
Revisiting Oblivious Top-k Selection with
Applications to Secure k-NN Classification

Kelong Cong1? , Robin Geelen2 , Jiayi Kang2 , and Jeongeun Park3?

1 Zama, Paris, France
kelong.cong@zama.ai

2 COSIC, ESAT, KU Leuven, Belgium
firstname.lastname@esat.kuleuven.be

3 Norwegian University of Science and Technology (NTNU)
jeongeun.park@ntnu.no

Abstract. An oblivious Top-k algorithm selects the k smallest elements
from d elements while ensuring the sequence of operations and memory
accesses do not depend on the input. In 1969, Alekseev proposed an
oblivious Top-k algorithm with complexity O(d log2 k), which was later
improved by Yao in 1980 for small k �

√
d.

In this paper, we revisit the literature on oblivious Top-k and propose
another improvement of Alekseev’s method that outperforms both for
large k = Ω(

√
d). Our construction is equivalent to applying a new trun-

cation technique to Batcher’s odd-even sorting algorithm. In addition,
we propose a combined network to take advantage of both Yao’s and
our technique that achieves the best concrete performance, in terms of
the number of comparators, for any k. To demonstrate the efficiency
of our combined Top-k network, we implement a secure non-interactive
k-nearest neighbors classifier using homomorphic encryption as an ap-
plication. Compared with the work of Zuber and Sirdey (PoPETS 2021)
where oblivious Top-k was realized with complexity O(d2), our exper-
imental results show a speedup of up to 47 times (not accounting for
difference in CPU) for d = 1000.

Keywords: Top-k selection · Homomorphic encryption · Machine learn-
ing · k-nearest neighbors · Sorting networks · TFHE.

1 Introduction

Outsourcing computation has been a popular solution to resolve modern conflicts
between large data collection versus limited local storage and computational
power. Stimulated by regulations such as the General Data Protection Reg-
ulation (GDPR), data confidentiality received growing attention in outsourced
computation. Fully Homomorphic Encryption (FHE) is a powerful cryptographic
technique that allows arbitrary computations over encrypted data without de-
crypting intermediate values. This interesting property enables secure compu-
tations that are non-interactive and propels FHE into a key privacy preserving

? Work done while the author was at COSIC, ESAT, KU Leuven.

https://orcid.org/0000-0002-2636-4406
https://orcid.org/0000-0003-4684-3532
https://orcid.org/0000-0002-1093-7978
https://orcid.org/0000-0002-0557-3540


2 K. Cong et al.

technology [11,16,33,27,15,14]. With promising speedup from hardware accelera-
tors [29,4,18,5], which can be up to three orders of magnitude faster than CPUs,
FHE can soon provide feasible solutions for a wider range of real-world, privacy
preserving applications.

Despite its promising potential, developing efficient FHE programs remains
difficult. An important part of the inefficiency is the amplification in computation
complexity when a plaintext program is converted into a program operating on
the corresponding FHE ciphertexts. For example, in the homomorphic evaluation
of the if-else paradigm, each conditional statement needs to be executed. By
extension, when traversing a binary tree, the full tree is touched instead of a
single path. In other words, the data secrecy guaranteed by FHE comes at the
cost of increased computational complexity, even if the overhead of FHE is low.

Data-oblivious algorithms in FHE. Fortunately, the increase in computational
complexity does not apply to data-oblivious programs where the sequence of
operations and memory accesses do not depend on the input. Therefore, data-
oblivious programs can be directly translated to their low-level FHE analogue.
In this sense, describing a high-level algorithm in a data-oblivious manner is an
FHE-friendly paradigm.

As an example, suppose we want to sort d encrypted elements homomorphi-
cally. Then which sorting algorithm should we use? Quicksort and heapsort turn
out to be not data-oblivious, and realizing those homomorphically is impracti-
cal despite their optimal time complexity of O(d log d). In contrast, Batcher’s
odd-even merge sort [22] is a data-oblivious algorithm with time complexity
O(d log2 d), and it can be realized homomorphically with the same complexity.

Additionally, the most appropriate cost measure depends on the FHE scheme.
In BGV [7], BFV [6,17] and CKKS [12], controlling the multiplicative depth (i.e.,
the number of consecutive multiplications) of the sorting algorithm is crucial.
On the other hand, optimizing the algorithmic complexity is more important in
the TFHE [13] scheme.

Oblivious Top-k selection. Given d elements, a Top-k algorithm selects its k
smallest (or largest) elements, while the output elements are not necessarily
sorted. Top-k selection is an important building block for various applications, in
which the k most important records in a huge information space (consisting of d
records) are extracted by defining proper scoring functions and returning those
with the best ranks. Widely used examples include the k-nearest neighbors clas-
sification technique [23], recommender systems [20] and genetic algorithms [26].

This work focuses on Top-k algorithms that are data-oblivious. Since oblivi-
ous programs can be visualized as networks of low-level modules, the terms Top-k
network and oblivious Top-k are used interchangeably. Section 2 introduces the
basics of the network visualization.

Research into oblivious Top-k has a long history. In this work, we revisit the
complexity upper bounds for the oblivious Top-k algorithm derived by Alekseev
in 1969 [2], which was then improved by Yao in 1980 [36]. Alekseev proposed a
procedure to select the Top-k out of 2k elements, which can be generalized into



Oblivious Top-k Selection and Secure k-NN Classification 3

Top-k out of d elements with complexity O(d log2 k) [22]. This method provides
better asymptotic complexity than recent FHE realizations and also outperforms
those in practice. Yao, on the other hand, introduced an unbalanced recursive
procedure in [36, Lemma 3.2] to improve Alekseev’s for small k �

√
d.

These results, however, have not received much attention so far. Recent real-
izations of oblivious Top-k in secure computation either use an oblivious sorting
algorithm [37,34,21] or call oblivious Min (or Max) k times repeatedly [9,19,8].
The complexity in the former method is not parameterized by k since it always
contains redundant comparisons, and the latter method results in complexity
O(kd), which grows linearly in k.

1.1 Our contributions

Firstly, we revisit Yao’s recursive approach for oblivious Top-k selection. We
observe that not all parameters d and k can be reduced to the recursive base
case (k = 1 or k = 2) in [36, Theorem 3.1]. Therefore, we fix this by handling one
more case using symmetry. This construction results in a Top-k network with
complexity O(d log k) for small k �

√
d.

Secondly, we also propose another improvement of Alekseev’s method inde-
pendent of Yao’s. Specifically, we improve Alekseev’s order-preserving merging
procedure from O(k log2 k) to O(k log k) by truncating Batcher’s merge. As such,
our network is essentially a truncated version of Batcher’s odd-even sorting net-
work with complexity O(d log2 k), where redundant comparisons are removed.

Since our truncated method is better for large k = Ω(
√
d) and Yao’s method

is better for small k, our third contribution is to introduce a combined method
which takes advantage of both. For concrete values of k and d, the combined net-
work recursively calls our truncated merge method or Yao’s method, depending
on which one uses fewer comparators. As such, the complexity of our combined
network is upper bounded by the better method of Yao’s and our truncated
Top-k, and slightly improves on those methods for some parameters. If k and d
are known in advance, the combined network can be preprocessed by the server.

Lastly, to demonstrate the efficiency of our combined Top-k network, we
present non-interactive and secure k-Nearest Neighbors (k-NN) classification as
an application. We use the TFHE homomorphic encryption scheme to handle
large multiplicative depth efficiently, and our protocol is implemented in the
TFHE-rs4 library. Compared with prior work [37], where oblivious Top-k was
realized with complexity O(d2), our experimental results show a speedup of up
to 47 times (not accounting for difference in CPU) for d = 1000 and k = 3.

1.2 Related work

Oblivious Top-k. To simplify the explanation, we denote an oblivious Top-k
out of d procedure as a (k, d)-selector. In 1969, Alekseev [2] proposed a (k, 2k)-
selector using sorting as a subprocedure. This method was generalized to arbi-
trary d [22], which achieves a complexity of (dd/ke− 1)(2S(k) + k) comparators

4 https://github.com/zama-ai/tfhe-rs

https://github.com/zama-ai/tfhe-rs


4 K. Cong et al.

for oblivious Top-k selection. We use S(k) to denote the number of comparators
in k-sorting (i.e., sorting k elements).

The above complexity was improved by Yao in 1980. Specifically, in the proof
of [36, Theorem 3.1], an unbalanced recursive procedure was introduced, which
yields better networks for small k. This recursive procedure will be discussed in
detail in Section 3.3.

Surprisingly, the constructions above have been ignored in research over the
past few decades. To our knowledge, recent data-oblivious Top-k solutions can
be categorised into three types:

– The first type applies a sorting algorithm directly, and then discards the d−k
irrelevant elements. For example, in a recent homomorphic k-NN realization,
Zuber and Sirdey [37] use sorting of complexity O(d2) to achieve Top-k.

– The second type repeatedly finds the Min (or Max) using the so-called tour-
nament method [19], where inputs are compared pairwise and the “winner”
proceeds to the next stage. This requires O(kd) comparisons in total.

– The third type is from hardware-related research [31]. This work builds a
bitonic Top-k algorithm by removing the unnecessary comparisons in bitonic
sorting, thereby achieving O(d log2 k). The number of comparators in bitonic
sorting is always higher than Batcher’s odd-even merge sort, but it is useful
in hardware designs due to a more cache-friendly memory access pattern.

Secure k-NN classification. Chen et al. [9] proposed two secure k-NN clas-
sifiers based on a mixture of homomorphic encryption and secure multi-party
computation. However, both versions use an approximate circuit for Top-k selec-
tion and therefore do not necessarily return the nearest neighbors. Additionally,
their protocols are interactive, which makes them less suitable for outsourced
computation in the context of cloud computing.

The most closely related work is that of Zuber and Sirdey [37], who also
propose a non-interactive k-NN algorithm based on the TFHE scheme. The
authors use a specialized, FHE-friendly approach to perform the Top-k selection
step, known as the delta-matrix method. This technique is asymptotically worse
than standard sorting algorithms. Our approach differs in this key step where we
identify Top-k selection networks that involve fewer comparison operators. The
delta-matrix method can be extended with a counting operation (called majority
vote in [3]) to sum the results of the individual classes. However, this step is not
necessary in sorting-based approaches, because they allow us to select the Top-k
smallest elements directly.

Other related works are either very slow or rely on totally different security
models. For example, Shaul et al. [32] implement a secure k-NN algorithm based
on BGV homomorphic encryption [7] but they report an execution time of several
hours for a moderately sized dataset. A completely different approach is taken by
the SCONEDB model via a scalar-product-preserving encryption scheme [35].
However, this protocol computes the query result in the clear, which leaks useful
information to the server. Another very recent paper proposes a lightweight k-NN
solution, but it needs to distribute trust between two non-colluding servers [30].



Oblivious Top-k Selection and Secure k-NN Classification 5

2 Preliminaries on data-oblivious algorithms

This section introduces the network visualization of oblivious algorithms. We
also give an example of Batcher’s (d1, d2)-merging algorithm [22, Chapter 5].

A network comprises of interconnected basic modules. In the case of sorting
and selection networks, this basic module is a comparator. Figure 1 shows the
network of odd-even merge sort for d = 4, where inputs enter from the left and a
vertical line compares two elements. The comparator swaps the inputs if the first
one is greater than the second. By counting the number of vertical lines and the
number of vertical lines in series, we know that the algorithm has 5 comparators
and a depth of 3. Here the depth refers to the number of consecutive comparisons
on the longest path from input to output.

m0

m1

min(m0,m1)
max(m0,m1)

Fig. 1: The basic module and the network of odd-even merge sort for d = 4.

2.1 Batcher’s merging network

A crucial component of many sorting networks (and our Top-k selection network)
is a merge procedure. Given two sorted arrays of size d1 and d2, then a (d1, d2)-
merging algorithm produces a sorted array that contains the same elements.

Batcher’s merging network is specified in Algorithm 1 (vector indexing is
done in subscript). This algorithm is based on a recursive decomposition of
the problem: first, the input arrays are split into their even- and odd-index
components. Then the even- and odd-index arrays are merged separately via
two recursive calls. One can prove that, after these recursive calls, the smallest
element is in array v, the second and third smallest elements are either in array v
or w (yet not in the same one), and so on. As such, the result can be reconstructed
by pairwise comparison of the elements of the recursive calls.

Theorem 1. The (2i, 2i)-merge contains 2i · i+ 1 comparators and has a com-
parison depth of i+ 1.

3 Top-k selection networks

3.1 Revisiting Alekseev’s Top-k network

Alekseev [2] proposed a merge procedure to construct a (k, 2k)-selector: partition
and sort two length-k arrays to obtain x and y, then compare and interchange

x0 with yk−1, x1 with yk−2, . . . , xk−1 with y0. (1)



6 K. Cong et al.

Algorithm 1 Batcher’s (d1, d2)-merge

Input: Two sorted arrays x (of size d1) and y (of size d2)
Output: Sorted array that contains the entries of x and y
1: function Merge(x,y)
2: if d1 · d2 = 0 then
3: return (x,y)
4: else if d1 · d2 = 1 then
5: return Compare(x0,y0)
6: else . Merge even- and odd-index components
7: v←Merge((x0,x2, . . . ,x2dd1/2e−2), (y0,y2, . . . ,y2dd2/2e−2))
8: w←Merge((x1,x3, . . . ,x2bd1/2c−1), (y1,y3, . . . ,y2bd2/2c−1))
9: z← (v0,w0,v1,w1, . . . )

10: for i← 1 to b(size(z)− 1)/2c do
11: (z2i−1, z2i)← Compare(z2i−1, z2i)
12: end for
13: return z
14: end if
15: end function
16: function Compare(x, y) . Comparator module
17: return (min(x, y),max(x, y))
18: end function

This can be generalized into Top-k out of d elements by partitioning the inputs
into dd/ke length-k arrays and applying Alekseev’s procedure (two k-sortings
and k comparisons) dd/ke − 1 times as in the tournament procedure [22]. It
solves the Top-k problem using (dd/ke− 1)(2S(k) + k) comparators, where S(k)
is the number of comparators for k-sorting. Realizing S(k) with practical sorting
networks (e.g., Batcher’s odd-even merge sort) leads to an asymptotic complexity
of S(k) = O(k log2 k), so this Top-k network consists of O(d log2 k) comparators.

Reinterpretation as order-preserving merging. Let (d1, d2, k)-merge de-
note an order-preserving merge where the inputs are two sorted arrays of length
d1 and d2, and the output is the sorted Top-k out of d1 + d2 elements. Then
Alekseev’s Top-k procedure can be reinterpreted into three steps:

1. sort dd/ke length-k arrays;
2. apply dd/ke−2 times (k, k, k)-merge in the tournament manner, where each

merge consists of the procedure from (1) and a k-sorting of the output;
3. apply the procedure from (1).

In step 2, each (k, k, k)-merge has complexity S(k) + k. Using practical sort-
ing networks, such as Batcher’s odd-even sorting network, leads to complexity
O(k log2 k) for (k, k, k)-merge.

3.2 Our truncated sorting network

Our order-preserving merging. We achieve (k, k, k)-merges differently: we
observe that Batcher’s (d1, d2)-merge in Algorithm 1 is order-preserving with an



Oblivious Top-k Selection and Secure k-NN Classification 7

output array of length d1 + d2. Since only the Top-k smallest elements are of
interest, directly running Batcher’s (d1, d2)-merge would be excessively costly.
Instead, we generalize the merging step from Algorithm 1 into Algorithm 2,
which removes redundant comparisons and outputs at most k elements.

Algorithm 2 Our truncated (d1, d2, k)-merge

Input: Two sorted arrays x (of size d1 ≤ k) and y (of size d2 ≤ k) and k > 0
Output: Sorted array that contains the entries of x and y, or their k smallest entries

if k < d1 + d2
1: function Merge(x,y, k)
2: if d1 · d2 = 0 then
3: z← (x,y)
4: else if d1 · d2 = 1 then
5: z← Compare(x0,y0)
6: else . Merge even- and odd-index components
7: v←Merge((x0,x2, . . . ,x2dd1/2e−2), (y0,y2, . . . ,y2dd2/2e−2), bk/2c+ 1)
8: w←Merge((x1,x3, . . . ,x2bd1/2c−1), (y1,y3, . . . ,y2bd2/2c−1), bk/2c)
9: z← (v0,w0,v1,w1, . . . )

10: for i← 1 to b(size(z)− 1)/2c do
11: (z2i−1, z2i)← Compare(z2i−1, z2i)
12: end for
13: end if
14: return Truncate(z, k)
15: end function
16: function Truncate(x, k) . Truncate to k elements
17: i← min(size(x), k)
18: return (x0, . . . ,xi−1)
19: end function

Theorem 2. The truncated (k, k, k)-merge contains O(k log k) comparators and
has a comparison depth of O(log k).

Note that our order-preserving merge procedure is not only asymptotically better
than Alekseev’s O(k log2 k), but is also better in practice: as Figure 2 shows, it
contains fewer comparisons for a small value of k = 3.

(a) Alekseev’s (b) Ours

Fig. 2: Two constructions of a (3, 3, 3)-merge network.



8 K. Cong et al.

Our truncated sorting network. Realizing step 2 in Alekseev’s Top-k with
our truncated (k, k, k)-merge is essentially a truncated version of Batcher’s odd-
even sorting algorithm, where the Top-k elements are selected in a recursive
approach. As can be seen in Algorithm 3, we split the initial array into two parts,
find the Top-k elements of these two parts recursively, and then call Algorithm 2
to compute the final result.

Moreover, our Algorithm 3 also improves the input partitioning in Alekseev’s
step 1. Specifically, we observe that the truncated network is more efficient if the
chunk size is chosen as a multiple of µ = 2dlog ke. We therefore use the following
heuristic: if d > µ, the first chunk’s size is computed as a multiple of µ that
is close to d/2. Otherwise, the first chunk’s size is equal to dd/2e. The second
chunk simply consists of the remaining elements (i.e., the ones that are not in
the first chunk). As an example, the resulting network for d = 16 and k = 3 is
shown in Figure 3, where each box represents a merging procedure.

Algorithm 3 Our truncated odd-even merge sort

Input: Array x (of size d > 0) and k > 0
Output: Sorted array that contains the entries of x, or its k smallest entries if k < d
1: function Sort(x, k)
2: if d = 1 then
3: return x
4: else . Sort two chunks separately and merge
5: i← ChunkSize(d, k)
6: v← Sort((x0, . . . ,xi−1), k)
7: w← Sort((xi, . . . ,xd−1), k)
8: return Merge(v,w, k)
9: end if

10: end function
11: function ChunkSize(d, k) . Compute size of first chunk
12: µ← 2dlog ke

13: if d ≤ µ then
14: return dd/2e
15: else
16: return µ · dd/(2µ)e
17: end if
18: end function

Theorem 3. Our network for finding the k smallest elements out of d has time
complexity O(d log2 k) and depth O(log d · log k).

Proof. For the ease of asymptotic analysis, we restrict the parameters d and k
to powers of two. In this case, the full algorithm reduces to Batcher’s odd-even
sorting network until obtaining d/k sorted arrays of size k, and then performing
the (k, k, k)-merge recursively as in the tournament method.



Oblivious Top-k Selection and Secure k-NN Classification 9

Fig. 3: Our network for finding the 3 smallest values out of 16, which has 35
comparators and depth 9. Boxes visualize our truncated (d, d, 3)-merge for d =
1, 2, 3, 3 from the leftmost to the rightmost box.

Using Theorem 2, the comparison depth is

1 + 2 + . . .+ log k +O(log k) · log
d

k
= O(log d · log k),

and the total number of comparisons is

log k∑
i=1

d

2i
(2i−1(i− 1) + 1) +O(k log k) · d

k
= O

(
log k∑
i=1

d

2
· i+ d log k

)
= O(d log2 k).

ut

Note that our Algorithm 3 always outputs sorted results, but the output of the
Top-k problem does not need to be sorted. Therefore, two more optimizations
are incorporated in the implementation: (1) if k > d/2, we can exchange the
roles of k and d−k (this will be explained in more detail in Section 3.3); (2) the
last merge box can be replaced by Alekseev’s merge procedure [2], where only
d1 + d2 − k comparators are used.

Comparison with related work. To the best of our knowledge, there ex-
ist three Top-k methods of complexity O(d log2 k): Alekseev’s procedure (Sec-
tion 3.1), a method based on bitonic sorting [31], and our method from Algo-
rithm 3. Despite the same asymptotic complexity, our algorithm has the fewest
comparators, following the explanation in Algorithm 3 and Section 1.2. An ex-
ample of d = 40 is presented in Figure 4. Note that the monotonicity in our
Top-k is a result of our input partitioning optimization.



10 K. Cong et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

50

100

150

200

250

300

350

400

Nu
m

be
r o

f c
om

pa
ris

on
s

SPM18
Alekseev's
Ours

Fig. 4: The number of comparisons U(k, d) in selecting the Top-k elements out of
d = 40 using the method in SPM18 [31], Alekseev’s method and our truncated
network. The number of comparisons is shown only for 1 ≤ k ≤ d/2 as U(k, d) =
U(d− k, d) by symmetry.

3.3 Yao’s Top-k selection network revisited

Yao [36] designed a Top-k selection network via direct recursion. Using bd/2c
comparators, the input is first partitioned into two halves x = (x1, . . . ,xdd/2e)
and y = (y1, . . . ,ybd/2c) such that xi < yi for i = 1, . . . , bd/2c. At most bk/2c
elements of the desired output will be in array y, so we can use a (bk/2c, bd/2c)-
selector to find those elements. Then the output of this selector and array x
are given to a (k, dd/2e + bk/2c)-selector, which produces the final result. An
example construction of a (4, 9)-selector is given in Figure 5.

Theorem 4 (Yao [36]). The comparator count UY (k, d) for Top-k using Yao’s
recursion satisfies

UY (k, d) ≤ ddlog (k + 1)e+ ck (log d)
dlog ((k+1)/3)e

,

where ck = O(k2+λk) and λk = O(log log k).

For small k �
√
d, the complexity UY (k, d) is dominated by the first term

ddlog (k + 1)e. This is asymptotically lower than our complexity of O(d log2 k)
(see Section 3.2). However, this is not true for k = Ω(

√
d), because the second

term in UY (k, d) is asymptotically larger than O(d log2 k).
The pseudocode for Yao’s method is given in Algorithm 4. Next to the re-

cursion described above, multiple special cases are handled:

– If k = 1 or k = 2, we directly use the tournament method (pseudocode for
the tournament method is omitted for brevity).

– We observe that if k > d/2, one can reduce the number of comparators by
exchanging the roles of k and d − k: instead of computing the k smallest
elements, we find the d − k largest elements and return the remaining ones
(made explicit by the set difference on line 8). The reverted functionality is
called YaoSwap and returns the largest entries instead of the smallest ones.



Oblivious Top-k Selection and Secure k-NN Classification 11

(2, 4)-selector

(4, 7)-selector

Fig. 5: Recursive construction of a (4, 9)-selector using Yao’s method.

3.4 Combined network

Since our truncated method is better for large k = Ω(
√
d) and Yao’s method

is better for small k, we combine them into one oblivious Top-k network for
improved performance. More specifically, the combined network recursively calls
our truncated merge method or Yao’s method, depending on which one uses
fewer comparators. As Figure 6 shows, the complexity of our combined network
is upper bounded by the better method of Yao’s and our truncated Top-k, and
it slightly improves on those methods for some parameters. This improvement is
only possible because the values of d and k change dynamically throughout the
recursive calls of Yao’s method.

Algorithm 4 Yao’s Top-k selection network

Input: Array x (of size d > 0) and 0 < k ≤ d
Output: Array that contains the k smallest entries of x
1: function Yao(x, k)
2: if k = 1 then
3: x← Tour(x)
4: else if k = 2 then
5: (x0,x2, . . . ,xd−1)← Tour(x0,x2, . . . ,xd−1)
6: (x1,x2, . . . ,xd−1)← Tour(x1,x2, . . . ,xd−1)
7: else if k > d/2 then . Exchange k with d− k
8: return x \YaoSwap(x, d− k)
9: else . Denote xi...j = (xi, . . . ,xj)

10: base← (d mod 2)− 1
11: for i← 1 to bd/2c do
12: (xbase+i,xd−i)← Compare(xbase+i,xd−i)
13: end for
14: xdd/2e...d−1 ← Yao(xdd/2e...d−1, bk/2c)
15: x0...dd/2e+bk/2c−1 ← Yao(x0...dd/2e+bk/2c−1, k)
16: end if
17: return Truncate(x, k)
18: end function



12 K. Cong et al.

1 51 101 151 201 251 301 351 401 451
k

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f c
om

pa
ris

on
s

Yao's
Ours
Combined

Fig. 6: U(k, d) in selecting the Top-k elements out of d = 1000 using the network
with our truncated merge, the network with Yao’s recursion and the combined
method. The number of comparisons is shown only for 1 ≤ k ≤ d/2 as U(k, d) =
U(d− k, d) by symmetry.

4 Our k-NN protocol instantiated with TFHE

We introduce our application of Top-k to secure k-NN, which consists of two
phases: computation of the squared distances and finding the k closest vectors,
together with the corresponding class labels. This is done based on the TFHE
encryption scheme. Commonly used TFHE notations and symbols for the k-NN
classification are summarized in Table 1. In particular, we use 〈v,w〉 for the dot
product between two vectors v and w. We also define R = Z[X]/(XN + 1) and
Rq = Zq[X]/(XN + 1), where q is a positive integer and N is a power of two.

Given a base g and a decomposition parameter `, we define a gadget vector

g = (1, g, . . . , g`−1)>

and a gadget matrix G = I2 ⊗ g, where ⊗ denotes the Kronecker product. The
gadget decomposition function g−1(·) satisfies 〈g−1(a),g〉 ≈ a (mod q) for all
a ∈ Rq. The result has small entries, i.e., ‖g−1(a)‖∞ ≤ g/2. This can be extended
entry-wise to vectors, that is, G> ·G−1(b) ≈ b (mod q) with ‖G−1(b)‖∞ ≤ g/2
for all b ∈ R2

q.

4.1 Threat model and security for k-NN

Similarly to previous works [9,37] on secure k-NN classification, our threat model
considers a semi-honest (honest-but-curious) server that follows the protocol
correctly, but tries to obtain information about the client from publicly known
data. To reach our security goals, the client encrypts its query before sending
it to the server. The database itself is owned by the server and therefore does
not need to be encrypted. After the homomorphic operation (via our protocol)
with the server’s data, the final output is also encrypted under the client’s key.
Since the data seen by the server is always encrypted, the client’s input privacy
is guaranteed by the IND-CPA property of TFHE. Our work does not consider
model privacy, so the client might infer information about the server’s database.



Oblivious Top-k Selection and Secure k-NN Classification 13

4.2 TFHE building blocks

TFHE ciphertexts and basic operations. The TFHE scheme [13] uses sev-
eral ciphertext types based on the (ring) learning with errors problem [28,25].
Each ciphertext contains a noise or error term e that is added during encryption
and removed during decryption. The ciphertext types are the following:

– LWEs(m) = (a1, . . . , an, b) ∈ Zn+1
q , where

b =

n∑
i=1

−ai · si +∆ ·m+ e.

The message m ∈ Zt (with t � q) is encoded in the ciphertext under a
scaling factor ∆ = q/t. We call t the plaintext modulus and q the ciphertext
modulus. For LWE ciphertexts, the secret key is a vector s = (s1, s2, . . . , sn).

– RLWEs(m) = (a, b) ∈ R2
q, where b = −a · s + ∆ ·m + e. Both the message

m ∈ Rt and the secret key s are polynomials.
– RLWE.Trivial.Noiseless(m) = (0, ∆ ·m) ∈ R2

q is an RLWE ciphertext where
all randomness (including the noise) is set to zero. It can be computed by a
party that does not know the secret key.

– RLWE′s(m) = Z+[0,g] ·m ∈ R`×2q , where Z is a matrix, each row of which is
an RLWEs(0) encryption. The message and secret key have the same format
as in the RLWE case.

– RGSWs(m) = Z + G ·m ∈ R2`×2
q , where Z is a matrix, each row of which is

an RLWEs(0) encryption. The message and secret key have the same format
as in the RLWE case. In practice, however, messages are typically restricted
to the form m = ±Xv or m = 0.

To distinguish between these types, LWE ciphertexts will be written as c and
RLWE ciphertexts as c. Homomorphic computations are built from the following
operations over the ciphertext space:

– SampleExtract(c, i)→ c: this procedure extracts one coefficient of a plaintext
element encrypted as an RLWE ciphertext into an LWE ciphertext. It takes
c = RLWEs(M(X)) and an index 0 ≤ i < N , and outputs c = LWEs(Mi),

Table 1: List of symbols for the TFHE scheme and the k-NN classification.

Meaning Symbol

The LWE/RLWE dimension n/N

The standard deviation of the noise σ

The gadget base/size g/`

The plaintext/ciphertext modulus t/q

The size of the database d

The vector dimension of the database γ

The desired number of nearest neighbors k



14 K. Cong et al.

where Mi is the i-th coefficient of M(X). The entries of the LWE key s will
be equal to the coefficients of the RLWE key s.

– M(X) · c → c′: this procedure multiplies a plaintext element by an RLWE
ciphertext. Specifically, it takesM(X) ∈ Rt and c = RLWEs(m), and outputs
c′ = RLWEs(M(X) ·m).

– c1+c2 → c′: this procedure adds two RLWE ciphertexts. Specifically, it takes
c1 = RLWEs(m1) and c2 = RLWEs(m2), and outputs c′ = RLWEs(m1 +m2).
Note that this procedure can also take a ciphertext and a plaintext element
instead of two ciphertexts.

– C� c→ c′: this procedure computes the so-called external product between
an RGSW and RLWE ciphertext. Specifically, it takes C = RGSWs(m1) and
c = RLWEs(m2), and outputs c′ = C> ·G−1(c) = RLWEs(m1 ·m2).

– KeySwitch(ci, ksk)→ c: this procedure converts a set of LWE ciphertexts (in-
dexed by i) to an RLWE ciphertext. The output RLWE ciphertext encrypts
the same set of numbers (coefficient-wise) as the input LWE ciphertexts.
The subroutine for switching one LWE ciphertext to one RLWE ciphertext
is shown in Algorithm 5. This algorithm is repeated multiple times for a full
key switching operation.

– Bootstrap(c, bk, f)→ c′: this procedure reduces the noise of the input LWE
ciphertext, while at the same time evaluating a negacyclic function f (i.e., it
needs to satisfy f(m+t/2) = −f(m)). If the function is unknown, we need to
initialize the procedure with an encrypted accumulator. This is a ciphertext
RLWEs(T (X)) that encodes the desired function, obtained via KeySwitch.
The test polynomial T (X) depends directly on the function f . Algorithm 6
specifies the pseudocode for programmable bootstrapping.

Homomorphic computation of the squared distance. One essential build-
ing block of k-NN classification is computation of the squared distance between
an encrypted target vector and a cleartext data point. We adapt the method of
Zuber and Sirdey [37] to compute the squared distance between a target vector
and a model vector efficiently. Their method actually computes the difference
between two squared distances, but we need the squared distance itself to be
compared in the sorting network.

Algorithm 5 Key switching from LWE to RLWE

Input: c = LWEs(m) = (a1, . . . , an, b) and ksk = {kski = RLWE′s(si)}i∈[n]

Output: RLWEs(m)
1: function KeySwitch(c, ksk)
2: for i← 1 to n do
3: ci ←

(
〈g−1(ai), kski[1]〉, 〈g−1(ai), kski[2]〉

)
4: end for
5: return

(∑n
i=1 ci[1], b+

∑n
i=1 ci[2]

)
6: end function



Oblivious Top-k Selection and Secure k-NN Classification 15

Algorithm 6 Programmable bootstrapping

Input: c = LWEz(m) = (a1, . . . , an, b), bk = {bki = RGSWs(zi)}i∈[n] and T (X)
Output: LWEs(f(m))
1: function Bootstrap(c, bk, T (X))
2: b′ ← b(2N/q) · be
3: ACC← RLWE.Trivial.Noiseless(T (X) ·X−b′)
4: for i← 1 to n do
5: a′i ← b(2N/q) · aie
6: ACC← ACC + (X−a′

i − 1) · (bki � ACC)
7: end for
8: return SampleExtract(ACC, 0)
9: end function

We are given one target vector c ∈ R2
q (the client’s encrypted input), which is

an RLWE ciphertext that encodes v ∈ Zγt . And we have a model vector w ∈ Zγt
stored in the database. We assume that the model vector is given in cleartext
since the server owns the database in our scenario. The goal here is to compute
‖v − w‖22 = ‖v‖22 − 2 · 〈v,w〉 + ‖w‖22 homomorphically. To do this, the model
vector is encoded in two ways:

M(X) =

γ−1∑
i=0

wγ−i−1 ·Xi and M ′(X) =

(
γ−1∑
i=0

w2
i

)
·Xγ−1.

Similarly, the target vector v is encrypted as

c = RLWEs

(
γ−1∑
i=0

vi ·Xi

)
(2)

and

c′ = RLWEs

((
γ−1∑
i=0

v2
i

)
·Xγ−1

)
.

Then the squared distance between the encrypted target vector c and the model
vector w can be computed as

c′′ = c′ − 2M(X) · c+M ′(X). (3)

The result computed in (3) is an RLWE ciphertext that encrypts a polynomial,
the (γ − 1)-th coefficient of which gives us the squared distance. Therefore, we
run SampleExtract(c′′, γ − 1) to get LWEs(‖v −w‖22), which works if γ ≤ N .

An optimization. It is sufficient for the k-NN application to compute the squared
distances between target and model vectors up to a certain constant. In partic-
ular, since the ciphertext c′ is identical for each squared distance, it can simply
be removed from (3) and we obtain

c′′ = −2M(X) · c+M ′(X). (4)



16 K. Cong et al.

This reduces the communication between client and server by 50% as now only
one RLWE ciphertext is sent.

Comparison operations. Comparing two encrypted numbers can be done
with programmable bootstrapping. For example, Zuber and Chakraborty [8]
proposed two homomorphic comparison operators to build min and arg min func-
tions. Apart from the minimum and its argument, our protocol also requires the
maximum and its argument, so we implement a different algorithm.

We are given four ciphertexts c0 = LWEs(m0) and c1 = LWEs(m1), and their
corresponding labels c′0 = LWEs(m

′
0) and c′1 = LWEs(m

′
1). We need to compute

the following four results:

– An LWE encryption of min(m0,m1).
– An LWE encryption of max(m0,m1).
– An LWE encryption of m′i with i = arg min(m0,m1).
– An LWE encryption of m′i with i = arg max(m0,m1).

First, we homomorphically compute the difference of the squared distances as
c′ = c0 − c1 = LWEs(m), where m = m0 − m1. This ciphertext encrypts a
positive number if m1 < m0. The input ciphertext of bootstrapping is set to c′,
which serves as a selector. The minimum can now be computed with the function

f(m) =

{
m0 if −t/4 < m ≤ 0

m1 if 0 ≤ m < t/4.
(5)

Here we only consider the domain (−t/4, t/4) to guarantee that f is negacyclic.
The test polynomial can now be constructed as

T (X) =

N/2−1∑
i=0

m1 ·Xi −
N−1∑
i=N/2

m0 ·Xi,

where we used f(m) = −f(m − t/2) = −m0 for t/4 < m < t/2. Similarly, the
test polynomial for arg min can be constructed by replacing m0 and m1 with m′0
and m′1 in (5). Note that these four values are actually encrypted, so both test
polynomials are obtained via KeySwitch on c0, c1, c′0 and c′1. Finally, observe
that the maximum can be computed as max(m0,m1) = m0 +m1−min(m0,m1)
and similarly for arg max.

4.3 The protocol

Squared distance computation. First, the client encrypts the target vector
using (2) and sends it to the server. Then, for each model vector, the server
evaluates the formula in (4) and extracts the (γ−1)-th coefficient to compute its
squared distance. The result of the distance computation satisfies ‖v−w‖22 < t/4,
such that the comparators can be built using (5). Although our protocol uses the
Euclidean distance between target and model vectors, one could also replace this
by essentially any distance metric that can be computed efficiently with FHE.



Oblivious Top-k Selection and Secure k-NN Classification 17

Precision reduction (optional). The squared distances may be computed
using a large plaintext modulus (tdist), but the input of programmable boot-
strapping (PBS) expects a small plaintext modulus (we need tsort � 2N).
If the two plaintext moduli are different, we need to perform a precision re-
duction, which can be done with one subtraction and one bootstrapping op-
eration for every squared distance. The subtraction is necessary because we
need to “recenter” the plaintext space. For example, consider plaintext moduli
tdist = 2 · tsort, and their scaling factors 2 · ∆dist = ∆sort. Encoded plaintexts of
the form (mi ·∆dist, (mi + 1) ·∆dist) are mapped to (mi/2) ·∆sort since we want
to reduce the precision by one bit in this example. Before bootstrapping, the
center of (mi · ∆dist, (mi + 1) · ∆dist) needs to be at (mi/2) · ∆sort = mi · ∆dist.
As such, we need to subtract ∆dist/2 from the initial plaintext and then perform
bootstrapping with the identity function. This method easily generalizes to the
case where tsort is any multiple of tdist.

Precision reduction is only necessary if γ is high or if the precision of every
element in the feature vector is large in comparison to tsort. Section 5 shows that
precision reduction is necessary for MNIST but not for the breast cancer dataset.

The Top-k selection network. To instantiate our Top-k network for privacy
preserving k-NN, we need a comparator that also outputs arg min and arg max
(to represent the label) next to the minimum and maximum. This comparator
is visualized in Figure 7 and its instantiation is described in Section 4.2.

Using the squared distance values as the scoring function, we then apply our
combined Top-k network composed of augmented comparators. The output of
this phase is a set of k LWE ciphertexts that encrypt the predicted class labels,
which are sent back to the client for decryption. Finally, the client computes the
most common class label in the clear via majority voting. This is acceptable for
most use cases as typically k is much smaller than d.

(m0,m
′
0)

(m1,m
′
1)

(min(m0,m1),m′argmin(m0,m1)
)

(max(m0,m1),m′argmax(m0,m1)
)

Fig. 7: An augmented comparator, where arg min(m0,m1) and arg max(m0,m1)
refer to the indices (either 0 or 1) of the minimum and maximum element.

Noise growth of our protocol. Programmable bootstrapping is used to lower
the noise level of its input, and computing a non-linear function at the same time.
However, even though homomorphic comparisons are implemented with boot-
strapping, the squared distances are never refreshed during the sorting phase.
This is because the accumulator is generated by KeySwitch and is therefore a
noisy ciphertext. Yet, both datasets tested in the next section have an output
noise that remains at least 10 bits below the 64-bit ciphertext modulus. This



18 K. Cong et al.

is sufficient to support a plaintext precision of 10 bits without requiring extra
bootstrapping operations.

5 Evaluation

5.1 Implementation and experimental setup

Our prototype implementation is written in the Rust programming language us-
ing the TFHE-rs5 library. The source code can be found on GitHub.6 All exper-
iments in this section are executed on machines with Intel(R) Core(TM) i9-9900
CPU @ 3.10 GHz using the Ubuntu 20.04 operating system. Our implementation
supports multi-threading in the sorting network, i.e., if two comparators are on
the same level in the network, then they may be executed in parallel.

Our experiment uses (a reduced version of) two datasets: the MNIST7 and
breast cancer8 datasets. We preprocess the MNIST dataset in two ways: (1) the
images are downsized to 8× 8 pixels which are feature vectors of length γ = 64;
(2) elements in every feature vector are converted to ternary values. The breast
cancer dataset has γ = 32 and we preprocess the feature vectors to use binary
values. This kind of preprocessing is similar to [37] where the authors also convert
the MNIST images to 8× 8 pixels and divide values by 300.

We run our privacy preserving k-NN protocol using different values of d and k
for both datasets and report the timing, accuracy and bandwidth results below.
All experiments are done with the best feature vectors as the model. This is
done by creating 10, 000 plaintext models at random and selecting the one that
gives the highest accuracy when evaluated on all the possible test vectors. Then
we average prediction/inference over 200 randomly selected test vectors.

The TFHE parameters are given in Table 2. These parameters are adapted
from TFHE-rs.9 We make a distinction between the plaintext modulus for dis-
tance computation (tdist) and sorting (tsort). That is, if tdist 6= tsort, then the
precision reduction step from Section 4 needs to be used. Our definition of the
plaintext modulus includes the padding bit. This extra padding bit is necessary
to satisfy negacyclicity when the data is encoded. For example, if the plaintext
modulus is t = 26, then the message space is 5 bits since one bit is reserved for
padding. The parameters from Table 2 guarantee 128 bits of security [1].

The sections below primarily report the computation time and bandwidth.
Memory usage is not detailed since it is not a significant overhead in our construc-
tion. Namely, our biggest experiment (d = 1000, k = b

√
dc) used only 700 MB

of memory. Bootstrapping and key switching keys dominate the memory usage.

5 https://github.com/zama-ai/tfhe-rs
6 https://github.com/KULeuven-COSIC/ppknn
7 https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+

handwritten+digits
8 https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+

(Diagnostic)
9 https://github.com/zama-ai/tfhe-rs/blob/release/0.1.x/tfhe/src/

shortint/parameters/mod.rs

https://github.com/zama-ai/tfhe-rs
https://github.com/KULeuven-COSIC/ppknn
https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits
https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://github.com/zama-ai/tfhe-rs/blob/release/0.1.x/tfhe/src/shortint/parameters/mod.rs
https://github.com/zama-ai/tfhe-rs/blob/release/0.1.x/tfhe/src/shortint/parameters/mod.rs


Oblivious Top-k Selection and Secure k-NN Classification 19

Table 2: The TFHE parameters used in our experiments. Note that when the ho-
momorphic computation is done, the most significant bit is reserved for padding.
Hence if t = 2i, then the actual message uses i− 1 bits.

Parameter Value

LWE dimension (n) 856

RLWE polynomial degree (N) 4096

LWE standard deviation (σLWE) 244

RLWE standard deviation (σRLWE) 22

Decomp params bootstrapping (g, `) (222, 1)

Decomp params LWE-to-LWE (g, `) (23, 6)

Decomp params LWE-to-RLWE (g, `) (223, 1)

Ciphertext modulus (q) 264

Plaintext modulus (tsort) 26

Plaintext modulus MNIST (tdist) 29

Plaintext modulus breast cancer (tdist) 26

Dataset message space MNIST Z3

Dataset message space breast cancer Z2

5.2 Computation time

The computation time and accuracy probabilities for the MNIST dataset are
shown in Table 3, together with the results taken (and extrapolated) from [37].
Modulo the difference in CPU (we estimate that our CPU is at most two times
faster than theirs), the wall-clock time ranges from 1.7× to over 47× faster than
prior work [37] while maintaining a good level of accuracy.

The main reason for our acceleration is the performance gain in the costly
Top-k selection step. In the delta-matrix method of Zuber and Sirdey [37], a
d× d matrix is constructed. Each element at position (i, j) in the matrix is 0 if
the target vector is closer to the i-th model vector than to the j-th vector, and 1
otherwise. As such, building the matrix itself requires (d2 − d)/2 comparison
operations, then additional scoring operations are needed. In comparison, our
Top-k network scales linearly with d and quadratically with log k.

Additionally, this experiment demonstrates the effect of precision reduction.
Starting with 9 bits of precision for the distance computation, we reduce to 6
bits before the start of the sorting network. From the results, we see that this
has very little effect on accuracy (note that precision reduction is not applied in
the “Clear accuracy” column).

Similarly, the computation time and accuracy probabilities for the breast
cancer dataset are presented in Table 4. For this dataset, there is no precision
reduction step (i.e., tdist = tsort), because γ is low, the feature vectors are some-
what sparse and we preprocess the data to have binary feature vectors. Since
our plaintext modulus is only 6 bits (one bit is reserved as the padding bit and
another one for the sign), the squared distance cannot exceed 4 bits. As such,
we have some errors when compared to the plaintext algorithm since the result



20 K. Cong et al.

Table 3: Computation time and accuracy for the MNIST dataset. The distance
computation is performed using 9 bits of precision, then it is converted to 6 bits
before running the selection network. The computation times prefixed with ∼
are estimated using extrapolation. The number of parallel threads is τ .

Duration (s) Comparators Accuracy
k d [37] τ = 4 τ = 1 [37] Ours Clear FHE

3 40 30 8.7 17.5 780 93 0.81 0.79
175 696 31.9 78.1 15225 431 0.94 0.94
269 1524 47.4 119.5 36046 666 0.95 0.94
457 4248 78.9 202.3 104196 1136 0.98 0.97
1000 ∼ 20837 168.0 441.1 499500 2493 0.98 0.96

5 40 ∼ 33 11.6 25.5 780 125 0.74 0.73
175 ∼ 636 43.1 112.7 15225 598 0.92 0.90
269 ∼ 1505 62.7 173.0 36046 928 0.94 0.93
457 ∼ 4351 105.0 291.1 104196 1586 0.97 0.97
1000 ∼ 20859 227.5 642.3 499500 3485 0.98 0.96

b
√
dc 40 ∼ 33 13.1 28.1 780 143 0.75 0.74

175 ∼ 639 68.4 171.8 15225 1015 0.89 0.89
269 ∼ 1516 117.7 310.4 36046 1789 0.95 0.94
457 ∼ 4402 209.0 530.2 104196 3412 0.95 0.94
1000 ∼ 21410 455.8 1252 499500 9121 0.98 0.97

may overflow into the padding bit occasionally. Fortunately, the overflow does
not happen often and our FHE accuracy closely trails the plaintext accuracy.

5.3 Bandwidth

Both our solution and [37] require bootstrapping for the computation, so eval-
uation keys should be sent at the setup phase. This costs 160 MB in our case,
smaller than 200 MB of [37]. We use three different evaluation keys: two key
switching keys (53.5 MB) and one bootstrapping key (107 MB) which takes the
dominant part of the whole key size. On the other hand, the previous work uses
two different bootstrapping keys, leading to higher memory consumption. We
note that the evaluation key size is not considered as online bandwidth in both
works, since it is only sent once and reused for the repeated computation.

After executing our protocol, the server returns the k selected labels, which
are in the form of LWE ciphertexts. Therefore, the answer size would be k times
6.7 KB. As an optimization, we can easily pack k LWE ciphertexts into an RLWE
ciphertext almost for free as long as k ≤ N [10]. We can also reduce the size
of the answer by switching the modulus from 64 bits to 32 bits [7] and reduce
the degree of the polynomials from 4096 to 1024 by key switching. The resulting
answer has a size of 8 KB, which is smaller than k LWE ciphertexts for k ≥ 2.



Oblivious Top-k Selection and Secure k-NN Classification 21

Table 4: Computation time and accuracy for the breast cancer dataset. No pre-
cision reduction is performed. The computation times prefixed with ∼ are esti-
mated using extrapolation. The number of parallel threads is τ .

Duration (s) Comparators Accuracy
k d [37] τ = 4 τ = 1 [37] Ours Clear FHE

3 10 4 1.8 3.2 45 18 0.94 0.92
30 ∼ 18 5.0 11.5 435 68 0.94 0.94
50 ∼ 51 7.4 19.0 1225 118 0.94 0.94
200 ∼ 830 25.5 76.0 19900 493 0.95 0.94

5 10 ∼ 2 2.2 4.2 45 21 0.91 0.88
30 ∼ 18 7.5 16.7 435 91 0.95 0.93
50 ∼ 52 11.6 28.8 1225 161 0.96 0.95
200 ∼ 831 40.2 114.6 19900 685 0.96 0.96

b
√
dc 200 ∼ 836 69.9 185.7 19900 1234 0.95 0.95

6 Conclusion and future directions

Top-k selection algorithms are broadly used in various applications, and secure
computation highly benefits from the obliviousness of Top-k selection. We revis-
ited the constructions by Alekseev (1969) and Yao (1980), and then proposed
additional improvements for k = Ω(

√
d). Our resulting combined Top-k network

has complexity O(d log2 k) in general and O(d log k) for small k �
√
d.

The efficiency of our combined Top-k network is demonstrated with an ap-
plication: homomorphic k-NN classification. Compared with the state of the
art [37], where oblivious Top-k was realized with complexity O(d2), our experi-
mental results show a speedup of up to 47 times.

Future directions. Our TFHE instantiation of k-NN quantizes values (of 8 bits
or more) down to binary or ternary values, in order to work with the restricted
plaintext space. This step affects the accuracy of our secure k-NN protocol. In
the future, we hope to investigate techniques that would support plaintexts with
large precision, for example as proposed by Liu et al. [24].

Although our combined Top-k network has the best performance compared to
existing methods, it does not give the optimal asymptotic complexity O(d log k)
for all parameters. Further improvements would therefore be interesting. More-
over, many secure computation applications include oblivious Top-k as a building
block. It would also be interesting to incorporate our solution to improve the
performance of those applications.

Acknowledgements. This work was supported by CyberSecurity Research
Flanders with reference number VR20192203. Additionally, this work has been
supported in part by the Defense Advanced Research Projects Agency (DARPA)



22 K. Cong et al.

and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under con-
tract No. FA8750-19-C-0502, and by the Defence Advanced Research Projects
Agency (DARPA) under contract No. HR001120S0032. In addition, this work is
supported in part by the European Commission through the Horizon 2020 re-
search and innovation program Belfort ERC Advanced Grant 101020005. Robin
Geelen is funded by Research Foundation – Flanders (FWO) under a PhD Fel-
lowship fundamental research (project number 1162123N). The authors would
also like to thank Frederik Vercauteren for giving feedback on this paper.

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of
the ERC, DARPA, the U.S. Government, the European Union, CyberSecurity
Research Flanders or the FWO. The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes notwithstanding any copyright
annotation therein.

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015), http://www.degruyter.com/view/
j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml

2. Alekseev, V.E.: Sorting algorithms with minimum memory. Cybernetics 5(5), 642–
648 (1969)

3. Ameur, Y., Aziz, R., Audigier, V., Bouzefrane, S.: Secure and non-interactive-nn
classifier using symmetric fully homomorphic encryption. In: International Confer-
ence on Privacy in Statistical Databases. pp. 142–154. Springer (2022)

4. Beirendonck, M.V., D’Anvers, J.P., Verbauwhede, I.: FPT: a fixed-point acceler-
ator for torus fully homomorphic encryption. Cryptology ePrint Archive, Report
2022/1635 (2022), https://eprint.iacr.org/2022/1635

5. Bertels, J., Beirendonck, M.V., Turan, F., Verbauwhede, I.: Hardware acceleration
of FHEW. In: Jenihhin, M., Kubátová, H., Metens, N., Raik, J., Ahmed, F., Be-
lohoubek, J. (eds.) 26th International Symposium on Design and Diagnostics of
Electronic Circuits and Systems, DDECS 2023, Tallinn, Estonia, May 3-5, 2023.
pp. 57–60. IEEE (2023). https://doi.org/10.1109/DDECS57882.2023.10139347

6. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 868–886. Springer, Heidelberg (Aug 2012). https://doi.org/10.

1007/978-3-642-32009-5_50

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012. pp. 309–325.
ACM (Jan 2012). https://doi.org/10.1145/2090236.2090262

8. Chakraborty, O., Zuber, M.: Efficient and accurate homomorphic comparisons.
Cryptology ePrint Archive, Report 2022/622 (2022), https://eprint.iacr.org/
2022/622

http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://eprint.iacr.org/2022/1635
https://doi.org/10.1109/DDECS57882.2023.10139347
https://doi.org/10.1109/DDECS57882.2023.10139347
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://eprint.iacr.org/2022/622
https://eprint.iacr.org/2022/622


Oblivious Top-k Selection and Secure k-NN Classification 23

9. Chen, H., Chillotti, I., Dong, Y., Poburinnaya, O., Razenshteyn, I.P., Riazi, M.S.:
SANNS: Scaling up secure approximate k-nearest neighbors search. In: Capkun,
S., Roesner, F. (eds.) USENIX Security 2020. pp. 2111–2128. USENIX Association
(Aug 2020)

10. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient homomorphic conversion between
(ring) LWE ciphertexts. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 21, Part I.
LNCS, vol. 12726, pp. 460–479. Springer, Heidelberg (Jun 2021). https://doi.
org/10.1007/978-3-030-78372-3_18

11. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM
CCS 2017. pp. 1243–1255. ACM Press (Oct / Nov 2017). https://doi.org/10.
1145/3133956.3134061

12. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Advances in Cryptology–ASIACRYPT 2017: 23rd
International Conference on the Theory and Applications of Cryptology and In-
formation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I
23. pp. 409–437. Springer (2017)

13. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homo-
morphic encryption over the torus. Journal of Cryptology 33(1), 34–91 (Jan 2020).
https://doi.org/10.1007/s00145-019-09319-x

14. Cong, K., Das, D., Nicolas, G., Park, J.: Panacea: Non-interactive and stateless
oblivious RAM. Cryptology ePrint Archive, Report 2023/274 (2023), https://

eprint.iacr.org/2023/274
15. Cong, K., Das, D., Park, J., Pereira, H.V.L.: SortingHat: Efficient private deci-

sion tree evaluation via homomorphic encryption and transciphering. In: Yin, H.,
Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022. pp. 563–577. ACM Press
(Nov 2022). https://doi.org/10.1145/3548606.3560702

16. Cong, K., Moreno, R.C., da Gama, M.B., Dai, W., Iliashenko, I., Laine, K., Rosen-
berg, M.: Labeled PSI from homomorphic encryption with reduced computation
and communication. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021. pp. 1135–1150.
ACM Press (Nov 2021). https://doi.org/10.1145/3460120.3484760

17. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012), https://eprint.iacr.org/2012/
144

18. Geelen, R., Beirendonck, M.V., Pereira, H.V.L., Huffman, B., McAuley, T., Sel-
fridge, B., Wagner, D., Dimou, G., Verbauwhede, I., Vercauteren, F., Archer,
D.W.: BASALISC: Flexible asynchronous hardware accelerator for fully homo-
morphic encryption. Cryptology ePrint Archive, Report 2022/657 (2022), https:
//eprint.iacr.org/2022/657

19. Iliashenko, I., Zucca, V.: Faster homomorphic comparison operations for BGV
and BFV. PoPETs 2021(3), 246–264 (Jul 2021). https://doi.org/10.2478/

popets-2021-0046
20. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender systems: an

introduction. Cambridge University Press (2010)
21. Jónsson, K.V., Kreitz, G., Uddin, M.: Secure multi-party sorting and applications.

Cryptology ePrint Archive, Report 2011/122 (2011), https://eprint.iacr.org/
2011/122

22. Knuth, D.E.: The art of computer programming: Volume 3: Sorting and Searching.
Addison-Wesley Professional (1998)

23. Kramer, O.: K-Nearest Neighbors, pp. 13–23. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38652-7_2

https://doi.org/10.1007/978-3-030-78372-3_18
https://doi.org/10.1007/978-3-030-78372-3_18
https://doi.org/10.1007/978-3-030-78372-3_18
https://doi.org/10.1007/978-3-030-78372-3_18
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://eprint.iacr.org/2023/274
https://eprint.iacr.org/2023/274
https://doi.org/10.1145/3548606.3560702
https://doi.org/10.1145/3548606.3560702
https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1145/3460120.3484760
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2022/657
https://eprint.iacr.org/2022/657
https://doi.org/10.2478/popets-2021-0046
https://doi.org/10.2478/popets-2021-0046
https://doi.org/10.2478/popets-2021-0046
https://doi.org/10.2478/popets-2021-0046
https://eprint.iacr.org/2011/122
https://eprint.iacr.org/2011/122
https://doi.org/10.1007/978-3-642-38652-7_2
https://doi.org/10.1007/978-3-642-38652-7_2


24 K. Cong et al.

24. Liu, Z., Micciancio, D., Polyakov, Y.: Large-precision homomorphic sign evalu-
ation using FHEW/TFHE bootstrapping. In: Agrawal, S., Lin, D. (eds.) ASI-
ACRYPT 2022, Part II. LNCS, vol. 13792, pp. 130–160. Springer, Heidelberg (Dec
2022). https://doi.org/10.1007/978-3-031-22966-4_5

25. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with
errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 1–23. Springer, Heidelberg (May / Jun 2010). https://doi.org/10.1007/

978-3-642-13190-5_1

26. Mitchell, M.: An introduction to genetic algorithms. MIT press (1998)
27. Park, J., Tibouchi, M.: SHECS-PIR: Somewhat homomorphic encryption-

based compact and scalable private information retrieval. In: Chen, L., Li,
N., Liang, K., Schneider, S.A. (eds.) ESORICS 2020, Part II. LNCS, vol.
12309, pp. 86–106. Springer, Heidelberg (Sep 2020). https://doi.org/10.1007/
978-3-030-59013-0_5

28. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84–93. ACM Press
(May 2005). https://doi.org/10.1145/1060590.1060603

29. Samardzic, N., Feldmann, A., Krastev, A., Manohar, N., Genise, N., Devadas, S.,
Eldefrawy, K., Peikert, C., Sánchez, D.: Craterlake: a hardware accelerator for
efficient unbounded computation on encrypted data. In: Salapura, V., Zahran, M.,
Chong, F., Tang, L. (eds.) ISCA ’22: The 49th Annual International Symposium
on Computer Architecture, New York, New York, USA, June 18 - 22, 2022. pp.
173–187. ACM (2022). https://doi.org/10.1145/3470496.3527393

30. Servan-Schreiber, S., Langowski, S., Devadas, S.: Private approximate nearest
neighbor search with sublinear communication. In: 2022 IEEE Symposium on
Security and Privacy. pp. 911–929. IEEE Computer Society Press (May 2022).
https://doi.org/10.1109/SP46214.2022.9833702

31. Shanbhag, A., Pirk, H., Madden, S.: Efficient top-k query processing on massively
parallel hardware. In: Das, G., Jermaine, C.M., Bernstein, P.A. (eds.) Proceedings
of the 2018 International Conference on Management of Data, SIGMOD Confer-
ence 2018, Houston, TX, USA, June 10-15, 2018. pp. 1557–1570. ACM (2018).
https://doi.org/10.1145/3183713.3183735

32. Shaul, H., Feldman, D., Rus, D.: Secure k-ish nearest neighbors classifier. PoPETs
2020(3), 42–61 (Jul 2020). https://doi.org/10.2478/popets-2020-0045

33. Tueno, A., Boev, Y., Kerschbaum, F.: Non-interactive private decision tree evalua-
tion. In: IFIP Annual Conference on Data and Applications Security and Privacy.
pp. 174–194. Springer (2020)

34. Wang, G., Luo, T., Goodrich, M.T., Du, W., Zhu, Z.: Bureaucratic protocols for
secure two-party sorting, selection, and permuting. In: Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security. pp. 226–237
(2010)

35. Wong, W.K., Cheung, D.W.l., Kao, B., Mamoulis, N.: Secure knn computation
on encrypted databases. In: Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data. pp. 139–152 (2009)

36. Yao, A.C.C.: Bounds on selection networks. SIAM Journal on Computing 9(3),
566–582 (1980)

37. Zuber, M., Sirdey, R.: Efficient homomorphic evaluation of k-NN clas-
sifiers. PoPETs 2021(2), 111–129 (Apr 2021). https://doi.org/10.2478/

popets-2021-0020

https://doi.org/10.1007/978-3-031-22966-4_5
https://doi.org/10.1007/978-3-031-22966-4_5
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-030-59013-0_5
https://doi.org/10.1007/978-3-030-59013-0_5
https://doi.org/10.1007/978-3-030-59013-0_5
https://doi.org/10.1007/978-3-030-59013-0_5
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/3470496.3527393
https://doi.org/10.1145/3470496.3527393
https://doi.org/10.1109/SP46214.2022.9833702
https://doi.org/10.1109/SP46214.2022.9833702
https://doi.org/10.1145/3183713.3183735
https://doi.org/10.1145/3183713.3183735
https://doi.org/10.2478/popets-2020-0045
https://doi.org/10.2478/popets-2020-0045
https://doi.org/10.2478/popets-2021-0020
https://doi.org/10.2478/popets-2021-0020
https://doi.org/10.2478/popets-2021-0020
https://doi.org/10.2478/popets-2021-0020

	Revisiting Oblivious Top-k Selection with Applications to Secure k-NN Classification

