
Practical Schnorr Threshold Signatures
Without the Algebraic Group Model

Hien Chu1, Paul Gerhart1, Tim Ruffing2, and Dominique Schröder1

1 Friedrich-Alexander-Universität Erlangen-Nürnberg
2 Blockstream Research

Abstract. Threshold signatures are digital signature schemes in which
a set of n signers specify a threshold t such that any subset of size t
is authorized to produce signatures on behalf of the group. There has
recently been a renewed interest in this primitive, largely driven by the
need to secure highly valuable signing keys, e.g., DNSSEC keys or keys
protecting digital wallets in the cryptocurrency ecosystem. Of special
interest is FROST, a practical Schnorr threshold signature scheme, which
is currently undergoing standardization in the IETF and whose security
was recently analyzed at CRYPTO’22.
We continue this line of research by focusing on FROST’s unforgeability
combined with a practical distributed key generation (DKG) algorithm.
Existing proofs of this setup either use non-standard heuristics, ideal-
ized group models like the AGM, or idealized key generation. Moreover,
existing proofs do not consider all practical relevant optimizations that
have been proposed. We close this gap between theory and practice by
presenting the Schnorr threshold signature scheme Olaf, which combines
the most efficient known FROST variant FROST3 with a variant of Ped-
ersen’s DKG protocol (as commonly used for FROST), and prove its
unforgeability. Our proof relies on the AOMDL assumption (a weaker and
falsifiable variant of the OMDL assumption) and, like proofs of regular
Schnorr signatures, on the random oracle model.

1 Introduction

Threshold signatures [Des88,DF90] are digital signature schemes in which a set
of n signers can specify a threshold t such that any subset of size t is authorized
to produce signatures on behalf of the group. The security of threshold schemes
states that the scheme remains secure even in a compromise of up to a certain
threshold number of parties.

While threshold signatures have a long history dating back to the late 1980s
and early 1990s [Des88,DF90,Ped92,Ped91], there has recently been a renewed
interest in this primitive. This renewed attention is largely driven by the need
to secure highly valuable signing keys, e.g., DNSSEC keys [DOK+20] or keys
protecting digital wallets in the cryptocurrency ecosystem [LN18], as well as
the standardization efforts by IETF [CKGW23] and the NIST call for threshold
multi-party schemes [BP23], indicating how quickly this field is moving into
practical implementation.

1

Several threshold versions of various digital signatures have been proposed
over the years, including threshold RSA signatures [DDFY94,GRJK00,Sho00],
(EC)DSA [GGN16,GG18,LN18,DKLs19,DOK+20,GKSŚ20,CGG+20,CCL+20,
DJN+20,YCX21,ANO+22,Pet21,GS22], BLS signatures [Bol03], and Schnorr
signatures [GJKR96,GJKR07,SS01,GJKR03,KG20,Lin22]. Among these, Schnorr
threshold signatures have gained significant attention in recent years after the
expiration of the patent on (regular single-signer) Schnorr signatures [Sch90], in
particularly due to their simple and linear algebraic structure. This structure
makes it possible to construct threshold signatures that look and verify like a
regular Schnorr signature, making them useful in scenarios where verification
algorithms are fixed, and where privacy of signers and compactness of signatures
is a concern.

For instance, the Bitcoin network added support for Schnorr signature verifica-
tion with the activation of the Taproot softfork in November 2021 with the explicit
goal of enabling the use of Schnorr threshold signatures [WNR20]. Since only the
verification algorithm is fixed in the consensus rules and threshold signatures are
simply normal Schnorr signatures, blockchain verifiers do need to be concerned
with the specific details of threshold signing, and in fact cannot even tell from a
valid signature whether it has been produced by a single signer or by some group
of signers using a threshold signature scheme. Moreover, users can easily profit
from any advances in Schnorr threshold signatures by simply switching to new
signing protocols, without the need to change the Bitcoin network, which can be
a tedious and protracted process that requires broad consensus in the ecosystem.

Most of the current attention to Schnorr threshold signature scheme focuses
on the state-of-the-art scheme FROST by Komlo and Goldberg [KG20], which is
in the process of being standardized by IETF [CKGW23] and for which multiple
independent implementation efforts exist [HA20,Lod21,Pos21,Nar23]. FROST’s
signature protocol is semi-interactive and highly efficient. It requires only one
preprocessing round and one actual signing round, with the preprocessing round
being possible before knowing the message to be signed. In addition, FROST is
the first Schnorr threshold signature scheme that can accommodate arbitrary
selections of t and n, provided that t ≤ n. This includes choices where t−1 ≥ n/2,
which ensures that even if f signers are corrupted and form a dishonest majority
(n/2 ≤ f ≤ t− 1), the scheme is supposed to remain unforgeable.

Proving the Security of FROST: A Challenging Task. However, while
FROST is highly efficient, proving it unforgeable turned out to be a challenging
task. To make things worse, an entire jungle of different FROST variants appears
in the literature. Komlo and Goldberg [KG20] proposed the initial variant, now
called FROST1, and gave a non-standard heuristic argument3 for its unforgeability
when used with PedPoP, a variant of Pedersen DKG [Ped92,GJKR99] with proofs

3 That is, the heuristic argument did not consist of using commonly used idealized
model such as the random oracle model, the generic group model or the algebraic
group model but was constructed particularly for their proof.

2

of possession (PoPs), i.e., proofs of knowledge of the individual contributions to
the joint public key.

Crites, Komlo, and Maller [CKM21] and Bellare, Tessaro, and Zhu [BTZ22]4
analyze an optimized variant, which saves some exponentiations in the signing
protocol. However, the optimized variant as formulated by Crites, Komlo, and
Maller [CKM21] (called FROST2-CKM in the following) has an additional check in
signing protocol algorithm, which makes honest signers abort if two signers submit
the same protocol message in the first round. Crites, Komlo, and Maller [CKM21]
prove that FROST2-CKM with PedPoP is unforgeable in the random oracle
model (ROM) under the OMDL assumption and under the Schnorr knowledge
of exponent assumption (Schnorr-KoE), which they introduce and justify in the
algebraic group model (AGM) [FKL18]. They further conjecture that the duplicate
check is an artifact of their proof technique and can be avoided using techniques by
Bellare, Tessaro, and Zhu [BTZ22], who analyze a variant (called FROST2-BTZ in
the following), which does not have the duplicate check but is otherwise identical
to FROST2-CKM. Bellare, Tessaro, and Zhu [BTZ22] introduce a hierarchy
of unforgeability notions and prove that FROST1 and FROST2-BTZ with an
idealized key generation (i.e., trusted setup) are unforgeable (fulfilling different
notions in their hierarchy) under the one-more discrete logarithm (OMDL)
assumption in the random oracle model (ROM).5

Most recently, Ruffing et al. [RRJ+22] propose yet another variant FROST3,
which promises significant bandwidth savings in the preprocessing phase by the
ability to aggregate protocol messages before broadcasting them to the signers,
but they do not give a proper formal proof and merely sketch a reduction to the
unforgeability of FROST2-BTZ (whose proof relies on idealized key generation).

In a nutshell, this means that practitioners are left with the unsatisfactory
situation that all existing proofs either rely on an idealized group model such as
the AGM, on an idealized model of trusted key generation, or other non-standard
heuristics. Moreover, none of the existing proofs properly cover the security of
FROST3, which is the most efficient known variant of FROST.

The AGM and its Limitations. The algebraic group model (AGM) [FKL18] is
an idealized model similar to the generic group model (GGM) [Sho97,Mau05] in
which the attacker does not get direct access to the group and its representation
but can perform group operations with an external oracle. In contrast to the GGM,
the attacker can exploit the encoding of group elements and derive (new) group
elements via group operations for elements they have received earlier [KZZ22].
The recent work of Zhang, Zhou, and Katz [KZZ22] challenged the current
formalization of the AGM as “hardness in the AGM may not imply hardness in
the GGM”. Thus, having a proof with fewer assumptions and idealized models
would be important to enhance our understanding of security in the real world.

4 A merged version of these two works appeared at CRYPTO 2022 [BCK+22].
5 While the idealized key generation can in principle by instantiated using a fully

simulatable DKG [GJKR99,GJKR07,KGS23], we are not aware of any suitable DKG
that has been proven secure in a dishonest majority setting (n/2 ≤ t− 1).

3

Our Solution: From FROST to Olaf. The main focus of our work is to
provide a proof of FROST which does not rely on the AGM or idealized key
generation. Our starting point is FROST3. While FROST3 is highly efficient, there
has been no satisfying security analysis of it yet. To avoid idealized key generation,
we combine FROST3 with a simplified variant SimplPedPoP of PedPoP. We call
that combination Olaf, and we prove it unforgeable without relying on the AGM.
We stress that our proof still relies on the ROM, but this is expected given that
all known proofs of regular Schnorr signatures rely on the ROM, even if they use
the AGM additionally [FPS20].6

Mixed Forking – Our Proof Technique. The security proof of previous
works [BCK+22] used the AGM within the DKG to extract the secret keys
for the forged signature. A natural approach to avoid the AGM and extract
the keys is to make use of the forking lemma in the random oracle model and
provide a reduction to the underlying one-more discrete logarithm (OMDL)
assumption [BP02, BNPS03]. However, this is non-trival because we need to
consider the PedPoP DKG and the signing protocol together. The rationale
behind this is that PedPoP (like Pedersen DKG) lacks the ability to be simulated.
Hence, it becomes crucial to examine the combination of the DKG and the signing
protocol as a unified execution in order to thoroughly analyze its properties.
Unfortunately, the known variants of the forking lemmas [BN06,BCJ08] cannot
be applied directly to this joint execution: The forking lemma of Bellare and
Neven (BN) [BN06], building on the lemma of Pointcheval and Stern [PS00],
allows extracting after one fork has happened, which means that an attacker
can only split into two paths, each corresponding to a possible outcome of the
protocol. This approach starts only two executions of the adversary, which is
what existing forking proofs of FROST rely on. However, multiple extractions are
impossible, meaning we would learn only one secret. Applying this technique t
times repeatedly in sequence, as needed in the simulation of the DKG, to extract
t times (from t− 1 PoPs sent by the t− 1 signers controlled by the adversary plus
one forgery) leads to a total of 2t simultaneous protocol executions. Therefore,
any reduction that tried to extract t different values by applying the BN forking
lemma t times would incur an exponential loss.

A second natural approach is the usage of the multi-forking lemma due
to Bagherzandi, Cheon, and Jarecki (BCJ) [BCJ08] that allows efficient post-
execution extraction of multiple values via forking. This means that a reduction
can extract t different values simultaneously. In contrast to the previous lemma,
this technique allows the extraction of t different values at one time, without
the need for 2t executions of an adversary. Although the multi-forking lemma
successfully resolves the simulation issue concerning PedPoP, it cannot be em-
ployed for simulating the signature scheme. This limitation arises from the fact
that the lemma entails the generation of a polynomial number of adversary
executions (≫ 2), all potentially making signing queries. Consequently, it poses

6 There is a claimed proof of Schnorr signatures in the GGM which does not rely on
the ROM [NSW09], but it has been found to be flawed [Bro15].

4

compatibility challenges with existing forking proofs of FROST. Therefore, none
of the above forking lemmas satisfies our needs completely. To overcome these
technical difficulties, we use both forking lemmas, and we refer to this proof
technique as mixed forking.

2 Technical Overview

The goal of our work is to prove the unforgeability of Olaf under the algebraic
one-more discrete logarithm (AOMDL) assumption without relying on the AGM.
The AOMDL assumption [NRS21] is a weaker and falsifiable version of the OMDL
assumption, which we will explain in Section 3.

Overview over OMDL Proofs for Schnorr-style Signatures. Gen-
erally speaking, unforgeability proofs for Schnorr-style signatures based on the
(A)OMDL assumption in the random oracle model follow a similar approach. The
public key X is the first output of the (A)OMDL challenge oracle, and the goal
of the security reduction is to compute its discrete logarithm x of X. A signature
for a message m, a secret key x and the corresponding public key X has the form
σ = (R, s) = (gr, r+ xc), where c = Hsig(X, gr,m). The reduction has to provide
a signing oracle for the adversary. To answer queries to the j-th signing oracle
queries for an adversarially chosen message mj without knowing the secret key
x, the reduction first requests a fresh challenge Rj = grj from the (A)OMDL
challenge oracle as a commitment. Afterward, the reduction queries the ODLog
oracle provided by the (A)OMDL game on RjX

c = grj+xc. Upon this request,
the ODLog oracle then returns the value sj = rj +xc, such that (Rj , sj) is a valid
signature for the message mj . Eventually, the adversary outputs its signature
forgery σ = (R, s). Then, the reduction forks the adversary, e.g., using the forking
lemma by Bellare and Neven [BN06] (a generalization of the forking lemma by
Pointcheval and Stern [PS00]), to obtain a second forgery σ′ = (R, s′) on the
same commitment R but a different hash value c′ ̸= c. Using both forgeries, the
reduction can extract the secret key x by computing x = (s− s′)/(c− c′).

Transferring this Technique to Threshold Signatures. This forking
technique proves effective in the context of Schnorr signatures within a single-
signer scenario, and it can be modified to work with Schnorr threshold signature
schemes: Instead of using a single group element R, it is necessary that the
scheme uses two group elements D,E that will be combined into a single element
R. (This is what FROST does.) On a very high level, two group elements are
necessary because the adversary can force the reduction to answer a signing query
corresponding to the same values D,E in both forks.

However, when considering the DKG additionally, a further distinction arises:
Solving the equation of both forgery signatures releases the full signing key x
corresponding to the joint public key representing the entire group of signers.
Yet, the reduction needs to learn the additive secret key share xi for some
i ∈ {1, . . . , n}, for which holds x =

∑n
i=1 xi to win the (A)OMDL game. Learning

5

this share xi from the combined one x is solely feasible if the reduction possesses
the secret keys belonging to all remaining signers, including those controlled by
the adversary.

Learning the Signing Key Shares of the Adversary. The recent work
of Crites, Komlo, and Maller [CKM21] addresses the issue of acquiring the adver-
sary’s secret shares using the Pedersen DKG protocol with proofs of possession
(PedPoP) in place of the conventional Pedersen DKG protocol. PedPoP uses the
same key sharing technique as the Pedersen DKG, but each participating signer
Si has to provide a proof of possession (PoP), i.e., a Schnorr proof of knowledge
of the secret key share xi corresponding to the public key share gxi . Intuitively,
Crites, Komlo, and Maller utilize the algebraic representation of the Schnorr
PoPs provided by the AGM to compute the secret key shares. Since our goal is
to prove the protocol secure whilst avoiding the AGM, we can not follow this
approach. Instead, we use a forking technique to extract the secret key shares
utilizing the Schnorr PoPs.

Extracting t − 1 PoPs Avoiding the AGM. As already mentioned, we
want to extract t − 1 PoPs by forking the adversary (which controls t − 1
corrupted signers). This is the point we encounter technical problems: Using
the forking lemma by Bellare and Neven (BN) [BN06] to extract t− 1 different
PoPs sequentially would yield a security loss exponential in t. Therefore, we use
the multi-forking lemma of Bagherzandi, Cheon, and Jarecki (BCJ) [BCJ08] to
extract all t− 1 PoPs simultaneously after the DKG phase is done. Doing so, we
extract all t− 1 adversarially chosen signing key shares xi.

The Drawback of Multi-Forking. Even if this lemma provides us efficiently
with all needed shares, it also creates a new problem: The underlying technique
of BCJ executes many multiple executions of the adversary simultaneously
until enough executions are successfully. Following this approach, the multiple
executions of the adversary can all query a signing oracle after DKG is done. The
number of these queries may exceed the maximum number of allowed queries to
the ODLog oracle. Indeed, as we explained above, previous approaches crucially
rely on the fact that only two executions of the adversary, corresponding to two
group elements D and E, are run (as with the BN forking lemma).

Mixed Forking. To overcome this issue, we use a two-step approach that
mixes both forking lemmas: As a first step, we apply the BN forking lemma to a
wrapped version B of the adversary A, obtaining an algorithm C that extracts
the combined signing key x. Here, B simulates the unforgeability game to A
and answers signing queries using the discrete logarithm oracle provided by the
(A)ODML game. As a second step, we apply the BCJ multi-forking lemma to
C, obtaining an algorithm D that simultaneously extract all n − 1 signing key
shares xi from the DKG phase. Having available all adversarial signing key shares
and the combined signing key, our algorithm D can now extract the remaining
signing key shares and solve all discrete logarithm challenges. However, D is

6

not yet a working reduction to the (A)OMDL assumption: While it solves all
discrete logarithm challenges, it does not solve the (A)OMDL problem because
it still makes too many requests to the ODLog oracle: While each execution of C
know runs only two executions of the adversary A, algorithm D uses the BCJ
multi-forking technique and thus runs many executions of C (and thus D runs
many executions of A in total).

Reducing the Number of Discrete Logarithm Queries. To solve this last
problem, we run D with a subtle modification, resulting in a full reduction D∗:
Only in one execution of C started by D∗ will signing queries be answered using
the ODLog oracle. The signing oracle queries that occur in all other executions
of C started by the BCJ multi-forking lemma are not answered at all. Instead,
these other executions are simply aborted after all executions of A therein have
completed the DKG, i.e., before signing queries are allowed. Intuitively, this is
not a problem because D∗ only starts many executions of C to extract from the
PoPs, which the adversary A is forced to send already during DKG. As our
analysis shows, this is indeed sufficient, and reduction D∗ has the same success
probability ϵ as D. However, this second reduction solves the (A)OMDL problem,
as only two executions of the adversary A will ever make signing queries.

3 Preliminaries

Notation and Group Description. We denote by x← y the assignment of
value y to variable x, and we denote by x←$ X the uniform sampling of x from
the set X. We utilize the symbol G := (G, p, g) to denote a group description,
where G is a cyclic group of order p, where p is a λ-bit prime, and g is a generator
of G. Given an element X ∈ G, we let logg(X) denote the discrete logarithm of
X with base g, i.e., logg(X) is the value x ∈ Zp, such that X = gx.

Algebraic One-More Discrete Logarithm (AOMDL). Our threshold
signature scheme’s security is established through the utilization of the algebraic
one-more discrete logarithm (AOMDL) assumption [NRS21], which serves as a
falsifiable counterpart to the non-falsifiable OMDL assumption. Similar to the
OMDL assumption, the AOMDL assumption allows an adversary A on input
the group description G to query a challenge oracle OCH, which outputs group
elements, and a discrete logarithm oracle ODLog(X, . . .) oracle, which returns
logg(X). The adversary may obtain c challenges from the OCH oracle and wins,
if it outputs the discrete logarithms of all c instances, but asked the ODLog
oracle at most q < c times. Yet, in contrast to the OMDL assumption, the
adversary A has to provide an algebraic representation of the group element
X on which it queries the ODLog oracle. This algebraic representation makes
the AOMDL assumption falsifiable, as it allows the ODLog oracle and thus the
defining game to be computable in PPT. Therefore, a security reduction to
the AOMDL assumption is preferable over a security reduction to the OMDL
assumption, because it gives us a stronger result.

7

Game AOMDLA
G

c← 0 ; q ← 0

(y1, . . . , yc)← AOCH,ODLog

return q < c ∧
(∧c

i=1 xi = yi
)

Oracle ODLog(X, (α, (βi)1≤i≤c))

// X = gα
∏c

i=1 X
βi
i for Xi = gxi

q ← q + 1

return α+
∑c

i=1 βixi

return logg(X)

Oracle OCH

c← c+ 1

xc ←$ Zp

X ← gxc

return X

Fig. 1. Game AOMDLA
G for the AOMDL assumption. The changes from the ordinary

OMDL game to the AOMDL game are in gray.

We emphasize that our approach does not employ the algebraic group model
(AGM). Furthermore, our reduction to the algebraic one-more discrete logarithm
(AOMDL) assumption differs conceptually from utilizing the AGM. The AGM
offers the advantage of assuming an algebraic adversary against a cryptographic
scheme, simplifying the reduction process. However, for a security proof based
on the AOMDL assumption, we are required to construct an algebraic reduction.
This is an additional requirement for our reduction compared to the case of
the OMDL assumption. Thus, our task of providing a reduction becomes more
challenging when considering the AOMDL assumption, and we do not rely on
the AGM in our approach.

Definition 1 (AOMDL Problem). Given a group description G, let AOMDLAG
be as defined in Figure 1. The algebraic one-more discrete logarithm (AOMDL)
problem is (τ, ϵ)-hard for G if, for any algorithm A running in time τ , the
advantage of A is

AdvAOMDL
A,G := Pr

[
AOMDLAG = true

]
≤ ϵ.

Threshold Signature Schemes. Threshold signature schemes allow a group
of n possible signers S1, . . . ,Sn to collectively sign a message m without the need
for all signers to be present or active simultaneously.

In such a scheme, a signature is created by combining signature shares from
a subset of the group, where the subset size t is typically smaller than the total
number of users. Our definition of threshold signatures takes care of the key
generation process, for which we require an interactive distributed key generation
protocol (DKG). A DKG allows multiple parties to generate a shared key without
any single party having access to the full key. Furthermore, we call a threshold
signature scheme semi-interactive if the signing process involves a preprocessing
round and a signing round. In the following, we assume that the bitstring encoding
of an indexed set such as {ρi}i∈S or {σi}i∈S includes an encoding of the index
set S.

Definition 2 (Threshold Signatures). A semi-interactive threshold signa-
ture scheme TS = (Setup,KeyGen,PreRound,PreAgg,SignRound,SignAgg,Verify)
consists of algorithms as follows:

8

par ← Setup(n, t): The setup algorithm Setup takes as input the number n of
signers and the signing threshold t, and outputs public parameters par . From
now on, par is an implicit input to all subsequent algorithms.

(pk , sk i)← KeyGen(i): The key generation protocol KeyGen is an interactive
algorithm of which an instance is run by each signer S1, . . . ,Sn concurrently.
Concretely, signer Si runs KeyGen(i), which takes as input a signer index i
and outputs a public key pk and the secret key sk i of Si.

(statei, ρi)← PreRound(pk): The preprocessing algorithm is run by signer Si.
It takes as input a public key pk and outputs a secret state statei and a
presignature share ρi.

ρ← PreAgg(pk , {ρi}i∈S): The deterministic presignature aggregation algorithm
PreAgg takes as input a public key pk , a set {ρi}i∈S of presignature shares
and outputs a (full) presignature ρ.

σi ← SignRound(sk i, pk , S, statei, ρ,m): The signature share algorithm is run
by signer Si. It takes as input a secret key sk i, a public key pk , an index
set S ⊆ {1, . . . , n} of signer indices with |S| = t, a secret state statei, a
presignature ρ, and a message m. It outputs a signature share σi.

σ ← SignAgg(pk , ρ, {σi}i∈S ,m): The deterministic signature aggregation algo-
rithm takes a public key pk , a (full) presignature ρ, a set {σi}i∈S of signature
shares and outputs a (full) signature σ.

b← Verify(pk ,m, σ): The verification algorithm takes as input a public key pk , a
message m, and a signature σ. It outputs a boolean b, where b = true means
that the signature is valid and false that it is invalid.

Unforgeability Definition. We define unforgeability for a semi-interactive
threshold signature scheme TS via a game TS-UFA

TS,n,t,CS , in which an adversary
A controls up to |CS | < t out of n signers and has access to a preprocessing oracle
PreRound and a signing oracle OSignRound. Our model assumes that presignature
aggregation and signature aggregation are performed by an untrusted coordinator,
so leave these tasks entirely to A. Moreover, since the corresponding algorithms
take only public inputs, we do not need to need provide oracles for them.

To setup keys, the adversary can run an instance of the key generation protocol
KeyGen with every honest signer. We do not assume any implicit synchronization
mechanism between honest signers. Instead, it is the responsibility of KeyGen to
ensure synchronization explicitly. That means for example that it is in general
possible in our game that at some point in time, some honest signer Si has
finished key generation already and is available for signing queries, while some
other honest Sj has not finished key generation yet. Moreover, two honest signers
Si and Sj may in general output two different joint public keys pk i ̸= pk j (in
which case the adversary may forge under either public key). We believe that the
latter should never happen in any meaningful and secure key generation protocol.
Yet, our way of modeling ensures that it is the responsibility of the scheme to
exclude (or otherwise handle) these cases of inconsistency between honest signers.

To win, A has to come up with a message, forgery pair (m∗, σ∗) that verifies
and which is non-trivial, i.e., for which it has not learned any partial signature.
This specific definition of a non-trivial forgery corresponds to the weakest notion

9

Game TS-UFA
TS,n,t,CS

1 : // CS is a set of indices of corrupted signers.

2 : // It holds CS ⊆ {1, . . . , n} ∧ |CS | < t.

3 : HS ← {1, . . . , n} \ CS // Honest signers

4 : Started ,SK ,PK ,PreStates,Sigs ← ∅
5 : par ← Setup(n, t)

6 : (m∗, σ∗, i∗)← AOKeyGen,OPreRound,OSignRound(par)

7 : return Verify(PK [i∗],m∗, σ∗) ∧ |Sigs[m∗]| = 0

Oracle OKeyGen(i)

1 : if i /∈ HS ∨ i ∈ Started then return ⊥
2 : Started ← Started ∪ {i}
3 : // Run KeyGen(i) with A controlling network connections

4 : // between signer Si and all signers Sj , j ∈ {1, . . . , n} \ {i},

5 : // and in a separate thread concurrently to other oracle calls.

6 : (pk i, sk i)← ⟨KeyGen(i),A⟩
7 : PK [i]← pk i ; SK [i]← sk i

8 : return pk i

Oracle OPreRound(i, j)

1 : if i /∈ HS ∨ PK [i] = ⊥ then return ⊥
2 : if PreStates[i][j] ̸= ⊥ then return ⊥
3 : pk i ← PK [i]

4 : (statei, ρi)← PreRound(pk i)

5 : PreStates[i][j]← statei

6 : return ρi

Oracle OSignRound(i, j, S, ρ,m)

1 : if i /∈ HS ∨ PK [i] = ⊥ then return ⊥
2 : if PreStates[i][j] = ⊥ then return ⊥
3 : statei ← PreStates[i][j]

4 : ski ← SK [i] ; pk i ← PK [i]

5 : σi ← SignRound(sk i, pk i, statei, ρ,m)

6 : Sigs[m]← Sigs[m] ∪ {i}
7 : return σi

Fig. 2. Unforgeability game TS-UF for semi-interactive threshold signature schemes.

10

TS-UF-0 in the hierarchy by Bellare, Tessaro, and Zhu [BTZ22]. Yet, our definition
differs from theirs because key generation is idealized in their work.

Definition 3 (Unforgeability). Let TS = (Setup,KeyGen,PreRound,PreAgg,
SignRound,SignAgg,Verify) be a semi-interactive threshold signature scheme. Fix
integers n ≥ t ≥ 1, and let the game TS-UF be defined as in Figure 2. The scheme
TS is (n, t, τ, qs, q, ϵ)-unforgeable under chosen-message attack (TS-UF) if for any
adversary A running in time τ , making at most qs queries to each of OPreRound
and OSignRound, and making at most qh queries to each random oracle, and any
set of corrupted parties CS with |CS | < t, the advantage of A is

AdvTS-UFA,TS,n,t,CS := Pr
[
TS-UFA

TS,n,t,CS = true
]
≤ ϵ.

4 SimplPedPoP: A Simplified Pedersen PKG with PoPs

We introduce and employ a simplified version of the PedPoP distributed key gener-
ation (DKG) protocol [KG20,CKM21]. We refer to this protocol as SimplPedPoP
and provide a comprehensive description in Figure 3. Unlike in PedPoP, but like
in the original Pedersen DKG [Ped92,GJKR99], we transmit the secret shares
during the initial round of the protocol.

The Pedersen DKG [Ped92,GJKR99] enables a group of n signers to collabora-
tively compute a public key pk = X, where any subset of t or more signers can col-
lectively reconstruct the corresponding secret key x = logg X. At a high level, this
is achieved through a combination of additive sharing and Shamir secret sharing,
following these steps: Each signer Si generates a random local polynomial fi(Z)
of degree t−1 over the field Zp. Here, fi(Z) = ai,0+ai,1Z+ · · ·+ai,t−1Z

t−1 repre-
sents the local polynomial for signer Si. By summing up all the local polynomials,
we obtain the global polynomial f(Z) =

∑n
i=0 fi(Z) = a0+a1Z+ · · ·+at−1Z

t−1.
Consequently, the joint secret key x is derived as the value a0 = f(0). During a
successful execution of the protocol, each signer Si receives Shamir secret shares
from other signers Sj , allowing them to compute the value f(i). This would in
principle allow t signers to reconstruct of x = a0 = f(0) via Lagrange interpola-
tion, but in a threshold signing protocol, signers will want to avoid reconstruction
of x and instead use Lagrange interpolation to compute only functions of x.

The PedPoP variant [KG20,CKM21] of Pedersen DKG makes each signer
additionally send a proof of possession (PoP), i.e., a Schnorr proof of knowledge
of their share fi(0), which ensures that the protocol is secure even in a dishonest
majority case t− 1 ≥ n/2.

Our SimplPedPoP protocol reuses these ideas, but differs when it comes to
ensuring agreement, i.e., ensuring that all honest signers agree i) on all common
parameters such as the joint public key pk , and ii) on the fact that all honest
signers received proper secret shares. To this end, signers in SimplPedPoP simply
abort when they do not receive proper secret shares, and each signer Si runs
an interactive equality check protocol b← Eq(i, ηi) with all other signers on the
common parameters ηi as seen by respective Si in as a second step in the protocol.
We require the following two properties from the equality check protocol Eq.

11

Interactive Algorithm SimplPedPoP(i)

Signer Si is connected to each other signer Sj via secure point-to-point channels,
which guarantee authentication and confidentiality. This can, e.g., be realized with
a public-key infrastructure (PKI).

1. Signer Si chooses a random polynomial fi(Z) over Zp of degree t− 1

fi(Z) = ai,0 + ai,1Z + · · ·+ ai,t−1Z
t−1

and computes Ai,k = gai,k for k = 0, . . . , t− 1. Denote xi = ai,0 and Xi = Ai,0.
Signer Si computes a proof of possession of Xi as a Schnorr signature as
follows. Signer Si samples r̃i ← Zp and sets R̃i ← gr̃i . Signer Si computes
c̃i ← Hreg(Xi, R̃i, i) and sets s̃← r̃+ c̃ixi. Signer Si then derives a commitment
(Ai,0, . . . , Ai,t−1) and sends ((R̃i, s̃i), (Ai,0, . . . , Ai,t−1)) to all signers Sj for
j ∈ {1, . . . , n} \ {i}.
Moreover, signer Si, for every j ∈ {1, . . . , n} (including j = i itself), computes
secret shares x̃i,j = fi(j), and sends x̃i,j to signer Sj .

2. Upon receiving proofs of possession, commitments and secret shares from all
other signers, signer Si verifies the Schnorr signatures by computing c̃j ←
Hreg(Xi, R̃i, i) and checking that

R̃jA
c̃j
j,0 = gs̃j for j ∈ {1, . . . , n} \ {i}.

Moreover, signer Si verifies the shares received from the other signers by
checking

gx̃j,i =

t−1∏
k=0

Aik

j,k.

If any check fails, signer Si aborts.
Otherwise, Si runs interactive algorithm Eq(i, ti) with all other signers Sj for
j ∈ {1, . . . , n} \ {i} on local input

ηi ← {(R̃j , s̃j), (Aj,0, . . . , Aj,t−1)}nj=1.

3. When Eq(i, ηi) outputs true for Si, then Si terminates the SimplPedPoP protocol
successfully by outputting the joint public key X ←

∏n
j=1 Xj and the local

secret key x̃i ←
∑n

j=1 x̃j,i. When Eq(i, ti) outputs false, then Si aborts.

Fig. 3. Interactive Algorithm SimplPedPoP.

12

Agreement: If some honest party outputs true, then every honest party will
output true.

Integrity: If some honest party outputs true, then for every pair of honest
parties Si and Sj , we have ηi = ηj for their inputs.

We formulate agreement, which will not be required for unforgeability but is
nevertheless highly desirable, deliberately such that it is orthogonal to message
timing and synchrony assumptions (e.g., synchronous vs. asynchronous networks),
because these assumptions may be very different for different applications.

Agreement and integrity ensure that if an honest signer Si terminates the
DKG protocol successfully, then all honest signers terminate successfully, and
their public and secret outputs are as expected, and in particular, they agree on
the joint public key pk . By abstracting the implementation details of the equality
check, our protocol becomes adaptable to various scenarios. Let us consider two
examples:

– In a scenario where a single user employs multiple signing devices (e.g.,
hardware wallets for cryptocurrencies) to set up a threshold signing, the
devices can simply display the common parameters (or a hash of them) to
the user. The user can manually verify the equality of these parameters and
confirm their consistency to all devices by pressing a button or otherwise
providing explicit confirmation.

– In a network-based DKG scenario, the equality check can be instantiated by
having each signer transmit their local value of the common parameters (or
a hash thereof) using a reliable broadcast protocol, e.g., echo broadcast [].
Subsequently, the recipients can compare their local value with the received
values to check for equality among all participants.

These approaches allow flexibility in implementing the equality check, catering
to scenarios where manual verification or network-based broadcasts are suitable.

Simply aborting the protocol (or just never terminating it) in case of failure
differs from the original Pedersen DKG and PedPoP. These existing protocols are
constructed such that a protocol run can continue even if some corrupted signer
sends invalid secret shares or equivocates to make honest signers fail to achieve
agreement. This accommodates the need for DKG protocols to offer some kind
of termination or liveness property in practice.

However, we believe that for many applications, setting up keys is a one-time
procedure for which aborting and asking for manual intervention in case of
failure not only acceptable, but in fact even desirable: Coming back to the first
aforementioned example scenario, if different signing devices display different
hashes, the user knows for sure that one device is faulty, and it may not be
desirable to continue the process with the existing set of devices. In contrast, a
DKG protocol that guarantees termination would simply mask the error.

We would like to stress that none of our proof techniques crucially rely on
the fact that we have chosen to work with a modified variant of PedPoP, and
though a formal treatment is not in the scope of our work, we believe that it is
straight-forward to adapt our unforgeability proof to work with PedPoP.

13

5 Olaf: A Practical Schnorr Threshold Signature Scheme

The Olaf threshold signature scheme is a semi-interactive Schnorr threshold signa-
ture scheme. It is in essence the FROST3 [RRJ+22] scheme, which improves over
previous variants of FROST by the ability to aggregate presignature shares before
broadcasting them to signers, with key generation implemented via SimplPedPoP.
Since our unforgeability proof covers this specific combination of SimplPedPoP
and FROST3, we choose a separate name Olaf for the combination, to stress that
the schemes should be regarded as a unit in terms of provable security.

Olaf := OlafG is parameterized by a group G. We provide pseudocode descrip-
tions of all algorithms in Figure 4. Most importantly, Olaf outputs a Schnorr
signature σ = (R, s) which can be verified by the joint public key X like an
ordinary single-signer Schnorr signature.

Since the scope of our work is unforgeability rather than robustness, we omit
the algorithm ShareVal present in the original description of FROST3 [RRJ+22],
whose purpose is to verify signatures shares sent by individual signers and thereby
to ensure that the signing protocol provides identifiable aborts. Nonetheless, the
results by Ruffing et al. [RRJ+22] on the robustness of FROST3 carry over to
Olaf directly.

6 Security Analysis of Olaf

Forking Lemmas. In this section, we formally prove the security of Olaf using
both the forking lemma by Bellare and Neven (BN) [BN06] (Lemma 1 below)
and the multi-forking lemma by Bagherzandi, Cheon, and Jarecki (BCJ) [BCJ08]
(Lemma 2 below). These represent different trade-offs between tightness and time
complexity. Whereas the BCJ multi-forking lemma allows forking on multiple
points without an exponential loss, it starts a polynomial number of executions
of the forked algorithm instead of just two as in the BN forking lemma.

Lemma 1 (BN Forking Lemma [BN06]). Let q ≥ 1 be an integer. Let A
be a probabilistic algorithm that takes as input a main input inp generated by
some probabilistic algorithm InpGen(), elements h1, . . . , hq from some sampleable
set H, and random coins from some sample able set RA, and returns either a
distinguished failure symbol ⊥, or a tuple (f, ϕ), where f ∈ {1, . . . , q} and ϕ is
some side output. The accepting probability of A, denoted acc, is defined as the
probability (over inp ← InpGen(), h1, . . . , hq ←$ H, and the random coins of A)
that A returns a non-⊥ output. Consider algorithm ForkAH as defined in Figure 5,
and let frk be the probability (over inp ← InpGen() and the random coins of
ForkAH) that ForkAH returns a non-⊥ output. Then

frk ≥ acc

(
acc

q
− 1

|H|

)
.

Lemma 2 (BCJ Multi-Forking Lemma [BCJ08]). Let q ≥ 1 be an integer.
Let A be a probabilistic algorithm which takes as input a main input inp generated

14

Setup(n, t)

1 : (G, p, g)← G
2 : if n > p then return ⊥
3 : // Select hash functions

4 : Hnon,Hsig : {0, 1}∗ → Zp

5 : par ← (n, t, (G, p, g),Hnon,Hsig)

6 : return par

KeyGen(i)

1 : // interactive algorithm

2 : (X,xi)← SimplPedPoP(i)

3 : (pk , sk i)← (X,xi)

4 : return (pk , sk i)

PreRound(pk)

1 : X ← pk

2 : di,←$ Zp ; ei,←$ Zp

3 : Di ← gdi ; Ei ← gei

4 : statei ← (di, ei)

5 : ρi ← (Di, Ei)

6 : return (statei, ρi)

PreAgg(pk , {ρi}i∈S)

1 : X ← pk

2 : {(Di, Ei)}i∈S ← {ρi}i∈S

3 : D ←
∏

i∈S Di

4 : E ←
∏

i∈S Ei

5 : ρ← (D,E)

6 : return ρ

Lagrange(S, i)

1 : Λi ←
∏

j∈S\{i} j/(j − i)

2 : return Λi

SignRound(sk i, pk , S, statei, ρ,m)

1 : // called at most once

2 : // per secret state statei

3 : xi ← sk i ; X ← pk

4 : (D,E)← ρ

5 : (di, ei)← statei

6 : b← Hnon(X,S, ρ,m)

7 : R← DEb

8 : c← Hsig(X,R,m)

9 : Λi ← Lagrange(S, i)

10 : σi ← di + bei + cΛixi

11 : return σi

SignAgg(pk , ρ, {σi}i∈S ,m)

1 : X ← pk

2 : (D,E)← ρ

3 : b← Hnon(X,S, ρ,m)

4 : R← DEb

5 : s′ ←
∑

i∈S σi

6 : σ ← (R, s)

7 : return σ

Verify(pk ,m, σ)

1 : X ← pk

2 : (R, s)← σ

3 : c← Hsig(X,R,m)

4 : return (gs = RXc)

Fig. 4. Threshold Signature Scheme OlafG.

15

Algorithm ForkAH(inp)

1 : ρ←$ RA ; h1, . . . , hq ←$ H

2 : ω ← A(inp, (h1, . . . , hq); ρ)

3 : if ω = ⊥ then return ⊥
4 : (f, ϕ)← ω

5 : h′
1, . . . , h

′
q ←$ H

6 : ω′ ← A(inp, (h1, . . . , hf−1, h
′
f , . . . , h

′
q); ρ)

7 : if ω′ = ⊥ then return ⊥
8 : (f ′, ϕ′)← ω′

9 : if f ̸= f ′ ∨ hf = h′
f then return ⊥

10 : out ← (hf , ϕ) ; out ′ ← (h′
f , ϕ

′)

11 : return (f, out , out ′)

Fig. 5. Forking algorithm ForkAH,R from Lemma 1.

Algorithm MForkAH(inp)

1 : ρ←$ RA ; h1, . . . , hq ←$ H

2 : ω ← A(inp, (h1, . . . , hq); ρ)

3 : if ω = ⊥ then return ⊥
4 : (F, {ϕf}f∈F , θ)← ω

5 : mout ← {(hf , ϕf)}f∈F ; mout ′ ← ∅
6 : for f ∈ F do

7 : succ ← false ; k ← 0 ; kmax ← |F | · 8q/acc · ln(|F | · 8/acc)
8 : repeat
9 : k ← k + 1 ; h′

f , . . . , h
′
q ←$ H

10 : ω′ ← A(inp, (h1, . . . , hf−1, h
′
f , . . . h

′
q); ρ)

11 : if ω′ = ⊥ then continue

12 : (F ′, {ϕ′
f}f∈F ′ , θ′)← ω′

13 : if f ∈ F ′ ∧ h′
f ̸= hf then

14 : mout ′ ← mout ′ ∪
{(

h′
f , ϕ

′
f

)}
; succ ← true

15 : until succ = true ∨ k > kmax

16 : if succ = false then return ⊥
17 : return (F,mout ,mout ′)

Fig. 6. Forking algorithm MForkA from Lemma 2.

16

by some probabilistic algorithm InpGen(), elements h1, . . . , hq from some sam-
pleable set H, and random coins from some sampleable set RA, and returns either
a distinguished failure symbol ⊥, or a tuple (F, {ϕj}j∈F , θ), where F ⊆ {1, . . . , q}
and F ̸= ∅, and {ϕj}j∈F and θ are some side outputs. The accepting prob-
ability of A, denoted acc, is defined as the probability (over inp ← InpGen(),
h1, . . . , hq ←$ H, and the random coins of A) that A returns a non-⊥ output.
Consider algorithm MForkA as defined in Figure 6, and let mfrk be the probability
(over inp ← InpGen() and the random coins of MForkA) that MForkA returns a
non-⊥ output. Assume |H| > |F | · 8q/acc. Then

mfrk ≥ acc

8
.

Note that our formulation of Lemma 2 has an additional side output θ, which is
independent of j ∈ F and not present in the original formulation of the lemma.
It is easy to see that this modification does not invalidate the lemma. Indeed, θ
can be thought of as included in ϕj for every j ∈ F (but we would like to avoid
this approach to keep the notation simple).

Security Analysis. We prove the following result about the unforgeability of
Olaf under the AOMDL assumption.

Theorem 1. Fix n ≥ t ≥ 1 and a group description G = (G, p, g) such that p is
a λ-bit prime. For any adversary A running in expected time τ , making at most
qs queries to each of OPreRound and OSignRound, making at most qh queries to
each random oracle, and having an advantage of ϵ = AdvTS-UFA,Olaf,n,t,CS such that
λ > log2((8q

3t+ 6q)/ϵ2), there exists an algorithm D∗ running in expected time
not more than

τ ′ ≈ 8q2t2

ϵ2 − 3q · 21−λ
· ln 8q2t

ϵ2 − 3q · 21−λ
· (τTS-UF + τ)

and having an advantage of ϵ′ = AdvAOMDL
D∗,G such that

ϵ′ ≥ ϵ2

8q
− 6 + q2

2λ−3
,

where q = 3qh + 2qs + t and τTS-UF is the running time of game TS-UFOlaf,n,t,CS

ignoring the time to run A within the game.

Proof Overview. We construct a sequence of algorithms. First, we construct
a wrapper B around A, which simulates game TS-UFA

TS,n,t,CS towards A and
embeds a discrete logarithm challenge X∗ as the additive share of a single honest
signer in the key generation. That means that B cannot handle signing queries
honestly, and will need to query the challenge oracle provided by the AOMDL
game when simulating presigning queries to be able to use the discrete logarithm
oracle provided by the AOMDL game to simulate signing queries. Algorithm B
returns the PoPs sent by A during key generation, the forgery output by A, and
some auxiliary information.

17

In a first forking step, we use B to construct an algorithm C, which runs
forking algorithm ForkBH , forking B on the Hsig query corresponding to the forgery.
This enables C to compute and return a discrete logarithm x of the public key X
as common in proofs of Schnorr signatures.

In a second forking step, we use C to construct an algorithm D, which runs the
multiple-forking algorithm MForkCH , forking C on all Hreg queries corresponding
to PoPs sent by A. This enables D to compute the additive shares that the
adversary contributed to x. By subtracting these from x, algorithm D obtains the
discrete logarithm x∗ of X∗. With this knowledge, D can solve for all additional
discrete logarithm challenges it obtained during the simulation of signing queries.
However, due to the fact D runs many instances of C, which all run two instances
of B, which all make use of the discrete logarithm oracle to answer signing queries,
D in total makes too many queries to this oracle.

As a final step, we construct an algorithm D∗, which is like D but aborts
all but one execution of C after key generation, i.e., after all PoPs from A have
been received. Since one full execution of C is enough to extract x, and all other
aborted executions run far enough such that D∗ can still extract from the PoPs,
the outputs of D∗ and D are the same. However, the full execution of C in D∗

makes only two queries to the discrete logarithm oracle per signing query, i.e.,
as many as challenge oracle queries made. Since D∗ has additionally solved the
challenge X∗, it wins AOMDL.

Proof. We construct a series of algorithms. In the entire proof, we call the proba-
bility that some algorithm A returns a non-⊥ output the accepting probability
accA of A. Whenever some algorithm calls an oracle ODLog(X, (α, (βi)1≤i≤c)),
it will be clear from the way X is constructed how to represent X as a linear
combination of the generator g and obtained discrete logarithm challenges. Thus,
for the sake of readability, we allow ourselves to omit the representation argument
(α, (βi)1≤i≤c).

Construction of Algorithm B. We describe how to construct algorithm B.
Let HS = {1, . . . , n} \ CS . Algorithm B takes as input

inpB = (X∗, {Ui,j}i∈HS ,j∈{1,...2qs}, (hreg,1, . . . , hreg,q)),

where X∗ ←$ G and Ui,j ←$ G for all i ∈ HS , j ∈ {1, . . . 2qs} and hreg,i ←$ Zp. It
also takes as input a stream (h1, . . . , hq)←$ Zq

p.
The inputs X∗ and Ui,j represent |HS |·qs+1 discrete logarithm challenges that

will be obtained via |HS | · qs +1 oracle calls OCH by the caller of B. Accordingly,
B has access to a discrete logarithm oracle ODLog provided by the caller. (When
we apply a forking lemma to B, we can think of this deterministic oracle as part
of B because the lemma does not require B to be PPT.)

Algorithm B initializes associative arrays Treg, Tnon and Tsig. For these arrays,
which store programmed values for respectively Hreg,Hnon and Hsig, we write
assignments in form “T (x) ← y” for an array T , and we write “T (x) = ⊥” if
there is no value stored under key x. It also initializes two counters ctrh ← 0
and ctrhreg ← 0, and a flag Ev1 ← false that will help keep track of a bad event.

18

Algorithm B initializes sets Started ← ∅ for keeping track of signers who started
key generation, S ← ∅ for keeping track of open signing sessions, Sigs ← ∅ for
keeping track of completed signing sessions, Q← ∅ for keeping track of queries
to ODLog, and a counter sidctr ← 0 for signing queries OPreRound. It also
picks κ ←$ HS . Then, it picks random coins ρA and runs A((G, p, g), t, n; ρA),
answering oracle queries as follows.

– Key generation queries OKeyGen(i): If i ∈ Started , then B returns ⊥. Other-
wise, B lets Started ← Started ∪ {i}.
If i = κ, then B lets (pkκ, {γj , δj}j∈HS)← Sim(X∗) as defined in Figure 7 to
embed the challenge X∗ as Sκ’s additive share of the public key.
If i ̸= κ, B follows SimplPedPoPi honestly except that it never receives any
secret shares from Sκ during step 2 (Figure 3) and moves on to the equality
check unconditionally. It consequently outputs no secret key at step 3 but
just a public key which B stores in variable pk i.
In any case (i = κ or i ̸= κ), B lets Xi ←

∏n
j Aj,0, where Aj,0 are either as in

Sim or as in SimplPedPoPi. If i = min(HS), B collects all PoPs {(R̃j , s̃j)}j∈CS

that A sends while OKeyGen(i) is running.
– Hash queries Hreg(Xi, R̃i, i): If Treg(Xi, R̃i, i) = ⊥, then B increments ctrhreg,

assigns Treg(Xi, R̃i, i)← hctrhreg
. It returns Treg(Xi, R̃i, i) as query answer.

– Hash queries Hnon(X,S, ρ,m): If Tnon(X,S, ρ,m) = ⊥, then B increments
ctrh, assigns Tnon(X,S, ρ,m) ← hctrh . If Tsig(X,R,m) = ⊥, then B makes
an internal query to Hsig(X,R,m). Finally, it returns Tnon(X,S, ρ,m).

– Hash queries Hsig(X,R,m): If the value Tsig(X,R,m) = ⊥, then B increments
ctrh, assigns Tsig(X,R,m)← hctrh . It returns Tsig(X,R,m).

– Preprocessing queries OPreRound(i, j): B increments sidctr , adds sidctr to
S, and returns Di ← U2sidctr−1, Ei ← U2sidctr .

– Signing queries OSignRound(i, j, S, ρ,m): If pk i = ⊥ or j ̸∈ S, then B returns
⊥. Otherwise, B removes j from S, lets Sigs [m]← Sigs [m]∪{i} and proceeds
as follows. Let Di ← Ui,2j−1, Ei ← Ui,2j and (D,E) ← ρ. B lets b ←
Tnon(X,S, (D,E),m) and Tsig(X,R,m) (if any of these values is ⊥, it first
queries Hnon or Hsig internally for the corresponding input). It then makes
a query to the DL oracle to obtain σi ← ODLog

(
DiE

b
i

(
(X∗)γigδi

)cΛi
)
. It

lets Q← Q ∪ {((i, j, σi, b, c, Λi)} and returns σi.

It can be verified that, unless Ev1 is set to true, algorithm B provides a perfect
simulation of game TS-UFA

TS,n,t,CS . Note that B programs random oracles Hnon

and Hsig with a single stream of hash values h1, . . . , hq. This is to ensure that,
when B will be forked on a Hsig value, not only all Hsig values, but also all Hnon

values will be refreshed after the forking point in the second execution of B.
Since SimplPedPoP runs an equality check protocol Eq (ensuring integrity) on

inputs the common parameters {(R̃j , s̃j), (Aj,0, . . . , Aj,t−1)}nj=1, we know that
before any query OSignRound(i, . . .) which is not rejected due to pk i ≠ ⊥, all
PoPs {(R̃j , s̃j)}j∈CS sent by A have been received by all honest signers, i.e., in
particular by Smin(HS). (Also, all honest signers have received identical PoPs,
but we do not need this fact.) Moreover, the equality check protocol ensures

19

Algorithm Sim(X∗)

1 : Xκ ← X∗

2 : // There is an implicit polynomial fκ with coefficients ai,k such that. . .

3 : for j ∈ CS do

4 : // . . . fκ(j) = x̃κ,j , and . . .

5 : x̃κ,j ←$ Zp

6 : for k ∈ {1, . . . , t− 1} do
7 : // . . . fκ(0) = logg X

∗.

8 : Aκ,k ← (X∗)Λ̄k,0
∏

j∈CS gx̃κ,j Λ̄k,j // aκ,k = logg Aκ,k.

9 : // Here, Λ̄k,j are coefficients s.t. aκ,k =

t∑
j=0

Λ̄k,j x̃κ,j and are computed as entries

10 : // of a matrix Λ̄ = L
−1, where L is the (t − 1) × (t − 1) matrix with Li,k = i

k.

11 : s̃κ, c̃κ ←$ Zp, R̃κ ← gs̃κ(X∗)c̃κ

12 : if Treg(X
∗, R̃κ, κ) ̸= ⊥ then

13 : Ev1 = true

14 : Treg(X
∗, R̃κ, κ)← c̃κ

15 : for j ∈ {1, . . . , n} \ {κ} do
16 : send (R̃κ, s̃κ), (Aκ,0, . . . , Aκ,t−1) to Sj // common parameters

17 : for j ∈ CS do

18 : send x̃κ,j to Sj // secret shares

19 : receive ((R̃j , s̃j), (Aj,0, . . . , Aj,t−1)) from Sj , j ∈ {1, . . . , n} \ {κ}
20 : receive (x̃j,κ) from Sj , j ∈ {1, . . . , n} \ {κ}
21 : for j ∈ HS do

22 : // fκ(j) = x̃κ,j is the discrete logarithm of (X
∗
)
γj g

δj .

23 : γj ← Lagrange(CS ∪ {j}, j) ;

24 : δj ← −γj
∑
k∈CS

x̃κ,kLagrange(CS ∪ {j}, k)

25 : ηκ ← {(R̃j , s̃j), (Aj,0, . . . , Aj,t−1)}nj=1

26 : b← Eq(κ, ηκ) // interactively with all other signers Sj , j ∈ {1, . . . , n} \ {κ}

27 : if b = false then return ⊥
28 : pkκ ←

∏n
j=1 Aj,0

29 : return (pkκ, {γj , δj}j∈HS)

Fig. 7. Algorithm Sim used for simulating SimplPedPoP(κ) in B.

20

that whenever two honest parties i, j ∈ HS simulated by B output public keys
pk i and pk j in the key generation, we know that pk i = pk j . Thus, we can
just write pk = X from now on, and by construction of SimplPedPoP, we know
X =

∏n
i=1 Xi.

If A returns ⊥, then B outputs ⊥. Otherwise, B checks the validity of the PoPs
as follows. If Treg(Xi, R̃i, i) = ⊥, it makes an internal query to Hreg(Xi, R̃i) which
ensures that Treg(Xi, R̃i, i) is defined for each i ∈ CS , lets c̃i ← Treg(Xi, R̃i, i). If
for some i ∈ CS , gs̃i ̸= R̃iX

c̃i
i , B outputs ⊥.

Otherwise, denote by (i,m, (R, s)) the output of A, (i.e., (R, s) is a purported
forgery for the message m). Then, B checks the validity of the forgery as follows.
If Tsig(X,R,m) = ⊥, it makes an internal query to Hsig(X,R,m), and lets
c ← Tsig(X,R,m). If gs ≠ RXc, i.e., the forgery is not a valid signature, or if
|Sigs [m]| > 0, i.e., the forgery is invalid because the adversary made OSignRound
queries for m, B outputs ⊥.

Otherwise, it takes the following additional steps. Algorithm B lets F be the
set such that for each index f ∈ F , array entry Treg(Xι−1(f),0, R̃ι−1(f), ι(f)) was
assigned input hf for some bijective re-indexing ι : F → CS . (In more detail,
since the signer index i is the last argument to Hreg, we know that every two
distinct signers Si and Si′ for i, i′ ∈ CS with i ̸= i′ have Treg values hf and hf ′

with f ̸= f ′, i.e., there is an injective function ι−1 : CS → {1, . . . , q}, and B lets
F ← ι−1(CS), so that ι : F → CS is bijective.) Denote by fsig the index such that
Tsig(X,R,m) = hfsig . Algorithm B outputs (fsig, (s, (F, {ϕf}f∈F , {xi}i∈HS , Q))).

It remains to upper bound Pr[Ev1]. The group element R̃κ related to Ev1
event is assigned to gs̃κ(X∗)c, which is uniformly random in G as s̃κ is uniformly
random over Zp and independent of (X∗)c. In addition, there are always at most
q queries to Hreg, and hence, Pr[Ev1] occurs with probability at most q/2λ−1.

We show that B receives enough values for programming random oracles by
bounding ctrhreg and ctrh. Hreg is called at most qh times by A and at most
|CS | < t times when verifying the proofs of possession, hence ctrhreg ≤ qh+ t ≤ q
at the end of the execution. Hnon is called at most qh times by the adversary and
at most once per OSignRound query, hence at most qh + qs times in total. Finally,
Hsig is called at most qh times by the adversary, at most once per Hnon query, at
most once per OSignRound query, and at most once when verifying the forgery,
hence at most 2qh + qs + 1 times in total. Hence, ctrh ≤ 3qh + 2qs + 1 ≤ q at the
end of execution, where we used t ≥ 1.

The accepting probability of B for randomly chosen inputs is

accB = AdvTS-UFA,Olaf,n,t,CS − Pr[Ev1] ≥ ϵ− q

2λ−1
.

Construction of Algorithm C. Algorithm C takes as input

inpC = (X∗, {Ui,j}i∈HS ,j∈{1,...2qs}),

where X∗ ←$ G and Ui,j ←$ G for all i ∈ HS , j ∈ {1, . . . 2qs}. It also takes as
input a stream (hreg,1, . . . , hreg,q)←$ Zq

p.

21

Analogously to B, the inputs X∗ and Ui,j represent |HS | · qs + 1 discrete
logarithm challenges that will be obtained via |HS | ·qs+1 oracle calls OCH by the
caller of C, and C has access to a discrete logarithm oracle ODLog provided by the
caller. (When we apply a forking lemma to C, we can think of this deterministic
oracle as part of C because the lemma does not require C to be PPT.)

Algorithm C is defined in Figure 8, with H = Zp and Fork as defined in
Lemma 1. All ODLog oracle queries made by ForkBH are relayed by C to its own
ODLog oracle. In the following, we call the first execution of B started by ForkBH

Algorithm C(inpC, (hreg,1, . . . , hreg,q))

1 : (X∗, {Ui,j}i∈HS,j∈{1,...2qs})← inpC

2 : inpB ← ((G, p, g), X∗, {Ui,j}i∈HS,j∈{1,...2qs}, (hreg,1, . . . , hreg,q))

3 : ω ← ForkBH(inpB)

4 : if ω = ⊥ then return ⊥
5 : (fsig, out , out

′)← ω

6 : (hfsig , (s, (F, {ϕf}f∈F), {xi}i∈HS\{κ}, Q))← out

7 : (h′
fsig , (s

′, (F ′, {ϕ′
f}f∈F ′), {x′

i}i∈HS\{κ′}, Q
′))← out ′

8 : x← (s− s′)/(hfsig − h′
fsig)

9 : // Relay only (F, {ϕf}f∈F , {xi}i∈HS\{κ}), ignore (F
′
, {ϕ′

f}f∈F ′ , {x′
i}i∈HS\{κ})

10 : θ ← ({xi}i∈HS\{κ}, Q,Q′, x,)

11 : return (F, {ϕf}f∈F , θ)

Fig. 8. Algorithm C.

a primary execution of B (i.e., the one started in line 2 of algorithm ForkBH
leading to assignment of variable out in line 10), and we call the (one) other
execution of B (leading to the assignment of variable out ′ in line 10) a secondary
execution of B. By construction of B, the two outputs returned by ForkB are
such that gs = RXhfsig and gs

′
= R′X

′h′
fsig , where the non-primed values are

from the primary execution of B and the primed values are those from the
second execution of B. Since the two executions of B run by ForkBH are identical
before the two assignments Tsig(X,R,m) ← hfsig and T ′

sig(X
′, R′,m′) ← h′

fsig
,

the keys of the two assignments must be the same. Hence, X = X ′ and R = R′.
By construction of Fork, we know that hfsig ̸= h′

fsig
. Therefore, C can compute

x = (s− s′)/(hfsig − h′
fsig

) as the discrete logarithm of X =
∏n

i=1 Xi.

22

By Lemma 1, C’s accepting probability accC is the probability frkB that ForkB

does not output ⊥, i.e.,

accC = frkB ≥ accB ·
(
accB
q
− 1

|H|

)
≥

(
ϵ− q

2λ−1

)
·
(
ϵ

q
− 2

2λ−1

)
≥ ϵ2

q
− 3

2λ−1
.

Construction of Algorithm D. We first construct a helper algorithm D.
Algorithm D is a syntactically valid adversary against game AOMDLDG (but is
not yet our final reduction to AOMDL). It is defined in Figure 9, where H = Zp

and MFork is as defined in Lemma 2. All ODLog oracle queries made by MForkCH
are relayed by D to its own ODLog oracle, caching pairs of group elements and
responses to avoid making multiple queries for the same group element.

Algorithm D

1 : X∗ ← OCH

2 : for i ∈ HS do

3 : for j ∈ {1, . . . , 2qs} do
4 : Ui,2j−1 ← OCH

5 : inpC ← ((G, p, g), X∗, {Ui,j}i∈HS,j∈{1,...2qs})

6 : ω ← MForkCH(inpC)

7 : if ω = ⊥ then return ⊥
8 : (F,mout ,mout ′, θ)← ω

9 : ({xi}i∈HS\{κ}, x,Q,Q′)← θ

10 : {(hreg,f , sf)}f∈F ← mout

11 : {(h′
reg,f , s

′
f)}f∈F ← mout ′

12 : for f ∈ F do

13 : xf ← (sf − s′f)/(hreg,f − h′
reg,f)

14 : xκ ← x−
(∑

f∈F xf

)
−

(∑
i∈HS\{κ} xi

)
15 : x∗ ← xκ

16 : Compute {ui,j}i∈HS,j∈{1,...2qs} from Q and Q′ // see text

17 : return (x∗, u1,1, . . . , u|HS|,2qs) // AOMDL solution

Fig. 9. Algorithm D.

In the following, we call the first execution of C started by MForkCH (i.e., the
one started in line 2 of algorithm MForkCH leading to the assignment of variable

23

mout in line 5) the primary execution of C, and we call the other executions of C
(leading to an addition to variable mout ′ in line 5 in case of success) secondary
executions of C.

Consider the outputs mout and mout ′ returned from MForkCH to D. Output
mout is from the primary execution of B within the primary execution of C; let
us call this execution the non-primed execution of B. Similarly, mout ′ is from the
primary execution of B within the respective successful secondary execution of C;
let us call this execution the primed execution of B. With this convention, we
have by construction that mout and mout ′ returned from MForkC are such that

gs̃f = R̃fX
hreg,f

k and gs̃
′
f = R̃′

fX
h′
reg,f

k ,

where the non-primed variables are from the non-primed execution, and the
primed values are from the primed execution. (Note that algorithm C returns
only (F, {ϕf}f∈F , {xi}i∈HS\{κ}) from the primary execution of B to its caller
MForkCH .)

By construction of B and C, the non-primed execution and the respective suc-
cessful non-primed execution of B leading to the addition of (hreg,f , s̃

′
f) to mout ′

are identical before the corresponding array assignments Treg(Xι(f), R̃ι(f), i)←
hreg,f and T ′

reg(X
′
ι(f), R̃

′
ι(f), i)← h′

reg,f for f ∈ F and some bijective re-indexing
ι : F → CS , and thus the array keys of the two assignments must be the same.
Hence, Xi = X ′

i and R̃i = R̃′
i for every i ∈ CS . By construction of MForkCH ,

we know that hreg,f ̸= h′
reg,f for every f ∈ F . Therefore, D∗ can compute

xf ← (sf − s′f)/(hf − h′
f) for each f ∈ F , and values xf are (up to re-indexing)

the discrete logarithms of Xi for i ∈ CS .

Let X be the public key, i.e., X =
∏n

k=1 Xk, and let x = logg X be its discrete
logarithm. Then,

∑
f∈F xf is the sum of all contributions of all parties i ∈ CS

to x. By construction,
∑

i∈HS\{κ} xi is the sum of all contributions of all parties
i ∈ HS \ {κ} to x. Thus, xκ as computed by D is the contribution of party κ,
which is by construction the discrete logarithm of challenge X∗.

We now explain how algorithm D computes values {ui,j}i∈HS ,j∈{1,...2qs}.
Algorithm D initializes Ev2 ← false to track a bad event. From the two of
executions of B run by ForkBH within the primary execution of C, algorithm
D has sets Q and Q′, which kept track of queries to ODLog in the respective
execution. Algorithm D iterates over i ∈ HS and over j ∈ {1, . . . , qs}, and
looks for tuples of the form (i, j, σi, b, c, Λi) ∈ Q for some values σi, b, c, Λi,
and (i, j, σ′

i, b
′, c′, Λ′

i) ∈ Q′ for some values σ′
i, b

′, c′, Λ′
i. These correspond to

OSignRound(i, j, . . .) queries handled in the two executions, such that the pair of
group elements (Ui,2j−1, Ui,2j) was assigned to variables (Di, Ei) and (Di′ , Ei′),
respectively, by the corresponding OPreRound(i, . . .) query. In other words, D
will find at most one tuple (i, j, σi, b, c, Λi) ∈ Q and at most one tuple (i, j, σ′

i, b
′,

c′, Λ′
i) ∈ Q′ such that the two executions of B in the primary execution of C made

24

ODLog queries

σi ← ODLog
(
Ui,2j−1U

b
i,2j

(
(X∗)γigδi

)cΛi
)

and σ′
i ← ODLog

(
Ui,2j−1U

b′

i,2j

(
(X∗)γigδi

)c′Λ′
i

)
.

Assume now that both tuples are defined. Consider the forking index fsig,
and let f and f ′ be the indices such that b ← Tnon(X,S, (D,E),m) and b′ ←
T ′
non(X

′, S′, (D′, E′),m′) were assigned values hf and h′
f ′ , respectively. If f >

fsig ∧ b = b′, then D sets Ev2 ← true and returns ⊥.

– Case f = fsig: By construction, hfsig was stored in Tsig (and not in Tnon).
Thus, f ̸= fsig, which contradicts the case assumption.

– Case f = fsig − 1 and Tsig(X,R,m) = ⊥ when Tnon(X,S, (D,E),m) was as-
signed: Then in both executions, it was precisely the internal query from Hnon

to Hsig that caused the assignments Tsig(X,R,m)← hfsig and T ′
sig(X,R,m)←

h′
fsig

, respectively. This implies that A has output a forgery on message m

for which i ∈ Sigs[m], and hence that B has returned ⊥, a contradiction.
– Case f = fsig − 1 and Tsig(X,R,m) ̸= ⊥ when Hnon(X,S, (D,E),m) was

assigned: Then the assignment Tsig(X,R,m) ← hk happened before the
fork, i.e., k < fsig. Since the executions are identical at this point, we have
c = Tsig(X,R,m) = hk = T ′

sig(X,R,m) = c′.
Moreover, the assignment Tnon(X,S, (D,E),m) = hf happened before the
fork, i.e., f < fsig. Since the executions are identical at this point, we have for
the corresponding assignment T ′

non(X
′, S′, (D′, E′),m′) that the array keys

are identical, which in particular implies S = S′. Thus, Λi = Lagrange(S, i) =
Lagrange(S′, i) = Λ′

i.
– Case f < fsig − 1: Then the assignment Tsig(X,R,m)← hk happened at the

latest during the internal query from Hnon to Hsig, i.e., for some k ≤ f + 1 <
fsig. Since k < fsig, we have c = Tsig(X,R,m) = hk = T ′

sig(X,R,m) = c′ as
in the previous case.
Moreover, Λi = Lagrange(S, i) = Lagrange(S′, i) = Λ′

i as in the previous case.
– Case f > fsig: Then also f ′ > fsig. This implies b = hf and b′ = h′

f ′ . Unless
Ev2 , this implies b ̸= b. (f ′ = fsig is not possible because hfsig was stored in
Tsig and not in Tnon. f ′ < fsig would imply f = f ′ because the executions are
identical when T ′

non(X
′, S′, (D′, E′),m′)← hf ′ is assigned, and thus f < fsig,

which contradicts the case assumption.)

In any case, we have

b = b′ =⇒ (c = c′ ∧ Λi = Λ′
i). (∗)

If both tuples (i, j, σi, b, c, Λi) and (i, j, σ′
i, b

′, c′, Λ′
i) are defined and identical,

then also the corresponding ODLog queries made by the two executions of B are
identical, and due to the caching of result, D has, in fact, made only one query
to its ODLog oracle. In this case, D emulates the second query by choosing new
values (b′, c′, Λ′

i) and querying its ODLog oracle with

σ′
i ← ODLog

(
Ui′,2j−1U

b′

i′,2j

(
(X∗)γigδi

)c′Λ′
i

)
.

25

Similarly, if at most one of the tuples (i, j, σi, b, c, Λi) and (i, j, σ′
i, b

′, c′, Λ′
i)

is defined, then D emulates the missing ODLog queries by choosing any values
b, c, Λi, or b′, c′, Λ′

i, such that b ̸= b′, and making the missing ODLog queries.
If both tuples (i, j, σi, b, c, Λi) and (i, j, σ′

i, b
′, c′, Λ′

i) are defined and not iden-
tical, then we know b ̸= b′, because b = b′ would entail that both tuples are
identical by implication (∗).

In any case, algorithm D has now made two ODLog queries, which correspond
to two tuples (i, j, σi, b, c, Λi) and (i, j, σ′

i, b
′, c′, Λ′

i) such that b ̸= b′. Algorithm D
constructs a system of two linear equations of the following form with unknowns
ui,2j−1 and ui,2j , the discrete logarithms of Ui,2j−1 and Ui,2j .

ui,2j−1 + b · ui,2j = σi − (γix
∗ − δi)cΛi

ui,2j−1 + b′ · ui,2j = σ′
i − (γix

∗ − δi)c
′Λ′

i

Since b ̸= b′, the system has a unique solution (ui,2j−1, ui,2j), which D computes.
Clearly, if D does not output ⊥, the total number of ODLog queries made

during the primary execution of C plus those that D made additionally when
computing {ui,j}i∈HS ,j∈{1,...2qs} is exactly |HS | · 2qs. (Note that D makes also
ODLog queries in other executions of C and thus exceeds the number of |HS | · 2qs
queries that would be allowed to solve AOMDL. We will construct D∗ below to
fix this.)

To bound the accepting probability of D, observe that D does so if MForkCH
succeeds and Ev2 is not set to true. Ev2 is set to true if, in the linear system
corresponding to some i ∈ HS and j ∈ {1, . . . , qs}, there are two identical scalars
b = b′ in the two executions of B belonging to the primary execution of C. In
these two executions of B, at most 2qs of the |HS | · 2qs scalars are actually used
when handling signing sessions (namely 2 per OSignRound queries); for all other
scalars B takes care of ensuring b = b′ when emulating missing ODLog. Since the
2qs scalars are drawn from Zp with p ≤ 2λ−1 and qs ≤ q, we have

Pr[Ev2] ≤
4q2

2λ−1
=

q2

2λ−3
.

By assumption, λ > log2((8q
3t + 6q)/ϵ2), which, as can be verified, implies

|H| > |F | · 8q/accC. Then by Lemma 2, MForkCH returns a non-⊥ output with
probability frkC

frkC ≥
accC
8
≥ ϵ2

8q
− 3

2λ−4
.

The acceptance probability of D is

accD ≥ frkC − Pr[Ev2] =
ϵ2

8q
− 3

2λ−4
− q2

2λ−3
=

ϵ2

8q
− 6 + q2

2λ−3
.

Construction of Algorithm D∗. We now construct an algorithm D∗, which
is an adversary against game AOMDLD

∗

G . Algorithm D∗ is defined like algorithm

26

D with the following modification: Algorithm D∗ aborts any executions of B in
secondary executions of C whenever it has collected all PoPs {(R̃j , s̃j)}j∈CS that
A sends during a OKeyGen query. Since SimplPedPoP ensures that every honest
signer Si responds to SignRound(i, . . .) queries with a non-⊥ return value only
after it has successfully run the equality check protocol with every other signer,
any abort occurs before the respective execution of B performs its first ODLog
query, which happens only while handling OSignRound(i, . . .) queries with non-⊥
return values.

We show that this can be done without changing the acceptance probability
of D as compared to D∗. Consider the values used by D: Algorithm D uses values
F,mout = {(hreg,f , sf)}f∈F and mout ′ = {(h′

reg,f , s
′
f)}f∈F , but these values are

already determined when B is aborted, so algorithm D can reconstruct them
from the internal state of B at abortion time. Algorithm D also uses value θ, but
this is from the primary execution of C which is unchanged in D∗ as compared
to D. In particular, to compute values {ui,j}i∈HS ,j∈{1,...2qs}, algorithm D uses
sets Q and Q′, which are part of θ. In conclusion, aborting B in the secondary
executions of C does not affect any values used by D, and thus the outputs of D∗

and D are the same and
accD∗ = accD.

Let us estimate the running time τD∗ of D∗. To start with, D∗ runs no slower
than its non-aborting version D. With kmax from algorithm MFork, the running
time of D is roughly |F |2 · kmax times the running time of algorithm C, which in
turn is roughly twice the running time of algorithm B. The running time of B is
roughly the running time τTS-UF of game TS-UFOlaf,n,t,CS (ignoring A within the
game) plus the running time τ of A within the game. In summary, the running
time τD∗ of D∗ is not more than roughly

τD∗ ≤ τD

≈ |F |2 · kmax · τC
≈ 2|F |2 · kmax · τB
≈ 2|F |2 · kmax · (τTS-UF + τA)

=
|F |2 · 8q
accC

· ln |F | · 8
accC

· (τTS-UF + τA)

≤ 8qt2

accC
· ln 8t

accC
· (τTS-UF + τA)

=
8q2t2

ϵ2 − 3q · 21−λ
· ln 8q2t

ϵ2 − 3q · 21−λ
· (τTS-UF + τA).

Let us count the number of OCH and ODLog queries made by algorithm D∗:
Algorithm D∗ (like D) makes |HS | · 2qs + 1 OCH queries in total. Due to the
way D∗ aborts executions of B early, only the primary execution of C reaches
a stage where B makes ODLog queries. Since this one execution of C runs two
executions of B (via ForkBH), and each B execution makes exactly |HS | · qs ODLog
queries (including the queries emulated later by D∗), algorithm D∗ makes exactly

27

|HS | · 2qs ODLog queries. Thus, when D∗ returns a non-⊥ output, it solves the
AOMDL problem with advantage

AdvAOMDL
D∗,G = accD∗ = accD ≥

ϵ2

8q
− 6 + q2

2λ−3
. ⊓⊔

Acknowledgments

We thank the anonymous reviewers for their very helpful comments and sugges-
tions. This work was partially supported by Deutsche Forschungsgemeinschaft as
part of the Research and Training Group 2475 “Cybercrime and Forensic Comput-
ing” (grant number 393541319/GRK2475/1-2019), and through grant 442893093,
and by the state of Bavaria at the Nuremberg Campus of Technology (NCT). NCT
is a research cooperation between the Friedrich-Alexander-Universität Erlangen-
Nürnberg (FAU) and the Technische Hochschule Nürnberg Georg Simon Ohm
(THN).

References

ANO+22. Damiano Abram, Ariel Nof, Claudio Orlandi, Peter Scholl, and Omer
Shlomovits. Low-bandwidth threshold ECDSA via pseudorandom cor-
relation generators. In 2022 IEEE Symposium on Security and Pri-
vacy, pages 2554–2572. IEEE Computer Society Press, May 2022. doi:
10.1109/SP46214.2022.9833559.

BCJ08. Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures
secure under the discrete logarithm assumption and a generalized forking
lemma. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS
2008, pages 449–458. ACM Press, October 2008. doi:10.1145/1455770.
1455827.

BCK+22. Mihir Bellare, Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano
Tessaro, and Chenzhi Zhu. Better than advertised security for non-interactive
threshold signatures. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 517–550. Springer,
Heidelberg, August 2022. doi:10.1007/978-3-031-15985-5_18.

BN06. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 390–399.
ACM Press, October / November 2006. doi:10.1145/1180405.1180453.

BNPS03. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Se-
manko. The one-more-RSA-inversion problems and the security of Chaum’s
blind signature scheme. Journal of Cryptology, 16(3):185–215, June 2003.
doi:10.1007/s00145-002-0120-1.

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind
signatures based on the gap-Diffie-Hellman-group signature scheme. In Yvo
Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 31–46. Springer,
Heidelberg, January 2003. doi:10.1007/3-540-36288-6_3.

28

https://doi.org/10.1109/SP46214.2022.9833559
https://doi.org/10.1109/SP46214.2022.9833559
https://doi.org/10.1145/1455770.1455827
https://doi.org/10.1145/1455770.1455827
https://doi.org/10.1007/978-3-031-15985-5_18
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/3-540-36288-6_3

BP02. Mihir Bellare and Adriana Palacio. GQ and Schnorr identification schemes:
Proofs of security against impersonation under active and concurrent attacks.
In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 162–177.
Springer, Heidelberg, August 2002. doi:10.1007/3-540-45708-9_11.

BP23. Luís T. A. N. Brandão and Rene Peralta. NIST First Call for Multi-Party
Threshold Schemes, 2023. URL: https://csrc.nist.gov/publications/
detail/nistir/8214c/draft.

Bro15. Daniel R. L. Brown. A flaw in a theorem about Schnorr signatures. Cryp-
tology ePrint Archive, Report 2015/509, 2015. https://eprint.iacr.org/
2015/509.

BTZ22. Mihir Bellare, Stefano Tessaro, and Chenzhi Zhu. Stronger security for
non-interactive threshold signatures: BLS and FROST. Cryptology ePrint
Archive, Report 2022/833, 2022. https://eprint.iacr.org/2022/833.

CCL+20. Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta,
and Ida Tucker. Bandwidth-efficient threshold EC-DSA. In Aggelos Kiayias,
Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020,
Part II, volume 12111 of LNCS, pages 266–296. Springer, Heidelberg, May
2020. doi:10.1007/978-3-030-45388-6_10.

CGG+20. Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and
Udi Peled. UC non-interactive, proactive, threshold ECDSA with identifiable
aborts. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, ACM CCS 2020, pages 1769–1787. ACM Press, November 2020.
doi:10.1145/3372297.3423367.

CKGW23. Deirdre Connolly, Chelsea Komlo, Ian Goldberg, and Christopher A. Wood.
Two-Round Threshold Schnorr Signatures with FROST. Internet-Draft
draft-irtf-cfrg-frost, Internet Engineering Task Force, 2023. Work in Progress.
URL: https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/.

CKM21. Elizabeth Crites, Chelsea Komlo, and Mary Maller. How to prove Schnorr
assuming Schnorr: Security of multi- and threshold signatures. Cryptology
ePrint Archive, Report 2021/1375, 2021. https://eprint.iacr.org/2021/
1375.

DDFY94. Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to
share a function securely. In 26th ACM STOC, pages 522–533. ACM Press,
May 1994. doi:10.1145/195058.195405.

Des88. Yvo Desmedt. Society and group oriented cryptography: A new concept. In
Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages 120–127.
Springer, Heidelberg, August 1988. doi:10.1007/3-540-48184-2_8.

DF90. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Bras-
sard, editor, CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer,
Heidelberg, August 1990. doi:10.1007/0-387-34805-0_28.

DJN+20. Ivan Damgård, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Jakob Illeborg
Pagter, and Michael Bæksvang Østergaard. Fast threshold ECDSA with
honest majority. In Clemente Galdi and Vladimir Kolesnikov, editors, SCN
20, volume 12238 of LNCS, pages 382–400. Springer, Heidelberg, September
2020. doi:10.1007/978-3-030-57990-6_19.

DKLs19. Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Threshold
ECDSA from ECDSA assumptions: The multiparty case. In 2019 IEEE
Symposium on Security and Privacy, pages 1051–1066. IEEE Computer
Society Press, May 2019. doi:10.1109/SP.2019.00024.

29

https://doi.org/10.1007/3-540-45708-9_11
https://csrc.nist.gov/publications/detail/nistir/8214c/draft
https://csrc.nist.gov/publications/detail/nistir/8214c/draft
https://eprint.iacr.org/2015/509
https://eprint.iacr.org/2015/509
https://eprint.iacr.org/2022/833
https://doi.org/10.1007/978-3-030-45388-6_10
https://doi.org/10.1145/3372297.3423367
https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/
https://eprint.iacr.org/2021/1375
https://eprint.iacr.org/2021/1375
https://doi.org/10.1145/195058.195405
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/978-3-030-57990-6_19
https://doi.org/10.1109/SP.2019.00024

DOK+20. Anders P. K. Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and
Haya Shulman. Securing DNSSEC keys via threshold ECDSA from generic
MPC. In Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider,
editors, ESORICS 2020, Part II, volume 12309 of LNCS, pages 654–673.
Springer, Heidelberg, September 2020. doi:10.1007/978-3-030-59013-0_
32.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96881-0_2.

FPS20. Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind Schnorr
signatures and signed ElGamal encryption in the algebraic group model.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II,
volume 12106 of LNCS, pages 63–95. Springer, Heidelberg, May 2020.
doi:10.1007/978-3-030-45724-2_3.

GG18. Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA
with fast trustless setup. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 1179–1194. ACM Press,
October 2018. doi:10.1145/3243734.3243859.

GGN16. Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-
optimal DSA/ECDSA signatures and an application to bitcoin wallet secu-
rity. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider, editors,
ACNS 16, volume 9696 of LNCS, pages 156–174. Springer, Heidelberg, June
2016. doi:10.1007/978-3-319-39555-5_9.

GJKR96. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust
threshold DSS signatures. In Ueli M. Maurer, editor, EUROCRYPT’96,
volume 1070 of LNCS, pages 354–371. Springer, Heidelberg, May 1996.
doi:10.1007/3-540-68339-9_31.

GJKR99. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. In Jacques
Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 295–310.
Springer, Heidelberg, May 1999. doi:10.1007/3-540-48910-X_21.

GJKR03. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
applications of Pedersen’s distributed key generation protocol. In Marc
Joye, editor, CT-RSA 2003, volume 2612 of LNCS, pages 373–390. Springer,
Heidelberg, April 2003. doi:10.1007/3-540-36563-X_26.

GJKR07. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. Journal of
Cryptology, 20(1):51–83, January 2007. doi:10.1007/s00145-006-0347-3.

GKSŚ20. Adam Gągol, Jędrzej Kula, Damian Straszak, and Michał Świętek. Threshold
ECDSA for decentralized asset custody. Cryptology ePrint Archive, Report
2020/498, 2020. https://eprint.iacr.org/2020/498.

GRJK00. Rosario Gennaro, Tal Rabin, Stanislaw Jarecki, and Hugo Krawczyk. Robust
and efficient sharing of RSA functions. Journal of Cryptology, 13(2):273–300,
March 2000. doi:10.1007/s001459910011.

GS22. Jens Groth and Victor Shoup. Design and analysis of a distributed ECDSA
signing service. Cryptology ePrint Archive, Report 2022/506, 2022. https:
//eprint.iacr.org/2022/506.

HA20. Adrian Hamelink and Jean-Philippe Aumasson. Implementation of
FROST by Taurus SA, 2020. URL: https://github.com/taurusgroup/
frost-ed25519.

30

https://doi.org/10.1007/978-3-030-59013-0_32
https://doi.org/10.1007/978-3-030-59013-0_32
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1145/3243734.3243859
https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/3-540-68339-9_31
https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1007/3-540-36563-X_26
https://doi.org/10.1007/s00145-006-0347-3
https://eprint.iacr.org/2020/498
https://doi.org/10.1007/s001459910011
https://eprint.iacr.org/2022/506
https://eprint.iacr.org/2022/506
https://github.com/taurusgroup/frost-ed25519
https://github.com/taurusgroup/frost-ed25519

KG20. Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized Schnorr
threshold signatures. In Orr Dunkelman, Michael J. Jacobson Jr., and Colin
O’Flynn, editors, SAC 2020, volume 12804 of LNCS, pages 34–65. Springer,
Heidelberg, October 2020. doi:10.1007/978-3-030-81652-0_2.

KGS23. Chelsea Komlo, Ian Goldberg, and Douglas Stebila. A formal treatment
of distributed key generation, and new constructions. Cryptology ePrint
Archive, Report 2023/292, 2023. https://eprint.iacr.org/2023/292.

KZZ22. Jonathan Katz, Cong Zhang, and Hong-Sheng Zhou. An analysis of the
algebraic group model. In Advances in Cryptology - ASIACRYPT 2022 -
28th International Conference on the Theory and Application of Cryptology
and Information Security, Taipei, December 5-9, 2022, Proceedings, Lecture
Notes in Computer Science. Springer, 2022.

Lin22. Yehuda Lindell. Simple three-round multiparty Schnorr signing with full
simulatability. Cryptology ePrint Archive, Report 2022/374, 2022. https:
//eprint.iacr.org/2022/374.

LN18. Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical
distributed key generation and applications to cryptocurrency custody. In
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 1837–1854. ACM Press, October 2018.
doi:10.1145/3243734.3243788.

Lod21. Mike Lodder. Implementation of FROST by CoinBase, 2021. URL: https:
//github.com/coinbase/kryptology/tree/v1.8.0/pkg/ted25519/frost.

Mau05. Ueli M. Maurer. Abstract models of computation in cryptography (invited
paper). In Nigel P. Smart, editor, 10th IMA International Conference on
Cryptography and Coding, volume 3796 of LNCS, pages 1–12. Springer,
Heidelberg, December 2005.

Nar23. Matteo Nardelli. Implementation of FROST by Bank of Italy, 2023. URL:
https://github.com/bancaditalia/secp256k1-frost.

NRS21. Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-
round Schnorr multi-signatures. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 189–221, Virtual Event,
August 2021. Springer, Heidelberg. doi:10.1007/978-3-030-84242-0_8.

NSW09. Gregory Neven, Nigel P. Smart, and Bogdan Warinschi. Hash function
requirements for Schnorr signatures. J. Math. Cryptol., 3(1):69–87, 2009.
doi:10.1515/JMC.2009.004.

Ped91. Torben P. Pedersen. A threshold cryptosystem without a trusted party
(extended abstract) (rump session). In Donald W. Davies, editor, EURO-
CRYPT’91, volume 547 of LNCS, pages 522–526. Springer, Heidelberg, April
1991. doi:10.1007/3-540-46416-6_47.

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Joan Feigenbaum, editor, CRYPTO’91, vol-
ume 576 of LNCS, pages 129–140. Springer, Heidelberg, August 1992.
doi:10.1007/3-540-46766-1_9.

Pet21. Michaella Pettit. Efficient threshold-optimal ECDSA. In CANS 2021,
volume 13099 of Lecture Notes in Computer Science, pages 116–135. Springer,
2021.

Pos21. Jesse Posner. Implementation of FROST in libsecp256k1-zkp, 2021. URL:
https://github.com/BlockstreamResearch/secp256k1-zkp/pull/138.

PS00. David Pointcheval and Jacques Stern. Security arguments for digital sig-
natures and blind signatures. Journal of Cryptology, 13(3):361–396, June
2000. doi:10.1007/s001450010003.

31

https://doi.org/10.1007/978-3-030-81652-0_2
https://eprint.iacr.org/2023/292
https://eprint.iacr.org/2022/374
https://eprint.iacr.org/2022/374
https://doi.org/10.1145/3243734.3243788
https://github.com/coinbase/kryptology/tree/v1.8.0/pkg/ted25519/frost
https://github.com/coinbase/kryptology/tree/v1.8.0/pkg/ted25519/frost
https://github.com/bancaditalia/secp256k1-frost
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1515/JMC.2009.004
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46766-1_9
https://github.com/BlockstreamResearch/secp256k1-zkp/pull/138
https://doi.org/10.1007/s001450010003

RRJ+22. Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and
Dominique Schröder. ROAST: Robust asynchronous Schnorr threshold
signatures. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi,
editors, ACM CCS 2022, pages 2551–2564. ACM Press, November 2022.
doi:10.1145/3548606.3560583.

Sch90. Claus P. Schnorr. Method for subscriber identification and for the generation
and verification of electronic signatures in a data exchange system. European
Patent EP0384475B1, 1990.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–
266. Springer, Heidelberg, May 1997. doi:10.1007/3-540-69053-0_18.

Sho00. Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 207–220. Springer, Heidelberg,
May 2000. doi:10.1007/3-540-45539-6_15.

SS01. Douglas R. Stinson and Reto Strobl. Provably secure distributed Schnorr
signatures and a (t, n) threshold scheme for implicit certificates. In Vijay
Varadharajan and Yi Mu, editors, ACISP 01, volume 2119 of LNCS, pages
417–434. Springer, Heidelberg, July 2001. doi:10.1007/3-540-47719-5_33.

WNR20. Pieter Wuille, Jonas Nick, and Tim Ruffing. Schnorr signatures for secp256k1.
Bitcoin Improvement Proposal 340, 2020. https://github.com/bitcoin/
bips/blob/master/bip-0340.mediawiki.

YCX21. Tsz Hon Yuen, Handong Cui, and Xiang Xie. Compact zero-knowledge proofs
for threshold ECDSA with trustless setup. In Juan Garay, editor, PKC 2021,
Part I, volume 12710 of LNCS, pages 481–511. Springer, Heidelberg, May
2021. doi:10.1007/978-3-030-75245-3_18.

32

https://doi.org/10.1145/3548606.3560583
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-47719-5_33
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://doi.org/10.1007/978-3-030-75245-3_18

	Introduction
	Technical Overview
	Preliminaries
	SimplPedPoP: A Simplified Pedersen PKG with PoPs
	Olaf: A Practical Schnorr Threshold Signature Scheme
	Security Analysis of Olaf

