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Abstract. Generalized Feistel schemes (GFSs) are extremely important
and extensively researched cryptographic schemes. In this paper, we in-
vestigate the security of Type-1 GFS in quantum circumstances. On the
one hand, in the qCCA setting, we give a new quantum polynomial-
time distinguisher on (d2 − 1)-round Type-1 GFS with branches d ≥ 3,
which extends the previous results by (d − 2) rounds. This leads to a
more efficient analysis of type-1 GFS, that is, the complexity of some
previous key-recovery attacks is reduced by a factor of 2

(d−2)k
2 , where

k is the key length of the internal round function. On the other hand,
for CAST-256, which is a certain block cipher based on Type-1 GFS, we
give a 17-round quantum distinguisher in the qCPA setting. Based on
this, we construct an r(r > 17)-round quantum key-recovery attack with
complexity O(2

37(r−17)
2 ).

Keywords: Generalized Feistel scheme · CAST-256 · Simon algorithm
· Quantum cryptanalysis · Quantum algorithm.

1 Introduction

Quantum attacks against symmetric crypto primitives. Quantum com-
puting is more computationally powerful than classical computing in solving spe-
cific problems, such as solving factorization [1], equations [2–4], dimensionality
reduction [5–7], anomaly detection [8, 9], classification [10–12], and so on [13–
15]. Recent works show that the quantum algorithm has a dramatic speedup on
the cryptanalysis of symmetric crypto primitives. This started with the 3-round
Feistel distinguisher proposed by Kuwakado and Morii [16]. After that, more
generic constructions, such as Even-Mansour cipher [17, 18], FX construction
[19], message authentication codes (MACs) [20–23], etc [24–26], were broken by
different quantum algorithms, including Simon algorithm [27], Grover algorith-
m [28], Grover-meets-Simon algorithm [19], Bernstein-Vazirani (BV) algorithm
[29], etc.

Feistel ciphers. The Feistel cipher, also known as the Luby-Rackoff cipher, is
a classical construction to build a random permutation out of random functions
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or random permutations. This construction has been extensively studied and
adopted in several block cipher standards, such as DES, Triple-DES, Gost [30],
and CAST-128 [31]. At CRYPTO 1989, Zheng et al. [32] introduced three general
frameworks Type-1, Type-2, and Type-3 generalized Feistel schemes (GFSs) for
Feistel-type constructions with more branches and different operations. Many
important primitives were designed based on these three GFSs, such as CAST-
256 [33] (Type-1), CLEFIA (Type-2), RC6 (Type-2), and MARS [34] (Type-3).

Previous attacks. In addition to Kuwakado and Morii’s work [16], Ito et al. [35]
introduced the first 4-round quantum distinguisher on Feistel cipher in the quan-
tum chosen-ciphertext setting. At CRYPTO 2022, Canalc et al. [36] found new
periodic functions for 4-round Feistel-FK and 5-round Feistel-FK with internal
permutation. For GFSs, Dong et al. [37] showed quantum distinguishing attacks
against (2d − 1)-round Type-1 and (d + 1)-round Type-2 GFSs with branches
d ≥ 3. Later on, Ni et al. [38] proposed some improved polynomial-time quantum
distinguishers on Type-1 GFSs in quantum chosen-plaintext attack (qCPA) and
quantum chosen-ciphertext attack (qCCA) settings. That is, (3d−3)-round and
(d2−d+1)-round Type-1 GFSs were broken in qCPA and qCCA settings, respec-
tively. In PQCrypto 2020, Hodžić et al. [39] proposed quantum distinguishing
attacks on d-round Type-3 GFSs. Zhang et al. [40] improved the Type-3 dis-
tinguisher to cover (d + 1) rounds. These results rely crucially on the fact that
many popular designs in symmetric cryptography have a strong algebraic struc-
ture such that the adversary can build a periodic function based on the target
cryptographic scheme, and then use Simon algorithm to recover the period. This
kind of Simon-based attack provides an exponential speedup in the number of
queries compared with classical attacks.

In addition, based on the above quantum distinguishers, the adversary can
give generic quantum key-recovery attacks by applying the combination of Simon
algorithm and Grover algorithm (Grover-meets-Simon algorithm [19]). In these
attacks, the attacker first makes a guess u for part of the key, say k1 (the Grover
part). Only for the correct guess, the attacker gets a periodic function, which is
then detected with the Simon algorithm. With this technique, Dong et al. [41]
introduced some key-recovery attacks by appending several rounds to the quan-
tum distinguisher of Feistel construction. Unlike the exponential speedup of the
Simon-based distinguisher, these key-recovery attacks only provide a polynomial
speedup compared with the quantum brute force search.

Our contributions. In this work, we deepen our understanding of how to
apply quantum algorithms to evaluate the security of Type-1 GFSs. We answer
the following two open questions proposed by Ni et al. [38].

1. Can we distinguish more than (d2−d+ 1)-round Type-1 GFSs in the qCCA
setting?
We give a new quantum polynomial-time distinguisher on (d2 − 1)-round
Type-1 GFSs with branches d ≥ 3, which extends the previous results by
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(d − 2) rounds. Based on the Grover-meets-Simon algorithm, we can get
more efficient key-recovery attacks, whose time complexities gain a factor of
2

(d−2)k
2 , where k is the key length of the internal round function. The distin-

guishers and key-recovery attacks are summarized in Tables 1 and 2.

2. Can we distinguish more than 14 rounds of CAST-256 when considering its
special structure, which applies both Type-1 GFSs and its inverse as the
round functions?
For CAST-256, which is a certain block cipher based on Type-1 GFS, we give
a 17-round quantum distinguisher in the qCPA setting. Based on the pro-
posed distinguisher, we construct an r(r > 17)-round quantum key-recovery
attack with complexity O(2

37(r−17)
2 ). Based on this, we could attack up to

23-round CAST-256 (256-bit key version) in time 2111, which is better than
the best previous attack (20 rounds [38]). Tables 3 and 4 summarize our
main results and comparison with previous classical and quantum works. In
particular, for 128-bit key version, our results reach 20 rounds, which gains
three more rounds than before.

Table 1: Rounds of quantum distinguishers on Type-1 GFSs.
Source Setting Distinguisher d = 3 d = 4 d = 5 d = 6 · · ·
[37] qCPA (2d− 1) 5 7 9 11 · · ·
[38] qCCA (d2 − d+ 1) 7 13 21 31 · · ·

Sect. 3 qCCA (d2 − 1) 8 15 24 35 · · ·

Table 2: Key-recovery attacks on Type-1 GFSs (d ≥ 3) in quantum settings.
Setting Distinguisher Key-recovery rounds Complexity (log)
qCPA (2d− 1) [37] r ≥ d2 − d+ 2 ( 1

2
d2 − 2

3
d+ 2) · k

2
+ (r−d2+d−2)k

2

qCCA (d2 − d+ 1) [38] r > d2 − d+ 1 (r−(d2−d+1))k
2

qCCA (d2 − 1) (ours) r > d2 − 1 (r−(d2−1))k
2

* Note that for Type-1 GFSs, the trivial bound is rk
2
, where k is the key size

of the internal round function.

Organization. The paper is organized as follows. In Sect. 2, we introduce some
basic notations, the quantum algorithms (Grover algorithm, Simon algorithm,
and Grover-meets-Simon algorithm) used in this paper, and some previous at-
tacks. In Sect. 3, we propose a new distinguisher for the Type-1 GFS. Based
on this, we introduce new quantum key-recovery attacks. In Sect. 4, for CAST-
256, we give a 17-round quantum distinguisher in the qCPA setting. Finally, we
conclude in Sect. 5.
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Table 3: Quantum attacks on CAST-256.

Rsource Setting Distinguisher Attacked rounds
r = 18 r = 19 r = 20 r = 21 r = 22 r = 23

[37] qCPA 7 - - - - - -
[38] qCPA 14 274 292.5 2111 - - -

Setc. 4 qCPA 17 218.5 237 255.5 274 292.5 2111

* Note that for CAST-256, the trivial bound is 2128 by Grover algorithm.

Table 4: Comparison between classical and quantum attacks on CAST-256.
Algorithm Source Attack Rounds Data Time

CAST-128

[42] boomerang 16 249.3 -
[37] qCPA 12 - 255.5

[38] qCPA 17 - 255.5

Sect. 4 qCPA 20 - 255.5

CAST-192

[43] linear 24 2124.1 2156.52

[37] qCPA 15 - 292.5

[38] qCPA 19 - 292.5

Sect. 4 qCPA 22 - 292.5

CAST-256

[44] multidim.ZC 28 298.8 2246.9

[37] qCPA 16 - 2111

[38] qCPA 20 - 2111

Sect. 4 qCPA 23 - 2111

2 Preliminaries

Let F2 denote the prime field with two elements 0 and 1, i.e., {0, 1}. And the
n-dimensional vector space of F2 is denoted by Fn2 , i.e., {0, 1}n. We let “ ⊕ ”
denote the XOR (addition in Fn2 ), and “ · ” denote the scalar product of bit-
strings seen as n-bit vectors. Let Perm(n) be a random permutation on {0, 1}n,
and let Func(n) be the set of all functions from {0, 1}n to {0, 1}n.

2.1 Type-1 generalized Feistel schemes

Type-1 generalized Feistel schemes (GFSs) are widely used frameworks in symmetric-
key primitive designs such as CAST-256. In type-1 GFSs, we divide the dn-bit
state into d ≥ 3 branches, and each branch constitutes an n-bit sub-block. Let Er
denote the encryption algorithm of the r-round Type-1 GFS (the corresponding
decryption algorithm is E−1r ). Given r keyed round functions R1, R2, · · · , Rr ∈
Func(n), and (x01, x

0
2, · · · , x0d) ∈ ({0, 1}n)d, one computes the output (xr1, x

r
2, · · · , xrd)

by computing

xi1 ← Ri(x
i−1
1 )⊕ xi−12 , xi2 ← xi−13 , xi3 ← xi−14 , · · · , xid ← xi−11
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xi−1
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Fig. 1: The i-th round of Type-1 GFS.

for i = 1, 2, · · · , r, which is depicted in Fig. 1. By shifting the branches in the
reverse direction, the decryption is automatically determined. We consider that
a k-bit key, ki, is required as input for the round function Ri, making the total
key length of Er is rk-bit.

2.2 Pseudo-Random Permutation

Next, we take into account the adversary A performing a quantum chosen-
plaintext attack (qCPA) or a quantum chosen-ciphertext attack (qCCA), in
which the adversary requests plaintexts or ciphertexts and receives correspond-
ing ciphertexts or plaintexts, respectively. Let PRP-qCPA and PRP-qCCA de-
note the pseudo-random permutation (PRP) security under qCPA and qCCA
respectively. The standard definitions are as follows.

Definition 1 [35, 45]. (PRP-qCPA) Let Ek : K × X → X be a family of
permutations indexed by the elements in K, g : X → X. Let A be a quantum
adversary1. The PRP-qCPA advantage of A is defined as

AdvPRP−qCPAE (A) = |Prk∈K [AEk(·) ⇒ 1]− Prg∈Perm(X)[A
g(·) ⇒ 1]|.

Here, let AEk(·) ⇒ 1 denote an adversary performing quantum queries to oracle
Ek and outputs 1.

Definition 2 [35, 45]. (PRP-qCCA) Let Ek : K × X → X be a family of
permutations indexed by the elements in K, g : X → X. Let A be a quantum
adversary. The PRP-qCCA advantage of A is defined as

AdvPRP−qCCAE (A) = |Prk∈K [AE
−1
k (·) ⇒ 1]− Prg∈Perm(X)[A

g−1(·) ⇒ 1]|.

In particular, these two definitions guarantee that we can distinguish Ek from
Perm(X) if 1−Adv(A) is a small value.

1 It is supposed that the adversary can make arbitrary quantum superposition of
queries of the form |x〉|0〉 7→ |x〉|f(x)〉.
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2.3 Quantum Algorithm

In the following, we review Grover, Simon, and Grover-meets-Simon algorithms
used in this paper. We refer to [19, 46] for a broader presentation.

1) Grover algorithm. Grover algorithm [28] allows a quadratic speedup on
classical exhaustive search. Precisely, it solves the following problem.

Grover problem. Consider a function f : {0, 1}n → {0, 1} is given as a black
box2, with a promise that there is x such that f(x) = 1. Then, find x ∈ {0, 1}n
such that f(x) = 1.

In the classical setting, one preimage is expected to be found in time (and
oracle access to f) O(2n/e) if there are e preimages of 1 (|{x : f(x) = 1}| =
e). However, in the quantum setting, Grover algorithm finds one preimage in
time (and oracle access to Of ) O(

√
2n/e). The Grover algorithm consists of the

following three quantum steps.

1. Grover algorithm works first by producing a uniform superposition |ψ〉 =
1√
2n
Σx|x〉.

2. Next, it repeatedly applies the unitary operator (2|ψ〉〈ψ|−I)Of R ≈ π
4

√
2n/e

times on the state |ψ〉.
3. Then a final measurement will return x such that f(x) = 1, with an over-

whelming probability.

Generally, the checking procedure can be done only with some errors. That is,
the test function always returns 1 for elements in the target set, but for elements
not in the target set that it also returns 1 with a negligible probability. The
following theorem tackles this case.

Theorem 1 [47, 23]. Let n be a positive integers, X(|X| = e) be a subset in
{0, 1}n, p0 := e

2n and f : {0, 1}n → {0, 1} be a test function such that{
Pr[f(x) = 1] = 1 if x ∈ X,
Pr[f(x) = 1] ≤ p1 if x /∈ X.

Assume the quantum implementation of f(x) costs O(n) qubits. Then Grover al-
gorithm with t = d π

4arcsin
√
p0
e quantum queries to f(x) and O(n) qubits will out-

put an x ∈ X with probability at least p0
p0+p1

[1−(p1p0 +
√
p0 + p1+2

√
1 + p1

p0

3
p0)2].

In particular, if e ≤ 2 and p1 ≤ 1
22n , the error decreases exponentially with

n.
2 We can input x to the “black box" and ask it to compute f(x), but we don’t have
access to its internal computation process.
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2) Simon algorithm. Simon algorithm [27] gives the first example of an ex-
ponential quantum time speedup relative to an oracle. That is, it allows to
efficiently compute the period of a periodic function.

Simon problem. Given a function f : {0, 1}n → {0, 1}d and promise that there
exists s ∈ {0, 1}n such that for any (x, y) ∈ ({0, 1}n)2, [f(x) = f(y)]⇔ [x⊕ y ∈
{0, s}], the goal is to find s.

This problem can be solved classically by searching collisions with O(2n/2)
queries. As the quantum superposition of queries of form Σx,yλx,y|x〉|y〉 7→
Σx,yλx,y|x〉|f(x)⊕y〉 is introduced into Simon algorithm, its query complexity is
only O(n). After repeating the following subroutine (Algorithm 1) cn times, we
can obtain s by solving a system of linear equations. The algorithm can be ap-
plied to the problem of which condition “f(x) = f(y) if and only if x⊕y ∈ {0, s}”
is replaced with the weaker condition “f(x ⊕ s) = f(x) for any x”, under the
assumption that f satisfies some good properties.

Algorithm 1 Quantum subroutine of Simon algorithm.
Input: n, Of : |x〉|0〉 7→ |x〉|f(x)〉
Output: y orthogonal to s
1: Applying a Hadamard transform H⊗n to the initial state |ψ0〉 = |0〉|0〉 (a (n+ d)-

qubit state) to obtain the quantum superposition

|ψ1〉 =
1√
2n
Σx∈Fn

2
|x〉|0〉.

2: A quantum query to the function f maps to the state

|ψ2〉 =
1√
2n
Σx∈Fn

2
|x〉|f(x)〉.

3: Measuring the second register gives a value f(z) and the first register is collapsed
to

|ψ3〉 =
1√
2

(|z〉+ |z ⊕ s〉).

4: Applying again the Hadamard transform H⊗n to the first register yields

1√
2

1√
2n
Σy∈Fn

2
(−1)y·z(1 + (−1)y·s)|y〉.

5: Measuring the state yields a value of y, which meets that y · s = 0.

Given a periodic function f , consider

ε(f, s) := max
t∈{0,1}n\{0,s}

Prx[f(x) = f(x⊕ t)],
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where f(x⊕ s) = f(x) for all x. This parameter quantifies how far the function
is from satisfying Simon’s promise. Concretely, Kaplan et al. [20] have proved
the following theorem.

Theorem 2 [20]. If ε(f, s) ≤ p0 < 1, then Simon algorithm returns s with cn
queries and O(n+ d) qubits, with probability at least 1− (2( 1+p0

2 )c)n.

3) Grover-meets-Simon algorithm. In Ref. [19], Leander and May proposed
to combine Simon’s algorithm with Grover’s algorithm (i.e., Grover-meets-Simon
algorithm) to attack the construction with whitening keys. This algorithm solves
the following problem.

Grover-meets-Simon problem. Let f : {0, 1}m × {0, 1}n → {0, 1}d be a
function such that there exist some u ∈ {0, 1}m such that f(u, ·) hide a non-
trivial period su. Find any tuple (u, su) ∈ Us, where Us := {(u, su) : u ∈
{0, 1}m, su is the period of f(u, ·)}.

In this algorithm, the attacker first makes a guess u (the Grover part). Only
for the correct guess, the attacker gets a periodic function, which is then detected
with the Simon algorithm. Thus, they have Grover algorithm as an outer loop
with a running time of roughly 2m/2, and Simon algorithm as an inner loop with
polynomial complexity. The following theorem shows the effect of the parameter

ε(f) := max
(u,t)∈{0,1}m×{0,1}n\{0,Us}

Prx[f(u, x) = f(u, x⊕ t)]

on the success probability of the Grover-meets-Simon algorithm.

Theorem 3 [47, 23]. Let c be a positive integer, p0 := e
2m and p1 := [2 ·

( 1+ε(f)
2 )c]n. Then Grover-meets-Simon algorithm with d π

4arcsin
√
p0
e·cn quantum

queries to f and O(m + cn2 + cdn) qubits outputs a tuple (u, su) ∈ Us with

probability at least (1−p1)p0
p0+p1

[1− (p1p0 +
√
p0 + p1 + 2

√
1 + p1

p0

3
p0)2].

In particular, if ε(f) ≤ 1/2 and e ≤ 2, the error decreases exponentially with
n. In case d = m = n, the Grover-meets-Simon algorithm solves this problem
with O(2n/2n) quantum queries and O(n2) qubits.

2.4 Previous Attacks

In the following, we review the quantum attacks against Type-1 GFSs by Ni et
al. [38]. They proposed a (d2 − d+ 1)-round distinguishing attack in the qCCA
setting.

In order to distinguish Type-1 GFSs from a random permutation in a quan-
tum setting, Ni et al. define the following function, with two arbitrary constants



Quantum Attacks on Type-1 Generalized Feistel Schemes 9

α0, α1 such that α0 6= α1, and

fO
−1

: {0, 1} × {0, 1}n → {0, 1}n

b, x 7→ αb ⊕ y1,

where (y1, y2, · · · , yd) = O−1(x, x02, x
0
3, · · · , x0d−1, αb), and x02, x

0
3, · · · , x0d−1 are

arbitrary n-bit constants. Let the intermediate state value after the first i rounds
be (xi1, x

i
2, · · · , xid). For (d2 − d + 1)-round decryption oracle O−1, the function

fO
−1

is described as

fO
−1

(b, x) = αb ⊕ y1
= αb ⊕ xd

2−d+1
1

= αb ⊕ xd
2−2d+2

2 ,

where xi2 = xi+1
3 = xi+2

4 = · · · = xi+d−11 . In the first round, x12 = x ⊕
R1(αb) (see Fig. 1). In the d-th round, xd2 = Rd(R1(αb)⊕ x)⊕ x02. The function
R(·) = Rd(·) ⊕ x02 is independent of the input (b, x), since x02 is a constant.
Then, xd2 = R(R1(αb) ⊕ x), where R ∈ Func(n). Therefore, for some con-
stants x03, x04, · · · , x0d−1, αb, the value of x

d2−2d+2
2 can be described as xd

2−2d+2
2 =

R′(R1(αb) ⊕ x) ⊕ αb, where R′ ∈ Func(n). In particular, this fO
−1

satisfies
fO
−1

(b, x) = fO
−1

(b⊕ 1, x⊕R1(α0)⊕R1(α1)). Moreover,

fO
−1

(b⊕ 1, x⊕R1(α0)⊕R1(α1)) = αb ⊕R′(R1(αb⊕1)⊕ x⊕R1(α0)⊕R1(α1))⊕ αb
= R′(R1(αb)⊕ x)

= fO
−1

(b, x).

Therefore, the function satisfies Simon’s promise with s = 1‖R1(α0) ⊕ R1(α1),
and we can recover R1(α0) ⊕ R1(α1) using Simon algorithm. This gives a dis-
tinguisher, because Simon algorithm applied to a random permutation returns
zero with high probability.

Next, we review the key-recovery attack.

Key-recovery attacks. With the (d2−d+1)-round distinguisher in the qCCA
setting, Ni et al. [38] can recover the key of the r-round Type-1 GFS for r >

d2 − d + 1 in time O(2
(r−(d2−d+1))k

2 ), where the subkey size that they need to
recover is (r−d2+d−1)k bits. Thus, their attack achieves a polynomial speedup
compared with the quantum brute force search (Grover search [28]).

Truncate outputs of quantum oracles. Note that in their attack, Ni et al.
implicitly assume that the attacker can query in superposition an oracle that
returns solely the part y1 = xd

2−d+1
2 of the encryption. However, it is not triv-

ial. Fortunately, Hosoyamada and Sasaki introduced a technique to simulate the
truncation of outputs of quantum oracles without destroying quantum entangle-
ments. Therefore, based on a similar method [48], we can obtain xd

2−d+1
2 . Let
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O : |x〉|y〉|z〉 · · · |w〉 7→ |x〉|y ⊕ O1(x)〉|z ⊕ O2(x)〉 · · · |w ⊕ Od(x)〉 is the complete
encryption oracle, where Oj(1 ≤ j ≤ d) denotes the component of complete
encryption. Our goal is to simulate oracle O2 : |x〉|z〉 → |x〉|z⊕O2(x)〉. Now, we
define O′2 := (I ⊗H⊗n ⊗ I ⊗H⊗(d−2)n) · O · (I ⊗H⊗n ⊗ I ⊗H⊗(d−2)n). Then
easy calculations show that

O′2|x〉|0〉|z〉|0〉 = (I ⊗H⊗n ⊗ I ⊗H⊗(d−2)n) ·O
·(I ⊗H⊗n ⊗ I ⊗H⊗(d−2)n)|x〉|0〉|z〉|0〉

= (I ⊗H⊗n ⊗ I ⊗H⊗(d−2)n) ·O|x〉|+〉|z〉|+〉

= (I ⊗H⊗n ⊗ I ⊗H⊗(d−2)n)|x〉[ 1√
2n
Σy|y ⊕O1(x)〉]

|z ⊕O2(x)〉 · · · [ 1√
2n

∑
w

|w ⊕On(x)〉]

= (I ⊗H⊗n ⊗ I ⊗H⊗(d−2)n)|x〉|+〉|z ⊕O2(x)〉 · · · |+〉
= |x〉|0〉|z ⊕O2(x)〉|0〉

where the fourth equality follows from the fact that 1√
2n
Σy|y⊕O1(x)〉 = 1√

2n
Σy′ |y′〉 =

|+〉. Hence, we can simulate O2 given the complete encryption oracle O, using
ancilla qubits.

3 Quantum Attack on the Type-1 GFS

In this section, we give new Simon-based distinguishing attacks against (d2 −
1)-round Type-1 GFSs, in the qCCA setting. In particular, we construct new
periodic functions corresponding to targeted schemes, and improve the number
of rounds that we can distinguish from (d2 − d+ 1) rounds to (d2 − 1) rounds.

3.1 (d2 − 1)-Round Distinguishing Attack in qCCA Setting

In order to distinguish the (d2− 1)-round Type-1 GFS from a random permuta-
tion, we consider the case O−1 = E−1d2−1, and define the following function, with
two distinct constants α0, α1 and (d− 2) constants x03, x04, · · · , x0d,

fO
−1

: {0, 1}n → {0, 1}n

x 7→ yα0
1 ⊕ y

α1
1 ⊕ α0 ⊕ α1,

where (yαb
1 , yαb

2 , · · · , yαb

d ) = O−1(x, αb, x
0
3, x

0
4, · · · , x0d) (See Fig. 2).

1 Note that, we can get y1 by truncating outputs of quantum oracle O−1 (See Sect.
2.4).
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|0〉 Uα

y1

• U−1α X Uα

y1

• U−1α X |0〉

|x〉 / |x〉

|0〉 /
∣∣∣fO−1

(x)
〉

Fig. 2: Simon’s function for Type-1 GFS1.

For the (d2 − 1)-round Type-1 GFS, the intermediate parameters after the
first i rounds are (xi1, x

i
2, · · · , xid). Then, we have

fO
−1

(x) = yα0
1 ⊕ y

α1
1 ⊕ α0 ⊕ α1

= xd
2−1

1 (α0)⊕ xd
2−1

1 (α1)⊕ α0 ⊕ α1

= xd
2−d

2 (α0)⊕ xd
2−d

2 (α1)⊕ α0 ⊕ α1, (1)

where xi2 = xi+1
3 = xi+2

4 = · · · = xi+d−11 (See Fig. 3).

By running Simon algorithm on fO
−1

, one can distinguish the (d2 − 1)-
round Type-1 GFS from a random permutation with overwhelming probability.
Specially, we have the following theorem.

Theorem 4. Let Ri (1 ≤ i ≤ d2 − 1) be random functions, we can construct
qCCA distinguishers against (d2 − 1)-round Type-1 GFSs in O(n) quantum
queries by using Simon algorithm.

Proof. In the first round, R1(x0d) is xored into x. In the d-th round, the value
R1(x0d) ⊕ x is used as the input of Rd and the output of Rd is xored into αb.
Then, the value of xd2 is described as

xd2 = αb ⊕Rd(x⊕R1(x0d)).

The function R(·) = Rd(· ⊕ R1(x0d)) is independent of the input x since x0d is a
constant. Then, we have

xd2 = αb ⊕R(x)

with function R ∈ Func(n). After additional d rounds, we have

x2d2 = x2d−11 ⊕R2d(x
2d−1
d )

= xd2 ⊕R2d(x
d+1
2 )

= xd2 ⊕R2d(x⊕R1(x0d)⊕Rd+1(x0d ⊕R2(x0d−1))),

where xi2 = xi+1
3 = xi+2

4 = · · · = xi+d−11 (See Fig. 3). The function R′(·) =
R2d(· ⊕ R1(x0d) ⊕ Rd+1(x0d ⊕ R2(x0d−1))) is independent of the input x since x0d
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and x0d−1 are constants. Therefore, for functions R′, R′′ ∈ Func(n), the value of
x2d2 is described as

x2d2 = αb ⊕R(x)⊕R′(x) = αb ⊕R′′(x).

For (d−2) constants x03, x04, · · · , x0d, the value of x
2d+d(d−4)
2 = xd

2−2d
2 is described

as

xd
2−2d

2 = αb ⊕R′′′(x)

for function R′′′ ∈ Func(n). In the (d2 − d)-th round, the value xd
2−d−1
d is used

as the input to the round function Rd2−d and the output is xored into xd
2−2d

2 .
Then, we have

xd
2−d

2 = xd
2−d−1

1 ⊕Rd2−d(xd
2−d−1
d )

= xd
2−2d

2 ⊕Rd2−d[x⊕R1(x0d)⊕Rd+1(x0d ⊕R2(x0d−1))

⊕R2d+1(x0d ⊕R2(x0d−1)⊕Rd+2(x0d−1 ⊕R3(x0d−2)))⊕ · · ·
⊕Rd2−2d+1(x0d ⊕R2(x0d−1)⊕Rd+2(x0d−1 ⊕R3(x0d−2))⊕ · · ·
⊕Rd2−3d+2(x0d−1 ⊕R3(x0d−2)⊕Rd+3(x0d−2 ⊕R4(x0d−3))⊕ · · ·
⊕Rd2+3d−2(x0d−2 ⊕R4(x0d−3)⊕Rd+4(x0d−3 ⊕R5(x0d−4))⊕ · · · ⊕Rd2−5d+4(x03 ⊕Rd−1(αb)))))].

The function h(αb) = Rd2−2d+1[x0d⊕R2(x0d−1)⊕· · ·⊕Rd2−3d+2(x0d−1⊕R3(x0d−2)⊕
· · · ⊕Rd2+3d−2(x0d−2 ⊕R4(x0d−3)⊕ · · · ⊕Rd2−5d+4(x03 ⊕Rd−1(αb))))] is indepen-
dent of the input b, since x03, x04, · · · , x0d are constants. Therefore, xd

2−d
2 can be

described as

xd
2−d

2 = αb ⊕R′′′(x)⊕Rd2−d(x⊕ C ⊕ h(αb)), (2)

where C = R1(x0d)⊕Rd+1(x0d⊕R2(x0d−1))⊕R2d+1(x0d⊕R2(x0d−1)⊕Rd+2(x0d−1⊕
R3(x0d−2)))⊕· · · . In particular, from Eqs. (1) and (2), this fO

−1

satisfies fO
−1

(x⊕
h(α0)⊕ h(α1)) = fO

−1

(x). Moreover,

fO
−1

(x⊕ h(α0)⊕ h(α1)) = yα0
1 ⊕ y

α1
1 ⊕ α0 ⊕ α1

= xd
2−d

2 (α0)⊕ xd
2−d

2 (α1)⊕ α0 ⊕ α1

= α0 ⊕R′′′(x⊕ h(α0)⊕ h(α1))⊕Rd2−d(x⊕ h(α0)⊕ h(α1)⊕ C ⊕ h(α0))

⊕α1 ⊕R′′′(x⊕ h(α0)⊕ h(α1))⊕Rd2−d(x⊕ h(α0)⊕ h(α1)⊕ C ⊕ h(α1))⊕ α0 ⊕ α1

= Rd2−d(x⊕ C ⊕ h(α1))⊕Rd2−d(x⊕ C ⊕ h(α0))

= fO
−1

(x).

Therefore, the function satisfies Simon’s promise with s = h(α0) ⊕ h(α1), and
we can recover h(α0)⊕ h(α1) using Simon algorithm. This gives a distinguisher
because the Simon algorithm applied to a random permutation returns zero with
high probability. Concretely, in the first query we ask x, and then we ask x⊕ s.
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If A is asking about (d2− 1)-round Type-1 GFS, then the outputs are the same.
If A is asking about random permutation, then the outputs are different. There-
fore, according to Theorem 2, AdvPRP−qCCAType−1GFS (A) = 1 − (2( 3

4 )c)n − 1
2n/2 , where

the parameter ε(fO
−1

, s) is bounded (i.e., p0 ≤ 1/2) with overwhelming proba-
bility [49]. In particular, choosing c ≥ 3/(1− p0) ensures that the probability is
exponentially close to 1. That is, if c ≥ 6, AdvPRP−qCCAType−1GFS (A) = 1− 1

2n/2 .

Example case of Type-1 GFS with d = 3. For Type-1 GFSs with d = 3,
we give an 8-round quantum distinguisher as shown in Fig. 4. Concretely, from
the above analysis, we define the following function, with two distinct constants
α0, α1 and constant x03.

fO
−1

: {0, 1}n → {0, 1}n

x 7→ yα0
1 ⊕ y

α1
1 ⊕ α0 ⊕ α1

fO
−1

(x) = α0 ⊕R3(x⊕R1(x03))⊕R6[x⊕R1(x03)⊕R4(x03 ⊕R2(α0))]

⊕α1 ⊕R3(x⊕R1(x03))⊕R6[x⊕R1(x03)⊕R4(x03 ⊕R2(α1))]⊕ α0 ⊕ α1

= R6[x⊕R1(x03)⊕R4(x03 ⊕R2(α0))]⊕R6[x⊕R1(x03)⊕R4(x03 ⊕R2(α1))],

where (yαb
1 , yαb

2 , yαb
3 ) = O−1(x, αb, x

0
3) (See Fig. 4). In particular, we have

fO
−1

(x⊕ s) = R6[x⊕ s⊕R1(x03)⊕R4(x03 ⊕R2(α0))]⊕R6[x⊕ s⊕R1(x03)⊕R4(x03 ⊕R2(α1))]

= R6[x⊕R1(x03)⊕R4(x03 ⊕R2(α1))]⊕R6[x⊕R1(x03)⊕R4(x03 ⊕R2(α0))]

= fO
−1

(x),

where s = R4(x03 ⊕R2(α0))⊕R4(x03 ⊕R2(α1)). Therefore, fO
−1

(x) satisfies the
promise of Simon algorithm with s, we can easily apply Simon algorithm to
recover s, and distinguish it from the random permutation.

3.2 Key Recovery Attacks on the Type-1 GFS

In what follows, based on the (d2 − 1)-round distinguisher, we could get better
key-recovery attacks using Grover-meets-Simon algorithm, whose time complex-
ities gain a factor of 2

(d−2)k
2 , where k is the key length of the internal round

function. Concretely, we give key-recovery attacks on r-round Type-1 GFSs by
adding (r− d2 + 1) rounds before the (d2− 1)-round distinguisher, in the qCCA
setting.

The attack procedures can be summarized as follows.

1. Construct the quantum circuit, which requires the intermediate state value
(x, αb, x

r−d2+1
3 , xr−d

2+1
4 , · · · , xr−d

2+1
d ) after the first (r−d2 + 1) rounds and
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the first (r−d2+1) rounds’ subkeys as input, and decrypt the first (r−d2+1)

rounds to get the plaintext. Then use the oracle fO
−1

encrypt the plaintext
(x01, x

0
2, · · · , x0d) to get the ciphertext (xr1, x

r
2, · · · , xrd).

2. Guess the subkeys of the first (r − d2 + 1) rounds. For each guessed subkey,
use the (d2 − 1) rounds distinguisher to check its correctness. Concretely,
only for the correct guess, the attacker gets a periodic function, which is
then detected with the Simon algorithm.

For the r(r > d2 − 1)-round CAST-256, we need to guess the (r − d2 + 1)k-
bit key using Grover algorithm. Therefore, the key of the r-round Type-1 GFS
can be recovered with O(2

(r−(d2−1))k
2 ) quantum queries using O(n2) qubits by

Theorem 3.

4 Quantum Attack on Round-Reduced CAST-256 Block
Cipher in qCPA Setting

The CAST-256 block cipher [33] is designed as a candidate for Advanced En-
cryption Standard (AES). Even though CAST-256 was not among the finalists
in the AES Process, its analysis may help understand the design rationale of
other ciphers from the CAST family.

CAST-256 operates on 128-bit text blocks (four branches with 32-bit) under
keys of 128, 192, or 256 bits. CAST-256 is based on the GFS structure and
iterates 48 rounds for all key sizes, including 24 rounds Type-1 GFS and 24
rounds inverse Type-1 GFS. Each round function absorbs a 37-bit subkey. Note
that in our attack, we don’t need to know any additional encryption information
for our attack because it is extremely broad.

In what follows, we present a 17-round quantum distinguishing attack in the
qCPA setting and give an r(r > 17)-round quantum key-recovery attack. We
first focus on the distinguishing attack.

Distinguishing Attack. Based on the special structure of CAST-256, which
applies both Type-1 GFS and its inverse as the round functions, we give a new
17-round (from 23-th round to 39-th round) quantum distinguisher (See Fig. 5)
which is composed of 2-round Type-1 GFS and 15-round inverse Type-1 GFS.
More precisely, for the 17-round CAST-256 encryption oracle O, we define the
following function, with two arbitrary constants α0 and α1 such that α0 6= α1

and two constants x221 and x222 .

fO : {0, 1}n → {0, 1}n

x 7→ yα0
1 ⊕ y

α1
1 ⊕ α0 ⊕ α1,

where (yαb
1 , yαb

2 , yαb
3 , yαb

4 ) = O(x221 , x
22
2 , x, αb) (See Fig. 5).
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For the 17-round CAST-256, we have

fO(x) = yα0
1 ⊕ y

α1
1 ⊕ α0 ⊕ α1

= x391 (α0)⊕ x391 (α1)⊕ α0 ⊕ α1

= x362 (α0)⊕ x362 (α1)⊕ α0 ⊕ α1, (3)

where x391 = x384 = x373 = x362 (See Fig. 5).

Specially, we have the following theorem.

Theorem 5. Let Ri (1 ≤ i ≤ d2 − 1) be random functions, we can construct a
qCPA distinguisher against CAST-256 in O(n) quantum queries by using Simon
algorithm.

Proof. In the third round, the value x222 ⊕ R23(x221 ) is used as the input of R25

and the output of R25 is xored into x⊕ R24(x222 ⊕ R23(x221 )). This implies that
x252 is

x252 = x⊕R24(x222 ⊕R23(x221 ))⊕R25(x222 ⊕R23(x221 )).

From Fig.5 (red line), the function can be described as

x252 = x⊕ C1,

where C1 = R24(x222 ⊕ R23(x221 )) ⊕ R25(x222 ⊕ R23(x221 )) is a constant. After an
additional 1 round, the value x221 is used as the input of R26 and the output of
R26 is xored into x222 ⊕R23(x221 ). Then, we have

x262 = x222 ⊕R23(x221 )⊕R26(x221 ),

where x221 , x222 are constants. This implies that x262 = C2 is a constant. Similarly,
we have

x272 = x221 ⊕R27(αb).

In the 10-th round, we have

x322 = x311 ⊕R32(x314 )

= αb ⊕R28(x252 )⊕R32(x252 ⊕R29(x262 ))

= αb ⊕R28(x⊕ C1)⊕R32(x⊕ C1 ⊕R29(C2)).

The function R(x) = R28(x ⊕ C1) ⊕ R32(x ⊕ C1 ⊕ R29(C2)) is independent of
the input x. Therefore, x322 is equal to

x322 = αb ⊕R(x).
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In the 14-th round, we have

x362 = x351 ⊕R36(x354 )

= x322 ⊕R36(x252 ⊕R29(x262 )⊕R33(x262 ⊕R30(x272 )))

= αb ⊕R(x)⊕R36(x⊕ C1 ⊕R29(C2)⊕R33(C2 ⊕R30(x221 ⊕R27(αb))))

= αb ⊕R(x)⊕R36(x⊕ C ⊕ h(αb)), (4)

where C = C1⊕R29(C2), h(αb) = R33(C2⊕R30(x221 ⊕R27(αb))) is independent
of the input b, since x221 , x222 are constants.

In particular, from Eqs. (3) and (4), fO(x) satisfies fO(x) = fO(x⊕h(α0)⊕
h(α1)). Moreover,

fO(x⊕ h(α0)⊕ h(α1)) = yα0
1 ⊕ y

α1
1 ⊕ α0 ⊕ α1

= x362 (α0)⊕ x362 (α1)⊕ α0 ⊕ α1

= α0 ⊕R(x⊕ h(α0)⊕ h(α1))⊕R36(x⊕ h(α0)⊕ h(α1)⊕ C ⊕ h(α0))

⊕α1 ⊕R(x⊕ h(α0)⊕ h(α1))⊕R36(x⊕ h(α0)⊕ h(α1)⊕ C ⊕ h(α1))⊕ α0 ⊕ α1

= R36(x⊕ C ⊕ h(α1))⊕R36(x⊕ C ⊕ h(α0))

= fO(x).

Then, if Ri(23 ≤ i ≤ 39) is a pseudo-random permutation family, ε(f, s) ≤
1/2 with overwhelming probability [20, 49], and running Simon algorithm on
the function fO returns h(α0) ⊕ h(α1) with probability at least 1 − (2( 3

4 )c)n.
Therefore, AdvPRP−qCPACAST−256 (A) = 1−(2( 3

4 )c)n− 1
2n/2 . In particular, choosing c ≥ 6

ensures that the probability is exponentially close to 1.

We now turn to the key-recovery attack.

Key Recovery Attack. With the 17-round distinguisher in the qCPA setting,
we can recover the key of the r(r > 17)-round CAST-256 in time O(2

37(r−17)
2 ),

where the key length of the internal round function is 37 bit. Compared with the
previous 14-round distinguisher in Ni et al.’s attack [38], we can get more efficient
key-recovery attacks, whose time complexities gain a factor 2

37×3
2 = 255.5.

Based on this, we can attack 23-round CAST-256 with 256-bit key in time
2111, which is better than quantum brute force search by a factor of 217. In
particular, for the 128-bit key version, we can attack 20 rounds in time 255.5,
while the best previous classical attacks [42] or quantum attacks [37, 38] are no
more than 17 rounds.
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5 Conclusion

In this paper, we give some improved polynomial-time quantum distinguishers on
Type-1 GFS (CAST256-like) in qCCA (qCPA) settings. First, we present new
qCCA quantum distinguishers on (d2 − 1)-round Type-1 GFS with branches
d ≥ 3, which extends the previous results by (d − 2) rounds. Then, we could
get more efficient key-recovery attacks, whose time complexities gain a factor of
2

(d−2)k
2 . Second, based on the special structure of CAST-256, we propose a 17-

round distinguisher in the qCPA setting. This leads to a more efficient analysis
of CAST-256, that is, the complexity of some previous key-recovery attacks is
reduced by a factor of 255.5. As an interesting research direction, we leave our
method for further investigation in the context of the tight bound of the number
of rounds that we can distinguish, other block ciphers, combination with other
attacks, and so on.

Acknowledgements

We thank Shijie Pan and Linchun Wan for useful discussions on the subject.
This work is supported by the National Natural Science Foundation of China
(Grant Nos. 62272056, 61972048, 61976024).

References

1. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science. pp. 124-134.
IEEE Computer Society (1994).

2. Liu H L, Wu Y S, Wan L C, et al. Variational quantum algorithm for the Poisson
equation. Physical Review A, 104(2): 022418 (2021).

3. Wan L C, Yu C H, Pan S J, et al. Asymptotic quantum algorithm for the Toeplitz
systems. Physical Review A, 97(6): 062322 (2018).

4. Wan L C, Yu C H, Pan S J, et al. Block-encoding-based quantum algorithm for
linear systems with displacement structures. Physical Review A, 104(6): 062414
(2021).

5. I. Cong and L. Duan, Quantum discriminant analysis for dimensionality reduction
and classification, New Journal of Physics, 18: 073011 (2016).

6. Pan S J, Wan L C, Liu H L, et al. Improved quantum algorithm for A-optimal
projection. Physical Review A, 102(5): 052402 (2020).

7. Pan S J, Wan L C, Liu H L, et al. Quantum algorithm for Neighborhood Preserving
Embedding. Chinese Physics B, 31(6): 060304 (2022).

8. M C. Guo, H L. Liu, Y M. Li, W M. Li, F. Gao, S J. Qin, Q Y. Wen, Quantum al-
gorithms for anomaly detection using amplitude estimation, Physica A: Statistical
Mechanics and its Applications 604: 127936 (2022).

9. Wang, H., Xue, Y., Qu, Y. et al. Multidimensional Bose quantum error correction
based on neural network decoder. npj Quantum Inf 8, 134 (2022).

10. P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum support vector machine for
big data classification, Physical Review Letters, 113: 130503 (2014).



18 H.-W. Sun et al.

11. M. Schuld, I. Sinayskiy, and F. Petruccione. Quantum computing for pattern
classification. in Pacific Rim International Conference on Artificial Intelligence
(Springer, 2014), pp. 208-220.

12. Huang R, Tan X, Xu Q. Variational quantum tensor networks classifiers. Neuro-
computing, 452: 89-98 (2021).

13. Li Y M, Liu H L, Pan S J, et al. Quantum k-medoids algorithm using parallel
amplitude estimation. Physical Review A, 2023, 107(2): 022421.

14. Wang, H., Xue, Y., Qu, Y. et al. Multidimensional Bose quantum error correction
based on neural network decoder. npj Quantum Inf 8, 134 (2022).

15. Yu C H, Gao F, Wang Q L, et al. Quantum algorithm for association rules mining.
Physical Review A, 94(4): 042311 (2016).

16. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel ci-
pher and the random permutation. In: 2010 IEEE International Symposium on
Information Theory Proceedings (ISIT), June 2010, pp. 2682-2685 (2010).

17. Kuwakado, H., Morii, M.: Security on the quantum-type even-mansour cipher. In:
ISITA. pp. 312-316. IEEE (2012).

18. Sun, HW., Wei, CY., Cai, BB. et al. Improved BV-based quantum attack on block
ciphers. Quantum Inf Process 22, 9 (2023). https://doi.org/10.1007/s11128-022-
03752-x

19. G. Leander, A. May. Grover Meets Simon - Quantumly Attacking the FX-
construction, Advances in Cryptology - ASIACRYPT, pp. 161-178 (2017).

20. Kaplan M., Leurent G., Leverrier A., et al.: Breaking symmetric cryptosystems
using quantum period finding. In: CRYPTO 2016, Part II, pp. 207-237 (2016).

21. Sun H W, Cai B B, Qin S J, et al. Quantum Attacks on Beyond-
Birthday-Bound MACs. Cryptology ePrint Archive, Paper 2023/025, 2023. http-
s://eprint.iacr.org/2023/025.

22. X. Bonnetain, G. Leurent,M. N.-Plasencia, A. Schrottenloher. Quantum lineariza-
tion attacks. Advances in Cryptology - ASIACRYPT 2021, LNCS vol, 13090, pp.
422-452, (2021).

23. Guo, T., Wang, P., Hu, L., Ye, D.: Attacks on beyond-birthday-bound macs in the
quantum setting. In: PQCrypto. Lecture Notes in Computer Science, vol. 12841,
pp. 421-441. Springer (2021).

24. Li, Z., Cai, B., Sun, H. et al. Novel quantum circuit implementation of Advanced
Encryption Standard with low costs. Sci. China Phys. Mech. Astron. 65, 290311
(2022).

25. Cai B B, Wu Y S, Dong J, Qin S J, Gao F and Wen Q Y. Quantum At-
tacks on 1K-AES and PRINCE. The Computer Journal, bxab216, doi: http-
s://doi.org/10.1093/comjnl/bxab216.

26. Cai B B, Gao F and Leander G. Quantum attacks on two-round even-mansour.
Front. Phys. 10:1028014. doi: 10.3389/fphy.2022.1028014.

27. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474-1483 (1997).

28. Grover, L.K.: A Fast Quantum Mechanical Algorithm for Database Search. In:
Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. pp.
212-219. ACM (1996).

29. Bernstein, E., Vazirani, U.V.: Quantum complexity theory. SIAM J. Comput.
26(5), 1411-1473 (1997).

30. National Soviet Bureau of Standards: Information Processing System-
Cryptographic Protection-Cryptographic Algorithm GOST 28147-89 (1989).



Quantum Attacks on Type-1 Generalized Feistel Schemes 19

31. International Organization for Standardization (ISO).: International Standard-
ISO/IEC 18033-3, Information technology-Security techniques-Encryption
algorithms-Part 3: Block ciphers (2010).

32. Zheng Y L, Matsumoto T, Imai H. On the Construction of Block Ciphers Prov-
ably Secure and Not Relying on Any Unproved Hypotheses. In: Brassard G, eds.
Advances in Cryptology - CRYPTO 1989. Lecture Notes in Computer Science, Vol
435. New York: Springer-Verlag, 461-480 (1989).

33. Carlisle Adams and Jeff Gilchrist. The CAST-256 Encryption Algorithm. RFC
2612, June (1999).

34. Carolynn Burwick, Don Coppersmith, Edward D’Avignon, Rosario Gennaro, Shai
Halevi, Charanjit Jutla, Stephen M. Matyas Jr., Luke O’Connor, Mohammad
Peyravian, David Safford, and Nevenko Zunic. MARS - a candidate cipher for
AES. NIST AES proposal, September (1999).

35. Ito G., Hosoyamada A., Matsumoto R., Sasaki Y., Iwata T.: Quantum chosen-
ciphertext attacks against feistel ciphers. In: Matsui M (eds.) Topics in Cryptology-
CT-RSA 2019-The Cryptographers’ Track at the RSA Conference 2019, San Fran-
cisco, CA, USA, March 4-8, 2019, Proceedings. Lecture Notes in Computer Science,
vol. 11405. Springer, pp. 391-411 (2019).

36. Canale, F., Leander, G., Stennes, L. (2022). Simon’s Algorithm and Symmetric
Crypto: Generalizations and Automatized Applications. In: Dodis, Y., Shrimpton,
T. (eds) Advances in Cryptology - CRYPTO 2022. CRYPTO 2022. Lecture Notes
in Computer Science, vol 13509. Springer, Cham.

37. Dong, X., Li, Z., Wang, X.: Quantum cryptanalysis on some generalized Feistel
schemes. Sci. China Inf. Sci. 62(2), 022501 (2019).

38. Ni, B., Ito, G., Dong, X., Iwata, T.: Quantum attacks against type-1 generalized
feistel ciphers and applications to CAST-256. In: Hao, F., Ruj, S., Gupta, S.S.
(eds.) Progress in Cryptology - INDOCRYPT 2019 - 20th International Conference
on Cryptology in India, Hyderabad, India, December 15-18, 2019, Proceedings.
Lecture Notes in Computer Science, vol. 11898, pp. 433-455. Springer (2019).
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Fig. 3: (d2 − 1)-round distinguishing attack.
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Fig. 4: 8-round distinguisher on Type-1 GFS with d = 3.
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Fig. 5: 17-round distinguisher on CAST-256.


