function. The adjoint operator is the linear mapping
ψ∗ : FM2 → FN2 such that for all a ∈ FN2 , b ∈ FM2 , ψ(a) · b = a ·ψ∗(b). Since every
linear form over a field F can be written in a unique way as a → a · c, we have
indeed that ψ∗(b) is defined as equal to the unique element c corresponding to
the linear form a → ψ(a) · b. In this way, if we have chosen an inner product,
then ψ∗ is uniquely defined. Let E be a vector subspace of FN2 . We denote
by E⊥ the orthogonal of E with respect to the inner product “·”, equal to the
vector space of all those v ∈ FN2 such that v · e = 0 for every e ∈ E. Let
u1, . . . , un ∈ FN2 . We define E = ⟨u1, . . . , un⟩ as the vector space spanned by
u1, . . . , un. We say that A ⊆ FN2 is respectively an affine line, or an affine plane,
or an affine hyperplane if A is an affine space of dimension 1, or 2, or N − 1.

Let F be an (N,M)-function. For any u ∈ FN2 and v ∈ FM2 we denote by
WF (u, v) the value at (u, v) of the Walsh transform of F :

WF (u, v) =
∑
x∈FN

2

(−1)v·F(x)+u·x.

The extended Walsh spectrum of F is the multiset of all the absolute values
that the Walsh function assumes.

We shall recall two equalities (first discovered in [11]) satisfied by the Walsh
transform related to affine subspaces. Let v ∈ FM2 , a, b ∈ FN2 , and E,E0 be two
vector subspaces of FN2 such that E ⊕ E0 = FN2 . The Walsh transform satisfies
the Poisson summation formula:∑

u∈b+E⊥

(−1)a·uWF (u, v) = |E⊥|(−1)a·b
∑

x∈a+E
(−1)v·F(x)+b·x. (1)

The Walsh transform satisfies the second-order Poisson summation formula:

∑
u∈E⊥

WF (u, v)
2 = |E⊥|

∑
a∈E0

( ∑
x∈a+E

(−1)v·F(x)

)2

. (2)

The two main cryptographic parameters of a vectorial function are its non-
linearity and its differential uniformity, which both are CCZ invariants.

The nonlinearity of F equals by definition the minimum Hamming distance
between the component functions v · F , v ̸= 0, of F and the affine Boolean
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functions u · x+ ϵ, ϵ ∈ F2 over FN2 . It equals:

nl(F) = 2N−1 − 1

2
max

u∈FN
2 ,v∈FM

2 \{0}
|WF (u, v)| . (3)

The nonlinearity should be large (as close to the maximum 2n−1 − 2
n
2 −1 as

possible) for allowing the vectorial function to contribute to the resistance of
the block cipher using it as a substitution box to the linear attack [16]. As
a generalization of the nonlinearity, we have the d-th order nonlinearity of a
vectorial Boolean function F denoted as nld(F) that is equal to the minimum
Hamming distance between the nonzero components of F and the set BN,d of
Boolean functions over FN2 with algebraic degree at most d (for d = 1 it is the
same notion as nonlinearity). Moreover, we have that nld(F) = 2N−1 − ωd

2
where

ωd = max
g∈BN,d,v∈FM

2 \{0}

∣∣∣∣∣∣
∑
x∈FN

2

(−1)v·F(x)+g(x)

∣∣∣∣∣∣ .
The differential uniformity of F is the (positive and even) integer δF defined

as:
δF = max

a∈FN
2 \{0},b∈FM

2

δF (a, b),

where δF (a, b) =
∣∣{x ∈ FN2 |DaF(x) = b}

∣∣ and DaF(x) = F(x+a)+F(x) is the
derivative of F through the direction a ∈ FN2 \{0}. An (N,M)-function is called
differentially δ-uniform if its differential uniformity is at most δ. The differential
uniformity should be low (as close to the minimum 2 as possible) for allowing
the vectorial function to contribute to the resistance of block cipher using it
as a substitution box (in Substitution-Permutation Network (SPN), “function”
should be “permutation”, and in a Feistel cipher, “(N,N)” can be “(N,M)”) to
the differential attack [16]. If δ = 2, we call F almost perfect nonlinear (APN).

A Boolean function f over FN2 is called plateaued if its extended Walsh
spectrum assumes only two values that are 0 and a positive number, which
happens to be equal to 2k for some k ≥ N

2 , because of the Parseval’s relation
[16] (after Corollary 5). Quadratic functions are plateaued. The integer 2k is
called the amplitude of f . The function f is called bent if k = N

2 , near-bent

if k = N+1
2 , and semi-bent if k = N

2 + 1. A generalization of bent functions
is partially-bent functions that are characterized by the property of having all
their derivatives either constant or balanced. Partially-bent functions are also
plateaued. A vectorial Boolean function is called respectively plateaued, strongly
plateaued, and bent if all its components are respectively plateaued, partially-
bent, and bent. An almost bent (AB) function F is an (N,N)-function that

reaches the SCV bound [16, Theorem 6], that is such that nl(F) = 2N−1−2
N−1

2 .
AB functions have many interesting properties such as being APN and having
all near-bent components; they can only exist in odd dimension N . Crooked
functions are (N,N)-functions such that for any a ∈ FN2 \ {0}, the image set of
DaF is an affine hyperplane; equivalently, they are APN and strongly plateaued
[16] (after Definition 68). Crooked functions share almost all the nice properties
of quadratic APN functions, and it is conjectured that the two notions coincide.
It has been proven that there is no bijective crooked function in even dimension
and that the only crooked monomials and binomials are quadratic [23, 4].
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Let f be a Boolean function over FN2 , then f is said to be n-normal (resp.
n-weakly-normal), if there exists an n-dimensional affine space A such that f is
constant (resp. affine) on A.

Proposition 2.1 ([11]). Let f be a Boolean function over FN2 . If f is n-weakly-
normal, then nl(f) ≤ 2N−1 − 2n−1.

3 Cryptographic properties of restrictions of vec-
torial functions to affine spaces

Let F be an (N,M)-function such that there exists an affine space A of dimen-
sion n, that is mapped by F into an affine space A′ of dimension m. We identify
then A with Fn2 and A′ with Fm2 through the choice of bases, and we obtain an
(n,m)-function. We shall denote by FA one of the functions obtained this way.
When we shall find such case of an affine space mapped by a function F into a
strict affine space of the co-domain of F , we shall of course be interested in the
cryptographic properties of FA. But there are several possibilities of defining the
affine space in which F(A) is included (hence, to choose the dimension m of the
co-domain of FA). And if this affine space is taken too large, then the nonlinear-
ity of FA will be automatically zero, because when we see an (n,m)-function as
an (n,m′)-function with m′ > m by adding virtual coordinate functions (which
equal the zero function if we identify Fm2 with Fm2 × {0} ⊂ Fm′

2 ), this drops the
nonlinearity to zero. So, if it is not specified otherwise, we shall assume that A′

is the intersection of all the affine spaces that contain F(A).

Definition 3.1. Let F be an (N,M)-function such that there exists an affine
space A = a+E (where E is a vector space) of dimension n, that is mapped by
F into an affine space A′ = a′ + E′ (where E′ is a vector space) of dimension
m. We call then F an (E, a,E′, a′)n,m affine-to-affine mapping. We say that
the tuple (ϕ, a, ψ, a′) is a representation of FA if

FA(x) = ψ (F(ϕ(x) + a) + a′)

where ϕ is a linear bijective function from Fn2 to E, and ψ is a linear surjective
(M,m)-function such that ψ(E′) = Fm2 .

Note that all the representations defined in Definition 3.1 are affine equiva-
lent and if a function F ′ is affine equivalent to F , then the resulting restriction
of F ′ is affine equivalent to a restriction of F (if both are represented as (n,m)-
functions).

3.1 Differential uniformity of restrictions

Concerning the differential uniformity, the situation is rather simple. Let F be
an (N,M)-function that is an (E, a,E′, a′)n,m affine-to-affine mapping. It is
clear that the differential uniformity of FA where A = a+ E is given by

δFA
= max
α∈E\{0}, β∈E′

|{x ∈ A | F(x+ α) + F(x) = β}| .

Observe that if F is differentially δ-uniform for some δ, then the restriction FA
is also differentially δ-uniform, since for every nonzero α ∈ E \ {0}, β ∈ E′, we
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have

#{x ∈ A | F(x+ a) + F(x) = b} ≤ #{x ∈ FN2 | F(x+ a) + F(x) = b}.

In particular, the restriction of an almost perfect nonlinear (APN) function
is still APN (examples of such APN functions have been discussed in [15, 2]).
We shall recall a useful characterization of the APN property.

Proposition 3.2 ([16]). Let F be an (N,M)-function with M ≥ N ≥ 3. Then
F is APN if and only if for all distinct x, y, z ∈ FN2 , we have F(x) + F(y) +
F(z) ̸= F(x+ y + z).

3.2 The Walsh transform and nonlinearity of restrictions

Concerning the nonlinearity, the situation is also apparently simple: the nonlin-
earity of FA equals the minimum Hamming distance between the components
of FA and the affine Boolean functions over A. But we need to define what is a
component function of FA and the situation is then a little more delicate. We
also need a way to effectively calculate the nonlinearity. In practice, we can first
try to relate the Walsh transform of the restriction to the Walsh transform of
F . The nonlinearity of the restriction of a Boolean function to an affine space
has been studied in [25, 27, 11], but without that a precise expression of the
Walsh transform be exhibited. The results that we shall revisit were obtained in
[27] in a complex way and in [11] by using the Poisson summation formula (1)
and the second-order Poisson summation formula (2), which led to bounds and
to the study of their cases of equality without needing a precise expression of
the Walsh transform. Let us provide such a precise expression in the framework
which is ours here, that is, for vectorial functions.

Remark 3.3. Let ζ be any linear function and let ζ∗ be the adjoint operator
of ζ with respect to an inner product. We recall that Im ζ∗ = (ker ζ)⊥ and
ker ζ∗ = (Im ζ)⊥.

Lemma 3.4. Let F be an (N,M)-function that is an (E, a,E′, a′)n,m affine-to-
affine mapping, and let A = a + E. Then for every representation (ϕ, a, ψ, a′)
of FA, we have Imψ∗⊕ (E′)⊥ = FM2 . Moreover, for every v′ ∈ FM2 \ (E′)⊥ there
exists a representation (ϕ, a, ψ, a′) of FA such that v′ ∈ Imψ∗.

Proof. Let us prove that Imψ∗⊕(E′)⊥ = FM2 for any representation (ϕ, a, ψ, a′)
of FA. Let w′ ∈ Imψ∗ ∩ (E′)⊥ and w ∈ Fm2 be such that ψ∗(w) = w′. Suppose
that w′ ̸= 0. Let e′ ∈ E′, then w · ψ(e′) = ψ∗(w) · e′ = w′ · e′ = 0 because
w′ ∈ (E′)⊥. Since ψ(E′) = Fm2 , we have that w = 0 and that w′ = 0. This
is a contradiction. So Imψ∗ ∩ (E′)⊥ = {0}. Since Imψ∗ (resp. (E′)⊥) has
dimension m (resp. M −m), we have that Imψ∗ ⊕ (E′)⊥ = FM2 .

Let us prove the second part. Let v′ ∈ FM2 \ (E′)⊥ and let (ϕ, a, ψ, a′) be
a representation of FA. If v′ ∈ Imψ∗, there is nothing to prove. Otherwise,
we will prove that there exists a linear function ν such that v′ ∈ Im ν∗ and
(ϕ, a, ν, a′) is a representation of FA. Let E0 be a vector space over F2 such that
v′ ∈ E0 and E0 ⊕ (E′)⊥ = FM2 . Then E0 has dimension m. Let ζ be a linear
function from Fm2 to FM2 such that Im ζ = E0 and consider ν = ζ∗.We claim that
ν is such that v′ ∈ Im ν∗ and that (ϕ, a, ν, a′) is a representation of FA. Since
Im ν∗ = Im ζ = E0, then v

′ ∈ Im ν∗. To prove that (ϕ, a, ν, a′) is a representation
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of FA we must prove that ν(E′) = Fm2 . Since ker ν = (Im ν∗)⊥ = E⊥
0 and

E⊥
0 ∩ E′ = (E0 + (E′)⊥)⊥ = {0}, then ν(E′) has dimension m and this is

enough to prove that ν(E′) = Fm2 .

Theorem 1. Let F be an (N,M)-function that is an (E, a,E′, a′)n,m affine-to-
affine mapping, let A = a + E, and let (ϕ, a, ψ, a′) be a representation of FA.
Then for all u ∈ Fn2 , v ∈ Fm2

WFA
(u, v) =

(−1)ϵ

2N−n

∑
z∈E⊥

(−1)z·aWF ((ϕ
−1)∗(u) + z, ψ∗(v))

where ϵ = ψ∗(v) · a′ + a · (ϕ−1)∗(u) and

nl(FA) = 2n−1 − 1

2N−n+1
max

u′∈E1, v′∈(E2\{0})

∣∣∣∣∣∣
∑
z∈E⊥

(−1)z·aWF (u
′ + z, v′)

∣∣∣∣∣∣ ,
where E⊥ ⊕ E1 = FN2 and (E′)⊥ ⊕ E2 = FM2 . Moreover, we can write the
nonlinearity of FA as

nl(FA) = 2n−1 − 1

2N−n+1
max

u′∈F2N , v
′∈FM

2 \(E′)⊥

∣∣∣∣∣∣
∑
z∈E⊥

(−1)z·aWF (u
′ + z, v′)

∣∣∣∣∣∣ .
Proof. Let F ′(x) = F(x+ a) + a′ and FA = ψ ◦ F ′ ◦ ϕ. First, notice that ψ∗ is
injective because kerψ∗ = (Imψ)⊥ = (Fm2 )⊥ = {0} and (ϕ−1)∗ is also injective
because ker(ϕ−1)∗ = (Imϕ−1)⊥ = (Fn2 )⊥ = {0}. Let u ∈ Fn2 , v ∈ Fm2 and set
u′ = (ϕ−1)∗(u), v′ = ψ∗(v). We have:

WFA
(u, v) =

∑
x∈Fn

2

(−1)v
′·F ′(ϕ(x))+u·x =

∑
y∈E

(−1)v
′·F ′(y)+u′·y.

By using the Poisson summation formula (1) we have that

WFA
(u, v) =

1

2N−n

∑
z∈E⊥

WF ′(z + u′, v′).

We continue by writing the Walsh transform of F ′ in terms of the Walsh trans-
form of F , that is WF ′(z + u′, v′) = (−1)a

′·v′+a·u′
(−1)a·zWF (z + u′, v′).

Notice that we can exclude the case v′ = 0 when we compute the nonlinear-
ity of FA, since by definition we must take v ̸= 0 and we saw that ψ∗ is injective.
So v′ ∈ Imψ∗ \ {0}. By using Lemma 3.4, we have that v′ ∈ FM2 \ (E′)⊥ and we
can set E2 = Imψ∗. Let E1 ⊆ FN2 be a vector space such that E⊥ ⊕ E1 = FN2 .
We can write u′ as u′ = u1 + u2, where u1 ∈ E1 and u2 ∈ E⊥, and conse-
quently:

∣∣∑
z∈E⊥(−1)z·aWF (u

′ + z, v′)
∣∣ = ∣∣∑

z∈E⊥(−1)z·aWF (u1 + z, v′)
∣∣ . So

we can assume u′ ∈ E1. The rest is clear.

3.3 A sufficient condition to have nl(FA) ̸= 0

The case nl(F) = 0 is interesting (and we shall study it apart in Section 4):
we shall see that FA can have good nonlinearity, even when starting from a
function F with zero nonlinearity.

9



A direct consequence of Theorem 1 is the following relation

nl(FA) ≥ nl(F)− (2N−1 − 2n−1) (4)

that is already known from [27, 11]. Observe that by using relation (4), we have
that a sufficient condition for having nl(FA) ̸= 0 is that nl(F) > 2N−1 − 2n−1.
But this property is impossible to satisfy with m < M since if F maps A into
an affine hyperplane, of equation, say, v · x + ϵ = 0, then the Boolean function
v · F(x) being constant over A, it is n-normal and Proposition 2.1 shows that
this is impossible. This observation proves the following proposition.

Proposition 3.5. Let N,M,n be positive integers such that N ≥ n. Let F
be an (N,M)-function. If nl(F) > 2N−1 − 2n−1, then for every affine space
A ⊆ FN2 of dimension n we have that F(A) is not included in any affine space
of dimension m < M .

We are going to prove a sufficient condition for having nl(FA) ̸= 0 which
will be weaker and then more useful.

Proposition 3.6. Let F be an (N,M)-function that is an (E, a,E′, a′)n,m
affine-to-affine mapping and let A = a + E. If nl(FA) = 0, then there exist
v ∈ FM2 \ (E′)⊥ and u ∈ FN2 such that |WF (u, v)| ≥ 2n.

Proof. We have nl(FA) = 0 if and only if there exist b ∈ FN2 and v ∈ FM2 \ (E′)
⊥

such that v ·F(x)+b ·x is constant on A (this is by definition, and it can also be
seen by using Theorem 1 and the Poisson summation formula (1), which shows
that

∣∣∑
x∈b+E⊥(−1)x·aWF (x, v)

∣∣ = 2N if and only if |
∑
x∈A(−1)v·F(x)+b·x| =

2n). Let f = v · F(x) + b · x, then f is an n-normal N -variable function, and
therefore nl(f) ≤ 2N−1 − 2n−1, by Proposition 2.1. So we can conclude that
there exists u ∈ FN2 such that |WF (u, v)| ≥ 2n.

Remark 3.7. By using Proposition 3.6, we have immediately a sufficient con-
dition for nl(FA) ̸= 0 that is

max
u∈FN

2 , v∈FM
2 \(E′)⊥

|WF (u, v)| < 2n.

This observation justifies the setting of the next section where we will assume
that only some components have zero nonlinearity while the others can have any
value for their nonlinearity.

4 Functions with affine components

Constructing an (N,M)-function F with no affine component that maps an
affine space of dimension n < N into an affine space of dimension m < M is
not that difficult. Let F be an (n,m)-function and G be an (n′,m′)-function
both without affine components, then the (n + n′,m +m′)-function F defined
as (x, y) 7→ (F (x), G(y)) does not have affine components and maps the affine
space A = Fn2 ×{0}n′

(resp. A = {0}n×Fn′

2 ) of dimension n (resp. n′) into the
affine space A′ = Fm2 × {0}m′

(resp. A′ = {0}m × Fm′

2 ) of dimension m (resp.
m′). However, this procedure does not produce really new functions since F
and G are known. It is challenging to find examples of “interesting” (N,M)-
functions F (having good cryptographic properties) with no affine components
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that map an affine space of dimension n < N into an affine space of dimension
m < M and such that FA has good cryptographic properties. Of course, as we
saw in the introduction, if we take an (N,N)-function F that can be represented
as a polynomial with coefficients in F2n with n a strict divisor of N , then F
maps F2n onto itself. But then, n is necessarily a divisor of N . We wish here
to study another way of generating functions from known ones (and studying
their cryptographic parameters).

In this section, we will study the case where function F has affine components
(that is when nl(F) = 0) because we can find automatically a strict affine
subspace of its domain mapped to a strict affine subspace of its co-domain. Also,
it seems interesting to us that, from a function that is bad, cryptographically,
because it has zero nonlinearity, we can construct potentially a good function
by restricting its domain. This renews the cryptographic interest of the known
infinite classes of permutation polynomials having zero nonlinearity. We will
prove that, up to EA equivalence, we can write F(x) = ψ(G(x)) where ψ is
linear, and we can assume that G has nonzero nonlinearity for the case M =
N ≥ 3.
For any (N,M)-function G, we will see that instead of studying restrictions of
G, we can study restrictions of functions of the form F(x) = ψ(G(x)) where ψ
is linear. Moreover, we will be able to construct more functions, because if ψ is
not surjective, then nl(F) = 0 (because the image set of F being then included
in an affine hyperplane, a component function of F is then constant) and we
are not constrained by the necessary condition of Proposition 3.5 as explained
in Remark 3.7.

4.1 Functions mapping affine spaces to subsets of proper
affine subspaces

The next proposition is a generalization of the simple following observation:
assume that F has an affine component; for instance, assume that its last co-
ordinate function fM is affine, then F maps (without loss of generality up to
affine equivalence) the affine space equal to the pre-image f−1

M (0) into the affine
space {y ∈ FM2 ; yM = 0}.
Proposition 4.1. Let F be an (N,M)-function. Let V be any subset of FM2
such that v · F is affine for every v ∈ V . Let ℓ : FM2 → F2 be any linear form
and A = {x ∈ FN2 | ∀v ∈ V, v · F(x) = ℓ(v)}. Then we have A ̸= ∅ for some
ℓ, and for any such ℓ, A is an affine space mapped by F into the affine space
A′ = {y ∈ FM2 | ∀v ∈ V, v · y = ℓ(v)} with direction ⟨V ⟩⊥. Any translate a+ A
for a ∈ FN2 is also mapped into an affine space of direction ⟨V ⟩⊥.

Proof. By definition, A equals the intersection of the affine spaces {x ∈ FN2 |
v · F(x) = ℓ(v)}, where v ranges over V . Such A is non-empty for any ℓ defined
over V by ℓ(v) = v · F(x), where x is some fixed element in FN2 , and completed
into a linear function over FM2 . Then A is an affine space. The image of A by
F is clearly a subset of the affine space {y ∈ FM2 | ∀v ∈ V, v · y = ℓ(v)}, whose
direction equals its homogeneous version, that is, ⟨V ⟩⊥. And any translate a+A
of A has the same form, by changing ℓ(v) into ℓ(v) + v · (F(a) +F(0)). Indeed,
since v · F is affine, we have v · F(x + a) = v · F(x) + v · F(a) + v · F(0).
Then, F(a+ A) and F(A) are subsets of affine spaces with the same direction
⟨V ⟩⊥.
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Note that taking ℓ linear does not reduce the generality since it is necessary
for allowing A to be non-empty. Moreover, observe that if v · F is affine for
every v ∈ V , then v · F is affine for every v ∈ ⟨V ⟩. Hence, we can then always
assume that V is a vector space.

Remark 4.2. As we already evoked it at the beginning of Section 3, we need
to reduce the dimension of the co-domain of the restriction of a function to an
affine space in such a way that we erase all its affine components, if we want
the restriction to have a chance of having nonzero nonlinearity. More precisely,
let V = {v ∈ FM2 | v · F is affine} (that is, let V be maximal); let W be a
strict subspace of V , α ∈ FN2 , and B = {x ∈ FN2 | ∀w ∈ W, w · F(x) =
w ·F(α)}. Then nl (FB) = 0, where the co-domain of FB is an affine space with
direction W⊥. Indeed, let v ∈ V \W . By using Lemma 3.4, we can choose a
representation (ϕ, b, ψ, b′) of FB such that v ∈ Imψ∗. Since v · F is affine, then
also v · F(ϕ(x) + b) is affine and

v · F(ϕ(x) + b) = v′ · ψ (F(ϕ(x) + b)) = v′ · ψ(b′) + v′ · FB(x)

where v = ψ∗(v′). Consequently, v′ · FB is affine and, since v′ ̸= 0 because
v ̸= 0, we conclude that nl (FB) = 0.

Note that FA can still have zero nonlinearity even if V is maximal, since
a component function f = v · F of F for v ̸∈ V can be non-affine, and its
restriction fA be affine.

4.2 Cryptographic properties of restrictions of functions
with affine components

Before studying the cryptographic properties of restrictions of (N,M)-functions
with affine components, let us put them in a form easing their study, and make
a first observation.

Proposition 4.3. Let F be an (N,M)-function. Let V ⊆ FM2 be a vector space
such that, for every v ∈ V , we have that v · F is affine. Let ψ be any linear
(M,M)-function with Imψ = V ⊥, then there exists an (N,M)-function G, and
an affine (N,M)-function A such that:

F(x) = ψ (G(x)) +A(x).

Suppose that M = N ≥ 3 and V is the whole vector space of those v ∈ FN2 such
that v · F is affine, then G can be taken such that nl(G) ̸= 0 and additionally we
have the following:

1. Assuming that v · F is non-constant for all v ∈ V \ {0}, we can take
A(x) = x.

2. Assuming that v · F is constant for all v ∈ V , we can take A = 0.

Proof. Let e1, . . . , eM be the canonical basis of FM2 , composed by vectors of
Hamming weight 1 and let “·” be the inner product of FM2 defined as v · w =
v1w1+· · · vMwM where v = (v1, . . . , vM ), w = (w1, . . . , wM ) ∈ FM2 . Letm be the
dimension of the vector space V ⊥. Up to affine equivalence, we can assume that
V = ⟨e1, . . . , eM−m⟩ = FM−m

2 × {(0, . . . , 0)}. Then V ⊥ = ⟨eM−m+1, . . . , eM ⟩ =
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{(0, . . . , 0)}×Fm2 and F = (f1, . . . , fM ) is such that its firstsM−m coordinates
are affine functions. Let A = (a1, . . . , aM ) be the affine (N,M)-function such
that ai = fi if i ≤M −m and ai = 0 otherwise. Then the image of the function
F +A is contained in V ⊥ and there exists an (N,M)-function G = (g1, . . . , gM )
such that F(x) = ψ (G(x)) + A(x) where the i-th coordinate of ψ(x) is xi if
i > M −m and 0 otherwise. Therefore, fi = gi for i > M −m. We are going
to use this setting for the rest of the proof.

Let us prove that if M = N ≥ 3 and V is the vector space of all v ∈
FM2 such that v · F is affine, then we can choose G such that nl(G) ̸= 0. By
construction fi = ai if i ≤ N − m and fi = gi otherwise, so the coordinate
functions g1, . . . , gN−m can be chosen arbitrarily. By hypothesis, any nonzero
linear combination of gN−m+1, . . . , gN is not affine. Let us show that by choosing
appropriate g1, . . . , gN−m, we can extend this to all g1, . . . , gN and we will have
then that G = (g1, . . . , gN ) has nonzero nonlinearity. Let N − m < i ≤ N
and let ḡi be the Boolean function obtained from gi by removing all the terms
of degree at most 1 in the algebraic normal form (ANF). Considering now the
vector space V of all the Boolean functions that are either 0 or have only terms
of degree strictly greater than 1 in their ANF, we have that V has dimension∑N
d=2

(
N
d

)
= 2N −N − 1. Since N ≥ 3, we have that 2N −N − 1 > N and by

completing the free family ḡN−m+1, . . . , ḡN , we can always find ḡ1, . . . , ḡN−m ∈
V such that ḡ1, . . . , ḡN ∈ V are linearly independent. This concludes the proof
that G can have nonzero nonlinearity.

Let us prove 1. Since v · F = v · A is non-constant for all v ∈ V \ {0}, then
we can assume up to affine equivalence that ai = xi for i ≤ N −m and that
ai = 0 for i > N − m. Let L(x) = A(x) + x. Then L vanishes over V and
therefore ψ ◦ L = L because the i-th coordinate of ψ(x) is xi if i > N −m and
0 otherwise. Therefore, we have that F(x) = ψ(G(x)) + A(x) = ψ(G′(x)) + x
where G′ = G + L. We conclude by observing that nl(G′) = nl(G) ̸= 0.

Let us prove 2. Since v · F = v · A is constant for all v ∈ V \ {0}, then we
can assume up to affine equivalence that ai = 0 for i ≤ N −m. So we have that
A = 0.

Note that, in the framework of Proposition 4.3, the affine spaces A of Propo-
sition 4.1 are all the affine spaces of the form {x ∈ FN2 | ∀v ∈ Imψ⊥, v · A(x) =
ℓ(v)} and their images by F and by ψ ◦ G have Imψ for direction.

Remark 4.4. Referring again to Proposition 4.3, consider the two functions
F(x) = ψ(G(x)) and F ′(x) = ψ(G(x)) + A(x). It is clear that the two are EA
equivalent. Let A be equal to {x ∈ FN2 | ∀v ∈ Imψ⊥, v · A(x) = ℓ(v)} as in
Proposition 4.1, then the two restrictions FA and F ′

A are EA equivalent if we
consider the restriction of the codomain over an affine space with direction Imψ.

Remark 4.5. Let G be an (N,N)-function. Suppose there exists an affine
n-dimensional subspace A of FN2 such that G(A) ⊆ A′ where A′ is an m-
dimensional subspace of FM2 . Without loss of generality, assume that A′ = E′

is a vector space. For any linear (M,M)-function ψ such that ψ(E′) = Imψ
has dimension m, we have that, by choosing the appropriate representations (see
Definition 3.1), the two (n,m)-functions GA and FA are affine equivalent where
F(x) = ψ(G(x)). In fact, we can assume that FA = ψE′ ◦ GA where ψE′ is a
linear (m,m)-permutation because E′ and Imψ have the same dimension.
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As a consequence of the previous remarks, studying the cryptographic prop-
erties of restrictions of functions of the form F(x) = ψ(G(x)) is not restrictive
in our setting. In the general hypothesis of the next theorem we do not assume
that there is an affine space mapped to the subset of a strict subspace of dimen-
sion m < M , but we let m to be equal to the dimension of Imψ (that can also
be the whole space if ψ is a permutation).

Theorem 2. Let G be an (N,M)-function and ψ a linear (M,M)-function
whose image has dimension m. Let A be any affine space with dimension n and
direction E. Then the (N,M)-function F(x) = ψ(G(x)) and the (n,m)-function
FA have the following cryptographic properties:

1. For every u ∈ FN2 and v ∈ FM2 , we have that WF (u, v) = WG(u, ψ
∗(v))

and that nl(FA) ≥ nl(G)− (2N−1 − 2n−1).

2. Let a ∈ FN2 and b ∈ FM2 . If b ̸∈ Imψ, then δF (a, b) = δFA
(a, b) = 0. If

b ∈ Imψ, then for any b′ ∈ FM2 such that ψ(b′) = b we have that:

δF (a, b) =
∑

c∈kerψ

δG(a, b
′ + c),

and if a ∈ E, we have that

δFA
(a, b) =

∑
c∈kerψ

δGA
(a, b′ + c),

where GA is the restriction of G to A with co-domain FM2 . Moreover, we
have that δG ≤ δF ≤ 2M−mδG and δGA

≤ δFA
≤ 2M−mδGA

.

Proof. Observe that the image of F is included in Imψ, so FA can be represented
as an (n,m)-function since n is the dimension of A and m is the dimension of
Imψ.

Let us prove 1. Given u ∈ FN2 and v ∈ FM2 , we have that WF (u, v) =
WG(u, ψ

∗(v)) because v · ψ(G) = ψ∗(v) · F . Because of Theorem 1 and the fact
that the direction of F(A) is included Imψ, the nonlinearity of FA is

2n−1 − 1

2N−n+1
max

u∈FN
2 , v∈FM

2 \(Imψ)⊥

∣∣∣∣∣∣
∑
z∈E⊥

(−1)z·aWF (u+ z, v)

∣∣∣∣∣∣ ,
where A = a+ E. Let u ∈ FN2 , v ∈ FM2 \ (Imψ)⊥, then we have that∣∣∣∣∣∣

∑
z∈E⊥

(−1)z·aWF (u+ z, v)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
z∈E⊥

(−1)z·aWG(u+ z, ψ∗(v))

∣∣∣∣∣∣
≤ 2N−n max

z∈E⊥
|WG(u+ z, ψ∗(v))| .

Since v ̸∈ (Imψ)⊥ = kerψ∗, then ψ∗(v) ̸= 0. So we can conclude that nl(FA) ≥
nl(G)− (2N−1 − 2n−1).

Let us prove 2. Let a ∈ FN2 and b ∈ FM2 , then the integer δF (a, b) is the
number of solutions x ∈ FN2 of the equation:

F(x) + F(x+ a) = ψ (G(x) + G(x+ a)) = b, (5)
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which equals, by denoting z = G(x)+G(x+a), the number of solutions (x, z) ∈
FN2 × FM2 of the system: {

ψ(z) = b
G(x) + G(x+ a) = z

(6)

The first equation ψ(z) = b has solutions if and only if b ∈ Imψ, and in that
case, the set of solutions equals the affine space b′ + kerψ for some b′ ∈ FM2
such that ψ(b′) = b. For every c ∈ kerψ, the number of solution to the equation
G(x)+G(x+a) = b′+c is δG(a, b

′+c), and consequently we have that δF (a, b) =∑
c∈kerψ δG(a, b

′+c). Consider now the restriction FA where A is an affine space
with direction E. If a ∈ E and b ∈ Imψ, we can obtain δFA

(a, b) similarly.
We still have that Equation (5) with unknown in A has the same number of
solutions as System (6) with unknown in A × FM2 . Since b ∈ Imψ, the set
of solutions of the first equation of Equation (6) equals b′ + kerψ for some
b′ ∈ FM2 such that ψ(b′) = b. For every c ∈ kerψ, the number of solution
to the equation G(x) + G(x + a) = b′ + c is exactly δGA

(a, b′ + c) where GA
is the restriction of G to A with co-domain FM2 . Consequently, we have that
δFA

(a, b) =
∑
c∈kerψ δGA

(a, b′ + c). The two bounds follow directly.

Remark 4.6. Consider the setting of Theorem 2 with M = N and m = n. As-
suming that G belongs to an infinite family of (N,N)-functions, then computing
δGA

could be hard, and therefore the bound δGA
≤ δFA

≤ 2N−nδGA
is not useful.

However, if G belongs to an infinite family of APN (N,N)-functions, then we
have that δGA

= 2 and that 2 ≤ δFA
≤ 2N−n+1. So it is reasonable to study the

case n = N − 1 because then FA is at most 4-uniform.

The following proposition groups together two results that are known for a
long time (at least in the folklore) and have been rediscovered several times (for
instance, in [24, 26]). In our case, they will follow from Theorem 2.

Proposition 4.7. Let N ≥ 4, let G be an (N,N)-function, let ψ be a linear
(N,N)-function where n = N − 1 is the dimension of Imψ, and let F(x) =
ψ(G(x)). For any affine hyperplane A of FN2 , the following hold:

1. If G is APN, then δF = 4. Conversely, if δF = 4, then G is differentially
4-uniform.

2. If G is AB, then FA is differentially 4-uniform and has nonlinearity 2n−1−
2

n
2 .

Proof. Let us prove 1. If G is APN, then δF ≤ 4 by Theorem 2. Since F has
zero nonlinearity, then it cannot be APN [16, Proposition 161]. Conversely, if
δF = 4, then G is differentially 4-uniform again by Theorem 2.

Let us prove 2. Using Theorem 1 and Theorem 2, each of the nonzero Walsh
values of FA is either ±2

n
2 or ±2

n
2 +1. Since there is no bent (n, n)-function for

n ≥ 3, then nl(FA) = 2n−1 − 2
n
2 .

Let F(x) = ψ(G(x)) be as in Proposition 4.7 and let A be an affine hy-
perplane. By Proposition 4.3, we can assume that G has nonzero nonlinearity.
Moreover, to have that FA is an APN (N − 1, N − 1)-function, it is necessary
that G is at least differentially 4-uniform. In the next section, we will investigate
the case where G is APN, and we will study sufficient conditions to conclude
that FA is APN.
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Remark 4.8. There exist examples of infinite families of differentially 4-uniform
(N,N)-functions F and hyperplanes A of FN2 mapped to subsets of hyperplanes
of FN2 and such that FA is APN. Indeed, take an APN (n, n)-function F and

define, for instance F(x, xn+1) =
(
F (x) + xn+1L(x), xn+1ℓ(x)

)
, with x ∈

Fn2 , xn+1 ∈ F2, where (L, ℓ) is a linear (n, n + 1)-function whose kernel has
dimension at most 2 (this is not very different from the construction in [3] but
we shall apply it here to reach differential 4-uniformity). Then the image of A =
Fn2 × {0} is included in A, and the equation D(a,an+1)F(x, xn+1) = (b, bn+1) is

equivalent to the system of equations

{
DaF (x) + xn+1L(a) + an+1L(x) = b+ an+1L(a)
xn+1ℓ(a) + an+1ℓ(x) = bn+1 + an+1ℓ(a)

.

For a = 0 and an+1 = 1, this system writes

{
L(x) = b
ℓ(x) = bn+1

and has at most

4 solutions. For a ̸= 0, it writes

{
DaF (x) + an+1L(x) = b+ an+1L(a)
an+1ℓ(x) = bn+1 + an+1ℓ(a)

if

xn+1 = 0 and

{
DaF (x) + an+1L(x) = b+ an+1L(a) + L(a)
an+1ℓ(x) = bn+1 + (an+1 + 1)ℓ(a)

if xn+1 = 1. So

it is enough that the first equation in each of the two latter systems has at most
two solutions. This is obtained for instance if F (x) = x3 with x ∈ F2n and
L(x) = x (whatever is ℓ) since these equations have then degree 2. Other exam-
ples can be given.
There even exist examples of quadratic APN (N,N)-functions F having this
property (see [2, 6]) but these are sporadic.

The following open questions have been already more or less considered in
[3] (see Open Problems 4 and 5):

Open Question 1. Does there exist any example of an infinite class of APN
functions F mapping a hyperplane A into a hyperplane, and whose restriction
FA is also APN?

Open Question 2. Do there exist (possibly sporadic) non-quadratic APN func-
tions mapping a hyperplane A into a hyperplane, and whose restriction FA is
also APN?

5 APN (N − 1, N − 1)-functions as restrictions
of (N,N)-functions with an affine component,
and the D-property

In this section, we will discuss the problem of constructing APN (N −1, N −1)-
functions as restrictions of (N,N)-functions with an affine component. We recall
that according to Remark 4.6 this is not a restrictive setting. We will show
that this problem is closely related to the D-property of (N − 1, N)-functions
discussed by Taniguchi in [26]. This will motivate the introduction of the notion
of strong D-property. We will investigate this property for crooked functions
and for their compositional inverses (when they are bijective). Then we will
prove that the Gold APN function for N large enough. As a consequence, we
will present a partial result on the Dobbertin APN function, and we conjecture
that it has the strong D-property.
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To the best of our knowledge, the paper by Beierle, Leander, and Perrin [3]
is the first that investigates the problem of constructing APN (N − 1, N − 1)-
functions from APN (N,N)-functions. We shall emphasize some differences
between their approach and ours. They use the term “restriction” of an (N,M)-
function G to indicate any (n,m)-function of the form ζ ◦ G ◦ η where η is an
injective affine (n,N)-function and ζ is a surjective affine (M,m)-function. The
only difference (up to affine equivalence) with our notion of restriction is that
we impose that ζ is injective on G(Im η) (see Definition 3.1). So restrictions in
our sense, can be seen as a special case of restrictions in their sense. Conversely,
it is fairly simple to show that the work by Beierle et al. on trims fits to our
framework. Observe that we can write without loss of generality ζ = ζ ′ ◦ ψ
where ψ is a linear (M,M)-function with Imψ of dimension m and ζ ′ is an
affine (M,m)-function injective on Imψ. Then ζ ◦ G ◦ η = ζ ′ ◦ (ψ ◦ G) ◦ η is
a restriction of ψ ◦ G in our sense. In our setting, specifying the kernel of
ψ is very relevant for the study of the differential uniformity of restrictions
(see Theorem 2), while this information could be overlooked when dealing with
specific constructions. Moreover, to construct permutations as restrictions of
functions we need to impose anyway that ζ is injective on the image of the
chosen affine space through the function we are restricting.

In [3], they focus on the case N = M and n = m = N − 1 and define the
trimming operation on G to constructing an (N − 1, N − 1)-function, that can
be described as choosing an affine hyperplane A, taking the restriction (also in
our sense) GA as an (N −1, N)-function and then discard one component of GA.
They prove that this operation is EA equivalent to constructing (N −1, N −1)-
restrictions in their sense. Let FA be a restriction (in our sense) of an (N,N)-
function F(x) = ψ(G(x)) where A is an affine hyperplane, and ψ is a linear
(N,N)-function with a kernel of dimension 1. Such (N − 1, N − 1)-function FA
is a trim of G by the Beierle et al. [3] terminology. Indeed, any component
v′ · FA for some v′ ∈ FN−1

2 \ {0} is equal (up to affine equivalence) to ψ∗(v) · GA
for some v ∈ FN2 \ {0}, so we can obtain FA by discarding a component v0 · GA
from GA for some v0 ∈ FN2 \ Imψ∗.
These observations show the relationship between [3] and our present work. But
there is in fact little intersection between [3] and our paper (even in the present
section), since in [3], the authors study specific constructions of quadratic APN
functions (and we can see the difficulty of obtaining them), while we study
general sufficient conditions allowing FA to be APN. Our results are then com-
plementary of those of [3].

A useful characterization for FA to be APN when G is APN is that G(x) +
G(y)+G(z)+G(x+y+z) ̸= c for all x, y, z ∈ A where c ∈ FN2 \{0} and kerψ = ⟨c⟩.
Indeed, FA is APN if and only if G(x) + G(y) + G(z) + G(x+ y+ z) ̸∈ {0, c} for
distinct x, y, z ∈ A and since G is assumed APN, G(x)+G(y)+G(z)+G(x+y+z)
cannot be zero. It is also a direct consequence of Theorem 2 because, GA being
APN, FA is APN if and only if, for any a ∈ E \ {0}, we have δGA

(a, b) ̸= 0 for
some b ∈ FN2 only when δGA

(a, b+ c) = 0. This is equivalent to saying that for
any a ∈ E and x, y ∈ A we have that DaG(x) +DaG(y) ̸= c.

Lemma 5.1. Let G be an APN (N,N)-function with N ≥ 3, let ψ be a linear
(N,N)-function where kerψ = ⟨c⟩ for c ∈ FN2 \ {0}, let F(x) = ψ(G(x)), and
let A be an affine hyperplane. Then FA is APN if and only if we have that
G(x) + G(y) + G(z) + G(x+ y + z) ̸= c for all x, y, z ∈ A.

17



5.1 The strong D-property

It is known that for any APN (N,N)-function G and any c ∈ FN2 \{0} there exist
x, y, z ∈ FN2 such that G(x)+G(y)+G(z)+G(x+y+z) = c. This was proven by
J. Dillon in a private communication reported in [16] (after Proposition 161).
Using this as a motivation, Taniguchi in [26] called D-property of an (n,m)-
function G, the fact that {G(x) + G(y) + G(z) + G(x + y + z) : x, y, z ∈ Fn2} =
Fm2 . If n ̸= m, it is not true that all differentially 2-uniform (n,m)-functions
have the D-property. When m = n + 1, the property is very relevant to our
setting. Consider an APN (N,N)-function G and its restriction GA to an affine
hyperplane A. Observe that, according to Lemma 5.1, if GA has the D-property
as an (N − 1, N)-function, then any projection of GA onto a hyperplane is not
an APN (N − 1, N − 1)-function. Moreover, if every projection of GA over a
hyperplane is not an APN (N − 1, N − 1)-function then GA has the D-property.
The two observations above can be also seen as a consequence of [26, Lemma 3]
because GA is APN. This discussion motivates the following definition of strong
D-property.

Definition 5.2 (strong D-property). We say that an (N,N)-function G has the
strong D-property if we have that

{G(x) + G(y) + G(z) + G(x+ y + z) : x, y, z ∈ A} = FN2 ,

for all affine hyperplanes A of FN2 .

We observe that the strong D-property does not imply APNness. An exam-
ple is the multiplicative inverse function over F26 that is 4-uniform and has the
strong D-property.

We checked that all APN power functions in dimension N between 8 and 25
have the strong D-property.

Open Question 3. Do all APN power functions in dimension big enough have
the strong D-property?

Examples of APN functions that do not have the strong D-property are some
sporadic examples such as x3 in dimensions 3 and 5, and all the quadratic APN
functions with nonlinearity 2N−2 in N variables (see Proposition 5.7 below);
some sporadic ones being known.

Open Problem 1. Find an infinite class of APN functions that do not have
the strong D-property.

If G is APN, then satisfying this property can be seen as a nice feature
because the sums of the values of G taken over hyperplanes present then some
uniformity in their distribution and this kind of random behaviour may help
ciphers using G as an S-box to resist some attacks (e.g. integral attacks; see
[22]). Moreover, such property is stronger than the D-property of an APN
(N,N)-function (and is then possibly not satisfied by a given APN (N,N)-
function). In the same time, not satisfying it may be seen as positive as well
because it allows to construct at least one (N − 1, N − 1)-function from G (see
Lemma 5.1). So either G has a good cryptographic property or we can construct
APN functions in dimension N−1. In both cases, we learn something new about
G.
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We observe that the strong D-property is EA invariant, which is straight-
forward, and it is not CCZ invariant, which is a little less intuitive; an example
(that can be verified computationally) is the Gold APN function x3 over F25

that does not have the strong D-property, but x
1
3 has it over F25 .

Taniguchi in [26] studies the D-property of (N −1, N)-functions constructed
as the restrictions of APN (N,N)-functions to the linear hyperplane {x ∈ F2N |
Tr(x) = 0} (where we identify FN2 and F2N ). The results obtained in [26]
indicate that the strong D-property could be very common among quadratic
functions and power functions.

Regarding power functions, we have the following remark that states that it
is enough to verify the strong D-property on only one linear hyperplane (that
we choose to be the space of elements with zero trace) and its complement.

Remark 5.3. Let A = {x ∈ F2N | Tr(vx) = ϵ} where ϵ ∈ F2 and v ∈ F2N \
{0}. Let d be a positive integer, then for any affine plane π ⊆ A we have
that

∑
x∈π x

d = v−d
∑
x∈π′ xd where π′ = {vx : x ∈ π} is a plane contained in

A′ = {x ∈ F2N | Tr(x) = ϵ}. So if {xd+yd+zd+(x+y+z)d | x, y, z ∈ A′} = F2N ,
then {xd + yd + zd + (x+ y + z)d | x, y, z ∈ A} = vd · F2N = F2N .

For quadratic APN functions, we have the following proposition that al-
lows us to verify the strong D-property on linear hyperplanes instead of on all
hyperplanes.

Remark 5.4. Let E = {x ∈ F2N | Tr(vx) = 0} where v ∈ F2N \{0} and let A be
an affine hyperplane with direction E. Let G be a quadratic (N,N)-function and
let x, y, z ∈ A. Set a = x+y and b = x+z, then G(x)+G(y)+G(z)+G(x+y+z) =
DaDbG(x) = φG(a, b) where φG(a, b) = DaDbG(0) = G(a+b)+G(a)+G(b)+G(0),
since DaDbG is constant. Moreover, a, b ∈ E. So we have that {G(x) + G(y) +
G(z) + G(x+ y + z) : x, y, z ∈ A} = {φG(a, b) : a, b ∈ E}.

The following proposition follows from Remark 5.4 and Lemma 5.1.

Proposition 5.5. Let N ≥ 3, let G be a quadratic APN (N,N)-function, let
ψ be a linear (N,N)-function where kerψ = ⟨c⟩ for c ∈ FN2 \ {0}, let F(x) =
ψ(G(x)), and let A be an affine hyperplane with direction E. Then FA is APN
if and only if for all a, b ∈ E we have that φG(a, b) ̸= c.

The argument that we used for the proof of Proposition 5.5 cannot be ex-
tended for crooked functions since the fact that every second-order derivative
is constant is a characterization of quadratic functions. If we try to apply the
same approach to a crooked function G, we are led to using [16, Corollary 18]
(characterizing strongly plateaued functions by their second-order derivatives),
but we cannot because x, y and z live in an affine space and the restriction of
a plateaued function to an affine space is not necessarily plateaued. We will
show however, in Proposition 5.16 below that such extension exists, but it will
require a more complicated argument.

Remark 5.6. By combining Remark 5.3 and Remark 5.4, it is enough for Gold
functions to verify the strong D-property on the linear hyperplane {x ∈ F2N |
Tr(x) = 0} (and they are the only functions, up to EA equivalence, for which
we can do this).
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Regarding quadratic APN (N,N)-functions that have the strong D-property,
we can give a lower bound on their nonlinearity. However, this is useful only for
the case N even because in the odd case, all quadratic APN functions are AB.

Proposition 5.7. Let G be a quadratic APN function in even dimension N . If
G has the strong D-property, then nl(G) > 2N−2.

Proof. If nl(G) ≤ 2N−2, then we have that nl(G) = 2N−2 because it is the
minimum nonlinearity that a quadratic APN function can achieve since it is
plateaued and has nonzero nonlinearity [16, Proposition 161]. It is proven in
[15, Remark 12] that if a quadratic APN (N,N)-function G is such that nl(G) =
2N−2, then there exists an EA equivalent function G′ to G such that G′ maps
some affine hyperplane A into an affine hyperplane. So G′

A is an APN (N −
1, N − 1)-function, and clearly it does not have the D-property if represented
as an (N − 1, N)-function. So G′ does not have the strong D-property and the
same holds for G.

Remark 5.8. A big open problem on APN functions is whether they can have
very low nonlinearity (we know they cannot have nonlinearity zero). The mini-
mum known is 2N−2 for an N -variable APN function, achieved by some quadratic
APN functions in dimension 6 [6] and 8 [2]. However, there is no clear indica-
tion of how common they are in higher dimension.

Open Problem 2. Find non-quadratic APN functions with nonlinearity 2N−2,
or less, if possible an infinite class.

We have shown that every quadratic APN (N,N)-functions with nonlinearity
2N−2 does not have the strong D-property. If such functions exist for every even
N ≥ 10 this could suggest that the strong D-property could be less common than
expected. While we have a strong feeling that for large enough N all APN power
functions have the strong D-property, we cannot say the same for quadratic APN
functions. Indeed, the data collected in [3] could suggest otherwise (we recall
that the trimming operation is identical to our construction) because we have
that for 3 ≤ N ≤ 8, several quadratic APN (N,N)-functions with a nonlinearity
strictly larger than 2N−2 do not have the strong D-property. Another hypothesis
could be that for some N0 ∈ N, all APN (N,N)-functions with N ≥ N0 have
the strong D-property, but we have no way to verify this for large N . Indeed,
N0 should be at least 9 and we do not know enough quadratic APN functions
in this dimension. In conclusion, answering these questions appears to be very
difficult and out of reach for now.

5.2 The strong D-property of crooked functions

We are going to study the strong D-property of crooked functions. We will see
that the strong D-property of a crooked function G can be characterized by the
Walsh transform of its ortho-derivative. From this characterization, we derive
a sufficient condition for the strong D-property of a crooked function. In the
end, we will present a sufficient condition for the strong D-property of an APN
permutations with quadratic inverse.

Remark 5.9. Let G be a crooked (N,N)-function with N ≥ 3. Let πG be the
ortho-derivative of G, that is the unique function such that πG(0) = 0 and πG(a)·
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φG(a, b) = 0 for all a, b ∈ FN2 where φG(a, b) = G(a+ b)+G(a)+G(b)+G(0). As
discussed in e.g. [16] (after Definition 68), we have that G is strongly plateaued
and if N is odd, then πG is a permutation and G is almost bent (AB).

In the following proposition, we give an expression for such Walsh transform.

Proposition 5.10. Let G be a crooked (N,N)-function with N ≥ 3. Let πG be
the ortho-derivative of G. For any u, v ∈ FN2 we have that:

WπG (u, v) =
∑
a∈FN

2

(−1)u·a|Λv,a|+ 2− 2N (δ0(u) + δ0(v))

where Λv,a = {b ∈ FN2 | φG(a, b) = v}.

Proof. Let u, v ∈ FN2 and set:

µu,v =
∑

a,b,w∈FN
2

(−1)w·(φG(a,b)+v)+u·a.

We have that

µu,v =
∑
a∈FN

2

(−1)u·a
∑
w∈FN

2

∑
b∈FN

2

(−1)w·(φG(a,b)+v) = 2N
∑
a∈FN

2

(−1)u·a|Λv,a|

since we know that
∑
w∈FN

2
(−1)w·y = 2Nδ0(y).

For any a ∈ FN2 \{0}, we have that
∑
b∈FN

2
(−1)w·φG(a,b) equals 2N if w ∈ ⟨πG(a)⟩

and 0 otherwise. By separating the cases (1) a = 0, (2) a ̸= 0 and w = 0, (3)
a ̸= 0 and w = πG(a), (4) a ̸= 0 and w ̸∈ ⟨πG(a)⟩, we then have:

µu,v =2N
∑
w∈FN

2

(−1)w·v + 2N
∑

a∈FN
2 \{0}

(−1)u·a + 2N
∑

a∈FN
2 \{0}

(−1)v·πG(a)+u·a

=22Nδ0(v) + 22Nδ0(u)− 2N + 2NWπG (u, v)− 2N .

Remark 5.11. Let G be a crooked (N,N)-function with N ≥ 3. The next lemma
will characterize the strong D-property by means of the ortho-derivative and the
size of the sets Λc =

⋃
a∈FN

2
{a} × Λc,a where Λc,a is defined as in Proposition

5.10. We give then here some preliminary observations on the cardinality of
these sets Λc = {(a, b) ∈ (FN2 )2 | φG(a, b) = c} where c ∈ FN2 . We observe that,
since G is plateaued, then |Λc| = |{(a, b) ∈ (FN2 )2 | DaDbG(u) = c}| for any
u ∈ FN2 [16, Theorem 18]. Therefore, |Λc| ≠ 0 because G has the D-property. If
c = 0, we have that |Λ0| = 3 · 2N − 2 [16, Proposition 172]. Otherwise, |Λc| is
divisible by 6 (which is true even if G is not APN). Indeed, if (a, b) ∈ Λc then
a, b are linearly independent and (x, y) ∈ Λc for any distinct x, y ∈ {a, b, a+ b},
so we have exactly 6 choices of ordered pairs (x, y) in each affine plane (deprived
of 0) {a, b, a + b}, and the sets of pairs associated to distinct affine planes are
disjoint.

Let λmin and λmax be respectively the minimum and the maximum among
the cardinalities |Λc| for c ∈ FN2 \ {0}. Since∑

c∈FN
2 \{0}

|Λc| = 22N − |Λ0| = 22N − 3 · 2N + 2 = (2N − 2)(2N − 1),
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then λmin ≤ 2N − 2 ≤ λmax. A characterization of G being AB is that λmin =
2N−2 = λmax [16, Corollary 27]. If N is even, then λmin < 2N−2 < λmax since
G cannot be AB (note also that 2N − 2 is not divisible by 6 because 2N−1 − 1 is
divisible by 3 only if N is odd).

Before addressing the characterization of the strong D-property of a crooked
function, we need the following preliminary lemma.

Lemma 5.12. Let G be a crooked (N,N)-function with N ≥ 3. Let πG be the

ortho-derivative of G. Let c, v ∈ FN2 \ {0}, Γ(1)
v,c = {a ∈ FN2 | c ·πG(a) = 0, v ·a =

1}, and Λc = {(a, b) ∈ (FN2 )2 | φG(a, b) = c}. Then the following holds:

1. We have that |Γ(1)
v,c| < |Λc|

3 holds if and only if there exists (a, b) ∈ Λc with
v · a = v · b = 0.

2. If there exists u ∈ FN2 such that DaDbG(u) = c and v · a = v · b = 0,
then for all u ∈ FN2 there exist a, b ∈ FN2 such that DaDbG(u) = c and
v · a = v · b = 0

Proof. 1. Let Γc be the set of all a ∈ FN2 such that (a, b) ∈ Λc for some

b ∈ FN2 , then we have that |Γc| = |Λc|
2 because if a ∈ Γc then {b ∈ FN2 |

(a, b) ∈ Λc} contains two elements exactly, since φG(a, b) = φG(a, b
′) implies

DaDbG(0) +DaDb′G(0) = DaDb+b′G(b) = 0 and, since G is APN, can happen
only if b′ = b or b′ = b + a (note that since c is nonzero, a is nonzero). Then

Γ
(1)
v,c = {a ∈ Γc | v · a = 1} because if v · a = 1 then a ̸= 0 and so we have

that φG(a, b) = c for some b ∈ FN2 if and only if c · πG(a) = 0. Observe
that Γc can be partitioned in sets of the form {a, b, a+ b} such that (a, b) ∈ Λc.
Indeed, this follows from the APN property because if we take (a, b), (a′, b′) ∈ Λc
and for instance a = a′ (resp. a = b′ or a = a′ + b′) then we have that
{a, b, a+ b} = {a′, b′, a′+ b′}. Observe that for any (a, b) ∈ Λc, we have that the

cardinality |{a, b, a+ b} ∩ Γ
(1)
v,c| is equal either to 0 or to 2 (indeed, the number

of elements among a, b, and a + b that are non-orthogonal to v is necessarily

even). Then |Γ(1)
v,c| ≤ 2

3 |Γc| =
|Λc|
3 with equality only if for all {a, b, a+ b} ⊆ Γc

with (a, b) ∈ Λc we have that |{a, b, a + b} ∩ Γ
(1)
v,c| = 2. So |Γ(1)

v,c| < |Λc|
3 if and

only if there exists (a, b) ∈ Λc with |{a, b, a + b} ∩ Γ
(1)
v,c| = 0 that is such that

v · a = v · b = 0.
2. Let u ∈ FN2 , then Gu(x) = G(x+ u) is also crooked. Set Λc(u) = {(a, b) ∈

(FN2 )2 | φGu(a, b) = c} and Γ
(1)
v,c(u) = {a ∈ FN2 | c · πGu(a) = 0, v · a = 1}. By

using 1, we have that |Γ(1)
v,c(u)| < |Λc(u)|

3 if and only if there exist a, b ∈ FN2 such
that φGu

(a, b) = DaDbG(u) = c and v · a = v · b = 0. To conclude the proof, we

must show that, for any u1, u2 ∈ FN2 , we have that |Γ(1)
v,c(u1)| < |Λc(u1)|

3 if and

only if |Γ(1)
v,c(u2)| < |Λc(u2)|

3 . It follows from the fact that |Λc(u1)| = |Λc(u2)| and
that Γ

(1)
v,c(u1) = Γ

(1)
v,c(u2). The first equality holds by [16, Theorem 18] because

G is plateaued and φGui
(a, b) = DaDbG(ui) for any a, b ∈ FN2 and i = 1, 2. The

second equality holds because πGu1
= πGu2

since Gu1(x) = Gu2(x+u1+u2).

With the following lemma, we give a characterization of the strong D-
property for crooked functions that depends on their ortho-derivative.
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Lemma 5.13. Let G be a crooked (N,N)-function with N ≥ 3. Let πG be the
ortho-derivative of G. Then G has the strong D-property if and only if, for all
c, v ∈ FN2 \ {0}, we have that the following strict inequality

|Γ(1)
v,c| <

|Λc|
3

(7)

holds where Γ
(1)
v,c = {a ∈ FN2 | c ·πG(a) = 0, v · a = 1} and Λc = {(a, b) ∈ (FN2 )2 |

φG(a, b) = c}.

Proof. Suppose that |Γ(1)
v,c| < |Λc|

3 for all c, v ∈ FN2 \ {0}. Let A be an affine
hyperplane, then there exists v ∈ FN2 \{0} and u ∈ FN2 such that A = {x ∈ FN2 |
v · (x+ u) = 0}; let c ∈ FN2 \ {0}, then since |Γ(1)

v,c| < |Λc|
3 and by applying 1 of

Lemma 5.12, we have that there exist a, b ∈ FN2 such that DaDbG(u) = c and
v · a = v · b = 0. So (changing u into x and taking y = x+ a, z = x+ b) we have
that {G(x) + G(y) + G(z) + G(x + y + z) : x, y, z ∈ A} = FN2 (to get zero, it is
enough to set x = y = z). So G has the strong D-property.
Conversely, suppose that G has the strong D-property. Let c, v ∈ FN2 \ {0}.
Since {G(x) + G(y) + G(z) + G(x+ y + z) : x, y, z ∈ E} = FN2 where E = ⟨v⟩⊥,
then there exist x, y, z ∈ FN2 such that G(x) + G(y) + G(z) + G(x + y + z) = c
and v · x = v · y = v · z = 0. Therefore, according to 2 of Lemma 5.12, for all
u ∈ FN2 , there exist a, b ∈ FN2 such that DaDbG(u) = c and v · a = v · b = 0. So

by taking u = 0, we have that |Γ(1)
v,c| < |Λc|

3 according to 1 of Lemma 5.12.

Remark 5.14. Thanks to Proposition 5.10, the condition in Lemma 5.13, for
the strong D-property of a crooked (N,N)-function G can be expressed by means
of the Walsh transform of πG. Indeed, let c, v ∈ FN2 \{0}, Λc = {(a, b) ∈ (FN2 )2 |
φG(a, b) = c}, Γc = {a ∈ FN2 | (a, b) ∈ Λc for some b ∈ FN2 }, Γ(ϵ)

v,c = {a ∈ Γc |
v · a = ϵ} where ϵ ∈ F2. Since

WπG (v, c) =
∑
a∈FN

2

(−1)v·a|Λc,a|+ 2 = 2|Γ(0)
c,v| − 2|Γ(1)

c,v|+ 2

=2|Γc| − 4|Γ(1)
c,v|+ 2 = |Λc| − 4|Γ(1)

c,v|+ 2

(8)

and WπG (0, c) = |Λc| − 2N + 2, we have that |Λc| = WπG (0, c) + 2N − 2 and

|Γ(1)
c,v| =

|Λc|+2−WπG (v,c)

4 . So one can check by means of the Walsh transform the
strong D-property by using Lemma 5.13.

In the following theorem, we give a sufficient condition for the strong D-
property of a crooked function by means of the (first-order) nonlinearity of its
ortho-derivative and of the parameter λmin that we introduced above. Note that
if G is AB (N odd) then λmin equals 2N − 2 and the condition is nicely simple
since it depends only on the nonlinearity. If G is not AB, then λmin needs to
be determined, or at least bounded from below, and this may represent much
work.

Theorem 3. Let G be a crooked (N,N)-function with N ≥ 3. Let πG be the
ortho-derivative of G. Let λmin = minc∈FN

2 \{0} |Λc| where Λc = {(a, b) ∈ (FN2 )2 |
φG(a, b) = c} and ω be the so-called linearity of πG, that is, let:

nl(πG) = 2N−1 − ω

2
.
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If ω < λmin

3 − 2, then G has the strong D-property.

More generally, let ω′ = −minc,v∈FN
2 \{0}(WπG (v, c)). If ω′ < λmin

3 − 2, then G
has the strong D-property. Moreover, if N is odd, then ω′ < 2N−2

3 − 2 if and
only if G has the strong D-property.

Proof. Let c, v ∈ FN2 \ {0}. We have that WπG (v, c) = |Λc| − 4|Γ(1)
c,v|+ 2 by (8).

If we prove that |Γ(1)
c,v| < |Λc|

3 , then by Lemma 5.13 we can conclude that G has

the strong D-property. The hypothesis ω′ < λmin

3 − 2 implies:

|Γ(1)
c,v| =

|Λc|+ 2−WπG (v, c)

4
≤ |Λc|+ 2 + ω′

4
<

|Λc|+ 2 + |Λc|
3 − 2

4
=

|Λc|
3
,

and using Relation (3) with F = πG , we have ω′ ≤ ω.

For N odd, we have λmin = 2N − 2 by [16, Corollary 27]. So if ω′ < 2N−2
3 − 2,

then G has the strong D-property. Conversely, let c, v ∈ FN2 \ {0}. If G has the

strong D-property, then |Γ(1)
c,v| < |Λc|

3 by Lemma 5.13 and −WπG (v, c) <
|Λc|
3 − 2

by using the equation |Γ(1)
c,v| =

|Λc|+2−WπG (v,c)

4 . Since |Λc| = 2N − 2 by [16,

Corollary 27], we have that ω′ < 2N−2
3 − 2.

Remark 5.15. Let β = λmin

3 − 2 and let u be the primitive element of the
field F2n over F2 chosen by MAGMA (Computational Algebra System) [5] .
There are examples of quadratic APN functions where the condition ω < β is
not satisfied and ω′ < β is satisfied. Some examples are the function x3 over
F26 with (ω′, ω, β) = (8, 16, 16) and the function ux24 + x10 + x3 over F26 with
(ω′, ω, β) = (8, 24, 16). Moreover, for the case N even, we have that ω′ < β
is only sufficient and not necessary. Indeed, the following functions have the
strong D-property but ω′ ≥ β: the function ux9 + u11x6 + x3 over F26 with
(ω′, ω, β) = (16, 24, 16) and the function

u29x48 + u15x34 + u35x33 + u62x20 + u10x6 + u40x5

over F26 with (ω′, ω, β) = (24, 32, 8). There are also cases where ω′ = ω, for
instance in the case of the Gold APN function in dimension N = 5, whose
ortho-derivative x−(2i+1) is plateaued and is a permutation. As we have seen
previously, this is not true for the Gold APN function in even dimension.

In the following proposition, we show that Proposition 5.5 holds even if we
assume that G is crooked instead of quadratic APN (as we announced it after
stating that proposition). It is indeed important, each time we have a result on
APN quadratic functions, to check whether it extends to crooked functions: if
it does, then this argues in favor of the conjecture that all crooked functions are
quadratic, and if not, this makes this conjecture more questionable.

Proposition 5.16. Let N ≥ 3, let G be a crooked (N,N)-function, let ψ be a
linear (N,N)-function where kerψ = ⟨c⟩ for c ∈ FN2 \ {0}, let F(x) = ψ(G(x)),
and let A be an affine hyperplane with direction E. Then FA is APN if and
only if, for all a, b ∈ E, we have φG(a, b) ̸= c.

Proof. Let E = ⟨v⟩⊥ for some v ∈ FN2 \{0}. Let u ∈ FN2 be such that A = u+E.
By using Lemma 5.1, it is enough to prove that DaDbG(u) ̸= c for all a, b ∈ FN2
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with v · a = v · b = 0 if and only if DaDbG(0) ̸= c for all a, b ∈ FN2 with
v · a = v · b = 0, and proving both implications follows dircetly from Lemma
5.12, item 2.

We shall now present in Theorem 4, in the case where G is a quadratic APN
permutation, a sufficient condition for G and G−1 to have both the strong D-
property, which only depends on the second-order nonlinearity of πG . We shall
need the next lemma that uses a similar idea to Lemma 5.13. We recall that
since G is an (N,N)-permutation, N must be odd (and therefore G is AB), see
e.g. [23].

Lemma 5.17. Let G be a crooked (N,N)-permutation. Let c, v ∈ FN2 \ {0} and

c0 = c+G−1(0). Let Ω
(1)
c,v = {a ∈ FN2 \{c0} | G(c0) ·πG(a+c0) = 0, v ·G(a) = 1}.

Then |Ω(1)
c,v| < 2N−2

3 if and only if there exists a, b ∈ FN2 such that φG−1(a, b) = c
(where we still denote φG−1(a, b) = G−1(a+ b) + G−1(a) + G−1(b) + G−1(0) but
here for a possibly non-crooked function G−1) and v · a = v · b = 0.

Proof. The condition φG−1(a, b) = c is equivalent, denoting a′ = G−1(a) and
b′ = G−1(b)), to φG−1 (G(a′),G(b′))+ c = 0, that is, to G−1(G(a′)+G(b′))+ a′ +
b′ +G−1(0)+ c = 0, or equivalently to G(a′ + b′ + c0)+G(a′)+G(b′) = 0. Then,
the condition φG−1(a, b) = c and v · a = v · b = 0 is equivalent to the system{

G(a′ + b′ + c0) + G(a′) + G(b′) = 0

v · G(a′) = v · G(b′) = 0.
(9)

Let Ωc be the set of those elements a ∈ FN2 such that, for some b ∈ FN2 , we
have G(a + b + c0) + G(a) + G(b) = 0. Note that G(c0) is nonzero, because
otherwise c0 = G−1(0) and c = 0. Hence, c0 does not belong to Ωc. Since
G(a+b+c0)+G(a)+G(b) = 0 is equivalent to Da+c0G(b)+Da+c0G(c0) = G(c0),
then Ωc = {a ∈ FN2 \ {c0} | π(a + c0) · G(c0) = 0}, and Ω

(1)
c,v is the set of all

a ∈ Ωc with v · G(a) = 1. We claim that |Ω(1)
c,v| < (2/3)|Ωc| and since G is AB,

then |Ωc| = 2N−2
2 and |Ω(1)

c,v| < (2/3)|Ωc| = 2N−2
3 . Indeed, similarly as for Γc

in the proof of Lemma 5.12, item 1, Ωc can be partitioned in sets of the form
{a, b, a+b+c0} where G(a+b+c0)+G(a)+G(b) = 0 (it is a partition because if we
have for instance G(a+b+c0)+G(a)+G(b) = 0 and G(a+b′+c0)+G(a)+G(b′) = 0
for two distinct b, b′, then we have G(a+b+c0)+G(a+b′+c0)+G(b)+G(b′) = 0,
a contradiction with the APN property. Moreover, if (a, b) ∈ (FN2 )2 is such that
G(a+b+c0)+G(a)+G(b) = 0, then the number of elements among G(a+b+c0),
G(a), and G(b) that are non-orthogonal to v is necessarily even. Similarly as for

|Γ(1)
c,v| in the proof of 1 in Lemma 5.12, we have that |Ω(1)

c,v| < (2/3)|Ωc| = 2N−2
3

if and only if there exists (a, b) ∈ (FN2 )2 solution of System (9).

Theorem 4. Let G be a quadratic APN (N,N)-permutation. Let πG be the
ortho-derivative of G. Let ω2 be such that nl2(πG) = 2N−1 − (ω2/2). If ω2 <
2N−2

3 − 2, then G and G−1 have the strong D-property.

Proof. Since nl(πG) ≥ nl2(πG), then ω ≤ ω2 where nl(πG) = 2N−1−(ω/2). Since
λmin = 2N − 2, then G has the strong D-property by Theorem 3. Let us prove
that G−1 has the strong D-property. Let c, v ∈ FN2 \ {0} and c0 = c + G−1(0).
Let g(a) = G(c0) · πG(a + c0) and h(a) = v · G(a). Let γi,j = |{a ∈ FN2 \ {c0} |
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g(a) = i, h(a) = j}|.
We claim that γ0,1 <

2N−2
3 and this will prove that there exists a, b ∈ FN2 such

that φG−1(a, b) = c and v · a = v · b = 0 by Lemma 5.17.
We also claim that, for all u ∈ FN2 there exists a, b ∈ FN2 such that G−1(a+ b+
u)+G−1(a+ u)+G−1(b+ u)+G−1(u) = c and v · a = v · b = 0. This will imply
the strong D-property of G−1.
We fisrt prove the first claim. Observe that g and h are balanced because πG
and G are permutations and G(c0) ̸= 0. Moreover, g(c0) = 0 because πG(0) = 0.
Before proceeding with the proof, we show three relations that we will need later.
We have that γ0,1 + γ0,0 = |g−1(0) \ {c0}| = 2N−1 − 1, γ0,1 + γ1,1 = |h−1(1) \
{c0}| = 2N−1−1+δ0(h(c0)), and γ1,0+γ0,0 = |h−1(0)\{c0}| = 2N−1−δ0(h(c0)).
So, denoting f = g + h, we have that:∑

a∈FN
2 \{c0}

(−1)f(a) = γ1,1 + γ0,0 − γ1,0 − γ0,1

=2γ0,0 − 2γ0,1 + (γ0,1 + γ1,1)− (γ1,0 + γ0,0) =

=− 4γ0,1 + 2(γ0,1 + γ0,0)− 1 + 2δ0(h(c0)) =

=− 4γ0,1 + 2N − 3 + 2δ0(h(c0)),

the second equality above coming from (γ0,1+γ1,1)− (γ1,0+γ0,0) = (2N−1−1+
δ0(h(c0)))− (2N−1 − δ0(h(c0))) = 2δ0(h(c0))− 1. We deduce, since g(c0) = 0:∑

a∈FN
2

(−1)f(a) =2δ0(h(c0))− 1 +
∑

a∈FN
2 \{c0}

(−1)f(a)

=2N − 4γ0,1 − 4 + 4δ0(h(c0)). (10)

Observe that−
∑
a∈FN

2
(−1)f(a) ≤

∣∣∣∑a∈FN
2
(−1)f(a)

∣∣∣ ≤ ω2 because h is quadratic.

So we can conclude, using (10), that

γ0,1=
1

4

2N −
∑
a∈FN

2

(−1)f(a)

− 1 + δ0(h(c0))

≤ 2N + ω2

4
<

2N − 2

3
.

We now prove the second claim. We have proven that, for any crooked func-

tion G, if nl2(πG) > 2N−1 − 2N−2
6 + 1, then there exists a, b ∈ FN2 such

that φG−1(a, b) = c and v · a = v · b = 0. Let u ∈ FN2 ; we observe that
πG = πGu where Gu(x) = G(x) + u and (Gu)−1(x) = G−1(x + u). Since

nl2(πGu) = nl2(πG) > 2N−1 − 2N−2
6 + 1, there exists a, b ∈ FN2 such that

φ(Gu)−1(a, b) = G−1(a + b + u) + G−1(a + u) + G−1(b + u) + G−1(u) = c and
v · a = v · b = 0.

5.3 The strong D-property of the Gold APN function

Let G(x) = x2
i+1 where gcd(i,N) = 1 be the Gold APN function over F2N .

To prove the strong D-property of G, it is enough to verify the D-property of
the (N − 1, N)-function GE where E = {x ∈ F2N | Tr(x) = 0} (see Remark
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5.6). Therefore, we can use some of the results by Taniguchi in [26]. We have
that G has the strong D-property for N ≥ 6 even [26, Example 6]. By using
Theorem 3, we are going to address the case N odd. With this result, all cases
will be covered for Gold functions1. To apply Theorem 3, we will prove that the
(first-order) nonlinearity of the ortho-derivative of the Gold APN function is
larger than the second-order nonlinearity of the inverse function x−1, or equal.
Then we conclude by using a lower bound proven in [12].

For the rest of the section, the ortho-derivative of a crooked function over
F2N is defined by using the inner product a · b = Tr(ab) for any a, b ∈ F2N .

Theorem 5. Let N ≥ 3 and i be such that gcd(i,N) = 1. Then the Gold

APN function x2
i+1 over F2N has the strong D-property if and only if N = 6

or N ≥ 8.

Proof. As we have discussed previously, the cases N < 10 have been verified
computationally and the case N even follows from [26, Example 6] (which shows
that the restrictions to the hyperplane {x ∈ F2N | Tr(x) = 0} of Gold APN
functions in even dimension have the D-property) and Remark 5.6. By using

Theorem 3, we will prove the case N ≥ 11 odd. We have that πG(x) = x−(2i+1)

as shown in [8] where G(x) = x2
i+1. Let u, v ∈ F2N . Since N is odd, then πG

is a permutation (see Remark 5.9). So the nonlinearity of πG depends on the
values of WπG (u, v) with u ̸= 0 and v ̸= 0. Observe that since

WπG (u, v) =
∑
x∈F2N

(−1)Tr(v·πG(x)+ux) =
∑
x∈F2N

(−1)Tr(v·πG(x−1)+ux−1),

and πG(x
−1) = x2

i+1 is quadratic, we have that

nl(πG) = 2N−1 − 1

2
max

u,v∈F2N \{0}
|WπG (u, v)| ≥ nl2(x

−1).

By [12, Proposition 5], we have that

nl2(x
−1) ≥ 2N−1 − 1

2

√
(2N − 1)2N/2+2 + 3 · 2N

and therefore

|WπG (u, v)| ≤
√

(2N − 1)2N/2+2 + 3 · 2N

for any u, v ∈ F2N \ {0}. We claim that for N ≥ 11 we have that the inequality√
(2N − 1)2N/2+2 + 3 · 2N <

2N − 2

3
− 2 (11)

holds and conclude by using Theorem 3. Observe that the expression on the
left side of (11) is equal to

√
2(3N+4)/2 + 2N+1 + 2N − 2(N+4)/2 that is less or

equal than
√
2 · 2(3N+4)/2 = 2(3N+6)/4. The inequality 2(3N+6)/4 < 2N−2

3 − 2 is

equivalent to the inequality 2(3N+10)/4 + 2(3N+6)/4 + 8 < 2N that is true if and
only if N > 10. So (11) holds for N ≥ 11.

1Taniguchi could not address in [26] the case of odd dimension N , except for the cube
function F (x) = x3 when the dimension is a multiple of 9,11,13 or 15.
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Remark 5.18. We observe that for the Gold APN function in even dimension
N , all the values of |Λc| defined in Remark 5.11 are known from[14, Example
2], so we can prove similarly that for some positive integer N0 the Gold APN
function has the strong D-property for N ≥ N0 even. We obtain this way a
simpler proof than in [26, Example 6]. Let N be even, c ∈ F2N \ {0}, and G be
a Gold APN function over F2N . We have that either |Λc| ∈ {2N − 2N/2+1 −
2, 2N + 2N/2 − 2} or |Λc| ∈ {2N + 2N/2+1 − 2, 2N − 2N/2 − 2}. In the case
N even, we have that |WπG (0, c)| ∈ {2N/2+1, 2N/2} that is strictly less than
(2N − 2N/2 − 2)/3 ≤ λmin/3 − 2 = (2N − 2)/3 for N ≥ 6. Now we can use
a similar argument to the proof of Theorem 5 by considering only the values
WπG (u, v) for u, v ∈ F2N \ {0}. For any u, v ∈ F2N \ {0}, we have that

|WπG (u, v)| =

∣∣∣∣∣∣
∑
x∈F2N

(−1)Tr(v·πG(x−1)+ux−1)

∣∣∣∣∣∣ ≤ 2N − 2 nl2(x
−1)

for any u, v ∈ F2N \ {0} and so

|WπG (u, v)| ≤
√

(2N − 1)2N/2+2 + 3 · 2N

by [12, Proposition 5]. We claim that√
(2N − 1)2N/2+2 + 3 · 2N <

λmin

3
− 2

for N ≥ 12 and this will conclude the proof as in Theorem 5. Using similar steps,

we get 2(3N+6)/4 < λmin

3 −2 and λmin > 2(3N+10)/4+2(3N+6)/4+6. Since λmin ≤
2N −2N/2+1−2, we need to show that 2N > 2(3N+10)/4+2(3N+6)/4+2N/2+1+8
and this is true for N ≥ 12.

The ortho-derivatives of other classes of quadratic APN functions can be
derived from the work done in the paper [8], but they do not have an easy-to-
handle representation like the Gold APN function. In Theorem 3, we have used
the fact that the function πG(x

−1) is quadratic and this is a relevant case for
the Gold APN function.

In [26, Example 16], Taniguchi proved the D-property of the restriction of
the Dobbertin APN power function in even dimension to the linear hyperplane
E = {x ∈ F2N | Tr(x) = 0}. For that, he used his [26, Theorem 26], which
applies to any power APN function xd such that gcd(d, 2N − 1) = 3. We shall
show that the same method can be applied to the case of N odd, by using
his [26, Theorem 25], which applies to any power APN function xd such that
gcd(d, 2N − 1) = 1. Note that these two theorems together cover all cases
of power APN functions, thanks to the result of Dobbertin reported in [16,
Proposition 165]). We group the two theorems in the following lemma.

Lemma 5.19 ([26]). Let G(x) = xd be an APN power function over F2N with
N ≥ 3. Let t > 2 be a positive integer such that t divides N and such that
t is even if N is even. Let us denote Et = {x ∈ F2t | Trt(x) = 0} and
EN = {x ∈ F2N | TrN (x) = 0}. If the (t−1, t)-function GEt

has the D-property,
then the (N − 1, N)-function GEN

has the D-property.

We deduce:
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Proposition 5.20. Let t be a positive integer, let G(x) = xd where d = 24t +
23t + 22t + 2t − 1 be the Dobbertin APN function over F25t , and let E = {x ∈
F25t | Tr5t(x) = 0}. Then the (5t− 1, 5t)-function GE has the D-property if and
only if t ≥ 2.

Proof. The cases t ≤ 5 can be verified computationally. Assume t > 5. Let us
prove the case t ̸= 7. Since t is even if 5t is even, we can use Lemma 5.19. So it
is enough to prove that the (t− 1, t)-function GEt

has the D-property. Observe
that G restricted to F2t is equal to the cube function x3 because 24t ≡ 23t ≡
22t ≡ 2t ≡ 1 (mod 2t − 1). The function x3 over F2t has the strong D-property
by Theorem 5 since t ̸= 7, so the restriction of x3 to Et has the D-property. To
prove the case t = 7, we use again Lemma 5.19 but this time we consider the
restriction to F25 . It can be verified computationally that the (4, 5)-function
GE5

has the D-property.

The previous proposition does not imply the strong D-property of the Dob-
bertin APN function for t ≥ 2, since according to Remark 5.3, we would have
to also consider the restriction to the complement of E, but it is enough as a
strong argument to conjecture that it holds.

Conjecture 1. For t ≥ 2, the Dobbertin APN function in dimension N = 5t
has the strong D-property.

6 Revisiting two infinite families of differentially
4-uniform (N − 1, N − 1)-permutations

When constructing an infinite family of (N − 1, N − 1)-permutations FA by re-
stricting to an affine hyperplane a family of (N,N)-functions F with one affine
component, we have only two cases to consider up to equivalence: either F is
equal to ψ(G(x)) or it is equal to ψ(G(x))+x where G has nonzero nonlinearity
and ψ is a linear function with a kernel of dimension 1. This follows from Propo-
sition 4.3 by affine equivalence with possible addition of a constant (which both
preserve bijectivity), the two cases ψ(G(x)) and ψ(G(x))+x happening when the
affine component of F is constant, respectively is not. In this section, we will be
interested in the case where G is an APN permutation and study whether FA
can be APN. As we have mentioned at the beginning of Section 5, Berierle et
al. in [3] investigated a similar setting. However, they did not impose the per-
mutation property on G and neither were they aiming to construct specifically
permutations as the restriction of G (in their sense of the term) because they
used an approach up to EA equivalence. We revisit the classes of differentially
4-uniform permutations that are known in the literature and which are obtained
as the restrictions of APN permutations, up to the addition of a linear function.
The permutation G is the multiplicative inverse function in the first example,
and the compositional inverse of a Gold permutation in the second example.

6.1 On the non-APNness of the family from [13]

We shall discuss the family constructed by the first author in [13] (a completed
version can be found in [16, Subsection 11.6.4, sixth point]). We study it for
N odd (and the permutation will then be in even dimension N − 1), which

29



is more interesting since differentially 4-uniform permutations are the best we
can hope as long as an infinite class of APN permutations is not found in even
dimension, while in an odd dimension, we know a series of infinite classes of
APN permutations. We wish to prove that the family does not contain any
APN permutation (in even dimension), which has always been assumed (since
we consider that the APN permutation from [7] is the only one known in even
dimension up to CCZ equivalence) but never been proved.

The permutation in even dimension N − 1 is obtained as the restriction
of the (N,N)-function F(x) = 1

x2+1 + 1
x+1 + x to the linear hyperplane E =

{x ∈ F2N | Tr(x) = 0}. The fact that FE is a permutation is proved in [13]
thanks to observations involving the Dickson permutation polynomials. Using
Lemma 5.1 and changing x into x+ 1, FE is not APN if and only if there exist

x, y, z ∈ F2N such that Tr(x) = Tr(y) = Tr(z) = 1 and x2
N−2+y2

N−2+z2
N−2+

(x+ y + z)2
N−2 = 1 (because Tr(a+1) = Tr(a)+1). We shall prove more: there

is a solution (x, y, z) such that z = 1, that is, the system{
x2

N−2 + y2
N−2 + (x+ y + 1)

2N−2
= 0

Tr(x) = Tr(y) = 1
(12)

has a solution in F2N for N ≥ 7 odd. We will prove it by using the well known
Hasse-Weil bound [21, Chapter 5] for algebraic curves over finite fields, while
for N = 5, the strong D-property itself can be verified computationally.

The Hasse-Weil bound works in the following setting. Let H(X,Y, Z) be an
homogeneous multivariate polynomial with coefficients in F2N . Then a curve
in the projective plane P2(F2N ) is defined as VP2(F2N )(H) = {(X : Y : Z) ∈
P2(F2N ) | H(X,Y, Z) = 0} where P2(F2N ) = {(X : Y : Z) : (X,Y, Z) ∈ (F2N )3 \
{(0, 0, 0)}} and (X : Y : Z) = {(aX, aY, aZ) ∈ F3

2N | a ∈ F2N \ {0}}. The
curve is called absolutely irreducible if and only if the multivariate polynomial
H is irreducible in every extension field of F2N . The curve is called non-singular
if the system given by the equations ∂XH(X,Y, Z) = 0, ∂YH(X,Y, Z) = 0,
∂ZH(X,Y, Z) = 0 (where ∂ indicates the partial formal derivative) has no
solution in every field extension of F2N such that (X,Y, Z) ̸= (0, 0, 0). The
Hasse-Weil bound states that if a curve is both absolutely irreducible and non-
singular, then

||VP2(F2N )(H)| − (2N + 1)| ≤ 2g · 2N/2

where g = (D−1)(D−2)
2 is the genus of the curve and D is the degree of H.

Theorem 6. Let N be odd. Then we have that:

1. If N ≥ 7, then System (12) has a solution.

2. If N ≥ 5, then the (N − 1, N − 1)-permutation FE is not APN where
F(x) = 1

x2+1 + 1
x+1 + x and E = {x ∈ F2N | Tr(x) = 0}.

Proof. Note that since Tr(x) = Tr(y) = 1, any solutions (x, y) of (12) are
nonzero and such that x+ y + 1 is also nonzero. Then we can rewrite equation

x2
N−2 + y2

N−2 + (x+ y + 1)
2N−2

= 0 of System (12) into y(x+ y + 1) + x(x+
y + 1) + xy = 0. Set F (x, y) = y(x + y + 1) + x(x + y + 1) + xy. Therefore,
System (12) has a solution if and only if G(X,Y ) = F (X2 +X +1, Y 2 +Y +1)
has a root (X,Y ) (since X 7→ X2 + X + 1 is onto E + 1). Let D be the
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degree of G(X,Y ) and let H(X,Y, Z) = ZD · G(XZ ,
Y
Z ) be the homogenization

of G(X,Y ). We verified by using MAGMA [5] (can be done easily since the
curve has coefficients in F2) that VP2(F2N )(H) does not contain points at infinity
(that are points with Z = 0), it is absolutely irreducible, it is non-singular,
and it has genus 3. So we can apply the Hasse-Weil bound and we have that
|VP2(F2N )(H)| ≥ 2N + 1− 2 · 3 · 2N/2. Since 2N + 1− 6 · 2N/2 > 0 for N ≥ 7, we
have proved the first part. By using Lemma 5.1, if System (12) has a solution,
then FE is not APN. Since the case N = 5 can be verified computationally, this
concludes the proof.

Remark 6.1. When considering the strong D-property of the inverse function,
the problem is more complex since it corresponds to verifying that the restriction
of ψ(x−1) to A is not APN whatever is the affine hyperplane A and whatever
is the kernel of ψ (while above, we verified this for the hyperplane of equation
Tr(x) = 1 and for kerψ = ⟨1⟩ only). However, using a similar reduction as in
the proof of Theorem 6, we can define for any c ∈ F2N \ {0} and any ϵ ∈ F2 the
following system in (x, y) ∈ (F2N )2:{

x2
N−2 + y2

N−2 + (x+ y + ϵ)2
N−2 + ϵ+ c = 0

Tr(x) = Tr(y) = ϵ
. (13)

According to Remark 5.3, proving that there exists a solution (x, y) ∈ (F2N )2 of
System (13) for all c ∈ F2N \{0} and all ϵ ∈ F2 implies that the inverse function
in dimension N has the strong D-property. To prove that System (13) has a
solution, we can define an algebraic curve by using the polynomial Hc,ϵ(X,Y, Z)
that is the homogenization of Gc,ϵ(X,Y ) = Fc,ϵ(X

2 +X + ϵ, Y 2 + Y + ϵ) where
Fc,ϵ(x, y) is a polynomial whose zeros are the solutions of the first equation
of System (13). However, having c and ϵ as parameters of the curve (while
above we had only one value for c and one for ϵ) increases the difficulty of the
problem noticeably because we cannot use MAGMA to prove properties of the
curve (notice that the coefficients of the curve do not belong to a fixed subfield
as for the case c = 1).

Conjecture 2. For any N ≥ 5 odd, the inverse function in dimension N has
the strong D-property.

Conjecture 2 is verified computationally for every odd N between 5 and 25.

Remark 6.2. It is conjectured in [9, 17] that, for n ≥ 3, no APN (n, n)-function
has algebraic degree n, or in other words, that every APN (n, n)-function F sat-
isfies

∑
x∈F2n

F (x) = 0. If this conjecture is true, then by affine equivalence,

every (N,N)-function F such that, for some affine subspace A of FN2 of di-
mension at least 3, the image F(A) of A by F is included in an affine space
of the same dimension and the corresponding restriction FA is APN satisfies∑
x∈A F(x) = 0. It is proved in [18] that the inverse function sums to a nonzero

value over any affine space that is not a vector space (i.e., excluding 0). Hence,
if the conjecture is true, then denoting by G the inverse function over F2N and
given a hyperplane A and a linear (N,N)-function ψ of kernel kerψ = ⟨c⟩, the
only possibility for the restriction of F(x) = ψ(G(x)) to A to be APN is that∑
x∈A G(x) = c, because

∑
x∈A F(x) = ψ(

∑
x∈A G(x)). If this condition is not

satisfied, then FA has algebraic degree N − 1 (its number of variables) and dif-
ferential uniformity 4.
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In the case where A is a vector space, the situation is more complex and not
completely clarified in [18].

6.2 On the non-APNness of Li-Wang families

Li and Wang in [24] define explicitly two families of permutations in dimension
N −1 even, of the form FE where F(x) = ψ(G(x)), ψ is a linear function with a
kernel of dimension 1, E = Imψ, and G is an APN permutation. The first one

is such that ψ(x) = cx2
i

+ c2
i

x for any c ∈ F2N \ {0} and G(x) = x
1

2i+1 with
gcd(i,N) = 1 (G is the inverse of the Gold APN function) [24, Theorem 4]. The

second one is such that ψ(x) = x2
i

+x and G(x) = x
1

2i+1 +TrN3 (x+x2
2s

) with N
divisible by 3, gcd(i,N) = 1, and s = i mod 3 [24, Theorem 6]. We will show
that both families never produce APN permutations (in even dimension N −1).
Using this as a motivation, we conjecture that the inverse of the Gold APN
function has the strong D-property in dimension N ≥ 5 odd. We first need a
lemma (that we do not claim to be new; we give a proof for self-completeness).

Lemma 6.3. Let N ≥ 3 be odd. Then |{x ∈ F2N | Tr(x) = 1, Tr(x−1) = 0}| ≥
2N−2 − 2N/2−1.

Proof. Let γi,j = |{x ∈ F2N | Tr(x) = i, Tr(x−1) = j}|. Since γ1,0 = γ0,1 and
γ1,1 + γ1,0 = γ0,0 + γ1,0 = 2N−1, we have that∑

x∈F2N

(−1)Tr(x
−1+x) = γ1,1 + γ0,0 − 2γ1,0

= (γ1,1 + γ1,0) + (γ0,0 + γ1,0)− 4γ1,0

= 2N − 4γ1,0.

We conclude by observing that
∑
x∈F2N

(−1)Tr(x
−1+x) ≤ 2N/2+1 because nl(x−1) ≥

2N−1 − 2N/2 [16]. This concludes the proof.

Theorem 7. Let N, i be positive integers such that N ≥ 5 is odd and gcd(i,N) =

1. Let d = 2i + 1. For any c ∈ F2N \ {0}, set ψc(x) = cx2
i

+ c2
i

x. Then we
have the following:

1. For any c ∈ F2N \{0}, function FE is not APN where E = Imψc, F(x) =

ψc(G(x)), and G(x) = x
1
d .

2. Let s = i mod 3 and let N be divisible by 3. Then FE is not APN where
E = Imψ1, F(x) = ψ1(G(x)), and G(x) = x

1
d +TrN3 (x+ x2

2s

).

Proof. Observe that Imψc = {x ∈ F2N | Tr(π(c)x) = 0} where π(x) = x−d is
the ortho-derivative of G−1(x) = xd because ψc(x) = φG−1(c, x).
Let us prove 1. Using the reverse direction in the equivalence stated by Lemma
5.1 and specifying x = 0, y = a, z = b, we have that if there exists a, b ∈ F2N such
that φG(a, b) = c and Tr(π(c)a) = Tr(π(c)b) = 0, then FE is not APN. To prove
the existence of such a and b, we are going to use Lemma 5.17. Let c0 = c+G(0)
and Ω

(1)
c,π(c) = {a ∈ FN2 \ {c0} | Tr(π(a+ c0)G−1(c0)) = 0, Tr(π(c)G−1(a)) = 1}.

Using Lemma 5.17, we have that if |Ω(1)
c,π(c)| < (2N − 2)/3, then there exists

a, b ∈ F2N such that φG(a, b) = c and Tr(π(c)a) = Tr(π(c)b) = 0. Since π(x) =
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x−d, G−1(x) = xd, and G(0) = 0 then Ω
(1)
c,π(c) = {a ∈ FN2 \{c} | Tr((a+c)−dcd) =

0, Tr(c−dad) = 1}. Then, substituting a with a + c0 = a + c and using that

Tr(c−d(a+ c)d) = Tr(c−dad + c−2ia2
i

+ c−1a+ 1) = Tr(c−dad) + 1, we have:

|Ω(1)
c,π(c)| = |{a ∈ F2N \ {0} | Tr(a−dcd) = 0, Tr(c−d(a+ c)d) = 1}|

= |{a ∈ F2N \ {0} | Tr(a−dcd) = 0, Tr(c−dad) = 0}|
= |{a ∈ F2N \ {0} | Tr(a) = 0, Tr(a−1) = 0}|,

where the latter equality is obtained by substituting a−dcd with a, which is

possible since N is odd. Notice that we have that |Ω(1)
c,π(c)|+ |{a ∈ F2N | Tr(a) =

1, Tr(a−1) = 0}| = |{a ∈ F2N \ {0} | Tr(a−1) = 0}| = 2N−1 − 1 and then

|Ω(1)
c,π(c)| ≤ 2N−1 − 1 − 2N−2 + 2N/2−1 = 2N−2 + 2N/2−1 − 1 by Lemma 6.3.

We conclude by observing that 2N−2 + 2N/2−1 − 1 < (2N − 2)/3 if and only if
2N−1 + 2N−2 + 2N/2 + 2N/2−1 < 2N + 1 that is true for N ≥ 5.
Let us prove 2. It follows from the fact that the (N − 1, N − 1)-function defined

in 1 for c = 1 is EA equivalent to FE because F(x) = ψ1(G(x)) = ψ1(x
1
d ) +

ψ1(Tr
N
3 (x+ x2

2s

)) (see Remark 4.4).

With Theorem 7, we have a partial result on the strong D-property of the
inverse of the Gold APN permutation. So, as for the inverse function, we believe
this is a good argument to conjecture the strong D-property of the inverse of the
Gold APN function in dimension N ≥ 5 odd (it can be verified computationally
that the property does not hold for N = 3).

Conjecture 3. For N ≥ 5 odd, the inverse of the Gold APN function in
dimension N has the strong D-property.

Conjecture 3 is verified computationally for every odd N between 5 and 25.

7 Constructions of permutations with the Li-
Wang method

We show that the construction of Li and Wang in [24] can be generalized by
investigating the problem of constructing an (N − 1, N − 1)-permutation from
an (N,N)-function F(x) = ψ(G(x)) where ψ is a linear function with a kernel
of dimension 1 and G is a permutation. Then we discuss the case where F(x) is
equal to ψ(G(x))+x instead. In this way, we provide many families of complete
permutations with good cryptographic properties.

We present now the Li-Wang construction with our notation.

Construction 1 (Li-Wang construction [24]). Let G be an APN permutation
over F2N with a quadratic compositional inverse G−1 and such that G(0) = 0.
So N is odd because quadratic APN permutations exist only in odd dimen-
sion, since any plateaued APN (n, n)-function has always some bent components
when n is even [16, Subsection 11.3.4]. For any c ∈ F2N \ {0}, the function
ψc(y) = G−1(y) + G−1(y + c) + G−1(c) is linear with a kernel of dimension 1
since G−1 is a quadratic APN function. Li and Wang proved that by taking
F(x) = ψc(G(x)), the restriction FE, where E = Imψc, is a permutation with
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differential uniformity 4 [24, Theorem 2] and optimal known nonlinearity in
even dimension [24, Theorem 3], that is 2n−1 − 2

n
2 where n = N − 1. We will

prove that if A is the complement of E, then also FA is a permutation and it is
CCZ equivalent to FE. Even if Li and Wang in [24] did not discuss the function
FA, we will still consider it a product of the Li-Wang construction.

With the following Lemma (heavily inspired by the first part of [24, Theorem
2] but providing an original result) we are going to exhibit some necessary
and sufficient conditions such that the restriction to an affine hyperplane of a
function of the form ψ(G(x)) is a permutation when G is a permutation and
ψ is linear with a kernel of dimension 1. This will generalize the Li-Wang
construction.

Lemma 7.1. Let G be a permutation over F2N . Let v, c ∈ F2N \ {0} and let
E = {x ∈ F2N | Tr(vx) = 0}. Let A be the complement of E, and let ψ be
any linear function over F2N with kerψ = ⟨c⟩. Let F(x) = ψ(G(x)) and let
B(x) = G−1(G(x) + c). Then the following are equivalent:

1. FE is a permutation.

2. B(E) = A.

3. FA is a permutation.

4. Tr(vB(x)) = Tr(vx) + 1 for all x ∈ F2N .

5. Tr(vDcG−1(x)) = 1 for all x ∈ F2N .

Proof. We observe that for x, y ∈ F2N with x ̸= y, we have that F(x) = F(y) if
and only if G(x) + G(y) ∈ kerψ. Since G is a permutation, this happens only if
G(x) + G(y) = c. Observe that the latter equation is equivalent to the equation
y = G−1(G(x) + c) = B(x).

Let us prove that 1 implies 2. Suppose that there exists x ∈ E such that y =
B(x) = G−1(G(x)+ c) is in E. Then G(x)+G(y) = c and this is a contradiction
since FE is a permutation and x ̸= y (because c ̸= 0). So B(E) ⊆ A and
therefore B(E) = A because B is a permutation.

Let us prove that 2 implies 1. Suppose that there exists x, y ∈ E with x ̸= y
and G(x)+G(y) = c. Then y = B(x), but this is not possible because B(E) = A.

To prove that 2 and 3 are equivalent, we first prove similarly that FA is a
permutation if and only if B(A) = E, and we can see this is equivalent to 2
because B is a permutation.

We have that 2 and 4 are equivalent since B(E) = A (resp. B(A) = E)
is equivalent to having that, for any x ∈ F2N such that Tr(vx) = 0 (resp.
Tr(vx) = 1), we have that Tr(vB(x)) = 1 (resp. Tr(vB(x)) = 0).

We have that 4 and 5 are equivalent since B(x) + x = G−1(G(x) + c) + x =
G−1(G(x) + c) + G−1(G(x)) = DcG−1(y) for y = G(x).

As a consequence of Lemma 7.1, we have that the Li-Wang construction
(Construction 1) produces two permutations that are FE and FA, because Con-
dition 5 on G−1 in Lemma 7.1 is met for any c ∈ F2N \{0} and with v = πG−1(c),
since G−1 is a crooked permutation. Indeed, since G−1 is crooked, the image
of every derivative DcG−1 is the affine hyperplane A = DcG−1(0) + ⟨πG−1(c)⟩⊥
and A is not a linear hyperplane because DcG−1(x) ̸= 0 for all x ∈ F2N , since
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G−1 is a permutation. So (the Li-Wang) Construction 1 is in this framework be-
cause quadratic APN functions are crooked. The simplest example is when G−1

is a Gold APN function in odd dimension. However, G−1 can be not crooked
and however satisfy condition 5 of Lemma 7.1. As an example, Li and Wang
constructed in their [24, Theorem 6] a family of permutations where G−1 is not

crooked. They showed that for G(x) = x
1

2i+1 +TrN3 (x+x2
2s

) with N odd divis-
ible by 3, gcd(i,N) = 1, and s = i mod 3, we have that Tr(D1G−1(x)) = 1 for

all x ∈ F2N [24, Lemma 5] and that the restriction of F(x) = G(x)2i + G(x) to
E = {x ∈ F2N | Tr(x) = 0} is a permutation. Since the authors did not know
about Lemma 7.1, they prove those results specifically for that function. But
their result is less exciting after observing that FE is EA equivalent to their own

family [24, Theorem 4], that is the restriction of x
2i

2i+1 +x
1

2i+1 to E because the
two functions in dimension N are EA equivalent (see Remark 4.4). So in [24], it
remained unclear if it is possible to construct a permutation in dimension N−1,
using an APN permutation G which is EA inequivalent to any permutation with
quadratic inverse. We show that it is possible by applying directly Lemma 7.1.
Take G−1 to be the APN permutation over F26 given in [10, subsection 5.1]
named F2. It is straightforward to verify that Tr(DcG−1) = 1 where c = ζ41

and ζ is defined as in [10] to be the primitive element of F26 over F2 chosen
by MAGMA. It can also be verified that the permutations over F25 obtained in
this way are not APN.

Using Lemma 7.1, we are now going to define our construction.

Construction 2. Let N ≥ 4 be a positive integer, let G be a permutation over
F2N , and let v, c ∈ F2N \ {0} be such that Tr(vDcG−1(x)) = 1 for all x ∈ F2N .
Let E = {x ∈ F2N | Tr(vx) = 0}, let A be the complement of E, and let ψ be
any linear function over F2N with kerψ = ⟨c⟩. By Lemma 7.1, we have that FE
and FA are permutations where F(x) = ψ(G(x)). By Theorem 2, both functions
have nonlinearity larger than or equal to nl(G)− 2N−2 and they are 2δ-uniform
if G is δ-uniform (in particular, they are 4-uniform if G is APN).

Proposition 7.2. The Li-Wang construction (Construction 1), the family de-
fined in [24, Theorem 4], and the one defined in [24, Theorem 6] are particular
cases of Construction 2.

Proof. The framework of Construction 2 is exactly the one given in Lemma 7.1
and we have already shown that the Li-Wang construction and those families
are in such framework.

Once a permutation has been obtained, it is important to give the expression
of its inverse, if this is at all possible. This was not provided in [24]. Moreover,
since we have seen that the Li-Wang construction provides two functions and not
only one, it is interesting to look whether these two functions are equivalent or
not. In the following lemma, we give a description of (FE)−1 (resp. (FA)−1) by
following a similar idea to [24, Proposition 2]. This gives a sufficient condition
to have that FE and FA are CCZ equivalent.

Lemma 7.3. In the setting of Construction 2, the following holds for F(x) =
ψ(G(x)):

1. Let H(x) = G−1(x)+Tr
(
vG−1(x)

)
DcG−1(x) and H′(x) = H(x)+DcG−1(x).

Let U be any linear hyperplane of F2N such that c ̸∈ U , then function
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(FE)−1 is affine equivalent to HU and function (FA)−1 is affine equiva-
lent to H′

U .

2. If the function DcG−1(x) is affine, then FE is CCZ equivalent to FA.

Proof. Let us prove 1. Observe that the restriction of ψ to U is bijective with
codomain Imψ because U ∩ kerψ = {0}, thanks to the hypothesis c ̸∈ U , and
since U has the same cardinality as Imψ. We claim that HU = (FE)−1 ◦ ψU
(where ψU is the restriction of ψ to U), and H′

U = (FA)−1 ◦ ψU . To prove
it, we show that for any linear function ψ′ such that ψ′

Imψ = (ψU )
−1 we have

that HU = (ψ′
Imψ ◦ FE)−1 and H′

U = (ψ′
Imψ ◦ FA)−1. Let x ∈ a + E where

a is some element of F2N and y = ψ′(F(x)). We claim that x = H(y) if
a ∈ E and x = H′(y) otherwise and this will conclude the proof. Observe that
y = G(x) if G(x) ∈ U and y = G(x) + c otherwise. This implies that y = G(x)
if Tr

(
vG−1(y)

)
= Tr (vx) = Tr(va) and that y = G(x) + c if Tr

(
vG−1(y)

)
=

Tr
(
vG−1(y + c)

)
+ 1 = Tr (vx) + 1 = Tr(va) + 1. Let g(y) = Tr

(
vG−1(y)

)
+

Tr(va), then x = G−1(y) if g(y) = 0 and x = G−1(y + c) otherwise. Since we
have that

x =(g(y) + 1)G−1(y) + g(y)G−1(y + c)

=G−1(y) + g(y)DcG−1(y),

then x = H(y) if a ∈ E and x = H′(y) otherwise.
Let us prove 2. Let U be a linear hyperplane such that c ̸∈ U . Using 1, we

have that (FE)−1 is affine equivalent to HU and (FA)−1 is affine equivalent to
H′
U . Since the function DcG−1(x) is affine and H′(x) = H(x)+DcG−1(x), then

HU and H′
U are EA equivalent (see Remark 4.4). Therefore, function (FE)−1

is EA equivalent to function (FA)−1 and so function FE is CCZ equivalent to
function FA.

In the proof of Lemma 7.3, we showed the existence of a sequence of in-
versions, EA transformations, and affine transformations which transforms FE
into FA and we deduced that these two functions are CCZ equivalent by the
transitivity of the CCZ equivalence relation. This is possible because we have
imposed that DcG−1 is an affine function, so the equivalence may not be true
in the general setting of Construction 2.

In [24, Theorem 5], Li and Wang observed that the family constructed in
[24, Theorem 4] using the inverse of the Gold APN function, can be twisted to
increase the algebraic degree of the compositional inverse. They show that F ′

E

is a permutation where F ′(x) = F(x)+x and that (F ′
E)

−1 has algebraic degree
(N + 1)/2. We will show that the same twist can be applied to a particular
case of Construction 2, that is when ψc(x) = DcG−1(x) +DcG−1(0) is a linear
function with a kernel of dimension 1 and ψ = ψc (which is the case in [24]).
This setting includes the Li-Wang construction because G−1 is a quadratic APN
function and so ψc has the property we want. For F ′(x) = F(x)+x, we construct
two functions F ′

E and F ′
A that are EA equivalent respectively to FE and FA

(see Remark 4.3). To prove that F ′
E and F ′

A are permutations, we will prove
that F ′ is a permutation. We will study two properties that require a specific
representation over F2N−1 and that are not affine invariant. The first one is
that the two functions are complete permutations (i.e. are permutations P(x)
such that P(x)+x is also a permutation) and the second is that (F ′

E)
−1 = F ′

A.
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There is no mention of this property in [24] because we believe that the authors
were more focused on affine invariant properties, and they did not focus on
representations of restrictions.

Proposition 7.4. Let G be a permutation and F , E, and A be defined as
in Construction 2 with the additional hypothesis that ψc(x) = DcG−1(x) +
DcG−1(0) is a linear function with a kernel of dimension 1 and that ψ = ψc.
Let F ′(x) = ψc(G(x)) + x, let a = DcG−1(0), and let ϕ be a linear bijective
function from F2N−1 to E. Then we have the following:

1. a belongs to A and function F ′(x) is equal to G−1(G(x) + c) + a.

2. Up to affine equivalence, we can write FE(y) = ϕ−1(F(ϕ(y))), FA(y) =
ϕ−1(F(ϕ(y) + a)), F ′

E(y) = ϕ−1(F ′(ϕ(y))), and F ′
A(y) = ϕ−1(F ′(ϕ(y) +

a) + a).

3. Using the representations in 2, we have that FE , FA, F ′
E , and F ′

A are
complete permutations and that F ′

A = (F ′
E)

−1.

Proof. Let us prove 1. We have that a ∈ A because Tr(vDcG−1) = 1. Func-
tion F ′(x) is equal to G−1(G(x) + c) + a because ψc(G(x)) = G−1 (G(x) + c) +
G−1 (G(x)) +DcG−1(0) = G−1(G(x) + c) + x+ a.

Let us prove 2. Let ζ be a linear surjective function from F2N to F2N−1 such
that ζ(x) = ϕ−1(x) for all x ∈ E. We have that (ϕ, 0, ζ, 0) is a representation
of FE and of F ′

E , (ϕ, a, ζ, 0) is a representation of FA, and (ϕ, a, ζ, a) is a
representation of F ′

A (see Definition 3.1). Since ζ(x) = ϕ−1(x) for all x ∈ E,
the representations we mentioned are exactly those we want to prove.

Let us prove 3. Since F ′(x) = G−1(G(x)+c)+a, then F ′ is a permutation and
the two functions F ′

E and F ′
A are permutations. We claim that FE(y)+F ′

E(y) =
y and that FA(y) +F ′

A(y) = y. Since F(x) +F ′(x) = x, we have that FE(y) +
F ′
E(y) = ϕ−1 (F(ϕ(y)) + F ′(ϕ(y))) = ϕ−1 (ϕ(y)) = y and that FA(y)+F ′

A(y) =
ϕ−1 (F(ϕ(y) + a) + F ′(ϕ(y) + a) + a) = ϕ−1 (ϕ(y) + a+ a) = y. We claim that
F ′
A = (F ′

E)
−1. Observe that since F ′(x) +DcG−1(0) = G−1(G(x) + c), we have

that F ′(F ′(x) + a) + a = x and that (F ′)−1(x) = F ′(x + a) + a. We conclude
by showing that (F ′

E)
−1(y) = ϕ−1((F ′)−1(ϕ(y))) = ϕ−1(F ′(ϕ(y) + a) + a) =

F ′
A(y).

Using Proposition 7.4, we define the following construction.

Construction 3. In the setting of Construction 2 with the additional hypoth-
esis that ψc(x) = DcG−1(x) + DcG−1(0) is a linear function with a kernel of
dimension 1 and that ψ = ψc, let F ′(x) = ψc(G(x)) + x. Using the representa-
tions in Proposition 7.4, item 2, we have that FE , FA, F ′

E , and F ′
A are complete

permutations and that F ′
A = (F ′

E)
−1. Functions F ′

E and F ′
A are EA equivalent

respectively to FE and FA (see Remark 4.4), so the differential uniformity and
the nonlinearity are the same as in Construction 2.

Using the representations in 2 and the results in 3 of Proposition 7.4, we
can describe precisely the linear function that maps the graph of FE to the
graph of FA. We claim that such function is (y, z) 7→ (y + z, z) over (F2N−1)2.
Since (y,FE(y)) 7→ (y + FE(y),FE(y)) = (F ′

E(y),FE(y)), we have to show
that FE(w) = FA(y) where w = (F ′

E)
−1(y). Indeed, we have that FE(w) =

FE(w) + w + w = F ′
E(w) + w = y + F ′

A(y) = FA(y) because w = F ′
A(y).
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Conclusion

In this paper, we have made a general study of the restrictions of functions
F : FN2 7→ FM2 to affine subspaces of FN2 , which map these affine spaces into
strict affine subspaces of FM2 , providing then potentially new (n,m)-functions F ,
for some n < N and m < M . After studying the main cryptographic properties
of these (n,m)-functions F when they exist, we have observed that when F has
affine components, they always exist. When n = m = N−1 =M−1 and F has
affine components, F has the form ψ ◦ G where G is an (N,N)-function and ψ
is a linear (N,N)-function whose kernel has dimension 1. We have related the
question of the APNness of the restriction F of such F when G is APN to the
D-property introduced by Taniguchi. The existence of an APN restriction of
this kind is equivalent to the fact that G does not have what we called the strong
D-property. This showed that any APN function G, either has the advantage of
possessing the strong D-property, or has that of admitting an APN restriction F
to an affine hyperplane mapped into an affine hyperplane. We showed the strong
D-property of all Gold APN functions in large enough dimension (this completed
Taniguchi’s work, one result of which is equivalent to showing this strong D-
property in even dimension N while he was stuck with the odd dimension),
and we also continued Taniguchi’s work on the Dobbertin function, but more
needs to be done. We proved that the two known infinite classes of differentially
4-uniform permutations in even dimension do not contain APN functions and
we presented our own construction of highly nonlinear 4-uniform permutations.
Much work, probably difficult, remains to be done, in particular for studying
the strong D-property of other known infinite classes of APN functions than
Gold, and for investigating restrictions of (possibly APN) functions to affine
subspaces of codimension larger than 1, which could provide new infinite classes
of functions having good cryptographic properties and a simple representation,
with potential to find new APN functions, possibly bijective.
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