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Abstract. The Ascon authenticated encryption scheme has recently
been selected as winner of the NIST Lightweight Cryptography com-
petition. Despite its fame, a comprehensive and self-contained generic
security treatment of its mode remains absent. In this work we present
a thorough security analysis of the Ascon mode: we consider multi-user
and possibly nonce-misuse security by default, but more importantly, we
particularly investigate the role of the key blinding. More technically, our
analysis includes an authenticity study in various attack settings. This
analysis includes a description of a security model of authenticity under
state recovery, that captures the idea that the mode aims to still guaran-
tee authenticity and security against key recovery even if an inner state
is revealed to the adversary in some way, for instance through leakage.
We prove that Ascon satisfies this security property, thanks to its unique
key blinding technique.

Keywords: Ascon · NIST LWC · authenticated encryption · key blind-
ing · security under state recovery.

1 Introduction

The area of lightweight cryptography has been a focal point of research in the last
decades. The initial research focused merely on the design of lightweight block
ciphers, such as NOEKEON [19], PRESENT [13], and GIFT [3]. The introduc-
tion of sponge functions [8] has given rise to a large amount of hash functions
that aimed to be lightweight, such as QUARK [2], PHOTON [28], and SPON-
GENT [12]. In more recent years, the quest mostly centered around authenti-
cated encryption. This research was mainly driven by the CAESAR competition
for authenticated encryption design [14] and thereafter by the lightweight cryp-
tography competition organized by the US National Institute of Standards and
Technology (NIST) [35]. In the CAESAR competition, the Ascon authenticated
encryption scheme [20,22] was selected as winner in the category lightweight. In
the NIST lightweight cryptography competition, Ascon [21, 22] was selected as
overall winner, this time consisting of an authenticated encryption scheme and
a hash function, out of 57 submissions.

Ascon is a permutation-based authenticated encryption scheme that is in-
spired by the duplex construction [10,18,33]. It is based on a 320-bit permutation



p. It initializes its 320-bit state as the concatenation of an initialization vector,
a 128-bit key, and a 128-bit nonce. It permutes the state using p and it com-
presses the key again into the state. Then, Ascon proceeds with the absorption
of associated data in a keyed-sponge-style fashion [1,8,11,34] and the encryption
of plaintext in a duplex-style fashion [10,18], both with a round-reduced version
of the permutation p (the details are irrelevant for current discussion). Finally,
the state is blinded using the key, permuted using p, and 128-bits of its output
are once more blinded using the key and output as tag. A detailed description
of the mode can be found in Section 3.

The mode of Ascon resembles ideas of the authenticated encryption modes
SpongeWrap [10] or MonkeySpongeWrap [32], but not quite. The most crucial
difference is the key blinding at the beginning and at the end to achieve extra
robustness against state recovery. These key blindings are absent in existing
sponge-/duplex-based authenticated encryption security proofs. (Additionally, a
difference between Ascon and SpongeWrap/MonkeySpongeWrap is the slightly
different domain separators, but this difference is minor.) This difference makes it
impossible to argue security of the Ascon mode based on the multi-user security
bounding of the duplex of Daemen et al. [18] and Dobraunig and Mennink [24].
There exists a dedicated security proof of a sponge-/duplex-based mode that
seems to get close to the security of the Ascon mode, which is the security
proof of Jovanovic et al. [30, 31] for NORX. In detail, the authors claim that
their security proof carries over if there is key blinding at the end. However,
no argument is given to support that claim. At the same time, Jovanovic et
al. adopted a by now outdated multicollision bounding technique (refer to [16,
Section 4.3] and [32, Section 4.2] for a discussion about different techniques).

This leaves us with a quite unsatisfiable state of affairs: the winner of both the
CAESAR competition (in the category lightweight) and the NIST lightweight
cryptography competition does not have a thorough self-contained generic se-
curity proof for its mode. In an independent work, Chakraborty et al. [15] per-
formed a first analysis of the Ascon mode, but only considered plain nonce-based
security in the single-user setting.

On top of that, and more importantly, the role of additional key blindings
as done in Ascon is not well-understood from a theoretical perspective. To be
precise, the designers of Ascon have chosen to include the key blindings in their
scheme for security reasons: they claim that these extra key blindings allow the
scheme to achieve authenticity even under state recovery. This attack setting, for
example, applies to the case of leveled implementations [36], where the outer per-
mutations get stronger protection than the (round-reduced) inner permutation.
In this case, nonce-misusing attackers may get a higher chance at recovering
the state of an inner permutation call. This security property has never been
formally explored nor analyzed.

1.1 Our Contribution

We present a rigorous analysis of the Ascon authenticated encryption mode, with
particular attention to the additional key blinding. In a nutshell, we demonstrate
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that the mode achieves (i) multi-user nonce-based confidentiality and authentic-
ity, (ii) multi-user authenticity even under nonce misuse (though with a slightly
worse bound), and (iii) multi-user authenticity even under state recovery.

The first result (i) is in the conventional model for multi-user authenticated
encryption, and demonstrate that the Ascon mode achieves nonce-based confi-
dentiality up to time complexity around min{2k/µ, 2n/2, 2c}, where k is the key
size, µ the number of users, n the permutation size, and c the sponge capacity,
and nonce-based authenticity up to time complexity around min{2k/µ, 2n/ME , 2

c/MD},
where ME and MD are the encryption and decryption complexity bounds. In
comparison, Chakraborty et al. [15] independently proved security up to a time
complexity of around min{2k, 2c, 2b/M}, where M = ME +MD: this is a tighter
bound, but only in the single-user setting, and our findings in result (i) comple-
ment well. The difference in tightness comes from the use of a different proof
technique: in our paper, (i) merely serves as starter for the more important re-
sults (ii) and (iii), for which a different proof technique appeared to be more
favorable.

If the adversary reuses nonces, result (ii), confidentiality is not guaranteed
anymore, but we demonstrate that the scheme still achieves authenticity up to
time complexity around min{2k/µ, 2c/(ME +MD)}. The proofs are inspired by
the proof of Jovanovic et al. [30] for NORX, but significantly differ in the fact
that the key blinding is taken into account, and that a more modern approach
to bound multicollisions is adopted, namely the technique of Choi et al. [17], but
for which we found a slight improvement (see Lemma 6 in Appendix A).

The third result (iii) is in a setting that was never formally explored in the
first place. The only earlier work in this direction is by Guo et al. in Theorem 4
of [26], the full version of [27]. However, this result is informal (as explicitly men-
tioned by the authors), and a closer look at the reasoning reveals that it contains
several incomplete and incorrect steps.1 Therefore, we first formalize the right
model that captures the idea that the scheme still achieves authenticity under
state recovery. This model is rather subtle as it gives the adversary some kind
of power to choose when and which secret state to obtain. However, we observe
that a model very similar to muCIML2 of [26, Definition 2], but adapted to our
formalism and notation, suffices. Then, we demonstrate that Ascon without key
blinding (i.e., with only using the key to initialize the state) does not achieve
authenticity under state recovery, but that the actual Ascon with key blinding
achieves this unique property. The security bound is, logically, worse than that
of plain authenticity, but is still reasonably high: authenticity under state recov-
ery is achieved up to time complexity around min{2k/µ, 2c/2}. We also argue
tightness of the security result.

1 In fact, we derived our result independently, and even discarded the idea behind
the reasoning of [26] as it would not allow us to obtain a tight security bound. We
elaborate on this in Section 5.4, after the proof of Theorem 4.
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1.2 Outline

We start with preliminaries in Section 2. We describe the Ascon mode in Sec-
tion 3, and the authenticated encryption security model in Section 4. In par-
ticular, in Section 4.3 we define and argue our security model of authenticity
under state recovery. Security of the Ascon mode is derived in Section 5, with
confidentiality in Section 5.1, authenticity in nonce-misuse and nonce-respecting
respectively in Section 5.2 and Section 5.3, and authenticity under state recovery
in Section 5.4. We conclude in Section 6.

2 Preliminaries

Let m,n ∈ N with m ≤ n. We denote Jm,nK = {m, . . . , n}. We denote by {0, 1}n
the set of n-bit strings and {0, 1}∗ the set of arbitrarily long strings. The empty
string is denoted by ϵ. For X ∈ {0, 1}∗ we denote by padn(X) the function that
splits X into n-bit blocks where the last block is of size between 0 and n − 1
bits. We denote by pad10

∗

n (X) the function that pads X with a 1 and a sufficient
number of 0s so that the length of X becomes a multiple of n bits, and that
subsequently splits it into blocks of n bits.

For a ≤ |X|, we denote by ⌈x⌉a to denote the leftmost a bits and ⌊x⌋a as
the rightmost a bits of x. For X,Y ∈ {0, 1}∗, we denote their concatenation by
X ∥ Y and if |X| = |Y | their bitwise exclusive or by X ⊕ Y . In addition, if

c ≤ min{|X|, |Y |}, X c
= Y means that ⌊X⌋c = ⌊Y ⌋c. For a set S of elements,

we write X
c
∈ S to mean that X

c
= Y for some Y ∈ S. We stretch the notation

even further, and state that for two sets S and T we have S
c
∩ T ̸= ∅ if X c

= Y
for some X ∈ S and Y ∈ T .

We denote by perm(n) the set of all permutations p : {0, 1}n → {0, 1}n.
Let S be a set. ∄=x, y ∈ S denotes the existence of two distinct elements in S.
Moreover, if S is finite, we denote by S

$←− S the uniform random drawing of S
from S. Finally, we use the symbol E to represent the expectation.

Adversaries and Distinguishing Advantages. An adversary A is an algorithm
that is given access to one or more oracles O. If A is a distinguishing adversary,
after its interaction it has to output a decision bit b ∈ {0, 1}. We denote this as
“AO → b”. For two randomized oracles O and P, we denote the advantage of
an adversary A in distinguishing between them by

∆A (O ; P) =
∣∣Pr

(
AO → 1

)
−Pr

(
AP → 1

)∣∣ .
We will only be concerned with computationally unbounded adversaries A,
whose complexities are only measured by the number and type of oracle queries.
Without loss of generality, we assume that an adversary never makes queries for
which it already knows the answer.
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3 Ascon Mode

Let k,m, n, c, r ∈ N with c + r = n, k +m ≤ n, and m ≤ k. The authenticated
encryption scheme Ascon consists of two algorithms, the encryption algorithm
E and decryption algorithm D. Encryption E takes as input a key K ∈ {0, 1}k,
a nonce N ∈ {0, 1}m, associated data A ∈ {0, 1}∗, and plaintext P ∈ {0, 1}∗,
and it outputs a ciphertext C of the exact same size as P , so C ∈ {0, 1}|P |, and
a tag T ∈ {0, 1}m:

E(K,N,A, P ) = (C, T ) .

The corresponding decryption function D takes as input a key K ∈ {0, 1}k, a
nonce N ∈ {0, 1}m, associated data A ∈ {0, 1}∗, and ciphertext C ∈ {0, 1}∗, and
a tag T ∈ {0, 1}m, and it outputs either P of the exact same size as C if the tag
is correct or a failure symbol ⊥:

D(K,N,A,C, T ) ∈ {0, 1}|C| ∪ {⊥} .

In our work, we will focus on the mode of Ascon, which by abuse of notation
we still call Ascon. The encryption and decryption algorithms of this mode are
discussed in Section 3.1. In Section 3.2 we compare the mode with the actual
Ascon scheme, pinpoint the differences, and argue how these differences affect
implication of our security observations to the real scheme.

3.1 Encryption and Decryption

The encryption and decryption functions internally operate on top of two per-
mutations p, q ∈ perm(n). Let IV ∈ {0, 1}n−k−m be any fixed initialization
vector. The Ascon encryption mode is depicted in Fig. 1a and its decryption
mode in Fig. 1b. Here, the “Associated data” phase is only evaluated for non-
empty associated data, and in that case the associated data is 10-padded. The
“Plaintext”/“Ciphertext” phase is always executed, noting that the plaintext is
also 10-padded. The ciphertext is truncated to the size of the plaintext.

3.2 Comparison With Ascon

The parametrization of our mode versus the actual Ascon scheme differs in
various aspects. First off, the Ascon developers fix k = m = 128, i.e., restrict
their focus on keys, nonces, and tags of size 128 bits. We opted to keep k and
m general in the mode to obtain a security result that more accurately exposes
the role of the key and nonce/tag size.

The actual Ascon scheme also encodes parameters in the IV , meaning that
it is of size at least 32 bits. As such, they restrict the key to size at most 160 bits.
As our analysis is for a fixed parameter set, this encoding of the parameters in
IV does not play a role. We therefore simply assume a fixed IV and its length
is irrelevant for our analysis: all we require is that k +m ≤ n, next to m ≤ k in
order to have the tag fully blinded by the key.
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Fig. 1: The Ascon mode of operation: (a) encryption E and (b) decryption D,
both generalized in parameter size. In both cases, the associated data A ∈ {0, 1}∗
is first injectively padded into r-bit blocks as A1∥ · · · ∥As ← pad10

∗

r (A). The

plaintext is likewise padded into r-bit blocks as P1∥ · · · ∥Pt ← pad10
∗

r (P ). For
decryption, however, the ciphertext is padded as C1∥ · · · ∥Ct ← padr(C) and an
additional 1 is added (not depicted) to cope with the injective padding upon
encryption.

Apart from the parameters specified for our scheme, Ascon also introduces
parameters a and b: these correspond to the number of rounds in the permuta-
tions p and q. In detail, in Ascon the permutation p consists of a = 12 rounds
whereas q consists of its last b = 6 or b = 8 rounds (depending on the ver-
sion). We discard the overlap and simply assume that the two permutations are
independent.

We will consider security in the random permutation model where p, q
$←−

perm(n). This is, as a matter of fact, the most crucial difference between our
description and that of the actual Ascon: our analysis will demonstrate only
resistance against generic attacks; actual attacks on Ascon may use internal
properties of p, q, and these are not captured by our security analysis.
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4 Security Model

We will discuss the conventional model for authenticated encryption in Sec-
tion 4.1, its separation into confidentiality and authenticity in Section 4.2, and
our definition of authenticity under state recovery in Section 4.3.

4.1 Authenticated Encryption Security

We will investigate security of the Ascon mode in the random permutation

model. This means that we assume random permutations p, q
$←− perm(n). We

will consider multi-user security of Ascon, where the adversary can simultane-
ously query up to µ ≥ 1 versions of the scheme. The multi-user security of Ascon
against an adversary A is defined as

Advµ-ae
Ascon(A) = ∆A

((
Ep,qKj

,Dp,q
Kj

)µ
j=1

, p±, q± ;
(
$j ,⊥

)µ
j=1

, p±, q±
)
, (1)

where K1, . . . ,Kµ
$←− {0, 1}k, p, q $←− perm(n), and $1, . . . , $µ are random func-

tions that for each new input (N,A, P ) generate a random string of size |P |+m
bits. Here, the superscript “±” refers to bidirectional query access. The function
⊥ returns the failure symbol ⊥ for each query.

The adversary is not allowed to make a decryption query on input of the
result of an earlier encryption query. In addition, we call A nonce-respecting if
every encryption query is made for a nonce N that is different from all nonces
used in earlier encryption queries under the same key. Note: in this case A is
allowed to re-use a nonce in a decryption query or to re-use a nonce in an
encryption query that was used in an earlier decryption query.

We will typically bound the adversarial complexity by QE encryption queries
(to (EpKj

)µj=1 or ($j)
µ
j=1) with a total amount of σE blocks,2 QD decryption

queries (to (Dp
Kj

)µj=1 or (⊥)µj=1) with a total amount of σD blocks, Qp primitive

queries to p, p−1, and Qq primitive queries to q, q−1.

4.2 Separation Into Confidentiality and Authenticity

In order to analyze authenticity both against nonce-respecting and nonce-misusing
adversaries, it will be convenient for us to separate the security of Section 4.1
into confidentiality and authenticity:

Advµ-conf
Ascon (A) = ∆A

((
Ep,qKj

)µ
j=1

, p±, q± ;
(
$j
)µ
j=1

, p±, q±
)
, (2)

Advµ-auth
Ascon (A) = Pr

(
A
(
Ep,q
Kj

,Dp,q
Kj

)µ
j=1

,p±,q±

forges

)
, (3)

2 A “block” in this case is counted as the number of q-evaluations that would be
induced in the real world. This definition seems counter-intuitive at first sight, as
a single call to Ascon for empty associated data and a one-block plaintext incurs 0
q-evaluations. However, for the security proof this is the most logical definition.
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where for authenticity, we say that A “forges” if it ever makes a query to one of
its decryption oracles that is successful and that is not the result of an earlier en-
cryption query. The same remarks on the randomness and the query complexities
as in Section 4.1 apply.

It can be observed [6] that

Advµ-ae
Ascon(A) ≤ Advµ-conf

Ascon (A
′) +Advµ-auth

Ascon (A′′) ,

where A′ and A′′ have the same query complexities as A. This separation allows
for a modular proof, but it comes at the price of some terms in the bounds being
counted twice.

4.3 Authenticity Under State Recovery

One property claimed by the designers of Ascon is that, if an inner state of Ascon
is leaked, mounting forgeries or recovering the keys is hard. Intuitively, the idea
is that (i) whenever an inner state is leaked to the adversary, (ii) it may evaluate
itself in forward/inverse direction using evaluations of q±, but (iii) it cannot get
across the outer permutation evaluations due to the key blinding. After all, the
secret target values outside these permutation evaluations are the key and the
tag; hence the claim of the designers.

Now, obviously, authenticity is a weaker property than key recovery security,
noting that if one can recover the key, one can mount a forgery. Thus, in order to
capture security of Ascon under state recovery, we aim for authenticity. However,
formalizing this security property is not trivial.

In order to formalize the notion, we take inspiration from the work on
permutation-based leakage resilience [24–27]. In leakage resilience, the attacker
has, besides the oracles of (3), access to a leaky version of the scheme where the
adversary not only learns the actual inputs but also leakage of each permutation
call. The adversary would then win if it can forge the challenge version of the
scheme [4]. We follow the same approach in our definition of authenticity under
state recovery, with the fundamental differences that (i) leakage only happens
for the inner permutation q and (ii) the function leaks the entire input and out-
put state of those permutation calls. Point (i) is supported by the idea that, at
least in Ascon, the outer permutations are stronger than the inner ones, and in a
leveled implementation [36] one could consider an application where these outer
permutation calls that are surrounded by key material are better masked. Point
(ii) is mostly out of generosity: the attacker learns all internal secret states,
rather than just a selected amount of them. This is without loss of generality as
the adversary can proceed itself from any leaked secret state using q± anyway.

Formally, we define the notion of authenticity under state recovery as the
definition of authenticity of (3), where A gets access to learning oracles LE and
LD, which are defined as E and D but that additionally leak all input/output
values of the evaluations of inner permutation q (cf., Fig. 1). It wins if it ever
makes a query to one of its learning decryption oracles that is successful and
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that is not the result of an earlier encryption query. This leads to the following
model:

Advµ-auth
Ascon (A) = Pr

(
A
(
LEp,q

Kj
,LDp,q

Kj

)µ
j=1

,p±,q±

forges

)
. (4)

We consider the setting where the adversary is allowed to repeat nonces. We re-
mark that the definition is almost equivalent to muCIML2 of [26, Definition 2],
the main differences being that they consider two structurally different underly-
ing ideal primitives rather than one, and that we make explicit what conditions
apply on the nonce.

5 Security of Ascon Mode

We prove nonce-based confidentiality of the Ascon mode in Section 5.1, authen-
ticity under nonce misuse in Section 5.2, and nonce-based authenticity in Sec-
tion 5.3. We prove authenticity of the Ascon mode in both the nonce-respecting
as in the nonce-misuse setting. In both authenticity proofs, the adversary is al-
lowed to repeat nonces under decryption queries; the sole difference in the two
settings is that in the nonce-respecting setting the adversary is not allowed to
use a single nonce for a single key twice for encryption. Authenticity under state
recovery is analyzed in Section 5.4.

5.1 Confidentiality

We prove confidentiality of the Ascon mode in the nonce-based setting, where the
adversary is not allowed to reuse nonces for different calls to a single encryption
oracle. It is allowed to repeat nonces under different keys.

Theorem 1. Let k,m, n, c, r, µ ∈ N with c + r = n, k + m ≤ n, and m ≤ k,
and consider the mode Ascon = (E ,D) of Section 3. For any nonce-respecting
adversary A making at most QE encryption queries with a total amount of σE
blocks, Qp primitive queries to p, and Qq primitive queries to q, such that Qp ≤
min{2k−1, 2c−1} and Qq ≤ 2c−1,

Advµ-conf
Ascon (A) ≤

(
µ

2

)
1

2k
+

2µQp

2k
+

2µQE

2n−m
+

(6m+ 8)Qp

2n−m

+
(σE + 2QE)

2

2n
+

12Qq (QE + σE)

2n
+

(2QE +Qp)
2

2n
+

(σE +Qq)
2

2n

+
16QpQE

2n
+

(6r + 8)Qq

2c
+

(12r + 16)Qp

2c
.

At a high level, if M denotes the total number of encryption blocks queried, and
N the number of primitive queries, this bound is of the form

O
(
µ2

2k
+

µ(M +N)

2k
+

(N +M)2

2n
+

N

2c

)
.
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The proof is roughly inspired by that of Jovanovic et al. [30,31] but uses a more
novel multicollision bounding technique. In addition, and more importantly, it
explicitly takes the keying of the Ascon mode into account.

Proof (of Theorem 1). Let K1, . . . ,Kµ
$←− {0, 1}k be µ random keys, p, q

$←−
perm(n) be two random permutations, and $1, . . . , $µ be µ random functions.
Let A be a nonce-respecting adversary. Our goal is to bound the distance
Advµ-conf

Ascon (A) of (2).

RP-RF Switch. As a first step, we replace the primitives p± and q± by lazily
sampled random functions f±

p and f±
q by using the RP-RF switching lemma [7].

More precisely, these primitives maintain distinct lists Lp and Lq, respectively,
containing tuples of the form (X,Y ). On a forward query X, the function checks
whether X appears as first position in the list. If this is not the case, it samples

Y
$←− {0, 1}n, and adds (X,Y ) to the corresponding list. Otherwise, it simply

replies with any Y such that (X,Y ) is in the list. The functions operate compara-
bly for inverse queries. As long as no collisions occur in these lists, then (f±

p , f±
q )

are indistinguishable from (p±, q±). Moreover, there are 2QE +Qp queries to the
primitive fp and σE +Qq queries to the primitive fq, therefore

Advµ-conf
Ascon (A) ≤ ∆A

((
Efp,fqKj

)µ
j=1

, f±
p , f±

q ;
(
$j
)µ
j=1

, f±
p , f±

q

)
+

(2QE +Qp)
2

2n
+

(σE +Qq)
2

2n
. (5)

Transcripts. For ease of notation, we will denote the real world as WR =((
Efp,fqKj

)µ
j=1

, f±
p , f±

q

)
and the ideal world as WI =

((
$j
)µ
j=1

, f±
p , f±

q

)
. We define

a transcript τ for the real world. This transcript records all evaluations of f±
p

and f±
q , either through construction or primitive queries. In detail, τ contains

tuples of the form (X,Y, d,O, j):

– X denotes the input, Y , the output, and d ∈ {fwd, inv} the query direction;
– O ∈ {p, q, Ebegp , Eendp , Eq} indicates whether the evaluation is a fp-query from

the adversary, a fq-query from the adversary, a first encryption fp-evaluation,
a last encryption fp-evaluation, or an encryption fq-evaluation, respectively.
We abuse notation and denote by O = Ep that O ∈ {Ebegp , Eendp };

– j ∈ J0, µK indicates the corresponding key index in construction queries, or
0 if O ∈ {p, q}.

Bad Events. We now define bad event BAD over the extended transcript, which
is split into two bad events: BAD := GUESS ∨COL.

Bad event GUESS itself is further split into GUESS := GUESSkey ∨
GUESSp ∨GUESSq. These bad events are defined as follows:

GUESSkey : ∃(X,Y, d, p, 0) ∈ τ, j ∈ J1, µK such that ⌈X⌉n−m = IV ∥ Kj ,

GUESSp : ∃(X,Y, d, p, 0), (U, V, fwd, Ep, j) ∈ τ such that X = U ,

GUESSq : ∃(X,Y, d, q, 0), (U, V, fwd, Eq, j) ∈ τ such that X = U .
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The purpose of GUESS is to capture the case that the adversary “guesses”
an intermediate state that was generated during a construction query. Event
GUESSkey corresponds to guessing the key, while for the other bad events, the
subscript indicates if this guess is a guess for the outer primitive p or the inner
primitive q.

Bad event COL itself is further split into COL := COLkey ∨ COLaux ∨
COLst. COLst is further split into COLst := COLst

inter ∨COLst
final. These bad

events are defined as follows:

COLkey : ∄=j, j′ ∈ J1, µK such that Kj = Kj′ ,

COLaux : ∃(U, V, fwd, Eendp , j), j′ ∈ J1, µK such that ⌈U⌉n−m = IV ∥ Kj′ ,

COLst
inter : ∄=(U, V, fwd, Eq, j), (U ′, V ′, fwd, Eq, j′) ∈ τ such that U = U ′ ,

COLst
final : ∄=(U, V, fwd, Eendp , j), (U ′, V ′, fwd, Eendp , j′) ∈ τ such that U = U ′ .

The purpose of COL is to handle collisions between the keys or between inter-
mediate states in constructions queries. It thus guarantees that all permutation
queries made by construction calls in the real world are fresh (provided, of course,
no such state is “guessed” in a primitive query). In detail, COLkey ensures that
no collisions between two initial states IV ∥ Kj ∥ N and IV ∥ Kj′ ∥ N ′ occur,
COLaux prevents collisions between an initial state and a state before the last
fp-evaluation, and COLst handles the remaining collisions.

Further Steps. In Lemma 1, we show that, as long as BAD does not occur
in the real world WR, the worlds WR and WI are indistinguishable. Then, in
Lemma 2 we upper bound the probability that BAD occurs in the real world
WR. Together with (5), these two lemmas complete the proof. ⊓⊔

Lemma 1. As long as BAD does not occur in WR, worlds WR and WI are
indistinguishable. Formally,

∆A (WR ; WI) ≤ Pr
(
AWR sets BAD

)
.

Proof. As long as GUESS does not occur in WR, the adversarial primitive
queries do not coincide with any of the primitive evaluations made in construc-
tion queries. This means that we can restrict our focus to the difference between

the output distributions of the worlds W ′
R =

(
Efp,fqKj

)µ
j=1

and W ′
I =

(
$j
)µ
j=1

.

Note that, as each query is made for a new nonce, the outputs in W ′
I are uni-

formly random string (of length |P | + m bits, where |P | is the length of the
plaintext of the corresponding query). For W ′

R, events COLkey and COLaux

make sure that each construction evaluation starts with a new initial input to
fp, event COLst

inter assures that all internal calls to fq are distinct, and event
COLst

final assures that all final calls to fp are distinct. As fp and fq are random
functions, this means that the ciphertexts and tags in W ′

R are uniform random
strings, just like in W ′

I .
We thus obtain that, as long as BAD does not occur in WR, in both worlds

the outputs will always be uniformly randomly generated strings. This would
complete the assertion by the fundamental lemma of game playing [7]. ⊓⊔
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Lemma 2. We have

Pr
(
AWR sets BAD

)
≤
(
µ

2

)
1

2k
+

2µQp

2k
+

2µQE

2n−m
+

(6m+ 8)Qp

2n−m

+
(σE + 2QE)

2

2n
+

12Qq (QE + σE)

2n

+
16QpQE

2n
+

(6r + 8)Qq

2c
+

(12r + 16)Qp

2c
.

The proof can be found in Appendix B.

5.2 Authenticity in Nonce-Misuse Setting

We prove the following result for authenticity against possibly nonce-misusing
adversaries.

Theorem 2. Let k,m, n, c, r, µ ∈ N with c+ r = n, k+m ≤ n, and m ≤ k, and
consider the mode Ascon = (E ,D) of Section 3. For any possibly nonce-misusing
adversary A making at most QE encryption queries with a total amount of σE
blocks, QD decryption queries with a total amount of σD blocks, Qp primitive
queries to p, and Qq primitive queries to q, such that 2QE + 2QD +Qp ≤ 2c−1

and σE + σD +Qp ≤ 2c−1,

Advµ-auth
Ascon (A) ≤ 2QD

2m
+

(
µ

2

)
1

2k
+

2µ(QE +QD +Qp)

2k

+
Qp(6m+ 8)

2n−m
+

4Qp(QE +QD)

2n

+
16(Qp +Qq +QE +QD + σE + σD)(QE +QD + σE + σD)

2c
.

At a high level, if M represents the total number of encryption and decryption
blocks queried, and N the number of primitive queries, this bound is of the form

O
(
2QD

2m
+

µ2

2k
+

µ(M +N)

2k
+

M(N +M)

2c
+

N

2c

)
.

The proof relies in part on that of confidentiality (Theorem 1) but differs in that
the adversary is allowed to reuse nonces and henceforth may potentially set outer
parts of states to a value of its choice. The nonce reuse leads to an additional
problem, namely that an intermediate state for some construction evaluation
could become a final state for another one. These two issues are covered by
updating the bad events as required.

Proof (of Theorem 2). Let K1, . . . ,Kµ
$←− {0, 1}k be µ random keys, and p, q

$←−
perm(n) be two random permutations. Let A be a possibly nonce-misusing ad-

versary. Our goal is to bound the probability Advµ-auth
Ascon (A) of (3).

12



Setup. Unlike the proof of confidentiality (Theorem 1), we do not aim for a
distinguishing event, and we will also not resort to an RP-RF-switch. However,
we adopt the extended transcript notation and expand it to decryption queries.
In detail, the transcript τ records all evaluations of the form (X,Y, d,O, j), where
now the origin satisfies O ∈ {p, q, Ebegp , Eendp , Eq,Dbeg

p ,Dend
p ,Dq}, in order to take

into account decryption queries. Abusing notation, we write C to denote E or D.
Looking ahead, we will define a bad event M-BAD. We have

Pr

(
A
(
Ep,q
Kj

,Dp,q
Kj

)µ
j=1

,p±,q±

forges

)
≤

Pr

(
A
(
Ep,q
Kj

,Dp,q
Kj

)µ
j=1

,p±,q±

forges
∣∣ ¬M-BAD

)
+Pr (M-BAD) . (6)

The rest of the proof consists of defining the bad events. The first probability in
(6) is bounded in Lemma 3, and the second probability in Lemma 4. Together,
these results complete the proof.

Bad Events. We will slightly change the two bad events GUESS and COL of
Theorem 1 intoM-GUESS andM-COL, and defineM-BAD := M-GUESS∨
M-COL.

Before defining the bad events, we first define the following sets for any
construction-originated query (X,Y, fwd,O, j):

InterSt((U, V, fwd,O, j)) =
{
V ⊕ (0n−k ∥ Kj), V ⊕ (0n−k ∥ Kj)⊕ 0∗1

}
, if O = Cbegp ,

{V ⊕ 0∗1, V } , if O = Cq ,
∅ , otherwise ,

LastSt((U, V, fwd,O, j)) =
{
V ⊕ (0n−k ∥ Kj)⊕ 0∗1⊕ (0r ∥ Kj ∥ 0c−k)

}
, if O = Cbegp ,{

V ⊕ 0∗1⊕ (0r ∥ Kj ∥ 0c−k), V ⊕ (0r ∥ Kj ∥ 0c−k)
}
, if O = Cq ,

∅ , otherwise .

The goal of these sets is based on the following observation. As nonces can repeat,
it is possible that an intermediate state once generated using an encryption query
could later become a final state of another query, or if this state was during
absorption of associated data, then domain separator bits may be added. These
sets encompass all future possibilities for the states generated by construction
queries. The sets allow us to drastically simplify the bad event by excluding
multiple cases at once. We will refer to elements in these sets later as candidate
states.

We are now ready to define the bad event M-BAD. As in the confidentiality
proof, M-BAD is split as M-BAD := M-GUESS ∨M-COL.

M-GUESS itself is further split intoM-GUESS := M-GUESSkey∨M-GUESSp∨
M-GUESSq, where we additionally split the latter two into M-GUESSp :=

13



M-GUESSin
p ∨M-GUESSout

p andM-GUESSq := M-GUESSin
q ∨M-GUESSout

q :

M-GUESSkey : GUESSkey (of Theorem 1) ,

M-GUESSin
p : ∃(X,Y, d, p, 0), (U, V, fwd, Cp, j) ∈ τ such that X

c
= U or

∃(X,Y, d, p, 0), (U, V, fwd,O, j) ∈ τ

such that X
c
∈ LastSt((U, V, fwd,O, j)) ,

M-GUESSout
p : ∃(X,Y, d, p, 0), (U, V, fwd, Cp, j) ∈ τ such that Y

c
= V ,

M-GUESSin
q : ∃(X,Y, d, q, 0), (U, V, fwd, Cq, j) ∈ τ such that X

c
= U or

∃(X,Y, d, q, 0), (U, V, fwd,O, j) ∈ τ

such that X
c
∈ InterSt((U, V, fwd,O, j)) ,

M-GUESSout
q : ∃(X,Y, d, q, 0), (U, V, fwd, Cq, j) such that Y

c
= V .

Likewise,M-COL is split intoM-COL := M-COLkey∨M-COLaux∨M-COLst,
where M-COLst is further split into M-COLst = M-COLst

inter ∨M-COLst
final:

M-COLkey : COLkey (of Theorem 1) ,

M-COLaux : COLaux (of Theorem 1) ,

M-COLst
inter : ∄=(U, V, fwd,O, j), (U ′, V ′, fwd,O′, j′) ∈ τ such that

InterSt((U, V, fwd,O, j))
c
∩ InterSt((U ′, V ′, fwd,O′, j′)) ̸= ∅ ,

M-COLst
final : ∄=(U, V, fwd,O, j), (U ′, V ′, fwd,O′, j′) ∈ τ such that

LastSt((U, V, fwd,O, j))
c
∩ LastSt((U ′, V ′, fwd,O′, j′)) ̸= ∅ .

At a high level, the roles of M-COLst
inter and M-COLst

final are similar to that of
COLst, but with the equalities replaced by equalities on the inner part. Unlike
the proof of confidentiality, the nonces can repeat, meaning that an intermedi-
ate state can appear with a different form in a later query. Consequently, we
have modified the bad events M-COLst to encompass all future possibilities for
the states. While it could be argued that capturing all possibilities might be
unnecessary, the definitions will be crucial in the context of a nonce-respecting
adversary (Theorem 3). Indeed, in this case we want to ensure that if a state
generated during a decryption query triggers BAD when used in a subsequent
encryption query, then BAD must have already been triggered during the orig-
inal decryption query. ⊓⊔

Lemma 3. We have

Pr

(
A
(
Ep,q
Kj

,Dp,q
Kj

)µ
j=1

,p±,q±

forges
∣∣ ¬M-BAD

)
≤ 2QD

2m
.

Proof. Conditioned on ¬M-BAD, the state from which the tag is extracted is
freshly generated during the decryption query. It is therefore sampled uniformly
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at random from a set of size at least 2n − Qp − 2QE − 2QD, among which at
most 2n−m values give a successful forgery. Therefore, that forgery succeeds with
probability at most 2n−m/2n−Qp−2QE −2QD ≤ 2/2m, using that Qp+2QE +
2QD ≤ 2n−1. The result is obtained by summing over all QD decryption queries.

⊓⊔
Lemma 4. We have

Pr (M-BAD) ≤
(
µ

2

)
1

2k
+

2µ(QE +QD +Qp)

2k

+
Qp(6m+ 8)

2n−m
+

4Qp(QE +QD)

2n

+
16(Qp +Qq +QE +QD + σE + σD)(QE +QD + σE + σD)

2c
.

The proof can be found in Appendix C. It closely resembles that of Lemma 2,
and the main difference lies in the evaluation of the bad events on their inner
part only.

5.3 Authenticity in Nonce-Respecting Setting

We prove the following result for authenticity against nonce-respecting adver-
saries.

Theorem 3. Let k,m, n, c, r, µ ∈ N with c + r = n, k + m ≤ n, and m ≤ k,
and consider the mode Ascon = (E ,D) of Section 3. For any nonce-respecting
adversary A making at most QE encryption queries with a total amount of σE
blocks, QD decryption queries with a total amount of σD blocks, Qp primitive
queries to p, and Qq primitive queries to q, such that 2QE+Qp ≤ 2n−1, σE+Qq ≤
2n−1, Qp + 2QD ≤ 2c−1, and Qq + σD ≤ 2c−1,

Advµ-auth
Ascon (A) ≤ 2QD

2m
+

(
µ

2

)
1

2k
+

2µ(QE +QD +Qp)

2k
+

Qp(12m+ 16)

2n−m

+
4QpQD

2n
+

(2QE + σE)
2

2n
+

QpQE

2n
+

10Qq(QE + σE)

2n

+
Qp(12r + 6)

2c
+

Qq(6r + 8)

2c
+

12(Qp +Qq)(QD + σD)

2c

+
8(2QD + σD)(4QE + 2σE + 2QD + σD)

2c
.

At a high level, ifME andMD denote respectively the total number of encryption
and decryption blocks queried, and N the number of primitive queries, this
bound is of the form

O
(
2QD

2m
+

µ2

2k
+

µ(M +N)

2k
+

ME(N +ME)

2n
+

MD(N +ME +MD)

2c
+

N

2c

)
,

where M := ME + MD. The proof can be found in Appendix D. It is very
similar to that of the nonce-misuse setting (Theorem 2), with the difference
that encryption queries are handled separately due to the adversary being more
restricted in these.
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5.4 Authenticity Under State Recovery

We will consider Ascon under the novel model of authenticity under state re-
covery, in Section 5.4.2. The bound is worse than previous bounds due to the
power that the attacker has in current attack model, and in Section 5.4.3 we
will elaborate on the tightness of our bound. However, before doing so, we will
first in Section 5.4.1 consider a bad version of Ascon, called BadAsscon, that is
equal to the construction of Fig. 1 but omits all key additions except the first
one, and demonstrate that this construction fails to achieve authenticity under
state recovery.

5.4.1 BadAsscon. We first demonstrate that BadAsscon admits a trivial
authenticity attack under state recovery.

Proposition 1. Let k,m, n, c, r, µ ∈ N with c+ r = n, k +m ≤ n, and m ≤ k,
and consider the mode BadAsscon = (E ,D) that equals Ascon of Section 3 but
with all key additions except the first one omitted. There exists an adversary A
making QE = 1 encryption query with a total amount of σE = 0 blocks, QD = 1
decryption query with a total amount of σD = 0 blocks, Qp = 0 primitive queries
to p, and Qq = 3 primitive queries to q,

Advµ-sr-auth
BadAsscon(A) = 1 .

The idea of the attack is very simple: from a single learning query one can recover
the key, and once the key is recovered a forgery can be mounted. We include the
attack for completeness.

Proof (of Proposition 1). We consider an adversary that first recovers the key
K1 and uses it to forge a tag under this key. The adversary operates as follows:

– It first makes any encryption learning query with empty associated data
and with a plaintext of 1 block (w.l.o.g., already padded): LEp,qK1

(N,P ). It
learns (C, T ) as well as the state S right after absorption of P and before
application of permutation p;

– It queries p−1(S ⊕ (P ∥ 0c−1 ∥ 1)) to obtain IV ∥ K1 ∥ N and extracts K1

from it;
– It selects a different tuple (N ′, P ′), computes Ep,qK1

(N,P ) = (C, T ) offline
with two calls to p;

– It outputs forgery (N,C, T ).

The forgery obviously succeeds with probability 1. ⊓⊔

5.4.2 Ascon. Now, we are ready to prove security of Ascon under state re-
covery.

Theorem 4. Let k,m, n, c, r, µ ∈ N with c+ r = n, k+m ≤ n, and m ≤ k, and
consider the mode Ascon = (E ,D) of Section 3. For any possibly nonce-misusing
adversary A making at most QE encryption queries with a total amount of σE
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blocks, QD decryption queries with a total amount of σD blocks, Qp primitive
queries to p, and Qq primitive queries to q such that 2QE + 2QD +Qp ≤ 2c−1,
σE + σD +Qp ≤ 2c−1, Qp ≤ 2k−1,

Advµ-sr-auth
Ascon (A) ≤ 2QD

2m
+

(
µ

2

)
1

2k
+

2µ(Qp +QE +QD)

2k
+

(12(c− k) + 16)Qp

2k

+
Qp(6m+ 8)

2n−m
+

4Qp(QE +QD)

2n
+

8(2QE + 2QD + 8Qq + σE + σD)
2

2c

+
12Qp(8QE + 8QD +Qq + σE + σD)

2c
.

At a high level, if M represents the total number of encryption and decryption
blocks queried, and N the number of primitive queries, this bound is of the form

O
(
2QD

2m
+

µ2

2k
+

µ(M +N)

2k
+

(N +M)2

2c

)
.

The core idea why Ascon achieves authenticity under state recovery whereas
BadAsscon of Section 5.4.1 did not is that the calls to the outer permutation p
are masked by K at both sides. This means that, even if the adversary learns
all intermediate states, it cannot “pass through” the permutations p. That said,
the security setting also gives rise to other potential attacks, most notably as in
case of state leakage the inner portion of Ascon behaves as a mere hash function
of which the adversary knows all states, and for which it could potentially find
inner collisions. This complicates the analysis of Theorem 4.

Before proceeding with the proof of Theorem 4, we wish to remark that Guo
et al. already gave an argument of the security of Ascon in this setting in [26,
Theorem 4]. However, their proof is informal (as explicitly stated by the authors)
and only stated in big-O terms. A more detailed look at their informal reasoning
reveals various unclear and unconvincing steps. Most importantly, the core step
of their reasoning is to replace KDFKi

(basically, in our terminology, the first
permutation call including the key blindings) and TGFKi

(the last permutation
call including the key blindings) by secret random functions. This step is made at
the cost of the PRF security of multi-instance partial-key Even-Mansour cipher,

which the authors claim to be (in our terminology) O
(

(Qp+Qq+σE+σD)2

2c

)
. As

Qp + Qq + σE + σD is de facto the total complexity, this bound seems lossy
when purely focusing on the initialization and finalization. Of course, this is a
minor issue as a tighter term for the multi-instance partial-key Even-Mansour
cipher was already derived by Andreeva et al. [1, Theorem 4] and as the claimed
term also appears in the security of the hash portion between key derivation and
tag generation. What is more worrisome is that the reasoning is incorrect. To
be precise: the security of the multi-instance partial-key Even-Mansour cipher
is relative to the key size and not to the capacity. In Ascon, the key is of size
k ≤ c, and the bound of Andreeva et al. [1, Theorem 4] would carry over with c
replaced by k to match our context. This substitution leads to a term of the order
(Qp+Qq)·multiplicity+(QE+QD)2

2k
. We stress that this gives a dramatic security loss,
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noting that in Ascon, k = 128 and c = 256, and additionally, the multiplicity
term of the partial-key Even-Mansour cipher replacing KDFKi

can be as large
as multiplicity ≈ min{QE + QD, 2

m}. As a matter of fact, in an earlier proof
attempt, we independently followed the same reasoning as Guo et al., but quickly
departed from it as the security loss described here turned out to be unavoidable.

Proof (of Theorem 4). Let K1, . . . ,Kµ
$←− {0, 1}k be µ random keys, p, q

$←−
perm(n) be two random permutations, and $1, . . . , $µ be µ random functions.

Our goal is to bound the distance Advµ-sr-auth
Ascon (A) of (4).

Setup. We again adopt the transcript notation from the proof of nonce-misuse
authenticity (Theorem 2), with one adjustment. Note that in the current security
setting, the adversary can make q-queries starting from an intermediate state
that was disclosed during an earlier LC-query. In order to simplify the notation
and bad event analysis, any such direct q-query will be stored as an encryption
query. More precisely, if the adversary makes a forward q-query such that the
input X collides on its inner part with any intermediate state U (possibly after
xoring the domain separator bits), itself associated with key index j, then this
adversarial q-query will be appended to τ as (X,Y, fwd, Eq, j). Looking ahead,
our bad events will prevent that inverse q-queries connect to any intermediate
state, and guarantee that any q-query departs from only one intermediate state.

Looking ahead, we will define a bad event SR-BAD. We have

Pr

(
A
(
Ep,q
Kj

,Dp,q
Kj

)µ
j=1

,p±,q±

forges

)
≤

Pr

(
A
(
Ep,q
Kj

,Dp,q
Kj

)µ
j=1

,p±,q±

forges
∣∣ ¬SR-BAD

)
+Pr (SR-BAD) . (7)

The rest of the proof consists of defining the bad events. The first probability is
bounded as

Pr

(
A
(
Ep,q
Kj

,Dp,q
Kj

)µ
j=1

,p±,q±

forges
∣∣ ¬SR-BAD

)
≤ 2QD

2m
,

exactly as in Lemma 3 (using that Qp + 2QE + 2QD ≤ 2n−1), but with a side
remark that we use the fact that as long as no collisions occur between inner
states, and the adversary did not guess the key or a construction evaluation of p,
the last p-call in any forgery attempt is new. The second probability is bounded
in Lemma 5. Together, these results complete the proof.

Bad Events. The bad events of the nonce-misuse authenticity (Theorem 2) are
inherited, but we define an additional bad event called SR-INNER. This event
captures the case where an inverse q-query connects with a candidate interme-
diate state. The remaining inner collisions that can be caused by adversarial
queries are covered by the event SR-COLst.

In detail, we have SR-BAD := SR-GUESS ∨ SR-COL ∨ SR-INNER.
Event SR-GUESS itself is further split into SR-GUESS := SR-GUESSkey ∨
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SR-GUESSp. Event SR-COL is split into SR-COL := SR-COLkey∨SR-COLaux∨
SR-COLst. The individual events are defined as follows:

SR-GUESSkey : GUESSkey (of Theorem 1) , SR-COLkey : COLkey (of Theorem 1) ,

SR-GUESSp : M-GUESSp (of Theorem 2) , SR-COLaux : COLaux (of Theorem 1) ,

SR-COLst : M-COLst (of Theorem 2) ,

SR-INNER : ∃(X,Y, inv, q, 0), (S, S′, fwd,O, j) ∈ τ such that X
c
∈ InterSt((S, S′, fwd,O, j)) .

Note that since the adversary has access to all intermediate states, GUESSq

(or a variant of this event) is not needed as bad event. The analysis of the bad
events in Lemma 5 is similar to that of Lemma 4, with the difference that we use
multicollisions in order to upper bound the maximum number of intermediate
states that have their leftmost c − k bits of their inner part equal to a certain
value. ⊓⊔

Lemma 5. We have

Pr (SR-BAD) ≤

(
µ

2

)
1

2k
+

2µ(Qp +QE +QD)

2k
+

(12(c− k) + 16)Qp

2k

+
Qp(6m+ 8)

2n−m
+

4Qp(QE +QD)

2n
+

8(2QE + 2QD + 8Qq + σE + σD)2

2c

+
12Qp(8QE + 8QD +Qq + σE + σD)

2c
.

The proof can be found in Appendix E. It is very similar to that of Lemma 4, with
the main distinction being the additional coverage of the bad event SR-INNER
and the treatment of direct q queries as construction queries.

5.4.3 Tightness. Additionally to attacks that apply in the “conventional”
(i.e., non-state-recovery) nonce-misuse setting, the occurrence of inner collisions
between q-evaluations can help the adversary to mount forgeries. Indeed, con-
sider the following adversary:

– It first makes any encryption learning query with an associated data of 1
block (w.l.o.g., already padded): LEp,qK1

(N,A). In particular, it learns the
state S right after absorption of A and before application of permutation p
without the domain separator bits;

– It queries p(S ⊕ (Ai ∥ 0c)) for 2c/2 different Ai;
3

– With high probability, there exist Ai ̸= Aj such that p(S ⊕ (Ai ∥ 0c))
c
=

p(S⊕(Aj ∥ 0c)). Let A∆ = ⌈p(S⊕(Ai ∥ 0c))⊕p(S⊕(Aj ∥ 0c))⌉r⊕(0r−1 ∥ 1);
– If such a collision occurs, the adversary queries Ep,qK1

(N,A ∥ Ai ∥ (0r−1 ∥ 1)),
and learns the tag T ;

– Finally, the adversary outputs a forgery (N,A ∥ Aj ∥ A∆, T ).

3 Note, if r < c/2, this attack can be extended by making several sequential absorb
calls.
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This attack involves finding inner collisions in the sponge construction based on
the permutation q with initial state S. The adversary manages to find a full-
state collision immediately before the last p-evaluation, thereby obtaining two
sequences of blocks that produce the same tag.

6 Conclusion

In this work we derived a security bound on the security of the mode of operation
of the Ascon authenticated encryption scheme. Besides the conventional confi-
dentiality and authenticity, we also investigated formally what happens in Ascon
if an inner state happens to be recovered by the adversary. Using our tailormade
definition, we proved that Ascon even guarantees authenticity in this case, unlike
typical duplex-style authenticated encryption modes that only use the key upon
initialization. We stress that our results hold in the ideal permutation model.
For instance, Baudrin et al. [5] performed a practical attack against the actual
Ascon authenticated encryption scheme in the setting of a nonce-misusing ad-
versary, with a complexity of around 240. This attack exploits weaknesses of the
underlying permutation.

Besides an authenticated encryption mode, Ascon also offers a hashing func-
tionality. For completeness, we remark that generic security of this hashing fol-
lows from the plain indifferentiability of the sponge [9], guaranteeing c/2-bit
security. Recently, the developers also introduced Ascon-PRF [23], a pseudoran-
dom function on top of the Ascon permutation. Security of this mode was proven
in [32, Section 8.3].
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Lemma 6 (Choi et al. [17], adapted). Let R,n ∈ N. Consider a bin con-
taining balls, where each ball has one of R possible labels and such that there are
an equal number of balls for each label. Consider the experiment of sampling n
balls in the bin with replacement. For r ∈ J1, RK, let Xr be the number of balls
drawn with label “r”. Then,

E
(
max

r
Xr

)
≤ 2n

R
+ 3 ln (R) + 4 .

The result also holds when the sampling is performed without replacement.

Proof. Let p = 1
R and r ∈ J1, RK. Then, Xr follows a binomial law with param-

eters p and n. Therefore, we can use the Chernoff bound which states that for
any j ≥ 2pn,

Pr (Xr ≥ j) ≤ e−
j−pn

3 .

Therefore,

E
(
max

r
Xr

)
=
∑
j≥1

Pr
(
max

r
Xr ≥ j

)

≤
2pn+3 ln(R)∑

j=1

Pr
(
max

r
Xr ≥ j

)
+

n∑
j=2pn+3 ln(R)

Pr

(∨
r

Xr ≥ j

)

≤ 2pn+ 3 ln (R) +

R∑
r=1

n∑
j=2pn+3 ln(R)

Pr (Xr ≥ j)

≤ 2pn+ 3 ln (R) +R ·
n∑

j=2pn+3 ln(R)

e−
j−pn

3

≤ 2pn+ 3 ln (R) +R · e
pn
3 · e

− 2pn+3 ln(R)
3 − e

−n−1
3

1− e−
1
3

≤ 2pn+ 3 ln (R) + 4R · e−
pn
3 e− ln(R)

≤ 2n

R
+ 3 ln (R) + 4 .

In addition, when the balls are drawn without replacement, we can apply [29,
Theorem 4], which proves that for any function that is both continuous and
convex,

E (f (Xr)) ≤ E
(
f
(
Y (r)

))
,

where Y (r)∼Binomial(p, n). In particular, this inequality holds when f(x) = et·x

for any t > 0. Because the Chernoff bound is obtained by upper bounding
E
(
et·Xr

)
, the proof can be extended to this case. ⊓⊔
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B Proof of Lemma 2

Proof (of Lemma 2). For brevity, for an event evt, Pr
(
AWR sets evt

)
will be

referred to asPr (evt). Recall thatBAD = GUESSkey∨GUESSp∨GUESSq∨
COLkey ∨COLaux ∨COLst. Let

EVT =
{
GUESSkey,GUESSp,GUESSq,COLaux,COLst

}
be the set of all bad events excluding COLkey. We will reason in a primitive-
evaluation-wise fashion, and evaluate the probability that BAD is set at the
ith primitive evaluation, conditioned on the fact that it was not set beforehand.
There are a total ofQp+2QE fp-evaluations and a total ofQq+σE fq-evaluations.
Let v = Qp + 2QE +Qq + σE . For i ∈ J1, vK, we denote by evt[i] the event that

evt is set right after the ith evaluation. Note that COLkey is the only event that
can be set only before the interaction, and for convenience of notation, BAD[0]
refers to COLkey. Moreover, the order at which the evaluations are done or
whether the evaluation i is a fp- or fq-evaluation does not matter at this point,
as this will be addressed later in the proof.

By first splitting BAD into BAD[0]∨ · · · ∨BAD[v] and subsequently split-
ting each BAD[i] into ∨evt∈EVTevt[i], we obtain

Pr (BAD) ≤ Pr
(
COLkey

)
+

v∑
i=1

∑
evt∈EVT

Pr

evt[i] ∧ ¬BAD[i− 1] ∧
∧

evt′ ̸=evt

¬evt′[i]


︸ ︷︷ ︸

(8)

. (9)

Here, we used the observation that one primitive evaluation (either direct or
through the construction) cannot set two different events evt and evt′ at the
same time. Indeed, if this were the case, GUESS or COL would have been
set in an earlier query. GUESSkey and GUESSp can be set only during fp-
evaluations (either direct or through the construction),GUESSq only during fq-
evaluations (either direct or through the construction), and COLst only during
primitive queries made by construction calls. Let i ∈ J1, vK, and denote by τ [i]
the transcript obtained after the first i evaluations.

We will now analyze the probabilities of (9) separately.

Upper Bounding COLkey. For COLkey, we have

Pr
(
COLkey

)
≤
(
µ

2

)
1

2k
. (10)

Additional Notation for Analyzing (8). We will use the following abbreviation,
for any event evt ∈ EVT:

Cond evt[i] = ¬BAD[i− 1] ∧
∧

evt′ ̸=evt

¬evt′[i] .
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Moreover, for O ∈ {C,A}, r ∈ {p, q}, 1i
O,r denotes the indicator function equal

to one if and only if the evaluation number i is an fr-evaluation and originates
from O, where O = C denotes the construction and O = A the adversary.

We will now upper bound (8) for each evt ∈ EVT separately, for any eval-
uation number i.

Upper Bounding COLaux. Recall that this event is set when a final state, right
before the last p-evaluation collides with a certain IV ∥ Kj on its leftmost n−m
bits. These final states are produced either during the first fp-evaluation (when
the associated data is empty and there is at most one block of plaintext), or
during the last fq-evaluation. Because of ¬BAD[i−1], these states are uniformly
random. Therefore

Pr (COLaux[i] | Cond COLaux[i]) ≤ 1i+1
C,p

µ

2n−m
. (11)

Upper Bounding COLst. First note that, as COLkey does not occur and the
nonces are never repeated for each user, each construction evaluation has a
unique starting state IV ∥ Kj ∥ N . Furthermore, as long as GUESS[i − 1]
and COL[i−1] do not occur, the primitive evaluation made by the construction
during the evaluation number i is fresh. Moreover, as the adversary is not allowed
to repeat nonces, it has to commit to the data to absorb before obtaining the
ciphertext and tag. Therefore, overwriting the outer parts of the states does not
increase the adversarial success probability into setting COLst. Now, depending
on the origin of the evaluation number i, there are several (disjoint) possibilities:

– The evaluation comes from the first fp-evaluation. Because the keys are not
colliding and nonces are always unique per user, all inputs to the first fp-
evaluation are distinct. The evaluation yields to a new random n-bit state
(after possibly xoring with some predetermined string). The evaluation sets
COLst if this state is equal to any earlier inner state. In all cases, this event

is set with probability at most 1i
C,p

QE + σE

2n
;

– The evaluation comes from one fq-evaluation. Depending on the location
of this evaluation, the state produced by this iteration yields to a certain
intermediate or final state (after possibly xoring with some predetermined
string). Similarly to the first case, this event is set with probability at most

1i
C,q

QE + σE

2n
;

– The evaluation comes from the last fp-evaluation. The state produced plays
no role in bad event COLst.

Therefore,

Pr
(
COLst[i] | Cond COLst[i]

)
≤
(
1i
C,p + 1i

C,q
) QE + σE

2n
. (12)
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Upper Bounding GUESSkey. This event can be set only with an adversarial
fp-query. In the case where this query is inverse, hitting IV ∥ Kj on its leftmost
n −m bits is an unlucky event, which happens with probability at most µ

2n−m .
In the case where the query is made in the forward direction, this event is set
if the attacker guesses one of the µ uniformly random keys correctly during any
of the Qp queries. Each failed guess eliminates one state from the set of possible
candidates. Therefore, one has

Pr
(
GUESSkey[i] | Cond GUESSkey[i]

)
≤ 1i

A,p

µ

2k −Qp
≤ 1i

A,p

2µ

2k
, (13)

where we used Qp ≤ 2k−1, and that k +m ≤ n so the case of inverse queries is
covered.

Upper Bounding GUESSp and GUESSq. This event can occur through two
scenarios: (i) when the query triggering this event is an inverse permutation
query or a forward construction query, or (ii) when the query triggering this
event is a forward permutation query. In the former case, the probability is
evenly distributed. Therefore, we focus our attention on scenario (ii), where the
adversary directly guesses the state. We can observe that the adversary may
have knowledge of the leftmost r bits of all states where one block of plaintext
is absorbed. In addition, it has access to the rightmost m bits of the final state
after the key is xored. The knowledge of these leftmost r bits and rightmost m
bits may increase the adversarial success probability, as it can focus on states
whose leftmost r bits or rightmost m bits are most-reoccurring, and guessing
the remaining c or n−m bits. To capture this situation, we define the following
families of random variables:

Colq[i] = max
z∈{0,1}r

#
{
U | ∃(U, V, fwd, Eq, j) or (U, V, fwd, Eend

p , j) ∈ τ [i] such that

⌈U⌉r = z
}
,

Colp[i] = max
z∈{0,1}r

#
{
Z | ∃(U, V, fwd, Ebeg

p , j) ∈ τ [i] such that Z = V ∧ ⌈Z⌉r = z or

∃(U, V, fwd, Eend
p , j) ∈ τ [i] such that Z = U ∧ ⌈Z⌉r = z

}
,

Colt[i] = max
z∈{0,1}m

#
{
V | ∃(U, V, fwd, Eend

p , j) ∈ τ [i] such that ⌊V ⌋m = z
}
. (14)

Moreover, we define Colx = Colx[v]. These random variables count the max-
imum number of jointly colliding ciphertexts/tags without COL being set so
far. For Colq[i] and Colp[i], we examine the states before and after each q-
evaluation and p-evaluation, respectively. We can now further evaluate (8) for
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each evt ∈ {GUESSp,GUESSq}. We have

Pr (GUESSq[i] ∧Cond GUESSq[i]) ≤∑
cq

Pr
(
GUESSq[i]

∣∣ Cond GUESSq[i] ∧ Colq[i] = cq
)
×Pr (Colq[i] = cq) , (15)

Pr (GUESSp[i] ∧Cond GUESSp[i]) ≤∑
cp,ct

Pr
(
GUESSp[i]

∣∣ Cond GUESSp[i] ∧ Colp[i] = cp ∧ Colt[i] = ct
)
×

Pr (Colp[i] = cp)Pr (Colt[i] = ct) , (16)

where we used that Colp[i] and Colt[i] are independent. In the following, let cq,
cp, ct be fixed. We can now evaluate the conditioned probabilities of (15) and
(16). We start with the conditioned GUESSq[i]. There are two possibilities to
set this event at the iteration number i:

– GUESSq[i] is set during an adversarial primitive query. Because of ¬COL[i],
the intermediate states generated during previous construction queries are
uniformly random, and independent. By the condition Colq[i] = cq, and
¬COL[i], there are at most cq different states with a given outer part, thus
one attempt from the adversary can target at most cq states. Moreover, the
inner part is uniformly random, and one failed attempt from the adversary
only eliminates one state from the list of possible candidates. Therefore, this
event is set with probability at most

1i
A,q

cq

2c −Qq
+ 1i

A,q

QE + σE

2n
≤ 1i

A,q

2cq
2c

+ 1i
A,q

QE + σE

2n
,

where the second term corresponds to an unlucky collision on the output of
the adversarial query;

– GUESSq[i] is set during a construction query. In that setting, it means that
the output of a freshly generated random value appears in the adversary
query history. Therefore, this happens with probability at most 1i

C,q
Qq

2n .

Therefore,

Pr
(
GUESSq[i]

∣∣ Cond GUESSq[i] ∧ Colq[i] = cq
)
≤

1i
A,q

2cq
2c

+ 1i
A,q

QE + σE

2n
+ 1i

C,q
Qq

2n
.

The conditioned GUESSp[i] can be evaluated using the same reasoning.
Note that the adversary does not have a direct access to the rightmost m bits
of the final state, but this does not change the upper bounding. We obtain

Pr
(
GUESSp[i]

∣∣ Cond GUESSp[i] ∧ Colp[i] = cp ∧ Colt[i] = ct
)
≤

1i
A,p

2cp
2c

+ 1i
A,p

2ct
2n−m

+ 1i
A,p

2QE

2n
+ 1i

C,p
Qp

2n
.
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Plugging these into (15) and (16) gives

Pr (GUESSq[i] ∧Cond GUESSq[i])

≤
∑
cq

(
1i
A,q

2cq
2c

+ 1i
A,q

QE + σE

2n
+ 1i

C,q
Qq

2n

)
Pr
(
Colq[i] = cq

)
= 1i

A,q

2E
(
Colq

)
2c

+ 1i
A,q

QE + σE

2n
+ 1i

C,q
Qq

2n
, (17)

and

Pr (GUESSp[i] ∧Cond GUESSp[i]) ≤

1i
A,p

2E
(
Colp

)
2c

+ 1i
A,p

2E (Colt)

2n−m
+ 1i

A,p

2QE

2n
+ 1i

C,p
Qp

2n
. (18)

Conclusion. By plugging (10), (11), (12), (13), (17), and (18) into (9), we obtain

Pr (BAD) ≤
(
µ

2

)
1

2k
+

2µQp

2k
+

2µQE

2n−m
+

(2QE + σE)
2

2n
+

Qq (3QE + 2σE)

2n
+

2QpQE

2n
+

2QqE
(
Colq

)
2c

+
2QpE

(
Colp

)
2c

+
2QpE (Colt)

2n−m
, (19)

where we used that

#
{
i ∈ J1, vK | 1i

C,p = 1
}
= 2QE , #

{
i ∈ J1, vK | 1i

A,q = 1
}
= Qq ,

#
{
i ∈ J1, vK | 1i

C,q = 1
}
= σE , #

{
i ∈ J1, vK | 1i

A,p = 1
}
= Qp .

It remains to bound the expectations of Colq, Colp, and Colt. These random
variables count the maximum number of colliding states that come from distinct
primitive evaluations, where we note that Colp can be upper bounded as the
sum of two sets with independent randomness. Therefore, the situation reduces
to the bin-and-balls setting from Lemma 6, and we obtain

E
(
Colq

)
≤ 2(σE +QE)

2r
+ 3r + 4 , E

(
Colp

)
≤ 4QE

2r
+ 6r + 8 ,

E (Colt) ≤
2QE

2m
+ 3m+ 4 ,

where we implicitly used that there are at most σE + QE states Vl. Finally, we
obtain from (19):

Pr (BAD) ≤
(
µ

2

)
1

2k
+

2µQp

2k
+

2µQE

2n−m
+

(2QE + σE)
2

2n
+

12Qq (QE + σE)

2n
+

16QpQE

2n
+

(6r + 8)Qq

2c
+

(12r + 16)Qp

2c
+

(6m+ 8)Qp

2n−m
.

This completes the proof. ⊓⊔
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C Proof of Lemma 4

Proof. The proof is very similar to that of Lemma 2. The most notable difference
is that now the bad events are evaluated at their inner c bits only. Let

M-EVT =
{
M-GUESSkey,M-GUESSp,M-GUESSq,M-COLaux,M-COLst

}
be the set of all bad events, excluding M-COLkey. Let v = 2QE + 2QD + σE +
σD +Qp +Qq be the total number of evaluations. We have

Pr (M-BAD) ≤ Pr
(
M-COLkey

)
+

v∑
i=1

∑
evt∈M-EVT

Pr

evt[i] ∧ ¬M-BAD[i− 1] ∧
∧

evt′ ̸=evt

¬evt′[i]


︸ ︷︷ ︸

(20)

. (21)

In the following, let i ∈ J1, vK. We upper bound the probability of (20) for any
evt ∈M-EVT.

Identical Events. The bounding of M-COLkey = COLkey remains unchanged,
so that

Pr
(
M-COLkey

)
≤
(
µ

2

)
1

2k
. (22)

Likewise for M-GUESSkey = GUESSkey, we have

Pr
(
M-GUESSkey[i] | Cond M-GUESSkey[i]

)
≤ 1i

A,p

2µ

2k
. (23)

The event M-COLaux = COLaux is now similar to the bad event GUESSkey. It
can be triggered on the final evaluation of a construction query. Out of generos-
ity, assume that the adversary can overwrite the full state of U at this precise
iteration. In order to trigger M-COLaux, the adversary must be able to guess
the key, so that

Pr (M-COLaux[i] | Cond M-COLaux[i]) ≤ 1i
C,p

µ

2k
. (24)

Updated Events. For the remaining events, without loss of generality the ad-
versary can freely overwrite the outer parts of the states at its own discretion
during both encryption and decryption queries, but it does not have access to
the remaining c bits which are sampled randomly according to a permutation as
long as M-BAD[i− 1] is not set.

We start by upper bounding M-COLst. This event can be set only during
construction evaluations. The bad event M-COLst is defined exclusively on the
inner parts of intermediate states. Consequently, if the ith evaluation has pre-
viously occurred in an earlier construction query (due to a repeating nonce),
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the resulting state cannot trigger M-COLst. Hence, without loss of generality,
we can assume that the ith evaluation is fresh. The event M-COLst

inter can be
set on a construction-based p-evaluation or a q-evaluation. The new evaluation
produces at most two candidate states, and each sets M-COLst

inter with prob-

ability at most 4(QE+σE+QD+σD)
2c . A similar reasoning applies for M-COLst

final.
Therefore,

Pr
(
M-COLst[i] | Cond M-COLst[i]

)
≤ (1i

C,p + 1i
C,q)

8(QE +QD + σE + σD)

2c
.

(25)

Now, we focus on the events related to M-GUESS. Recall that the proof
of confidentiality was using the random variables Colx[i] (see (14)) to upper
bound the maximum number of multicollisions that could occur on the outer
part. Using them for the inner states is now futile. However, we can still use
Colt (where we abuse notation and also include the transcripts elements with
origin D) for the event GUESSout

p , since the final states are the only ones the
adversary cannot overwrite. From this remark, we obtain

Pr (M-GUESSq[i] | Cond M-GUESSq[i]) ≤

1i
C,q

2Qq

2c
+ 1i

A,q

8(QE +QD + σE + σD)

2c
, (26)

Pr (M-GUESSp[i] ∧Cond M-GUESSp[i])

≤
∑
ct

Pr (M-GUESSp[i] | Cond M-GUESSp[i] ∧ Colt = ct)Pr (Colt = ct)

≤ 1i
C,p

2Qp

2c
+ 1i

A,p

8(QE +QD + σE + σD)

2c
+ 1i

A,p

2E (Colt)

2n−m

≤ 1i
C,p

2Qp

2c
+ 1i

A,p

8(QE +QD + σE + σD)

2c
+ 1i

A,p

4(QE +QD)

2n
+ 1i

A,p

6m+ 8

2n−m
.

(27)

Conclusion. By plugging (22), (23), (24), (25), (26), and (27) into (21), this
completes the proof. ⊓⊔

D Proof of Theorem 3

In this section, we provide a proof of authenticity in a nonce-respecting setting.
The proof is very similar to that of the nonce-misuse setting (Theorem 2), with
the difference that the adversary has less power to set certain bad events. This
leads us to the need to define bad events depending on whether a construction
query is encrypting (thus with a new nonce) or decrypting (with a repeated
nonce).
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Proof (of Theorem 3). Let K1, . . . ,Kµ
$←− {0, 1}k be µ random keys, and p, q

$←−
perm(n) be two random permutations. Let A be a nonce-respecting adversary.
Note that it may repeat nonces in decryption evaluations. Our goal is to bound
the probability Advµ-auth

Ascon (A) of (3).

Setup. As in the proof of nonce-misuse authenticity, we will define a bad event
R-BAD. We have

Pr

(
A
(
Ep,q
Kj

,Dp,q
Kj

)µ
j=1

,p±,q±

forges

)
≤

Pr

(
A
(
Ep,q
Kj

,Dp,q
Kj

)µ
j=1

,p±,q±

forges
∣∣ ¬R-BAD

)
+Pr (R-BAD) . (28)

The rest of the proof consists of defining the bad events. The first probability is
bounded as

Pr

(
A
(
Ep,q
Kj

,Dp,q
Kj

)µ
j=1

,p±,q±

forges
∣∣ ¬R-BAD

)
≤ 2QD

2m
,

exactly as in Lemma 3 (using that Qp + 2QE + 2QD ≤ 2n−1). The second
probability is bounded in Lemma 7. Together, these results complete the proof.

Bad Events. As in the current proof the adversary may have differing power in
encryption and decryption queries, we are going to re-use a mix of the bad events
from the proof of confidentiality (Theorem 1) and nonce-misuse authenticity
(Theorem 2). Intuitively, as long as at least one construction query involved in
the bad event comes from a decryption query, we inherit the bad event from
the nonce-misuse authenticity proof; otherwise, we inherit it from the nonce-
respecting confidentiality proof.

In detail, as before we haveR-BAD := R-GUESS∨R-COL. EventR-GUESS
itself is further split intoR-GUESS := R-GUESSkey∨R-GUESSp∨R-GUESSq.

Event R-COL is split into R-COL := R-COLkey ∨ R-COLaux ∨ R-COLst.
To capture that adversary is more powerful during decryption queries, we split
R-GUESSp, R-GUESSq, and R-COLst, depending on whether the queries
triggering the event come from an encryption or decryption query:

R-GUESSp := R-GUESSp(E) ∨R-GUESSp(D) ,
R-GUESSq := R-GUESSq(E) ∨R-GUESSq(D) ,

R-COLst := R-COLst(E-E) ∨R-COLst(E-D) ∨R-COLst(D-D) ,

where the symbols E and D indicate whether the construction tuples involved
come from an encryption or decryption query. Note that the adversary can make
failed decryption attempts with a nonce N and then reuse that nonce for an
encryption query, but this is still taken care of in the bad events. The bad events
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related to R-GUESS are defined as follows:

R-GUESSkey : GUESSkey (of Theorem 1) ,

R-GUESSp(E) : GUESSp (of Theorem 1) ,

R-GUESSp(D) : M-GUESSp (of Theorem 2, restricted to O = Dp) ,

R-GUESSq(E) : GUESSq (of Theorem 1) ,

R-GUESSq(D) : M-GUESSq (of Theorem 2, restricted to O = Dq) .

The bad events related to R-COL are defined as follows:

R-COLkey : COLkey (of Theorem 1) ,

R-COLaux : COLaux (of Theorem 1) ,

R-COLst(E-E) : COLst (of Theorem 1) ,

R-COLst(E-D) : M-COLst (of Theorem 2, restricted to O = D, O′ = E) ,
R-COLst(D-D) : M-COLst (of Theorem 2, restricted to O = O′ = D) .

The analysis of bad events in Lemma 7 is a combination of Lemma 2 and
Lemma 4, taking into account that decryption queries give the adversary more
power than encryption queries. ⊓⊔
Lemma 7. We have

Pr (R-BAD) ≤
(
µ

2

)
1

2k
+

2µ(QE +QD +Qp)

2k
+

Qp(12m+ 16)

2n−m

+
4QpQD

2n
+

(2QE + σE)
2

2n
+

QpQE

2n
+

10Qq(QE + σE)

2n

+
Qp(12r + 6)

2c
+

Qq(6r + 8)

2c
+

12(Qp +Qq)(QD + σD)

2c

+
8(2QD + σD)(4QE + 2σE + 2QD + σD)

2c
.

Proof. The proof is very similar to that of Lemma 2 and Lemma 4. Let

R-EVT =
{
R-GUESSkey,R-GUESSp(E),R-GUESSp(D),
R-GUESSq(E),R-GUESSq(D),R-COLaux,

R-COLst(E-E),R-COLst(E-D),R-COLst(D-D)
}

be the set of all bad events in both settings, excluding R-COLkey. Let v =
2QE +2QD + σE + σD +Qp +Qq be the total number of evaluations. We have

Pr (R-BAD) ≤ Pr
(
R-COLkey

)
+

v∑
i=1

∑
evt∈R-EVT

Pr

evt[i] ∧ ¬R-BAD[i− 1] ∧
∧

evt′ ̸=evt

¬evt′[i]


︸ ︷︷ ︸

(29)

. (30)

In the following, let i ∈ J1, vK. We upper bound the probability of (29) for any
evt ∈M-EVT.
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Identical Events. The bounding of R-COLkey = COLkey, R-GUESSkey =
GUESSkey, andR-COLaux = COLaux remains unchanged compared to Lemma 4:

Pr
(
R-COLkey

)
≤
(
µ

2

)
1

2k
, (31)

Pr
(
R-GUESSkey[i] | Cond R-GUESSkey[i]

)
≤ 1i

A,p

2µ

2k
, (32)

Pr (R-COLaux[i] | Cond R-COLaux[i]) ≤ 1i
C,p

µ

2k
. (33)

Updated Events. Strictly seen, the bounds derived in the nonce-misuse case in
Lemma 4 are also valid here, but they are lossy. The adversary cannot over-
write the outer parts during the encryption queries, and failed earlier decryption
queries do not give the adversary access to the outer parts, meaning that they
do not increase the adversarial success probability. More precisely, if the state at
the ith encryption evaluation appears in an earlier failed decryption query, this
one cannot trigger R-BAD[i]∧¬R-BAD[i−1] by design of our bad events: the
bad events related to these states on a decryption attempt are strictly stronger.
In particular, an intermediate state that corresponds to an intermediate state
while absorbing associated data during a decryption query could become a state
while absorbing the plaintext during a later encryption query, and by design of
R-COLst(·-D) these hypothetical cases are already covered preemptively.

In the following, we overload the notation for the indicator functions. For
a construction-based r-evaluation, for r ∈ {p, q}, 1i

C,r(E) and 1i
C,r(D) denote

that the underlying construction query is an encryption or decryption query,
respectively.

We upper bound R-COLst. Event R-COLst(E-E) can be upper bounded as
in the proof of confidentiality, and we obtain

Pr
(
R-COLst(E-E)[i] | Cond R-COLst(E-E)[i]

)
≤(

1i
C,p(E) + 1i

C,q(E)
) QE + σE

2n
. (34)

For R-COLst(E-D) and R-COLst(D-D), a similar analysis as for the case
of a nonce-misusing adversary can be done, and we get

Pr
(
R-COLst(E-D)[i] ∧Cond R-COLst(E-D)[i]

)
≤(

1i
C,p(E) + 1i

C,q(E)
) 8(QD + σD)

2c
+
(
1i
C,p(D) + 1i

C,q(D)
) 8(QE + σE)

2n
. (35)

Pr
(
R-COLst(D-D)[i] ∧Cond R-COLst(D-D)[i]

)
≤(

1i
C,p(D) + 1i

C,q(D)
) 8(QD + σD)

2c
. (36)

For the conditioned events of R-GUESSp(E) and R-GUESSq(E), we can
rely on most of the analysis made in the proof of confidentiality (Theorem 1).
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However, a subtlety appears in the definitions of Colx: we should not count
any evaluation made during decryption queries. Therefore, for O ∈ {E ,D} we
redefine

Colq[i](O) = max
z∈{0,1}r

#
{
U | ∃(U, V, fwd,Oq, j) or (U, V, fwd,Oend

p , j) ∈ τ such that

⌈U⌉r = z
}
,

Colp[i](O) = max
z∈{0,1}r

#
{
Z | ∃(U, V, fwd,Obeg

p , j) ∈ τ such that Z = V ∧ ⌈Z⌉r = z or

∃(U, V, fwd,Oend
p , j) ∈ τ such that Z = U ∧ ⌈Z⌉r = z

}
,

Colt[i](O) = max
z∈{0,1}m

#
{
V | ∃(U, V, fwd,Oend

p , j) ∈ τ such that ∧ ⌊V ⌋m = z
}
.

We define Colx[i](E-only) = Colq[i](E) \ Colq[i](D). Note that the expectations
do not change as the adversary is not allowed to overwrite the outer part, and
we obtain

E
(
Colq(E-only)

)
≤ 2(QE + σE)

2r
+ 3r + 4 ,

E
(
Colp(E-only)

)
≤ 4QE

2r
+ 6r + 8 ,

E (Colt(E-only)) ≤
2QE

2m
+ 3m+ 4 .

We can then apply the same analysis of the proof of confidentiality, and obtain

Pr (R-GUESSp(E)[i] ∧Cond R-GUESSp(E)[i]) ≤

1i
A,p

14QE

2n
+ 1i

A,p

12r + 16

2c
+ 1i

A,p

6m+ 8

2n−m
+ 1i

C,p(E)
2Qp

2n
. (37)

Pr (R-GUESSq(E)[i] ∧Cond R-GUESSq(E)[i]) ≤

1i
A,q

5(QE + σE)

2n
+ 1i

A,q

6r + 8

2c
+ 1i

C,q(E)
2Qq

2n
. (38)

For the bad events GUESSp(D) and GUESSq(D), we can again apply the case
of nonce-misusing adversaries, and obtain

Pr (R-GUESSp(D)[i] ∧Cond R-GUESSp(D)[i]) ≤

1i
C,p(D)

2Qp

2c
+ 1i

A,p

8(QD + σD)

2c
+ 1i

A,p

4QD

2n
+ 1i

A,p

6m+ 8

2n−m
. (39)

Pr (R-GUESSq(D)[i] ∧Cond R-GUESSq(D)[i]) ≤

1i
C,q(D)

2Qq

2c
+ 1i

A,q

8(QD + σD)

2c
. (40)
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Conclusion. By plugging (31), (32), (33), (34), (35), (36), (37), (38), (39), and
(40) into (30), this completes the proof. ⊓⊔

E Proof of Lemma 5

In this section, we provide a proof of the upper bound that SR-BAD occurs
in the case of security under state recovery. The proof is similar to that of
Lemma 4, with the main distinction being the additional coverage of the bad
event SR-INNER and the treatment of direct q queries as construction queries.
Let

SR-EVT =
{
SR-GUESSkey,SR-GUESSp,SR-COLaux,SR-COLst,SR-INNER

}
,

be the set of all bad events in both settings, excluding SR-COLkey. Let v =
2QE +2QD + σE + σD +Qp +Qq be the total number of evaluations. We have

Pr (SR-BAD) ≤ Pr
(
SR-COLkey

)
+

v∑
i=1

∑
evt∈SR-EVT

Pr

evt[i] ∧ ¬SR-BAD[i− 1] ∧
∧

evt′ ̸=evt

¬evt′[i]


︸ ︷︷ ︸

(41)

. (42)

In the following, let i ∈ J1, vK. We upper bound the probability of (41) for any
evt ∈ SR-EVT.

Identical Events. The bounding of SR-COLkey = COLkey, SR-GUESSkey =
GUESSkey, and SR-COLaux = COLaux remains unchanged compared to Lemma 4:

Pr
(
SR-COLkey

)
≤
(
µ

2

)
1

2k
, (43)

Pr
(
SR-GUESSkey[i] | Cond SR-GUESSkey[i]

)
≤ 1i

A,p

2µ

2k
, (44)

Pr (SR-COLaux[i] | Cond SR-COLaux[i]) ≤ 1i
C,p

µ

2k
. (45)

Updated Events. We start with SR-INNER. There are two possibilities to set
this event: either a candidate intermediate state that was generated during a
construction query collides on its inner part with a former inverse query output,
or an inverse query collides on its inner part with a candidate intermediate state.
As, in current case, there are at most 2(QE + QD + Qq + σE + σD) candidate
intermediate or final states, the event is set with probability at most

Pr (SR-INNER[i] | Cond SR-INNER[i]) ≤

(1i
C,q + 1i

C,p)
4Qq

2c
+ 1i

A,q

4(QE +QD +Qq + σE + σD)

2c
. (46)
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Next, we consider event SR-COLst. This event can be upper bounded in a
similar way as in the nonce-misuse setting of Theorem 2, with a crucial difference
that q-queries from the adversary are now counted as associated to candidate
intermediate or final states. Therefore,

Pr
(
SR-COLst[i] | Cond SR-COLst[i]

)
≤

(1i
C,p + 1i

C,q)
8(QE +QD +Qq + σE + σD)

2c
. (47)

Finally, we consider SR-GUESSp. The adversary has two options to trigger
this event. Firstly, it can guess the final state from which the tag is extracted.
Secondly, it can guess either the output of the first p-evaluation S1 or the input
to the last p-evaluation S2 that occurred during a construction query. Handling
the first case follows a similar approach as in Lemma 4. However, the second
case is significantly different from before. In this scenario, the adversary has
additional access to the leftmost c− k bits of the inner part of the states S1 or
S2. Assuming no bad event occurred prior to this, the states S1 originate from
distinct p-evaluations, while the states S2 come from distinct p- or q-evaluations.
These states are randomly sampled in a permutation-consistent way, allowing us
to employ multicollisions. We define the following sets:

ColS = max
z∈{0,1}c−k

#
{
Z | ∃(U, V, fwd, Cbeg

p , j) ∈ τ such that Z = V and⌈⌊Z⌋c⌉c−k = z

or ∃(U, V, fwd,O, j) ∈ τ [i] such that

Z ∈ LastSt((U, V, fwd,O, j)) ∈ τ and ⌈⌊Z⌋c⌉c−k = z
}

Colt[i] = max
z∈{0,1}m

#
{
V | ∃(U, V, fwd, Cend

p , j) ∈ τ [i] such that ∧ ⌊V ⌋m = z
}
.

The expectation of these random variables can be upper bounded using Lemma 6
as

E (ColS) ≤
6(QE +QD) + 4(σE + σD +Qq)

2c−k
+ 6(c− k) + 8 ,

E (Colt) ≤
2(QE +QD)

2m
+ 3m+ 4 .

Thus, one attempt of the adversary to guess one of the states S1 and S2, con-
ditioned on ColS = cS cannot target more than cS states at the same time.
Moreover, since no bad event happened before, each of these states is randomly
generated, in a permutation-consistent way. Therefore,

Pr (SR-GUESSp ∧Cond SR-GUESSp[i])

≤ 1i
A,p

4(QE +QD)

2n
+ 1i

A,p

6m+ 8

2n−m
+ 1i

A,p

12(c− k) + 16

2k
+ 1i

C,p
2Qp

2c

+ 1i
A,p

12(QE +QD + σE + σD +Qq)

2c
. (48)

Conclusion. By plugging (43), (44), (45), (46), (47), and (48) into (42), this
completes the proof.
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