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Abstract. We present a new, simple candidate broadcast encryption scheme for N users with parameter size poly(log N).
We prove security of our scheme under a non-standard variant of the LWE assumption where the distinguisher addi-
tionally receives short Gaussian pre-images, while avoiding zeroizing attacks. This yields the first candidate optimal
broadcast encryption that is plausibly post-quantum secure, and enjoys a security reduction to a simple assump-
tion. As a secondary contribution, we present a candidate ciphertext-policy attribute-based encryption (CP-ABE)
scheme for circuits of a-priori bounded polynomial depth where the parameter size is independent of the circuit
size, and prove security under an additional non-standard assumption.

1 Introduction

In this work, we study broadcast encryption [28] as well as attribute-based encryption schemes [42,35,11]. In ciphertext-
policy attribute-based encryption (CP-ABE), ciphertexts ct are associated with a predicate f and a message m and keys
sk with an attribute x, and decryption returns m when x satisfies f. Broadcast encryption is a special case of CP-ABE
where the predicate is specified by a set S < [IN], and decryption returns m when x € S. In both cases, we require se-
curity against unbounded collusions, so that an adversary that sees a ciphertext along with secret keys for an arbitrary
number of attributes xj, x, ... learns nothing about m as long as none of these attributes satisfies f.

Broadcast encryption has been an active area of research since their introduction in the 1990s, where a major
goal is to obtain schemes with short parameters, that is, short ciphertexts ct, public keys mpk and secret keys sk. In
a celebrated work from 2005, Boneh, Gentry and Waters [14] presented the first broadcast encryption scheme with
sublinear-sized parameters from bilinear groups where |ct| + |mpk| + [sk| = O(N 112y 116,34,23], recently improved to
O(N'/3) [45]. On the other hand, in spite of the tremendous advances in lattice-based cryptography over the past
decade, we do not know a IWE-based broadcast encryption scheme achieving |ct| = o(V).

A more recent line of works focuses on optimal broadcast encryption with parameter size poly(log N), where the
first feasibility results relied on either multi-linear maps [17] or indistinguishability obfuscation [18].!. In a recent re-
markable break-through, Agrawal and Yamada [7] —along with a follow-up with Wichs [5]- constructed an optimal
broadcast encryption scheme from bilinear groups and LWE. Independently, Brakerski and Vaikuntathan [21] pre-
sented a candidate “lattice-inspired’ optimal broadcast encryption scheme that is plausibly post-quantum secure,
but they were unable to provide a reduction to LWE or any simple lattice assumption.

Our Contributions. Our main contribution is a new, simple candidate optimal broadcast encryption scheme with
poly(log N)-sized parameters. We prove selective security of our scheme assuming evasive LWE, a non-standard vari-
ant of the LTWE assumption where the distinguisher additionally receives short Gaussian pre-images while avoiding
zeroizing attacks. This yields the first candidate optimal broadcast encryption that is plausibly post-quantum secure,
and enjoys a security reduction to a simple assumption. As a secondary contribution, we present a candidate CP-ABE
scheme for circuits of a-priori bounded polynomial depth where the parameter size is independent of the circuit size,
and prove security under an additional non-standard assumption. We refer to Fig 1 for a comparison with prior works,
and proceed with a brief overview of our constructions.

1 For simplicity of exposition and due to the sheer complexity and impracticality of the ensuing schemes, we ignore obfuscation-
based broadcast in the rest of the introduction, deferring a comparison to Section 2.3.



Reference Assumption Post-Quantum CP-ABE

AY20 [7] LWE + bilinear GGM NC!, |ct] = poly (¢, d,logs)
AWY20 [5] IWE + bilinear KOALA NCl, Ict| = poly(¢,d,logs)
BV22 [21] x v circuits, |ct| = poly(¢, d,logs)
Section 5.3 evasive LIWE v NCI, |ct] = pon(Zd,log )
Section 5.4 evasive LWE + tensor LWE v circuits, |ct| = poly(d,logs)

Fig. 1. Comparison with prior optimal broadcast encryption schemes (sans obfuscation), all of which also yield CP-ABE schemes
for either NC! or circuits of (a-prior bounded) polynomial depth d. Broadcast encryption for N users correspond to circuits of size
O(NlogN) and depth O(loglog N). CP-ABE decryption time in AY20, AMY20 grows with 24, hence the limitation to NC! circuits.
As in [5], our broadcast encryption schemes achieve selective security, and our CP-ABE schemes achieve very selective security.
BV22 only shows IWE-hardness against a subclass of attacks on a specific component of their scheme and does not provide any
reduction for their full scheme. Both evasive IWE and bilinear KOALA are non-falsifiable assumptions. Finally, bilinear GGM =
bilinear KOALA.

2 Technical Overview

Our optimal broadcast encryption scheme follows the Agrawal-Yamada-Wichs, henceforth AYW, blue-print laid out
in [7,5] (and partially in [21]): (i) we start with a one-key secure CP-ABE for circuits based on IWE and randomize
the secret keys to achieve security against collusions, and (ii) we show that for an appropriate family of circuits, our
CP-ABE scheme implies optimal broadcast encryption. The AYW schemes achieve randomization via exponentiation
with random scalars in a bilinear group. Security relies on LWE in addition to a hardness assumption about the bilinear
group, either the generic group model (GGM) [7], or non-standard knowledge assumption (KOALA) [5,12]. We proceed
to sketch two new technical ideas in this work that allows us to eliminate the use of bilinear maps, thereby achieving
plausible post-quantum security.

Randomization via tensors. We randomize secret keys by tensoring with random Gaussian (row) vectors r — DZ’” v
which satisfies the following correctness and security properties:

- Following prior ABE schemes based on IWE [13], given x € {0, 11Y,Aez er M we can homomorphically evaluate a
circuit f on A-x®G to obtain a quantity of the form Ay — f(x)G via right-multiplication by some low-norm matrix
Hj, rx. This property is preserved under tensoring with random Gaussian vectors r: we can homomorphically
evaluate f on (A—x®G)®r' to obtain (A = f(x)G) ®r' via right multiplication by Hjp rx®1. Note that homomorphic
evaluation is not possible if we replace tensor product with vector multiplication (on the right).

- Tensoring “amplifies” a single IWE secret s into Q independent LWE secrets s;,...,sg. More formally, under the

LWE assumption, we have
{(’r;)}ie[Q] :C{(si ’r—;)}iE[Q] (1)

where s — ZZ’", S; — ZZ, e; — DY ot DZ‘X [15,22]. In our analysis, Q corresponds to the number of key queries,
and having Q independent secrets enables a hybrid argument over the key queries.

We describe an alternative derivation of these ideas at the end of Section 2.1.

An evasive lattice assumption. We describe a simple variant of the evasive LIWE assumption we put forth in this work.
Fix an efficiently samplable distribution P over Zg” . The evasive LWE assumption allows us to assert statements of
the form

(B,[sB+e], B~ (P)) =, (B,/c,B~(P))

wheres — 73, B — Z5*",ce Z;”' are uniformly random, m = O(nlogq) < t (so that P is wider than B). We have two
distinguishing strategies in the literature:



- ignore B™!(P) and distinguish (B, sB + e) from (B, c) — this covers lattice attacks on IWE;
- compute ¢* = (sB+¢€')-B™!(P) ~ sP and distinguish the latter from uniform - this includes zeroizing attacks on
multi-linear map and obfuscation candidates [25,41,24,37].

The evasive LWE assumption essentially asserts that these are the only distinguishing attacks. Namely,

if (ByPy) :(,‘ (B)P) cr c” ))
then (B,[sB+e| B! (P)) = (B, ¢,B™'(P))

where e’ is a fresh noise vector. Note that sP +e” =, ¢’ implies that the high-order bits of (sB +e') - B! (P) = sP are
pseudorandom, thereby defeating the second distinguishing strategy.> Overall, we note that the statement of evasive
LWE is fairly simple and general, and does not refer to tensor products, circuits, or structured distributions like A-x®G
or Ay. That is, the assumption encapsulates a principled approach towards (conjectured) computational hardness,
rather than one that is tailored to our scheme.

Proof strategy. Our security proof proceeds in two steps: first, we rely on evasive LWE to reduce security of our scheme
to a simpler statement with no short Gaussians, and then we prove this latter statement from IWE, using (6) along the
way. For the second step, we need to modify the scheme to perform homomorphic evaluation on A-—x®Iwhere Ais a
low-norm matrix, and we replaced the gadget matrix G with the identity matrix I; in the security proof, we will use the
fact that if A—x®1is low-norm, then

s(A-xsDor) ~sler) - A-xsD)

upon which we can invoke (6) to replace s(I®r") on the RHS with random.

Homomorphic evaluation on A —x® I works as before with G, except the noise growth is now doubly (instead of
singly) exponential in circuit depth. This yields a CP-ABE scheme with |ct| = poly(2¢,1ogs) for NC! circuits of multi-
plicative depth d and size s, and we show that this is sufficient for optimal broadcast encryption. In particular, broad-
cast encryption for N users correspond to circuits of multiplicative depth O(loglog N) and size O(INlog N). To obtain
a CP-ABE for a-prior bounded depth circuits with |ct| = poly(d,logs), we keep A—x® G as before, and instead prove
security based a new (falsifiable) “tensor LWE” assumption in the second step.

2.1 Our CP-ABE Schemes

We describe our CP-ABE schemes in more detail. The schemes rely on the following strengthening of our earlier state-
ment of evasive LWE: we consider distributions over pairs of matrices (A’, P) together with auxiliary input aux (instead
of just P) and require that

if (A",B,P,|sA’ +¢€'||[sB+el]|sP+e’ | aux) =, (A',B,P, ¢, ¢, ¢’ ,aux), )
then (A',B,[sA +€|[sB+e| B! (P),aux) = (A",B, ¢, ¢, B~} (P),aux) 3)

In our applications, the auxiliary input includes the coin tosses used to sample A’,P, which rules out obfuscation-

based counter-examples.

A one-key secure CP-ABE. We consider CP-ABE for circuits f : {0, 1Y - {0,1} of depth d and size s. Following [7,21],
we begin with a one-key secure CP-ABE (where we use curly underlines in place of noise terms):

mpk := By — Z}*" A — 7" u’ — DY
cty:=sApu’ +p-g, sBy, where s — ZZ
sky := B (A-x®G)

2 Note that the error distribution e-B~1 (P) in ¢* is different from the fresh Gaussian error e”. Differences in error distributions can
make or break a scheme if ¢* has small norm, but we do not know attacks exploiting these differences when c¢* has large norm,
as is the case here.



Note that the ciphertext size is independent of ¢. Decryption for f(x) =0 uses (A—x®G)-Hy rx = Ay — f(X)G, which
implies sB; ‘B! (A-x®G) -Hp sx-u' =sApu'.

Next, we show that the scheme is one-key secure assuming LWE and evasive LWE. Intuitively, evasive LWE says that
we can replace the terms sB;, Bl‘1 (A —x® G) with their product s(A —x® G). Then, it suffices to show that u is hidden
given

Bl,A,sAfuT +11-8SA-x8G)

Next, we can write sAsu' in terms of s(A—x® G) and f(x) -sGu' using homomorphic computation. Since f(x) = 1, it
suffices to show that y is hidden given
B1,A,sGu +4-gsA-X8G)

which follows quite readily from LWE.
Note that this scheme is insecure if the adversary is allowed to make two key queries: given secret keys for 0¢ and
1%, an adversary can compute %,M, substract the two to obtain i@i@@l and solve for s and thus p. To

defeat this attack, we randomize the secret keys by tensoring with random Gaussian vectors.

First modification. We replace A—x® G in sk with (A~x® G) ®r" and sAyu’ in ct with s(Ayu’ ®1), so that
cty:= M +1i-g sBy, wheres — ng
skx := B]'(A-x®G)®r"),1’
Decryption computes the following quantities:
(s(Ar®l) +p-g-der) ~s@Arer)+pu-g-Ier)

sB; B (A-x8G)®r")- (Hpsx®D) = s(Af@r')

and subtracts the two to recover u. The attacker from before now learns s(A® r{),s((A— 1Y’®G)® r; and since r; #r»

w.h.p., we can no longer carry out the attack from before.

We do not know an attack on the preceding scheme. However, adapting the security proof for the one-key setting
to the many-key setting runs into two difficulties. Upon applying evasive LWE as before, we want to argue that u is
hidden given

BiAsAu oD +u-g{sA-xi 96 or) i }icq
— The first difficulty lies in handling s(Asu" ® I): using homomorphic computation as before allows us to write
s(Asu’ @r}) in terms of s(A—x; ®G) @r}) and f(x;)-s(Gu' ®r}). We then need to bridge the gap between {s(A;u’ ®
r) }l. €lql (what we know how to simulate) and s(Asu' ® I) (what appears in the ciphertext). The next modification
addresses this difficulty while relying only on the LIWE assumption.
- This leaves us with arguing pseudorandomness of { W, r; } L for which we present two solutions.

The first (and less satisfactory) is to simply assert pseudorandomness via a new assumption, which we refer to as
tensor LWE. This assumption is qualitatively different from evasive LWE in that there are no Gaussian pre-images.
The second solution relies only on the LWE assumption, but incurs a 24 blow-up, which is nonetheless sufficient
for optimal broadcast encryption.

Second modification. We mask s(Ar ®I) in the cipertext with a fresh LWE sample soA + €9 and during decryption,
compute

ct sk ct sk
- ~ ~= ———
s(Aror) = (s(Ar®I,) +spAg+e)-(1® r' )—(soBy+eg) By (Apr") 4)



where soBo + €y appears in cty and By 1(AgrT) in sky.? This yields the following CP-ABE scheme for bounded depth
circuits:

mpk := Ag, By — Z*", By — Z" Az <0
cty := soBy, m +p-g sBy, wheres — ZZ’",SO — ZZ
skx := By (Aor), By (A-x®G)®r"),r', wherer — D7,
Decryption for f(x) =0 computes (approximately)
u-g-(1er) = (W+u~g)'(l®f) — s9By By (Apr")
+sB1 B (A-x@G)®r")- (Ha £x®1)

Again, via the evasive LWE assumption (upon additionally combining By, B; into a single matrix B), ABE security re-
duces to proving pseudorandomness of

¢

——t
Ag, A u’, s(Afu’ ®1) +50Ag, {S((A-X; ®G) ®T}),80Ar], I} }iE[Q]

Observe that
soAor; ~¢'-r; —s(Asu’ ®r})

We can then use the LWE assumption with secret s to replace ¢’ with random. This leaves us with proving pseudoran-
domness of

Ao A u', {s(Ax;8G) o1) SA/U O fierg)

At this point, we can apply homomorphic computation to s((A —x; ® G) ®r}) as before in the one-key scheme, upon
which we are left with proving pseudorandomness of

A {s@-x oG o) s o) riiq ’

The tensor LWE assumption essentially states that the above distribution is pseudorandom.

Third modification. The third and final modification allows us to handle the second difficulty without introducing
the additional tensor LWE assumption but with a 2¢ blow-up. The idea is to replace G in skx with I,, and sample
A~ D?;f’" so that A—x®I,, has low-norm:

mpk := Ag, By — Zj"", By — Zj “O" 1B p _pmxtm
cty := soBo, s(Af ® L) +S0Ag + -8, $By, where s — ZZ“Z,SO -z
skx := By ' (Agr"), By (A—-x®D) ®r1), 1", where r — D7y
In the security proof, instead of (5), we need to prove pseudorandomness of

Both A-x; ®1,, and u' have low-norm, so
s(A—-x;®1,,) ®r;) = s(l®r§) -A-x; 1)
s(u’ ®r}) = sIer;) -u'

3 This modification plays a role similar to that of inner product functional encryption in [5], instantiated using ideas from the
LWE-based scheme in [3]. The latter does not support inner product modulo g, which is what we need here.



We may then invoke (6) to replace s(I® r;) withs; — Z qm, upon which it suffices to prove pseudorandomness of

A, {siA-x 8 1y).siU e

This in turn follows from LWE via a straight-forward hybrid argument over i € [Q].

An alternative derivation. We present an alternative derivation of randomization via tensors.* As before, we want to
“amplify” a single LWE secret s into Q independent LWE secrets sy, ...,s¢. Following [21], we replace s with a matrix §
and observe that by LWE, we have

{(ris+ei»r—;)}i€[o] ~c {(Si ’r—l()}iE[Q] (6)

where S — Z;”X",s,- — Zg,ei — DZ,X'I'Z' — CDZ%X [15,22]. That is, during decryption, we want to (approximately) com-
pute the product
r-S-A-x0G)

Observe that the term S which depends on the ciphertext is sandwiched between two terms r,x that depend on the
key. The key observation is that we can rewrite the above product as

flat(S)- (A-x®G)®r")

where flat “flattens” a matrix into a row vector by concatenating the rows of the input matrix, which we can in turn
write as the product of flat(S) -B; and Bfl ((A—x®G) ®r"). This yields the following variant of the scheme described in
our first modification:

cty:=SAsu' +pu-g', flat(S)-By, where S — Z7"*"
skx := B{/(A-x®G)®r), 1"

Decryption first computes
M-B{l((A—x®G) er)~r-§-(A-x®G)

We can then carry out homomorphic evaluation whenever f(x) =0 to recoverr-S-A fuT, which we can combine with

the first term of ct ¢ to recover p.

2.2 On Evasive Lattice Assumptions

In the past decade, we have witnessed a large number of “lattice-inspired” schemes, on which weaknesses and attacks
were subsequently discovered. A partial list includes:

multi-linear maps and key exchange [29,33] and attacks in [25,26]

obfuscation for branching programs [30,33,36] and attacks in [24]

noisy inner product functional encryption [1] with attacks and fixes [4]
obfuscation from circular security [19,32,46,20] with attacks on [32,46] in [37]

In fact, our evasive LIWE assumption shares some structural similarities to the GGH15-based multi-linear maps [33]
corresponding to the first two items on the list above. There is however a key conceptual distinction which we briefly
alluded to earlier and shall expand on next.

4 We arrived at this alternative derivation while preparing the conference talk, after submitting the camera-ready version of this
work.



The zeroizing regime. All of the afore-mentioned attacks have one thing in common: they pertain to the zeroizing
regime where an attacker can easily obtain sufficiently many equations in low-norm secret values —low-norm LWE
secrets, error vectors, or both— over the integers that information-theoretically determine these secret values.® These
equations arise naturally from the interaction of the correctness constraints and the security requirements. Such at-
tacks are referred to in the literature as zeroizing attacks. Prior zeroizing attacks basically proceed in two steps: (i)
collect many of these equations, and (ii) using these equations to recover some secret value and break security. The
first step is typically fairly straight-forward; most of the technical and creative work lies in the second step, which
varies from computing a linear-algebraic quantity (e.g., kernel [25] or rank [24,4]) of a carefully crafted matrix over the
integers/reals, to more sophisticated sum-of-squares attacks [9,40].

Our evasive LWE assumption falls outside of this zeroizing regime in that we do not see any straight-forward way
to collect even a single equation of the underlying IWE error vectors over the integers. As explained earlier in the
introduction, the straight-forward adaptation of prior attacks would be to compute ¢* = (sB + ey) -B~1(P) = sP, but
the pre-condition for evasive LIWE implies that ¢* has large norm and does not yield an equation over the integers.
The setting for our assumption is closer to that for prior witness encryption candidates, specifically, the GGH15-based
witness encryption candidate in [24], which also fall outside the zeroizing regime. Indeed, there are no known attacks
on any witness encryption candidates in the literature, giving us additional confidence in our evasive LWE assumption.
For the crypt-analysts who believe that existing witness encryption candidates are broken but haven’t found an attack,
our evasive LWE assumption provides a much simpler target for crypt-analysis.

Perspective. To the best of our knowledge, our evasive LWE assumption is the first simple lattice assumption that
falls outside of the zeroizing regime. We firmly believe that the study of such evasive lattice assumptions —hardness,
attacks, and constructions— constitutes an important and promising research direction, as well as a rich source of
open problems. More broadly, non-standard variants of LWE and evasive lattice assumptions are conceptually similar
to g-type assumptions, knowledge assumptions, and generic/algebraic group model assumptions that have played
an essential role in our study of group and pairing-based cryptography.® This analogy provides additional impetus for
the study of evasive lattice assumptions.

Looking ahead. Looking ahead, we see 4 possible scenarios, starting with the most optimistic:

1. This work ultimately leads to optimal broadcast encryption based on IWE, as has been the case for several lattice-
based schemes where the initial candidates were based on non-standard assumptions (outside the zeroizing
regime), such as fully homomorphic encryption and its multi-key variant and the Fiat-Shamir heuristic.

2. The evasive LWE assumption surives cryptanalysis: this could enable other advanced encryption primitives such
as witness encryption [43,44].

3. The evasive IWE assumption is broken but the broadcast encryption scheme is not. This would require new and
valuable crypt-analytic advances beyond the state-of-the-art zeroizing attacks. The current statement of evasive
LWE is fairly general, and an attack could guide us towards identify more secure variants of the assumption that
would suffice for our broadcast encryption scheme.

4. Both the evasive LWE assumption and the broadcast encryption are broken. Could these new attacks be extended
to current GGH15-based witness encryption candidates?

We believe any of these scenarios would advance our current scientific understanding of lattice-based cryptography
and assumptions (hardness and/or attacks).

5 As a point of comparison, we have examples such as k-IWE [39] and inner product functional encryption [3] based on LWE
where it is easy to obtain a few such equations, but the equations do not information-theoretically determine the secret values.

6 Security based on evasive LWE can be viewed as ruling out restricted adversaries that replaces sB + e, B~ ! (P) with their product
sP + ¢’ (with fresh noise) and ignoring B~1 (P) thereafter. Viewed this way, evasive LWE can be seen as a partial analogue of the
generic/algebraic group model used in group and pairing-based cryptography. Several works studied analogues of the generic
group model for multi-linear maps [31,10], but they were in the zeroizing regime.



2.3 Additional Related Work

We describe additional related work.

Relation to GGH15 multi-linear maps. Our work draws upon several insights in the study of GGH15 multi-linear
maps [33,22]. First, randomization via tensors and the statement in (6) both appeared in [22], but in a different context.
Second, the intuition for evasive LWE in terms of an “optimal” distinguishing strategy also underlies earlier GGH15-
based schemes, with the crucial distinction that evasive LWE falls outside the zeroizing regime. Our evasive LWE as-
sumption also provides a concise statement of this intuition in a setting that falls outside the zeroizing regime.

Obfuscation-based broadcast. We can obtain optimal broadcast encryption schemes by combining the obfuscation-
based scheme in [18] with the state-of-the-art obfuscaton schemes/candidates. The ensuing schemes would be ex-
tremely complex and impractical, inherited from the current obfuscation schemes/candidates, compounded with the
use of non-black-box techniques. Nonetheless, there is value in understanding the ensuing schemes from the per-
spective of assumptions. In particular, if we rely on the Jain-Lin-Sahai obfuscation scheme [38], we would require
both bilinear groups and IWE similar to the AYW schemes, and would not achieve post-quantum security. If we turn
to the post-quantum obfuscation candidates, e.g. [4,32,46,20,24], then we would require hardness or assumptions in
the zeroizing regime.

CP-ABE from LWE. The state of the art for CP-ABE from ILWE is that of Agrawal and Yamada [6] supporting circuits of
depth d and size s over {0, 1}¢ with |ct| = poly(d, s) and key generation running in time poly(¢, d,log s); this improves
upon the “trivial” CP-ABE from IWE based on the KP-ABE for circuits from LWE in [13], where key generation runs in
time poly(d, s). Both of these schemes achieve |sk| = poly(d,logs). We note that the recent CP-ABE for NC1 from IWE
in [27] achieves |ct|, |sk| = poly(s). In contrast, the CP-ABE schemes described in Fig 1 achieve |ct| = poly(¢, d,logs) or
lct| = pon([,Zd,log s) (i.e., almost independent of circuit size s).

Variant of evasive LWE. In an independent work, Tsabary [43] (also [44]) introduced a variant of evasive LWE, where
the matrix B is secret, and the vector s is replaced by a matrix S that could be drawn from an arbitrary distribution.
Concretely, fix some efficiently samplable distributions (S, P, aux) over ZZ’ X2y ’x{0,1}*. The assumption (following
the exposition in [44]) asserts that

if (SB+E][SP+E'|aux) ~. (€, €, aux), @
then (SB+E|B~!(P),aux) = (C,B™" (P),aux) ®)

where B — Z7*™,C — ZZI *m are uniformly random and E’ is a fresh noise matrix of sufficiently larger magnitude than
E. Think of parameters O(nlogq) < m < ¢, so that P is wider than B.

- The formulation of evasive LWE in [43] additionally allows (P,aux) to depend on B, whereas ours and that in [44]
does not. In particular, our formulation of evasive LWE is more conservative.

- The use of evasive LWE in [43,44] for witness encryption requires that the assumption holds for general, private-
coin auxiliary input, which is unlikely to hold in its completely full generality, e.g. for highly contrived aux that
contains a carefully crafted obfuscated program (containing a trapdoor for P). In contrast, the application in this
work only requires evasive LWE to hold for public-coin auxiliary input.

SIS analogue of evasive LWE. Finally, we can consider evasive SIS —the SIS analogue of evasive LWE— which asserts
that if SIS is hard for [B | P] (given aux), then SIS is hard for B, even given B~ 1(P) (and aux). We believe evasive SIS
constitutes a useful heuristic for understanding non-standard variants of SIS such as those put forth in recent follow-
up works [8,47].



3 Preliminaries

Notations. We use boldface lower case for row vectors (e.g. v) and boldface upper case for matrices (e.g. V). For inte-
gral vectors and matrices (i.e., those over Z), we use the notation |v|,|V| to denote the maximum absolute value over
all the entries. We use v — D to denote a random sample from a distribution D, as well as v — S to denote a uni-
formly random sample from a set S. We use = and =, as the abbreviation for statistically close and computationally
indistinguishable.

Tensor product. The tensor product (Kronecker product) for matrices A = (a; ;) € 70 ™ Be 7"*P is defined as

al,lB, ooy dl,mB
A®B=| ..., ..., .. |ezfmmr

ap1B, ..., ap ;B
The mixed-product property for tensor product says that
(A®B)(C®D) = (AC) ® (BD)
A useful corollary of the mixed-product property says that for any pair of row vectors u,ve 7",

u®v

uel)I,ov)=>1ev)uel,)

ul,ev)=vuel,)

We adopt the convention that matrix multiplication takes precedence over tensor product, so that we can write A® BC
to mean A® (BC).

3.1 Lattices background

We use Dz , to denote the discrete Gaussian distribution over Z with standard deviation y.

Learning with errors (LWE). Given n,m, g, x €N, the LWE, ;;, 5 , assumption states that
(A, SA+ e) :C (Ar C)

where
A— ngm,s — ZZ,e<— Dym y,€— Z;”

Trapdoor and preimage sampling. GivenanyZe Zy* " o >0, weuse B"!(Z,0) to denote the distribution of a matrix

Y sampled from D, . conditioned on BY =Z (mod q). We sometimes suppress o when the context is clear.

There is a p.p.t. algorithm TrapGen(1”, g) that, given the modulus g = 2 and dimension r, outputs B = U(ngznlogq)

with a trapdoor 7. Moreover, there is a p.p.t. algorithm that given (B, 7) — TrapGen(1",q),Z € ZZX ”/, ando =2./nloggq,
outputs a sample from B~1(Z, o).

3.2 Attribute-based encryption
Syntax. A ciphertext-policy attribute-based encryption (CP-ABE) scheme for some class J consists of four algorithms:

Setup(1*,9) — (mpk, msk). The setup algorithm gets as input the security parameter 1* and class description 7. It
outputs the master public key mpk and the master secret key msk.

Enc(mpk, f, ) — cty. The encryption algorithm gets as input mpk, f € J and a message u € {0, 1}. It outputs a cipher-
textcty.



KeyGen(mpk, msk, x) — sk. The key generation algorithm gets as input mpk, msk and x € {0,1}¢. It outputs a secret
key sky.

Dec(mpk,sky,ctf) — m. The decryption algorithm gets as input sk, and cty such that f(x) = 0 along with mpk. It
outputs a message U.

Correctness. For all inputs x and f with f(x) =0 and all u € {0, 1}, we require

(mpk, msk) — Setup(1*,F)
Pr Dec(mpk,skx,ctf) = p: sky — KeyGen(mpk, msk, x) | =1—negl(A).
cty — Enc(mpk, f, u)

Security definition. For a stateful adversary A, we define the advantage function

f—AQh

(mpk, msk) — Setup(1*, ) )
AdVPEA) :=Pr | b=Db": (o, 1) — AKeyGen(mpkmsk,) (i p) | — >

b—10,1}; cty — Enc(mpk, f, up)

b — AKeyGen(mpk,msk,~) (th)

with the restriction that all queries x that A sent to KeyGen(mpk, msk,-) satisfy f(x) = 0. An ABE scheme is selectively
secure if for all PPT adversaries A, the advantage Advj‘fE(/l) is a negligible function in A. Similarly, say that an ABE

scheme is very selectively secure for the advantage function:

(f, %1,..., Q) —AOY
(mpk, msk) — Setup(1%, F)

AdvffE()L)::Pr b sk; — KeyGen(mpk,msk, x;),i =1,...,Q 1

(o, t1) — A(mpk,sky,...,skq) 2
b —1{0,1}; cty — Enc(mpk, f, up)
b <—.A(th)

Broadcast encryption. Here,
X=1{0,11N,Y=[N]

where we think of {0, 1} as the power set of [N] (i.e., set of all subsets of [V]), and
P(S,y)=1<yeS

As noted in [7,5], very selective security for broadcast encryption implies selective security since an adversary can
simply ask for all keys outside S.

4 Evasive LWE

We proceed to provide a formal statement of our evasive LWE assumption, stated informally in Section 1.

Evasive IWE. Let Samp be a PPT algorithm that on input 1%, outputs

AezP™ Pez!™ auxe (0,1}

10



We define the following advantage functions:

Adv () = PriAg(sA’+e'|[sB+e|[sP+e”| A", B,aux) = 1]

—PI[AO(C, Co, c,)A/rB)aUX):]-]) (9)
AdVEST(1) = PrlA; (sA + € |[sB+e] K,A',B,aux) = 1]
—Pr[A;(c, ¢g, K A',B,aux) = 1] (10)

where

(A’,P,aux) — Samp(1})

B — ZZXm,S<— ZZ,

c— Z;”/,co —7y,c — Z;,

e—D7 e — Dzm,;(’e” ~D7,

K — B~ (P) with standard deviation O(y/mlogq)

We say that the evasive LWE assumption holds if for every PPT Samp, A, there exists another PPT A( and a polynomial
Q(-) such that

AdViIE (D) = AdViPST(M)/Q(A) — negl(A)

We consider parameter settings for which LWE,, 4 , holds.

Remark 1 (restricted samplers). As in [5], we only require that the assumption holds for samplers where aux addition-
ally contains all of the coin tosses used by Samp. This avoids obfuscation-based counter-examples where aux contains
an obfuscation of a program related to a trapdoor for matrix P.

Remark 2 (noise magnitudes). For simplicity, we stated the assumption with all the LWE error terms e, €’,e” having
the same Gaussian parameter y. It is straight-forward to adapt the assumption and the scheme to a quantitatively
weaker variant where the error terms in the post-condition (10) have a larger Gaussian parameter than those in the
pre-condition.

Remark 3 (weaker pseudorandomness). For the security of our scheme, it suffices to consider a weaker variant of the
assumption where only sA’ + €' is required to be pseudorandom in the post-condition.

We refer to Section 6 for further discussion on the assumption.

5 Main Constructions

In this section, we present our main constructions:

— a CP-ABE scheme for NC! achieving |ct| = poly(29,log s, A);
- an “optimal” broadcast encryption scheme for N users with |mpk| + |ct| + |sk| = poly(log N, 1);
- a CP-ABE scheme for circuits achieving |ct| = poly(d,logs, 1);

The first scheme serves as the basis for the second and the third scheme. The first two schemes rely on evasive
LWE whereas the third requires an additional “tensor LWE” assumption. We prove very selective security for all three
schemes, which implies selective security for broadcast encryption.

5.1 Homomorphic Computation on Matrices

We recall basic homomorphic computation on matrices used in prior LWE-based ABE [13].

11



Lemma 1 (EvalFg, EvalFXg). Fix parameters n,q,¢ and m = O(nlogq). Given a matrix A € ZZX[’” and a circuit f :

{0,13Y — {0,1} of depth d and size s, we can efficiently compute a matrix Ay € Zy™™ such that for allx € {0, 1}, there
exists a matrixHp, px € Z°™ ™ with Ha x| = m°@ - s such that

(A-x8G)-Hp rx=Ar— fXG (1

whereG € ZZX " is the gadget matrix. Moreover, Hy rxis efficiently computable given A, f,x. We useEvalFg (A, f), EvalFXg(A, f,x)
to denote the algorithms computing Ag,Hp rx respectively.

Low-norm variant. We also consider a variant where A has low-norm and we replace G with I: when deriving A¢, ad-
dition gates correspond to matrix addition and multiplication gates correspond to matrix multiplication.” The mag-
nitude of the noise squares with each multiplication gate, leading to noise growth that is doubly exponential in d.

Lemma 2 (EvalF, EvalFX). Fix parameters m, ¢. Given a matrix A € zmm and a circuit f : {0, 1}¥ — {0, 1} of depth d
and size s, we can efficiently compute a matrix Ay € Z"™*™ such that |As| = (1A|m)°C g and for allx € {0,1}¢, there
exists a matrix Hy rx € zimxm yith [Ha, x| = (1Al m)°@N s such that

A-x®Ly) Hp px=As— XLy (12)

Moreover, Hy 1 is efficiently computable given A, f,x. We use EvalF (A, f),EvalFX(A, f,x) fo denote the algorithms com-
puting Ay, Hy 5 x respectively.

5.2 CP-ABE for NC! Circuits
We present our CP-ABE scheme for NC! circuits.
- Setup(1”, 19): Sample

(B,7) — TrapGen(1"*"™ ), Ag — Zj*", A= D™ u— DT,

Output
mpk:= (B,Ag,A,u’), msk:=1

— Enc(mpk, f, 1 € {0,1}). Compute Ar =EvalF(A, f). Sample

2 O((n+m?)logq)
so—Zj,81 — 2} ,e<—DZfX,e0<—DZ,X 8D,
Output

[ c

A

—_——
cty:=((so|s1)B+eg, SoAg+si(Afu' ®I,) +p-g+e)

- KeyGen(msk,x): Sample

_ A()I‘T
r—DJ ., K—B 1

A-x81,,) @rT)’
using 7 with standard deviation O(+/(n + m?)log q). Output
sky:= (K 1")

- Dec(sk,x,ct, f): Compute Hp rx= EvalFX(A, f,x). Output

roundg,(c-r’ —co-K-

1
K;- HA,fyqu) )
where rou ndﬁ0 (x) outputs 0 if | x| < Bp and 1 otherwise.

" That s, x; + xj corresponds to A; +A; and x; - x; corresponds to A; -A; instead of A; .G7! (Aj). More generally, we can represent
a circuit f of depth d and size s as a polynomial comprising the sum of s monomials, each of total degree at most 24 Then,
Ap=f(Ar,...,Ap).
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/ / /

¢ i o,i
Ho soAo+si1(Afu’ ®Ip) s1((A-x;®Lp)®r]) SoAor;
Hy | | ¢ -ri—c|-Hppxu —s(u ®r))
Hy o —2zlf ! |
Hs | G1Iper) +e))-A-x;®lpn) ¢ r;—c -Hppxu — (s10mer)) +e))-u’
Hy | s;i (A—x; ®1) c-rf—c}-Hy pxu’ —s;u’
Hs | ¢ — 24" c0,i —Zq

Fig.2. Summary of the hybrid sequence, with Hy =5 H; = H2 =5 H3 =; Hs = H5. We suppress the additive noise terms in
c,'cll,i’cé),i; | denotes same as previous hybrid; we sample e/, — ‘D%x” inHs ands; — Z7 in Hy.

. d
Parameters. Recall [Hy 74| is bounded by = (y""m)°?") - s. We set

n=poly(A,logB), m=0(nlogqg), x" x =AY, y=pg-1°D,
Bo=x*-x"-B-poly(m), q=po-A""

In particular, this means

Impk| = £-poly(2?,5,1), |ct| =poly(2%,s,1), [sk|=¢-poly2?,s,7)
Correctness. Fixx, f such that f(x) = 0. First, we have

¢ K- (sols1)B-B™!

I

Apr’ 1
A-x®I,)®r"| |Hp rxu’

SoAor’ +81 (A-x®1,)®r") - (Hp sxu' ®1)

1
H A, f’xllT

SoAor’ +81 (A-x®1,,)-Hp rxu’ ®Ly)-(1®r1")

= soAor’ +s1(Apu’ ®1,) 1
where the final equality uses (A—x®1,,) -Hj, fx=Af. This means

1

T
cr —¢y-K-:
HA'f,qu

~ (SoAg +S1(Afu’ ®1,) + - g) -1 —soAor’ —s (Afu’ ®1,,) 1"
= N.g.rT

In particular, the error term is bounded by

le-r'|+|ep-K- |<x*x"-B-poly(m) < Bo

H A, f}xllT)

Now, g-r' is statistically close to uniform over Z;, and correctness follows as long as g = f - A0,

13



Security. Suppose the (very selective) ABE adversary A with randomness coins 4 queries f and xj,...,Xg such that

f(x1) =---= f(xg) = 1. We invoke our evasive LWE hardness assumption with Gaussian parameter y and the following
sampler Samp:

auxg
A

aux = (;(1,...,XQ,f, coinsA,rTl,...,rB,AO,A,uT)
Po=Aglr] |- II‘B]
Pi=[A-x;®1,,) 81{ [ (A—xg ®I;) ®1‘TQ]

)

Ag
AfuT ®l,,

where r{, .. .,rTQ,AO,A, u' are sampled as in our CP-ABE scheme. Note that Samp satisfies the restriction in Remark 1.
At this point, it suffices to show pseudorandomness of

P

!

=(sgls1)A/

~(sols1)P

T i’ T 7 T / T / T
auxp,Ag,A,u’, B,soAg +s1(Aru’ ® 1) +€,(so|s1)B+eg, {s1(A-x; ® L) ®1;) +€) ;SoAor; + € ;,T; }

ierq (13

where Ag,u’, s, 81,1} are also sampled as in the CP-ABE scheme and e’ D%"X,,,e’l L Dé’;,, ey ; — Dz, By noise

flooding, this implies pseudorandomness of (13) when e’ — D’ Y e — Dé’ﬁ. Combined with our hardness assump-
tion, the latter would imply:

mpk ct

A

—N—
AO,A,UT,B, (SO | SI)B+ €,

Sl +51(Apu’ ®1,) +e|+p-g,
Sk,'

~

{B™!
=c AO,A,uT,B, Cp, € +'U'g,

{ Bfl Aorjir

A() l';

)}
(A—ximm)@rj) i

)t
(A—xi®1m)®r;) Dhieio)

(where the distinguisher additionally gets auxg) from which ABE security follows readily. Next, we prove pseudoran-
domness of (13) from LWE via a hybrid sequence summarized in Fig 2:

— Ho: the distribution in (13)

/ /
d 00 CLi Co,i
~

A

~ ——
auxg,Ag,A,u’,B,spAg +s1(Apu’ ®1,) +€,(so | s1)B+ep{s1 (A—x;®L,) @r]) + ei,i»sOAOI'; + e('),i,rI}iE[Q]

- H;: same as Hg, except we compute

I ol T ol . T T @l /
Co,ii= € I; —C HA,f_xl.u s (u ®rl.) +eg -

We claim that Hg = H;. First, observe that

~c

S0Aor; = (SoAg +s1(Afu’ ®1,,)) -1} —s; (Afu’ ®r})
= (soAg +81(Afu’ ®Iy)) -1} =81 (A-X; ®1y) -Hy rxu' +u’) ®r1])

i
A~

= (SoAg +s1(Afu’ ®1)) 1] =81 (A—X; ®1,) ®1)) - Hp s xu’ +5,(u’ ®1])
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where the first and third equalities uses the mixed-product property, and the second equality uses (A—x; ® I,;;) -
Hy rx;, =Af— fx;)I;; and f(x;) = 1. Then, Hg = H; follows from noise flooding using eé) ;» namely

o Tl T
€y, =s€;te 1, —e ;-Hyrxu

which in turn follows from y = y'- - A*®,

2
1 .
H,: same as H;, except we sample ¢’ — Zgﬂco — Zqo((mm 08D yye have H; =. Hy, since

0] )1 0] )1
(AOrBOJ SOAO +e,,SOB0 +e0)) =c (AO;C/yCO)y c, - ZZIL,CO - Zq((n+m ) qu)!BO - ZZX ((+m3log )

via the IWE assumption. (In the reduction, By corresponds to the top n rows of B.)

Hs: same as Hy, except we compute

m
zZx"

si:=s1(Ip®r))+e), e, —D
c ;= 8iA-x;81y) +e);
co; =€ r;—cy-Hp pxu’ —siu’ +ep;
We claim that H, =~ H3. First, observe that

~ !
~CLi

si(A-x;8L,)er) =s1(I,er)(A-x;01,)®1) =8I, ®r))(A-X; ®1,)

=S

=S8

siu er) =s (I er)u el)=s;(I,er)u’

where the first equality in each line uses the mixed-product property. Then, H, = Hs follows from noise flooding
using e} , and e[ ;, namely
(A-x; ®1)

. u-r

(A i
€,i=s€;T€
1oL /
€p,i s €p,; T €;
which in turn follows from y/, " = 2¢W),
H,4: same as H3, except we sample s; — Z,’,” . We have H3 =, Hy, since

Ty T - T m* . qpym . m
{sl(lm®ri)yri}i€[Q] NC{sl!ri}ie[Q]; Sl‘_Zq X ®Z,erl Zq

via the LWE assumption [15,22]. In particular, if we write s; = (s11,...,81,,) where sy 1,...,81,, € Z', then s; (I, ®

r;) = (S1,11},...,81,mr}).
Hs : same as Hy, except we sample c(’, i ng, c’1 ;e ng .We have H, = Hs. This follows from a hybrid argument
over i = 1,...,Q, where in the i'th step, we switch the distribution of ¢ ;, ¢/ ; to random via:

(A, u’, siu’ +ep;, siA-x;®Ly) +e) )
~; (A+x; 9L, u’, s;u’ +eé)‘i, sl-A+e’1’l. )
=, (A+x;®1,;, u', C('),p 0’1,1' )
= (A, u’, C(,),i’ C’I,i )

In particular,
o the first and last ~; rely on noise flooding with A = A +x; ® I;;, which in turn follows from y” = 1°W;
e the =, relies on LWE [15] which tells us

(A,u’,s;A+€] ;,s;u’ +e; ;) =c (A,u’,random)

. / ! / / 3
and where the reduction samples s;1,...,8¢ and computes Co,i+1 €0, €1 i417++ 1 €1, @SN Hs.
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5.3 Optimal Broadcast Encryption

To handle broadcast encryption with N users, we identify a user x € [N] with a bit string x € {0,1}°8N1, Let Iy(-) be the
point function wrt y, that is,

1 ifx=y
Iyx) = .
0 otherwise

We can then associate each set S < [N] with the circuit fs:{0,1}1°8N1 — (0,1} given by

x—1-) (X =

{0 ifxeS
yes

1 ifx¢S
It is easy to see that fs can be computed by a circuit of depth O(loglog N) and size O(Nlog N):®

- each Iy() can be computed by a circuit of depth O(loglog N) and size O(log N);
- followed by an addition gate with fan-in V.

We can then instantiate our CP-ABE scheme with § = ApolylogN) . ny log N (via the bound in Lemma 2) which yields a
broadcast encryption scheme with

Impk| = poly(log N, 1), |ct|=poly(logN, 1), |sk|=poly(logN,A)

5.4 CP-ABE for Polynomial-Depth Circuits
Tensor LWE. We introduce an additional tensor LWE assumption which states that for all x;,...,xq € {0, 1}[ , we have

A{sner)A-x;®G)+e,1; {0 =c A{Ci T} }i g

where A — Zg”””,s — ZZ”’,el- — Dé”;{,r} — D%X,ci — Zf]’". We consider the same parameter settings as LWE,, , ,,
with ¢,Q = poly(A). Our analysis in Section 5.2 shows that if we use a low-norm A and replace G with I, then IWE

implies tensor LWE.

CP-ABE scheme. We modify our CP-ABE scheme in Section 5.2 as follows:

- we sample A — ZZX['”, (By,71) — TrapGen(1™", q),s; — qu”;

- we replace I, in sk with the gadget matrix G € Zg*™ and we replace EvalF, EvalFX with EvalFg, EvalFXg respec-
tively;

- we set " = poly(1).

That is, we have:
ctp:=((so|s1)B+eg, SoAg+81(Afu’ ®Ly) +pu-g+e)

[ )

sky :=

A-x0G)er’

As before, we have: |[mpk| = ¢ poly(log 8, 1), Ict| = poly(log B, 1), Isk| = £ - poly(log 8, 1). Now, for circuits of depth d and
size s, we have |Hy x| = 199 - s so that we can = 19@ . 5, which yields:

Impk| = ¢-poly(d,logs, 1), Ict|=poly(d,logs, 1), |sk|=2¢-poly(d,logs,7)

8 As explained in [13], “To support multiplication and addition of constants, we may assume that we have an extra 0-th input to
the circuit that always carries the value 1.” That is, we will set ¢ = [log N1+ 1 in our CP-ABE scheme.
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Security. The proof of security requires the following modifications:
- Hll
c(’),i =1l —c}-Hy rx,u’ —s1(Gu' ®r1)) + e(’),i.
- the proof of Hp =5 Hy uses (A—x; ® G)-Hy rx, =Ar — f(x;)G.
- we omit Hs, Hy and directly argue that H; =, Hs. Tensor LWE implies that for all x,,...,Xq € {0, 1},
A {1} o {s10mer)A-x;9G) +e| , si(I®r)Gu +e;, }

e A’uT’{r;}ie[Q]’ { cll,i ’ C")vi }ie[Q]

i€[Q]
Formally, we account for u" by taking tensor LWE with parameter ¢ + 1 and paddingx;, ..., x, with a 0.

6 Discussion on Evasive LWE

Recall our informal statement of evasive LWE: for every efficient samplable distributions over (A’,P,aux),

if (A',B,P,[sA+¢|[sB+e|sP+e”,aux) ~. (A",B,P, ¢, ¢, ¢’ ,aux),
then (A',B,[sA+¢'|[sBte| B (P),aux) ~. (A", B, ¢, ¢,B"}(P), aux)

Examples. We begin with three quick examples:

— if P is drawn from the uniform distribution over ZZ”, then evasive LWE holds unconditionally, since B L(P) is
distributed according to a random Gaussian.

- if P =0, then both the pre and post conditions are false, so evasive LWE is vacuously true.

— if P = [U | U] where U — ZZX” 2 then the pre-condition is false, and evasive LWE does not provide any security
guarantees. In fact, we know that the post-condition is false if # > nlogg, since B~1(U | U) would then leak a basis
for B.

U
As an additional example, suppose P is a uniformly random block-diagonal matrix, thatis, P = ( 0 ), where Uy, U; —
1

Zg/ 2xtl2 1t jg easy to see that the pre-condition holds via IWE, and in this case, we can also show that the post-
condition holds assuming IWE. Concretely, let B, B; denote the top and bottom halves of the matrix B. Then, B~ (P) =
(Bl‘1 (0),B, 1(0)) via [24], and the post-condition boils down to showing that (B,sB + ') is pseudorandom given trap-
doors for By, B;. As shown in [21, Theorem 5.3], this follows from LWE, where in the reduction, we sample By = [Ag |
AoR+G],B; = [A; | A;JR—G], where R is low-norm.

Algorithmic attacks. The known algorithmic attacks on the post-condition essentially fall into one of two categories:

— Attacks on IWE ignoring B~! (P): this is ruled out via the pre-condition;

- Attacks computing c* = (sB + €') -B71(P) = sP: suppose given aux, an attacker can find a low-norm z such that
P-z" = 0; we can then use z to distinguish sP +e” from c”, thereby violating the pre-condition. Zeroizing attacks
on multi-linear map and obfuscation candidates fall into this category. The attacks on naive approaches to LWE-
based ABE via secret-sharing in [2, Section 6] also falls into this category.

Acknowledgments. Iwould like to thank Yilei Chen and Vinod Vaikuntanathan for numerous illuminating discussions
about LWE and zeroizing attacks, and Ivy Woo for helpful feedback on the write-up. Special thanks to Pepita Coffee
(@pepitacoffeeco) as well as Shakespeare and Company Café (@shakespeareandcocafeparis), where most of the work
was done.
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