
The curious case of the
half-half Bitcoin ECDSA nonces

Dylan Rowe1, Joachim Breitner2[0000−0003−3753−6821], and
Nadia Heninger1[0000−0002−7904−7295]

1 University of California, San Diego
drowe@ucsd.edu,nadiah@cs.ucsd.edu

2 Unaffiliated
mail@joachim-breitner.de

Abstract. We report on a new class of ECDSA signature vulnerability
observed in the wild on the Bitcoin blockchain that results from a sig-
nature nonce generated by concatenating half of the bits of the message
hash together with half of the bits of the secret signing key. We give a
lattice-based attack for efficiently recovering the secret key from a single
signature of this form. We then search the entire Bitcoin blockchain for
such signatures, and identify and track the activities of an apparently
custom ECDSA/Bitcoin implementation that has been used to empty
hundreds of compromised Bitcoin addresses for many years.

1 Introduction

It is well known in the cryptography community that the ECDSA signature
scheme is fragile against nonce generation vulnerabilities. An attacker can re-
cover a signer’s ECDSA private key if they know the nonce used to generate a
single signature; if a signer signs two distinct messages with the same nonce; if
a signer signs multiple messages with unexpectedly short nonces; if the attacker
can learn the most significant bits of many signature nonces, and so on.

In this paper, we report on an apparently new class of vulnerable ECDSA
signature nonces that we discovered in the wild on the Bitcoin blockchain: nonces
k of the form

k = hmsb || dmsb

where hmsb are the most significant half (128 bits) of the transaction hash, and
dmsb are the most significant half (128 bits) of the signer’s private key.

We give a lattice-based algorithm to recover the private key from a single
signature generated with a nonce of this form in around one core-second of
computation time, with almost 100% success rate. While our attack is a variant
of existing ECDSA key recovery attacks, the particular vulnerability, the problem
formulation we give to exploit it, and the fact that it is exploitable with only a
single signature appear to be new observations.

We then search the Bitcoin blockchain for signatures of this form and find
nearly 90,000 such signatures generated by around 900 addresses. These signa-
tures have been in use from 2015 until now, and have been used to move 222
Bitcoin.

Nearly all of the transactions emptied funds from addresses whose private
keys had been exposed on the web in some fashion: brainwallets with compro-
mised passwords, pathologically short private keys, addresses given as examples
in online documentation, and so on.

We hypothesize that these signatures are an artifact of a custom ECDSA
implementation used by a thief to steal these funds. A number of Bitcoin forum
postings link addresses receiving these funds to a particular individual who is
relatively public about these activities, in addition to other scams.

While significant attention has been paid in the literature to using transac-
tion graph analysis to trace funds and deanonymize users on the Bitcoin network,
our work illustrates a case of a novel cryptanalytic attack allowing us to iden-
tify a peculiar ECDSA implementation mistake that apparently allows unique
identification of a malicious user.

2 Background and Related Work

2.1 Bitcoin

Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA) to au-
thenticate the sending party of a transaction. These transactions are validated
by nodes in the network and published publicly on the Bitcoin blockchain. A
Bitcoin address is derived from an ECDSA public key by repeatedly hashing
the public key with the SHA-256 and RIPEMD-160 hash functions. Any party
who learns the ECDSA private key corresponding to an address can create a
transaction moving any funds associated with that address to an account that
they control, and authenticate the transaction by creating a valid signature with
the private key.

2.2 ECDSA

In the ECDSA signature scheme, public global parameters include an elliptic
curve E together with a generator point G that generates a group of order n on
E. A signer’s private key is an integer d modulo n, and the corresponding public
key is the point Q = dG. The security of the scheme rests on the presumed
difficulty of the elliptic curve discrete log problem (finding d given only G and
Q over certain elliptic curves).

To sign a message with hash h, the signer generates an integer nonce k modulo
n. The signature is the pair (r, s), where r is the x coordinate of kG and

s = k−1(h+ dr) mod n. (1)

To verify the signature, the recipient tests for equality between r and the x
coordinate of the point (hs−1)G+ (rs−1)Q.

Nonce generation. While initial descriptions of the ECDSA algorithm specified
that the nonce k should be generated at random, there has been a long history
of catastrophic vulnerabilities caused by random number generation failures. A
single compromised signature nonce k reveals the secret key d by solving Equa-
tion 1 for this value. Repeated (EC)DSA nonces used to sign distinct messages
with the same key allow straightforward recovery of the private key by solving
the two relations given by Equation 1 for each signature for the two unknowns d
and k. Reused nonces have been observed repeatedly since 2013 on the Bitcoin
blockchain in academic works [4,7,6,5], and there appear to be systematic thefts
from keys compromised in this way3.

Modern ECDSA implementations (including Bitcoin core, Ethereum, and
other cryptocurrencies) generate deterministic nonces, for example following
RFC 6979 and instantiating HMAC DRBG with the secret key d and the hash h.
Nevertheless, use of such an algorithm is impossible to enforce, and observations
from prior work demonstrate that custom implementations still use a variety of
methods to generate nonces [5].

Signature normalization. The signatures (r, s) and (r,−s) are both valid for the
same message given the above scheme. To ensure that signatures are unique,
Bitcoin and other cryptocurrencies use the convention that only the smaller of
the values −s and s is valid. This has the effect of negating the nonce k for some
signatures.

2.3 Lattice problems and algorithms

A lattice is a discrete additive subgroup of Rm. Explicitly, a lattice L(B) is gen-
erated from integer linear combinations of a set of basis vectors B = {b1, . . . bm}
with bi ∈ Rm. The problem of computing the shortest vector (SVP) in a lat-
tice given an arbitrary basis is NP-hard, and hard to approximate for constant
factors.

The Lenstra Lenstra Lovász (LLL) lattice reduction algorithm [11] gives an
exponential approximation for the shortest vector in polynomial time; the Block
Korkine-Zolotarev (BKZ) algorithm [13,14] can be used to solve exact SVP albeit
in exponential time; more generally one can interpolate between these extremes
to achieve intermediate approximation factors by adjusting the BKZ block size.

2.4 Hidden number problem

Boneh and Venkatesan formulated the hidden number problem to study hard-
core bits for Diffie-Hellman [3]. In the hidden number problem, the goal is to
reconstruct a “hidden number” α given only the top bits ai of samples ti · α
mod p (where ti is also known). Explicitly, we are searching for α satisfying the
equations

ti · α = ai + bi mod p

3 https://bitcointalk.org/index.php?topic=581411.msg9809990#msg9809990 posted De-
cember 11, 2014 by Jochen Hoenicke (johoe), retrieved March 2, 2023

https://bitcointalk.org/index.php?topic=581411.msg9809990#msg9809990

with some fixed bound B on the (unknown) lower bits such that bi < B < p.
In Boneh and Venkatesan’s work introducing the hidden number problem, they
construct a lattice basis using the sample data and solve the CVP (closest vector
problem) on that lattice. It is standard in practice to use Kannan’s embedding
to use an SVP algorithm to solve the problem instead [2,1]. In this formulation
the lattice is generated by the rows of

B =



p
p

. . .

p
t1 t2 . . . tm B/p
a1 a2 . . . am B


Most presentations hope that the target vector vt = (b1, b2, . . . bm, Bα/p,B)

is short enough to be found by an algorithm like BKZ that solves SVP; this vector
can then be used to construct α. We expect this algorithm to succeed when the
ℓ2 norm of vt is less than the Gaussian Heuristic gh(·) for L(B), which gives the
expected length of the shortest vector of a random lattice. This is approximately
gh(L(B)) ≈

√
dimL/(2πe) detL(B)1/ dimL (where L = L(B)). It is possible to

use sieving and enumeration techniques to increase the probability of success for
this approach after applying the optimizations below [1].

2.5 ECDSA as a Hidden Number Problem

Howgrave-Graham and Smart [9] and Nguyen and Shparlinski [12] showed that
the above lattice-based algorithm for solving the hidden number problem could
be used to recover an (EC)DSA secret key from most significant bits of nonces
from many signatures.

In an implementation of ECDSA that leaks the most significant bits of the
nonces ki, we can recover the secret key d as follows. Given signatures (ri, si)
and corresponding hashes hi, each signature satisfies the equation

−sihi + ki = s−1
i ri · d mod n

This gives an instance of the hidden number problem with α = d, ai = −sihi,
ti = s−1

i ri, bi = ki, and p = n. Thus, with enough signatures, we can construct
the lattice basis B as above and recover d.

Lattice attacks on applications of ECDSA. The above algorithm is commonly
used for ECDSA cryptanalysis in the context of side-channel attacks [2,10,8,16].
Breitner and Heninger [5] applied the lattice-based algorithm for the hidden
number problem to compute ECDSA private keys in cryptocurrencies from sig-
natures on the blockchain that had been generated with poorly generated nonces.
These attacks all required multiple signatures with vulnerable nonces to have
been generated from a given key to enable key recovery; in the most common

case observed in the wild, it was possible to recover a private signing key from
two signatures whose nonces were shorter than 128 bits. Since it is not possible
to tell in advance which signatures might be vulnerable, an attacker searching
for vulnerable signatures may need to test all pairs of signatures from each key.

No general attack of this form was possible for keys associated with only one
signature.

3 Half Nonce Attack

The starting point for our attack is the observation of signatures in the Bitcoin
blockchain whose nonces appear to have been generated by concatenating the
high bits of h together with the high bits of d. That is, the nonce k satisfies

k = 2ℓhmsb + dmsb (2)

where ℓ is the length of dmsb (in the context of Bitcoin, ℓ = 128).
Fifty four of these signature nonces appear in the data of Breitner and

Heninger [5], who noted having recovered signature nonces that shared least
significant bits of the nonce with d, but apparently did not notice the shared
bits with the hash h. Their attack required multiple signatures with nonces
of this form to recover the private key, and testing all possible combinations
of signatures for keys that had generated large numbers of signatures on the
blockchain was prohibitively expensive.

We observe that it is possible to recover the private key from a signature
generated with a nonce of this form from a single signature using a lattice-based
attack.

3.1 Setup and Main Attack

From Equation 2 defining k and Equation 1 defining s, we can derive the equation

(2ℓ − sr−1)︸ ︷︷ ︸
A

dmsb + dlsb + (h− 2ℓshmsb)r
−1︸ ︷︷ ︸

b

= 0 mod n (3)

This is an affine equation in dmsb and dlsb over Zn, where we can expect
dmsb, dlsb to both be smaller than 2ℓ, and 2ℓ ≤ lg n. The lattice generated by
the rows of the basis

B =

n 0 0
A 1 0
b 0 2ℓ

 (4)

will contain the target vector vt = (dlsb, dmsb, 2
ℓ) by construction. We have

detL(B) = detB = n2ℓ, dimL = 3, and |vt|2 ≤
√
32ℓ. The Gaussian Heuristic

criteria is very close to but not quite satisfied since we need
√
32ℓ <

√
3/(2πe)2ℓ.

Thus we expect the target vector to be the closest vector in the lattice only
a fraction of the time. Empirically, without further optimizations, this lattice
construction succeeded with probability 27.1%.

We can increase the success probability by applying the optimizations below,
and brute forcing a few bits or using sieving or enumeration with predicate
techniques [1] to find the target vector.

3.2 Optimizations

In order to increase our success probability, we apply two optimizations.

Recentering. The recentering optimization observes that the variables dmsb and
dlsb are always positive, while lattice vectors can take positive or negative values.
We define the variables d′msb = dmsb−2ℓ−1 and d′lsb = dlsb−2ℓ−1 which recenter
the values of the unknowns around zero, and then set the bottom right entry of
B in Equation 4 to 2ℓ−1 and redefine A and b in Equation 3 accordingly. Then,
we expect the shortest vector in the lattice to take the form (d′lsb, d

′
msb, 2

ℓ−1)
(up to sign). This one-bit change significantly improves the success rate of the
algorithm at nearly no cost to running time: with this optimization alone we
achieve a success probability of 76.2%.

Brute forcing. The success rate can also be improved by brute forcing the top
few bits of dlsb and dmsb to make the unknown values smaller, at a cost of having
to run 2t instances when t bits are brute forced. We ended up brute forcing four
bits total, split evenly between dmsb and dlsb. This number was chosen as a
practical trade-off between running time and success rate.

Since nonces can be negated by the signature normalization process, we also
brute force both positive and negative values for the resulting nonces, resulting
in 2 · 24 = 32 total lattice reductions for each signature.

Applying both recentering and brute forcing, our algorithm achieved a 99.6%
success rate on synthetic data. At this success rate, the algorithm is likely to
detect almost all vulnerable signatures when run on the entire Bitcoin blockchain.

Sieving with predicate. Using the Sieving with Predicate algorithm from [1] with
recentering and no brute forcing, we were able to achieve 99.99% success rate on
synthetic data, at an even faster average rate of 0.48 seconds per signature per
core on our real data. This also allowed us to recover an additional 440 signatures,
including signatures from August 2022 that suggest that the attacker below is
still active. However, these extra signatures are not included in the analysis below
due to time constraints.

4 Implementation

We implemented the algorithm in Sage [15] using the above optimizations and
G6K’s implementation of the BKZ algorithm. A single signature takes 0.688
seconds to test on an Intel Xeon E5-2699A v4 CPU core.

To collect the dataset of 2.14 billion signatures from the Bitcoin blockchain,
we instrumented the signature verification code in the official Bitcoin client to

2015 2016 2017 2018 2019 2020 2021 2022

Unknown

SHA256

Repeated Nonce

Brainwallet

Short key

Fig. 1. Compromised signature classification. We plot signatures with compro-
mised nonces over time, grouped by the likely reason the source address is known to
be compromised. Larger circles correspond to more transaction inputs on a given date.

write the data from each signature (message hash, signature, public key and
transaction id) to a separate file, and re-validated the full Bitcoin blockchain,
up to block height 738173 (May 2022).

We then tested each signature using our attack. Since we can verify success
using the public key, there are no false positives. Each lattice reduction only
requires a single signature, so the attack is perfectly parallellizable; we ran the
algorithm on around 1000 physical cores using Slurm [17]. A single core was able
to test 120,000 signatures per day. The computation completed in roughly 49
cpu-years, or 18 calendar days.

5 Analysis

We found 88,230 vulnerable signatures from 873 unique secret keys. These were
part of 7,242 transactions. Of these, 5,010 had multiple inputs. The transactions
transfer funds from 893 unique input addresses4 to 53 unique output addresses,
and 37 addresses occur both as input and as output.

We found a total of 222 Bitcoin that were moved in these transactions. Of
these, 55 Bitcoin were moved to an address that is not also an input address in
these transactions. None of the compromised addresses had any funds as of this
writing.

We observe compromised signatures between 2015-02-14 and 2022-05-24. The
plot in Figure 1 shows very high activity in 2015, a break from 2020 to 2021,
and a few occurrences again in 2022 before we stopped collecting data.

5.1 Source address analysis

Further inspection of the 893 source addresses shows that most of these were
known to be compromised prior to our work. We were able to identify the fol-
lowing vulnerable categories:

4 There can be multiple addresses formed from a single private key.

– Short keys: some addresses belong to private keys that are short (d < 2128).
For example the address 1EHNa6Q4Jz2uvNExL497mE43ikXhwF6kZm corre-
sponds to a private key of d = 1.

– Brainwallet: A brainwallet is a way to generate a private key from a
passphrase that one can remember. This makes such Bitcoin addresses sus-
ceptible to brute-force attacks, and there exist databases of Bitcoin addresses
that arise from weak or compromised brainwallet keyphrases5.

– Repeated nonces: As explained above, re-using a nonce in a signature
makes key recovery quite simple. Jochen Hoenicke publishes a list of ad-
dresses leaked that way,6 which we use to identify these addresses.

– SHA256 inversion hash: We found one non-ECDSA address, 3GfLKx6iu
s6MwUetY6gAqeabvoUZJ2qheQ, among the inputs to transactions that con-
tained vulnerable nonces. This address is protected by a simple hash: Its
“pkscript” allows anyone who knows the preimage to a certain SHA256 hash
to withdraw funds from this address, revealing the preimage in the process.

Short key 96
Brainwallet 89
Repeated nonce 512
SHA256 1
Unknown 195

Total 893

Table 1. Source addresses

We were able to attribute most of the source
addresses associated with these vulnerable transac-
tions into at least one of these categories of compro-
mised addresses. See Table 1. Many of the remaining
unclassified addresses appear on the web, for exam-
ple as example addresses in Bitcoin-related libraries
or tools. It is well known that bots sweep funds from
such compromised addresses on the blockchain. Fig-
ure 2 shows the flow of Bitcoin through these transactions.

5.2 Attribution

The unusual prevalence of well-publicized vulnerabilities that can be exploited
to reveal the private keys corresponding to the source addresses of these trans-
actions leads us to the hypothesis that these transactions represent an attacker
stealing funds from the original owners of these addresses. The quirky signature
nonce construction that has revealed the source address private keys to us may
be an implementation artifact of custom-written attack script that this attacker
is using to snatch funds from addresses with compromised private keys, as well
as to transfer funds between intermediary addresses.

We have found evidence linking this activity to the person behind the pseudonym
“amaclin” on https://bitcointalk.org and https://bitcoin.stackexchange.com.

– Amaclin is said to have “a long history of scamming other users via double-
spends and other technical blockchain tricks, and even ground Bitcoin itself

5 We used https://eli5.eu/brainwallet/, which contains 18,982 addresses, but is incom-
plete.

6 https://johoe.mooo.com/bitcoin/broken.txt

https://www.blockchain.com/btc/address/1EHNa6Q4Jz2uvNExL497mE43ikXhwF6kZm
https://www.blockchain.com/btc/address/3GfLKx6ius6MwUetY6gAqeabvoUZJ2qheQ
https://www.blockchain.com/btc/address/3GfLKx6ius6MwUetY6gAqeabvoUZJ2qheQ
https://bitcointalk.org
https://bitcoin.stackexchange.com
https://eli5.eu/brainwallet/
https://johoe.mooo.com/bitcoin/broken.txt

Short

Brainwallet

Repeat

Other
Exposed Inputs

Non Compromised
Transactions

Exposed
Vanity Addresses

Exposed
Intermediate Addresses

Non-Exposed
Vanity Outputs

Non-Exposed
Output Addresses

Fig. 2. Flow of Bitcoin through Compromised Transactions. We were able to
recover the private keys for every input address in every transaction that contained a
vulnerable signature. The vulnerable transactions moved funds from 893 compromised
input addresses, through a set of 37 compromised intermediate addresses (most of
which were vanity addresses following a recognizable pattern), to 16 output addresses
whose keys have not been exposed through vulnerable signatures.

to a near halt with blockchain malleability attacks,”7 which fits the observa-
tions in the previous section. Amaclin was interviewed about the mentioned
malleability attack by bitcoinmagazine.com8 and vice.com9.

– 32 of the destination addresses of transactions with vulnerable signatures
are vanity addresses starting with 1aa or 1xy, and there are indications that
these amaclin creates and uses such addresses, and that these addresses are
used in draining compromised accounts:

• For example, transaction 77dd8a24288aa87a7976adeff0579d60ac50b384b8a2

8bd589a47459573c9345 from 30 December 2014 (which is not among those
with a vulnerable signatures) has among its 17 input addresses 15 such
vanity addresses, but also 1ENnzep2ivWYqXjAodTueiZscT6kunAyYs, which
amaclin put on their StackExchange profile page10.

• In the aftermath of a reused-nonce incident on blockchain.info11, Jochen
Hoenicke writes12 that amaclin is among those grabbing funds, and that
1aa and 1xy addresses were used (without explicitly linking these two).

7 https://bitcointalk.org/index.php?topic=5154360.0, posted June 14, 2019 by eddie13,
retrieved March 3, 2023

8 https://bitcoinmagazine.com/culture/the-who-what-why-and-how-of-the-ongoing-transaction-malleability-attack-1444253640,
Oct 7, 2015, retrieved March 2, 2023

9 https://www.vice.com/en/article/pga7m9/i-broke-bitcoin, October 7, 2015, retrieved
March 2, 2023

10 https://bitcoin.stackexchange.com/users/12983/amaclin
11 https://web.archive.org/web/20141225032628/http://blog.blockchain.com/2014/12/08/

blockchain-info-security-disclosure/, posted December 8, 2014
12 https://bitcointalk.org/index.php?topic=581411.msg9888800#msg9888800, posted De-

cember 19, 2014, retrieved March 2, 2023

https://www.blockchain.com/btc/tx/77dd8a24288aa87a7976adeff0579d60ac50b384b8a28bd589a47459573c9345
https://www.blockchain.com/btc/tx/77dd8a24288aa87a7976adeff0579d60ac50b384b8a28bd589a47459573c9345
https://www.blockchain.com/btc/address/1ENnzep2ivWYqXjAodTueiZscT6kunAyYs
https://bitcointalk.org/index.php?topic=5154360.0
https://bitcoinmagazine.com/culture/the-who-what-why-and-how-of-the-ongoing-transaction-malleability-attack-1444253640
https://www.vice.com/en/article/pga7m9/i-broke-bitcoin
https://bitcoin.stackexchange.com/users/12983/amaclin
https://web.archive.org/web/20141225032628/http://blog.blockchain.com/2014/12/08/blockchain-info-security-disclosure/
https://web.archive.org/web/20141225032628/http://blog.blockchain.com/2014/12/08/blockchain-info-security-disclosure/
https://bitcointalk.org/index.php?topic=581411.msg9888800#msg9888800

• Amaclin claims on September 14, 2015 that address 1aa5cmqmvQq8YQT

EqcTmW7dfBNuFwgdCD is his13, used to collect “dust” while a “game” is
going on. Our analysis finds this address as a destination in a transaction
with vulnerable signatures. Assuming amaclin is the only owner of this
address, this shows that they are creating these peculiar signatures.

– In a post on Sept 16, 201514, he further explains various tricks (e.g. addresses
based on hash inversion, see Section 5.1) to make short signatures and build
transactions that sweep compromised accounts before others. He writes:

“Yes, you need to make the miners prefer my transaction over the original
one. To do this, you need to either give more commissions or make the
transaction smaller. In short, so that the commission-per-kilobyte would be
maximum. This trick allows you to reduce the length of the signature. It
cannot always be used for signing because the private key becomes known.
But in this case, I don’t care that someone recognizes the key. It was already
published, so whether it will be known not by a thousand people, but by
three thousand - it does not matter. It is important to have time to transfer
the loot to your address before others.”

The connections between the vulnerable signatures and addresses that can
be attributed to amaclin lead us to the hypothesis that code written and used
by them is creating the pecular signatures. We reached out to this individual by
email in October 2022 and did not receive a response. So far, we have not seen
evidence of another source for transactions with vulnerable signatures.

6 Conclusion

This attack has a simple countermeasure: deterministic ECDSA nonce generation
as described in, for example, RFC 6979, which is implemented in the core library
for Bitcoin, Ethereum, and other cryptocurrencies.

Our much more powerful and exact lattice attack has allowed us to identify
90,000 vulnerable signatures in the Bitcoin blockchain by exploiting this previ-
ously unnoticed vulnerable nonce pattern, where the methods of Breitner and
Heninger were only able to identify 54 signatures of this form.

Our analysis also illustrates how vulnerabilities in a custom ECDSA imple-
mentation can not only reveal private keys, but can also be used to compromise
Bitcoin-pseudonymity and addresses to (online) personas.

This is also a nice example of a cryptographic implementation mistake leading
to interesting cryptanalysis: our attack easily extends to other nonce construc-
tions from contiguous chunks of d.

13 https://bitcointalk.org/index.php?topic=1179542.msg12417028#msg12417028,
retrieved March 3, 2023

14 https://bitcointalk.org/index.php?topic=1179542.msg12434341#msg12434341
retrieved March 3, 2023. Translation from Russian using Google Translate

https://www.blockchain.com/btc/address/1aa5cmqmvQq8YQTEqcTmW7dfBNuFwgdCD
https://www.blockchain.com/btc/address/1aa5cmqmvQq8YQTEqcTmW7dfBNuFwgdCD
https://bitcointalk.org/index.php?topic=1179542.msg12417028#msg12417028
https://bitcointalk.org/index.php?topic=1179542.msg12434341#msg12434341

Acknowledgements

We are grateful to Jochen Hoenicke for helpful discussions.

References

1. Albrecht, M.R., Heninger, N.: On bounded distance decoding with predicate:
Breaking the “lattice barrier” for the hidden number problem. In: Canteaut, A.,
Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 528–558.
Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/978-3-030-77870-5 19

2. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “ooh aah... just a little bit”:
A small amount of side channel can go a long way. In: Batina, L., Robshaw, M.
(eds.) CHES 2014. LNCS, vol. 8731, pp. 75–92. Springer, Heidelberg (Sep 2014).
https://doi.org/10.1007/978-3-662-44709-3 5

3. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of se-
cret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO’96.
LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (Aug 1996). https://doi.org/
10.1007/3-540-68697-5 11

4. Bos, J.W., Halderman, J.A., Heninger, N., Moore, J., Naehrig, M., Wustrow, E.:
Elliptic curve cryptography in practice. In: Christin, N., Safavi-Naini, R. (eds.)
FC 2014. LNCS, vol. 8437, pp. 157–175. Springer, Heidelberg (Mar 2014). https://
doi.org/10.1007/978-3-662-45472-5 11

5. Breitner, J., Heninger, N.: Biased nonce sense: Lattice attacks against weak
ECDSA signatures in cryptocurrencies. In: Goldberg, I., Moore, T. (eds.) FC
2019. LNCS, vol. 11598, pp. 3–20. Springer, Heidelberg (Feb 2019). https://doi.org/
10.1007/978-3-030-32101-7 1

6. Brengel, M., Rossow, C.: Identifying key leakage of bitcoin users. In: Bailey, M.,
Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) Research in Attacks, Intru-
sions, and Defenses. pp. 623–643. Springer International Publishing, Cham (2018)

7. Courtois, N.T., Emirdag, P., Valsorda, F.: Private key recovery combination at-
tacks: On extreme fragility of popular bitcoin key management, wallet and cold
storage solutions in presence of poor RNG events. Cryptology ePrint Archive, Re-
port 2014/848 (2014), https://eprint.iacr.org/2014/848

8. Genkin, D., Nissan, N., Schuster, R., Tromer, E.: Lend me your ear: Passive remote
physical side channels on PCs. In: 31st USENIX Security Symposium (USENIX
Security 22). pp. 4437–4454. USENIX Association, Boston, MA (Aug 2022), https:
//www.usenix.org/conference/usenixsecurity22/presentation/genkin

9. Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature schemes.
Designs, Codes and Cryptography 23(3), 283–290 (Aug 2001). https://doi.org/10.
1023/A:1011214926272, https://doi.org/10.1023/A:1011214926272

10. Jancar, J., Sedlacek, V., Svenda, P., Sys, M.: Minerva: The curse of ECDSA nonces.
IACR TCHES 2020(4), 281–308 (2020). https://doi.org/10.13154/tches.v2020.i4.
281-308, https://tches.iacr.org/index.php/TCHES/article/view/8684

11. Lenstra, A.K., Lenstra, H.W., Lovasz, L.: Factoring polynomials with rational co-
efficients. MATH. ANN 261, 515–534 (1982)

12. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the elliptic curve digital sig-
nature algorithm with partially known nonces. Designs, Codes and Cryptogra-
phy 30(2), 201–217 (Sep 2003). https://doi.org/10.1023/A:1025436905711, https://
doi.org/10.1023/A:1025436905711

https://doi.org/10.1007/978-3-030-77870-5_19
https://doi.org/10.1007/978-3-030-77870-5_19
https://doi.org/10.1007/978-3-662-44709-3_5
https://doi.org/10.1007/978-3-662-44709-3_5
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/978-3-662-45472-5_11
https://doi.org/10.1007/978-3-662-45472-5_11
https://doi.org/10.1007/978-3-662-45472-5_11
https://doi.org/10.1007/978-3-662-45472-5_11
https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-030-32101-7_1
https://eprint.iacr.org/2014/848
https://www.usenix.org/conference/usenixsecurity22/presentation/genkin
https://www.usenix.org/conference/usenixsecurity22/presentation/genkin
https://doi.org/10.1023/A:1011214926272
https://doi.org/10.1023/A:1011214926272
https://doi.org/10.1023/A:1011214926272
https://doi.org/10.1023/A:1011214926272
https://doi.org/10.1023/A:1011214926272
https://doi.org/10.13154/tches.v2020.i4.281-308
https://doi.org/10.13154/tches.v2020.i4.281-308
https://doi.org/10.13154/tches.v2020.i4.281-308
https://doi.org/10.13154/tches.v2020.i4.281-308
https://tches.iacr.org/index.php/TCHES/article/view/8684
https://doi.org/10.1023/A:1025436905711
https://doi.org/10.1023/A:1025436905711
https://doi.org/10.1023/A:1025436905711
https://doi.org/10.1023/A:1025436905711

13. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theor. Comput. Sci. 53(2-3), 201–224 (Aug 1987). https://doi.org/10.1016/
0304-3975(87)90064-8, http://dx.doi.org/10.1016/0304-3975(87)90064-8

14. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Math. Program. 66(2), 181–199 (Sep 1994).
https://doi.org/10.1007/BF01581144, http://dx.doi.org/10.1007/BF01581144

15. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
8.7) (2022), https://www.sagemath.org

16. Weiser, S., Schrammel, D., Bodner, L., Spreitzer, R.: Big numbers - big troubles:
Systematically analyzing nonce leakage in (EC)DSA implementations. In: Capkun,
S., Roesner, F. (eds.) USENIX Security 2020. pp. 1767–1784. USENIX Association
(Aug 2020)

17. Yoo, A.B., Jette, M.A., Grondona, M.: Slurm: Simple linux utility for resource man-
agement. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) Job Scheduling
Strategies for Parallel Processing. pp. 44–60. Springer Berlin Heidelberg, Berlin,
Heidelberg (2003)

https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1016/0304-3975(87)90064-8
http://dx.doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
http://dx.doi.org/10.1007/BF01581144

	 The curious case of the half-half Bitcoin ECDSA nonces

