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Abstract

Randomness testing is one of the essential and easiest tools for evaluating crypto-
graphic primitives. The faster we can test, the greater volume of data that can be tested.
Thus a more detailed analysis is possible. This paper presents a range of observations
made for a well-known frequency test for overlapping vectors in binary sequence testing.
We have obtained precise chi-square statistic computed in O

(
dt2dt

)
instead of O

(
22dt

)
time, without precomputed tables.
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1 Introduction

Randomness testing is widely used in the evaluation of cryptographic primitives by reduction
to examine appropriately crafted binary sequences. It is obvious that the quality of the analysis
increases with the volume of tested data, but the time and cost increase as well.

In this paper we will take a closer look at well-known frequency test for overlapping vectors.
One of the first results comes from Good [1]. He proposed using two statistics computed
for t and t − 1 element vectors. Supose we have sequence of n d-bit nonoverlapping blocks:
B1, B2, ..., Bn, which we extend adding t− 1 of the initial elements at the end. Now we create
two sequences, the first – of t ≥ 2 element vectors:

(B1, B2, ..., Bt) , (B2, B3, ..., Bt+1) , (B3, B4, ..., Bt+2) , . . . ,
(Bn−t+1, Bn−t+2, ..., Bn) , (Bn−t+2, Bn−t+3, ..., Bn, B1) ,
(Bn−t+3, Bn−t+4, ..., Bn, B1, B2) , . . . , (Bn, B1, B2, ..., Bt−1) ,

and the second of t− 1 element vectors:

(B1, B2, ..., Bt−1) , (B2, B3, ..., Bt) , (B3, B4, ..., Bt+1) , . . . ,
(Bn−t+2, Bn−t+3, ..., Bn) , (Bn−t+3, Bn−t+4, ..., Bn, B1) ,
(Bn−t+4, Bn−t+5, ..., Bn, B1, B2) , . . . , (Bn, B1, B2, ..., Bt−2) .

Both sequences consist of n vectors.
Let vit for i = 0..2dt−1 be numbers of observed occurrences of all possible t elements vectors

(dt bit blocks), and vjt−1 for j = 0..2d(t−1)− 1 – numbers of observed occurrences of all possible
t− 1 elements vectors (d · (t− 1) bit blocks), where each dt bit block is identified by an integer
value, which binary representation this block constitutes.
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The test statistic is a simple difference of the two usual Pearson statistics:

ψ2
t =

2dt

n

2dt−1∑
i=0

v2it −
2d(t−1)

n

2d(t−1)−1∑
i=0

v2it−1
,

has chi-square distrubion with 2dt − 2d(t−1) degrees of freedom asymptotically.
This approach was adopted by authors of Statistical Test Suite [2] in Serial Test. Two

papers published in 2004: [3] and [4] gave means for evaluating exact test statistic. From
the first one, we can derive the formula for the covariance matrix of the vector of counts –
vit , but to get efficient implementations, one needs to store the weak inverse of the covariance
matrix. In the second paper, Alhakim proposed a workaround using the matrix’s eigenvectors
for eigenvalue 1. Alhakim’s method is intended for a more general case in which the vector’s
elements come from any range of natural numbers. This causes the construction of eigenvectors
to be unnecessarily complicated, and to obtain equivalent results to using a covariance matrix,
it requires repetition of procedure for all vector lengths from 1 up to desired t. That means
a lot of computations.

The observations below lead to the exact test statistic with the number of arithmetic cal-
culations similar to Good’s approach.

2 Construction of eigenvectors for all eigenvalues

In [3] we can find a formula for test statistic identical to the one received from a quadratic form
with the weak inverse of the covariance matrix:

Sd,t =
1

n

t∑
w=1

1

w

L(w,d,t)∑
i=1

(Ψw
i ◦ v)2,

where w are eigenvalues and Ψw
i are corresponding eigenvectors, and L (w, d, t) =

=
(
2d − 1

)min{2,t−w+1} ·
(
2d
)max{0,t−w−1}

is the number of eigenvectors for eigenvalue w [3].
Alhakim’s formula from [4] is a truncation to w = 1 only, of presented above.

Let Hm = H1 ⊗Hm−1, where H1 =

[
1 1
1 −1

]
and ⊗ denotes Kronecker product, denote

Walsh-Hadamard matrix of degree 2m. By Hm
i for i = 0..2m − 1 we will denote rows of the

matrix Hm.
For a given pair d and t, we will derive all eigenvectors from the matrix Hdt.
There are L (1, d, t) =

(
2d − 1

)t · 2d(t−2) eigenvectors for w = 1, they are:

Hdt
i+j·2d+2d(t−1) , i = 1..2d − 1, j = 0..

(
2d − 1

)
2d(t−2) − 1.

There are L (2, d, t) =
(
2d − 1

)t−1 · 2d(t−3) eigenvectors for w = 2 and they are:

1√
2

(
Hdt

i+j·2d+2d(t−2) +Hdt

(i+j·2d+2d(t−2))2d

)
,

i = 1..2d − 1, j = 0..
(
2d − 1

)
2d(t−3) − 1.

For any w < t its eigenvectors are given by:

1√
w

w∑
k=1

Hdt

(i+j·2d+2d(t−2))2d(k−1) ,

2



i = 1..2d − 1, j = 0..
(
2d − 1

)
2d(t−w−1) − 1,

and for w = t we have:
1√
t

t∑
k=1

Hdt
i2d(k−1) , i = 1..2d − 1.

Due to the linearity of the dot product, we can rewrite the formula for the test statistic:

Sd,t =
1

n

t−1∑
w=1

1

w2

2d−1∑
i=1

(2d−1)2d(t−w−1)−1∑
j=0

(
w−1∑
k=0

(
Hdt

(i+j·2d+2d(t−2))2dk ◦ v
))2

+

+
1

n

1

t2

2d−1∑
i=1

(
t−1∑
k=0

(
Hdt

i2dk ◦ v
))2

.

Because all dot products above constitute elements of the Walsh-Hadamard transform of vector
v, which we will denote as V , we finally get:

Sd,t =
1

n

t−1∑
w=1

1

w2

2d−1∑
i=1

(2d−1)2d(t−w−1)−1∑
j=0

(
w−1∑
k=0

V(i+j·2d+2d(t−2))2dk

)2

+
1

n

1

t2

2d−1∑
i=1

(
t−1∑
k=0

Vi2dk

)2

.

Vector V should be computed by means of the fast Walsh-Hadamard transform, which time
complexity is O

(
dt2dt

)
.

3 Structure of the count vector and its utilization

Since consecutive observed vectors (Bi, Bi+1, ..., Bi+t−1) overlap on t − 1 blocks and we have
extended examined sequence by as many its initial blocks, then for every possible d (t− 1) bit
block value we can write an equation:

2d−1∑
k=0

vk·2d(t−1)+i =
2d−1∑
k=0

vk+i·2d(t−1) , i = 0..2d(t−1) − 1.

The additional equation is obvious:
2dt−1∑
k=0

vk = n.

This system of equations has order 2d(t−1) thus allows to determine 2d(t−1) of the elements of
the vector v as a linear combination of n and the rest of them, that is 2dt − 2d(t−1), which is
consistent with the stated number of degrees of freedom of the test statistic Sd,t.

Walsh-Hadamard transform of modified this way vector v has an interesting property –
elements V(i+j·2d+2d(t−2))2dk for a given trio (w, i, j) and every k = 0..w− 1 are equal. The same

applies to Vi2dk of course. This leads to further simplification of the test statistic:

Sd,t =
1

n

t−1∑
w=1

2d−1∑
i=1

(2d−1)2d(t−w−1)−1∑
j=0

(
V(i+j·2d+2d(t−2))2d(w−1)

)2
+

1

n

2d−1∑
i=1

(Vi2d(t−1))
2 .

In a such setup, initial 2d(t−1) elements of V are obsolete.
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4 Conclusion

As shown by us, the method of determining eigenvectors for all eigenvalues of the covariance
matrix seems important for two reasons. First, it allows for avoiding repetitions of the sequence
evaluation for consecutive vector lengths and a significant acceleration of calculations. An
additional bonus, described in our earlier work [5] is the possibility of determining the test
statistic values for all vector dimensions, from 1 to the assumed t, after one run of the sequence.

Finally, we would like to draw attention to the groundbreaking nature of the theoretical
work of Alhakim, Kawczak, and Molchanov, while ours is the result of observations made while
implementing those results.

Further work should lead to strict algebraic proof of the correctness of the eigenvectors’
construction.
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