
On cubic-like bent Boolean functions

Claude Carlet and Irene Villa
Universities of Bergen, Norway, and Paris 8 (LAGA), France;

Universities of Trento and Genova, Italy, and Bergen, Norway.

E-mail: claude.carlet@gmail.com; irene1villa@gmail.com

Abstract

Cubic bent Boolean functions (i.e. bent functions of algebraic degree
at most 3) have the property that, for every nonzero element a of Fn

2 , the
derivative Daf(x) = f(x) + f(x + a) of f admits at least one derivative
DbDaf(x) = f(x) + f(x + a) + f(x + b) + f(x + a + b) that is equal to
constant function 1. We study the general class of those Boolean functions
having this property, which we call cubic-like bent. We study the prop-
erties of such functions and the structure of their constant second-order
derivatives. We characterize them by means of their Walsh transform
(that is, by their duals), by the Walsh transform of their derivatives and
by other means. We study them within the Maiorana-McFarland class of
bent functions, providing characterizations and constructions and showing
the existence of cubic-like bent functions of any algebraic degree between
2 and n

2
.

Keywords: Boolean functions; Bent functions; cubic functions; EA-
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1 Introduction

Bent functions are fascinating mathematical objects playing important roles
in combinatorics, finite fields, error correcting codes, cryptography and se-
quences for telecommunications. Their classification seems out of reach (only
quadratic bent functions are all known and classified under affine equivalence;
for k = 3, . . . , n2 , the structure of the bent functions of algebraic degree k
is completely unknown) and their study consists then in investigating their
properties, constructing classes of bent functions, studying superclasses such
as those of partially bent and plateaued functions, and subclasses (with the
hope that eventually, the classification of such sub-classes could be achieved).
Bent functions can be defined as those Boolean functions whose derivatives
Daf(x) = f(x) + f(x+ a), a 6= 0, are balanced (that is, take the values 0 and 1
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equally often). They are also those Boolean functions in even numbers of vari-
ables that lie at maximum Hamming distance 2n−1− 2

n
2−1 from affine Boolean

functions.
Cubic functions are those Boolean functions whose algebraic normal form has

degree at most 3. Their derivatives, which have then algebraic degree at most
2, are balanced if and only if they admit at least one derivative DbDaf(x) =
DaDbf(x) that is equal to the constant function 1 (see e.g. [10]).

In this work we study the general class of those Boolean functions, that
we call cubic-like bent, whose derivatives Daf , a 6= 0, all admit at least one
derivative equal to constant function 1. Cubic-like bent functions are bent.
We shall study the properties of cubic-like bent functions, study them within a
classical class of bent functions - namely the Maiorana-McFarland class, provide
construction methods for cubic-like bent functions, and show that, regardless
of the restrictive condition in this newly introduced property, there are such
functions of any (admissible) degree.

This work is organised as follows. After preliminaries in Section 2, we define
cubic-like bent functions in Section 3, providing some basic characterizations and
studying the properties of the notion, such as its EA-invariance. In Section 4, we
study the number of constant second-order derivatives of cubic-like functions.
Section 5 investigates the dual of a cubic-like bent map and presents different
characterizations of the studied property by means of the Walsh transform of
the function (and hence, by means of the dual of the function), and of the Walsh
transform of its derivatives. Section 6 studies the cubic-like bent property for
functions belonging to the Maiorana-McFarland class (where we find cubic-like
bent functions of any degree between 2 and n

2 ). At last, Section 7 presents some
computational results.

2 Preliminaries

Let F2 be the finite field with two elements and, for n a positive integer, let Fn2
be the vector space of dimension n over F2. With ei, for 1 ≤ i ≤ n, we refer to
the i-th vector in the canonical basis of Fn2 , that is, the vector in Fn2 that has
the i-th entrance equal to 1 and all the others equal to zero.
A function F : Fn2 → Fm2 , where m is a positive integer too, is called an (n,m)-
function, and if we do not want to specify the values of n and m, we call it a
vectorial Boolean function or more simply a vectorial function. When m = 1,
a function f : Fn2 → F2 is called an n-variable Boolean function. Its Hamming
weight equals the size of its support: wH(f) = |supp(f)|, where supp(f) = {x ∈
Fn2 ; f(x) = 1} (and the Hamming distance between two functions equals the
Hamming weight of their sum). The linear kernel of a Boolean function (or
of a vectorial function) f equals the set of all a ∈ Fn2 such that the derivative
Daf(x) = f(x) + f(x + a) is constant. The 0-linear kernel equals the set of
all a ∈ Fn2 such that the derivative Daf(x) = f(x) + f(x + a) equals the 0
function. Both are vector spaces over F2 since, for every a and b, we have
Daf(x) + Dbf(x) = Da+bf(x + a). The 0-linear kernel of a Boolean function
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either is a linear hyperplane of the linear kernel or equals the whole linear kernel.
We shall call the difference between these two vector spaces the 1-linear kernel
of f , that is, the set of all a ∈ Fn2 such that Daf(x) = f(x) + f(x + a) equals
constant function 1.

A Boolean function f admits a unique representation as a multivariate poly-
nomial over F2, called its algebraic normal form (ANF):

f(x) = f(x1, . . . , xn) =
⊕
I⊆[n]

aI
∏
i∈I

xi, aI ∈ F2,

where [n] is the set {1, . . . , n}. The monomial
∏
i∈I xi is a term of f whenever

aI 6= 0, that is, aI = 1. The algebraic degree of f , denoted by deg(f), is the
maximal value in the set {|I| : I ⊆ [n] s.t. aI 6= 0}. A function f has algebraic
degree n if and only if it has an odd Hamming weight and it is affine if it has
algebraic degree at most 1 (and linear if in addition it satisfies f(0) = 0). We
call quadratic (resp. cubic) the Boolean functions of algebraic degree at most 2
(resp. at most 3). A Boolean function is called balanced if its output is equally
distributed over 0’s and 1’s. A quadratic function f is balanced if and only
if at least one of its derivatives Daf(x) equals constant function 1, see [10,
Proposition 55 and foll.]. For a non-quadratic function f , this latter condition
is sufficient (but no more necessary) for f to be balanced. Indeed, if f admits
a derivative equal to constant function 1, then there exists a ∈ Fn2 and a set
V ⊂ Fn2 , |V | = 2n−1 such that V ∪ (V + a) = Fn2 and (f(v), f(v + a)) = (1, 0)
for every v ∈ V . Two n-variable Boolean functions f and g are called extended
affine equivalent (shortly EA-equivalent) if there exist a linear automorphism
L(x) of Fn2 , an affine n-variable Boolean function `(x) and an element d of Fn2
such that:

g(x) = f(L(x) + d) + `(x). (1)

In this case, we write f
EA∼ g. If in (1), we have ` = 0, then f and g are called

affine equivalent (f
aff∼ g) and if additionally d = 0, they are called linearly

equivalent.
The Walsh transform of f is defined as Wf (u) =

∑
x∈Fn2

(−1)f(x)+x·u with u ∈
Fn2 , where “·” is some inner product in Fn2 . It equals the Fourier transform of
the so-called sign function (−1)f(x) where the Fourier transform of a function
ϕ : Fn2 → Z equals ϕ̂(u) =

∑
x∈Fn2

ϕ(x)(−1)x·u. We shall use the so-called

inverse Walsh transform formula:∑
a∈Fn2

Wf (a)(−1)a·x = 2n(−1)f(x).

We denote by F(f) the value at 0 of the Walsh transform: F(f) =
∑
x∈Fn2

(−1)f(x).

A function f is therefore balanced if and only if F(f) = 0.
Note that Fn2 can be endowed with the structure of the field F2n and an

inner product is then x · y = tr(xy), where tr is the trace function from F2n to

F2: tr(x) = x+ x2 + x22

+ · · ·+ x2n−1

(see more in [10]).
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The mentioned notions can be extended to the case of vectorial Boolean
functions. Indeed, an (n,m)-function F can be seen as the collection of m
Boolean functions (in n variables) f1, . . . , fm, called the coordinate functions
of F , and having the same input: F (x) = (f1(x), . . . , fm(x)). The algebraic
degree of F is then the maximal algebraic degree of its coordinate functions
and the Walsh transform is defined as WF (u, v) =

∑
x∈Fn2

(−1)v·F (x)+x·u with

u ∈ Fn2 , v ∈ Fm2 .
This work is mainly devoted to the study of bent Boolean functions. In the

following, we report the definition and some important properties related to
these functions. An n-variable Boolean function f is called bent if and only if
one of the following equivalent conditions holds ([10]):

1. for any nonzero a ∈ Fn2 , the derivative Daf is balanced;

2. f lies at maximal Hamming distance 2n−1 − 2
n
2−1 from affine Boolean

functions;

3. the Walsh transform Wf takes all its values in {−2
n
2 , 2

n
2 }.

Clearly, bent functions exist only for even values of n and they cannot be bal-
anced. Moreover, a bent Boolean function in n > 2 variables has algebraic
degree at most n

2 , see [19]. All quadratic bent functions are known: they are
the Boolean functions that are EA-equivalent to the function x1x2 + x3x4 +
· · ·+ xn−1xn. Algebraic degree 2 is the only one for which such classification is
known. In particular, the structure of cubic bent functions is widely unknown.
Given a bent Boolean function f , its dual function, denoted by f̃ , is the Boolean

function that satisfies, for u ∈ Fn2 , 2
n
2 (−1)f̃(u) = Wf (u). The function f̃ is also

bent and its dual is f itself [15, 19]. The mapping f 7→ f̃ preserves the Hamming
distance between bent functions (see [10]). Using the dual for studying some
kinds of bent functions is often very efficient, but not always as we shall see.

Notation: we shall write f ≡ 0 (or f(x) ≡ 0) or f ≡ 1 (or f(x) ≡ 1) for a
Boolean function f to specify it is constant function zero or constant function
1.

3 The cubic-like bentness property

For a cubic bent Boolean function (that is, a bent Boolean function of algebraic
degree at most 3), every (nonzero) derivative is balanced and quadratic (that
is, has algebraic degree at most 2), and we know that any balanced quadratic
function has at least one derivative equal to the constant function 1 (see e.g.
[10]). Therefore we introduce the following definition.

Definition 1. A Boolean function f : Fn2 → F2 is cubic-like bent if, for every
nonzero a ∈ Fn2 , there exists b ∈ Fn2 such that the second-order derivative:

DbDaf(x) = DaDbf(x) = f(x) + f(x+ a) + f(x+ b) + f(x+ a+ b)

equals the constant function 1 (which we write DaDbf ≡ 1).
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Proposition 1. If f is a cubic bent function then f is cubic-like bent. On the
other side, if f is cubic-like bent, then it is bent.

Proof. The first implication is proved above. The second one comes from the
fact that, for every nonzero a ∈ Fn2 , the derivative Daf is balanced, hence the
function is bent.

Remark 1. The non-zero vector b in Definition 1 belongs to the linear kernel
of Daf . More precisely, it belongs to the complement of the 0-linear kernel of
Daf in the linear kernel of Daf ; and the condition of Definition 1 is equivalent
to saying that, for every nonzero a, the linear kernel of Daf and its 0-linear
kernel are different. Of course, Proposition 1 implies that if f is cubic-like bent,
then its number of variables is even.

Remark 2. We recall that in [4], Canteaut and Charpin introduced the concept
of bent 4-decomposition: given f a Boolean function in n variables, n ≥ 4, the
list of the restrictions f1 of f to a linear subspace of dimension n − 2, and
f2, f3, f4 to its cosets, is called a bent 4-decomposition if all fi’s are bent (seen
as Boolean functions in n − 2 variables). Then the authors proved that, given
a bent function f , if (f1, f2, f3, f4) is a decomposition with respect to the linear
subspace V = 〈a, b〉⊥, for a, b distinct nonzero elements, then it is a bent 4-
decomposition if and only if DaDbf̃ ≡ 1. Therefore, we have that the dual
of a cubic-like bent Boolean function in n variables (n ≥ 4) always admits a
bent 4-decomposition. Following the proof of [4, Corollary 5], we have moreover
that the dual of a cubic-like bent Boolean function has more than 2n−1

3 bent
4-decompositions.

Proposition 2. The cubic-like bentness property is EA-invariant.

Proof. Assume f and g are two EA-equivalent n-variable Boolean functions, so
g(x) = f(L(x) + d) + `(x) as in (1). One can easily compute, for a, b ∈ Fn2 , that

DaDbg(x) =DL(a)DL(b)f(L(x) + d).

Since L is an automorphism, the invariance is proved.

Remark 3. Recall that a Boolean function is bent if and only if, for every
x ∈ Fn2 , we have

∑
a,b∈Fn2

(−1)DaDbf(x) = 2n (see [14]), that is,∑
a,b∈Fn2 ,a6=0

(−1)DaDbf(x) = 0.

Let us see how this property is satisfied by cubic-like bent functions. For ev-
ery a 6= 0, let ba be such that DaDbaf ≡ 1. Then, for every b, x ∈ Fn2 , we
have DaDb+baf(x) = DaDbf(x) + DaDbaf(x + b) = DaDbf(x) + 1, which
makes that (−1)DaDbf(x) + (−1)DaDb+baf(x) = 0. Hence, in each of the sums∑
b∈Fn2

(−1)DaDbf(x) where a 6= 0 and x both belong to Fn2 , the values cancel

each others by pairs of elements b having a constant difference. The property
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DaDb+baf(x) = DaDbf(x) + 1 implies in particular that if ga is a Boolean
function such that DaDbaga equals the zero function, then we also have that∑
b∈Fn2

(−1)DaDb(f+ga)(x) = 0 (since DaDba(f + ga) ≡ 1).

For general bent Boolean functions f , we have, denoting y = x+ b, that the sum∑
b∈Fn2

(−1)DaDbf(x) equals
∑
y∈Fn2

(−1)Daf(x)+Daf(y) = (−1)Daf(x)F(Daf), and

equals then zero as well. But this is not in general because the values cancel each
others by pairs of elements having a constant difference.

3.1 A secondary construction within the class of cubic-like
bent functions

If for some Boolean function g and some a 6= 0, the 0-linear kernel of Dag
includes the linear kernel of Daf (for instance, if g is cubic, the quadratic
function Dag is unbalanced and its linear kernel, which equals then its 0-linear
kernel according to [10, Proposition 55], includes the linear kernel of Daf), we
have that DaDbg = 0 for every b in the linear kernel of Daf , and therefore
DaDba(f + g) ≡ 1; from the above remark, we deduce:

Proposition 3. Consider f, g : Fn2 → F2. If f is cubic-like bent and g is a
Boolean function such that, for every a 6= 0, the intersection between the 0-
linear kernel of Dag and the 1-linear kernel of Daf is not empty, then f + g
is bent (and is more precisely cubic-like bent). This happens for instance if the
0-linear kernel of Dag includes the linear kernel of Daf as a vector subspace.
A particular case is when g is cubic, Dag is unbalanced and its linear kernel
includes the linear kernel of Daf .

Note that the particular case in Proposition 3, where the 0-linear kernel of
Dag always includes the linear kernel of Daf , is only a sufficient condition (it
is not necessary): there exist cubic-like bent functions f and cubic functions g
such that function f+g is cubic-like bent and there exists a 6= 0 and an element
u in the linear kernel of Daf that is not in the 0-linear kernel of Dag.

Example 1. Consider over F8
2 the Boolean functions f(x) = x1x5 + x2x6 +

x3x7 + x4x5x6x7 + x4x8 and g(x) = x5x6x8. One can verify computationally
that both f and f+g are cubic-like bent, but for a = e5 and b = e1 +e8, we have
DaDb ≡ 1 and DaDbg(x) = x6. We checked that the 1-linear kernel of Daf has
always an intersection with the 0-linear kernel of Dag; so this example is an
example illustrating the general case of Proposition 3. Notice that f and f + g
belong to the Maiorana-McFarland class of bent functions (cf. [10, Subsection
6.1.15]), later analyzed in Section 6.

Note also that there exist examples of a bent function f and a Boolean
function g such that the hypothesis of Proposition 3 is not satisfied and f + g
is bent.

Example 2. Consider over F8
2 the Boolean functions f(x) = x1x5 + x2x6 +

x3x5x7 + x3x8 + x4x5x6x7 + x4x6x8 + x4x7 and g(x) = x4x7. One can prove
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computationally that f is bent (but not cubic-like bent), and that for every a 6= 0
the 0-linear kernel of Dag includes the linear kernel of Daf as a vector subspace,
but f + g is not bent. Notice that function f also belongs to the Maiorana-
McFarland class of bent function, but in this case f + g does not.

3.1.1 An example: the sum of a quadratic bent function and of the
trace of some polynomials

An example illustrating the situation in Proposition 3 is the following: let n =
2m and q = 2m; take any polynomial Q(x) in F2m [x], expand Q(x + xq) and
express it in the form P (x) + (P (x))q. This is possible because, since Q(x) ∈
F2m [x], we have (Q(x + xq))q = Q((x + xq)q) = Q(x + xq). For instance, with
P (x) = x4+2+1 + x2q+4+1 + xq+4+2 + x4q+2+1, we have Q(x) = x7.

Consider the quadratic function f(x) =
∑m
i=1 trn(uix

2i+1) with ui ∈ F2m for
i = 1, . . . ,m − 1 and um ∈ F2n . Assume that the linear mapping L(x) =∑m
i=1(uix

2i +u2n−i

i x2n−i) ∈ F2m [x] is a permutation polynomial over F2m . Note
that for any a, b ∈ F2n , we have DaDbf(x) = trn(bL(a)). Then we have that the
function f + g satisfies the hypothesis of Proposition 3, with g = trn(P (x)) =
trm(Q(x+ xq)).
To prove this, we consider the double derivative DaDb(f + g) = trn(bL(a)) +
DaDbtrm(Q(x+ xq)).
If a ∈ F2m \{0}, then DaDbtrm(Q(x+xq)) = 0 and, from the hypothesis, L(a) 6=
0 implies that there exists b ∈ F2n such that DaDb(f + g) = trn(bL(a)) = 1.
If a 6∈ F2m , then either there exists c ∈ F2m \{0} such that trn(cL(a)) = 1 or for
any c ∈ F2m we have trn(cL(a)) = 0. In the first case, by taking b = c we have
DaDbtrm(Q(x+xq)) = 0 and DaDb(f+g) = trn(bL(a)) = 1. In the second case,
recalling that L ∈ F2m [x], we have 0 = trn(cL(a)) = trm(cL(a) + cq(L(a))q) =
trm(c(L(a) + L(aq))) = trm(cL(a + aq)) and if this is valid for any c ∈ F2m it
must hold L(a+ aq) = 0. This is not possible since a+ aq 6= 0.
Therefore we proved that for any nonzero a ∈ F2n there exists b such that
DaDbf(x) = 1 and DaDbg(x) = 0.

Proposition 4. For n = 2m, with m a positive integer, set q = 2m. Given
any polynomial Q(x) in F2m [x], express Q(x+ xq) in the form P (x) + (P (x))q.

Consider f(x) =
∑m
i=1 trn(uix

2i+1) ∈ F2n [x] and set L(x) =
∑m
i=1(uix

2i +

u2n−i

i x2n−i). If ui ∈ F2m for i = 1, . . . ,m − 1 and L(x) restricted to F2m

is a bijection, then the two functions f(x) and g(x) = trn(P (x)) satisfy the
hypothesis of Proposition 3. In particular, f + g is cubic-like bent.

Notice that function f + g belongs to the family of Maiorana-McFarland
class of bent functions. Indeed, for any a, b ∈ E where E is the m-dimensional
vector space F2m , we have DaDb(f + g) = 0.

3.2 Structure of cubic-like bent functions

Let us now show that cubic-like bent functions have a particular shape.
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Proposition 5. If f is a cubic-like bent function, then

f(x1, . . . , xn)
EA∼ x1x2 + x3x4 + h(x1, . . . , xn),

with h such that none of its terms is a multiple of x1x2 or x3x4.

Proof. Consider a = e1. Up to an EA-transformation, we can assume that for
b = e2 we have DaDbf(x) ≡ 1. Hence we can write f as

f(x) = x1x2 + x1g1(x{1,2}) + x2g2(x{1,2}) + g3(x{1,2}),

where xI denotes x deprived of its coordinates of indices i ∈ I. We can also
assume that (the ANF of) g1 and g2 do not contain any constant or linear term
(if x1 is a term of f , then by applying the affine permutation x2 → x2 + 1 the
term disappears, similarly for the term x2; notice that the other terms of g1

and g2 are not modified; and if x1xj is a term of f , then by applying the affine
permutation x2 → x2 + xj the term disappears, similarly for the term x2xj ;
here again, the other terms of g1 and g2 are not modified).
Consider now a = e3. We have De3f(x) = x1h1(x{1,2,3}) + x2h2(x{1,2,3}) +
h3(x{1,2,3}), where h1 and h2 do not contain the constant term 1. Set B =
{b ∈ Fn2 ; De3Dbf ≡ 1}. We have that e1, e2, e1 + e2 do not belong to B,
since h1, h2, h1 + h2 6= 1. Therefore, there exists b 6∈ {e1, e2, e1 + e2} such that
De3Dbf ≡ 1, and up to an affine transformation1, we can assume that b = e4

and then De3De4f ≡ 1 and so f(x) = x1x2 +x3x4 +h(x1, . . . , xn) as stated.

We also obtain the following result, dealing with a classic secondary con-
struction of bent functions called the direct sum. Since the notion of cubic-like
bentness is EA-invariant, the result deals with what Dillon [15] called decom-
posable bent functions.

Proposition 6. Consider f : Fn+m
2 → F2 such that

f(x, y)
EA∼ g(x) + h(y),

for n,m > 1, g and h Boolean functions in n and m variables respectively. Then
f is cubic-like bent if and only if g and h are cubic-like bent.

Proof. Since the cubic-like bentness property is EA-invariant, we can assume
without loss of generality that f(x, y) = g(x) + h(y). To simplify the notation,
we write an element a ∈ Fn+m

2 as a = (a1, a2) with a1 ∈ Fn2 and a2 ∈ Fm2 .
From the facts that for a = (a1, 0) we have Daf = Da1g and for a = (0, a2) we
have Daf = Da2h, we can easily deduce that if f is cubic-like bent, then also g
and h are cubic-like bent. For the other implication, assume that g and h are
cubic-like bent and take any nonzero a = (a1, a2) ∈ Fn2 . If a1 = 0 (a2 6= 0),

1Consider indeed an element b = (b1, . . . , bn) ∈ B (that is De3Dbf(x) ≡ 1). We have that
bi is not zero for some i > 3. Without loss of generality, assume b4 = 1. Set T be a linear
permutation such that T (x1) = x1, T (x2) = x2, T (x3) = x3 and T (x4) =

∑
bixi. Then for

g = f ◦T we have De1De2g = De3De4g ≡ 1. So g(x) = x1x2+x3x4+h(x1, . . . , xn) as stated.
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consider b2 ∈ Fm2 such that Da2Db2h ≡ 1 and set b = (0, b2). Then DaDbf ≡ 1.
If a1 6= 0, consider b1 ∈ Fn2 such that Da1Db1g ≡ 1 and set b = (b1, 0). Then we
have that DaDbf ≡ 1. From this we deduce the cubic-like bentness of f and we
conclude the proof.

4 On the affine spaces {b ∈ Fn2 ; DaDbf ≡ 1}, and
the related expression of some functions f

For a Boolean function f and a ∈ Fn2 , consider the set

Ba = {b ∈ Fn2 ; DaDbf ≡ 1}. (2)

Ba being the difference between the linear kernel of Daf and its 0-linear kernel,
then if it is not empty, it is an affine space (and not a vector space) and its
direction equals the 0-linear kernel:

−→
Ba = {b ∈ Fn2 ; DaDbf ≡ 0}. (3)

Observation. Given an n-variable cubic-like bent function f , for any a ∈ Fn2 ,

a 6= 0, Ba is an affine space whose direction equals
−→
Ba.

The union Ba ∪
−→
Ba equals the linear kernel of Daf . Clearly, for any a 6= 0,

{0, a} ⊆
−→
Ba; and for any a, b 6= 0, b ∈ Ba if and only if a ∈ Bb.

Consider now the multi-set

B = {∗ |Ba| : a ∈ Fn2 \ {0} ∗}. (4)

The function f is cubic-like bent if and only if 0 6∈ B. Moreover we have that
two EA-equivalent Boolean functions have the same multi-set B.

Assume that a bent Boolean function f admits an element a 6= 0 such that
Daf is affine (and non-constant since f is bent). Since any non-constant affine
function, being affine equivalent to the function x1, has an affine hyperplane of

derivatives equal to constant function 1, this implies that dim(
−→
Ba) = n−1, and

so |Ba| = |
−→
Ba| = 2n−1. Conversely, if |Ba| = |

−→
Ba| = 2n−1 then Daf is affine,

since this means that every derivative of Daf is constant. Note that the set of
elements a such that Daf is affine forms a vector space. Let k be the dimension
of this vector space; we have

|{a ∈ Fn2 ; |Ba| = 2n−1}| = 2k − 1.

Up to a linear transformation, let e1, . . . , ek be in such set. We have therefore
that x1, . . . , xk appear only in quadratic terms:

f(x)
aff∼ q(x1, . . . , xn) + g(xk+1, . . . , xn), (5)
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where q is a quadratic Boolean function in n variables and g is a Boolean function
in n− k variables.

In [8], the first author proved that, for f bent, WDaf (u) = WDuf̃
(a) (this

result is recalled in [10, Relation (6.4)]). Later, Canteaut and Charpin redis-
covered this result in [4, Corollary 2] and that Daf = ϕb + ε if and only if
Dbf̃ = ϕa + ε, where ε ∈ F2 and ϕc(x) is the linear function x · c. Hence, if f
is bent, the number of affine derivatives of f is equal to the number of affine
derivatives of f̃ . This can be simply verified by observing that Da1f = ϕb1 + ε1

and Da2f = ϕb2 + ε2 satisfy b1 = b2 if and only if a1 = a2, since b1 = b2 implies
that Da1+a2f = ϕb1 + ϕb2 + a1 · b2 + ε1 + ε2 is constant.

Let us denote by Bf and Bf̃ the multisets defined in (4) for the cubic-like

bent function f and its dual f̃ . Therefore we have that the multiplicity of 2n−1

in Bf is the same as the one in Bf̃ . So both f and f̃ are as in (5). Notice that

we only assume here that f and f̃ are bent.
In order for f to be of algebraic degree greater than three, we need k ≤ n−4.

Hence the following proposition is satisfied.

Lemma 1. Given an n-variable cubic-like bent Boolean function f with deg(f) >
3 or with deg(f̃) > 3, consider the multiset B defined in (4). Then the multi-
plicity of 2n−1 in B is at most 2n−4 − 1.

If we consider the limit case with k = n − 4 for a cubic-like bent function,
we have the following result.

Proposition 7. Consider an n-variable Boolean function f of degree greater
than 3. Assume that the multiset B defined in (4) contains the element 2n−1

with multiplicity 2n−4 − 1. Then f is cubic-like bent if and only if

f(x)
EA∼ xn−3xn−2xn−1xn +

m∑
i=1

xixn−i+1,

where m = n
2 ≥ 4.

The proof of this proposition is quite long and technical. It can be found at
the end of this work, see Appendix A.

Remark 4. The function in Proposition 7 belongs to the Maiorana-McFarland
class (see Section 6 for more details). Indeed, denoting y = (xm, . . . , x3, x2, xn)

and z = (xm+1, . . . , xn−2, xn−1, x1) we have f(x)
EA∼ y · π(z) with

π(z) =


xm+1

...
xn−2

xn−1

xn−3xn−2xn−1 + x1

 .
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4.1 About the superclass of the cubic-like bent function
class, made of those bent functions admitting at least
one second-order derivative equal to constant 1

Let f be a bent function such that DaDbf ≡ 1 for some a, b ∈ Fn2 . Since a and
b are necessarily linearly independent over F2, then up to affine equivalence, we
have f(x) = x1x2 + x1g1(x{1,2}) + x2g2(x{1,2}) + g3(x{1,2}). Then, as already
observed for cubic bent functions in [6] and reported in [10, Proposition 75 and
Subsection 6.1.11], we have:

Wf (a) =∑
x1,x2∈F2,x′∈Fn−2

2

(−1)x1x2+x1g1(x′)+x2g2(x′)+g3(x′)+a1x1+a2x2+a{1,2}·x′ =

∑
x1,x2∈F2,x′∈Fn−2

2

(−1)(x1+g2(x′)+a2)(x2+g1(x′)+a1)+(g1(x′)+a1)(g2(x′)+a2)+g3(x′)+a{1,2}·x′ =

∑
x1,x2∈F2,x′∈Fn−2

2

(−1)x1x2+(g1(x′)+a1)(g2(x′)+a2)+g3(x′)+a{1,2}·x′ =

2
∑

x′∈Fn−2
2

(−1)(g1(x′)+a1)(g2(x′)+a2)+g3(x′)+a{1,2}·x′ , (6)

and since f is bent, then for every a1, a2, the (n− 2)-variable function

(g1(x′) + a1)(g2(x′) + a2) + g3(x′)

is bent for every a1, a2 (and this is a necessary and sufficient condition for the
bentness of f).

Note that, even when f is cubic, these four functions may not be cubic since
g1, g2 are quadratic (but g1g2 always has algebraic degree at most n

2 ).
We checked that, unfortunately, when f is cubic-like bent (even when it is

cubic bent), such functions (g1(x′) + a1)(g2(x′) + a2) + g3(x′) are in general not
cubic-like bent.

Remark 5. A 2-variable function being bent if and only if it has algebraic
degree 2, that is, if it has an odd Hamming weight, or still equivalently, if it
sums to 1 over F2

2, the property of being cubic-like bent is equivalent to: for
every a 6= 0 there exists b such that the restriction of f to any affine plane with
underlying linear space 〈a, b〉 is bent. Taking, up to affine equivalence, a = e1

and b = e2, where e1 and e2 are the two first vectors in the canonical basis of
Fn2 , we can apply [10, Theorem 15] (with the value of n in this theorem taken
here equal to 2, and the parameter m in the theorem playing here the role of
n − 2) and this gives Relation (6) since the dual of a 2-variable bent function
of the form h(x1, x2) = x1x2 + g1x1 + g2x2 + g3, where g1, g2, g3 ∈ F2, equals

h̃(a1, a2) = (g1 + a1)(g2 + a2) + g3.
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5 Characterization by the Walsh transform

In this section, we provide a characterization of the cubic-like bentness property
by means of the Walsh transform of the function (and the related condition on
the dual function), and of the Walsh transform of the derivatives.

5.1 Characterization by the Walsh transform of the func-
tion

The condition DaDbf(x) ≡ 1 is equivalent to the condition that we have∑
x∈Fn2

(−1)f(x)+f(x+a)+f(x+b)+f(x+a+b) = −2n, that is, according to the inverse

Walsh transform formula,

−25n =
∑

x,u,v,w,t∈Fn2

Wf (u)Wf (v)Wf (w)Wf (t)(−1)u·x+v·(x+a)+w·(x+b)+t·(x+a+b)

=2n
∑

u,v,w∈Fn2

Wf (u)Wf (v)Wf (w)Wf (u+ v + w)(−1)v·a+w·b+(u+v+w)·(a+b)

=2n
∑

u,v,w∈Fn2

Wf (u)Wf (u+ v)Wf (u+ w)Wf (u+ v + w)(−1)v·b+w·a.

By applying the definition of the dual of a bent function, we obtain:∑
u,v,w∈Fn2

(−1)DvDw f̃(u)+v·b+w·a = −22n. (7)

Remark 6. The cubic-like bentness of a function is not equivalent to the cubic-
like bentness of its dual. An infinite class of cubic bent functions (that are then
cubic-like bent), whose duals are not cubic-like bent (as we can check, since
they do not admit a so-called bent 4-decomposition, that is, there are no a, b
such that DaDbf̃ ≡ 1) is described in [4, Corollary 6] (and then we have a
second interesting subclass of bent functions, made of the duals of cubic-like
bent functions).

Open problem: determine all those cubic-like bent functions (resp. all those
cubic bent functions) whose duals are cubic-like bent (resp. are cubic bent).
Note that all quadratic bent functions have quadratic duals and belong then to
these two classes.

5.2 Characterization by the Walsh transform of the deriva-
tives

Recall from [10, Subsection 3.1.7, Proposition 29] that, given any n-variable
Boolean function h and any vector b in Fn2 , we have that Dbh ≡ 1 if and only
if Wh(c) = 0 for every c ∈ Fn2 such that c · b = 0. Moreover, as already recalled
in the previous section, for a bent function f it holds WDaf (c) = WDcf̃

(a) .
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Hence, for f bent, DaDbf ≡ 1 if and only if WDcf̃
(a) = 0 for every c ∈ Fn2 such

that c · b = 0.
Consequently a bent function is cubic-like bent if and only if, for every a 6= 0,
there exists b such that WDcf̃

(a) = 0 (equivalently WDaf (c) = 0) for every
c ∈ Fn2 such that c · b = 0. The stated condition is equivalent to saying that the

function Dcf̃(x) + a · x is balanced for every c orthogonal to b. The same for
the map Daf(x) + c · x.

Since (−1)Dcf̃(x)+a·x = 2−nWf (x)Wf (x+ c)(−1)a·x (by the definition of f̃),
we can obtain also a characterization by the Walsh transform itself. Notice that
this last characterization can be obtained also without passing through the dual
function, since

∑
x∈Fn2

Wf (x)Wf (x+ c)(−1)a·x = 2nWDaf (c)(−1)a·c.

We can summarize what obtained in the following proposition.

Proposition 8. Given a Boolean function f , the following statements are equiv-
alent:

1. f is cubic-like bent (for any a 6= 0 there exists b such that DaDbf ≡ 1);

2. f is bent and for any a 6= 0 there exists b such that∑
u,v,w∈Fn2

(−1)DvDw f̃(u)+v·b+w·a = −22n;

3. for any a 6= 0, there exists b such that WDaf (c) = 0 (that is, Daf(x)+c ·x
is balanced) for every c orthogonal to b; in other words, the Walsh support
of Daf is included in the complement of a linear hyperplane of Fn2 ;

4. f is bent and for any a 6= 0, there exists b such that WDcf̃
(a) = 0 (that

is, Dcf̃(x) + a · x is balanced) for every c orthogonal to b; in other words,

for every such c, the Walsh support of Dcf̃ does not contain a.

5. for any a 6= 0, there exists b such that for every c orthogonal to b∑
x∈Fn2

Wf (x)Wf (x+ c)(−1)a·x = 0.

The support of WDaf can be further analyzed. Indeed, it is proved in [10]
that WDaf (u) = 0, that is, Daf(x) + u · x is balanced, for every u such that
a · u = 1. Hence, if f is cubic-like bent, the Walsh support of Daf is in fact
included in the intersection of the complement of a linear hyperplane of Fn2 and
the linear hyperplane of equation a ·u = 0; this intersection is an affine space of
co-dimension 2 since it is the intersection of two affine hyperplanes with distinct
directions {0, b}⊥ and {0, a}⊥ (indeed, b cannot equal a, since DaDaf ≡ 0).

Remark 7. According to Proposition 8, a Boolean bent function f and its dual
are both cubic-like bent if and only if, for every a 6= 0, there exist a linear
hyperplane Ha and a linear hyperplane H ′a such that WDaf (u) = WDu′f (a) = 0,

13



for every u ∈ Ha and every u′ ∈ H ′a (and also for every u, u′ non-othogonal to
a). Note that since Ha∩H ′a has dimension at least n−2, there is a vector space
Ea of dimension at least n − 2 such that WDaf (u) = WDuf (a) = 0, for every
u ∈ Ea.

6 On Maiorana-McFarland cubic-like bent func-
tions

We have studied in Proposition 6 the secondary construction of cubic-like bent
functions called direct sum. It does not provide yet new cubic-like bent functions
(that is, concretely, some that are non-cubic) since the direct sum of cubic func-
tions is cubic. For providing new cubic-like bent functions, we need to revisit
the classical primary constructions of bent functions. As we shall see, it turns
out that studying constructions of bent functions with the viewpoint of cubic-
like bentness is rather complex and long, even for those constructions that are
simple when only considering bentness. In this section, we study the simplest
construction, the Maiorana-McFarland construction (introduced in [17] and re-
ported in [15]; see also [10, 13, 18]), which is known to provide a large number
of bent functions and needs then to be considered (because of the length of the
present paper, we are obliged to leave the study of other known constructions
for a future work). We shall see that it provides cubic-like bent functions that
are non-cubic.
The class of Maiorana-McFarland is made of the n-variable Boolean functions
of the form f(x, y) = x · π(y) + g(y) where n = 2m; x, y ∈ Fm2 ; π is an (m,m)-
permutation and g is an m-variable Boolean function.
Since studying it in the framework of cubic-like bentness is a little technical, we
shall then begin with a simpler subcase, which shall play in fact a specific role
as we will see later.

6.1 Functions of the form x · π(y)
We consider first the Maiorana-McFarland bent functions over F2m

2 of the form

f(x, y) = x · π(y), (8)

with x, y ∈ Fm2 and π a permutation of Fm2 . We are interested in those π of
algebraic degree larger than 2, for getting non-cubic functions f .
We know that (as for general Maiorana-McFarland functions that we shall study
below) π being a permutation is a necessary and sufficient condition for x ·π(y)
to be bent, and the dual function of x · π(y) is (x, y) 7→ y · π−1(x), where π−1 is
the compositional inverse of π.
Given a generic element c ∈ F2m

2 , we use here and in the following the notation
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c = (c1, c2) for c1, c2 ∈ Fm2 . In this case we have, for a = (a1, a2) and b = (b1, b2),

DaDbf(x, y) =(x+ b1 + a1) · π(y + b2 + a2) + (x+ b1) · π(y + b2)

+ (x+ a1) · π(y + a2) + x · π(y)

=x · [π(y + b2 + a2) + π(y + b2) + π(y + a2) + π(y)]

+a1 · [π(y + b2 + a2) + π(y + a2)] + b1 · [π(y + b2 + a2) + π(y + b2)]

=x ·Da2Db2π(y) + a1 ·Db2π(y + a2) + b1 ·Da2π(y + b2). (9)

Therefore we deduce the following.

Lemma 2. For m a positive integer, let π be a permutation of Fm2 . A Maiorana-
McFarland function of the form x · π(y) defined over F2m

2 , with x, y ∈ Fm2 , is
cubic-like bent if and only if, for any nonzero a = (a1, a2) ∈ F2m

2 , there exists
an element b = (b1, b2) ∈ F2m

2 such that

Da2Db2π ≡ 0 and a1 ·Db2π + b1 ·Da2π ≡ 1. (10)

In fact, the condition simplifies:

Proposition 9. Let π be a permutation of Fm2 . The map x · π(y) described in
Lemma 2 is cubic-like bent if and only if

(i) for any nonzero a1 ∈ Fm2 , there exists b2 ∈ Fm2 such that a1 ·Db2π(y) ≡ 1,

(ii) for any nonzero a2 ∈ Fm2 , there exists b1 ∈ Fm2 such that b1 ·Da2π(y) ≡ 1.

This can be summarised in one condition:

(i*) for any nonzero α ∈ Fm2 there exist β, γ ∈ Fm2 such that β · Dαπ(y) =
α ·Dγπ(y) ≡ 1.

Proof. Assume first that function x · π(y) satisfies (i) and (ii), and consider a
generic nonzero element a = (a1, a2) ∈ F2m

2 .
If a2 6= 0 then set b = (b1, 0) with b1 such that b1 ·Da2π(y) ≡ 1; since b2 = 0,
Relation (10) is satisfied by b.
If a2 = 0, set (for instance) b = (0, b2) with b2 such that a1 ·Db2π(y) ≡ 1 (clearly
a1 is not zero); since a2 = 0, Relation (10) is satisfied by b.
So we have that the function is cubic-like bent since it satisfies Lemma 2.
Assume now that the map is cubic-like bent. By considering Lemma 2 for
nonzero elements of the form (a1, 0) and (0, a2), the property is verified.

Clearly, for any a1 6= 0, the set Ba (equal to {b ∈ Fn2 ; DaDbf ≡ 1}) for
a = (a1, 0) contains all the elements of the form (r, b2) with any r over Fm2 and
b2 satisfying (i) in Proposition 9. Moreover, we observe the following.

Remark 8. 1. Condition (i) of Proposition 9 writes “for every a1 6= 0 there
exists b2 such that the function Db2π takes all its values in the hyperplane of
equation a1 · y = 1”.
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2. If a function π satisfies Condition (ii) of Proposition 9, then it is a permu-
tation since, for any nonzero a2, Da2π(y) cannot then vanish at any point.
3. According to Proposition 9, the first condition in (10) does not play a real
role in the cubic-like bentness property of x · π(y) (because of the peculiarity of
such function). However, as we will see in the next sections, permutations π
such that this condition is satisfied for more than two elements (namely 0 and
a2) are good candidates for constructing cubic-like bent maps.

6.1.1 Examples in dimension n = 8

Using the Magma Algebra package [2], we performed some experimental results
(Section 7). We want to mention here some examples we found.

Computationally for m = 4 we found cases of functions f(x, y) = x · π(y)
that are cubic-like bent and also of bent functions that are not cubic-like bent.
For example for

π1(y) =


y1

y2

y1y3 + y4

y1y2y3 + y2y4 + y3


the map f is not cubic-like bent and B = {∗032, 4128, 884, 328, 1283∗}.

Instead for

π2(y) =


y1

y2

y3

y1y2y3 + y4

 , π3(y) =


y1y2 + y3

y1y2 + y1y3 + y2

y1y2 + y2y3 + y1 + y2

y1y2y3 + y4


both f ’s are cubic-like bent. In the first case (π2) we have B = {∗16240, 12815∗}.
In the second instead (π3) B = {∗4224, 1616, 3214, 128∗}.

6.1.2 Looking more in detail at the case where π is quadratic

Let us check how the characterization of Proposition 9 works when π is a
quadratic permutation (in which case we know that x · π(y) is cubic-like bent,
being cubic).
Since π is a quadratic permutation, then for every a2 6= 0, Da2π takes all its val-
ues in an affine hyperplane which does not contain 0 (i.e., in the complement of
a linear hyperplane) and Condition (ii) is straightforwardly satisfied. Condition
(i) is that the linear hyperplanes outside which the derivatives Db2π take their
values can be taken distinct for distinct values of b2. We state this property in
the corollary below.
A particular case is when, for every b2 6= 0, the image set of Db2π has size 2n−1

(that is, covers the whole affine hyperplane); π is then called almost perfect non-
linear (see e.g. [10]), and being a quadratic permutation, it is then a crooked
function in the original meaning of this term given in [1] (note that since the
introduction of this notion of crooked function, the existence of non-quadratic
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crooked functions is an open problem). The property that these linear hyper-
planes are distinct for such crooked functions has been observed and is a direct
consequence of the fact that the so-called associated function γπ (see [11]) is a
Maiorana-McFarland bent function as proved in [11], π being almost bent. It is
related to the notion of ortho-derivative (term introduced in [5]).

Corollary 1. For every nonzero integer m and every quadratic permutation π
over Fm2 , there exists a permutation φ : Fm2 \{0} 7→ Fm2 \{0} such that, for every
b2 ∈ Fm2 \ {0}, the image set of the derivative Db2π is disjoint from the linear
hyperplane {0, φ(b2)}⊥.

In fact, we shall see in the next subsection that this can be proved directly
and that it extends to the so-called strongly plateaued permutations.

6.1.3 Case where π is strongly plateaued

Quadratic functions are a particular case of the so-called strongly plateaued
functions [9, 10], which are those vectorial functions π whose components are
partially-bent. In other words, a vectorial function π over Fm2 is strongly
plateaued if, for every β, α in Fm2 , the function β · Dαπ is either constant or
balanced.
Strongly plateaued functions share with quadratic ones the fact that the image
set of any derivativeDαπ is an affine space, as shown in [9, 10]. As we saw before,
if π is a permutation, then, for α 6= 0, this affine space does not contain 0 and
Condition (ii) is then satisfied, since for every affine space A not containing 0,
there exists a linear function which takes value 1 over A. Moreover, for every β 6=
0, we know that β ·π is balanced and then we have 0 =

(∑
x∈Fm2

(−1)β·π(x)
)2

=

2m +
∑
α6=0

(∑
x∈Fm2

(−1)β·Dαπ(x)
)

. Now, π being strongly plateaued, the func-

tion β ·Dαπ is either zero (that is,
∑
x∈Fm2

(−1)β·Dαπ(x) = 2m) or equal to 1 (that

is,
∑
x∈Fm2

(−1)β·Dαπ(x) = −2m) or balanced (that is,
∑
x∈Fm2

(−1)β·Dαπ(x) = 0).

There is then necessarily α such that β ·Dαπ equals constant function 1. Hence
Condition (i) is satisfied and we have the following result:

Proposition 10. If π is a strongly plateaued permutation, then the Boolean
function x · π(y) is cubic-like bent.

Non-quadratic strongly plateaued (n, n)-permutations are known for every
n ≥ 7 (which provide then non-cubic functions in at least 14 variables, that are
cubic-like bent), see [12].

6.1.4 Case where π is a power function

If π is a power permutation2 π(y) = yd; y ∈ F2m ; gcd(d, 2m − 1) = 1, then
Condition (i) in Proposition 9 is satisfied for every a1 if and only if it is satisfied

2Some authors call power functions the functions of the more general form ayd; a 6= 0; we
take here only π(y) = yd and this does not restrict the generality since, π being a permutation,
function ayd is linearly equivalent to π.
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for at least one nonzero a1 (note that this is true thanks to the fact that π is
a permutation; we can take for instance a1 = 1), and Condition (ii) is satisfied
for every a2 if and only if it is satisfied for at least one nonzero a2 (this is true
independently of the fact that π is a permutation; we can take for instance
a2 = 1), and the two conditions are equivalent.

Proposition 11. If π, viewed as a map over F2m , is a power permutation,
then the Boolean function x ·π(y) is cubic-like bent if and only if there exists an
element β ∈ F2m such that β ·D1π ≡ 1, that is, tr(βD1π(x)) ≡ 1,∀x.

This happens of course when π is quadratic, that is, up to linear equivalence,
when π(y) = y2j+1, where m

gcd(j,m) is odd (this latter condition coming from the

fact that gcd(2j+1, 2m−1) = gcd(22j−1,2m−1)
gcd(2j−1,2m−1) = 2gcd(2j,m)−1

2gcd(j,m)−1
). The question is to

determine whether there are other power functions, up to equivalence, satisfying
Proposition 11.

Remark 9. In the case π is APN (that is, the image set of D1π has size 2m−1;
see more in e.g. [10]), the condition of Proposition 11 corresponds to saying
that the image set of D1π is the complement of a linear hyperplane, as well,
then, as the image set of any derivative of π. This means that π is crooked (see
more in e.g. [10] as well). No non-quadratic crooked function is known. But if
π is not taken APN, this leaves more freedom for finding such π.

6.1.5 When π has a constant derivative

Notice that, if π has a constant derivative, then the bent function x · π(y) has
an affine derivative. Moreover, it can easily be verified that this is a necessary
and sufficient condition. Hence we are in the case described in Section 4.

We shall see that, for such permutations π, the cubic-like bentness of the
function x·π(y) is equivalent to the cubic-like bentness of a Maiorana-McFarland
function in less variables. Let us first recall how functions π having a constant
derivative (also called a linear structure) can be simplified up to affine equiva-
lence.

Assume that π is a permutation of Fm2 that admits a nonzero element α0 for
which Dα0π(y) is constant, say, equals c. Recall that, since π is a permutation,
c is nonzero. Up to an affine transformation, we can assume that α0 = c = e1,
so we have:

π(y) = π(y1, . . . , ym) =


y1 + f(y2, . . . , ym)
π̄1(y2, . . . , ym)

...
π̄m−1(y2, . . . , ym)

 =

[
y1 + f(y2, . . . , ym)
π̄(y2, . . . , ym)

]
, (11)

with f any Boolean function in m− 1 variables and π̄ a permutation of Fm−1
2 .

In this case, the inverse equals:

π−1(y) =

[
y1 + f ◦ π̄−1(y2, . . . , ym)

π̄−1(y2, . . . , ym)

]
. (12)
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Proposition 12. Assume that π̄ = [π̄1, . . . , π̄m−1] is a permutation of Fm−1
2

and, for f any Boolean function in m − 1 variables, consider the permutation
over Fm2 of the form:

π(y) = π(y1, . . . , ym) =


y1 + f(y2, . . . , ym)
π̄1(y2, . . . , ym)

...
π̄m−1(y2, . . . , ym)

 .
Then the map x · π(y) over Fm2 × Fm2 is cubic-like bent if and only if x̄ · π̄(ȳ),
map over Fm−1

2 × Fm−1
2 , is cubic-like bent.

Proof. Let us first assume that x̄·π̄(ȳ) is cubic-like bent and prove that x·π(y) is
cubic-like bent. From Proposition 9, we only need to show that for any nonzero
α ∈ Fm2 , there are β, β′ such that α ·Dβπ(y) = β′ ·Dαπ(y) ≡ 1.
Assume first that α = e1, then with β = e1 we have α·Dβπ(y) = β ·Dαπ(y) ≡ 1.
Assume now that α = (α1, . . . , αm) 6= e1 and set ᾱ = (α2, . . . , αm). Clearly ᾱ
is nonzero. Then, since x̄ · π̄(ȳ) is cubic-like bent, there exist β̄ ∈ Fm−1

2 such
that ᾱ ·Dβ̄ π̄(ȳ) ≡ 1 and β̄′ ∈ Fm−1

2 such that β̄′ ·Dᾱπ̄(ȳ) ≡ 1. Let β′ = (0, β̄′),

then β′ · Dαπ(y) = β̄′ · Dᾱπ̄(y2, . . . , ym) ≡ 1. Now for finding β such that
α · Dβπ(y) ≡ 1, we need to separate into two cases. If α is such that α1 = 1,
then with β = e1 we have α ·Dβπ(y) ≡ 1, and if α1 = 0, then with β = (0, β̄)
we have α ·Dβπ(y) ≡ 1.
Conversely, let us assume that x̄ · π̄(ȳ) is not cubic-like bent (and prove that
x · π(y) is not cubic-like bent):

� either there exists ᾱ 6= 0 such that for any β̄, ᾱ ·Dβ̄ π̄(ȳ) 6≡ 1, then taking

α = (0, ᾱ), for any β = (β1, β̄), we have α ·Dβπ(y) = ᾱ ·Dβ̄ π̄(ȳ) 6≡ 1;

� or there exists ᾱ 6= 0 such that, for any β̄, we have β̄ ·Dᾱπ̄(ȳ) 6≡ 1, then
let α = (0, ᾱ) and α′ = (1, ᾱ) and suppose that β · Dαπ(y) ≡ 1 and
β′ ·Dα′π(y) = 1; this would imply β1 = β′1 = 1. So

1 =β ·Dαπ(y) = β̄ ·Dᾱπ̄(ȳ) +Dᾱf(ȳ)

1 =β′ ·Dα′π(y) = β̄′ ·Dᾱπ̄(ȳ) +Dᾱf(ȳ) + 1

1 =(β̄ + β̄′) ·Dᾱπ̄(ȳ)

a contradiction.

This concludes the proof.

Remark 10. Proposition 12 provides a secondary construction (that can be
applied recursively) of cubic-like bent functions3. It allows to obtain cubic-like
bent functions of any algebraic degree up to m = n

2 , since the Boolean function
f can be taken of any algebraic degree at most m− 1.

3There are many secondary constructions of bent functions, see e.g. [10], and it is good
that some secondary constructions of cubic-like bent functions can be exhibited too.
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Moreover, Relation (12) shows that, if both x̄ · π̄(ȳ) and ȳ · π̄−1(x̄) are cubic-
like bent, then not only x · π(y) is cubic-like bent but also y · π−1(x), which is
the dual of x · π(y). We have then also a recursive construction of cubic-like
bent functions whose duals are cubic-like bent. Note that initial functions for
this recursive construction are easily built: if m = 3, then π and π−1 being
permutations, they are quadratic and x̄ · π̄(ȳ) and ȳ · π̄−1(x̄) are then both cubic-
like bent (since they are cubic).

Remark 11. What we observed with m = 3 in the above remark is not true
in higher dimensions, since there are in F4

2 many permutations π that do not
generate cubic-like bent functions and whose duals do not either.
This implies that for any m ≥ 5 there exists a bent function x · π(y), with π as
in (11) that it is not cubic-like bent and whose dual is not cubic-like bent.

6.1.6 When π is a Feistel permutation

A classical Feistel permutation is a function of the form (XL, XR) → (XL +
F (XR), XR), with XL ∈ Fk2 and XR ∈ Fm−k2 and where F is a mapping from
Fm−k2 to Fk2 . Such function is a permutation, being involutive. Many block ci-
phers (whose round functions must be permutations for allowing decryption and
are better involutions to minimize the complexity of the encryption/decryption
process) are built on this model, the most famous among these ciphers being of
course the DES. Such structure of function can be generalized to:

(XL, XR)→ (XL + F (XR), π̄(XR)), (13)

where π̄ is a permutation of Fn−k2 , and we shall call Feistel permutations such
more general functions (which are clearly bijective but are no more involutive,
in general - involutivity is not a property having as much importance in our case
as in the design of block ciphers). The permutation presented in Proposition 12
corresponds to the case k = 1.

The fact that a permutation is, up to affine equivalence, a Feistel permutation
as in (13), is equivalent to the fact that its linear kernel has dimension at
least k. Indeed, up to affine equivalence, we may assume that the linear kernel
includes Fk2 × {0}, and denoting xL = (x1, . . . , xk) and xR = (xk+1, . . . , xn), a
permutation π has such property if and only if π(x) = π1(xL) + π2(xR), where
π1 is a linear injective function from Fk2 to Fn2 and π2 is a function from Fn−k2 to
Fn2 , and up to affine equivalence, we may assume that π1 is the identity. This
means that the linear kernel of a permutation π has dimension at least k if and
only if π is affine equivalent to a function of the form (13) and the bijectivity of
π̄ is clearly then necessary and sufficient.
In a more practical way, starting from a permutation having a linear kernel of
dimension at least k > 0, we saw already that we can consider

π(y) =

[
y1 + f(y2, . . . , ym)
π1(y2, . . . , ym)

]
,

up to affine equivalence, and we can continue without loss of generality, assuming
that De2π(y) is constant. Clearly, De2π(y) 6= e1, otherwise De1+e2π(y) = 0 and
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this is not possible since π is a permutation. Therefore we have also that π̄ must
admit a constant derivative and, up to affine equivalence, we can assume

π(y) =

[
y1 + f(y2, y3, . . . , ym)
π1(y2, y3, . . . , ym)

]
=

y1 + f1(y3, . . . , ym)
y2 + f2(y3, . . . , ym)
π2(y3, . . . , ym)

 . (14)

Iterating this method, if the dimension of the linear kernel of π is at least k > 0,
we obtain a permutation in the Feistel form

π(y) = π(Y1, Y2) =

[
Y1 + F (Y2)
π̄(Y2)

]
, (15)

with π̄ a permutation of Fm−k2 , for k ≤ m, F a (m − k, k)-Boolean function,
and where we write a generic element y of Fm2 as y = (Y1, Y2) with Y1 ∈ Fk2
and Y2 ∈ Fm−k2 . Moreover, notice that Proposition 12 can be iteratively applied
to permutations as in (15). Indeed, by applying the proposition to (14) we
have that x · π(y) = (x1, . . . , xm) · π(y1, . . . , ym) is cubic-like bent if and only
if (x2, . . . , xm) · π1(y2, . . . , ym) is cubic-like bent if and only if (x3, . . . , xm) ·
π2(y3, . . . , ym) is cubic-like bent. Therefore we can state the following result.

Proposition 13. Consider a Feistel permutation π as in (15). Then the map
x · π(y) over Fm2 × Fm2 is cubic-like bent if and only if the map X2 · π̄(Y2) over
Fm−k2 × Fm−k2 , is cubic-like bent.

6.2 Functions of the general form x · π(y) + g(y)

Recall that the general construction for Maiorana-McFarland maps is

f(x, y) = x · π(y) + g(y), (16)

with π a permutation (which is again a necessary and sufficient condition for
the bentness of the Maiorana-McFarland function) and g : Fm2 → F2. The dual
of f is then the function (x, y) 7→ y · π−1(x) + g(π−1(x)). In this case we have

DaDbf(x, y) = (x+ b1 + a1) · π(y + b2 + a2) + g(y + b2 + a2) + x · π(y) + g(y)

+ (x+ a1) · π(y + a2) + g(y) + (x+ b1) · π(y + b2) + g(y + b2)

=x · [π(y + b2 + a2) + π(y + a2) + π(y + b2) + π(y)]

+ a1 · [π(y + b2 + a2) + π(y + a2)]

+ b1 · [π(y + b2 + a2) + π(y + b2)]

+ g(y + a2 + b2) + g(y + a2) + g(y + b2) + g(y)

=x ·Da2Db2π(y) + a1 ·Db2π(y + a2) + b1 ·Da2π(y + b2)

+Da2Db2g(y).

Therefore we can formulate the cubic-like bentness property, in the next lemma
(which includes Lemma 2 as a particular case).
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Lemma 3. Consider a Boolean function f as in (16). Then f is cubic-like bent
if and only if, for any nonzero a = (a1, a2) ∈ F2m

2 , there exists b = (b1, b2) ∈ F2m
2

such that the following two conditions are satisfied:

1. Da2Db2π(y) ≡ 0,

2. a1 ·Db2π(y) + b1 ·Da2π(y) +Da2Db2g(y) ≡ 1.

Recall that we deduced Proposition 9 from Lemma 2 by considering the
particular values of a of the forms (a1, 0) and (0, a2); the fact that Relation (10)
was satisfied by some b for such nonzero values of a was sufficient for having it
satisfied by some b for every nonzero a. In the case of Lemma 3, we still have
that if (i) and (ii) of Proposition 9 are satisfied by π, then f in (16) is cubic-like
bent: exactly the same first part of proof as in Proposition 9 applies to the new
situation. Hence we can state in the next proposition that if x ·π(y) satisfies the
condition of Lemma 2 (for which it is sufficient that it does for these particular
forms of a), then function f(x, y) = x · π(y) + g(y) does too (whatever is g).
But the converse may not be true (see however Remark 12 below); indeed, for
a = (a1, 0) 6= 0, nothing changes, but for a = (0, a2) 6= 0, Relation (10) writes
“Da2Db2π(y) ≡ 0 and b1 ·Da2π(y) +Da2Db2g(y) ≡ 1”; hence we may not have
(ii) anymore, in the case there would not exist b satisfying Relation (10) and
such that b2 = 0. The converse becomes true if (ii) is assumed. We have then:

Proposition 14. Consider a function f(x, y) = x · π(y) + g(y) as in (16).
If the map h(x, y) = x · π(y) as in (8) is cubic-like bent (resp. if its dual is
cubic-like bent), then also f is cubic-like bent (resp. its dual is cubic-like bent).
Conversely, if f is cubic-like bent, then Permutation π satisfies Condition (i),
that is, for any a1 6= 0 there exists b2 such that a1 · Db2π(y) ≡ 1, and if π
also satisfies Condition (ii), that is, for every a2 6= 0, there exists among the
elements b such that DaDbf(x, y) ≡ 1, at least one that has the form (b1, 0),
then also x · π(y) is cubic-like bent.

Remark 12. Theoretically, there may exist cubic-like bent Maiorana-McFarland
functions given by (16) whose part x · π(y) is not cubic-like bent. It would be
interesting to find examples of such functions, and if possible a construction of
an infinite class of them. However, all the cubic-like bent functions we found in
our computer investigations satisfy Condition (ii) of Proposition 9, which may
then be a necessary and sufficient condition. In dimension n = 8, we shall see
in the paragraph before Subsection 7.1, that this is actually the case.

Remark 13. Thanks to Relation (12), we know that, when π is a permutation
of F4

2 of the form (11), then for any Boolean function g, the map x ·π(y) + g(y)
is cubic-like bent and its dual is cubic-like bent.

Remark 14. Notice that in Example 1 the cubic-like bent map f is (with a
change of variables) of the form x ·π2(y), where π2 is the permutation displayed
in Subsection 6.1.1. Hence, with g(y) = y1y2y4 the constructed map f + g is
cubic-like bent due to Proposition 14. Similarly, in Example 2 the bent map f
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is of the form x · π1(y), with π1 from Subsection 6.1.1. In this case g is of the
form x · τ(y) with τ linear and such that π+ τ is not a permutation. Therefore,
f + g = x · (π(y) + τ(y)) is not bent.

6.3 An infinite class of cubic-like bent functions having
any algebraic degrees between 2 and n

2

Proposition 14 gives us another construction method for cubic-like bent func-
tions of any degree up to m. Indeed, given m ≥ 3, consider any cubic bent
function f(x, y) = x · π(y) (that is indeed also cubic-like bent). For any m-
variable Boolean function g(y) the map f(x, y) + g(y) is cubic-like bent. Since
g can have degree up to m, we can construct a cubic-like bent function of any
degree up to m.

7 Computational results on the Maiorana-Mc-
Farland construction

We report in this section some computational results obtained with the help of
Magma Algebra package [2].

Mainly, the bent functions investigated are over F8
2 and a principal role is

played by permutations over F4
2. Such permutations have been entirely classified

up to affine equivalence: there are 302 such classes, see [3]. In the following we
often refer to this list.

Consider the 8-variable Boolean functions of the form

f(x, y) = x · π(y)

as in (8).
We obtain from Remark 10 that any permutation π of F4

2 that has a constant
derivative generates a bent function x · π(y) that is cubic-like bent and which
has a cubic-like bent dual. Indeed, if π has a constant derivative, up to an affine
transformation we can display it as

π(y) =

[
y1 + f(y2, y3, y4)
π̄(y2, y3, y4)

]
,

where π̄, being a permutation of F3
2, has degree at most 2. From Proposition 12

we deduce the statement.
Among the list of 302 permutations over F4

2, 10 are such that they admit a
constant derivative. Referring to the numbering given in [3], they corresponds
to no. 1, 258, 278, 293, 295, 297, 299, 300, 301, 302. Moreover, they are the
only maps π such that 2 6∈ Vπ, where

Vπ = V = {∗ |{b ∈ Fm2 ; DaDbπ(y) ≡ 0}| : a ∈ Fm2 \ {0} ∗}.

Therefore, as stated above, all these permutations generate a cubic-like bent
function, whose dual is also cubic-like bent.
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Remark 15. Notice that the fact that 2 6∈ V is not a necessary condition for
the function x · π(y) to be cubic-like bent. The first part “Da2Db2π(y) ≡ 0”
in Condition (10) of Lemma 2 is trivially satisfied by b2 = 0 or b2 = a2 and
the second part “a1 · Db2π(y) + b1 · Da2π(y) ≡ 1” does not exclude these two
possibilities. This makes that all the values in V are at least 2 and it may happen
that only these two values b2 = 0 and b2 = a2 satisfy Da2Db2π(y) ≡ 0 and then
2 ∈ V.

Apart from these 10 permutations, there are 263 permutations π in the
list such that for every a 6= 0, the second-order derivative is constantly zero
DaDbπ(x) = 0 if and only if b = 0 or b = a. Hence such that V = {∗215∗}. The
remaining 29 permutations are displayed in Table 1.

Table 1: Permutations of F4
2 such that 2 ∈ V 6= {∗215∗}

no. in [3] Deg V
22, 294 {∗13, 24, 38∗} {∗28, 46, 8∗}

39, 205, 283, 291 {∗13, 312∗} {∗212, 43∗}
96, 165, 206, 274, 289 {∗1, 26, 38∗} {∗212, 43∗}

112, 193, 202, 230,266, 268, 277, 284 {∗1, 22, 312∗} {∗212, 43∗}
140, 174, 234, 237 {∗23, 312∗} {∗212, 43∗}

231, 292 {∗1, 26, 38∗} {∗28, 46, 8∗}
242, 281 {∗27, 38∗} {∗212, 43∗}

290 {∗1, 26, 38∗} {∗212, 43∗}
298 {∗1, 214∗} {∗28, 87∗}

Among them, there are two cases of cubic-like bent functions x · π(y) where
2 ∈ V. They correspond to no. 283 and 298. Moreover, also for these maps, their
dual is cubic-like bent. Hence, in total, out of 302 permutations (up to affine
equivalence), 12 permutations produce cubic-like bent functions with cubic-like
bent duals.

Table 2 displays the results for the cases of f a cubic-like bent function in
dimension 8, where we report also the multiset Deg of the algebraic degrees of
the non-zero component functions and the multiset B as in (4). Notice that in
dimension 8 no Maiorana-McFarland cubic-like bent map is such that 2 ∈ B.
From Proposition 14, we have that these 12 permutations generates also cubic-
like bent maps of the form f(x, y) = x · π(y) + g(y), for any possible choice of
the Boolean functions g, and the dual of f is also cubic-like bent.

The other permutations left do not satisfy either one or the other of the
conditions of Proposition 9. This implies that, using Proposition 14, these
permutations cannot generate any cubic-like bent map of the form f(x, y) =
x · π(y) + g(y). So, also for the general Maiorana-McFarland construction, if a
function f in dimension 8 is cubic-like bent, then also its dual is cubic-like bent.
To be complete, we give in Tables 3 and 4, the results for these other functions,
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Table 2: Permutations π of F4
2 such that x · π(y) is cubic-like bent

no. in [3] Deg B V
1 {∗115∗} {∗128255∗} {∗1615∗}

258 {∗17, 28∗} {∗32224, 12831∗} {∗812, 163∗}
278 {∗13, 24, 38∗} {∗8192, 1648, 328, 1287∗} {∗414, 16∗}
283 {∗13, 312∗} {∗4192, 1660, 1283∗} {∗212, 43∗}

293,295 {∗1, 214∗} {∗8224, 3228, 1283∗} {∗414, 16∗}
297 {∗11, 26, 38∗} {∗4128, 896, 1616, 3212, 1283∗} {∗414, 16∗}
298 {∗1, 214∗} {∗2128, 32126, 128∗} {∗28, 87∗}
299 {∗17, 38∗} {∗16240, 12815∗} {∗414, 16∗}
300 {∗27, 38∗} {∗4224, 1616, 3214, 128∗} {∗414, 16∗}

301, 302 {∗13, 212∗} {∗8128, 32120, 1287∗} {∗48, 86, 16∗}

but since they are not cubic-like bent, we put these tables at the end of the
paper, after the bibliography, see Appendix B. Although, it is interesting to
notice that there are some bent functions f(x, y) = x·π(y) for which no non-zero
second-order derivative equals the constant function 1. These are the functions
generated from the permutation no. 20, 127, 128, 220, 241, 245, 247, 254, 267,
280, 296. These permutations have only cubic components, for example

π20(y) =


y1y2 + y1y3y4 + y1y4 + y1 + y2y3

y1y2y4 + y1y3 + y1y4 + y2y3y4 + y2y3 + y2y4 + y2 + y3y4

y1y2y3 + y1y2y4 + y1y3 + y1y4 + y2y4 + y3

y1y2y3 + y1y2y4 + y1y2 + y1y4 + y2y3y4 + y2y3 + y4

 .
Notice that, in [4] Cantaut and Charpin describe infinite families of such func-
tions but their constructions do not cover dimension 8.

7.1 When π over F5
2 has a constant derivative

We just saw that any permutation π in F4
2 that has a constant derivative gen-

erates a cubic-like bent function x · π(y).
This same argument is no more valid in dimension 5. Let us consider π a

permutation of F5
2 with a constant derivative, containing therefore π̄, permuta-

tion of F4
2. If we take π̄ such that x̄ · π̄(ȳ) is not cubic-like bent, and we have

plenty of such permutations, then x ·π(y) is not cubic-like bent either. However,
from computational results, we know that if π̄ generates a cubic-like bent map,
so does π̄−1. Hence if x · π(y) with a constant derivative is cubic-like bent, the
dual x · π−1(y) is also cubic-like bent.

When considering f of the general form

f(x, y) = x · π(y) + g(y),
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we already know that in dimension 8, any such function is cubic-like bent if and
only if x · π(y) is cubic-like bent.

We know that π must satisfy the following property: for any a1 6= 0 there
exists b2 such that a1 · Db2π(y) ≡ 1. Since π is of the form (11), the same
property has to be satisfied by π̄: for any ā1 6= 0 there exists b̄2 such that
ā1 ·Db̄2π(y) ≡ 1.

We know that, for π̄ permutation of F4
2, this property is satisfied only by

those permutations that generates cubic-like bent functions. Hence, in dimen-
sion 10, the bent function f(x, y) = x ·π(y)+g(y), with π as in (11), is cubic-like
bent if and only if f(x, y) = x · π(y) is cubic-like bent.

Conclusion

In this work, we studied those bent Boolean functions that share with cubic
bent maps the property that each derivative in a nonzero direction has itself a
derivative equal to constant function 1; we call such functions cubic-like bent.
The idea was to identify an interesting sub-class of bent functions, and to un-
derstand better the behavior of its elements. We showed the invariance of the
notion with respect to EA-equivalence, and provided characterizations by means
of the Walsh transform.

We studied as a typical example Maiorana-McFarland functions, which al-
lowed us to prove that cubic-like bent functions can have any degree between 2
and n

2 . Proving that cubic-like bent maps exist that are not cubic was of course
necessary for the interest of our study; finding such functions with any admissi-
ble degree strengthens it. Maiorana-McFarland cubic-like bent functions are not
rare and this may be different for other classes than the Maiorana-McFarland
class, for instance the PSap class. We also found examples of bent functions
which are not cubic-like bent and do not have cubic-like bent duals. So, the class
of cubic-like bent functions is a proper subclass of bent maps, and it is more
general than the class of cubic bent functions. We studied some subclasses of
Maiorana-McFarland cubic-like bent functions. We presented computational re-
sults which completely classify Maiorana-McFarland cubic-like bent functions in
dimension 8 and partially in dimension 10. In dimension 8, most of the obtained
maps belong to a specific class, the functions constructed from a permutation
with a constant derivative.

We leave for a second paper the investigation of the cubic-like bent property
for other well-known constructions of bent maps, which would take a too large
number of additional pages and will need more work. It seems in particular
that no PSap function can be cubic-like bent and if this is confirmed, it will
show one more difference between Maiorana-McFarland and PSap classes, and
an interesting property of the latter.

Future work will be to deduce new constructions of bent functions using the
cubic-like bentness property. This seems very challenging.
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A Proof of Proposition 7 in Section 4

First, assume that f(x) = xn−3xn−2xn−1xn+
∑m
i=1 xixn−i+1, wherem = n

2 ≥ 4.
Recall that, since the cubic-like bentness property is EA-invariant, it is only suf-
ficient to prove that f is cubic-like bent.
Clearly, for every nonzero linear combination a of e1, . . . , en−4 we have that
Daf is a linear function and so |Ba| = 2n−1. Notice that there are 2n−4 − 1
such elements a. Consider then an element a = (a1, . . . , an) ∈ Fn2 such that
{an−3, an−2, an−1, an} 6= {0}. Hence there exists 0 ≤ j ≤ 3 such that an−j = 1.
By taking b = ej+1, we have Dbf(x) = xn−j and so DaDbf(x) = 1. This con-
cludes the proof for the cubic-like bentness of f .

To prove the other direction of Proposition 7, assume that f is a cubic-like
bent function with |{a ∈ Fn2 ; deg(Daf) = 1}| = 2n−4 − 1. Given Equation (5),
we can consider

f(x)
aff∼ xn−3xn−2xn−1xn + q3(xn−3, xn−2, xn−1, xn) + q(x1, . . . , xn),

where q3 is a cubic map in four variables and q is a quadratic map in n variables.
By the action of an affine transformation, it is possible to cancel all the

cubic terms in q3. Indeed assume that xn−2xn−1xn appears in q3, then with
the transformation xn−3 → xn−3 + 1 this cubic term disappears and the other
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cubic terms are not modified. By applying the same procedure for each cubic
term in q3, we obtain

f(x)
aff∼ xn−3xn−2xn−1xn + q̃2(x1, . . . , xn),

where q̃2 is a quadratic map. Up to considering EA-equivalence, we can assume
that q̃2 is a purely-quadratic polynomial, that is q̃2(x) =

∑
i<j bi,jxixj . In

the following we will write sometimes bj,i instead of bi,j . Moreover, we will
refer to the coefficients of the purely-quadratic polynomial as bi,j even after
applying a linear transformation. Set g(x) = xn−3xn−2xn−1xn + q̃2(x). We
have that Deng(x) = xn−3xn−2xn−1 +

∑
i bi,nxi. From the cubic-like bentness

property we have that bi,n 6= 0 for at least one element 1 ≤ i ≤ n− 4. Without
loss of generality let b1,n = 1 and, by applying the transformation x1 → x1 +∑n−1
i=2 bi,nxi we obtain an equivalent map (with abuse of notation, we will keep

referring to the equivalent map as g)

f(x)
EA∼ g(x) = xn−3xn−2xn−1xn + x1xn +

n−2∑
i=1

n−1∑
j=i+1

bi,jxixj .

For the derivative in en−1 we obtain xn−3xn−2xn +
∑
i bi,n−1xi. Again, there

exists an element bi,n−1 6= 0 for 1 ≤ i ≤ n − 4. If the only possible ele-
ment is for i = 1, then deriving in the direction of a = en + en−1 we obtain
Dag(x) = xn−3xn−2 +xn−3xn−2xn−1 +xn−3xn−2xn+x1 +x1 +bn−3,n−1xn−3 +
bn−2,n−1xn−2 = xn−3xn−2(1 + xn−1 + xn) + bn−3,n−1xn−3 + bn−2,n−1xn−2.
There is no element that satisfies the cubic-like bentness property for this spe-
cific derivative. Hence we can assume that b2,n−1 = 1 and with the trans-

formation x2 → b1,n−1x1 + x2 +
∑n−2
i=3 bi,n−1xi we obtain an equivalent map

xn−3xn−2xn−1xn + x1xn + x2xn−1 +
∑n−2
i,j=1 bi,jxixj . By applying the same

procedure for xn−2 and xn−3 we get

f(x)
EA∼ g(x) = xn−3xn−2xn−1xn +

4∑
i=1

xixn−i+1 +

n−4∑
i,j=1

bi,jxixj .

Now, Den−4
g(x) =

∑n−3
i=1 bi,n−4xi. If bi,n−4 6= 0 for a 5 ≤ i ≤ n−5, then without

loss of generality we assume b5,n−4 = 1 and applying a linear transformation,
we obtain

f(x)
EA∼ g(x) = xn−3xn−2xn−1xn +

5∑
i=1

xixn−i+1 +

n−5∑
i,j=1

bi,jxixj .

Assume instead that Den−4g(x) =
∑4
i=1 bi,n−4xi, with at least one of the coeffi-

cient nonzero. Without loss of generality, assume that b1,n−4 = 1 . Therefore we
have that the derivative in the direction of a = en + b2,n−4en−1 + b3,n−4en−2 +
b4,n−4en−3 + en−4 is (xn + 1)(xn−1 + b2,n−4)(xn−2 + b3,n−4)(xn−3 + b4,n−4) +
xnxn−1xn−2xn−3. By applying the transformation (xn, xn−1, xn−2, xn−3) →
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(xn, xn−1 + b2,n−4(xn + 1), xn−2 + b3,n−4(xn + 1), xn−3 + b4,n−4(xn + 1)), we
obtain xn−1xn−2xn−3, which cannot be balanced. So we get to a contradiction.

The same procedure can be applied for each variable xn−t for t = 5, . . . , n/2−
1. Indeed, suppose we applied successfully the procedure for the variable xn−k−1,

for some k ≥ 5, so g(x) = xn−3xn−2xn−1xn +
∑k
i=1 xixn−i+1 +

∑n−k
i,j=1 bi,jxixj .

The next step is to consider a = en−k and compute the derivative. We have

Dag(x) =
∑n−k−1
i=1 bi,n−kxi. Using the same argument as before, we know that

there exists j ≥ 5 such that bj,n−k = 1; and by applying a linear transfor-

mation, we can assume Dag(x) =
∑n−k−1
i=5 bi,n−kxi. Suppose now that, for

j ≥ k + 1 we have bj,n−k = 0, so Dag(x) =
∑k
i=5 bi,n−kxi. In this case,

for a′ = en−k + b5,n−ken−4 + . . . + bk,n−ken−k+1 we would obtain Da′g(x) =∑k
i=5 bi,n−kxi + b5,n−kx5 + . . . + bk,n−kxk = 0. Therefore there must exist

j ≥ k + 1 such that bj,n−k = 1, without loss of generality let bk+1,n−k = 1,
and applying a linear transformation, we get to g(x) = xn−3xn−2xn−1xn +∑k+1
i=1 xixn−i+1 +

∑n−k−1
i,j=1 bi,jxixj .

Therefore, with the iteration of this procedure, the map obtained is of the
form

f(x)
EA∼ g(x) = xn−3xn−2xn−1xn +

n/2∑
i=1

xixn−i+1 +

n/2∑
i,j=1

bi,jxixj .

For i = 5, . . . , n/2 we apply the linear transformation xn−i+1 → xn−i+1 +∑n/2
j=1 bi,jxj , obtaining

f(x)
EA∼ g(x) = xn−3xn−2xn−1xn +

n/2∑
i=1

xixn−i+1 +

3∑
i=1

4∑
j=i+1

bi,jxixj .

As last step, we assume that one of the coefficients bi,j is nonzero. Hence,
assume without loss of generality that the nonzero coefficient is for i = 1, so we
have that β = (b1,2, b1,3, b1,4) = (β1, β2, β3) 6= (0, 0, 0). Hence, the derivative in
the direction of a = e1 + β · (en−1, en−2, en−3) is of the form

xn(β1β2β3 + β1xn−2xn−3 + β2xn−1xn−3 + β3xn−1xn−2 + β1β2xn−3

+ β1β3xn−2 + β2β3xn−1 + 1).

By analysing all possible cases, we have that no second-order derivative can be
the constant function 1. Indeed,

� if β = (100) then the derivative function equals xn(xn−2xn−3 + 1);

� if β = (110) we have xn(xn−2xn−3+xn−1xn−3+xn−3+1)
EA∼ xn(xn−2xn−3+

1);

� if β = (111) we have xn(xn−2xn−3+xn−1xn−3+xn−1xn−2+xn−3+xn−2+

xn−1)
EA∼ xn(xn−2xn−3 + 1).

This concludes the proof.
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B Further computational results

We report here some tables with computational results, that were not listed in
Section 7 because of lack of space.

Table 3: Permutations π of F4
2 with 1 ∈ Deg and x · π(y) not cubic-like bent

no. Deg B
7, 87, 135, 286 {∗1, 314∗} {∗0108, 2128, 416, 162, 128∗}

10 {∗1, 314∗} {∗018, 2128, 496, 1612, 128∗}
22 {∗13, 24, 38∗} {∗012, 4128, 872, 1628, 3212, 1283∗}
39 {∗13, 312∗} {∗012, 4192, 824, 1624, 1283∗}

45, 46, 158, 159, 190 {∗1, 22, 312∗} {∗0108, 296, 448, 322, 128∗}
51, 251 {∗1, 22, 312∗} {∗072, 296, 480, 164, 322, 128∗}

53 {∗1, 22, 312∗} {∗090, 296, 464, 162, 322, 128∗}
73 {∗1, 22, 312∗} {∗054, 296, 496, 166, 322, 128∗}

96, 289, 290 {∗1, 26, 38∗} {∗072, 264, 472, 840, 326, 128∗}
107 {∗1, 314∗} {∗072, 2128, 448, 166, 128∗}
112 {∗1, 22, 312∗} {∗036, 2128, 432, 840, 1616, 322, 128∗}

113, 259 {∗1, 314∗} {∗0126, 2128, 128∗}
122 {∗1, 22, 312∗} {∗074, 2128, 448, 162, 322, 128∗}
125 {∗1, 22, 312∗} {∗072, 2128, 432, 816, 164, 322, 128∗}
165 {∗1, 26, 38∗} {∗046, 264, 4112, 820, 166, 326, 128∗}
193 {∗1, 22, 312∗} {∗092, 296, 456, 88, 322, 128∗}

194, 288 {∗1, 314∗} {∗090, 2128, 432, 164, 128∗}
202 {∗1, 22, 312∗} {∗072, 296, 456, 824, 164, 322, 128∗}

205, 291 {∗13, 312∗} {∗060, 4192, 1283∗}
206 {∗1, 26, 38∗} {∗054, 248, 4120, 820, 166, 326, 128∗}
230 {∗1, 22, 312∗} {∗082, 296, 456, 816, 162, 322, 128∗}
231 {∗1, 26, 38∗} {∗012, 2128, 888, 1612, 3214, 128∗}
266 {∗1, 22, 312∗} {∗056, 2128, 440, 824, 164, 322, 128∗}
268 {∗1, 22, 312∗} {∗072, 2128, 448, 84, 322, 128∗}

270, 273, 285 {∗1, 314∗} {∗054, 2128, 464, 168, 128∗}
274 {∗1, 26, 38∗} {∗032, 2128, 456, 832, 326, 128∗}
277 {∗1, 22, 312∗} {∗048, 2128, 432, 840, 164, 322, 128∗}
282 {∗1, 22, 312∗} {∗092, 2128, 432, 322, 128∗}
284 {∗1, 22, 312∗} {∗046, 2128, 448, 820, 1610, 322, 128∗}
292 {∗1, 26, 38∗} {∗040, 264, 4112, 828, 3210, 128∗}
294 {∗13, 24, 38∗} {∗032, 4128, 884, 328, 1283∗}
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Table 4: Permutations π of F4
2 with 1 6∈ Deg and x · π(y) not cubic-like bent

no. Deg B
2, 3, 4, 17, 26, 42, 54, 94, 108, 115, {∗2, 314∗} {∗0171, 280, 163, 32∗}

119, 171, 176, 178, 181, 213

5, 30, 83, 103, 111, 142, 150, 191 {∗2, 314∗} {∗0187, 248, 416, 163, 32∗}
6, 69, 138, 201, 210, 272 {∗2, 314∗} {∗0204, 232, 416, 162, 32∗}

8, 15, 18, 31, 137, 169, 187, 207 {∗2, 314∗} {∗0153, 280, 416, 165, 32∗}
9, 12, 25, 34, 40, 41, 58, 64, 75,84, 98, 130,

141, 147, 156, 157,179, 182, 208, 209, {∗2, 314∗} {∗0188, 264, 162, 32∗}
211, 215, 219, 228, 238, 248, 253,257

11, 44 {∗2, 314∗} {∗0119, 2112, 416, 167, 32∗}
13, 162, 184, 195, 221, 260, 264, 271 {∗23, 312∗} {∗0138, 296, 416, 162, 323∗}

14, 19, 23, 33, 36, 50, 62, 63, 68,72, 81, 85, 88, 91,

97, 100, 124,131, 139, 143, 149, 153, 168, 173, 183, {∗2, 314∗} {∗0205, 248, 16, 32∗}
198, 212, 218, 223, 229, 232, 233, 244, 250, 256

16, 35, 48, 59, 101, 110, 227, 243, 269 {∗2, 314∗} {∗0222, 232, 32∗}
20, 127, 128, 220, 241, 245, 247, 254, 267, 280, 296 {∗315∗} {∗0255∗}

21, 43, 92, 136, 175, 199, 216, 265 {∗315∗} {∗0187, 264, 164∗}
24, 47, 61, 66, 76, 77, 79, 93, 114, 123, 151, 185, 203 {∗315∗} {∗0204, 248, 163∗}

27, 29, 57, 80, 89, 95, 116, 120, 148, 240 {∗2, 314∗} {∗0154, 296, 164, 32∗}
28 {∗2, 314∗} {∗0136, 296, 416, 166, 32∗}

32, 38, 60, 65, 99, 105, 160, 163, 192, 214, 235, 287 {∗315∗} {∗0238, 216, 16∗}
37, 49, 55, 67, 104, 117, 118, 121, 129, 146, 152, 161, {∗315∗} {∗0221, 232, 162∗}

166, 167, 170, 172, 189, 200, 217, 252, 261

56, 70, 86, 102, 204, 226, 239, 249, 255, 262, 275 {∗23, 312∗} {∗0172, 264, 416, 323∗}
52, 155 {∗315∗} {∗0170, 280, 165∗}

71 {∗315∗} {∗0136, 2112, 167∗}
74, 133, 196 {∗2, 314∗} {∗0170, 264, 416, 164, 32∗}

78 {∗315∗} {∗085, 2160, 1610∗}
82, 126, 186, 246 {∗23, 312∗} {∗0154, 264, 432, 162, 323∗}

90, 134, 144, 145, 188 {∗23, 312∗} {∗0155, 280, 416, 16, 323∗}
106, 109, 236, 263, 276 {∗315∗} {∗0153, 296, 166∗}

132 {∗2, 314∗} {∗0120, 2128, 166, 32∗}
140 {∗23, 312∗} {∗0154, 232, 456, 88, 162, 323∗}

154, 222 {∗23, 312∗} {∗0137, 280, 432, 163, 323∗}
164, 225 {∗23, 312∗} {∗0120, 296, 432, 164, 323∗}

174 {∗23, 312∗} {∗0136, 248, 448, 816, 164, 323∗}
177, 197 {∗23, 312∗} {∗0122, 2128, 162, 323∗}

224 {∗27, 38∗} {∗072, 2160, 816, 327∗}
180 {∗27, 38∗} {∗0119, 216, 4112, 16, 327∗}
234 {∗23, 312∗} {∗0138, 264, 440, 88, 162, 323∗}
237 {∗23, 312∗} {∗0102, 296, 432, 812, 1610, 323∗}
242 {∗27, 38∗} {∗054, 2144, 424, 820, 166, 327∗}
279 {∗23, 312∗} {∗0136, 296, 816, 164, 323∗}
281 {∗27, 38∗} {∗0136, 488, 824, 327∗}
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