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Abstract. We present a new attack against the PSSI problem, one of
the three problems at the root of security of Durandal, an efficient rank
metric code-based signature scheme with a public key size of 15 kB and a
signature size of 4 kB, presented at EUROCRYPT’19. Our attack recov-
ers the private key using a leakage of information coming from several
signatures produced with the same key. Our approach is to combine
pairs of signatures and perform Cramer-like formulas in order to build
subspaces containing a secret element. We break all existing parameters
of Durandal: the two published sets of parameters claiming a security of
128 bits are broken in respectively 266 and 273 elementary bit operations,
and the number of signatures required to finalize the attack is 1,792 and
4,096 respectively. We implemented our attack and ran experiments that
demonstrated its success with smaller parameters.

Keywords: Rank-based cryptography, code-based cryptography, post-quantum
cryptography, digital signatures, cryptanalysis

1 Introduction

Background on post-quantum cryptography. Recent advances in quantum
computing demonstrate an increase in the number of qubits available in a single
quantum processor. While this does not represent an immediate threat for classi-
cal cryptography, it calls for a rapid transition to quantum-resistant cryptography
(also called post-quantum cryptography, or PQC).

The main focus of this article is digital signatures, one of the most important
cryptographic algorithms. The NIST PQC team announced in July 2022 that
three digital signatures candidates were selected for standardization: two are
based on euclidean lattices [8,11] and the third one is a hash-based signature [7].
NIST also announced a new standardization project, starting in 2023, calling
for efficient signatures not based on structured lattices. Code-based signatures
represent an efficient alternative to lattices.
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Presentation of the Durandal signature scheme. Durandal [5] is a code-
based signature scheme published in 2019 and could be a promising candidate
for this new standardization project, with a public key size of 15 kilobytes and
a signature size of 4 kilobytes. It uses the rank metric instead of the usual
Hamming metric. Durandal is based on an adaptation of the Lyubashevky proof
of knowledge [13] in a rank metric context. Then, the Fiat-Shamir heuristic [10]
is used to turn the proof of knowledge into a signature scheme.

The security proof of Durandal relies on the difficulty of three problems: (i)
the Ideal Rank Syndrome Decoding (IRSD) [2], a variant of the generic decoding
problem in rank metric (RSD) where the objects have ideal structure; (ii) the
Rank Support Learning (RSL) [12], another variant of RSD where the attacker
is given several syndromes with the same support; and (iii) the Product Spaces
Subspaces Indistinguishability (PSSI) problem, which was published in the same
paper than Durandal. While the first two problems are slight variants of generic
ones and appear in other code-based algorithms [4,1], the third one is an ad-hoc
problem very specific to this signature scheme, hence was somewhat less stud-
ied. PSSI has no known reduction to a well-established difficult problem. All
these factors may explain why we could find an attack on the PSSI problem and
present it in this work.

Presentation of PSSI. The PSSI problem, which will be defined formally later
in this paper, consists in deciding whether pairs (F,Z) of subspaces of the finite
field Fqm (seen as an Fq-vector space) were generated randomly or with a special
pattern, namely that the subspace Z contains a subspace U of the product space
EF , where E is a private space, fixed across the pairs. Pairs generated in this
fashion are contained in a Durandal signature, hence we will call such pairs
(F,Z) "signatures".

In the Durandal paper [5], a security analysis of PSSI was given. First, it
was noticed that an easy attack is avoided by filtering the subspace U inside the
subspace EF , meaning that it does not contain any non-zero product element of
the form ef where e ∈ E and f ∈ F . Second, a distinguisher is presented which
consists in multiplying Z with a subspace of F of dimension 2, and spotting a
loss of dimension. The parameters were chosen so as to make the probability of
such a loss of dimension negligible. However, all these considerations were secur-
ing only one signature and no security analysis was presented when the attacker
disposed of several samples of PSSI problem, i.e. several signatures. The attack
on PSSI presented in this work precisely exploits a leakage of information due
to several signatures sharing the same space E, which is part of the private key.

Our contributions. The purpose of this article is to present a new attack
against the PSSI problem. Our approach is to combine signatures two by two
and to perform Cramer-like formulas – but with vector spaces on the numerator
– in order to build subspaces containing a secret element. Then, a chain of
intersections allows to recover this secret element. The process is repeated until
the entire space E is found. This method is efficient against a wide range of
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parameters. In the Durandal paper [5], two sets of parameters were presented,
claiming 128 bits of security. Our attack breaks both parameter sets in 266 and
273 elementary bit operations respectively. The average number of signatures
neccesary to finalize the attack remains reasonable; less than a few thousands.

In light of this new attack, new parameters must be found that are likely
to increase the public key and signature sizes of Durandal. It is questionable
whether this scheme will remain competitive as compared to other possible
rank-based digital signature candidates for the upcoming NIST standardiza-
tion project, which are already smaller than Durandal and rely on more generic
difficult problems, see for example [9].

Organization of the paper. The paper is organized as follows. Section 2 con-
tains definitions and preliminary lemmas. Background on the attacked scheme
is given in Sections 3 and 4 which present Durandal and PSSI problem. For
understanding the gist and the main steps of the attack, the reader should read
Section 5 and 6.1. The rest of Section 6 provides full details on the correctness
and complexity of the attack. Finally, experimental results supporting our attack
are shown in Section 7.

2 Preliminaries

2.1 Notation and general definitions

Let Fq denote the finite field of q elements where q is the power of a prime and
let Fqm denote the field of qm elements i.e., the extension field of degree m of
Fq. Fqm is also an Fq-vector space of dimension m; we denote by capital letters
the Fq-subspaces of Fqm and by lower-case letters the elements of Fqm .

Let X ⊂ Fqm . We denote by ⟨X⟩ the Fq-subspace generated by the elements
of X:

⟨X⟩ = VectFq (X).

If X = {x1, . . . , xn}, we simply use the notation ⟨x1, . . . , xn⟩.

Vectors are denoted by bold lower-case letters and matrices by bold capital
letters (e.g., x = (x1, . . . , xn) ∈ Fn

qm and M = (mij)1⩽i⩽k
1⩽j⩽n

∈ Fk×n
qm ).

If S is a finite set, we denote by x
$← S when x is chosen uniformly at random

from S.

We now give the definition of the rank metric and the associated definition
of support in this metric.

Definition 1 (Rank metric over Fn
qm). Let x = (x1, . . . , xn) ∈ Fn

qm and
(β1, . . . , βm) ∈ Fm

qm be a basis of Fqm viewed as an m-dimensional vector space
over Fq. Each coordinate xj is associated to a vector of Fm

q in this basis: xj =∑m
i=1 mijβi. The m×n matrix associated to x is given by M(x) = (mij)1⩽i⩽m

1⩽j⩽n
.
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The rank weight ∥x∥ of x is defined as the rank of its associated matrix:

∥x∥ := rankM(x).

The rank weight is independent from the choice of the basis (β1, . . . , βm).
The associated distance d(x,y) between elements x and y in Fn

qm is defined
by d(x,y) = ∥x− y∥.

Definition 2 (Rank support of a word). Let x = (x1, . . . , xn) ∈ Fn
qm . The

support of x, denoted Supp(x), is the Fq-subspace of Fqm generated by the coor-
dinates of x:

Supp(x) := ⟨x1, . . . , xn⟩.

This definition is coherent with the definition of the rank weight since we have
dimSupp(x) = ∥x∥.

The number of supports of dimension r, i.e. the number of Fq-subspaces of
dimension r of Fqm , is given by the Gaussian coefficient[

m
r

]
q

=

r−1∏
i=0

qm − qi

qr − qi
.

The Grassmannian Gr(Fqm , r) represents the set of all subspaces of Fqm of di-
mension r.

Definition 3 (Ideal matrix). Let P ∈ Fq[X] be a polynomial of degree n. Let
G ∈ Fqm [X] be a polynomial of degree n− 1 at most. An ideal matrix generated
by G is a square matrix M of size n×n such that for all 1 ≤ i ≤ n, its i-th row
can be identified to the polynomial Xi−1G mod P , i.e.

n∑
j=1

mi,jX
j−1 ≡ Xi−1G mod P.

Remark 1. By extension, a n × 2n matrix consisting of two ideal square blocks
of size n is also called an ideal matrix.

2.2 Dimension of an intersection of subspaces

In this subsection, we prove some lemmas on the probability distribution of the
dimension of an intersection of two or more random subspaces of Fqm . These
lemmas will be useful for a fine analysis of our attack.

Lemma 1. Let x ∈ Fqm\{0}. Let B
$← Gr(Fqm , b) be a random subspace of

dimension b. Then

Prob(x ∈ B) =
qb − 1

qm − 1
.

4



Proof. The set of subspaces of Fqm of dimension b containing x is in bijection
with the set of subspaces of the projective hyperplane Fqm/⟨x⟩ of dimension
b − 1. Fqm/⟨x⟩ is an Fq-vector space of dimension m − 1, hence the number of

subspaces of Fqm of dimension b containing x is
[
m− 1
b− 1

]
q

.

Then we divide this number by the total number
[
m
b

]
q

of subspaces of Fqm

of dimension b, to get the desired probability:

Prob(x ∈ B) =

[
m− 1
b− 1

]
q[

m
b

]
q

=

b−2∏
i=0

qm−1 − qi

qb−1 − qi

b−1∏
i=0

qb − qi

qm − qi

=
qb − 1

qm − 1
.

⊓⊔

Lemma 2. Let A ∈ Gr(Fqm , a) and B
$← Gr(Fqm , b) be subspaces of Fqm . Then

Prob(dim(A ∩B) > 0) ≤ qa+b−m.

Proof. Notice that

dim(A ∩B) > 0⇔ ∃x ∈ A\{0}, x ∈ B,

hence:

Prob(dim(A ∩B) > 0) = Prob
( ∨

x∈A\{0}

x ∈ B
)

≤
∑

x∈A\{0}

Prob(x ∈ B)

=
∑

x∈A\{0}

qb − 1

qm − 1
(Lemma 1)

≤
∑

x∈A\{0}

qb−m

= (qa − 1)qb−m

≤ qa+b−m.

⊓⊔
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Remark 2. When a+ b > m, dim(A ∩ B) is always greater than 0 according to
Grassmann’s formula on dimensions. Note that the above lemma still holds in
that case, since the right-hand side of the equality is larger than 1.

We can generalize this lemma to an arbitrary family of independent random
subspaces.

Lemma 3. For 1 ≤ i ≤ n, let Ai
$← Gr(Fqm , ai) be random independent (in the

sense of probability) subspaces of Fqm . Then

Prob(dim(∩iAi) > 0) ≤ q
∑

i ai−(n−1)m.

Proof. As before, dim(∩iAi) > 0 if and only if there exists x ̸= 0 such that
x ∈ ∩iAi, hence:

Prob(dim(∩iAi) > 0) = Prob
( ∨

x∈Fqm\{0}

x ∈ ∩iAi

)

= Prob
( ∨

x∈Fqm\{0}

( n∧
i=1

x ∈ Ai

))

≤
∑

x∈Fqm\{0}

Prob
( n∧
i=1

x ∈ Ai

)
=

∑
x∈Fqm\{0}

n∏
i=1

Prob(x ∈ Ai) (by independency of spaces Ai)

=
∑

x∈Fqm\{0}

n∏
i=1

qai − 1

qm − 1

≤
∑

x∈Fqm\{0}

n∏
i=1

qai−m

=
∑

x∈Fqm\{0}

q
∑

i ai−nm

= (qm − 1)q
∑

i ai−nm

≤ q
∑

i ai−(n−1)m.

⊓⊔

Remark 3. Similarly to the previous remark, when
∑

i ai > (n−1)m, dim(∩iAi) >
0 and the lemma is still valid.

We now present a slight variation of the above lemma when the random
subspaces Ai all share a common element x. Let us introduce the following
notation:
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Definition 4. Let U ∈ Gr(Fqm , u) be a subspace of dimension u. For a ≥ u,
we define

Gr(Fqm , U, a) := {A ∈ Gr(Fqm , a) |U ⊂ A},

the set of all subspaces of Fqm of dimension a containing U .

Gr(Fqm , U, a) is in bijection with Gr(Fqm/U, a − u), hence is of cardinality[
m− u
a− u

]
q

.

Lemma 4. Let x ∈ Fqm\{0}. For 1 ≤ i ≤ n, let Ai
$← Gr(Fqm , ⟨x⟩, ai) be

random independent subspaces of Fqm all containing x. Then, dim(∩iAi) ≥ 1
and

Prob(dim(∩iAi) > 1) ≤ q
∑

i ai−(n−1)m−1.

Proof. Since the subspaces Ai all contain x, we have immediately dim(∩iAi) ≥ 1.
Next, we note that

dim
(⋂

i

Ai

)
> 1⇔ dim

(⋂
i

Ai/⟨x⟩
)
> 0.

Therefore, we can apply Lemma 3 with the space Fqm/⟨x⟩ (of dimension m− 1)

and subspaces A′
i

$← Gr(Fqm/⟨x⟩, ai − 1), to get

Prob(dim(∩iAi) > 1) ≤ q
∑

i(ai−1)−(n−1)(m−1)

= q
∑

i ai−(n−1)m−1.

⊓⊔

2.3 Product spaces

Definition 5 (Product space). Let E and F be two Fq-subspaces of Fqm (seen
as an Fq-vector space of dimension m). The product space EF is defined as the
Fq-subspace generated by all the products of an element of E with an element of
F :

EF := ⟨{ef | e ∈ E, f ∈ F}⟩.

Remark 4. When E and F are of Fq-dimension r and d respectively, the di-
mension of the product space EF is upper bounded by rd. Indeed, for a basis
(e1, ..., er) of E and a basis (f1, ..., fd) of F , it is clear that the tensor product
of these basis (eifj)1≤i≤r,1≤j≤d is a generating family of EF .

When r and d are small with respect to m, this family is also linearly indepen-
dent with great probability, meaning that the dimension of EF is exactly rd in
the typical case (see [6, Section 3] for more detailed results on this probability).
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The following proposition states that it is easy to compute E from F and
EF (when dim(EF )≪ m). It is analogue to the division ef

f = e, but in a vector
space setting. It will be necessary for a fine undersanding of the PSSI problem,
and is also used extensively for the decoding of LRPC codes, a family of rank-
metric codes not used in Durandal but found in other rank-metric cryptographic
algorithms.

Proposition 1 ([6], Proposition 3.5). Suppose m is prime. Let E $← Gr(Fqm , r)

and F
$← Gr(Fqm , d). Let (fi) be a basis of F . Then

E =
⋂
i

f−1
i EF

with probability at least
1− rqr

d(d+1)
2 −m.

Remark 5. The above result requires m to be prime, which is always the case
for parameters of rank-based cryptographic primitives, including Durandal.

Remark 6. This proposition shows that it is possible to recover E with high
probability when rd ≪ m. In the other extreme case where rd ≥ m (i.e. EF =
Fqm), we get f−1

i EF = Fqm so the chain of intersections will always be Fqm and
no information on E can be retrieved.

Definition 6 (Filtered subspace). Let E and F be two Fq-subspaces of Fqm .
A strict subspace U ⊊ EF of the product space EF is said to be filtered when it
contains no non-zero product elements of the form ef with e ∈ E and f ∈ F :

{ef, e ∈ E, f ∈ F} ∩ U = {0}.

3 Durandal signature scheme

3.1 Description of the scheme

We briefly recap in Figure 1 and in the below paragraphs the Durandal signature
scheme, although no deep understanding of the scheme is required for the rest of
the article, since our attack targets more specifically the PSSI problem defined
in the next section. The reader is referred to [5] for more details on Durandal.
The scheme is parametrized with variables m,n, k, l, l′, r, d, and λ. In Durandal,
only half-rate codes are considered, therefore n = 2k.

Key generation. The secret key consists of two matrices S ∈ Elk×n and S′ ∈
El′k×n. S and S′ are composed of ideal blocks of size k×k and their coordinates
belong to the same secret support E ⊂ Fqm of dimension r.

The public key consists of a random (n − k) × n ideal matrix H, together
with the matrices T = HS⊤ and T ′ = HS′⊤.
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Signature of a message µ. Similar to the Lyubashevsky approach, the signer
first computes to a vector z = y + cS′, where y is a vector whose coordinates
are sampled in a space W +EF depending on the secret key and c is a challenge
depending on the message µ.

However, in order to avoid an attack, the vector z must be corrected with a
corrective term pS such that Supp(z) = W + U , where U is a filtered subspace
of the product space EF of dimension rd− λ. p is a vector with coordinates in
F and is computed through linear algebra during the signing process.

The signature is the tuple (z, F, c,p). The signature consists therefore of the
challenge c, computed through a hash function, together with the answer to this
challenge.

Verification of a signature (µ, z, F, c,p). To verify the signature, we have to
check the rank weight of z and that H(x, F, µ) = c. The vector x is recomputed
using z, c,p and the public key.

Key generation: E $← Gr(Fqm , r)

Secret key: S ∈ Elk×n, S′ ∈ El′k×n

Public key: H $← ideal matrix ∈ F(n−k)×n
qm , T = HST ,T ′ = HS′T

Sign(µ,S,S′):

1. W
$← Gr(Fqm , w),

F
$← Gr(Fqm , d)

2. y
$← (W + EF )n, x = HyT

3. c = H(x, F, µ), c ∈ F l′k

4. U
$← filtered subspace of EF of di-

mension rd− λ
5. z = y + cS′ + pS, z ∈ (W + U)n

6. Output (z, F, c,p)

Verify(µ,z, F, c,p,H,T ,T ′):

1. Accept if and only if :
∥z∥ ⩽ w + rd− λ and
H(HzT − T ′cT + TpT , F, µ) = c

Fig. 1. The Durandal Signature scheme

3.2 Parameters

The parameters of Durandal, as presented in [5], are shown in Table 1.

q m n k l l′ d r w λ pk size σ size Security

Durandal-I 2 241 202 101 4 1 6 6 57 12 15,245 4,064 128
Durandal-II 2 263 226 113 4 1 7 7 56 14 18,606 5,019 128

Table 1. Parameters for Durandal. The sizes of public key (pk) and signature (σ) are
in bytes.
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4 PSSI problem

The security of the Durandal signature scheme relies on the hardness of several
problems: I-RSL, ARSD and PSSI. (see Theorem 20 in [5]).

While the first two problems are slight variants of the well-known syndrome
decoding problem in the rank metric (RSD) and are widely used among rank-
based cryptographic primitives, the PSSI is an ad-hoc problem that was also
introduced in Durandal paper [5]. This latter problem will be our main focus for
the rest of the article.

The PSSI problem appears naturally when trying to prove the indistinguisha-
bility of the signatures. Remember that we wrote in the previous section that the
first two components of a Durandal signature are a subspace F ∈ Gr(Fqm , d)
and a vector z whose coordinates belong to the subspace Z = W +U , where U is
a filtered subspace of EF (see Definition 6). When a signer signs N times with
the same key, it produces several subspaces (Fi, Zi)1≤i≤N , the space E being
fixed since it is linked to the private key. It is natural to require that pairs of
such subspaces (Fi, Zi) are indistinguishable from random subspaces of the same
dimension. This is captured by the following definition:

Problem 1 (Product Spaces Subspaces Indistinguishability). Let E be a fixed
Fq-subspace of Fqm of dimension r. Let Fi, Ui and Wi be subspaces defined
as follows:

– Fi
$← Gr(Fqm , d);

– Ui
$← Gr(EFi, rd− λ) such that {ef, e ∈ E, f ∈ Fi} ∩ Ui = {0} (i.e. Ui is a

filtered subspace of EFi);
– Wi

$← Gr(Fqm , w).

The PSSIr,d,λ,w,m,N problem consists in distinguishing N samples of the form
(Zi, Fi) where Zi = Wi + Ui, from N samples of the form (Z ′

i, Fi) where Z ′
i is a

random subspace of Fqm of dimension w + rd− λ.1

Remark 7. An easy distinguisher could be to guess randomly unless dim(Zi) <
w + rd− λ, in which case Zi is bound to be of the first form Wi + Ui described
above. However, this can occur only if spaces Ui and Wi have a non-zero intersec-
tion, which happens with a probability dominated by qw+rd−λ−m (cf. Lemma 2).
As a result, with practical parameters of Durandal presented in Table 1, this easy
distinguisher gets a negligible advantage of less than 2−128. Therefore, in the rest
of this document, we consider the intersection Wi ∩ Ui to be trivial.

We define more precisely the two distributions between which a PSSI attacker
must discriminate.

1 In the original paper of Durandal, the first component of the samples are vectors
zi of length n and support Zi but this has been proven equivalent to the version
defined in this paper (see the beginning of Section 4.1 in [5]).
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Definition 7 (PSSI distribution DPSSI). Let E be a Fq-subspace of Fqm of di-
mension r. Let DPSSI(E) be the distribution that outputs samples (Fi, Zi) defined
as follows:

– Fi
$← Gr(Fqm , d);

– Ui
$← Gr(EFi, rd− λ) such that {ef, e ∈ E, f ∈ F} ∩ Ui = {0};

– Wi
$← Gr(Fqm , w);

– Zi = Wi + Ui.

Definition 8 (Random distribution DRandom). Let DRandom the distribution
that outputs samples (Fi, Zi) where Fi and Zi are independent random variables
picked uniformly in, respecively, Gr(Fqm , d) and Gr(Fqm , w + rd− λ).

The problem PSSI now simply consists in distinguishing N independent sam-
ples from the PSSI distribution or from the random distribution.

We can now define the search version of this problem which will be attacked
in the next sections. It is obviously harder than PSSI.

Problem 2 (Search-PSSI). Given N independent samples (Fi, Zi) from DPSSI(E)
with dim(E) = r, the Search-PSSIr,d,λ,w,m,N problem consists in finding the vec-
tor space E.

Why filtering U?

There exists a simple attack on Search-PSSI in the case where U is equal
to the entire space EF and is not a strict subspace of it. In such a problematic
setting, we can use similar arguments to Proposition 1 to recover E from the
knowledge of W + EF and F .

The filtration condition is a stronger constraint than having U being a strict
subspace of EF . The objective is to avoid an attacker gaining information from
intersections I of the form f−1Z ∩ f ′−1Z with (f, f ′) ∈ F 2. If Z contains some
product elements ef then the probability that dim I ̸= 0 is much higher than if
Z were truly random. With the filtration of the space U , such techniques would
not be useful.

Recovering the private key from Search-PSSI

In Durandal, from the public key (H,T ,T ′) and the space E it is easy to
recover the private key (S,S′). Indeed, the equation T = HS⊤ with coeffi-
cients in Fqm can be rewritten as linear systems in Fq. The number of equations
m(n−k)lk is way larger than the number of unknowns rnlk, so with overwhelm-
ing probability the private key will be the unique solution.
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Existing attacks on PSSI

A security analysis of PSSI was presented in Durandal paper (see Section 4.1
in [5]). The analysis relied on a distinguisher, whose idea is to consider product
spaces of the form ZiGi where Gi is a subspace of Fi of dimension 2. The
probability that dimZiGi = 2(w+ rd− λ) depends on whether Zi is random or
from the PSSI distribution. The claimed work factor of this distinguisher was

2m−2(rd−λ)

and the authors of Durandal chose their parameters such that this work factor
is above the security level. Up to the present work, the above distinguisher was
the state-of-the-art attack on PSSI and it seemed that a large value for m was
enough to prevent an attacker from breaking PSSI. As we will see next, that
is not the case, and on the contrary, the larger m is, the more attackable the
parameters are.

5 An observation when m is high

Before unveiling a practical attack against PSSI, we first make an interesting ob-
servation which reveals the secret space E to an attacker who has no constraint
on m. Therefore, in this section, we place ourselves in the simplified
situation where 2d(w + rd− λ)≪ m2d(w + rd− λ)≪ m2d(w + rd− λ)≪ m. Even though it is unrealistic as com-
pared to practical parameters of the Durandal signature scheme, it gives a first
glimpse of the ideas that will be used for a practical attack against PSSI in the
next section.

The idea is the following: suppose an attacker has two instances from the
PSSI distribution (F1, Z1) and (F2, Z2). They can compute a "cross-product" of
these instances

A := F1Z2 + F2Z1.

Even though for i ∈ {1, 2}, Zi contains a subspace Ui that is filtered and does
not contain any product element efi with e ∈ E and fi ∈ Fi, nothing guarantees
that A is not filtered, meaning it can contain product elements of the form eg
with e ∈ E and g ∈ F1F2. Indeed, we observed empirically with great probability
that the entire product space E(F1F2) is contained in A:

E(F1F2) ⊂ A.

The dimension of A is upper bounded by 2d(w+ rd−λ) (which is by hypothesis
greatly less than m) and since an attacker can compute very easily a basis of the
vector space F1F2, one can use a chain of intersections, similar to Proposition 1,
in order to recover E by computing⋂

g∈F1F2

g−1A.
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An informal explanation for why A contains some product elements lies in
the fact that, even though Zi contains no product elements, it contains "2-sums"
of product elements of the form efi + e′f ′

i for (e, e′) ∈ E2 and (fi, f
′
i) ∈ F 2

i .
More problematically, we will see in the next section that one can find 2-

sums in both Z1 and Z2 for the same pair (e, e′), meaning that there exists
(e, e′) ∈ E2, (f1, f

′
1) ∈ F 2

1 and (f2, f
′
2) ∈ F 2

2 such that

ef1 + e′f ′
1 = z1 ∈ Z1,

ef2 + e′f ′
2 = z2 ∈ Z2.

Notice that, in that case, the cross product f ′
1z2 − f ′

2z1, which is an element
of A, is also a product element because:

f ′
1z2 − f ′

2z1 = ef2f
′
1 + e′f ′

2f
′
1 − ef1f

′
2 − e′f ′

1f
′
2

= e(f2f
′
1 − f1f

′
2).

This explains why A contains product elements. As said earlier, we observed
furthermore that A contains all of them.

As said at the beginning of the section, computing A is only useful when
m is high enough. With practical parameters of PSSI, m is much less than
2d(w+rd−λ), and the computation of F1Z2+F2Z1 would only lead to A = Fqm .
This does not give any information on E (see Remark 6).

The next section overcomes this limitation on parameters; we refine the ob-
servation to give a practical attack against PSSI.

6 An attack against PSSI

Since the vector space F1Z2+F2Z1 is too large for a practical attack, we turn our
initial observation into a combinatorial attack where the attacker picks individual
elements f1 ∈ F1 and f2 ∈ F2 and computes spaces f1Z2 + f2Z1. If the attacker
is lucky enough, they can obtain a product element eg with e ∈ E and g ∈ F1F2.
Since the vector spaces F1 and F2 are of small dimension d, the combinatorial
factor in the attack is manageable.

6.1 General overview of the attack

Our combinatorial attack against PSSI consists in repeatedly applying Algo-
rithm 1. The algorithm returns an element of Fqm , which is most of the time 0.
We will show later on that, with a non negligible probability, it returns a non-
zero element of Fqm and in that case, this element belongs to the secret space E
with overwhelming probability.
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Algorithm 1 Attack against PSSI
Input: Four PSSI samples (F1, Z1), (F2, Z2), (F3, Z3), (F4, Z4)
Output: An element x ∈ Fqm

1: Choose (f1, f
′
1)

$← F 2
1

2: Choose (f2, f
′
2)

$← F 2
2

3: Choose (f3, f
′
3)

$← F 2
3

4: Choose (f4, f
′
4)

$← F 2
4

5: for (i, j) ∈ J1, 4K2 with i < j do

6: if
∣∣∣∣fi f ′

i

fj f ′
j

∣∣∣∣ = 0 then go back to step 1

7: else
8: Compute

Ai,j :=
f ′
jZi + f ′

iZj∣∣∣∣fi f ′
i

fj f ′
j

∣∣∣∣
9: end if

10: end for
11: Compute

B :=
⋂

(i,j)∈J1,4K2
i<j

Ai,j

12: if dim(B) = 1 then
13: return a non-zero element of B
14: else
15: return 0
16: end if.

14



The attacker starts by drawing random pairs in the subspaces Fi. If they are
lucky, there exists a pair (e, e′) ∈ E2, such that a system (S) of four conditions
is verified:

(S) :


ef1 + e′f ′

1 = z1 ∈ Z1

ef2 + e′f ′
2 = z2 ∈ Z2

ef3 + e′f ′
3 = z3 ∈ Z3

ef4 + e′f ′
4 = z4 ∈ Z4

Because the matrix
(
fi f

′
i

fj f
′
j

)
is chosen invertible (if not, the attacker retries with

new random pairs), the element e can be recovered using Cramer’s formula

e =

∣∣∣∣zi f ′
i

zj f
′
j

∣∣∣∣∣∣∣∣fi f ′
i

fj f
′
j

∣∣∣∣ .
However, only the space Zi is known to the attacker, not the exact element zi.
The attack thus consists in computing a Cramer-like formula with vector
spaces, in order to get vector spaces containing e:

e ∈ Ai,j =

∣∣∣∣Zi f
′
i

Zj f
′
j

∣∣∣∣∣∣∣∣fi f ′
i

fj f
′
j

∣∣∣∣ .
Finally, the attacker intersects all the spaces Ai,j . Two cases can then happen:

– If the attacker was lucky in the random sampling of (fi, f
′
i), there exists

(e, e′) ∈ E2 such that conditions (S) are verified, and then the intersection
will be almost surely ⟨e⟩.

– In the other case, the intersection will be almost surely of dimension 0 and
the attacker can retry with other samples.

The following subsections will be dedicated to proving our main result on
the probability of success of the attack. It relies on one equality on parameters,
which is verified for Durandal, as well as on an assumption which is discussed in
the next subsection and is supported by simulations.

Theorem 1. Under the equality λ = 2r and under Assumption 1, the attack
presented in Algorithm 1 outputs:

– 0 with a probability ≥ 1− α;
– an element x ∈ E\{0} with a probability ≥ β;
– an element x ∈ Fqm\E with a probability ≤ α− β,

with {
α = q−6r + q12(w+rd−λ)−5m − q12(w+rd−λ)−5m−6r

β = q−6r − q12(w+rd−λ)−5m−6r−1

15



Note that α − β is always greater than 0 and that for existing parameters
of Durandal, both α and β weigh approximately q−6r, therefore the probability
that the third case happens is negligible in front of the chances of being in one
of the two first cases.

Before delving into the details of the proof, we need technical results about
the existence of 2-sums in a product space.

6.2 Technical results about 2-sums

For this subsection, let E be a subspace of Fqm of dimension r and let (F1, Z1), (F2, Z2),
(F3, Z3), (F4, Z4) be four PSSI samples.

Definition 9. For a pair (e, e′) of linearly independent elements in E, we define
Xe,e′,F,Z the boolean random variable

Xe,e′,F,Z : F 2 −→ {0, 1}
(f, f ′) 7−→ 1Z(ef + e′f ′)

where 1Z refers to the indicator function of the set Z.

The element ef + e′f ′ belongs to the product space EF and it is natural
to think that its statistical distribution is close to uniformly random inside the
space EF , therefore the probability that it falls in the space Z is expected to
be q−λ, since Z is of codimension λ in EF . We formalize it in the following
assumption, alongside with an additional hypothesis on the independence of the
random variables defined above.

Assumption 1 The family of random variables (Xe,e′,Fi,Zi
), parametrized by

all the pairs (e, e′) of linearly independent elements in E and the four PSSI
samples, form a family of independent Bernoulli variables of parameter q−λ.

This assumption was validated by numerous simulations. Using the above
assumption, we can prove the following lemma which explicitly gives the proba-
bility of fulfilling conditions from (S). We present in Section 7 an experimental
validation of Lemma 5.

Lemma 5. Let (fi, f
′
i)

$← Fi for i ∈ J1, 4K. Under the condition λ = 2r and
under Assumption 1, the probability ε that there exists a pair (e, e′) ∈ E2, such
that the system (S) of four conditions is verified:

(S) :


ef1 + e′f ′

1 = z1 ∈ Z1

ef2 + e′f ′
2 = z2 ∈ Z2

ef3 + e′f ′
3 = z3 ∈ Z3

ef4 + e′f ′
4 = z4 ∈ Z4

admits an asymptotic development

ε = q−6r + or→∞(q−10r).
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Proof. The system (S) is verified for a pair (e, e′) when the four boolean variables
Xe,e′,Fi,Zi

(defined above) are all true for i ∈ J1, 4K. Therefore,

ε = Prob(
∨

(e,e′)∈E2

(

4∧
i=1

Xe,e′,Fi,Zi))

= 1− Prob(
∧

(e,e′)∈E2

(

4∨
i=1

Xe,e′,Fi,Zi))

= 1−
∏

(e,e′)∈E2

Prob(

4∨
i=1

Xe,e′,Fi,Zi)

= 1−
∏

(e,e′)∈E2

(1− Prob(

4∧
i=1

Xe,e′,Fi,Zi))

= 1−
∏

(e,e′)∈E2

(1− q−4λ)

= 1− (1− q−4λ)q
2r

= 1− (1− q−8r)q
2r

= 1− (1− q−6r + or→∞(q−10r))

= q−6r + or→∞(q−10r).

⊓⊔

In the rest of the paper we will omit the residue in or→∞(q−10r).

6.3 Proof of the probability of success of the attack

We can now finalize the proof of success of the attack.

Proof (of Theorem 1). The three cases of Theorem 1 form a partition of the
possible outputs of Algorithm 1, hence we only need to prove the first two in-
equalities on the probabilities of the theorem and the third inequality will follow
immediately.

For i ∈ J1, 4K, let (fi, f
′
i) ∈ F 2

i be the pairs sampled at random during the
first four steps of the attack.
We will consider two separate cases depending on whether conditions from (S)
are fulfilled. Each case will yield one of the equalities to be proven.

First case. Suppose that there exists (e, e′) ∈ E2 such that the conditions from
(S) are verified. According to Lemma 5, this happens with probability q−6r.

In that case, we can assume the vector spaces Ai,j are independent (as ran-
dom variables) subspaces of Fqm , all containing e, of dimension ai,j ≤ 2(w +
rd − λ), hence

∑
i,j ai,j ≤ 12(w + rd − λ). By using Lemma 4, ⟨e⟩ ⊂ B and
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the probability that B is exactly ⟨e⟩ is greater than 1− q12(w+rd−λ)−5m−1. As a
result, Algorithm 1 outputs an element of E with a probability greater or equal
to

q−6r(1− q12(w+rd−λ)−5m−1) = β.

Second case. If there does not exist a pair (e, e′) ∈ E such that the conditions
from (S) are verified (it happens with probability 1 − q−6r), then the vector
spaces Ai,j can be seen as random independent subspaces of Fqm of dimension
ai,j ≤ 2(w + rd− λ), so this time we use Lemma 3.

It proves that Algorithm 1 returns 0 with a probability of at least

(1− q−6r)(1− q12(w+rd−λ)−5m) = 1− α.

⊓⊔

6.4 Complexity of the attack

Algorithm 1 returns only one element of E with a small probability of success.
In order to fully solve the Search-PSSI problem, the attacker has to recover the
whole space E, i.e. at least r elements of the secret space. In this subsection we
study the complexity of the full attack, which recovers E totally.

Let us first study the complexity of one call to Algorithm 1. The most costly
operation is Step 11, which consists in five intersections of subspaces of Fqm ,
each of dimension less than 2(w + rd − λ). An intersection of two subspaces is
usually computed through the Zassenhaus algorithm, and is essentially a Gaus-
sian elimination of a binary matrix of size 4(w + rd − λ) × 2m, which costs
2m × (4(w + rd − λ))2 = 32m(w + rd − λ)2 operations in Fq. Repeating the
operation five times yields a total complexity of

160m(w + rd− λ)2

operations in Fq.

It remains to evaluate the number of calls to Algorithm 1. To simplify, because
the probability that Algorithm 1 returns an element outside the space E is
negligible, we will consider that the algorithm either

– returns a random element of E with probability q−6r, or
– returns 0 with probability 1− q−6r.

On average, the number of times Algorithm 1 must be run is q6r multiplied
by the expectancy of the number of elements needed to recover E, which is given
by the following lemma.

Lemma 6. Let E be a subspace of Fqm of dimension r. Let O be an oracle

which, on each call i, returns an independent xi
$← E. The average number n of

calls to the oracle such that ⟨x1, ..., xn⟩ = E is upper bounded as follows:

n ≤ r +
1

q − 1
.
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Proof. Let X be the integer-value random variable defined as the number of calls
to the oracle until it generates E, i.e. ⟨x1, ..., xX−1⟩ ⊊ E and ⟨x1, ..., xX⟩ = E.

It is clear that X ≥ r with probability 1. For i > r, X ≥ i if and only if
⟨x1, ..., xi⟩ ⊊ E, which is equivalent to having a uniformly random r × i ma-
trix with entries in Fq not of full rank. This happens with a probability upper
bounded by qr−i (see for example [1, Lemma 1]).

To finish the proof, we calculate the expectancy n of X:

n = E(X)

= r +

∞∑
i=r+1

Prob(X ≥ i)

≤ r +

∞∑
i=r+1

qr−i

≤ r +
1

q − 1
.

⊓⊔

Therefore, we can formulate the following result.

Proposition 2 (Complexity of the attack). Under the same conditions of
validity than Theorem 1, the average complexity of the attack is given by

160m(w + rd− λ)2(r +
1

q − 1
)q6r

operations in Fq.

Applying the above formula to parameters of Durandal, it gives the following
table:

Theoretical complexity Security

Durandal-I 66 128
Durandal-II 73 128

Table 2. Theoretical base-2 logarithm of the average number of bit operations neces-
sary to run our attack against Search-PSSI.

6.5 Number of signatures

In the previous subsection, we saw that Algorithm 1 must be run on average
(r+ 1

q−1 )q
6r to finalize the attack. Since 4 PSSI samples are used in Algorithm 1,
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it could seem that an average number of 4(r + 1
q−1 )q

6r of signatures would be
necessary to recover the private key. This would be a very large number of sig-
natures with the considered parameters.

Fortunately, the same signatures can be reused by running Algorithm 1 sev-
eral times with the same 4 PSSI samples. Indeed, this algorithm starts by choos-
ing at random 8 elements in vector spaces of Fq-dimension d, which makes q8d

possibilities.
We can assume that if the algorithm is run with the same set of 4 signatures a

number of times greatly less than q8d, the event that one run outputs an element
of E remains probabilistically independent from the other runs with the same
samples.

Empirically, we set to q5d the number of reuses of the same signatures in
Algorithm 1, which makes an average number of signatures necessary to finalize
the attack of:

4(r +
1

q − 1
)
q6r

q5d
.

Applying the above formula to parameters of Durandal, it gives the following
table:

Expected signatures

Durandal-I 1,792
Durandal-II 4,096

Table 3. Excepted number of signatures to perform our attack on Search-PSSI.

7 Experimental results

We implemented the attack in C language, using the RBC library [3] which
provides useful functions when working with finite field subspaces. Our imple-
mentation is publicly available in the following Github repository:

https://github.com/victordyseryn/pssi-security-implementation

All of our experiments were performed on a laptop equipped with an Intel
Core i5-7440HQ CPU and 16GB RAM.

Since we didn’t have a sufficient computing power at our disposal to run
the 266 attack on the actual parameters of Durandal in reasonable time, we ran
experiments with lower parameter sets, which are represented in the following
table:
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Experiment number q m d r λ w

A2 2 83 2 2 3 19
A3 2 127 3 3 6 28
A4 2 163 4 4 8 38
A5 2 199 5 5 10 47

Table 4. Reduced parameter sets for experiments on PSSI attack

For each experiment, we ran the attack a number of times depending on
the complexity of the attack, and we recorded the average number of cycles
to recover the entire secret space E, as well as the average number of PSSI
samples needed. We were able to complete the attack up to the parameter set
A4. Experiment A5 was out of reach in a reasonable time. We computed the
experimental complexity of our experiments as the average number of cycles
required to recover the secret key, and then multiplying this cycle count by 64
to obtain an approximation of the number of bit operations performed by our
64-bit processor. Our experimental results are presented in Table 5.

Experiment q m d r λ w
Number of

tests
Number of

signatures (avg)
Experimental
complexity

Theoretical
complexity

A2 2 83 2 2 3 19 1,000 10 232.4 235.9

A3 2 127 3 3 6 28 100 301 244.9 244

A4 2 163 4 4 8 38 1 502 251.2 251.7

Table 5. Experimental results on PSSI attack

Figure 2 shows the comparison between the experimental and theoretical
complexities, as well as the expected complexities for parameter sets A5, Durandal-
I and Durandal-II.

Finally, we also validated the result from Lemma 5 by running the following
experiment: we randomly generated PSSI samples and checked whether there ex-
ists a pair (e, e′) ∈ E2 such that the system (S) described in Lemma 5 is verified,
by enumerating every possible pair (e, e′). Results are presented in Table 6.
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Fig. 2. Comparison between experimental and theoretical complexities for different
values of r.

q m d r λ w
Number of

tests
Experimental
probability

Theoretical
probability

2 83 3 3 6 19 224 2−18.6 2−18

2 127 3 3 6 28 224 2−18.9 2−18

Table 6. Experimental results validating Lemma 5

8 Conclusion and perspectives

We presented an attack against Durandal signature scheme that combines pairs
of signatures into Cramer-like formulas to build secret subspaces. It would be
an interesting research problem to investigate whether the approach can be ex-
tended to combining triples of signatures (or even arbitrary tuples of signatures).

Such a refinement of the attack is not trivial; a naive generalization would
lead to build subspaces of the form ⟨f1, f2⟩Z3 + ⟨f1, f3⟩Z2 + ⟨f2, f3⟩Z1 whose
typical dimension is so large that it would almost surely cover the ambiant
space Fqm . However, by replacing Zi by strict subspaces of them, the dimension
of the calculated subspace would decrease, although it is unclear yet whether this
subspace would still contain secret elements with a non-negligible probability.
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