
Invertible Bloom Lookup Tables
with Less Memory and Randomness

Nils Fleischhacker1⋆ , Kasper Green Larsen2⋆⋆ , Maciej Obremski3⋆ ⋆ ⋆ , and Mark Simkin4†

1 Ruhr University Bochum
2 Aarhus University

3 National University of Singapore
4 Independent Researcher

Abstract. In this work we study Invertible Bloom Lookup Tables (IBLTs) with small failure prob-
abilities. IBLTs are highly versatile data structures that have found applications in set reconciliation
protocols, error-correcting codes, and even the design of advanced cryptographic primitives. For storing
n elements and ensuring correctness with probability at least 1−δ, existing IBLT constructions require
Ω(n(log(1/δ)

log(n)
+ 1)) space and they crucially rely on fully random hash functions.

We present new constructions of IBLTs that are simultaneously more space efficient and require less
randomness. For storing n elements with a failure probability of at most δ, our data structure only
requires O (n+ log(1/δ) log log(1/δ)) space and O (log(log(n)/δ))-wise independent hash functions.
As a key technical ingredient we show that hashing n keys with any k-wise independent hash function
h : U → [Cn] for some sufficiently large constant C guarantees with probability 1−2−Ω(k) that at least
n/2 keys will have a unique hash value. Proving this is non-trivial as k approaches n. We believe that
the techniques used to prove this statement may be of independent interest.
We apply our new IBLTs to the encrypted compression problem, recently studied by Fleischhacker,
Larsen, Simkin (Eurocrypt 2023). We extend their approach to work for a more general class of en-
cryption schemes and using our new IBLT we achieve an asymptotically better compression rate.

⋆ mail@nilsfleischhacker.de. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

⋆⋆ larsen@cs.au.dk. Supported by a DFF Sapere Aude Research Leader grant No 9064-00068B.
⋆ ⋆ ⋆ obremski.math@gmail.com. Funded by MOE2019-T2-1-145 Foundations of quantum-safe cryptography.

† mark@univariate.org

https://orcid.org/0000-0002-2770-5444
https://orcid.org/0000-0001-8841-5929
https://orcid.org/0000-0003-4174-0438
https://orcid.org/0000-0002-7325-5261

1 Introduction

The Invertible Bloom Lookup Table (IBLT) is a very elegant data structure by Goodrich and Mitzen-
macher [GM11]. It functions much like a dictionary data structure, supporting insertions, deletions and the
retrieval of key-value pairs. What is special about the IBLT, is that upon initialization, one decides on a
threshold n. Now, regardless of how many key-value pairs are present in the IBLT, the space usage will
always remain proportional to n. Of course this comes at a cost, namely that the retrieval operations will
temporarily stop functioning, when the number of pairs stored in the IBLT exceeds n. When the number of
stored pairs falls below n again, the IBLT will resume supporting retrieval queries.

The above functionality is extremely useful in many applications. Consider for instance the set reconcil-
iation problem [MTZ03, EGUV11]. Here two parties Alice and Bob hold sets SA and SB of key-value pairs.
Think of these sets as two replicas of a database storing key-value pairs. In applications where insertions and
deletions into the database must be supported quickly, we may allow the two sets SA and SB to be slightly
inconsistent, such that a client performing an operation on the database will not have to wait for synchro-
nization among the two replicas. Instead, Alice and Bob will every now and then synchronize their two sets
SA and SB . For this purpose, Alice maintains an IBLT for her set SA, which she may send to Bob. Upon re-
ceiving the IBLT, Bob then deletes every element from his set SB from Alice’s IBLT. If |(SA\SB)∪(SB \SA)|
is less than the threshold n, Bob can retrieve the key-value pairs in SA \SB . Since the space usage of IBLTs
is only proportional to the threshold n, this allows for the communication between Alice and Bob to be
proportional to |(SA \ SB) ∪ (SB \ SA)| and not |SA| or |SB |. This may result in significant savings, when
the sets SA and SB are large, but very similar. IBLTs have also seen uses in numerous other applications,
ranging from distributed systems applications [OAB+17, MP17] over fast error-correcting codes [MV12] to
cryptography [AGL+17, FLS22, FLS23].

The surprising functionality of IBLTs is supported via hashing. In more detail, the original IBLT construc-
tion by Goodrich and Mitzenmacher consists of an array A of m cells along with a hash function h mapping
keys to k distinct entries in A for a tuneable parameter k. Each cell of A has three fields, a count, a keySum
and a valueSum. When inserting a key-value pair (x, y), we compute the k positions h(x) = (i1, . . . , ik),
increment the count field in A[ij], add x to the keySum of A[ij] and add y to the valueSum of A[ij] for
each j = 1, . . . , k. A deletion of a key-value pair is simply supported by reversing these operations, i.e.
decrementing count and subtracting x from keySum and y from valueSum. To support the retrieval of the
value associated with a query key x, we again compute h(x) = (i1, . . . , ik) and examine the entries A[ij]. If
we find such an entry where the count field is one, then we know that only one key-value pair hashed there.
We can thus compare the keySum to x, and if they are equal, we can return the valueSum. If the keySum is
different from x, or we find a cell with a count of zero, we may return that x is not in the IBLT. Finally, if
all k count fields are at least two, we return “Don’t know”. If the number of cells m is 2nk, then the chance
that a key-value pair hashes to at least one unique entry (no collisions) is around 1 − 2−Ω(k) whenever the
number of key-value pairs stored in the IBLT does not exceed the threshold n.

Peeling. The simple functionality above supports Insertions, Deletions and Get operations, where a Get
operation retrieves the value associated with a query key x. Using space O(nk), the Get operation succeeds
with probability 1−2−Ω(k). However, in several applications, such as set reconciliation, one is more interested
in outputting the list of all key-value pairs present in the IBLT. For this purpose, a ListEntries operation is
also supported. To list all key-value pairs in the IBLT, we repeatedly look for a cell in A with a count of one.
When we find such a cell A[i], we output (x, y) =(A[i].keySum, A[i].valueSum) and then delete (x, y) from
the IBLT. This process of peeling the key-value pairs reduces the count of other fields and thus increases the
chance that we can continue peeling key-value pairs. Concretely, the ListEntries operation can be shown to
succeed with probability 1 − Ω(n−k+2) when the number of key-value pairs present in the IBLT does not
exceed the threshold n. The peeling success probability thus far exceeds that of the simple Get operation
when hashing to at least k = 3 entries.

Supporting False Deletions. The attentive reader may have observed that the simple version of the IBLT
described above critically assumes that no deletions are performed on key-value pairs that are not already

1

present in the IBLT. In the set reconciliation example, this is insufficient as there may be key-value pairs in
SB that are not in SA, which will cause false deletions. A simple extension to the IBLT ensures that it also
functions if the total number of present key-value pairs plus the number of false deletions does not exceed
the threshold n. For set reconciliation, this is equivalent to |SA \ SB | + |SB \ SA| ≤ n. To support such
false deletions, we add a hashSum field to every cell and include another hash function g mapping keys to a
sufficiently large output domain [R]. When inserting key-value pairs, g(x) is added to the hashSum field of
A[ij] and subtracted during deletions. To retrieve the value associated with a key x, we proceed as before,
but whenever the count is either −1 or 1, we also perform a check that the hashSum is equal to g applied
to the keySum. If not, we treat the cell as if the count was at least 2. For ListEntries, a peeling operation
also includes such checks and furthermore, when a count is −1, we may instead insert (x, y) =(-keySum,-
valueSum) if g applied to -keySum equals -hashSum. A second source of error is when the same key has been
inserted with multiple different values. We ignore this issue here, and remark that the ListEntries in the
original IBLT also fails in recovering keys with multiple associated values.

Memory Usage and Randomness. In this paper, we focus on the more interesting ListEntries operation and
ignore the Get operation. Requiring that ListEntries succeeds with probability 1− δ, the classic IBLT uses
space O(n(lg(1/δ)/ lg n + 1)), since we must set k = O(1 + lgn(1/δ)) to make n−k+1 ≤ δ, and the space
usage is m = O(nk) cells. Notice here, and throughout the paper, that space is measured in number of cells
of the IBLT. In terms of bit complexity, the count field needs O(lg n) bits, the keySum and valueSum fields
need O(lg |U | + lg n) bits when keys and values come from a universe U . Finally, in both previous IBLTs
and our new construction, the hashSum field needs O(lg(1/δ) + lg n) bits. Thus each cell of the table costs
O(lg(|U |n/δ)) bits.

The analysis of the classic IBLT critically assumes that the hash function h is truly fully random. This
is of course unrealistic in practice. But where many typical data structures can make due with O(lg(1/δ))
or O(lg n)-wise independent hash functions, this is not known to be the case for the IBLT. Concretely, the
standard analysis of the peeling process of the IBLT requires a union bound over exponentially many events
(for every set of 2 ≤ j ≤ n keys S, for every set T of jk/2 entries of A, we have a failure event saying that
h(x) ∈ T for all x ∈ S). With exponentially many events in the union bound, each of them must occur with
probability at most exp(−Ω(n)) for the union bound to be useful. This requires a seed length of Ω(n) bits
for a hash function and thus cannot be implemented with k-wise independence for k significantly less than
n. It could be the case that a more refined analysis could show that less randomness suffices, but this has
not yet been demonstrated.

We remark that it is possible to show that tabulation hashing [DKRT15, Tho17] may be used to support
peeling, but this also requires a random seed of length proportional to n, since it requires a character size of
at least (1 + Ω(1))n, and the space usage is at least the number of characters. Finally, we mention that it
may also be possible to use the splitting trick of Dietzfelbinger and Rink [DR09], but as far as we are aware
of, it would be not more efficient than tabulation hashing in this context.

1.1 Our Contributions

Our main contribution is a new version of the IBLT that is both more space efficient and that can be
implemented with much less randomness. We call our new data structure a Stacked IBLT and show the
following:

Theorem 1. Let δ be less than a sufficiently small constant. Given a threshold n, the Stacked IBLT supports
Insertions, Deletions and ListEntries operations, where ListEntries succeeds with probability 1− δ when the
number of key-value pairs is no more than n. Furthermore, it uses space O(n + lg(1/δ) lglg(1/δ)) cells and
requires only O(lg(lg(n)/δ))-wise independent hashing.

Comparing this to the classic IBLT, our construction outperforms it for any δ = n−ω(1) and more importantly,
it can be implemented with a small random seed. Our Stacked IBLT also supports false deletions like the
classic IBLT and ListEntries succeeds with the claimed probability if the number of key-value pairs plus the
number of false deletions does not exceed n.

2

We note that such small failure probabilities are important in cryptographic applications, like the ones
that rely on encrypted compression [CDG+21, LT22]. A data-dependent failure of a data structure leaks
information about its contents, even if one can not see the contents of the data structure itself. In cryp-
tographic applications, where security should commonly break with at most a negligible probability, using
a (encrypted) data structure, which fails with an inverse polynomial probability is insufficient. An adver-
sary could deduce information about encrypted data by just observing, whether a cryptographic protocol
successfully terminates or not.

The overall idea in the Stacked IBLT is to construct arrays A1, . . . , Algn where Ai has Cn/2i entries. Each
of the arrays has its own hash function hi mapping keys to a single entry in Ai. To support the ListEntries
operation, we start by peeling all elements in A1 that hash uniquely. We then proceed to A2 and so forth.
The critical property we require is that each time we peel, we successfully peel at least half of all remaining
key-value pairs. In this way, the number of entries in the next Ai to peel from, is always a constant factor
larger than the number of remaining key-value pairs. When we reach Algn, we finally peel the last key-value
pair. In this way, all we need from the hash functions hi, is that at least half the key-value pairs hash
uniquely with probability 1 − δ/ lg n. We prove that this is the case if the hi’s are just O(lg(lg(n)/δ))-wise
independent:

Theorem 2. Let x1, . . . , xn ∈ U be a set of n distinct keys from a universe U and let h : U → [Cn] be a
hash function drawn from a 2k-wise independent family of hash functions. If C ≥ 8e, then with probability
at least 1 − 4 · (8e/C)min{k,n/C} it holds that there are no more than n/2 indices i such that there exists a
j ̸= i with h(xi) = h(xj).

In addition to allowing implementations with limited independence, the geometrically decreasing sizes of the
arrays Ai also result in the improved space usage compared to classic IBLTs.

While Theorem 2 might at first sight appear to follow from standard approaches for analyzing hash
functions with limited independence, there are in fact several difficult obstacles that we need to overcome to
prove it. In particular, as k approaches n, the obvious approaches fail miserably. Furthermore, our Stacked
IBLTs critically needs Theorem 2 to hold for k all the way up to n. We believe the ideas we use to overcome
this barrier are interesting in their own right and may prove useful in future work. We thus discuss these
ideas and the barriers we overcome in Section 1.3.

Let us also comment on the constant 8e. It is not as small as one could hope, but it is small enough that
we have chosen to state it explicitly rather than hide it in O-notation. Presumably our analysis could be
tightened further to reduce it by a constant factor, but we have focused on a clean exposition of the proof.

Finally, let us also comment that when the number of remaining key-value pairs drop below lg(1/δ),
Theorem 2 is insufficient to guarantee a success probability of 1 − δ/ lg n due to the min{k, n/c} in the
exponent. For this reason, we change strategy and replace some of the arrays Ai by matrices with multiple
rows. We leave the details to later sections and mention here that this is what causes the O(lg(1/δ) lglg(1/δ))
term in the space usage of the Stacked IBLT.

In terms of computational efficiency our construction is slightly worse than that of Goodrich and Mitzen-
macher. Retrieving all key-value pairs from their IBLT has a computational cost of O(n · (1 + lg(1/δ)/ lg(n)),
while our construction requires O(n · lg(n/δ)). In our opinion, however, this is a small price to pay for achiev-
ing smaller IBLTs that require less randomness.

Encrypted Compression. We apply our new data structure to the encrypted compression problem, studied
by Fleischhacker, Larsen, and Simkin [FLS23]. Here one is given an array of ciphertexts of a homomorphic
encryption scheme, where at most t are encryptions of non-zero values. The goal of an encrypted compres-
sion scheme is to compress this vector as much as possible, without knowing what is inside the ciphertexts,
i.e. without knowing which entries in the vector are encryptions of zero and which are not. Apart from
being theoretically interesting, this problem also naturally appears as part of larger cryptographic proto-
cols [CDG+21, LT22]. We show that following the approach of Fleischhacker, Larsen, and Simkin one can use
our stacked IBLT data structure to obtain better encrypted compression schemes. Additionally, we show how
their approach can be generalized to work for arbitrary homomorphic encryption schemes. Note that their
work, required the encryption schemes to have plaintext spaces that grow at least linearly with the desired

3

upper bound on the error rate of their data structure. We provide a detailed description of the improved
compression scheme in Section A.

Rateless IBLTs. In a work subsequent to ours, Yang, Gilad, Alizadeh [YGA24] consider the setting of rateless
IBLTs. Here an encoder has a fixed set of source symbols and would like to encode them into an infinite
sequence of coded symbols. Without going into detail, these coded symbols should have several high-level
properties: The computation of the coded symbols should not depend on a fixed a-priori threshold of how
many source symbols will be in the data structure. The sequence of generated coded symbols should be linear
in the sense that two sequences of coded symbols can be subtracted to obtain a sequence of coded symbols
that represents the set difference of the corresponding sets. For any number of source symbols, one should
be able to decode them back from a sufficiently long prefix of the sequence of coded symbols.

As noted by Yang, Gilad, Alizadeh, the IBLT of Goodrich and Mitzenmacher [GM11] does not satisfy
these properties as the size of the data structure needs to be fixed at the start and there is no clear way of
viewing it as a infinite sequence of coded symbols. We will not prove this formally in our work, but note that
our stacked IBLTs naturally have these properties, as they can be constructed starting from the smallest
array and repeatedly building the larger arrays on top of it, viewing the array cells as coded symbols.

1.2 Some More Related Works.

A variant of IBLTs that may appear similar to ours are irregular IBLTs, as originally already suggested by
Goodrich and Mitzenmacher [GM11] and also studied by Lázaro and Balázs Matuz [LM21], where different
set elements are encoded using a different amount of hash functions. We note that our construction is regular,
since it is oblivious to the specific value of any one set element and all elements get treated equally. We believe
this to be helpful for applications, like encrypted compression, where the set elements are not visible to the
encoder generating the data structure.

In a recent work, that appeared subsequent to ours, by Belazzougui, Kucherov, Walzer [BKW24], the
authors consider IBLTs with very small failure probabilities as we do here. The idea behind their construction
is to augment the original IBLT of Goodrich and Mitzenmacher with a smaller backup stash data structure.
When decoding of the main IBLT fails, their peeling resorts to recovering the missing elements from the
stash. In comparison, our stacked IBLTs can conceptually be seen as an iterative version of this idea, as
we have a sequence of smaller and smaller “stashes”, moving on to peeling the smaller ones, when peeling
the bigger ones fails repeatedly. Furthermore, their work considers fully random hash functions, whereas our
work gets away with using hash functions with limited independence. Their construction results in a sketch
that is asymptotically comparable in size and has a better expected, but worse worst-case decoding time.

1.3 Technical Contributions

When analysing events involving hash functions of limited independence, one typically considers higher
moments of a sum of random variables that each depends only on a constant number of hash values. For our
Theorem 2, the natural random variables to consider would be the random variables Xi,j taking the value 1
if h(xi) = h(xj). Clearly there are no more than n/2 indices i such that there exists j ̸= i with h(xi) = h(xj)
if
∑

i ̸=j Xi,j ≤ n/2. To upper bound Pr[
∑

i̸=j Xi,j > n/2], we raise both sides of the inequality to the

k’th power and use that Pr[
∑

i ̸=j Xi,j > n/2] = Pr[(
∑

i̸=j Xi,j)
k > (n/2)k]. Using Markov’s inequality,

this probability is at most E[(
∑

i̸=j Xi,j)
k]/(n/2)k. Expanding the k’th power of the sum into a sum of

monomials and using linearity of expectation, we have E[(
∑

i ̸=j Xi,j)
k] =

∑
T∈{(i,j):i̸=j}k E[

∏
(i,j)∈T Xi,j].

Since each product depends on at most 2k hash values, and h is 2k-wise independent, we can analyse each
monomial as if h was truly random.

For the purpose of proving our theorem, this approach actually suffices to establish the theorem for
k <
√
n. However, for our application in IBLTs we need the theorem to hold for k up to Ω(n). The problem

is that as k approaches n, using that
∑

i ̸=j Xi,j is small as a proxy for having many elements hash to a unique

position is lossy. In essence, this is because ℓ elements hashing to the same value contributes around ℓ2 to

4

∑
i ̸=j Xi,j whereas it actually only corresponds to ℓ elements not hashing to a unique value. For this reason,

E[(
∑

i̸=j Xi,j)
k] is simply too large to give a meaningful bound from Markov’s inequality when k = Ω(

√
n).

In fact, it is not only the higher-moments method that is doomed, but any approach based on arguing that
Pr[
∑

i̸=j Xi,j > n/2] is small will fail. Consider for instance the case where k is Θ(n). Our Theorem 2 shows
that the probability that less than n/2 keys hash uniquely is exp(−Ω(n)). If we consider

∑
i̸=j Xi,j and even

assume that h is truly random, then the probability that the first n/ lg n keys all hash to the first n/ lg3 n
entries is (C lg3 n)−n/ lgn ≥ exp(−O(n lglg n/ lg n)) for constant C > 0. But when this happens, we have∑

i ̸=j Xi,j ≥ (n/ lg3 n)2
(
lg2 n
2

)
≈ n lg n. That is, Pr[

∑
i ̸=j Xi,j > n/2] ≥ exp(−O(n lglg n/ lg n)).

In light of this, it is not a priori clear which random variables are sensible to analyse, keeping in mind
that they should depend on only few hash values (for the sake of limited independence) and yet accurately
capture the event that at least n/2 elements hash to a unique value. We present two alternative proofs
circumventing this barrier.

In the first, and completely self-contained proof, we carefully define random variables Yi,j that actually
depend on all hash values. We then consider the k’th moment of a sum involving these Yi,j ’s and argue that
most monomials are 0 due to the special definition of the Yi,j ’s. Now that there are only very few non-zero
monomials left, we upper bound our Yi,j ’s by the Xi,j ’s above, bringing us back into a setup with monomials
depending on at most 2k hash values. Compared to going directly from the Xi,j ’s, what we win is that there
are much fewer monomials left in the sum. The initial pruning of monomials using the more involved Yi,j ’s
is a key technical innovation that we have not seen before and believe may be an inspiration in future work
analysing random variables of limited independence.

In the second proof, we invoke a previous theorem on k-wise independence fooling combinatorial rectan-
gles [EGL+98, GY20]. This proof is shorter than the first, but relies on the heavy lifting done in previous
works and does not yield the explicit small constant in our theorem.

2 Preliminaries

Let X,Y be sets, we denote by |X| the size of X and by X △ Y the symmetric set difference of X and Y ,
i.e., X △ Y = (X ∪ Y) \ (X ∩ Y) = (X \ Y) ∪ (Y \X). We write x← X to denote the process of sampling
a uniformly random element x ∈ X. Let v ∈ Xn be a vector. We write vi to denote its i-th component. Let
M ∈ Xn×m be a matrix. We write M [i, j] to denote the cell in the i-th row and j-th column. We write [n]
to denote the set {1, . . . , n}. We write lg without a specified base to denote the logarithm to base two.

3 Hashing Uniquely with Limited Independence

In this section, we prove our main technical result, Theorem 2, which we restate here for convenience.

Theorem 2 (restated). Let x1, . . . , xn ∈ U be a set of n distinct keys from a universe U and let h : U →
[Cn] be a hash function drawn from a 2k-wise independent family of hash functions. If C ≥ 8e, then with
probability at least 1− 4 · (8e/C)min{k,n/C} it holds that there are no more than n/2 indices i such that there
exists a j ̸= i with h(xi) = h(xj).

As discussed in Section 1.3, the straight forward approach of analysing moments of a sum
∑

i<j Xi,j with
Xi,j being an indicator for h(xi) = h(xj), does not give the desired result. In essence, this is because a
collision of ℓ elements contributes roughly ℓ2 to the sum.

In this section, we present two alternative proofs circumventing this barrier. We start by giving the self-
contained proof that introduces an elegant new trick to analysing k-wise independent random variables. We
then give a proof invoking results on k-wise independence fooling combinatorial rectangles. The remark that
the second proof does not yield the explicit constants in Theorem 2.

5

3.1 Proof via Moments

Our first step in the proof of Theorem 2 is thus to make a far less obvious definition of random variables.

Proof. Define random variables Yi,j with i ̸= j taking the value 1 if h(xi) = h(xj) and furthermore, for
all a with min{i, j} < a < max{i, j} we have h(xi) ̸= h(xa). Otherwise, Yi,j takes the value 0. Observe
that if elements xi1 , . . . , xiℓ are all those that hash to a concrete value v, and i1 < i2 < · · · < iℓ, then
Yi1,i2 = Yi2,i1 = Yi2,i3 = · · · = Yiℓ,iℓ−1 = 1 and all other Yi,j ’s with i or j in {i1, . . . , iℓ} are zero. The random
variable Yi,j is thus 1 if xi and xj hash to the same v, and furthermore, i and j are consecutive in the sorted
order of all elements hashing to v. Critically, a collision of ℓ elements contribute only 2ℓ − 2 to

∑
i ̸=j Yi,j .

On the negative side, these random variables Yi,j clearly depend on more than two hash values unlike the
Xi,j ’s.

Letting S = {x1, . . . , xn}, observe that if there more than n/2 keys x ∈ S such that there is a y ∈ S \{x}
with h(x) = h(y), then

∑
i ̸=j Yi,j > n/2. Let r = min{k, n/C}. Using Markov’s, we get

Pr

∑
i ̸=j

Yi,j > n/2

 = Pr

∑
i̸=j

Yi,j

r

> (n/2)r

 <
E
[(∑

i ̸=j Yi,j

)r]
(n/2)r

. (1)

We thus focus on bounding E[(
∑

i̸=j Yi,j)
r]. Expand it into its monomials

E

∑
i ̸=j

Yi,j

r =
∑

(i1,j1),...,(ir,jr)

E

[
r∏

h=1

Yih,jh

]
.

Here the sum ranges over all lists of r pairs (ih, jh) with ih ̸= jh. Notice that the product is 1 if and only if
all the indicators involved are 1. For a monomial

∏r
h=1 Yih,jh , think of the pairs (ih, jh) as edges of a graph

with the elements x1, . . . , xn as nodes. The critical observation is that if any node in this graph has at least
three distinct neighbors, then

∏r
h=1 Yih,jh = 0. To see this, assume the node xi has at least three distinct

neighbors. If xi has two neighbors xj1 , xj2 with j1 < j2 < i, then we cannot have both Yj1,i = Yi,j1 = 1
and Yj2,i = Yi,j2 = 1. This is because, by definition, Yj1,i can only be 1 if there are no elements xa with
h(xa) = h(xj1) and j1 < a < i. But a = j2 is an example of such an element when we also require
Yj2,i = Yi,j2 = 1. A similar argument applies to the case that xi has two neighbors xj1 , xj2 with i < j1 < j2.
Notice that this also implies that the monomial is 0 if the corresponding graph has a cycle since the node of
largest index on the cycle has an edge to two distinct neighbors of lower index. In combination, the monomial
can only be non-zero if the corresponding edges form connected components corresponding to paths (possibly
with duplicate edges).

Let Gr denote the set of all ordered lists L of r pairs L := (i1, j1), . . . , (ir, jr) (with ih ̸= jh for all h) such
that every connected component in the corresponding graph G(L) forms a path. Then

E

∑
i ̸=j

Yi,j

r =
∑
L∈Gr

E

 ∏
(i,j)∈L

Yi,j

 .

Now consider a monomial
∏

(i,j)∈L Yi,j for an L ∈ Gr. Define Xi,j as the random variable taking the value

1 if h(xi) = h(xj) and 0 otherwise. Here we use that Yi,j ≤ Xi,j and thus
∏

(i,j)∈L Yi,j ≤
∏

(i,j)∈L Xi,j .
Therefore

E

∑
i ̸=j

Yi,j

r ≤ ∑
L∈Gr

E

 ∏
(i,j)∈L

Xi,j

 .

What we have achieved is to upper bound E[(
∑

i<j Yi,j)
r] by the contribution from monomials corresponding

to graphs consisting of paths. Furthermore, for these monomials, we have replaced the Yi,j variables by the

6

simpler Xi,j variables that each only depend on two hash values. This allows us to handle the limited
independence of h.

Next, we bound E[
∏

(i,j)∈L Xi,j] for an L ∈ Gr. With the graph interpretation G(L) of L in mind,

we observe that the product is 1 if and only if, for every connected component in G(L), all nodes in the
component hash to the same value. Furthermore, the monomial depends on at most 2r ≤ 2k hash values
and thus the random variables behave as if h was truly random. For a connected component with qi nodes,
the probability all nodes hash to the same is precisely (Cn)−(qi−1). If the total number of nodes in G(L)
having at least one neighbor is q and the total number of connected components in G(L) formed by these
nodes and their edges is c, then

E

 ∏
(i,j)∈L

Xi,j

 = (Cn)−q+c.

For every q ≤ 2r and every c ≤ q/2, let Grq,c ⊆ Gr be the subset of lists L for which the corresponding graph
G(L) has c non-singleton connected components and those connected components together have q nodes.
Then

E

∑
i ̸=j

Yi,j

r ≤ 2r∑
q=2

q/2∑
c=1

∑
L∈Gr

q,c

E

 ∏
(i,j)∈L

Xi,j

 =

2r∑
q=2

q/2∑
c=1

|Grq,c|(Cn)−q+c.

We thus need to bound |Grq,c|. Here we show the following

Lemma 3. For all q ≤ 2r, c ≤ q/2 it holds that

|Grq,c| ≤
(
4er

q

)q−c

2rqrnqq−c.

Before we prove the lemma, let us use to finish our proof of Theorem 2. Continuing our calculations above
using Lemma 3, we have that

|Grq,c|(Cn)−q+c ≤
(

4er

qCn

)q−c

2rqrnqq−c

=

(
4er

qC

)q (
4er

Cn

)−c

2rqr.

Since we set r = min{k, n/C} and require C ≥ 8e, we have (4er/(Cn)) ≤ 1/4 and thus exploiting that the
sum over c is a geometric series we get

q/2∑
c=1

|Grq,c|(Cn)−q+c ≤ 2

(
4er

qC

)q (
4er

Cn

)−q/2

2rqr = 2

(
4ern

Cq2

)q/2

2rqr

Using again that n/C ≥ r and r ≥ q/2, we have 4ern/(Cq2) ≥ 4er2/q2 ≥ e and thus we may again use a
geometric series to conclude

E

∑
i ̸=j

Yi,j

r ≤ 2r∑
q=2

q/2∑
c=1

|Grq,c|(Cn)−q+c ≤ 4

(
4ern

C(2r)2

)r

(4r)r = 4

(
4en

C

)r

.

Plugging this back into the bound (1) we got from Markov’s inequality, we finally conclude

Pr

∑
i̸=j

Yi,j > n/2

 ≤ 4 ·
(
8e

C

)r

.

Recalling that r = min{k, n/C} completes the proof.

7

Counting Graphs (Proof of Lemma 3). To bound |Grq,c|, we first recall that every L ∈ Grq,c corresponds to a
graph consisting of c non-singleton connected components, each forming a path of qi nodes with q =

∑
i qi.

The set of (undirected) edges in G(L) thus has cardinality q − c ≤ r. We now argue that any L ∈ Grq,c can
be uniquely described by an element in

U :=

(
r

q − c

)
× ({0, 1} × [q − c])r−(q−c) ×

(
2(q − c)

q

)
× [n]q × [q]2(q−c)−q.

Here
(

r
q−c

)
is the set of all (q − c)-sized subsets of a universe of cardinality r. Notice that this indirectly

specifies a surjective function from U to Grq,c and thus

|Grq,c| ≤
(

r

q − c

)
(2(q − c))r−(q−c)

(
2(q − c)

q

)
nqqq−2c.

To describe an L ∈ Grq,c with an element from U , use an element in
(

r
q−c

)
to specify the first occurence of

each edge in L (where an edge (i, j) is first if neither (i, j) or (j, i) occurs earlier in L). For each of the
r − (q − c) remaining edges in order, use an element in {0, 1} × [q − c] to specify it as a copy of one of the
q − c first edges, where {0, 1} indicates whether to reverse the order of the end points. Next observe that
the q − c first edges have 2(q − c) end points of which precisely q are unique. Specify the first occurence of

each unique node on these edges using an element in
(
2(q−c)

q

)
. Next use an element in [n] for each such node

in order to specify it among the nodes x1, . . . , xn. Finally, for the remaining 2(q − c)− q end points, specify
them as an index into the q first occurrences of unique nodes. This information uniquely describes L.

Using that
(
2(q−c)

q

)
≤ 22(q−c) and the general inequality

(
r

q−c

)
≤ (er/(q − c))q−c, we conclude

|Grq,c| ≤
(

er

q − c

)q−c

(2(q − c))r−(q−c)22(q−c)nqqq−2c

≤
(
2er

q

)q−c

(2q)r−(q−c)22(q−c)nqqq−2c

=

(
4er

q

)q−c

2rqrnqq−c.

⊓⊔
Let us finish by commenting on our choice of bounding

∑
i ̸=j Yi,j rather than

∑
i<j Yi,j . This choice was

made for simplicity, but one may wonder whether focusing on the latter might result in tighter constants.
This does not seem to be the case, as then the assumption that there are more than n/2 keys x ∈ S such
that there is a y ∈ S \ {x} with h(x) = h(y), does not imply

∑
i<j Yi,j > n/2 (we use

∑
i̸=j Yi,j > n/2), but

only
∑

i<j Yi,j > n/4. We would thus lose a constant factor in Markov’s.

4 Proof via k-Wise Independence Fools Combinatorial Rectangles

We now give a second proof based on k-wise independence fooling combinatorial rectangles. This proof was
communicated to us by an anonymous reviewer.

We first introduce the notion of a combinatorial rectangle. A combinatorial rectangle is a function f :
[m]n → {0, 1} which is specified by n coordinate functions fi : [m]→ {0, 1} as f(x1, . . . , xn) =

∏
i∈m fi(xi).

We now use the following result, typically attributed to [EGL+98], although we cannot directly find this
statement in the version available online. A clean introduction to combinatorial rectangles and bounded
independence can, for instance, be found in [GY20].

Theorem 4. Let X1, . . . , Xn be k-wise independent random variables with uniform marginal distributions
over [m]. Then there is a constant a > 0 such that∣∣EX1,...,Xn [f(X1, . . . , Xn)]− Ex∈[m]n [f(x)]

∣∣ ≤ e−ak,

where Ex∈[m]n denotes a uniform random x ∈ [m]n.

8

With this tool in place, we now prove Theorem 2.

Proof. Recall that we are hashing into Cn bins. Let x1, . . . , xn ∈ U denote the n keys and let h : U → [Cn]
denote a hash function drawn randomly from a 2k-wise independent family of hash functions. Let Xi be the
random variable taking the value h(xi).

Let J ⊆ [Cn] be the indices of a subset of the bins, with |J | = t for a parameter t to be determined.
Define random variables Zj taking the value 1 if no element hashes to the value j and 0 otherwise. The
probability that all bins indexed by J are empty is E[

∏
j∈J Zj]. If we now define functions fi : [Cn]→ {0, 1}

taking the value 1 on x /∈ J and the value 0 for x ∈ J , we have that
∏

j∈J Zj =
∏n

i=1 fi(Xi), i.e.
∏

j∈J Zj is
in effect a combinatorial rectangle. By Theorem 4, we have

E

∏
j∈J

Zj

 ≤ Ex∈[Cn]n [f(x)] + e−ak.

But Ex∈[Cn]n [f(x)] = (1− t/Cn)n ≤ e−t/C . We now require t < aCk and conclude E[
∏

j∈J Zj] ≤ 2e−t/C .
Next, observe that if there are less than n/2 elements that hash to a unique value, then the number of

occupied bins is at most 3n/4. Vice versa, the number of unoccupied bins is at least Cn− 3n/4. If we also
have t < Cn − 3n/4, then we may bound the expected number of t-sized subsets of bins that are empty.
That is, if we let YJ =

∏
j∈J Zj , then we have just shown

E

 ∑
J∈(Cn

t)

YJ

 ≤ (Cn

t

)
2e−t/C .

On the other hand, we may also lower bound the expectation by

E

 ∑
J∈(Cn

n)

YJ

 ≥ Pr

∑
j

Zj > Cn− 3n/4

(Cn− 3n/4

t

)
.

Combining the two yields

Pr

∑
j

Zj > Cn− 3n/4

 ≤ 2e−t/C ·
(
Cn
t

)(
Cn−3n/4

t

)
≤ 2 ·

(
e−1/C(Cn− t)

Cn− 3n/4− t

)t

= 2 ·
(
e−1/C

(
1 +

3

4(C − 3/4− t/n)

))t

≤ 2 ·
(
e−1/C+(3/4)·1/(C−3/4−t/n)

)t
If we require t < n and C at least a sufficiently large constant, then this is exp(−Ω(t/C)). Setting t =
min{aCk, n} completes the proof.

5 Smaller IBLTs with Limited Independence

In this section, we present a new construction of IBLTs, which we call stacked IBLTs, that is both asymp-
totically smaller and requires less randomness (in Section 6 we also argue that the analysis of the original
IBLT cannot be strengthened to give bounds comparable to our stacked IBLT).

9

Init(h)

for 0 ≤ i < lg(n)− lg(τ)

Ti := BasicInit(1, ⌈Cn2−i⌉,hi)

for 0 ≤ i < lg(τ)

i′ := ⌊lg(n)− lg(τ)⌋+ i

Ti′ := BasicInit(2i, ⌈Cτ2−i⌉,hi′)

return (T0, . . . , T⌈lgn⌉−1)

Insert((T0, . . . , T⌈lgn⌉−1), S,h)

for 0 ≤ i < ⌈lgn⌉
Ti := BasicInsert(S,hi)

return (T0, . . . , T⌈lgn⌉−1)

ListEntries((T0, . . . , T⌈lgn⌉−1),h)

S′ := ∅
for 0 ≤ i < ⌈lgn⌉

Ti := BasicDelete(Ti, S
′)

S′ := S′ ∪ BasicListEntries(Ti)

return S′

Delete((T0, . . . , T⌈lgn⌉−1), S̃,h)

for 0 ≤ i < ⌈lgn⌉

Ti := BasicDelete(S̃,hi)

return (T0, . . . , T⌈lgn⌉−1)

Fig. 1. Our stacked IBLT construction using basic IBLTs as specified in Figure 2 as a building block. We have that
τ = C0 lg(1/δ) for a sufficiently large constant C0 > 0

5.1 Stacked IBLTs

In this section we introduce our new Stacked IBLTs that are more space efficient and allow for a lower
randomness complexity. Essentially the construction consists of lg n stacked smaller IBLTs. These IBLTs
will be decoded in order and each is sized, such that we will be able to prove that it allows decoding at least
half the remaining entries. This means that after decoding all lg n IBLTs, at most a single element is left to
decode which can then be trivially decoded.

Let n be the threshold for an IBLT and δ > 0 a desired failure probability. We can think of our Stacked
IBLT as consisting of multiple rows, with a k-wise independent hash function associated with each row for
k = Θ(lg(lg(n)/δ)). An element is hashed into one position in each row and stored there, like in the classic
IBLT. The key novelty of our solution is that the number of entries per row varies. Moreover, while a classic
IBLT focuses on peeling all elements, our analysis is based on peeling a constant fraction of the elements
from each row.

More formally, let τ = C0 lg(1/δ) for a sufficiently large constant C0 > 0 and assume first that n ≥ τ .
For i = 0, . . . , lg(n/τ), our IBLT has one row Ri with Cn2−i entries. Here C > 0 is a sufficiently large
constant, where C = 8e is provably sufficient. Finally, for i = 0, . . . , lg(τ), it has a group Gi consisting of
2i rows all with Cτ2−i entries. In case n < C0 lg(1/δ), our structure has a group Gi of 2i rows for every

i = lg(τ/n), . . . , lg(τ). In the group Gi, every row has Cτ2−i entries. The IBLT uses
∑lg(n/τ)

i=0 Cn2−i +∑lg(τ)
i=0 Cτ = O(n + lg(1/δ) lglg(1/δ)) space. In the formal description of our Stacked IBLT construction,

shown in Figure 1, we do not explicitly distinguish between the rows Ri and groups Gi, but rather view
them as smaller IBLTs that we call T1, . . . , Tlgn. For the analysis, however, distinguishing the smaller IBLTs
with one row and those with multiple rows is helpful.

Theorem 1 (restated). Given a threshold n, the Stacked IBLT supports Insert, Delete, and ListEntries
operations, where ListEntries succeeds with probability 1− δ if the number of key-value pairs is no more than
n. Furthermore, it uses space O(n + lg(1/δ) lglg(1/δ)) and requires only O(lg(lg(n)/δ))-wise independent
hashing.

Remark 1. We note that a k-wise independent hash function from a universe U to a universe of size γ
requires O(k lg(U)) bits. Since we require O(lg(n/δ) such functions, we observe that the total number of
random bits we need is O(lg(n/δ)(lg(1/δ) + lg lg(n)) lg(U)) bits. Regarding running times, the Insert and
Delete operations both require O(lg(n/δ)) evaluations of a O(lg(lg(n)/δ))-wise independent hash function,

10

BasicInit(ρ, γ,h)

K := 0ρ×γ

V := 0ρ×γ

C := 0ρ×γ

return (K,V ,C)

BasicInsert((K,V ,C), S,h)

foreach (k, v) ∈ S

foreach i ∈ [ρ]

j := hi(k)

K[i, j] := K[i, j] + k

V [i, j] := V [i, j] + v

C[i, j] := C[i, j] + 1

return (K,V ,C)

BasicListEntries((K,V ,C),h)

S′ := ∅
for (i, j) ∈ [ρ]× [γ]

if C[i, j] = 1

(k, v) := (K[i, j],V [i, j])

S′ := S′ ∪ {(k, v)}
return S′

BasicDelete((K,V ,C), S̃,h)

foreach (k, v) ∈ S̃

foreach i ∈ [ρ]

j := hi(k)

K[i, j] := K[i, j]− k

V [i, j] := V [i, j]− v

C[i, j] := C[i, j]− 1

return (K,V ,C,h)

Fig. 2. A simplified version of a basic IBLT for key space K and universe U . Both ⟨K,+⟩ and ⟨U ,+⟩ need to
form groups. The basic IBLT requires a number of rows ρ, a number of columns γ and a vector of hash functions
h ∈ {h : K → [γ]}ρ to initialize.

plus insertions in the table entries. The running time is dominated by the evaluations of the hash functions,
for a total time of O(k lg(n/δ)) per element.

Proof (Proof of Theorem 1). To analyse the probability that peeling succeeds, we focus on the case of n ≥ τ .
The other case is just a special case.

To argue that peeling succeeds with high probability, we consider a very restrictive form of peeling and
argue that even this process succeeds. Concretely, for i = 0, . . . , lg(n/τ), consider peeling all elements that
land alone in Ri (after having peeled elements landing alone in Rj with j < i). Then, for i = 0, . . . , lg(τ)
in turn, select the row of Gi where most elements hash alone and peel those elements. To prove that this
process succeeds in peeling all elements with probability at least 1 − δ, we define the events Ei occuring if
there are more than n2−(i+1) elements left after peeling from R0, . . . , Ri. Similarly, define Fi as the event
that more than τ2−(i+1) elements remain after peeling from R0, . . . , Rlg(τ), G0, . . . , Gi. We observe that if
Flg(τ) does not occur, then there are no more than 1/2 elements left, i.e. peeling succeeded.

The key step in our proof is to argue that the following two inequalities hold:

Pr[Ei | ∩i−1
j=0Ej] ≤

δ

4(lg(n/τ)− i+ 1)2
. (2)

and

Pr[Fi | ∩lg(n/τ)j=0 Ej ∩i−1
j=0 Fj] ≤ δ2/2. (3)

Observe that these two are sufficient as

Pr[Flg(τ)] ≥ Pr[∩lg(n/τ)j=0 Ej ∩lg(τ)j=0 Fj]

=

lg(n/τ)∏
i=0

(1− Pr[Ei | ∩i−1
j=0Ej])

lg(τ)∏
i=0

(1− Pr[Fi | ∩lg(n/τ)j=0 Ej ∩i−1
j=0 Fj])

11

≥
lg(n/τ)∏
i=0

(
1− δ

4(lg(n/τ)− i+ 1)2

)(
1− δ2/2

)lg(τ)+1

≥ 1−
lg(n/τ)∑
i=0

δ

4(i+ 1)2
− (lg(τ) + 1)δ2

2

≥ 1− δπ2

24
− δ

2
≥ 1− δ.

We start by showing (2). Observe that conditioned on ∩i−1
j=0Ej , we know that no more than n2−i elements re-

main after peeling from R0, . . . , Ri−1. We may condition on an arbitrary such set as the hash functions across
the rows are independent. So let S be a set of at most n2−i elements. The probability that there are more
than n2−(i+1) elements that do no hash alone in Ri is clearly maximized when |S| is n2−i. Theorem 2 gives

us that this probability is at most 4(8e/C)min{k/2,n2−i/C}. For C ≥ 16e, this is at most 4 ·2−min{k/2,n2−i/C}.
Since k = Θ(lg(lg(n)/δ)), we have 2−k/2 < δ/(4 lg22 n) ≤ δ/(4(lg(n/τ) − i + 1)2) for a big enough constant
in the Θ-notation. We also have n2−i/C = τ2lg(n/τ)−i/C. For big enough constant C0 (in the definition of
τ), this is at least 2 lg(1/δ)(lg(n/τ)− i+ 1) + 2 ≥ lg(1/δ) + 2 lg(lg(n/τ)− i+ 1)) + 2 (and this is by a large

margin) and we conclude 2−n2−i/C ≤ (δ/4)/(lg(n/τ)− i+ 1))2.

To show (3), note again that conditioned on ∩lg(n/τ)j=0 Ej ∩i−1
j=0Fj , there are at most τ2−i elements left after

peeling from R0, . . . , Rlg(n/τ), G0, . . . , Gi−1. Again, condition on an arbitrary set S of remaining elements.
The probability of Fi is clearly maximized if |S| = τ2−i. We split the proof in two cases. First, assume
τ2−i ≥ 4C. Since each of the 2i rows of Gi have Cτ2−i entries, and the rows have independent hash
functions, it follows by Theorem 2 and C ≥ 16e, that

Pr[Fi | ∩lg(n/τ)j=0 Ej ∩i−1
j=0 Fj] ≤

(
4 · 2−min{k,τ2−i/C}

)2i
≤
(
2−min{k/2,τ2−i/(2C)}

)2i
.

Here the last inequality assumes k = Θ(lg(lg(n)/δ)) is at least a sufficiently large constant. We also use
τ2−i/C − 2 ≥ τ2−i/C − τ2−i/(2C). We clearly have 2−k/2 ≤ δ2/2 for a big enough constant in the Θ-

notation. We also have (2−τ2−i/(2C))2
i

= 2−τ/(2C). This is again smaller than δ2/2 for big enough constant
C0 in the definition of τ = C0 lg(1/δ). Finally, for the case where |S| = τ2−i < 4C, we note that one row
of Gi has C|S| entries and thus the expected number of elements that collide with another is no more than
|S|2/(C|S|) = |S|/C. By Markov’s inequality, the probability that more than |S|/2 collide is no more than

2/C < 1/2. By independence of the rows, the chance that peeling fails is at most 2−2i . Since τ2−i < 4C, we

have 2i ≥ τ/(4C) = C0 lg(1/δ)/(4C). For C0 a big enough constant, this implies 2−2i < δ2/2.

6 Lower Bound on the Size of IBLTs

The original IBLT analysis by Goodrich and Mitzenmacher [GM11] shows that using truly random hash
functions and space O(nk) one can achieve a failure probability of O

(
n−k+2

)
. Stated in terms of δ and n,

the space usage of their solution is thus Ω(n lgn(1/δ)). One may wonder, whether their analysis is tight or
whether one could prove that IBLTs actually only require o(nk) space for a similar failure probability.

It turns out their space bound is essentially tight and can not be improved by much. Assume we have an
IBLT of size m storing keys k1, . . . , kn. Furthermore assume h1, . . . , hk are perfectly random hash functions,
which map each key to exactly k distinct locations. For an IBLT to be decodable, we must be able to find
a cell with a count of one at each step of the peeling process. If kn ≥ cm lgm for some sufficiently large
constant c, then each cell will have at least c lgm elements in expectation and thus by Chernoff bound with
high probability all cells have a count strictly larger than one. Thus it must hold that kn < cm lgm. Consider
two distinct keys that are inserted into the IBLT. The probability that both keys are hashed into exactly
the same cells is (

m

k

)−1

≥
(em

k

)−k

≥
(

en

c lgm

)−cm lgm/n

≥ n−cm lgm/n.

12

If we want the IBLT to be correct with probability at least 1− δ, then it has to holds that

n−cm lgm/n ≤ δ

and thus

cm lgm lg n

n
> lg(1/δ)

⇐⇒ m lgm >
n lg(1/δ)

c lg n
.

For this to hold, it must also hold that

m lg(n lg(1/δ)) >
n lg(1/δ)

c lg n

⇐⇒ m >
n lg(1/δ)

c lg(n) lg(n lg(1/δ))

and thus it must be true that

m >
n lg(1/δ)

c lg2(n lg(1/δ))
≥ n lgn(1/δ)

c lg2(n lg(1/δ))

for any choice of n ≥ 2.

7 Supporting Subtraction

Our IBLT can be made to support such an operation in a manner similar to the original IBLT construction.
As explained previously, we modify the basic IBLT from Section 5.1 to have an additional hash sum matrix
H where the values g(k) for keys k for some appropriate hash function g are added up. During peeling both
cells with a count of one or minus one can be peeled, whenever the hash of the key sum cell matches the hash
stored in the hash sum cell. These modification are described in Figure 3 and Figure 4. If g is a fully random
function, then it is straightforward to see that the modified construction will be correct. Using a function g
that requires little randomness is slightly more challenging. We assume that K ⊆ Zp for some prime p and
we use hash function ga(x) = ax mod q for some sufficiently large prime q > p, which was already used by
Mitzenmacher and Pagh [MP17] in the context of IBLTs. Such hash functions are useful due to the following
lemma.

Init′(h, g)

for 0 ≤ i < lg(n)− lg(τ)

Ti := BasicInit′(1, ⌈Cn2−i⌉,hi, g)

for 0 ≤ i < lg(τ))

i′ := ⌊lg(n)− lg(τ)⌋+ i

Ti′ := BasicInit′(2i, ⌈Cτ2−i⌉,hi′ , g)

return (T0, . . . , T⌈lgn⌉−1)

Insert′((T0, . . . , T⌈lgn⌉−1), S,h, g)

for 0 ≤ i < ⌈lgn⌉
Ti := BasicInsert′(S,hi, g)

return (T0, . . . , T⌈lgn⌉−1)

Delete((T0, . . . , T⌈lgn⌉−1), S̃,h, g)

for 0 ≤ i < ⌈lgn⌉

Ti := BasicDelete′(S̃,hi, g)

return (T0, . . . , T⌈lgn⌉−1)

ListEntries′(h, g, (T0, . . . , T⌈lgn⌉−1))

S+ := ∅, S− := ∅
for 0 ≤ i < ⌈lgn⌉

Ti := BasicDelete′(Ti, S+, S−,hi, g)

(S′
+, S

′
−) := BasicListEntries′(Fi,hi, g)

S+ := S+ ∪ S′
+, S− := S− ∪ S′

−

return S+ ∪ S−

Fig. 3. Modified stacked IBLT supporting subtraction. It makes use of the modified basic IBLT specified in Figure 4.

13

Lemma 5. For any ℓ ∈ N, any k1, . . . , kℓ ∈ Zp, any σ1, . . . , σℓ ∈ {1,−1}, it holds that

Pr

[
ga

(ℓ∑
i=1

σiki

)
=

ℓ∑
i=1

σiga (ki) mod q

]
≤ 2ℓp+ 1

q
,

where the probability is taken over the random choice of a ∈ Z∗
q .

Proof. Fix some arbitrary k1, . . . , kℓ ∈ Zp and σ1, . . . , σℓ ∈ {1,−1}. Observe that

ℓ∑
i=1

σiki ≥ −ℓp

⇐⇒ ℓp+

ℓ∑
i=1

σiki ≥ 0

Next we observe that

ga

(
ℓ∑

i=1

σiki

)
=

ℓ∑
i=1

σiga (ki) mod q

⇐⇒ a
∑ℓ

i=1 σiki =

ℓ∑
i=1

σia
ki mod q

⇐⇒ aℓp+
∑ℓ

i=1 σiki = aℓp
ℓ∑

i=1

σia
ki mod q.

On the left side of the equation we have a polynomial of degree at most 2ℓp with indeterminant a. On
the right hand side we have a different polynomial of degree at most ℓ(p + 1) with indeterminant a. These
polynomials can agree on at most 2ℓp+ 1 points and thus the statement follows. ⊓⊔

Theorem 6. Let h be a vector of functions drawn from appropriate families of lg(lg(n)/δ)-wise independent

functions and let g : Zp → Zq be chosen uniformly at random as described above for q ≥ 2Cn3 lg(1/δ) lglg(1/δ)p
δ

for some sufficiently large constant C. Then for the modified IBLT described in Figure 3, for any pair of sets
S, S′ ⊆ U such that |S △ S′| < n, it holds that

Pr[ListEntries′(h, g, Insert′(h, g, S)− Insert′(h, g, S′)) = S △ S′] ≥ 1− 2δ.

Proof. Note that in our new decoding process, we may have counter entries of one or minus one for cells
that contain more than one key. To see this consider a cell with k1+ k2− k3, where k1, k2, k3 are all distinct.
The count is one, but the cell actually still contains three keys. Storing the sum of hashes of the keys in a
cell is intended to prevent mistakenly considering such a cell peelable. This is the only new source of failure
for the decoding algorithm. Mistaking a peelable cell as not peelable is not possible.

Recall that an IBLT is a key-value datastructure and thus keys are unique. That is, every key is inserted
into one of the individual IBLTs that we will subtract from each other at most once. Obviously, a key
may still be inserted in both, one, or neither of the two IBLTs. First, consider an inefficient hash function
g̃ : K → {0, 1}|K| defined as mapping a key k to the bitstring of all zeroes with a single one bit at position
k. Note that for sets X and Y of keys, the value∑

x∈X

g̃(x)−
∑
y∈Y

g̃(y)

fully encodes the symmetric set difference between X and Y . Thus using this hash function we ensure that
no cell is ever peeled incorrectly and we thus obtain the correct output from the decoding procedure.

14

BasicInit′(ρ, γ,h, g)

K := 0ρ×γ

V := 0ρ×γ

C := 0ρ×γ

H := 0ρ×γ

return (K,V ,C,H)

BasicListEntries′((K,V ,C,H),h, g)

S+ := ∅, S− := ∅
for (i, j) ∈ [ρ]× [γ]

if C[i, j] ∈ {1,−1} and C[i, j] ·H[i, j] = g(C[i, j] ·K[i, j])

(k, v) := (C[i, j] ·K[i, j],C[i, j] · V [i, j])

if C[i, j] = 1

S+ := S+ ∪ {(k, v)}
else

S− := S− ∪ {(k, v)}
return (S+, S−)

BasicInsert′((K,V ,C,H), S,h, g)

foreach (k, v) ∈ S

foreach i ∈ [ρ]

j := hi(k)

K[i, j] := K[i, j] + k

V [i, j] := V [i, j] + v

C[i, j] := C[i, j] + 1

H[i, j] := H[i, j] + g(k)

return (K,V ,C,H)

BasicDelete′((K,V ,C,H), S̃−, S̃+,h, g)

foreach (b, k, v) ∈ {(1, k, v)|(k, v) ∈ S̃+} ∪ {(−1, k, v)|(k, v) ∈ S̃−}
foreach i ∈ [ρ]

j := hi(k)

K[i, j] := K[i, j]− b · k
V [i, j] := V [i, j]− b · v
C[i, j] := C[i, j]− b

H[i, j] := H[i, j]− b · g(k)
return (K,V ,C,H)

Fig. 4. The modified basic IBLT that supports subtraction of IBLTs. This modified IBLT additionally requires a
hash function g : K → Zq sampled from the family described above.

Let us fix a vector of hash functions h and consider two different IBLT decoding runs. In the first g̃ is
used as the hash function. In the second one ga is used. As long as ga makes no mistakes, the two peeling
processes will behave identically. Thus to show that decoding works correctly, we simply need to show that
peeling using ga behaves identically to using g̃. Let Ei,c be the event that a cell c is not peelable after i steps
in the decoding process using g̃, but

ga

(∑
k∈ki,c

σkk
)
=
∑

k∈ki,c

σkga (k) mod q,

where ki,c are the remaining keys in cell c after i steps of peeling using g̃ and σk is the corresponding sign
of key k. Note that the events Ei,c do not depend on whether ga correctly identified other cells in previous
steps as peelable since we consider the peeling process according to g̃, not according to ga. By Lemma 7 we
know that

Pr[Ei,c] = Pr

ga(∑
k∈ki,c

σkk
)
=
∑

k∈ki,c

σkga (k) mod q

 ≤ δ(2|ki,c|p+ 1)

2Cn3 lg(1/δ) lglg(1/δ)p

≤ δnp

C · n3 lg(1/δ) lglg(1/δ)p

≤ δ

Cn2 lg(1/δ) lglg(1/δ)
,

where the randomness is taken over the choice of a. By union bounding over all n peeling steps and all
Cn lg(1/δ) lglg(1/δ) cells of the data structure we obtain an additional error of at most δ. Adding this error
to the error derived from Theorem 1 yields the theorem statement. ⊓⊔

15

References

AGL+17. Giuseppe Ateniese, Michael T. Goodrich, Vassilios Lekakis, Charalampos Papamanthou, Evripidis
Paraskevas, and Roberto Tamassia. Accountable storage. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki
Kikuchi, editors, ACNS 17: 15th International Conference on Applied Cryptography and Network Security,
volume 10355 of Lecture Notes in Computer Science, pages 623–644, Kanazawa, Japan, July 10–12, 2017.
Springer, Heidelberg, Germany. doi:10.1007/978-3-319-61204-1_31. 1

BKW24. Djamal Belazzougui, Gregory Kucherov, and Stefan Walzer. Better space-time-robustness trade-offs for
set reconciliation. In Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svenson, editors, ICALP
2024: 51th International Colloquium on Automata, Languages and Programming, LIPIcs, Tallinn, Estonia,
July 8–12, 2024. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. 1.2

CDG+21. Seung Geol Choi, Dana Dachman-Soled, S. Dov Gordon, Linsheng Liu, and Arkady Yerukhimovich. Com-
pressed oblivious encoding for homomorphically encrypted search. In Giovanni Vigna and Elaine Shi,
editors, ACM CCS 2021: 28th Conference on Computer and Communications Security, pages 2277–2291,
Virtual Event, Republic of Korea, November 15–19, 2021. ACM Press. doi:10.1145/3460120.3484792.
1.1, 1.1

DKRT15. Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva Rotenberg, and Mikkel Thorup. Hashing for statistics
over K-partitions. In Venkatesan Guruswami, editor, 56th Annual Symposium on Foundations of Computer
Science, pages 1292–1310, Berkeley, CA, USA, October 17–20, 2015. IEEE Computer Society Press. doi:
10.1109/FOCS.2015.83. 1

DR09. Martin Dietzfelbinger and Michael Rink. Applications of a splitting trick. In Susanne Albers, Alberto
Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas, editors, ICALP 2009:
36th International Colloquium on Automata, Languages and Programming, Part I, volume 5555 of Lec-
ture Notes in Computer Science, pages 354–365, Rhodes, Greece, July 5–12, 2009. Springer, Heidelberg,
Germany. doi:10.1007/978-3-642-02927-1_30. 1

EGL+98. Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Veličković. Efficient approximation
of product distributions. Random Struct. Algorithms, 13(1):1–16, aug 1998. 1.3, 4

EGUV11. David Eppstein, Michael T. Goodrich, Frank Uyeda, and George Varghese. What’s the difference? efficient
set reconciliation without prior context. ACM SIGCOMM Computer Communication Review, 41(4):218–
229, August 2011. doi:10.1145/2043164.2018462. 1

FLS22. Nils Fleischhacker, Kasper Green Larsen, and Mark Simkin. Property-preserving hash functions for
hamming distance from standard assumptions. In Orr Dunkelman and Stefan Dziembowski, editors,
Advances in Cryptology – EUROCRYPT 2022, Part II, volume 13276 of Lecture Notes in Computer
Science, pages 764–781, Trondheim, Norway, May 30 – June 3, 2022. Springer, Heidelberg, Germany.
doi:10.1007/978-3-031-07085-3_26. 1

FLS23. Nils Fleischhacker, Kasper Green Larsen, and Mark Simkin. How to compress encrypted data. In Carmit
Hazay and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023, Part I, volume 14004 of
Lecture Notes in Computer Science, pages 551–577, Lyon, France, April 23–27, 2023. Springer, Heidelberg,
Germany. doi:10.1007/978-3-031-30545-0_19. 1, 1.1, A, A.1, A.1, A.1, A.3, A.3, A.4, A.5, 7, A.5, A.6,
A.6

GM11. Michael T. Goodrich and Michael Mitzenmacher. Invertible bloom lookup tables. In 49th Annual Aller-
ton Conference on Communication, Control, and Computing (Allerton), pages 792–799. IEEE Computer
Society Press, September 28–30, 2011. doi:10.1109/Allerton.2011.6120248. 1, 1.1, 1.2, 6

GY20. Parikshit Gopalan and Amir Yehudayoff. Concentration for limited independence via inequalities for the
elementary symmetric polynomials. Theory of Computing, 16(17):1–29, 2020. 1.3, 4

LM21. Francisco Lázaro and Balázs Matuz. Irregular invertible bloom look-up tables. In 11th International
Symposium on Topics in Coding, ISTC 2021, Montreal, QC, Canada, August 30 - Sept. 3, 2021, pages
1–5. IEEE, 2021. 1.2

LT22. Zeyu Liu and Eran Tromer. Oblivious message retrieval. In Yevgeniy Dodis and Thomas Shrimpton,
editors, Advances in Cryptology – CRYPTO 2022, Part I, volume 13507 of Lecture Notes in Computer
Science, pages 753–783, Santa Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg, Germany.
doi:10.1007/978-3-031-15802-5_26. 1.1, 1.1

MP17. Michael Mitzenmacher and Rasmus Pagh. Simple multi-party set reconciliation. Distributed Computing,
31:441–453, October 2017. doi:10.1007/s00446-017-0316-0. 1, 7

MTZ03. Yaron Minsky, Ari Trachtenberg, and Richard Zippel. Set reconciliation with nearly optimal com-
munication complexity. IEEE Transactions on Information Theory, 49(9):2213–2218, September 2003.
doi:10.1109/TIT.2003.815784. 1

16

https://doi.org/10.1007/978-3-319-61204-1_31
https://doi.org/10.1145/3460120.3484792
https://doi.org/10.1109/FOCS.2015.83
https://doi.org/10.1109/FOCS.2015.83
https://doi.org/10.1007/978-3-642-02927-1_30
https://doi.org/10.1145/2043164.2018462
https://doi.org/10.1007/978-3-031-07085-3_26
https://doi.org/10.1007/978-3-031-30545-0_19
https://doi.org/10.1109/Allerton.2011.6120248
https://doi.org/10.1007/978-3-031-15802-5_26
https://doi.org/10.1007/s00446-017-0316-0
https://doi.org/10.1109/TIT.2003.815784

MV12. Michael Mitzenmacher and George Varghese. Biff (bloom filter) codes: Fast error correction for large data
sets. In Giuseppe Caire, Michelle Effros, Hans-Andrea Loeliger, and Alexander Vardy, editors, 2012 IEEE
International Symposium on Information Theory, pages 483–487. IEEE Computer Society Press, July 1–6
2012. doi:10.1109/ISIT.2012.6284714. 1

OAB+17. A. Pinar Ozisik, Gavin Andresen, George Bissias, Amir Houmansadr, and Brian Levine. Graphene: A
new protocol for block propagation using set reconciliation. In Joaquin Garcia-Alfaro, Guillermo Navarro-
Arribas, Hannes Hartenstein, and Jordi Herrera-Joancomart́ı, editors, Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology, ESORICS 2017 International Workshops, DPM 2017 and CBT
2017, volume 10436 of Lecture Notes in Computer Science, pages 420–428, Oslo, Norway, 14–15 2017.
Springer, Heidelberg, Germany. doi:10.1007/978-3-319-67816-0_24. 1

Tho17. Mikkel Thorup. Fast and powerful hashing using tabulation. Communications of the Association for
Computing Machinery, 60(7):94–101, July 2017. doi:10.1145/3068772. 1

YGA24. Lei Yang, Yossi Gilad, and Mohammad Alizadeh. Practical rateless set reconciliation. In Aruna Senevi-
ratne, Darryl Veitch, Minlan Yu, and Vyas Sekar, editors, ACM SIGCOMM 2024: Proceedings of the ACM
SIGCOMM 2024 Conference, Sydney, Australia, August 4–8, 2024. ACM Press. 1.1

A Encrypted Compression

In this section, we show that the approach towards compressing encrypted data of Fleischhacker, Larsen,
and Simkin [FLS23] is compatible with our new stacked IBLT. In addition, we generalize their construction
to work with encryption schemes that have arbitrarily small plaintext spaces.

A.1 Additional Preliminaries

For a set Xn, we use the scissor operator ✄(Xn) := {(x1, . . . , xn) ∈ Xn | xi ̸= xj ∀i, j ∈ [n]} to denote the
subset of Xn consisting only of those vectors with unique entries.

Definition 1 (Sparse Vector Representation). Let Fq be a field and let a ∈ Fn
q be a vector. The sparse

representation of a is the set sparse(a) := {(i, ai) | ai ̸= 0}.

Homomorphic Encryption Informally, a homomorphic encryption scheme allows to compute an encryp-
tion of f(m) given only the description of f and an encryption of m. Throughout the paper, we assume that
functions are represented as circuits composed of addition and multiplication gates. We recall the formal
definition of a homomorphic encryption scheme, closely following the notation of [FLS23].

Definition 2. A homomorphic encryption scheme E is defined by a tuple of PPT algorithms (Gen,Enc,Eval,
Dec) that work as follows:

Gen(1λ): The key generation algorithm takes the security parameter 1λ as input and returns a secret key
sk and public key pk. The public key implicitly defines a message space M and ciphertext space C. We
denote the set of all public keys as P.

Enc(pk,m): The encryption algorithm takes the public key pk and message m ∈ M as input and returns a
ciphertext c ∈ C.

Eval(pk, f, c): The evaluation algorithm takes the public key pk, a function f : Mn → Mm, and a vector
c ∈ Cn of ciphertexts as input and returns a new vector of ciphertexts c̃ ∈ Cm.

Dec(sk, c): The deterministic decryption algorithm takes the secret key sk and ciphertext c ∈ C as input and
returns a message m ∈M∪ {⊥}.

Throughout the paper it is assumed that the ciphertext size is fixed and does not increase when applying
the homomorphic evaluation algorithm. We extend the definition of Enc and Dec to vectors and matrices of
messages and ciphertexts respectively, by applying them componentwise, i.e., for any matrix M ∈ Mn×m,
we have Enc(pk,M) = C with C ∈ Cn×m and C[i, j] = Enc(pk,M [i, j]) and equivalently Dec(sk,C) = M ′

with M ′ ∈Mn×m and M ′[i, j] = Dec(sk, C[i, j]). This also applies recursively when, for instance, decrypting

17

https://doi.org/10.1109/ISIT.2012.6284714
https://doi.org/10.1007/978-3-319-67816-0_24
https://doi.org/10.1145/3068772

a vector of matrices of ciphertexts. Let E be an additively homomorphic encryption scheme with message
spaceM = Fq for some prime power q. Let f : F2

q → Fq, f(a, b) := a+b and let gα : Fq → Fq, g(a) := α ·a for
any constant α ∈ Fq. For notational convenience we write Eval(pk, f, (c1, c2)

⊺) as c1 ⊞ c2 and Eval(pk, gα, c)
as α ⊡ c with pk being inferrable from context. We naturally extend these notions to vectors, i.e. for two
vectors c, c′ ∈ Cn we denote c ⊞ c′ = (c0 ⊞ c′0, . . . , cn ⊞ c′n)

⊺ and for a vector α ∈ Mn we denote α ⊡ c =
(α0 ⊡ c, . . . , α0 ⊡ c)⊺. For the sake of simplicity we restrict ourselves to homomorphic encryption schemes
with unique secret keys, i.e. for a given pk, there exists at most one sk, such that (sk, pk) ← Gen(1λ). The
unique secret key is denoted as Gen−1(pk) and we stress that the function Gen−1(·) does not need to be
efficiently computable.

We recall the definition of ciphertexts valid relative to a class of circuits and of a ciphertext compression
scheme from [FLS23].

Definition 3 (Z-Validity). Let (Gen,Enc,Eval,Dec) be a homomorphic encryption scheme, let Z be a class
of circuits, and let pk be a public key. A vector c of ciphertexts is Z-valid for pk, iff for all functions f ∈ Z it
holds that ⊥ /∈ Dec(Gen−1(pk), c) and Dec(Gen−1(pk),Eval(pk, f, c) = f(Dec(sk, c)). We denote by vld(Z, pk)
the set of ciphertext vectors Z-valid for pk.

Definition 4 (Ciphertext Compression Scheme). Let E = (Gen,Enc,Eval,Dec) be a homomorphic pub-
lic key encryption scheme with ciphertext size ξ = ξ(λ). Let P be the public key space of E. For each pk ∈ P
let Fpk be a set of ciphertext vectors. A δ-compressing, (1 − ϵ)-correct ciphertext compression scheme for
the family F := {Fpk | pk ∈ P} is a pair of PPT algorithms (Compress,Decompress), such that for any
(sk, pk)← Gen(1λ) and any c ∈ Fpk the output length of Compress(pk, c) is at most δξ|c| and it holds that

Pr[Decompress(sk,Compress(pk, c)) = sparse(Dec(sk, c))] = 1− ϵ(λ),

where the probability is taken over the random coins of the compression and decompression algorithms.

Just like the construction of [FLS23], our construction described in Section A.4 works for ciphertext
vectors of low Hamming weight, which allow for the homomorphic evaluation of inner product functions.
The following two definitions, taken verbatim from [FLS23] are recalled in the following.

Definition 5 (Inner Product Functions). The class of inner product functions is the set of functions
Zip = {fa | a ∈ Fn

q } with
fa : Fn

q → Fq, fa(x) := ⟨a,x⟩.

Definition 6 (Zip-Valid Low Hamming Weight Ciphertext Vectors). Let E = (Gen,Enc,Eval,Dec)
be a homomorphic public key encryption scheme. For any pk ∈ P, let

F ip
t,pk :=

{
c ∈ vld(Zip, pk) | hw(Dec(Gen−1(pk), c)) < t

}
.

We then define the family of Zip-valid ciphertext vectors with low hamming weight as F ip
t := {F ip

t,pk | pk ∈ P}.

A.2 Pseudorandom Functions with Variable Codomains

The construction presented in Section A.4 relies on a pseudorandom function that needs to be able to produce
outputs from variable codomains. We define such a variant of PRFs here.

Definition 7 (Pseudorandom Function with Variable Codomain). An efficiently computable function
PRF : {0, 1}λ×N×{0, 1}∗ → N is a pseudorandom function with variable codomain, if it satisfies the following
properties.

1. For any s ∈ {0, 1}λ, any γ ∈ N with log γ = poly(λ), and any x ∈ {0, 1}∗, it holds that PRF(s, γ, x) ∈ [γ].

18

2. Let G be the set of all functions g : N× {0, 1}∗ → N such that for all γ ∈ N and all x ∈ {0, 1}∗ it holds
that g(γ, x) ∈ [γ]. For all PPT adversaries A it holds that

|Pr[APRF(s,·,·)(1λ) = 1]− Pr[Ag(·,·)(1λ) = 1]| ≤ negl(λ)

where the probabilities are taken over the uniform choice of s ∈ {0, 1}λ and g ∈ G respectively.

While this funky definition of a PRF is helpful to us as an abstraction, such PRFs are luckily existentially
equivalent to regular PRFs. To see this, consider a regular PRF PRF′ : {0, 1}λ × {0, 1}∗ → {0, 1}λ. We can
construct a PRF with variable codomain PRF as follows. On input (s, γ, x) first compute s′ := PRF′(s, γ). This
step gives us (computationally) independent keys for the PRF evaluations for different output domains. Then
compute y′ := PRF′(s′, x), this already gives us a pseudorandom value however it’s from the wrong domain.
We can now stretch y′ to a sufficient length using a pseudorandom generator and finally reduce it modulo γ
to get a pseudorandom value in [γ]. A simple hybrid argument can be used to establish pseudorandomness.

A.3 Wunderbar Pseudorandom Vectors over K ∈ Fη
q

As in the original construction, the ciphertext compression scheme relies on wunderbar pseudorandom vec-
tors. The construction requires that the the universe K over which the wunderbar pseudorandom vector
operates is “large enough”. In [FLS23] this was achieved by requiring that the field the encryption scheme
operates on is large. Here we show how the same can be achieved by instead defining K ⊆ Fη

q for an arbitrar-
ily small q and large enough η. We first recall the definition of a a wunderbar pseudorandom vector taken
verbatim from [FLS23].

Definition 8. A pseudorandom vector with index recovery for an efficiently sampleable universe K = K(λ)
consists of a triple of ppt algorithms (Sample,Entry, Index) such that

Sample(1λ, 1n): The sampling algorithm takes as input the security parameter λ and the vector length n in
unary and outputs the description of a pseudorandom vector s.

Entry(s, i): The deterministic retrieving algorithm takes as input a description s and an index i ∈ [n] and
outputs a value ki ∈ K.

Index(s, k): The deterministic index recovery algorithm takes as input a description s and a value k and
outputs either an index i ∈ [n] or ⊥.

A pseudorandom vector with index recovery is correct, if for all vector lengths n = poly(λ) and all seeds
s← Sample(1λ, 1n) it holds that:

1. For all indices i ∈ [n] it holds that Index(s,Entry(s, i)) = i.
2. For all all k∗ ̸∈ {Entry(s, i) | i ∈ [n]} it holds that Index(s, k∗) = ⊥.

The pseudorandom vector is wunderbar if the description of a vector has length O(λ) and the runtime
of Entry and Index is O(polylog(n)). A pseudorandom vector is secure, if for all n = poly(λ) and all ppt
algorithms A ∣∣∣∣∣∣∣∣∣∣

Pr


s← Sample(1λ, 1n),

k :=

Entry(s, 1)
...

Entry(s, n)

 : A(k)

− Pr[k←✄(Kn) : A(k)]

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

Fleischhacker, Larsen, and Simkin [FLS23] construct a wunderbar pseudorandom vector for K ⊆ Fq from
a pseudorandom permutation. The construction essentially just takes a PRP over Fλ

2 and uses an efficiently
computable and invertible injective function to map values from Fλ

2 to Fq and back. The construction is
easily generalized for K ⊆ S for any set S as long as there exists an efficiently computable and invertible
injective function from Fλ

2 to S.

19

The new construction requires K ⊆ Fη
q for some η and such that |K| > α for some given lower bound α.

We specify the required injective function in the following.
Let decompp : N → [p]∗ denote the function that maps an integer to its canonical p-ary representation

and let projp : [p]∗ → N be its inverse. Let q = pm be an arbitrary prime power and let η = ⌈λ/ log q⌉ =
⌈λ/(m log p)⌉ We then define an injective function

binToField : Fλ
2 → Fη

q binToField(b) = d

where

di :=

m−1∑
j=0

cim+jx
j

where
c := decompq(proj2(b)).

We further specify the inverse function as

fieldToBin : Fη
q → Fλ

2 ∪ {⊥}

fieldToBin(d) :=

{
⊥ if projp(c) ≥ 2λ

decomp2(projq(c)) otherwise

where

di =

m−1∑
j=0

cim+jx
j .

For a given α, any λ = Ω(logα) leads to the required wunderbar pseudorandom vector.

A.4 A Ciphertext Compression Scheme for Small Fields

In this section we present a construction of a ciphertext compression scheme, that in contrast to [FLS23]
also works if the encryption scheme is defined over an arbitrarily small field, even for F2.

A.5 The Generalized Helpful Lemma

Fleischhacker, Larsen, and Simkin [FLS23] state the following helpful lemma.

Lemma 7 (Helpful Lemma [FLS23, Lemma 13]). Let K ⊆ Fq, (m1, . . . ,mn) ∈ Fn
q and I ⊆ [n] be

arbitrary such that
∑

i∈I mi ̸= 0 and there exist i, i′ ∈ I with 0 ̸∈ {mi,mi′}. It holds that

Pr

[
k← Kn : ∃j ∈ [n]. kj =

∑
i∈I kimi∑
i∈I mi

]
≤ n

|K|

We generalize this lemma to vectors of Fq elements.

Lemma 8 (Generalized Helpful Lemma). Let η ∈ N+, K ⊆ Fη
q , (m1, . . . ,mn) ∈ Fn

q , and I ⊆ [n] be
arbitrary such that

∑
i∈I mi ̸= 0 and there exist i, i′ ∈ I with 0 ̸∈ {mi,mi′}. It holds that

Pr

[
k← Kn : ∃j ∈ [n].kj =

(∑
i∈I

mi

)−1 ·
∑
i∈I

mi · ki

]
≤ n

|K|

Proof. Observe that kj ∈ K ⊆ Fη
q can be interpreted as polynomials of degree at most η−1 with coefficients

in Fq. Similarly, mi ∈ Fq is simply a constant polynomial over Fq and the vector-scalar multiplications are
in fact correct polynomial multiplications resulting in polynomials of degree at most η − 1 with coefficients
in Fq. Therefore, the lemma can be reinterpreted as working over the extension field Fqη . It then follows
directly as a special case of Lemma 7 for Fqη . ⊓⊔

20

Insert1(S, s1)

for 0 ≤ i < log t− log τ

Fi := BasicInsert1(1, ⌈Ct2−i⌉, S, (i, s1))
for 0 ≤ i < log τ

i′ := ⌊log t− log τ⌋

Fi′ := BasicInsert1(2
i, ⌈Cτ2−i⌉, S, (i′, s1))

return (F0, . . . , F⌈log t⌉−1)

ListEntries1((F0, . . . , F⌈log t⌉−1), s1)

S′ := ∅
for 0 ≤ i < ⌈log t⌉

Fi := BasicDel1(Fi, S
′, (i, s1))

S′ := S′ ∪ BasicListEntries1(Fi, (i, s1))

return S′

Insert2(S, s1, s2)

for 0 ≤ i < log t− log τ

Fi := BasicInsert2(1, ⌈Ct2−i⌉, S, (i, s1), s2)
for 0 ≤ i < log τ

i′ := ⌊log t− log τ⌋

Fi′ := BasicInsert2(2
i, ⌈Cτ2−i⌉, S, (i′, s1), s2)

return (F0, . . . , F⌈log t⌉−1)

ListEntries2((F0, . . . , F⌈log t⌉−1), s1, s2)

S′ := ∅
for 0 ≤ i < ⌈logn⌉

Fi := BasicDel2(Fi, S
′, (i, s1), s2)

S′ := S′ ∪ BasicListEntries2(Fi, (i, s1), s2)

return S′

Fig. 5. Variants of the simplified stacked IBLT from this work. These use modified basic IBLTs specified in Figure 6
respectively as a building blocks. As with the original stacked IBLT we have τ = C0κ for a sufficiently large constant
C0 > 0 and C = 8e. Changes between successive modifications are marked in gray.

As in [FLS23], the following corollary follows from the observation that due to the birthday bound the
statistical distance between sampling from Kn and ✄(Kn)) is at most n2/|K|.

Corollary 9. Let η ∈ N+, K ⊆ Fη
q , (m1, . . . ,mn) ∈ Fn

q , and I ⊆ [n] be arbitrary such that
∑

i∈I mi ̸= 0 and
there exist i, i′ ∈ I with 0 ̸∈ {mi,mi′}. It holds that

Pr

[
k← Kn : ∃j ∈ [n].kj =

∑
i∈I kimi∑
i∈I mi

]
≤ n2 + n

|K|

A.6 Construction

The construction presented here essentially takes the construction of Fleischhacker, Larsen, and Simkin [FLS23],
applies the improved IBLT construction from this work, and instantiates the wunderbar pseudorandom vec-
tor using the construction forK ⊆ Fη

q described in Section A.3. We give a full formal proof of the construction
here.

Before we give the actual construction we first specify two variants of the stacked IBLT construction
from this work and prove several lemmas about them. These two variants are specified in Figure 5 and
Figure 6. We now state and prove several lemmas about these two variants. The first lemma states that
the first variant described in Figure 5 still works as expected, when truly random functions are replaced by
pseudorandom ones.

Lemma 10. Let PRF be a variable output domain pseudorandom function as defined in Definition 7. Then
for any set S ⊆ Fq × Fq with |S| ≤ n and such that for all (i,m), (i′,m′) ∈ S, i ̸= i′ it holds that

Pr[ListEntries1(Insert1(ρ, γ, S, s1), s1) = S] ≥ 1− 2−κ − negl(λ)

where the probability is taken over the uniform choice of s1.

21

BasicInsert1(ρ, γ, S, (r, s1)) BasicInsert2(ρ, γ, S, (r, s1), s2)

M := 0ρ×γ M := 0ρ×γ

K := 0ρ×γ K := (0η)ρ×γ

C := 0ρ×γ

foreach (d,m) ∈ S foreach (d,m) ∈ S

foreach i ∈ [ρ] foreach i ∈ [ρ]

j := PRF(s1, γ, (r, i, d)) j := PRF(s1, γ, (r, i, d))

M [i, j] := M [i, j] +m M [i, j] := M [i, j] +m

k := Entry(s2, d)

K[i, j] := K[i, j] + d K[i, j] := K[i, j] + (m · k)
C[i, j] := C[i, j] + 1

return (M ,K,C) return (M ,K)

BasicDel1((K,M ,C), S̃, (r, s1)) BasicDel2((K,M), S̃, (r, s1, s2))

foreach (d,m) ∈ S̃ foreach (d,m) ∈ S̃

foreach i ∈ [ρ] foreach i ∈ [ρ]

j := PRF(s1, γ, (r, i, d)) j := PRF(s1, γ, (r, i, d))

k := Entry(s2, d)

M [i, j] := M [i, j]−m M [i, j] := M [i, j]−m

K[i, j] := K[i, j]− d K[i, j] := K[i, j]− (m · k)
C[i, j] := C[i, j]− 1

return (M ,K,M) return (M ,K)

BasicListEntries1((K,M ,C), (r, s1)) BasicListEntries2((K,M), (r, s1, s2))

S′ := ∅ S′ := ∅
for (i, j) ∈ [ρ]× [γ] for (i, j) ∈ [ρ]× [γ]

if M [i, j] ̸= 0

d := Index
(
s2, (M [i, j])−1 ·K[i, j]

)
if C[i, j] = 1 if d ∈ [n]

S′ := S′ ∪ {(K[i, j],M [i, j])} S′ := S′ ∪ {(d,M [i, j])}
return S′ return S′

Fig. 6. The left hand side shows the basic IBLT, but using a PRF with variable codomain as replacement for the truly
random functions. The difference between the original basic IBLT and this one are marked in gray. The right hand
side shows a modified basic IBLT that works without a count matrix and allows insertions using only addition and
multiplication by constants. The differences are again marked in gray. As long as all inserted messages are non-zero,
the decoding of all three filters will be the same with overwhelming probability.

22

Proof. The lemma follows from Theorem 1 and by a simple reduction to the pseudorandom of PRF. Let S
be an arbitrary set. We established the claimed bound by constructing an adversary A against the pseudo-
randomness of PRF as follows. We then related the success probability of A, to the probability of Insert1 and
ListEntries1 working as intended. On input 1λ and given access to an oracle o that contains either a truly
random function of PRF(s1, ·, ·), A computes

S′ = ListEntries(Insert(ρ, γ, S,h),h)

but replaces invocations of hi,j(·) with queries of the form o(γi, (i, j, ·)). If S′ = S, A outputs 0, otherwise it
outputs 1. Note that if o contains a truly random function, this perfectly simulates

ListEntries(Insert(ρ, γ, S,h),h).

If on the other hand o contains PRF(s1, ·, ·), this perfectly simulates

ListEntries1(Insert1(ρ, γ, S, s2), s2).

From the pseudorandomness of PRF it follows that∣∣∣∣ Pr[ListEntries(Insert(ρ, γ, S,h),h) = S]

−Pr[ListEntries1(Insert1(ρ, γ, S, s2), s2) = S]

∣∣∣∣ ≤ negl(λ).

Combined with Theorem 1 the lemma immediately follows. ⊓⊔

The second variant of the stacked IBLT construction described in Figure 5 essentially applies the same
modification to stacked IBLTs that [FLS23] applied to regular IBLTs. That is, detecting “peelable” entries
no longer uses a count matrix, but instead uses a wunderbar pseudorandom vector. The following lemma
essentially states that, as long as the encoded set does not contain any zero entries, the two variants of stacked
IBLTs will decode the same set with high probability if the wunderbar pseudorandom vector operates over
a large enough universe.

Lemma 11. Let (Entry, Index) be a wunderbar pseudorandom vector. Then, for any r, ρ, γ ∈ Z, any PRF
key s2, and any set S ⊆ [n] × (Fq \ {0}) such that |S| ≤ t and for all distinct (i,m), (i′,m′) ∈ S, i ̸= i′ it
holds that

Pr

[
BasicListEntries1(BasicInsert1(ρ, γ, S, (r, s1)), (r, s1))

= BasicListEntries2(BasicInsert2(ρ, γ, S, (r, s1), s2), (r, s1), s2)

]

≥ 1− ργ(n2 + n)

|K|
where the probability is taken over the uniform choice of s1.

Proof. Let S1, S2 be the sets decoded by BasicListEntries1 and BasicListEntries2. We consider two types of
errors: There could be an (d,m) ∈ S1 \ S2 or an (d,m) ∈ S2 \ S1.

In the first case, since BasicListEntries1 is decoding the element, it must the case that (d,m) is mapped
into a cell on its own. However, this implies that the corresponding cell in the output of BasicInsert2 will
contain m in the value matrix and m · Entry(s2, d) in the key matrix. Therefore, since m ̸= 0 and by the
correctness of the wunderbar pseudorandom vector, BasicListEntries2 will also decode the same element.

In the second case, it must hold that several entries m1, . . . ,ma got mapped to the same position, but it
so happens that

Index
(
s2,
(a∑
i=1

mi

)−1 ·
a∑

i=1

mi · Entry(s2, d)
)
∈ [n]

by using the pseudorandomness of the wunderbar pseudorandom vector and applying Corollary 9 we can
conclude that this will happen for any particular cell with probability at most (n2 + n)/|K|. Since there are
ργ cells, the lemma follows by a union bound over the number of cells. ⊓⊔

23

The following lemma states that deletion works as expected in both variants of the basic IBLTs described
in Figure 6 and used as building blocks in the variants of the stacked IBLT described in Figure 5. That is,
if a set S is encoded and a subset S̃ is deleted from the encoding, the result is identical to a fresh encoding
of S \ S̃ in both constructions.

Lemma 12. For any r, γ, ρ ∈ Z, any PRF key s1, any wunderbar pseudorandom vector s2, any set S ⊆
[n]× Fq such that for all distinct (i,m), (i′,m′) ∈ S, i ̸= i′, and any subset S̃ ⊆ S it holds that

BasicDel1(BasicInsert1(ρ, γ, S, (r, s1)), S̃, (r, s1))

= BasicInsert1(ρ, γ, S \ S̃, (r, s1))

and
BasicDel2(BasicInsert2(ρ, γ, S, (r, s1), s2), S̃, r, s1, s2)

= BasicInsert2(ρ, γ, S \ S̃, (r, s1), s2)
where the probability is taken over the choice of h, s1, and s2.

Proof. The lemma follows easily by observing that deletion exactly subtracts the values that were added
during encoding in both cases. ⊓⊔

The following lemma now states that also the second variant of the stacked IBLT described in Figure 5 works
as intended, as long as the wunderbar pseudorandom vector operates over a large enough universe K and
the set S does not contain any zero entries.

Lemma 13. Let PRF be a variable output domain pseudorandom function as defined in Definition 7. Let
(Entry, Index) be a wunderbar pseudorandom vector. Then there exists a large enough constant C ′ > 0 such
that for any set S ⊆ Fq × {Fq} with |S| ≤ t and such that for all distinct (i,m), (i′,m′) ∈ S, i ̸= i′ it holds
that

Pr[ListEntries2(Insert2(ρ, γ, S, s1, s2), s1, s2) = S]

≥ 1− 2−κ − C ′(n2 + n)(t+ κ log κ)

|K|
− negl(λ)

where the probability is taken over the uniform choice of s1 and s2.

Proof. Let S ⊆ Fq × {Fq} with |S| ≤ t be arbitrary. Consider the two decoding procedures running in
parallel. Clearly, for the end result to differ, one of the executions of BasicListEntries1/2 has to result in
different outputs.

Let 0 ≤ ı̃ < ⌈log t⌉ be an index, such that for all executions of BasicListEntries1/2 with i ≤ ı̃ the outputs

were identical. Let S̃ be the set S′ before the ith execution of BasicListEntries1/2. Clearly S̃′ is the same
in both cases. Since BasicListEntries1 decodes elements if and only if they happen to be alone in their cell,
BasicListEntries1 never causes any false positives and it must always hold that S̃ ⊆ S. It thus follows from
Lemma 12, that the outputs of the ı̃th executions of BasicListEntries1/2 are

BasicListEntries1(BasicInsert1(ρı̃, γı̃, S \ S̃, (̃ı, s1)), (̃ı, s1))

and
BasicListEntries2(BasicInsert2(ρı̃, γı̃, S \ S̃, (̃ı, s1), s2), (̃ı, s1), s2)

for some choice of ρı̃ and γı̃.
By Lemma 11 the probability that the output differs is then at most ρı̃γı̃(n

2+n)/|K|. With a simple union
bound over all indices 0 ≤ ı̃ < log t and by observing that the entire datastructure overall has O(t+ κ log κ)
cells it then follows that there exists some large enough constant C ′ such that the output of ListEntries2
differs from the output of ListEntries1 with probability at most

n2 + n

|K|
·
∑

0≤i<log t

ρiγi ≤
C ′(n2 + n)(t+ κ log κ)

|K|
.

24

̂BasicInsert(ρ, γ, c, (r, s1), s2))

M := Enc0ρ×γ

K := Enc(0δ)ρ×γ

foreach d ∈ [|c|]
foreach i ∈ [ρ]

j := PRF(s1, γ, (r, i, d))

M [i, j] := M [i, j]⊞cd

k := Entry(s2, d)

K[i, j] := K[i, j]⊞(cd ⊡ k)

Fig. 7. The ̂BasicInsert procedure is a modified version of BasicInsert2 to allow filling the filter under additively
homomorphic encryption. Changes are marked in gray.

Since by Lemma 10 the output of ListEntries1 is correct with probability 1−2−κ−negl(λ), the lemma follows
by another union bound. ⊓⊔

We now specify a final variant of the basic encoding procedure in Figure 7. Essentially the only important

difference between ̂BasicInsert and BasicInsert2 is that the former acts on an encrypted version of the en-
coded set (represented by a vector of ciphertexts). This now finally allows us to state the actual ciphertext
compression scheme in Figure 8 and we state the correctness of the compression scheme in Theorem 14.

Compress(pk, c)

s1 ← {0, 1}λ

s2 ← Sample(1λ, 1n)

for 0 ≤ i < log t− log τ

Fi := ̂BasicInsert(1, ⌈Cn2−i⌉, c, (i, s1), s2)
for 0 ≤ i < log τ

i′ := ⌊log t− log τ⌋

Fi′ := ̂BasicInsert(2i, ⌈Cτ2−i⌉, c, (i′, s1), s2)
return ((F0, . . . , F⌈log t⌉−1), s1, s2)

Decompress(sk, (F , s1, s2))

F ′ := Dec(sk,F)

return ListEntries2(F
′, s1, s2))

Fig. 8. A ciphertext compression scheme for arbitrary additively homomorphic encryption schemes for F ip
t,pk.

Theorem 14. Let E = (Gen,Enc,Dec) be an additively homomorphic encryption scheme with plaintext space
Fq and ciphertext length ξ = ξ(λ). Let (Sample,Entry, Index) be a wunderbar pseudorandom vector with index
recovery for a universe K ⊆ Fη with |K| ≥ C ′(n2 + n)(t + κ log κ) · 2κ for a large enough constant C ′ > 0
and let PRF be a pseudorandom function with variable codomain. Then (Compress,Decompress) as specified
in Figure 8 is a (1−2−(κ−1)−negl(λ))-correct (λ+(t+κ log κ)ηξ)/(nξ)) compressing ciphertext compression

scheme for F ip
t .

Before we prove this theorem we will state the following simple corollary that follows simply by instantiating
the construction with the wunderbar pseudorandom vector from Section A.3 and holds for all reasonable
encryption schemes with ciphertext size ξ = Ω(λ).

25

Corollary 15. Let E = (Gen,Enc,Dec) be an additively homomorphic encryption scheme with plaintext space
Fq and ciphertext length ξ = Ω(λ). Let PRP be a pseudorandom permutation over {0, 1}κ+C′′+2 logn+log(t+κ log κ)

for some large enough constant C ′′ and let PRF be a pseudorandom function with variable codomain. Then
(Compress,Decompress) as specified in Figure 8 can be instantiated to be a (1 − 2−(κ−1) − negl(λ))-correct

and Õ(κt+κ2

n log q) compressing5 ciphertext compression scheme for F ip
t .

Proof (Theorem 14). First observe that Compress executes exactly Insert2 on the set S = {(d,m) ∈ [n]×Fq |
Dec(Gen−1(pk), cd)} but under homomorphic encryption. Each cell in the encoding is computed as the inner
product of the ciphertext vector and some plaintext vector. It thus follows from the Zip validity of c, that
after decryption step in Decompress we have F ′ = Insert2(S, s1, s2). However, since by design any (d, 0) ∈ S
does not influence the value of F ′ we have in fact that F ′ = Insert2(S

′, s1, s2) where S
′ := {(d,m) ∈ S | m ̸=

0} = sparse(). Since c ∈ F ip
t,pk and thus |S′| ≤ t, we can apply Lemma 13 that

Pr[Decompress(sk,Compress(pk, c)) = sparse(Dec(sk, c)]

= Pr[ListEntries2(Insert2(S
′, s1, s2), s1, s2) = S′]

≥ 1− 2−κ − O(n2(t+ κ log κ))

|K|
− negl(λ)

= 1− 2−κ − O(n2(t+ κ log κ))

Ω(n2(t+ κ log κ) · 2κ
− negl(λ)

≥ 1− 2−(κ−1) − negl(λ)

as claimed.
To see the compression factor, consider that the output of Compress consists of s1 and s2, both of which

have length O(λ) as well as the encrypted stacked IBLT without counters. The IBLT consists of pairs of
value and key matrices. The value matrices combined have O(t+κ log κ) entries of 1 ciphertext each and the
key matrices combined have O(t+κ log κ) entries of η ciphertexts each. Thus overall the output of Compress
has a length of O(λ+ (t+ κ log κ)ηξ) bits leading to the claimed compression factor. ⊓⊔

5 The soft-O notation Õ(·) ignores log factors in κ and n.

26

	Invertible Bloom Lookup Tables with Less Memory and Randomness

