
Efficient Zero Knowledge for Regular Language
(Extended Version)

Michael Raymond1[000−0002−6838−3453], Gillian Evers1[0009−0008−9746−2258], Jan
Ponti1[0000−0002−2221−6828], Diya Krishnan2[0000−0002−8879−1411]?, Xiang

Fu1[0000−0002−6608−1654]??

1 Hofstra University, NY, USA
{mraymond2,jponti4,gevers1}@pride.hofstra.edu, Xiang.Fu@hofstra.edu

2 Ramanujan Homeschool Academy, NY, USA
diya.is.smart@gmail.com

Abstract. A succinct zero knowledge proof for regular language mem-
bership, i.e., to prove a secret string behind an encryption (hash) belongs
to a regular language is useful, e.g., for asserting that an encrypted email
is free of malware. The great challenge in practice is that the regular
language used is often huge. We present zkreg, a distributed commit-
and-prove system that handles such complexity. In zkreg, cryptographic
operations are encoded using arithmetic circuits, and input acceptance is
modeled as a zero knowledge subset problem using Σ-protocols. We in-
troduce a Feedback Commit-and-Prove (FB-CP) scheme, which connects
Σ-protocols and the Groth16 system with O(1) proof size and verifier
cost. We present a close-to-optimal univariate instantiation of zk-VPD,
a zero knowledge variation of the KZG polynomial commitment scheme,
based on which an efficient zk-subset protocol is developed. We develop
a 2-phase proof scheme to further exploit the locality of Aho-Corasick
automata. To demonstrate the performance and scalability of zkreg, we
prove that all ELF files (encrypted and hashed) in a Linux CentOS 7 are
malware free, in the sense that they all pass the ClamAV virus scanner.
Applying inner pairing product argument, we obtain an aggregated proof
of 1.96 MB which can be verified in 6.5 seconds.

Keywords: zero knowledge proof, zkSNARK, Aho-Corasick Automata,
commit-and-prove, commitment schemes

1 Introduction

Consider how email exchange servers are secured for user safety. A common prac-
tice is to run anti-virus software on all incoming emails before they are delivered,
however, at the cost of user privacy. Instead, a sender can encrypt her email and
provide a succinct zero knowledge (zk)-proof certifying its freedom of malware3

? Current Affiliation: Carnegie Mellon University
?? Corresponding Author
3 We call a string malware free if it passes a virus scanner whose signature set is public.

2 Raymond et al.

Given that most prevalent malware scanners use regular languages for signa-
tures, in this paper, we call it the zero knowledge regular language membership
(zk-Reg) problem. The prover knows a secret string s and a secret key k. The
verifier knows a public finite state machine A which captures all allowed/benign
strings, and is given hash(encrypt(s, k)). The prover hopes to convince the verifier
with a succinct proof π that s ∈ L(A). In the context of networking and secure
communication, zk-Reg has many applications, e.g., to prove that an encrypted
DNS request does not contain any forbidden site, and to show an encrypted
packet has already passed firewall rules. The non-zk version of the problem can
be applied in software distribution where s does not have to be a secret.

It is well known that all NP statements have a zero knowledge proof [40].
There is also a long line of zk-proof research on more expressive machine models
such as von Neumann and RAM machines [14, 35]. Here, the great challenge in
practice is that the size of A is out of reach of most (zk)-SNARK provers. Take
ClamAV as one example, ignoring all other signature formats, its standard hex-
adecimal signature database alone generates an Aho-Corasick automaton (AC-
DFA) with 19 million states and over 300 million transitions. To directly encode
ClamAV’s AC-DFA would reach the limit of distributed provers such as DIZK
[67]. Thus to prove even a small email message would be prohibitively expensive.

1.1 Technical Overview

Given the problem size, our overall approach is the Commit-and-Prove scheme
[28, 27, 30, 2, 6], which combines the benefits of zk-SNARK and Σ-protocols.
There is a trusted set-up who generates prover/verifier keys, a public set-up
that publishes the AC-DFA A. The prover owns a secret key k and an input
string s. The verifier is provided with hash(encrypt(s, k)). The goal of the proof
is to convince the verifier that s ∈ L(A).

We plan to exploit the locality of AC-DFA. Let depth of a state be its shortest
distance from the initial state. We notice that for all of the 2479 ELF (object
and executable) files in a Linux CentOs 7, after excluding a small frequently
visited set (5.5% of all states), over 34.49% (79.95%) have depth no greater than
10 (20). To exploit the locality, we first arithmetize A by encoding its states and
transitions as elements of a large prime field. Let T be the arithmetization of
A. Let {T1, ..., Tn} be the subsets of T with Ti containing the elements bounded
by depth i. All of these subsets are made public. The prover runs s over A and
let S be the set of states/transitions along the acceptance path, and m be its
max depth. Then our proof scheme consists of essentially two subset proof: (1)
S ⊆ Tm and (2) Tm ⊆ T .

Apparently, S and Tm need to be represented succinctly and in zero knowl-
edge. In [64], a zk-batch accumulator proof is provided by extending bilinear
accumulator [59] using Σ-protocol of product proof to “cancel” the additional
terms caused by blinding factors. We adapt it for zk-subset proof in our context,
and provide a more efficient protocol in Section 3.2 by cutting its product proof.

The second component of zkreg is a modified Groth16 system (adapting the
ccSnark scheme in [28]). It is needed because arithmetic circuit is more conve-

Efficient Zero Knowledge for Regular Language (Extended Version) 3

nient than Σ-protocols in encoding encryption and hash operations. In addition,
we need to encode AC-DFA, which has more sophisticated machinery than a
standard FSA, for its “fail-edge” semantics. In particular, we need to handle a
support-set (root-set) problem. Recall that the “allowed” transitions/states are
published and encoded in bilinear accumulator based zk-set. We need to extract
the standard set (i.e., no duplicates) from the multi-set of states and transi-
tions appearing on the acceptance path, before engaging them in the zk-subset
proof. This is solved by taking advantage of a well known result for large prime
field that: for a multi-set A, the characteristic polynomial of its support-set is
pA/ gcd(pA, p

′
A) where p′A is the formal derivative of pA.

The two proof systems have to be connected. We present a Feedback Commit-
and-Prove (FB-CP) scheme. To prevent the a malicious prover fake a polynomial
witness to the circuit, the system “enforces” her to commit before she sees the
random challenge by verifier. It takes an arithmetic circuit, whose secret witness
input wires are divided into k segments. The prover first computes the partial
proof of the first segment. It is used as a commitment to the inputs, so that
the Fiat-Shamir heuristics can be applied and some public input wires are re-
computed as the hash of the commitment. Then the rest of witness inputs,
intermediate and output wires are computed, and the complete Groth16 proof
is generated. We show that FB-CP achieves O(1) proof size and verifier cost.

The FB-CP scheme still lacks zero knowledge, as opening KZG commitment
leaks one evaluation of the secrete polynomial. This problem is solved by in-
troducing the zk-VPD scheme in zk-VSQL [73]. The basic idea is to hide the
polynomial evaluation behind a Pedersen commitment, and use Σ-protocol to
reason about the value. When instantiated to univariate polynomials, the ver-
ification cost of zk-VPD scheme needs 5 pairings. We show a close-to-optimal
improvement to it so that only 2-pairings are needed.

We fully implement the zkreg system and demonstrate its performance by
proving all ELF files in a Linux Centos 7 malware free. The source code and
experimental data are available at: 4

1.2 Related Work

Since its inception [41] zero knowledge proof has generated not only theoretical
interests but also numerous applications, e.g., electronic payment systems [55,
11, 69, 58, 54]), anonymous machine learning [56, 52], verifiable cloud database
[73], and authentication protocols [51]. See [66] for a complete survey of the
recent progress of the field.

This work is related to the line of research on zk-proofs for state machines [12,
14, 35]. In [12], QAP based zkSNARK is used to prove TinyRAM programs over
von Neumann architecture, with prover complexity O(NT) where N is the pro-
gram size and T the trace length. The complexity is improved to additive in [14]
to O((N + T)log(N + T)) by using a T log(T) non-deterministic switch network
for validating consistency of memory operations. In [35], the prover complexity

4 https://github.com/xfu2006/zkregex.git

4 Raymond et al.

is further improved to O(N + T) via VOLE based zero knowledge, accomplish-
ing constant overhead memory access for RAM machines. We achieved similar
prover complexity in the context of zkSNARK.

We envision our work as an instance of the Commit-and-Prove (CP) proof
systems [30, 2, 28, 27, 6]. In particular, the k-ccGro16 component in our proof
system is a direct generalization of the ccGro16 system in LegoSnark [29]. In
most applications of CP-Snark, a commitment is used to connect heterogeneous
proof systems. In our work, the commitment is also used for fixing witness input
wires so that Fiat-Shamir is applied. One witness input wire is fed back to
the circuit, which results in a Feedback Commit-and-Prove scheme. The FB-CP
scheme can be regarded as an addition to the CPlink constructions in [28, 27, 6,
18]. It essentially asserts the equivalence of two committed polynomials in two
proof systems. Compared in particular with the Pedersen like CPlink component
of LegoSnark [28], FB-CP also accomplishes O(1) proof size and verifier cost.
Using FB-CP there is no need to create extra prover/verifier keys to apply the
linear subspace scheme [48].

In the seminal KZG paper [46], an almost (but not complete) zk-set solution
is provided. Our solution based on pairing based accumulator [64] offers both
complete zk and great concrete performance. We note that the performance
of lookup arguments has been improved rapidly [36, 70, 33]. In particular, the
most recent construction [33] offers quasi-linear complexity independent of the
size of super-set. Integrating lookup arguments in our framework remains as
a future direction. We refer readers to [25, 59, 74, 17, 50, 38] for other related
constructions.

There are two concurrent works addressing zk-proof of regular expressions.
Zombie [72] extends zkMiddleBox [45], and allows one to reason about encrypted
DNS requests, using sum-check based SpartanNIZK [63] as the prover. ZK-
regex [53] tackles the same problem via MPC-in-the-head, by providing a 2-
stage linear scan algorithm for simulating Thompson NFA. Let m be the size
of policy specification in extended regular expression that supports intersection
and complement, and m′ be the size of its equivalent automaton. Let n be the
length of the input string. The prover complexity (excluding the cost of finding
witness) of Zombie, ZK-regex, and zkreg (our work) are O(mn), O(m′n) and
O(m′log(m′) + nlog2(n)),5 respectively. In the worst case, m′ can be 2m. To
curb the state explosion problem, in this paper we focus on AC-DFA which is
deterministic, and approximate the rest of ClamAV regex patterns (see Section
6.1). In ZK-regex, standard Thompson NFA is used. Zombie handles the richest
regex among all three. It encodes regex intersection and complement with con-
stant cost. ZK-regex provides an additional secure-regex component where both
the policy and the input string are hidden. Compared with Zombie and ZK-
regex, the advantage of zkreg is the use of zk-subset proof that separates the
encoding of automaton from input string. If we replace the zk-subset proof by a
pre-processed lookup argument, the prover complexity of zkreg can be further

5 More precisely, zkreg prover cost consists of O(m′log(m′)+nlog2(n)) field operations
and O(m′ + n) group operations.

Efficient Zero Knowledge for Regular Language (Extended Version) 5

improved to be independent of automaton size. As a result, compared with [53,
72], in the specific application context where Aho-Corasick is applicable (state
explosion avoided), our technique can handle a much larger signature set (policy
collection). It is an interesting question if Zombie’s technique of encoding regex
complement can be integrated with ours.

1.3 Contributions

The following is a summary of our contributions. (1) We present a 2-phase proof
solution to the zk-Reg problem, for exploiting the locality of AC-DFA. The
scheme brings improvement of prover performance by an order of magnitude.
(2) We design a Feedback Commit-and-Prove (FB-CP) scheme to connect Σ-
protocols and zk-SNARK systems. The scheme provides an alternative to the
CPlink constructions in [28, 6, 27] with O(1) proof size and verification time. (3)
We develop several cryptographic constructions that improve the state of art: (a)
a close-to-optimal univariate instantiation of the zk-VPD commitment scheme
[73], which only requires 2-pairings for verification; and (b) a zk-subset proof
which further improves the efficiency of the zk-batch bilinear membership proof
given in [64]. (4) We provide a full implementation and evaluation of the proposed
2-phase proof scheme. We show 107× speed-up of Groth16 proof generation
compared with prior work. We prove that all ELFs in a Linux CentOs 7 malware
free, obtaining a 1.96MB proof that can be verified in 6.5 seconds.

�✁ �✂ �✄ �☎

✆ ✝ ✞ �

�✟ �✠
✝ ✞ ✆

�✡

�☛ �✁ �✂ �✄ �☎

✆ ✝ ✞ �

�✟ �✠
✝ ✞ ✆

�✡

�☛

☞

☞

✌✍✎ ✌✏✎

Fig. 1. AC-DFA

2 Preliminaries

2.1 AC-DFA

An Aho-Corasick automaton (AC-DFA) [3] is a deterministic finite state machine
built from a set of strings as the virus signature database. Let V = {v0, ..., vk}
and let m =

∑k
i=0 |vi|. The AC-DFA for V can be constructed in O(m) time.

Running a string s over the AC-DFA discovers all contained virus patterns with
no more than 2|s| transitions. This is achieved by dividing the AC-DFA’s tran-
sition function into two parts: a regular forward edge relation and a failure edge
function. Each state has up to one failure edge, which points to a state that

6 Raymond et al.

holds the longest suffix of the current input string. Figure 1 shows an example
of the AC-DFA for V = {this, hit}. One can see that the acceptance run of an
input string “thit” travels through state sequence s0, s1, s2, s3, s6, s7 with the
transition s3 → s6 as a failure link. Negation of an AC-DFA for a virus signature
set, e.g., as shown in Figure 1(b), can capture the set of “benign” strings.

2.2 Notations and Security Assumptions

Let λ be the security parameter. We denote negligible in λ as ε(λ). We write
f = ε(λ) as f ≈ 0, and |f − g| = ε(λ) as f ≈ g. Let G be a generator of bilinear
groups, i.e., (p,g1,g2, G1,G2,GT , e) ← G(1λ). Here G1, G2, and GT all have
prime order p, with g1 (g2) as the generator of G1 (G2). e : G1×G2 → GT is the
bilinear map s.t. for any a, b ∈ Zp: e(g1

a,g2
b) = e(g1,g2)ab and e(g1,g2) is the

generator of GT . Given a field F, a
$←− F means to sample a from F uniformly.

Following Groth16 [44], we write G1 and G2 as additive groups. Given a ∈ Zp,
we denote g1

a as [a]1, and similar are G2 and GT . For instance, g1
ag1

b is written
as [a]1 + [b]1 or [a+ b]1, (g2

a)b as [ab]2, and e(g1
a,g2

b) is denoted as [a]1 · [b]2 or
[ab]T . We use ~a ∈ Znp to define a vector of n field elements: (~a0, . . . ,~an−1), where
~a0 is the first element of ~a. Similarly, [~a]1 represents a vector of G1 elements

([~a0]1, . . . , [~an−1]1). Given ~b ∈ Znp , ~b[~a]1 is a vector ([~a0
~b0]1, . . . , [~an−1

~bn−1]1),

and dot product [~a]1 · [~b]2 is defined as ([~a0
~b0]T , . . . , [~an−1

~bn−1]T). We may also
use ~a[i] to indicate its i’th element (index from 0). For a two dimensional array
~b, ~b[i]j denotes the element at row i column j. Given a multi-set S, its support

set is Ŝ = {x | x ∈ S}. For instance, given T = {1, 2, 3, 2, 3}, T̂ = {1, 2, 3}.
Our system is based on a number of security assumptions: discrete logarithm

assumption (DL) [46], q-Strong Diffie-Hellman (q-SDH) [46], q-Power Knowledge
of Exponent (q-PKE) [43], and q-computational power Diffie-Hellman (q-CPDH)
[43]. These are frequently used assumptions in commitment schemes and zk-
SNARK. We refer readers to [43, 46, 44] for their design idea and computational
hardness. Their formal definitions are given in Appendix A.

2.3 Σ-Protocols and zk-SNARK

Given an NP relation R, we say that (P,V) is an interactive proof system (Σ-
protocol) if prover P demonstrates the knowledge of (x,w) ∈ R to verifier V,
disclosing zero knowledge about the witness w. The Σ-protocols we present
in this paper are perfect complete, knowledge sound, and honest verifier zero
knowledge (HVZK). Its formal definition is given in Appendix B. A Σ-protocol
can be converted to non-interactive using the Fiat-Shamir heuristic under the
random oracle model [34].

We use an adapted notation from [26] to specify zk-protocols. Consider
Schnorr’s DLOG protocol as an example: ΣDLOG(h){(x) : h = [x]1}. Here DLOG

in ΣDLOG is a mnemonic. (h) is the public information. The tuple before “:”
is the secret known by prover only, i.e., (x). Then the statement inside curly
braces states the relation: the prover knows the secret discrete logarithm of h.

Efficient Zero Knowledge for Regular Language (Extended Version) 7

Applying Fiat-Shamir heuristics to ΣDLOG(h), we get a non-interactive proof and
denote it as πDLOG(h). Schnorr proof can be generalized to multiple bases. We
use 1/0 ← CheckDLOG(Cx, πx, (g1, . . . ,gk)) to denote the verifier function for
πDLOG: the prover knows x1, x2, . . . , xk so that Cx = x1g1 + x2g2 + ...+ xkgk.

zkSNARK (Zero Knowledge Succinct Non-interactive ARgument of Knowl-
edge) systems (e.g., [37, 44, 60, 68, 63, 10, 13, 9, 39, 5, 22, 23]) provide generic spec-
ification for arbitrary relation, and succinct proof size and verification time. Re-
cently, many bilinear group friendly encryption and hash algorithms are devel-
oped, e.g., Poseidon [42], and MiMC [4]. In our system, we encode the AC-DFA
as an arithmetic circuit. This circuit is then converted to a Rank-1 Constraint
System (R1CS), and then to a Quadratic Arithmetic Program (QAP). The QAP
is then fed to a modified Groth16 system [44] for proof generation.

2.4 Commitment Schemes

A commitment is a cryptographic primitive that allows one to commit to a secret
message and later to open it.

Pedersen Vector Commitment Let g,h ∈ G and logg(h) is unknown to the
prover. Given s ∈ Zp and r sampled from Z∗p, a Pedersen commitment [61] to s is
defined as CommitPed(s, r) = sg + rh. Given ~g ∈ Gn+1 where no linear relation
is known for ~g. a Pedersen vector commitment [23, 64] to ~a = (a0, . . . , an−1),

using opening r, is CommitPed(~a, r) =
∑n−1
i=0 ~ai~gi + r~gn. Pedersen commitment

is perfect hiding and computational binding.

Polynomial Commitment Given key
((

[si]1
)q
i=0

,
(
[αsi]1

)q
i=0

)
, the KZG com-

mitment [46] Cp,1 ∈ G1 to a polynomial p(X) ∈ Zp[X] is defined as [p(s)]1. Let

p(X) =
∑d
i=0 aiX

i. Cp,1 is then
∑d
i=0 ai[s

i]1, where each [si]1 is from the prover
key. One can provide Cp,2 = [αp(s)]1 as the proof of knowledge for Cp,1. By the
q-PKE assumption (Definition 6 in Appendix A), the following bilinear pairing
check convinces the verifier that the prover knows all coefficients of the hiding
p(X): Cp,1 · [α]2 = Cp,2 · [1]2. Given a point t, and let y = p(t). There exist a
polynomial w(X) = (p(X)− y)/(X − t). Then based on the q-SDH assumption
(Definition 5), the following check proves that the p(X) behind Cp,1 evaluates
to y at point t: (Cp,1 − [y]1) · [1]2 = [w(s)]1 · [s− t]2.

zk-VPD scheme The KZG commitment scheme is not hiding and it also leaks
information of a point evaluation. In [73], a zero knowledge `-variate polynomial
delegation scheme (zk-VPD) is presented to address the problem. The idea is to
hide the polynomial evaluation behind a Pedersen commitment, thus retaining
zero knowledge. Concretely, a zk-VPD commitment to a polynomial p(X) is
a pair (Cp,1,Cp,2) where Cp,2 is the proof of knowledge for Cp,1, and Cp,1 is
an extended KZG commitment to p(X) blinded by random factor. Its opening
operation: (Cy, π)← Open(p, rp, t, σΣ), produces a proof which asserts that the
secret p(X) behind Cp,1 evaluates to a secret value y at t and Cy is a Pedersen
commitment to y. The zk-VPD scheme is complete, binding and zero knowledge.
We provide its formal definition for univariate polynomials in Appendix C.

8 Raymond et al.

3 Σ-Protocols

We provide two Σ-protocols in this section. The first shows a committed poly-
nomial evaluates to a secret value at a given point in zk, and the second proves
a subset relation between two zero knowledge sets. We then apply the inner
product arguments [24] to both protocols for proof aggregation.

3.1 ZK-Proof for Polynomial Evaluation

The zk-VPD scheme [73] provides a zero-knowledge solution for showing that an
`-variate polynomial behind a commitment evaluates to a secret value at a public
point. 6 In this section, we provide a drop-in replacement for the construction
provided in [73] for univariate polynomials. It provides lower concrete cost (2
pairings vs 5 pairings for verifier work and saving half of the prover cost). In Ap-
pendix C, we provide the original univariate zk-VPD construction as a baseline
for comparison. The verifier cost of our construction is close to optimal, con-
sidering that the standard (non-zk and non-hiding) KZG commitment scheme’s
evaluation proof costs 2 pairings at verifier.

Figure 2 presents the Σunivar zk vpd construction. For simplicity, we do not dis-
tinguish between prover and verifier keys. Its CommitPoly and Check algorithms
are the same as zk-VPD [73]. We thus focus on the zero knowledge polynomial
evaluation proof (Open and Verify). We briefly describe its design idea and
compare it with the construction presented in [73].

Recall that in the non-hiding KZG commitment scheme, the evaluation proof
is built upon the following observation. If y = p(t) then there exists a polynomial
q1(X) s.t. for any u ∈ Zp: p(u)−y = q1(u)(u−t). This is tested using an equation
of two pairings: ([p(s1)]1− [y]1) · [1]2 = [q1(s1)]1 · [s1− t]2. Following the zk-VPD
construction [73] all KZG commitments of polynomials are blinded in the Open()
operation in Figure 2: [p(s1)]1 is mapped to Cp, [q1(s1)]1 mapped to C1. Then
another commitment C2 is introduced to “balance off” the terms introduced by
the blinding factors. This is verified by the third equality check in the Verify()
operation. The first two equations in Verify() perform the standard Schnorr
DLOG verification, which demonstrates the prover’s knowledge of multi-base
discrete logarithm of C2 and Cy.

In [73], all zk-VPD commitments come with a proof of knowledge. We ob-
served that: C1 (for q1(X)) can be used without a proof of knowledge. Then
with a slight tweak of the formula of C2, we can cut from 5 pairings needed at
the verifier side to only 2 pairings. In addition, because no proof of knowledge
is needed for C1, the prover cost can be cut in half, because there is no need
to generate [αq1(s1)]1. In Appendix D, we present the proof of our improved
construction. The intuition of the proof is that even though an adversary can
try to submit C1 with a “relaxed” requirement of no proof of knowledge needed,
creating a fake zk-evaluation proof still breaks the DL and q-SDH assumptions.

6 Many hiding variations of KZG, e.g., [46, Section 4.2] and Marlin [31, Appendix
B.2], still leak evaluation values, which needs bounded-zk technique [31, 27]. In our
case we need the evaluation to be zk, and hence adapting zk-VPD is the best fit.

Efficient Zero Knowledge for Regular Language (Extended Version) 9

1 Trusted Set-up: σΣ ← Setup(1λ, G, q)
Parse G as (p,g1,g2,G1,G2,GT , e). Sample s1, s2, α from Z∗p. Compute

γ ←
((

(s1)i
)q
i=0

,
(
α(s1)i

)q
i=0

, s2, αs2, s1s2
)

.

Let prover-verifier key σΣ = ([γ]1, [γ]2). Return σΣ .
2 Commit to Polynomial: (Cp, πp)← CommitPoly(p(X), rp, σΣ): Return

([p(s1) + rps2]1, [α(p(s1) + rps2)]1).
3 Validate Polynomial Commitment: 1/0← Check(Cp, πp, σΣ): Return 1

if and only if Cp · [α]2 = πp · [1]2.
4 Zk-Prove Polynomial Evaluation: (Cy, π)← Open(p(X), rp, t, σΣ):

Compute: y ← p(t). q1(X)← (p(X)− y)/(X − t).
Sample ry, rq from Z∗p. Compute: Cy ← [y+ rys2]1, C1 ← [q1(s1) + rqs2]1, and
C2 ← [s2((s1 − t)rq + (ry − rp))]1.
Compute Schnorr proofs:
πDLOGy ← πDLOG(Cy, ([1]1, [s2]1)){(y, ry) : Cy = y[1]1 + ry[s2]1}, and
πDLOG2 ← πDLOG(C2, ([s2(s1−t)]1, [s2]1)){(r1, r2) : C2 = r1[s2(s1−t)]1+r2[s2]1}.
Let π = (C1,C2, πDLOGy, πDLOG2). Return (Cy, π).

5 Check Polynomial Evaluation: 1/0← Verify(Cp,Cy, π, σΣ):
Assumption: ∃πp for Cp s.t. Check(Cp, πp, σΣ) = 1.
Parse π as (C1,C2, πDLOGy, πDLOG2). Return 1 if and only if:
CheckDLOG(Cy, πDLOGy, ([1]1, [s2]1)) = 1 ∧ CheckDLOG(C2, πDLOG2, ([s2(s1 −
t)]1, [s2]1)) = 1 ∧ (Cp −Cy + C2) · [1]2 = C1 · [s1 − t]2.

Fig. 2. Σunivar zk vpd: Univariate zk-VPD Scheme

Lemma 1. Under the DL, q-PKE, and q-SDH assumptions, the Σunivar zk vpd

construction in Figure 2 is a univariate zk-VPD scheme defined in Definition 9.

Efficiency: As each extended Schnorr proof has two bases, each sends 1 G1 and
2 Zp elements. In total, the zk-polynomial evaluation proof costs 4 G1 and 4 Zp,
and verifier spends 2 pairings plus 6 group operations over G1.

3.2 ZK Subset Proof

Accumulators such as RSA [16, 8] and bilinear pairing based [59] can compress
a large set of elements into one succinct representation and provide membership
or subset proofs. In this paper, we extend the bilinear accumulator [59, 64] for
representing (multi)-set of transitions and states of an AC-DFA. We extend and
present a more efficient construction than the recent work of zero knowledge
batch membership for bilinear accumulator [64]. We are able to cut a Σ-product
proof from the protocol of [64], resulting in a reduction of 2 group elements and
2 field elements from 5 group and 5 field elements in proof, had our technique
applied in the context of [64].

Note that different from [64] (where the algebraic group model (AGM) is
assumed), we assume the plain model in this paper due to recent discussions
[47, 71] over AGM.

10 Raymond et al.

1 Prove Product Relation: (C′q, π) =
PrvSubset(Cp,Cq, πq, [w(s1)]1, [αw(s1)]1, [w(s1)]2, rp, rq, σΣ , bMutate):
p(X) = q(X)w(X). rp is the opening of Cp, and rq is opening of Cq

Sample rw from Z∗p. If bMutate sample r′q from Z∗p otherwise r′q ← 0. Let
C′q ← Cq + r′q[s2]1 and π′q ← πq + r′q[αs2]1. r′′q ← rq + r′q
Compute: Cw ← [w(s1)]1 + rw[s2]1 and πw ← [αw(s1)]1 + rw[αs2]1.
Cw,2 ← [w(s1)]2 + rw[s2]2. Note Cw ∈ G1 and Cw,2 ∈ G2.
Compute: C1 ← rwC′q + r′′qCw − r′′q rw[s2]1 − [rp]1.
π1 ← πDLOG(C1, (C

′
q,Cw, [s2]1, [1]1)){(r1, r2, r3, r4) : C1 =

r1Cq′ + r2Cw + r3[s2]1 + r4[1]1}.
Let π = (π′q,C1, π1,Cw, πw,Cw,2). Return (Cq′ , π).

2 Check Subset Relation: 1/0← VerSubset(Cp,Cq, π, σΣ):
Assumption: ∃πp s.t. Cp · [α]2 = πp · [1]2.
Parse π as (πq,C1, π1,Cw, πw,Cw,2). Return 1 if and only if
CheckDLOG(C1, π1, (Cq,Cw, [s2]1, [1]1)) = 1 ∧ Cw ·[α]2 = πw ·[1]2 ∧ Cq ·[α]2 =
πq · [1]2 ∧ Cw · [1]2 = [1]1 ·Cw,2 ∧ Cp · [1]2 + C1 · [s2]2 = Cq ·Cw,2.

Fig. 3. Σsubset: Zero Knowledge Subset Protocol

Definition 1. Given a bilinear group (p,G1,G2,GT , e). For a multi-set A =
{a1, ..., an} ∈ Fn, define pA(X) =

∏n
i=1(X − ai) be its vanishing polynomial.

Given a key
((

[(s1)i]1

)q
i=0

, [s2]1

)
, the bilinear accumulator of A is denoted as

accA = [pA(s1)]1. Let r
$←− Z∗p be the opening, zksetA = accA + r[s2]1.

Mutating Zero Knowledge Set and Proof It may be tempting to build the
zk-subset proof upon the zk-polynomial evaluation proof via a simple application
of Schwartz-Zippel. The problem is that: if a different random point is used, then
all the three evaluation proofs have to be re-computed, which is costly in our
problem domain.7 We follow another technical route, mainly by deriving the
zk-batch membership proof [64, Section 7.1]. Our goal is to re-use the published
subset of AC-DFA states/transitions and their subset proofs, without leaking
which subset we use in the 2-phase proof scheme. In Figure 3 we present the
Σsubset protocol.

We first give an intuition of PrvSubset. Assume that there exists a proof
for: q(X) is a factor polynomial of p(X) (hiding behind zk-VPD commitments
Cq and Cp respectively). There exists a witness polynomial w(X) s.t. p(X) =
q(X)w(X). The zk-VPD commitment of q(X) and proof of knowledge are pre-
computed, and so are the KZG commitment to w(X). The job of PrvSubset is to
generate a new commitment C′q from Cq and the subset proof, without disclosing
Cq. This is done by padding a blinding factor to them, e.g., C′q = Cq + r′q[s2]1,
at negligible cost.

7 In [21] one proof asserts evaluation at multiple points. It can be used for batching
proofs in our domain. However, it is not perfectly hiding. Extra Schnorr-style proofs
are needed to cancel terms generated by blinding factors.

Efficient Zero Knowledge for Regular Language (Extended Version) 11

Zero Knowledge Subset Proof We build a zk-subset proof between two
zero knowledge sets based on the batch-membership proof [64, Section 7.1]. Our
scheme provides improved concrete cost by cutting a Σ-product proof.

Given p(X) = q(X)w(X) and accp = [p(s1)]1, Cq = [q(s1)]1 + rq[s2]1 and
Cw = [w(s1)]1 + rw[s2]1. The basic idea of [64] is to build a proof for Equation
1 which is eventually reduced to: [p(s1)]1 · [1]2 = [q(s1)]1 · [w(s1)]2 that asserts
p(X) = q(X)w(X).

accp · [1]2 + C1 · [s2]2 = Cq ·Cw (1)

Here C1 is introduced to balance off the extra cross-terms caused by the
openings of Cq and Cw. Let r1 = rq, r2 = rw, and r3 = −rqrw. One can verify
that: C1 = r1Cw + r2Cq + r3[s2]1.

In [64], Schnorr style zk-proofs are used to establish prover’s knowledge of
random exponents r1, r2, and r3. In particular, the product relation: r3 = −r1r2.
Our observation is that: the zk-proof for the product relation is not needed, given
the proof of knowledge for Cq and Cw.

The PrvSubset() operation in Figure 3 provides the details. First, the accp
in [64] is converted to a fully hiding zk-VPD commitment Cp in our context.
The major difference from the proof in [64] is that we just need to provide
a DLOG proof for proving the knowledge of the four exponents of C1, thus,
cutting the Σ-product proof used in [64]. Formally, the VerSubset() algorithm
can be regarded as a Σ-protocol, and we denote it as Σsubset. It proves that the
polynomial hiding behind Cq is a factor of the polynomial behind Cp.

Lemma 2. Under the DL, q-PKE, q-SDH, and q-CPDH assumptions, Σsubset

is perfectly complete, computational sound, and HVZK.

Appendix E presents the proof for Lemma 2. The following Lemma allows to
use the polynomial product relation for proving subsets.

Lemma 3. Let p(X) be the vanishing polynomial for a multi-set S of elements
in Zp, and let Cp be a valid commitment to p(X) with proof of knowledge. For
any Cq if there exists πq⊆p s.t. VerSubset(Cp,Cq, πq⊆p, σΣ) = 1, then the poly-
nomial behind Cq vanishes at a subset of S.

Efficiency: The prover has to perform O(nlog(n)) field operations (for comput-
ing w(X)), and O(n) group operations, where n is the degree of p(X) behind
Cp. The proof consists of 5 G1, 1 G2 and 4 Zp elements. The verifier spends
9 pairings and 5 G1 multiplications. Given n zk-subset claims and proofs, it is
possible to aggregate them into one single proof of log(n) size, using inner pairing
product argument [24]. Details are show in Appendix G.

4 Arithmetic Circuit

The arithmetic circuit in zkreg takes a secret witness stream of input characters
(4-bit nibbles) and its acceptance path by the AC-DFA. It enforces the AC-DFA

12 Raymond et al.

semantics (e.g., the fail-edges), performs encryption and hash operations, gener-
ates the vanishing polynomials for states and transitions, and evaluates them at
a given random point. We introduce several design decisions that optimize the
prover performance.

An AC-DFA is a tuple (Σ,S, s0, F, T) where Σ =
{
i
}|Σ|−1

i=0
is the alphabet,

S =
{
i
}|S|−1

i=0
and F =

{
i
}|F |−1

i=0
are the set of states and final states. s0 ∈ S

(its encoded value being 0) is the initial state and each transition in T is a
tuple (s, c, t, b) where s, t ∈ S are the source/destination states, c ∈ Σ is the
input character, and b is a Boolean flag indicating if the transition is a fail-edge.
Given Zp of a bilinear group (usually p > 2252), we define an encoding function
ρ : T → Zp, letting m = dlog(|S|)e and n = dlog(|Σ|)e:

ρ((s, c, t, b)) = b+ 2c+ 2n+1s+ 2m+n+1t+ 22m+n+2 (2)

In practice for ClamAV, we take m = 25 and n = 4. Note that the circuit
has to perform a range check on all elements of a transition, e.g., b is really a
Boolean flag. The last item 22m+n+2 in Equation 2 is used to separate the sets
of transitions and states, thus saving the range proof cost for states.

4.1 Support Set

Let U denote the set of transitions along an acceptance path. It is a multi-set, i.e.,
one element may appear multiple times. When the prover needs to argue in the
Σ-protocol that it is a subset of all possible transitions of the AC-DFA, its sup-
port set Û (i.e., the set of the distinct elements in U) is needed by the Σ-protocol.
It is possible to encode the relation between U and Û using the switch-network
technique in TinyRAM [15], however, the circuit size is |U |log(|U |). In the follow-
ing, we introduce a technique that incurs O(|U |log2(|U |)) field operations (due
to half-GCD) for supplying the circuit witness, but it results in O(|U |) circuit
size. The scheme runs faster in concrete time. For instance, for a malware-free
file of size 1MB and depth 10, the half-GCD field operation costs 662 seconds
of CPU time, which is less than 2.7% of the total CPU time spent on the proof.

Given U and Û , let Let pU and pÛ be the vanishing polynomials. Let p′U be the
derivative of pU (thus monic and non-zero). It is known that these polynomials
satisfy the following [32, Ch. 9] for fields of a large prime order.

pU
gcd(pU , p′U)

≡ pÛ (3)

Example 41 Let U = {1, 1, 2} and Û = {1, 2}. Clearly, pU (X) = (X−1)2(X−
2), and p′U (X) = (X− 1)(2(X− 2) + (X− 1)). Then, gcd(pU , p

′
U) = (X− 1) and

pU
gcd(pU ,p′U) is (X − 1)(X − 2), which is identical to pÛ . ut

According to Bézout’s Lemma, for any f, g ∈ Zp[X]: gcd(f, g) = 1 if and
only if there are a, b ∈ Zp[X] s.t. af + bg = 1. We denote a and b as BZ1(f, g),
and BZ2(f, g).

Efficient Zero Knowledge for Regular Language (Extended Version) 13

Circuit Specification: H ← CIRCn,A(~I,−→w1,
−→w2)

Parse ~I as {r}. Parse −→w1 as (~T , Evi(p~u), k) where for each i ∈ [0, n):
~Ti = (~si,~ci, ~si+1,~bi), and ~u = ~s ∪ ρ(~T). Parse −→w2 = (v, r2, ~s1, ~sn).
Abort if any of the following assertion fails.
1. Assert ∀i ∈ [0, n) : ~bi ∈ {0, 1}.
2. Assert ∀i ∈ [0, n) : ~ci ∈ Σ.
3. Assert ~sn < |F |.
4. Fail-edge semantics: ∀i ∈ [0, n− 1) : ~bi = 1⇒ ~ci+1 = ~ci.

5. ~t←
(
ρ(~Ti)

)n−1

i=0
. v1 ← (

∏n−1
i=0 (~ti − r))(

∏n
i=0(~si − r)). Parse Evi(p~u) =

(
pi
)7
i=1

.

Assert p1(r) = v1, and verify Evi(p~u) is valid: p2 = p′1 ∧ p1(r) =
p3(r)p4(r) ∧ p2(r) = p3(r)p5(r) ∧ p6(r)p4(r) + p7(r)p5(r) = 1.

6. Assert v = p4(r).

Recollect input chars from ~c by skipping those for fail edges. Let them be ~d.
Return hash(encrypt(~d, k)).

Fig. 4. CIRCn,A for AC-DFA A with Input Size n

Definition 2. Let A be a multi-set of field elements of Zp, let pA be its vanishing
polynomial, and p′A the formal derivative of pA. The evidence polynomials for
pA, denoted as Evi(pA), is defined as the following tuple of seven polynomials:pA, p

′
A, gcd(pA, p

′
A), pA

gcd(pA,p′A) ,
p′A

gcd(pA,p′A) ,

BZ1

(
pA

gcd(pA,p′A) ,
p′A

gcd(pA,p′A)

)
, BZ2

(
pA

gcd(pA,p′A) ,
p′A

gcd(pA,p′A)

)
Note that in Definition 2, the 4th polynomial, i.e., pA

gcd(pA,p′A) is the vanishing

polynomial for the support set, i.e., pÂ. Given the coefficients of the polynomials
in Evi(pA), one can use arithmetic circuit to efficiently check p′A is the derivative
of pA. For the rest of the check on Evi(pA), we present a Feedback Commit-and-
Prove (FB-CP) scheme in Section 5.2 to take advantage of Schwartz-Zippel.

4.2 Circuit Specification

We present the specification of CIRCn,A in Figure 4. Here, n is the input length
and A is the AC-DFA that it encodes. CIRCn,A is defined as a function that takes

public input wires ~I and witness input wires that are split into two segments:
−→w1 and −→w2. All wire values are elements of Zp. Intuitively, the circuit performs
consistency checks on the input wires, and produces an output wire H where
H = hash(encrypt(~c, k)) for a secret key k and input string ~c. The commitment to
−→w2 will be taken from the Groth16 system and used to connect with Σ protocols.

As shown in Figure 4, there is only one public input wire: r. It is used as the
random input point for evaluating polynomials. The first witness segment −→w1

consists of the acceptance path of the secret input string, evidence polynomials,
and a symmetric encryption key k. ~T is a vector of transitions, where each

14 Raymond et al.

element is written as a tuple (~si,~ci, ~si+1,~bi). Let ~u = ~s∪ ρ(~T), i.e., the encoding

of states and transitions. Let ~̂u be its support set. The second component of ~w1

is Evi(p~u), and its correctness will be validated in the circuit.

Let v ← p~̂u(r), and r2
$←− Z∗p. Witness segment 2 consists of (v, r2, ~s1, ~sn).

Its Pedersen commitment is used to bridge with Σ-protocols. ~s1 and ~sn are the
beginning and last state of the acceptance path, which is used to connect the
proofs for consecutive chunks of a big file. r2 is the opening (blinding factor) of
the Pedersen commitment.

In Figure 4, actions (1)-(4) encode the AC-DFA machinery, mainly the logic
of fail-edges. Note that the range proof for states can be saved due to encoding
tricks introduced earlier. In action (5), the multi-set of transition encoding and
states are built. The circuit computes its evaluation at random point r, and
then use it to compare with the p1(X) in Evi(p~u), thus establishing that the p1

in Evi(p~u) is a vanishing polynomial of the multi-set of transitions and states.
Then the rest of the check verifies Bézout’s identity relation and others for the
validity of Evi(p~u). This establishes that the p4(X) in Evi(p~u) is the vanishing
polynomial for the support set, i.e., p~̂u. Then it verifies the v in segment 2 is
equal to p4(r). The circuit assumes that all witness wires are committed before
the random input r is supplied as input. This is addressed in Section 5.

5 2-Phase Proof Scheme

In this section, we provide a modified Groth16 [44] zkSNARK system, based on
which, we develop a 2-phase proof strategy to exploit the locality of AC-DFA. We
design a Feedback Commit-and-Prove (FB-CP) scheme for realizing the 2-phase
strategy, by connecting Σ-protocols with Groth16.

5.1 k-ccGro16

The k-segment commitment-carrying Groth16 scheme (k-ccGro16) is a gener-
alization of the ccGro16 proof system in LegoSNARK [29, Appendix H.5], by
extending it from one committed segment to multiple.

Definition 3. A k-segment quadratic arithmetic program (k-QAP) is a tuple

R =
(
p,G1,G2,GT , `, {ui(X), vi(X),wi(X)}mi=0, t(X), {bj}kj=0

)
where its statement is (a0, . . . , a`) ∈ Z`p with a0 = 1, and witness (a`+1, . . . , am) ∈
Zm−`p . Let n be the degree of t(X), the witness is accepted if and only if there
exists a n− 2 degree polynomial h(X) s.t.

m∑
0

aiui(X)

m∑
0

aivi(X) =

m∑
0

aiwi(X) + h(X)t(X)

A witness tuple is divided into k segments, and their scope is defined by a

boundary vector
{
bj
}k
j=0

in ascending order, where b0 = `+ 1 and bk = m+ 1.

Efficient Zero Knowledge for Regular Language (Extended Version) 15

1 Trusted Set-up: (σG, τ)← Setup(R)

Parse R =
(
p,G1,G2,GT , `, {ui(X), vi(X),wi(X)}mi=0, t(X), {bj}kj=0

)
. Sample

α, β, γ, {δi}ki=1, x from Z∗p.

For 1 ≤ j ≤ k, compute κj ←
{
βui(x)+αvi(x)+wi(x)

δj

}bj−1

i=bj−1

. Define simulator

trapdoor τ =
(
α, β, γ, {δi}ki=1, x

)
. Generate σ1, σ2 as below:

σ1 ←

α, β, {δi}ki=1 ,
{
xi
}n−1

i=0
, {κj}kj=1 ,{

βui(x)+αvi(x)+wi(x)
γ

}`
i=0

,
{
xit(x)
δk

}n−2

i=0

 , and σ2 ←

(
β, γ, {δi}ki=1 ,{
xi
}n−1

i=0

)

Compute σG ← ([σ1]1, [σ2]2]). Return (σG, τ).
2 Prove: ([A]1, [B]2, {[Ci]1}ki=1)← Prove((a0, . . . , am), R, ([σ1]1, [σ2]2)).

Sample r, s, and {rj}kj=1 from Z∗p. Compute π =
(
[A]1, [B]2, {[Cj]1}kj=1

)
where

[A]1 ←

[
α+

m∑
i=0

aiui(x) + rδk

]
1

[B]2 ←

[
β +

m∑
i=0

aivi(x) + sδk

]
2

For each 1 ≤ j ≤ k − 1: [Cj]1 ←
[(∑bj−1

i=bj−1
ai
(
βui(x)+αvi(x)+wi(x)

δj

))
+ rjδk

]
1
.

For the last segment, [Ck]1 ←[(∑bk−1
i=bk−1

ai
(
βui(x)+αvi(x)+wi(x)

δk

))
+ h(x)t(x)

δk
+As+Br − rsδk −

∑k−1
i=1 riδi

]
1
.

3 Verify: 0/1← verify((a0, . . . , a`), π, R, ([σ1]1, [σ2]2]))

Parse π as
(
[A]1, [B]2, {[Cj]1}kj=1

)
. Return 1 if and only if:

[A]1 · [B]2 = [α]1 · [β]2 +
∑`
i=0 ai

[
βui(x)+αvi(x)+wi(x)

γ

]
1
· [γ]2 +

∑k
i=1[Ci]1 · [δi]2.

4 Simulation: π ← simulate((a0, . . . , a`), τ, R)

Sample A, B, {Ci}k−1
i=1 from Z∗p. Compute

Ck ←
AB−αβ−(

∑`
i=0 ai(βui(x)+αvi(x)+wi(x)))−

∑k−1
i=1 δiCi

δk
. Return

π =
(
[A]1, [B]2, {[Ci]1}ki=1

)
.

Fig. 5. k-Segment ccGro16 (k-ccGro16) Protocol

Each segment i corresponds to a slice of the witness, i.e., (abi−1
, . . . , abi−1).

It is required that for each segment j ∈ [1, k − 1]:
{
ui(x)

}bj−1

i=bj−1
are linearly

independent.8

Algorithm 5 presents the details of k-ccGro16. We briefly explain the de-
sign idea here and refer readers to [29, Appendix H.5] for details, from which
k-ccGro16 is derived. The trusted setup generates prover keys ([σ1]1, [σ2]2) and
simulator trap-door τ . Compared with the standard Groth16 [44], for each wit-
ness segment j, there is an additional trapdoor parameter δj (in contrast to

one δ in Groth16). The
{
βui(x)+αvi(x)+wi(x)

δ

}
component in Groth16 is simi-

8 Linear independence can be ensured by adding dummy constraints when compiling
QAP [14, Lemma 2.4], or directly reasoning about relation between R1CS variables.

16 Raymond et al.

larly “segmented” into k segments (denoted as κj for each j ∈ [1, k]) in the new
scheme. k-ccGro16 generates a proof π =

(
[A]1, [B]2, {[Cj]1}kj=1

)
, which splits

the [C]1 in Groth16 into k pieces, i.e., {[Cj]1}kj=1. A blinding component rjδk
is added to each Cj for zero knowledge. δj ensures knowledge extraction and
avoids inter-mix of values from different segments. Its correctness is stated in
Theorem 1.

Theorem 1. The protocol given in Algorithm 5 is perfectly complete, perfectly
zero knowledge, and statistical knowledge sound against adversaries using a poly-
nomial number of generic bilinear group operations.

5.2 Feedback Commit-and-Prove (FB-CP)

In Figure 8, we present FB-CP for realizing the 2-phase proof strategy. The
basic idea is to fix part of the arithmetic circuit inputs first by committing to
them, recompute the polynomial input point by applying Fiat-Shamir, and then
compute the rest of Groth16 proof. Note that the CPlnk in LegoSnark [28] cannot
replace FB-CP as it is needed by CIRCn,A for validating evidence polynomials.

Its one-time setup has three steps, where step (2) needs to be carried out
by a trusted party. The setup first generates σΣ and σc, the prover/verifier keys
for Σ protocols and k-ccGro16. Then for the given AC-DFA, it publishes S, the
encoded states and transitions, and then the corresponding subsets bounded by
depth, denoted as Si for depth i. For each subset, its bilinear accumulator Ai

and the corresponding proof Wi are pre-computed, to speed up zk-subset proofs
later. For Ai, its knowledge proof is πAi

, and likewise πWi
for Wi.

The prover is given an input string s, an encryption key k, and her job is to
prove that s ∈ L(A). Note that s will not be visible to verifier, who can only see
hash(encrypt(s, k)). The prover proceeds in three steps.

In the first step, the prover runs s over the AC-DFA, generates its acceptance
path and let ~T be the encoded states and transitions and T̂ its support set. She
then generates Evi(p~T), as the proof for T̂ being the support set of ~T , using

these polynomials she prepares −→w1 = (~T , Evi~T , k) as the first segment of witness
for CIRCn,A. She then uses the Groth16 prover algorithm to compute C1 for
the first segment (but not all of the Groth16 proof). Then, she computes CT̂,

the zk-VPD commitment to T̂. These two commitments are first presented to
the verifier to fix these inputs.

In the second step, the verifier generates a random nonce r. This is simulated
using Fiat-Shamir by setting r as a hash on CT̂ and C1. Then the prover takes r,
feed it to CIRCn,A, and generates the rest of the intermediate and output wires.
Write Evi(p~T) as Evi~T . Recall that the circuit evaluates all the polynomials
in Evi~T and checks their relations (e.g., Bézout’s identity). As all polynomial
coefficients are already fixed in C1, given that r is random, the scheme is sound
with overwhelming probability by Schwartz-Zippel. For the second segment −→w2 =
(v, r2, s1, sn), the circuit asserts that v = Evi~T [3](r) (i.e., the pT̂ for honest
prover) and s1 and sn are the first and last states in the acceptance path of s.

Efficient Zero Knowledge for Regular Language (Extended Version) 17

1 Setup: (R, σΣ , σc, {(Ai, πAi)}ui=0, {(Wi, πWi ,Wi,2)}ui=0) ← Setup(λ,A)
1. Parse AC-DFA A as (Σ,S, s0, F, T). Compute S = S ∪ ρ(T). Let u be the max depth of S.

Compute {Si}ui=1, where Si is the subset of S bounded by depth i. Build CIRCn,A from A,
and let R be its QAP. Run G ← G(1λ).

2. (σc, τc)← k-ccGro16.Setup(R) and σΣ ← Σunivar zk vpd.Setup(1λ, G, |S|).
3. For each i ∈ [1, u]: compute pSi , and let wi(x) = pS/pSi . Compute: (Ai, πAi)←

Σunivar zk vpd.CommitPoly(pSi , 0, σΣ), and (Wi, πWi)← Σunivar zk vpd.CommitPoly(wi, 0, σΣ).
Wi,2 = [wi(s1)]2. Note that Su = S and Au is the accumulator for S. Return (R, σΣ , σc,
{(Ai, πAi)}ui=0, {(Wi, πWi ,Wi,2)}ui=0).

2 Prove: π ← Prove(A, s, k, σ)

1. Parse σ as (R, σΣ , σc, {(Ai, πAi)}ui=0, {(Wi, πWi ,Wi,2)}ui=0). Run input s over A. Extract
multi-set of transitions and states ~T , and compute its vanishing poly pT̂. Sample rT̂ from Z∗p
and compute: (CT̂, πC

T̂
)← Σunivar zk vpd.CommitPoly(pT̂, rT̂, σΣ);−→w1 = {~T , Evi(p~T), k}.

Let b0 = 3 and b1 = |−→w1|+ 3 (because QAP public inputs are {1, r,H}).
Use k-ccGro16.Prove in Figure 5 to compute the following:

C1 ←

b1−1∑
i=b0

−→w1[i−3]

(
βui(x) + αvi(x) + wi(x)

δ1

)+ r1δ3


1

.

2. Sample r2 from Z∗p. Apply Fiat-Shamir: r ← hash(H,C1,CT̂).

Let s1 and sn be the first and last state of ~T . Define ~I = {r}, −→w2 = {pT̂(r), r2, s1, sn}.
Compute H = CIRCn,A(~I,−→w1,

−→w2). Convert inputs of CIRCn,A to R1CS, and then QAP
witness, letting it be ~a. Now apply the full k-ccGro16 (where C′1 = C1 for honest prover).(

A,B,C′1,C2,C3

)
← k-ccGro16.Prove(~a,R, σc).

3. Compute wT̂(X)← pSd(X)/pT̂(X); (WT̂, πW
T̂

)← Σunivar zk vpd.CommitPoly(wT̂, 0, σΣ), and
WT̂,2 = [wT̂(s1)]2. Generate subset and zk-kzg proofs:

(C′Ad
, πAd⊂Au)← PrvSubset(Au,Ad, πAd ,Wd, πWd ,Wd,2, 0, 0, σΣ , T);

(CT̂, πT̂⊂Ad
)← PrvSubset(C′Ad

,CT̂, πT̂,WT̂, πW
T̂
,WT̂,2, r

′
Ad
, rT̂, σΣ , F),

where r′Ad
is the opening of C′Ad

(Cy, πy)← Σunivar zk vpd.Open(pT̂, rT̂, r, σΣ)

πy,2 ← πSAME(Cy,C2){(y, ry, r1, r2, r3, r4) : Cy = y[1]1 + ry[s2]2 ∧
C2 = y[κ2[0]]1 + r1[κ2[1]]1 + r2[κ2[2]]1 + r3[κ2[3]]1 + r4[δ3]1}

Return
(
r, (A,B,C1,C2,C3), (C′Ad

, πAd⊂Au), (CT̂, πT̂⊂Ad
), (Cy, πy, πy,2)

)
.

3 Verify: 1/0← Verify(R, H, π, σ)
Parse π as

(
r, (A,B,C1,C2,C3), (C′Ad

, πAd⊂Au), (CT̂, πT̂⊂Ad
), (Cy, πy, πy,2)

)
. Return 1 iff.

all of the following checks pass:

1. k-ccGro16.Verify((1, r,H), (A,B,C1,C2,C3),R, σc) ∧ r = hash(H,C1,CT̂).
2. Σsubset.VerSubset(Au,CA′

d
, πAd⊂Au , σΣ) ∧ Σsubset.VerSubset(CA′

d
,CT̂, πT̂⊂Ad

, σΣ).

3. Σunivar zk vpd.Verify(CT̂,Cy, r, πy, σΣ) ∧ CheckSAME(Cy,C2, πy,2, σΣ).

Fig. 6. Feedback Commit-and-Prove (FB-CP)

18 Raymond et al.

In the third step, the prover computes Σ-proofs. The πSAME proof (πy,2)
establishes that C2 and Cy as Pedersen commitment hide the same value y
(this is verified using CheckSAME in step (3) of Verify, which is derived from
CheckDLOG). Then the Σunivar zk vpd proof establishes that y = pT̂(r), where CT̂

is the commitment to pT̂. This now links the Σ-protocols with k-ccGro16, i.e.,
the pT̂ behind CT̂ is indeed the Evi~T [3] in −→w1 of CIRCn,A.

Then the two zk-subset proofs establishes that T̂ is indeed a subset of allowed
state/transition set S. This is accomplished by proving that T̂ (letting its depth
be d) is a subset of Sd, and then proving Sd is a subset of S. Due to the use of
Σsubset.PrvSubset, C′Ad

is used (instead of Ad), thus retaining zero knowledge.
The verifier is given a hash H, the prover/verifier key σ, and a proof π. By

running the Verify() algorithm, she can be convinced that there exists a string s
and a key k s.t. H = hash(encrypt(s, k)) and s ∈ L(A)) where A is the AC-DFA
that the prover and verifier agrees upon (for which σ is the prover/verifier key).

Theorem 2. The protocol given in Algorithm 8 is perfectly complete, perfectly
zero knowledge, and computational sound in the random oracle model, under
the assumption of DL, q-PKE, q-SDH, and q-CPDH and adversaries perform
polynomial number of generic bilinear group operations.

Efficiency: Let |s| be the input string length, d the depth of its acceptance path,
and |Sd| the size of the corresponding subset bounded by depth d. The verifier
cost is apparently O(1). The prover has to pay O(|s|log2(|s|) + |Sd|log(|Sd|))
field operations because of half-GCD algorithm and polynomial division, and
O(|s|log(|s|)) for R1CS witness to QAP and O(|Sd|) group operations for Σ-
proofs, and the Groth16 itself costs O(|s|) group operations.

6 Implementation and Evaluation

6.1 System Architecture and Data-set

We provide a full implementation of zkreg, based upon Arkworks [7] for field-
/group arithmetic and Rust OpenMPI [57] for distributed processing. We use
an instrumented JSnark [49] for converting arithmetic circuit to R1CS, which is
fed to a distributed QAP and Groth16 system implemented in Rust. The zkreg

implementation consists of 33k LOC of Rust and 15k LOC of Java. Our evalua-
tion uses a cluster of 4 CentOS 7.1 servers (each with 112 vCPU and 448 GB of
RAM). The actual GCP network bandwidth is 85Gbps, with average ping time
0.1ms. We use BLS12-381 curve, which provides 128-bit security.

The AC-DFA is generated from the hex-signature database of ClamAV, which
consists of 101634 signature strings, with 89% being fixed string patterns that
can be directly handled by AC-DFA. 9 There are 11040 regex patterns, which
will cause state explosion when compiled to DFA. We take a conservative ap-
proximation approach, where we treat regex operators as separators and split

9 Retrieved 03/28/2022. All hex signatures are contained in main.ndb

Efficient Zero Knowledge for Regular Language (Extended Version) 19

2
-8

2
-6

2
-4

2
-2

2
0

2
2

2
4

2
6

2
16
2
18
2
20
2
22
2
24
2
26
2
28
2
30
2
32

T
i
m
e

(
s
e
c
)

Degree

FFT

4-nodes
8-nodes
16-nodes
32-nodes
64-nodes
128-nodes
256-nodes

2
-6

2
-4

2
-2

2
0

2
2

2
4

2
6

2
8

2
16

2
18

2
20

2
22

2
24

2
26

2
28

2
30

T
i
m
e

(
s
e
c
)

Degree

Multiplication

2
-2

2
0

2
2

2
4

2
6

2
8

2
16

2
18

2
20

2
22

2
24

2
26

2
28

2
30

T
i
m
e

(
s
e
c
)

Degree

Division

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
20

2
22

2
24

2
26

2
28

2
30

T
i
m
e

(
s
e
c
)

QAP Size

Groth16

Fig. 7. Distributed System Performance over BLS12-381

each regex signature as a collection of fixed pattern strings. A file is regarded as a
virus if it contains any of these patterns. The approximation is “conservative” in
the sense that it never reports false-negative for a real virus, but it might report
false positives. This is mainly caused by very short patterns resulted from regex
signature sets. We removed 8553 such pattern strings. This results in a pattern
string collection of 110692, based on which the AC-DFA is built. The AC-DFA
contains 19 million states and 342 million transitions. We then run the AC-DFA
over all the 2479 ELF files (object and executable files) in a Linux CentOs 7.1,
and then there is no false positive reported. The ELF data set has a total size
of 747MB. It exhibits good locality. 96% files have depth less than 40 (which
accounts for 22% of the AC-DFA states), with max-depth 252.

6.2 Distributed Processing

We first implement a distributed vector structure using Rust OpenMPI [57],
using which coefficients of a polynomial can be stored over a cluster of com-
puter nodes. Then we take the algorithm presented in DIZK [67] and implement
distributed FFT operations. Compared with DIZK, we made the following addi-
tions, mainly for generating Σ-protocol proofs. We implement polynomial divi-
sion using Hensel lifting [65] with O(nlog(n)) complexity, and also the half-GCD
algorithm [62] with O(nlog2(n)) complexity.

Figure 7 presents the performance and scalability of zkreg. Distributed FFT
is the basis of all. Compared with DIZK, our FFT operation over BN-254 achieves
34× speed-up at degree 228 (2.6 seconds vs 90.5 seconds by DIZK). For curve
BLS12-381, it costs 37 seconds for FFT of 232 degree. Half-GCD is only needed
at lower degree, However, it does not scale well with MPI. At the degree of 220,
single thread half-GCD costs 450 seconds, running with 32 (256) MPI-nodes costs
310 (401) seconds. We mainly achieve parallelism of GCD via batch processing
proofs. We provide a distributed implementation of the Groth16 system similarly.
Compared with DIZK [67], with 256-executors for QAP size of 230 over BN-254,
our system needs 266 seconds of prover time (107× faster than 214.8 seconds
needed by DIZK [67, Figure 5(b)]), and for BLS12-381 it needs 393 seconds.

Arithmetic circuit is encoded using the JSnark library [49]. Let n be the
length of the input string in terms of bytes, the total cost of the circuit is 124n

20 Raymond et al.

File1 File2 File3
Depth: 10 Depth: 10 Depth: 300
Size: 216 Size: 220 Size: 220

R1CS: 8.3× 106 R1CS: 1.3× 108 R1CS: 1.3× 108

Poly: 2.9× 107 Poly: 2.9× 107 Poly: 3.5× 108

Step Cost (sec) Cost (sec) Cost (sec)

(1) 1-thread half-GCD. 69.6 662.9 700.6

(2) Load Witness. 1.0 9.3 10.1

(3) Groth16 Step 1. 0.3 2.1 2.1

(4) Apply Fiat-Shamir. 0.2 0.3 0.4

(5) QAP Witness. 2.6 17.1 15.8

(6) Groth16 Step 2. 2.5 21.4 21.1

(7) Σsubset Proof 1. 0.1 0.01 0.01

(8) Σsubset Proof 2. 30.3 31.6 242.9

(9) Σunivar zk vpd Proof. 0.2 3.0 3.4

Turnaround Time 106.8 747.7 996.4

Adjusted Total 37.6 94.5 314.2

All file size in bytes. R1CS performance “faster” than reported in Figure 7 because many
witness wire inputs (e.g., states and transitions) are 56-bit numbers.

Table 1. Cost Breakdown of Prover Time

R1CS constraints (30n for AC-DFA, 34n for encryption/hash, 60n for support-
set). For instance, an input file of 1008 bytes needs 125263 R1CS constraints.
The circuit cost is high, even when bilinear friendly hash and encryption such as
Poseidon [42] and MiMC [4] are used. Also addressing support-set is expensive.
An alternative solution is to apply the technique in [35]. However our estimate
is that it costs greater (448n R1CS constraints), as the comparison to verify
sorted list is expensive. Its advantage is the better scalability than the half-
GCD approach. To improve performance in practice, all of circuit generation,
conversion to R1CS and QAP are distributed in zkreg.

6.3 Proving Linux CentOs 7 Malware Free

To demonstrate the scalability of zkreg, we prove all ELFs in a Linux CentOs 7.1
malware free. We need to run a one-time set-up for keys. We generate the subset
for depth D = {10, 15, 20, 30, 40, 50, 300}. The entire set-up takes less than 1
hour on the HPC cluster. Due to limit of RAM resources, we chunk larger files
into 1MB pieces, and provide additional Schnorr style DLOG proofs to connect
the last/first states of consecutive chunks. We thus have 2954 chunks resulted
from 2479 ELF files.

Table 1 shows the prover cost break-down for several sample files (each is
padded to a size of closest power of 2 and zk-subset proofs are generated for
the closest depth in D). We also show the problem size such as the number of
R1CS constraints and the highest degree of polynomials in Σ-protocols. Except
for step (1) which is executed with a single thread, all others are run with 256

Efficient Zero Knowledge for Regular Language (Extended Version) 21

OpenMPI processes. In practice, step (1) is concurrently processed for multiple
jobs of the same size configuration to cut down cost. We thus have two ways
to compute the sum of total cost. The turnaround time stands for the duration
from the moment a proof job is submitted to the moment the proof is generated.
The adjusted total reflects the “actual” cost of a job by dividing the HGCD cost
by the number of concurrent jobs.

According to Lifewire, 10 the average email size is 75kb. For 64kb files, includ-
ing the single-thread half-GCD cost, its turn-around proof time is 106 seconds.
This implies that the zkreg scheme is practical for proving encrypted emails are
malware free. The system also demonstrates good performance for 1MB files
(with depth 10). Its adjusted total is 94 seconds. For files with depth 300, the
prover time is significantly higher, however, such files are rare. The peak system
memory usage is 880GB.

For 2479 ELF files (747MB) collected, we generate 2954 proofs (2016 bytes
each) using 54 hours on the HPC cluster, which costs 1350 dollars on GCP. Each
proof can be verified by a single-thread verifier in 36 milliseconds. We further
apply the inner product pairing product technique [24] to aggregating all proofs.
The details are presented in Appendix G. All 2954 proofs are aggregated into
one single proof of 1.96MB in 727 seconds, which can be verified in 6.5 (16)
seconds with 8 (1) threads.

7 Conclusion

We present an efficient zero knowledge proof system for regular language and
demonstrate its performance by proving CentOS 7 malware free.

Acknowledgment: This work is supported by a gift from the Chan Zuckerberg
Initiative. Michael Raymond is supported by the Hofstra University SEAS As-
pire’22 Summer Research Program and the Stuart and Nancy Rabinowitz Honors
College Research Assistant Program. The views and opinions expressed in this
work are those of the authors and do not reflect the position of the sponsors of
the work. We thank Zachary DeStefano for helpful comments on the paper.

References

1. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-
Preserving Signatures and Commitments to Group Elements. J. Cryotology, 2:363–
421, 2016.

2. S. Agrawal, C. Ganesh, and P. Mohassel. Non-interactive zero-knowledge proofs
for composite statements. In CRYPTO, pages 643–673, 2018.

3. A. V. Aho and M. J. Corasick. Efficient string hatching: an aid to bibliographic
search. Communications of ACM, 18:333–340, 1975.

4. M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. MiMC: Efficient
Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity.
In ASIACRYPT, pages 191–219, 2016.

10 https://www.lifewire.com/what-is-the-average-size-of-an-email-message-1171208

22 Raymond et al.

5. S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. In CCS, pages 2087–2104, 2017.

6. D. Aranha, E. M. Bennedsen, M. Campanelli, C. Ganesh, C. Orlandi, and A. Taka-
hashi. ECLIPSE: Enhanced Compiling Method for Pedersen-Committed zk-
SNARK Engines. In PKC, pages 584–614, 2022.

7. arkworks contributors. arkworks zksnark ecosystem, 2022.
8. N. Baric and B. Pfitzmann. Collision-free accmulators and fail-stop signature

schemes without trees. In EUROCRYPT, pages 480–494, 1997.
9. E. Ben-Sasson, I. Bentov, I. Horesh, and M. Riabzev. Fast reed-solomon interactive

oracle proofs of proximity. In ICALP, pages 14:1–14:17, 2018.
10. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and

post-quantum secure computational integrity. ICAR Cryptology ePrint Archieve,
46, 2018.

11. E. Ben-Sasson, A. Chiesa, C. Garman andM. Green, I. Miers, E. Tromer, and
M. Virza. Zerocash: Decentralized anonymous payments from bitcoin. In SSP,
pages 459–474, 2014.

12. E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKS for C:
Verifying Program Executions Succinctly and in Zero Knowledge. In CRYPTO,
pages 90–108, 2013.

13. E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward.
Aurora: Transparent succinct arguments for r1cs. In EUROCRYPT, pages 103–
128, 2019.

14. E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct Non-Interactive Zero
Knowledge for a von Neumann Architecture. In USENIX, pages 781–796, 2014.

15. E. Ben-Sasson, Al Chiesa, D. Genkin, E. Tromer, and M. Virza. Tinyram architec-
ture specification. available at http://www.scipr-lab.org/doc/TinyRAM-spec-0.
991.pdf.

16. J. Benaloh and M. de Mare. One-way accmulators: A decentralized alternative to
digital signatures. In EUROCRYPT, pages 274–285, 1993.

17. D. Benarroch, M. Campanelli, D. Fiore, K. Gurkan, and D. Kolonelos. Zero-
knowledge proofs for set membership: Efficient, succinct, modular. available at
https://eprint.iacr.org/2019/1255.pdf, 2019.

18. D. Benarroch, M. Campanelli, D. Fiore, K. Gurkan, and D. Kolonelos. Zero-
Knowledge Proofs for Set Membership: Efficient, Succinct, Modular. In Financial
Cryptogrpahy, pages 393–414, 2021.

19. D. Boneh and X. Boyen. Short signatures without random oracles. In Eurocrypt,
pages 56–73, 2004.

20. D. Boneh and X. Boyen. Short signatures without random oracles and the sdh
assumption in bilinear groups. J. Cryptology, 21:149–177, 2008.

21. D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Efficient polynomial commitment
schemes for multiple points and polynomials. IACR Cryptol. ePrint Arch., 2020.

22. J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In EUROCRYPT,
pages 327–357, 2016.

23. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In SSP, pages 315–334, 2018.

24. B. Bünz, M. Maller, P. Mishara, N. Tyagi, and P. Vesely. Proofs for Inner Pairing
Products and Applications. In ASIACRYT, pages 65–97, 2021.

25. J. Camenisch and A. Lysyanskaya. Dynamic acculators and applications to efficient
revocation of anonymous credentials. In CRYPTO, pages 61–76, 2002.

Efficient Zero Knowledge for Regular Language (Extended Version) 23

26. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In CRYPTO, LNCS 1296, pages 410–424, 1997.

27. M. Campanelli, A. Faonio, D. Fiore, A. Querol, and H. Rodriguez. Lunar: A
Toolbox for More Efficient Universal and Updatable zkSNARKs and Commit-
and-Prove Extensions. In ASIACRYPT, pages 3–33, 2021.

28. M. Campanelli, D. Fiore, and A. Querol. LegoSNARK: Modular Design and Com-
position of Succinct Zero-Knowledge Proofs. In CCS, pages 2075–2092, 2019.

29. M. Campanelli, D. Fiore, and A. Querol. LegoSNARK: Modular Design and Com-
position of Succinct Zero-Knowledge Proofs. IACR Cryptol. ePrint Arch. 2019:142,
2019.

30. M. Chase, C. Ganesh, and P. Mohassel. Efficient Zero-Knowledge Proof of Al-
gebraic and Non-Algebraic Statements with Applications to Privacy Preserving
Credentials. In CRYPTO, pages 499–530, 2016.

31. A. Ciesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P. Ward. Marlin: Prepro-
cessing zkSNARKs with Universal and Updatable SRS. In EUROCRYPT, pages
738–768, 2020.

32. J. S. Cohen. Computer Algeba and Symbolic Computation. A K Peters, 2003.
33. L. Eagen, D. Fiore, and A. Gabizon. cq: Cached quotients for fast lookups. IACR

Cryptol. ePrint Arch., 2022.
34. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification

and signature problems. In CRYPTO, pages 186–194, 1986.
35. N. Franzese, J. Katz, S. Lu, R. Ostrovsky, X. Wang, and C. Weng. Constant-

Overhead Zero-Knowledge for RAM Programs. In CCS, pages 178–191, 2021.
36. A. Gabizon and Z. J. Williamson. Plookup: A simplified polynomial protocol for

lookup tables. IACR Cryptol. ePrint Arch., 2020.
37. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and

succint nizks without pcps. In EUROCRYPT, pages 626–645, 2013.
38. E. Ghosh, O. Ohrimenko, D. Papadopoulos, R. Tamassia, and N. Triandopolous.

Zero-knowledge accmulators and set algebra. In ASIACRYPT (2), pages 67–100,
2016.

39. I. Giacomelli, J. Madsen, and C. Orlandi. Zkboo: Faster zero-knowledge for boolean
circuits. In USENIX Security, 2016.

40. O. Goldreich, S. Micali, and A. Wigderson. How to prove all np statements in
zero-knowledge and a methodology of cryptographic protocol design. In CRYPTO,
pages 171–185, 1986.

41. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems (extended abstract). In STOC, pages 291–304, 1985.

42. L. Grassi, D. Kales, D. Khovratovich, A. Roy, C. Rechberger, and M. Schofnegger.
Poseidon: A new hash function for zero-knowledge proof systems. In USENIX
Security, 2021.

43. J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-
ACRYPT, pages 321–340, 2010.

44. J. Groth. On the size of pairing-based non-interactive arguments. In EURO-
CRYPT, pages 305–326, 2016.

45. P. Grubbs, A. Arun, Y. Zhang, J. Bonneau, and M. Walfish. Zero-Knowledge
Middleboxes. In USENIX Security Seposium 2022, pages 4255–4272, 2022.

46. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to poly-
nomials and their applications. In ASIACRYPT, pages 177–194, 2010.

47. J. Katz, C. Zhang, and H. Zhou. An Analysis of the Algebraic Group Model. In
ASIACRYPT, pages 310–322, 2022.

24 Raymond et al.

48. E. Kiltz and H. Wee. Quasi-adaptive NIZK for Linear Subspaces Revisited. In
EUROCRYPT, pages 101–128, 2015.

49. A. Kosba, Z. Chao, A. Miller, Y. Qian, T. H. Chan, C. Papamanthou, R. Pass,
and a. shelat. cøø: A framework for building compososable zero-knowledge proofs.
Cryptology ePrint Archive. 2015/1093, 2015.

50. H. Lipmaa. Secure accmulators from euclidean rings without trusted setup. In
ACNS, pages 224–240, 2012.

51. H. Liu and L. Ning. Zero-knowledge authentication protocol based on alternative
mode in rfid systems. IEEE Sensors Journals, 11:3235–3245, 2011.

52. T. Liu, X. Xie, and Y. Zhang. zkCNN: Zero Knowledge Proofs for Convolutional
Neural Network Predictions and Accuracy. In CCS, pages 2268–2985, 2021.

53. N. Luo, C. Weng, J. Singh, G. Tan, R. Piskac, and M. Raykova. Privacy-preserving
regular expression matching using nondeterministic finite automata. IACR Cryp-
tol. ePrint Arch. https://eprint.iacr.org/2023/643.pdf, 2023.

54. A. Luthra, J. Cavanaugh, H. R. Olcese, R. M. Hirsch, and X. Fu. Zeroaudit. In
ACSAC, pages 798–812, 2020.

55. I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous distributed
e-cash from bitcoin. In SSP, pages 397–411, 2013.

56. P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-preserving
machine learning. In SSP, pages 19–38, 2017.

57. Rust MPI. MPI binding for Rust, 2022.
58. N. Narula, W. Vasquez, and M. Virza. zkledger: Privacy-preserving auditing for

distributed ledgers. In NSDI, pages 65–80, 2018.
59. L. Nguyen. Accumulators from bilinear pairings and applications. In CT-RSA,

pages 275–292, 2005.
60. B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly Practical

Verifiable Computation. In SSP, pages 238–252, 2013.
61. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. In CRYPTO, pages 129–140, 1991.
62. A. Sch0̈nhage. Schnelle berechnung von kettenbruchentwicklugen. Acta Informat-

ica, 1:139–144, 1971.
63. S. Setty. Spartan: Efficient and general-purpose zkSNARKS without trusted setup.

In CRYPTO, pages 704–737, 2020.
64. S. Srinivasan, I. Karantaidou, F. Baldimtsi, and C. Papamanthou. Batching, Ag-

gregation, and Zero-Knowledge Proofs in Bilinear Accumulators. In CCS, pages
2719–2733, 2022.

65. M. Sudan. 6.S897 Algebra and Computation. Polynomial Division. http:

//people.csail.mit.edu/madhu/ST12/scribe/lect06.pdf, 2012.
66. J. Thaler. Proofs, Arguments, and Zero-Knowledge. https://people.cs.

georgetown.edu/jthaler/ProofsArgsAndZK.pdf, 2012.
67. H. Wu, W. Zheng, Z. Chiesa, R. A. Popa, and I. Stoica. Dizk: A distributed zero

knowledge proof system. In USENIX Security, pages 675–692, 2018.
68. T. Xie, J. Zhang, Y. Zhang, and C. Papamanthou annd D. Song. Libra: Succint

Zero-Knowledge Proofs with Optimal Prover Computation. In CRYPTO, pages
733–764, 2019.

69. T. H. Yuen, S.-F. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, and D. Gu.
Ringct 3.0 for blockchain confidential transaction: Shofter size and stronger secu-
rity. available at https://eprint.iacr.org/2019/508.pdf.

70. A. Zapico, V. Buterin, D. Khovratovich, M. Maller, A. Nitulescu, and M. Simkin.
Caulk: Lookup Arguments in Sublinear Time. In CCS, pages 3121–3134, 2022.

Efficient Zero Knowledge for Regular Language (Extended Version) 25

71. M. Zhandry. To Lable, or Not to Label (in Generic Groups). In CRYPTO, pages
66–96, 2022.

72. C. Zhang, Z. DeStefano, A. Arun, J. Bonneau, P. Grubbs, and M. Walfish. Zombie:
middleboxes that dont snoop. IACR Cryptol. ePrint Arch. https://eprint.iacr.
org/2023/1022, 2023.

73. Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. A Zero-
Knowledge Version of vSQL. IACR Cryptol. ePrint Arch. 2017:1146, 2017.

74. Y. Zhang, J. Katz, and C. Papamanthou. An expressive (zero-knowledge) set
accumulator. In EuroS&P, pages 158–173, 2017.

A Security Assumptions

In the following we use G to denote any of the three groups in {G1,G2,GT } and
use p as their group order, if context is clear.

Definition 4 (Discrete Logarithm (DL) Assumption [46]). Let g be a

generator of G, and a
$←− Z∗p, for every probabilistic polynomial time (PPT)

adversary A:

Pr[A(g, ag) = a] ≈ 0.

Definition 5 (q-Strong Diffie-Hellman (q-SDH) [19, 46]). Let s
$←− Z∗p.

For any PPT adversary A and any c ∈ Zp \ {−s}:

Pr

[
A
((

[si]1
)q
i=0

, [1]2, [s]2
)

= (c,
[1

s+ c

]
1
)

]
≈ 0

Definition 6 (q-Power Knowledge of Exponent (q-PKE) Assumption
[43]). For all PPT adversary A there exists PPT extractor X so that:

Pr


B = (p,G1,G2,GT , e)← G(1λ);

g
$←− G \ {1};α, s $←− Z∗p;

σ =
(
B,
(
sig
)q
i=0

,
(
αsig

)q
i=0

)
;(

c1, c2;~a ∈ Zq+1
p

)
← (A||X)(σ)

:
c2 = αc1 ∧
c1 6=

∑q
i=0

(
~ais

ig
)
 ≈ 0

Here (y; z)← (A||X)(x) denotes that A outputs y given input x, and X outputs
z given the same input x and the random tape of A.

Definition 7 (q-computational power Diffie-Hellman (q-CPDH) As-
sumption [43]). For all PPT adversary A and for all j ∈ [0, q]:

Pr



(p,G1,G2,GT , e)← G(1λ);

g
$←− G \ {1};α, s $←− Z∗p;

y = A


(p,G1,G2,GT , e),(
αsig

)j−1

i=0
,
(
αsig

)q
i=j+1

,(
sig

)q
i=0

 ;

: y = αsjg


≈ 0

26 Raymond et al.

B Definition of Σ-Protocol

We use 〈P,V〉(x) to denote the transcript of interactions between the two parties
for input x. If the verifier accepts, we write it as 〈P,V〉(x) = accept.

Definition 8. An interactive proof system (P,V) for NP relation R is an argu-
ment of knowledge system if P and V are both PPT that satisfy the following:

– Perfect Completeness: ∀(x,w) ∈ R: Pr[〈P(w),V〉(x) = accept] = 1,
– Knowledge Soundness: We say that the system has knowledge error ε if there is a

PPT extractor X for all P and for all x s.t.
Pr[w = X (P, x) ∧ (x,w) ∈ R] > Pr[〈P(w),V〉(x) = accept]− ε

– Perfect Honest Verifier Zero Knowledge (HVZK): there is a PPT simulator S s.t.
∀(x,w) ∈ R: given x, S generates a transcript whose distribution is identical to
that of 〈P(w),V〉(x).

C Univariate Instantiation of zk-VPD [73]

Definition 9. [73, 68] Let (p,G1,G2,GT , e) be a bilinear group for a given se-
curity parameter λ, and q ∈ poly(λ). A zero-knowledge univariate polynomial
delegation scheme (zk-VPD) for polynomials in Zp[X] consists of the following
algorithms:

– σΣ ← Setup(1λ, q) generates prover/verifier key.
– (Cp,1,Cp,2) ← CommitPoly(p, rp, σΣ) computes the commitment Cp,1 to
p(X) with opening (randomness) rp. Cp,2 is the proof of knowledge for Cp,1.

– 1/0 ← Check(Cp,1,Cp,2, σΣ) verifies that Cp,2 is valid proof of knowledge
for Cp,1 based on q-PKE.

– (Cy, π)← Open(p, rp, t, σΣ) produces an evaluation proof π for certifying that
p(X) evaluates to a secret value y at t and Cy is a Pedersen commitment to
y.

– 1/0 ← Verify (Cp,1, Cy, t, π, σΣ) verifies the evaluation proof is correct.

They satisfy the following security properties:

– Completeness: For rp, t ∈ Z∗p and polynomial p(X), the following probability
is 1.

Pr


σΣ ← Setup(1λ, q)

(Cp,1,Cp,2)←
CommitPoly(p, rp, σΣ)

(Cy, π)← Open(p, rp, t, σΣ)

:
Check(Cp,1,Cp,2, σΣ) = 1

Verify(Cp,1,Cy, t, π, σΣ) = 1


– Binding: For any PPT adversary A, the following probability is negligible.

Pr


σΣ ← Setup(1λ, q)

Cp,1,Cp,2,Cy,
p, rp,
t, y, ry,
π

← A(σΣ)
:

Check(Cp,1,Cp,2, σΣ) = 1
Verify(Cp,1,Cy, t, π, σΣ) = 1

(Cp,1,Cp,2)
= CommitPoly(p, rp, σΣ)

Cy = CommitPed(y, ry, σΣ)
y 6= p(t)



Efficient Zero Knowledge for Regular Language (Extended Version) 27

– Zero Knowledge: Let RealA,p and IdealA,S be two games for polynomial p,
adversary A and simulator S. We use δ to denote the trapdoor information
that is used for generating prover/verifier key σΣ.

RealA,p(1
λ) :

σΣ ← Setup(1λ, q)

rp
$←− Zp

(Cp,1,Cp,2)← CommitPoly(p, rp, σΣ)

k ← A(1λ,Cp,1,Cp,2, σΣ)
for i in 1..k repeat

ti ← A

(
1λ,Cp,1,Cp,2,(
Cyj

)i−1

j=0
, (πj)

i−1
j=0

)
(Cyi , πi)← Open(p, ti, rp, σΣ)

b← A
(

1λ, (Cyi)
k
i=0 ,

(πi)
k
i=1 , σΣ

)
output

IdealA,S(1λ) :

(σΣ ,Cp,1,Cp,2, δ)← S(1λ, q)

k ← A(1λ,Cp,1,Cp,2, σΣ)
for i in 1..k repeat

ti ← A

 1λ,Cp,1,Cp,2,(
Cyj

)i−1

j=0
,

(πj)
i−1
j=0


(Cyi , πi, δ)← S(ti, σΣ , δ)

b← A
(

1λ, (Cyi)
k
i=0 ,

(πi)
k
i=1 , σΣ

)
output b

For any PPT adversary A and any polynomial p, there exists PPT simulator
S such that: Pr[RealA,p(1

λ) = 1] ≈ Pr[IdealA,S(1λ) = 1]

In the following, we present the univariate instantiation of zk-VPD construc-
tion in [73, Section 3], as a baseline of comparison.

Let prover key be (
(
[si1]1

)q
i=0

,
(
[αsi1]1

)q
i=0

, [s2]1, [βs2]1, [αs2]1, [α]2, [β]2), where
(s1, s2, α, β) is the trap-door. We here do not distinguish between prover and ver-
ifier key for convenience of presentation. Given p(X) and blinding randomness
rp, its zk-VPD commitment (Cp,1,Cp,2) is defined as: ([p(s1)+rps2]1, [α(p(s1)+
rps2)]1). A commitment can be validated via checking Cp,1 · [α]2 = Cp,2 · [1]2.

Given a validated commitment Cp,1 and assume that the prover wants to
prove that p(t) = y for a given point t. The proof is produced as follows. The
prover samples ry, r1, r2 from Z∗p, and produces the following:

1. (Cy,1,Cy,2) = ([y + rys2]1, [β(y + rys2)]1).

2. Compute q1(X) = (p(X)−y)/(x−t), and (C1,1,C1,2) = ([q1(s1)+r1s2]1, [α(q1(s1)+
r1s2)]1).

3. (C2,1,C2,2) = ([(rp − ry)− r1(s1 − t)]1, [α((rp − ry)− r1(s1 − t))]1)

Intuitively, the claim is that given (Cp,1,Cy,1, t), the prover knows the y
behind Pedersen Commitment Cy,1 s.t. y = p(t) where p(X) is the polynomial
behind Cp,1. Here Cp,1 is assumed to be already validated (proof of knowledge
provided somewhere else), to make a fair comparison with Section 3.1. The proof
consists of Cy,2, C1,1, C1,2, C2,1, C2,2. The verification consists of the following
pairing checks:

1. Cy,1 · [β]2 = Cy,2 · [1]2.

2. C2,1 · [α]2 = C2,2 · [1]2.

3. C1,1 · [α]2 = C1,2 · [1]2.

4. (Cp,1 −Cy,1) · [1]2 = C2,1 · [s2]2 + C1,1 · [s1 − t]2.

28 Raymond et al.

The verification takes 9 pairings, but the first 4 pairings (i.e., for proof of
knowledge of Cy,1 and C2,1 can be replaced by Schnorr-style DLOG proofs with
minor cost in proof size in exchange for verification speed as operations over G1

are much faster than pairings), as a fair comparison with Section 3.1. Thus, the
univariate zk-VPD scheme needs 5 pairings for verification. The difference in our
Σunivar zk vpd scheme in Section 3.1 is that the proof of knowledge for C1,1 can
be saved, and we also change the last equation to save one more pairing, thus
cutting the number of pairings to 2.

D Proof for Lemma 1

Proof. The proof for completeness is apparent. For zero knowledge: the simu-
lator, with the trap-door information s1, can sample Cy,C1 from G1 and then
compute C2 ← (s1− t)C1 + Cy −Cp. Then run simulators for the DLOG proof
for Cy and C2. It thus generates a transcript indistinguishable from ideal ones.

For binding, we will show that if a PPT adversary A is able to craft a fake
evaluation proof with non-negligible probability, then one can build a PPT B
that breaks the q-SDH assumption (Definition 5).

Let B be given a q-SDH challenge [20]: given
(
[si]1

)q
i=0

, [1]2, and [s]2, she

needs to present a tuple (c, [1
c+s]1). From the q-SDH instance, B builds an in-

stance of Σunivar zk vpd for A first. Write s1 = s. B samples s2 and α, and com-
putes the rest of the keys needed for Σunivar zk vpd. For instance, [s1s2]1 is com-
puted as s2[s1]1 (as she does not know s1 but knows s2). B then samples t and
generates a random polynomial p(X), and passes the Σunivar zk vpd instance to
A.

Let y = p(t). Assume A with non-negligible probability can create a fake
evaluation proof (C′1,C

′
2, πDLOGy′ , πDLOG2′) for some y′ 6= p(t). By completeness

A can produce a valid proof, and let it be: (C1,C2, πDLOGy, πDLOG2). As both
pass Σunivar zk vpd.Verify, we have the following (using its third equation): (1)
(Cp −Cy + C2)·[1]2 = C1 ·[s1−t]2; and (2) (Cp −Cy′ + C′2)·[1]2 = C′1 ·[s1−t]2.
Subtracting them leads to the following:

(C′y −Cy + C2 −C′2) · [1]2 = (C1 −C′1) · [s1 − t]2 (4)

Apply the knowledge extractors in πDLOGy, πDLOGy′ , πDLOG2, πDLOG2′ , and
write Cy = [y + s2ry]1, Cy′ = [y′ + s2r

′
y]1, C2 = [s2((s − t)r1 + r2)]1, C2′ =

[s2((s− t)r′1 + r′2)]1, where A knows y, y′, ry, r′y, r1, r′1, r2, r′2 (but not s1 and
s2). Rewrite Equation 4 with the known values by A. We have:[

(y′ − y)+
s2(r′y − ry + r2 − r′2)

]
1

· [1]1 =

(
C1 −C′1
+(r′1 − r1)[s2]1

)
· [s1 − t]2 (5)

Write ∆y = y′− y, A = r′y − ry + r2− r′2, and h1 = C1−C′1 + (r′1− r1)[s2]1.
These are all known to A. Then Equation 5 is simplified to the following:

[∆y + s2A]1 · [1]2 = h1 · [s1 − t]2 (6)

Efficient Zero Knowledge for Regular Language (Extended Version) 29

First of all, note that ∆y 6= 0 by the assumption (y′ 6= y). This leads to
Pr[∆y + s2A = 0] ≈ 0. To see it, assume that ∆y + s2A = 0. Since ∆y 6= 0, we
have s2A 6= 0 and thus A 6= 0. Then A can extract s2 = −∆y/A, thus breaking
the DL assumption.

Now since ∆y+ s2A 6= 0, and B knows s2. B can compute ∆y+ s2A and find
its inverse 1

∆y+s2A
. Plug it into Equation 6, we have 1

∆y+s2A
h1 = [1

s1−t]1. B can

submit (−t, 1
∆y+s2A

h1) to break q-SDH. This concludes the proof.

E Proof for Lemma 2

Proof. The completeness is apparent. The HVZK proof is also straight-forward
and is given in Appendix F. For soundness (binding), since Cp, Cq, and Cw all
have proof of knowledge, apply their knowledge extractors and re-write them
as: Cp = [p(s1)]1 + rp[s2]1, Cq = [q(s1)]1 + rq[s2]1, Cw = [w(s1)]1 + rw[s2]1.
Similarly, write C1 = r1Cq + r2Cw + r3[s2]1 + r4[1]1. Here, the prover knows:

p(X), q(X), w(X), rp, rq, rw,
(
ri
)4
i=1

.
Now rewrite the last equation in the VerSubset algorithm: Cp · [1]2 + C1 ·

[s2]2 = Cq ·Cw,2. This leads to: (s2)2
(
r1rq + r2rw + r3 − rqrw

)
+

s2
(
(rp + r4) + (r1 − rw)q(s1) + (r2 − rq)w(s1)

)(
p(s1)− q(s1)w(s1)

)
 = 0 (7)

Consider the LHS of Equation 7 as a Laurent polynomial with s1 and s2

as variables (controlled by the set-up), and all the others as known coefficients
(controlled by the adversary prover). All coefficients of each term (s2)i have to
be 0, by Schwartz-Zippel. Then for (s2)0:

p(s1)− q(s1)w(s1) = 0

If p(X)− q(X)w(X) is not a zero polynomial, it implies that the prover knows a
non-trivial polynomial which evaluates to 0 at secret point s1. It breaks q-CPDH
according to Lemma 1 in [43]. The DL and q-SDH are needed for zk-VPD used.

F HVZK Proof of Lemma 2

For HVZK: in the ideal scenario, i.e., the prover is honest and the verifier uses
public coin, Cp, Cq and Cw are all uniformly distributed and independent from
each other. They uniquely determine the rest of the proof except π1, i.e. (πw,
Cw,2, C1). In another word, given that Cp and Cq are already fixed in the
statement, Cw uniquely determines C1 and the rest of the proof (except π1),
due to the last equation in VerSubset:

Cp · [1]2 + C1 · [s2]2 = Cq ·Cw,2

Now consider the simulator, who has trap-door information s1 and s2 and
can compute 1

s2
from the trapdoor. The simulator samples w and rw from Z∗p

30 Raymond et al.

and computes Cw ← [w(s1) + rws2]1, Cw,2 ← [w(s1) + rws2]2, and πw ←
[α(w(s1) + rws2)]1. Given Cp, Cq, and the above, the simulator computes C1 as
below:

C1 ←
1

s2

(
(w(s1) + rws2)Cq −Cp

)
Then run the Schnorr DLOG proof simulator for π1. Now the simulated proof
(C1, π1,Cw, πw,Cw2

) is statistically indistinguishable from an ideal conversa-
tion.

G Proof Aggregation

We use inner-pairing product argument (GIPA) [24] for aggregating proofs. In-
tuitively GIPA relies on the commitment schemes in [1] for committing to a
vector of group/field elements. It provides a log-size proof for asserting that the
inner product between two vectors of group/field elements is the claimed value.
We formally define the commitment scheme below and refer users to [24] for its
constructions.

Definition 10. [24] Let B = (p,G1,G2,GT , e) be a bilinear group for a given
security parameter λ. The generalized inner pairing product argument (GIPA)
provides the following algorithms: σG = Setup(1λ, B, q) generates prover/verifier
key σG for degree bound q. h1 ← CM1(~a, σG) generates the commitment for a
group element vector ~a ∈ Gn1 . Similarly are CM2 and CMZp

defined for input
vectors of Gn2 and Znp . When the context is clear we omit the commitment key
σG in notations, e.g., CM1(~a).

GIPA has three instantiations: TIPP, MIPPu, and MIPPk, each provides two
functions: π ← Prove(~a,~b, r, σG): generates inner product argument. 1/0 ←
Verify(C~a,C~b, r, Z, π, σG): verifies the proof that asserts the following relation.

There are three variations: TIPP: ~a ∈ Gn1 , ~b ∈ Gn2 , C~a = CM1(~a), C~b = CM2(~b),

Z =
∑n−1
i=0

(
r2i(~ai ·~bi)

)
. MIPPu: ~a ∈ Gn1 , ~b ∈ Znp , C~a = CM1(~a), C~b = CMZp(~b),

Z =
∑n−1
i=0

(
r2i~bi~ai

)
. MIPPk differs from MIPPu in that C~b = ~b.

We show how to aggregate zk-subset proofs and the aggregation forΣunivar zk vpd

is similar. We start with several toy examples. Consider two committed polyno-
mials pL(X) and pR(X) of degree n and let their coefficient vectors be ~L and
~R. To prove ~L = ~R, the verifier samples r, and the prover shows pL(r) = pR(r),
e.g., using KZG commitment. By Schwartz-Zippel, with overwhelming probabil-
ity ~L = ~R. Note that evaluating pL(X) at r is essentially applying a factor of ri

to all equations, i.e.,
∑n
i=0 r

i~Li =
∑n
i=0 r

i ~Ri.
We can extend the idea to aggregating proofs of knowledge for n KZG com-

mitments in batch:
∀i ∈ [0, n) : ~Ci · [s2]2 = ~πi · [1]2 (8)

Here ~C and ~π are the vectors of KZG commitments and their proofs. Let C−−→
[s2]2

be CM2(
−−→
[s2]2), and C−−→

[1]2
be CM2(

−→
[1]2). These can be pre-computed in set-up.

Efficient Zero Knowledge for Regular Language (Extended Version) 31

The prover computes C~C = CM1(~C) and C~π = CM1(~π), an Z =
∑n−1
i=0 (r2iCi ·

[s2]2). Then the prover produces: π1 = TIPP.Prove(~C,
−−→
[s2]2, r, σG), and π2 =

TIPP.Prove(~π,
−→
[1]2, r, σG). The verifier runs TIPP.Verify on both the proofs,

and the same Z for both sides establishes the proof by Schwartz-Zippel.

G.1 Aggregation of ZK-Subset Proofs

Figure 2 presents the algorithm for aggregating zk-subset proofs. The proof
generation algorithm takes n zk-subset proofs, and it outputs an aggregated
proof of size log(n), and a constant size commitment to the vector of statements
(denoted as CX). The verification algorithm, given CX, verifies that there exists
a vector of zk-subset statements behind CX, each of which has a valid proof.

The aggregation algorithm essentially encodes the VerSubset algorithm of
Σsubset in Figure 3. The following checks are performed for each instance. Equa-
tions 9-11 are encoded mainly using MIPPu and TIPP, and then checked in step
C4 and C5.

Cw · [α]2 = πw · [1]2 ∧ Cq · [α]2 = πq · [1]2 ∧ (9)

Cw·[1]2 = [1]1·Cw,2 ∧ (10)

∧ Cp · [1]2 + C1 · [s2]2 = Cq ·Cw,2 (11)

∧ CheckDLOG(C1, π1, (Cq,Cw, [s2]1, [1]1)) = 1 (12)

The handling of CheckDLOG (Equation 12) is different. The main concern here
is that when Fiat-Shamir transform is applied, encoding many hash operations in
zk-proof can be prohibitively expensive. In this case, we regenerate all CheckDLOG
proofs in batch so that a same public-coin verifier challenge can be used. Thus,
AggPrv needs auxiliary information ~a, the discrete logarithm for Equation 12 of
each instance.

Concretely, for each instance i: let x1, ..., x4 be the secret discrete logarithm
from aux information. The prover samples r1, r2, r3, r4 from Zp and creates
~R[i] = r1

−→
Cq[i] + r2

−→
Cw[i] + r3[s2]1 + r4[1]1. Given challenge c, the prover has

to respond with uj = cxj + rj for each j ∈ [1, 4], so that u1
−→
Cq[i] + u2

−→
Cw[i] +

u3[s2]1 + u4[1]1 = ~R[i] + c(
−→
C1[i]). A parallel composition (conjunction) of all

instances results in Part 2 of AggPrv in Figure 2. Then the proof is checked in
Step C6 of AggVer.

The algorithm presented Figure 2 scarifies efficiency for convenience of pre-
sentation. For instance, in implementation, all duplicate data items are removed
from proof. C2 in AggVer can also be pre-computed, thus resulting in log(n)
verifier work.

32 Raymond et al.

1 Aggregate ZK-Subset Proof: (C−→X , πa)← AggPrv(
−→
X , ~π, ~a, σG):

Input:
−→
X : statements, ~π: proofs, ~a: aux info, σG: GIPA key. Let n = |

−→
X | = |~π|. Output:

C−→X : commitment to statements, and πa: aggregated proof.

Part 1 (Regenerate Batch DLOG Proofs): Parse
−→
X i as (

−→
Cp[i],

−→
Cq[i]).

−→
Cp denotes(−→

Cp[i]
)n−1

i=0
, and others are similar. Parse −→π i as (−→πq[i],

−→
C1[i], −→π1[i],

−→
Cw[i], −→πw[i],

−−−→
Cw,2[i]). Parse

~ai as (−→x1[i],−→x2[i],−→x3[i],−→x4[i]).

∀i ∈ [0, n): define ~hi =
(−→
Cq[i],

−→
Cw[i], [s2]1, [1]1

)
. Note that ∀i ∈ [0, n):

−→
C1[i] =

∑4
j=1
−→xj [i]~hi[j − 1].

Sample −→r1 , −→r2 , −→r3 , −→r4 from Znp and create ~R s.t. ∀i ∈ [0, n): ~R[i]←
∑4
j=1
−→rj [i]~hi[j − 1].

Compute C~R ← CM1(~R, σG).
Apply Fiat-Shamir and let c← hash (C~R). Compute −→u1,

−→u2,
−→u3,
−→u4 in Znp s.t.

∀i ∈ [1, 4], j ∈ [0, n): −→ui [j] = c−→xi [j] +−→ri [j].
Part 2 (Generate Aggregated Proof): Let

−→
1 =

(
1
)n−1

i=0
,
−→
[1]1 =

(
[1]1
)n−1

i=0
,

−−→
[s2]2 =

(
[s2]2

)n−1

i=0
,
−→
[1]2 =

(
[1]2
)n−1

i=0
.

Define:

(−→
Z =

(−→u1,
−→u2,
−→u3,
−→u4,~1,~1,~1,~1,~1,~1,~1

)
−−→
G1M =

(−→
Cw,
−→
Cq,
−−→
[s2]1,

−→
[1]1,
−→
Cq,
−→πq,
−→
Cw,
−→πw,
−→
C1,
−→
Cp, ~R

)) ,(−−→G1T =
(−→
[1]1,
−→
Cq

)
−→
G2 =

(−−−→
Cw,2,

−−−→
Cw,2

)) .

Let m = |
−→
Z |. Compute

(−−→
C−→Z ,

−−−→
C−−−→G1M

,
−−−→
C−−→G1T

,
−−→
C−→G2

)
←((

CMZp(
−→
Z [i], σG)

)m−1

i=0
,
(
CM1(
−−→
G1M [i], σG)

)m−1

i=0
,
(
CM1(
−−→
G1T [i], σG)

)1
i=0

,
(
CM2(
−→
G2[i], σG)

)1
i=0

)
.

Apply Fiat-Shamir transform: r ← hash
(−−→
C−→Z ,

−−−→
C−−−→G1M

,
−−−→
C−−→G1T

,
−−→
C−→G2

)
Compute:

(−−→
ZM ,

−→πM ,
−→
ZT ,
−→πT
)
←

(∑n−1
j=0 r

2j−→Z [i]j
−−→
G1M [i]j

)m−1

i=0
,
(
MIPPu.Prove(

−−→
G1M [i],

−→
Z [i], r, σG)

)m−1

i=0
,(∑n−1

j=0 r
2j−−→G1T [i]j ·

−→
G2[i]j

)1
i=0

,
(
TIPP.Prove(

−−→
G1T [i],

−→
G2[i], r, σG)

)1
i=0


Let C−→X =

(−−−→
C−−−→G1M

[9],
−−−→
C−−−→G1M

[1]
)

. Let πa =

(
c, r,

(
−−→
C−→Z ,

−−−→
C−−−→G1M

,
−−−→
C−−→G1T

,
−−→
C−→G2

)
,

(
−−→
ZM ,

−→πM ,
−→
ZT ,
−→πT
))

.

Return (C−→X , πa).

2 Verify Aggregated ZK-Subset Proof: 1/0← AggVer
(
C−→X , πa

)
:

Parse
−→
X as (C−→

Cp
,C−→

Cq
). Parse πa as

(
c, r,

(
−−→
C−→Z ,

−−−→
C−−−→G1M

,
−−−→
C−−→G1T

,
−−→
C−→G2

)
,

(
−−→
ZM ,

−→πM ,
−→
ZT ,
−→πT
))

. Let

m = |
−→
Z |. Return 1 if and only if (C0)-(C7) pass.

(C0) C−→
Cp

=
−−−→
C−−−→G1M

[9] ∧ C−→
Cq

=
−−−→
C−−−→G1M

[1].

(C1) (∀4 ≤ i, j ≤ 10:
−−→
C−→Z [i] =

−−→
C−→Z [j]) ∧

−−−→
C−−→G1T

[0] =
−−−→
C−−−→G1M

[3]

∧
−−−→
C−−−→G1M

[1] =
−−−→
C−−−→G1M

[4] =
−−−→
C−−→G1T

[1] ∧
−−−→
C−−−→G1M

[0] =
−−−→
C−−−→G1M

[6].

(C2)
−−−→
C−−−→G1M

[2] = CM1

(−−→
[s2]1, σG

)
∧
−−−→
C−−−→G1M

[3] = CM1

(−→
[1]1, σG

)
∧
−−→
C−→Z [4] = CMZp

(
~1, σG

)
.

(C3) ∀i ∈ [0,m): MIPPu.Verify
(−−−→
C−−−→G1M

[i],
−−→
C−→Z [i],

−−→
ZM [i],−→πM [i], σG

)
= 1 ∧ ∀i ∈ [0, 1]:

TIPP.Verify
(−−−→
C−−→G1T

[i],
−−→
C−→G2

[i],
−→
ZT [i],−→πT [i], σG

)
= 1.

(C4) ∀(i, j) ∈ {(4, 5), (6, 7)}:
−−→
ZM [i] · [α]2 =

−−→
ZM [j] · [1]2, and

−−→
ZM [6] · [1]2 =

−→
ZT [0].

(C5)
−−→
ZM [9] · [1]2 +

−−→
ZM [8] · [s2]2 =

−→
ZT [1].

(C6)
∑3
i=0

−−→
ZM [i] =

−−→
ZM [10] + c

−−→
ZM [8].

(C7) c = hash
(−−−→
C−−−→G1M

[10]
)

and r = hash
(−−→
C−→Z ,

−−−→
C−−−→G1M

,
−−−→
C−−→G1T

,
−−→
C−→G2

)
.

Fig. 8. Aggregate Zk-Subset Proof

