
Threshold ECDSA in Three Rounds∗

Jack Doerner
j@ckdoerner.net

Technion, Reichman U, Brown U

Yashvanth Kondi
yash@ykondi.net
Silence Labs (Deel)

Eysa Lee
eysa_lee@brown.edu

Brown University

abhi shelat
abhi@neu.edu

Northeastern University

December 14, 2023

Abstract

We present a three-round protocol for threshold ECDSA signing
with malicious security against a dishonest majority, which information-
theoretically UC-realizes a standard threshold signing functionality, as-
suming only ideal commitment and two-party multiplication primitives.
Our protocol combines an intermediate representation of ECDSA signa-
tures that was recently introduced by Abram et al. [ANO+22] with an
efficient statistical consistency check reminiscent of the ones used by the
protocols of Doerner et al. [DKLs18, DKLs19]. We show that shared
keys for our signing protocol can be generated using a simple commit-
release-and-complain procedure, without any proofs of knowledge, and to
compute the intermediate representation of each signature, we propose a
two-round vectorized multiplication protocol based on oblivious transfer
that outperforms all similar constructions.

∗A preliminary version [DKLs24] of this work appeared in IEEE S&P 2024.



Contents
1 Introduction 1

1.1 A Brief History of Threshold ECDSA . . . . . . . . . . . . . . . 3
1.2 Our Approach and Contributions . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 11
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Security and Communication Model . . . . . . . . . . . . . . . . 11
2.3 The ECDSA Signature Scheme . . . . . . . . . . . . . . . . . . . 11

3 t-Party Three-Round Threshold ECDSA 12
3.1 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 The Basic Three-Round Protocol . . . . . . . . . . . . . . . . . . 16
3.3 Pipelining and Presigning . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Comparison to DKLs19 . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Two-Party Two-Message ECDSA . . . . . . . . . . . . . . . . . . 23

4 Proof of Security for t-Party ECDSA 25

5 Random Vector OLE from Random OT 37
5.1 One-Message SoftSpokenOT in the ROM . . . . . . . . . . . . . 41

6 Proof of Security for OT-Based VOLE 42
6.1 Simulating Against Alice . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Simulating Against Bob . . . . . . . . . . . . . . . . . . . . . . . 53

7 Relaxed Threshold Key Generation 56
7.1 The Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 Proof of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8 Analytical Efficiency 63
8.1 Oblivious Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2 Our VOLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.3 VOLE from HMRT22 . . . . . . . . . . . . . . . . . . . . . . . . 65
8.4 Our Key Generation and ECDSA Protocols . . . . . . . . . . . . 65
8.5 Concrete Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

9 A Two-Round Protocol for Honest Majorities 67



1 Introduction
The Elliptic Curve Digital Signature Algorithm (ECDSA) is among the most
common and widely deployed cryptographic tools of any kind. Since its
standardization by the US National Institute of Standards and Technology
(NIST) [Nat13], it has become a ubiquitous component of the internet infras-
tructure. This makes it a natural and essential target for threshold cryptogra-
phy; that is, for signing mechanisms that distribute authority among a quorum
of parties larger than some threshold. Indeed, NIST has recently announced
an intent to standardize threshold ECDSA schemes [BP23], much as it did the
original signature,which motivates the design of schemes that are concretely ef-
ficient, yet secure under conservative assumptions and simple to analyze and
implement.

In a t-of-n ECDSA scheme, any t parties can jointly sign a message under
the common public key, but no group of t − 1 corrupt parties can sign an
unauthorized message, even by sending malformed protocol messages to honest
parties. Such schemes are already in use to facilitate defense-in-depth security
for digital assets linked to ECDSA public keys [Lin21].

Threshold signing schemes are straightforward to construct for some elliptic
curve signatures, such as BLS [BLS01] and Schnorr [Sch89], but ECDSA features
a non-linear signing equation that is challenging to compute in a distributed
fashion. ECDSA uses a basic discrete-logarithm key pair comprising a uniform
sk ← Zq and a public pk = sk · G, where G = (G, G, q) is the description of an
elliptic curve G of order q that is genrated by G. A signature on a message m
consists of a public nonce R = r ·G and a value of the form s = (a + sk · b)/r,
where a = SHA2(m) and b = rx are effectively public coefficients, rx is the x-
coordinate of the curve point R, and r is a uniform secret per-signature instance
key. The computation of s forms the core challenge of distributing the signing
process efficiently.

Most approaches to computing s can be analyzed by rewriting the equation
that defines s in terms of some specific set of operations. For example, the mod-
ular inverse operation can be rewritten in terms of multiplication and addition,
and then generic multiparty computation (MPC) protocols (which support mul-
tiplication and addition natively) can be used to compute the rewritten equation.
Concrete efficiency improvements can be achieved by refining the machinery of
the computation, but efficiency can ultimately be bottlenecked by the rewriting
of the signing equation, which may impose some minimal number or depth of
nonlinear operations that can be computed securely only at a significant cost in
terms of bandwidth, computation, or rounds of interaction.

In this Work. We identify a specific rewriting of the signing equation and
a method to compute it that together eliminate long standing bottlenecks
in round complexity without incurring additional costs elsewhere, and yield
arguably-minimal MPC protocols for both key generation and signing. Specif-
ically, we begin from the venerable Bar-Ilan and Beaver [BB89] protocol for
computing inverses of secret-shared values using secure multiplication; two

1



fused instances of this protocol with a single denominator are used to com-
pute the two terms that define s. The intermediate secret sharing of the sig-
nature that results from this process is similar to the one used by several prior
works [LN18, ANO+22, GS22a]. Unlike prior works, we make dual use of corre-
lated random values already present in the Bar-Ilan and Beaver protocol as im-
plicit Message Authentication Codes (MACs) to authenticate the various parts
of the computation via checks evaluated over the signing curve in a manner
reministent of the protocols of Doerner et al. [DKLs18, DKLs19]. This obviates
the auxilliary verification mechanisms used by prior works, and it eliminates
the need to extract discrete logarithms via proofs of knowledge. The resulting
protocol has no zero-knowledge proofs of any kind during key generation or
signing, and its cost is dominated by the cost of our fused double-instance of
Bar-Ilan and Beaver. Finally, we propose a refinement of the secure multiplica-
tion protocols of Doerner et al. [DKLs18, DKLs19] that meets our syntactical
requirements, while noticeably improving upon the efficiency of the original.

Our protocol improves upon the state of the art in three aspects:

• Simplicity. Our signing protocol is constructed using only idealized commit-
ments and multiplication—specifically, Vector Oblivious Linear Evaluation,
or VOLE, with a vector length of two—and both are invoked only once in
each direction between every pair of parties when signing a message. In addi-
tion, every party must perform six elliptic curve scalar operations for each of
its counterparties, as part of a statistical check to detect malicious behaviour.
Similarly, our key generation protocol comprises a single commit-and-release
action, followed by one round in which the parties can trigger an abort if
they received an inconsistent share of the secret key. The latter condition is
detectable using only two elliptic curve scalar operations per counterparty.

• Security. Assuming ideal versions of (i.e. black-box access to) the com-
mitment and VOLE primitives, our key generation and signing protocols
permit a straightforward information-theoretic security analysis in the Uni-
versal Composition (UC) framework with a conservative threshold signing
functionality that simply computes the signature internally and outputs it
when a quorum of parties agrees to sign. Our proposed VOLE instantia-
tion is secure in the random oracle model assuming oblivious transfer (OT),
and so concrete instantiations of our protocol (i.e. instantiations wherein all
ideal primitives are realized) can be founded upon any single assumption that
implies OT, such as the Diffie-Hellman assumption over the signing curve.

• Efficiency. Assuming a two-round VOLE such as the one we propose, the
components of our signing protocol can be arranged into three rounds with-
out breaking any abstractions or performing any heuristic optimizations.
This is one round fewer than the best-known protocols from specific as-
sumptions [CGG+20, CCL+20], and two rounds fewer than the best-known
protocol from general assumptions (i.e. OT) [HLNR23]. It also brings the
round complexity of threshold ECDSA to par with threshold Schnorr [Lin22]

2



for the first time.1 Under pipelining and in the honest-majority setting the
round complexity of our protocol can be further reduced to two with no
compromise to security, and in the two-party context under pipelining only
a single message in each direction is necessary. In terms of computation and
bandwidth, our protocol incurs minimal overhead relative to the underlying
VOLE, and we demonstrate via concrete benchmarks that it is the fastest
threshold ECDSA protocol to date in scenarios ranging from only a few par-
ties in a single location, to hundreds of parties participating globally.

1.1 A Brief History of Threshold ECDSA
In order to justify the choices we made in constructing our protocol and con-
textualize our claim of simplicity, we give a qualitative account of the various
approaches to threshold ECDSA that have developed over time. We focus on
techniques and protocol structure, rather than security models, assumptions, or
comparisons of efficiency. In each case, we describe a rewriting of the ECDSA
signing equation into a specific sequence of secure operations, summarize the
protocol machinery used to compute the operations in the rewritten equation,
and discuss any authentication or proof mechanism necessary to bind the various
operations together and prevent malicious behavior.

Honest Majority. Shortly after the original Digital Signature Algorithm
(DSA) was standardized, Langford [Lan95] devised a

√
n-of-n protocol to dis-

tribute its computation, and shortly thereafter Gennaro et al. generalized it
to any t-of-n such that t > n/2 [GJKR96]. Though these works came before
ECDSA, they easily extend to it. Both works rewrote the signing equation such
that s = (a + sk · b) · r and R = r−1 ·G, and performed their computations over
Shamir-sharings of the secrets sk and r. When n ≥ 2t + 1, secure multiplication
of Shamir-shared secrets is is easy, and if the output need not be multiplied
again, then degree-reduction is unnecessary. Gennaro et al. were the first to
propose computing r−1 via the Bar-Ilan Beaver technique [BB89]. In their pro-
tocol, uniform sharings of r and ϕ are sampled, their product r · ϕ is publicly
revealed, as is ϕ ·G, and then R = (r · ϕ)−1 · ϕ ·G = r−1 ·G can be computed
publicly.

These first protocols were secure in the semi-honest honest majority setting,
but honest majorities also permit simple and clean techniques for achieving
malicious security. Gennaro et al. [GJKR96] and Cerecedo et al. [CMI93] used
verifiable secret sharing (VSS) techniques to build robust protocols when n ≥
3t + 1, and Damgård et al. [DJN+20] constructed a simple protocol that is
secure with abort against malicious adversaries when n ≥ 2t+1. More recently,
Groth and Shoup [GS22a] developed the first distributed ECDSA protocol that
achieves guaranteed output delivery in the asynchronous setting when n ≥ 3t+1,

1A number of two-round distributed Schnorr protocols such as MuSig2 [NRS21] and
FROST [BCK+22] also exist, with game-based security under non-standard assumptions.

3



which is optimal. Our focus in this work is the dishonest-majority setting, and
so we dwell no further on the details of these protocols.

Dishonest Majority. MacKenzie and Reiter [MR01] constructed the first
two-party (and thus dishonest-majority) protocol for ECDSA signing. They ex-
pressed the ECDSA signing equation as s = (a/r)+(sk ·b/r), and then specified
that the parties sample multiplicative shares of sk and r, from which R can be
computed using a Diffie-Hellman key exchange and multiplicative shares of the
terms a/r and sk · b/r can be computed non-interactively. The latter terms
must be summed without revealing either of them. MacKenzie and Reiter do
this via Paillier’s additively homomorphic encryption (AHE) scheme [Pai99].
Fifteen years later, Gennaro et al. [GGN16] used threshold AHE to extend
this idea to the many-party setting, and then Boneh et al. [BGG17] reduced
the round count to four. Both many-party extensions rely on two severely in-
efficient components: threshold AHE requires an auxiliary RSA modulus of
unknown factorization, which can only be sampled via an additional highly-
complex protocol [HMRT12, FLOP18, CCD+20, CHI+21], and using Paillier
encryption to operate over a prime-order field like the one in which the shares-
to-be-combined lie requires expensive zero-knowledge range proofs to ensure
ciphertext well-formedness. Further proofs are required to verify the relation-
ships of the encrypted values to the public ones. Lindell [Lin17] eliminated
these bottlenecks in the two-party setting by ensuring that one of the parties is
given a homomorphic encryption of the other party’s share of the signing key
during key generation: this allows the same party to compute an encryption of s
non-interactively, and the other party can simply check if the signature is valid
upon decryption. Lindell’s signing protocol requires a new ad-hoc assumption
on the Paillier cryptosystem in order to achieve simulation security, but it is
computationally limited only by the large-integer arithmetic required to work
with Paillier encryption. Unfortunately, it is unclear how to generalize Lindell’s
improvements to the multiparty setting.

Doerner et al. [DKLs18] used the same form of the signing equation as
MacKenzie and Reiter and the same multiplicative secret sharings. They com-
bined the multiplicative shares using an ideal secure multiplication functional-
ity, and then proposed an actively-secure variant of Gilboa’s OT-based mul-
tiplication protocol [Gil99] to realize this functionality. Because their mul-
tiplication protocol operates natively over any prime-order field, it avoids
large integer arithmetic and range proofs. Its compatibility with OT exten-
sion [IKNP03, KOS15, Roy22] techniques makes it computationally lightweight
relative to Lindell’s scheme, at the expense of somewhat higher bandwidth
consumption. In a subsequent work, Doerner et al. [DKLs19] extended their
scheme to the multiparty setting by introducing a log t-round protocol to
convert a t-party multiplicative sharing to an additive one. Both of these
works [DKLs18, DKLs19] verified the consistency of intermediate computations
against malicious behavior using a set of bespoke checks that relate secret shares
to public values in the curve group G, and show reductions to standard assump-

4



tions on G if the checks are violated without detection. In the multi-party
follow-up these checks are carried out via the simple commit-and-release of
shares that will sum to a known public target value if and only if all parties
have behaved honestly. In the original two-party protocol the check shares are
instead used to encrypt the final protocol message, such that it can only be
decrypted correctly if both parties are honest; this trick among others allows
the original protocol to produce a signature in two messages. Our work bespoke
checks that are similar in spirit to those employed previously by Doerner et al.,
but ours are evaluated in a pairwise fashion, and they are statistical instead of
computational.

Gennaro and Goldfeder [GG18] returned to Langford’s forumulation of the
ECDSA signing equation and devised a Paillier-based mechanism to compute
it that differs from previous Paillier-based schemes [GGN16, BGG17] in that
it does not require the secure sampling of biprimes of unknown factorization.
Their protocol is eight rounds in total and achieves malicious security: the first
three rounds resemble the protocol of Gennaro et al. [GJKR96], except that
they use Paillier encryption to perform secure multiplication. After these three
rounds, the signature cannot be revealed immediately: instead a five-round
interactive protocol is used to perform a masked verification of the putative
signature, ensuring that the signature is well-formed (and thus no cheating has
occurred) before it is assembled.

Concurrently, Lindell and Nof [LN18] presented a different eight-round
Paillier-based threshold ECDSA protocol that similarly avoided secure biprime
sampling. Unlike Goldfeder and Gennaro’s protocol, Lindell and Nof used a
new rewriting of the ECDSA equation wherein R = r · G and s = w/u, where
w = (a+sk ·b) ·ϕ, and u = r ·ϕ for some randomly sampled ϕ. This was the first
appearance in the literature of the rewriting that we use in this work, i.e. the
fused double-instance of Bar-Ilan an Beaver. Again like Gennaro and Goldfeder,
Lindell and Nof proposed to use a “private but unauthenticated” computation
mechanism for this rewriting, and then verify the well-formedness of the sig-
nature before revealing it. Their verification mechanism essentially repeats the
signing computation in encrypted form, using a combination of ElGamal en-
cryption and relatively-efficient zero-knowledge proofs. Since their analysis is
in the UC model, these proofs must be compiled for straight-line extraction via
the Fischlin transform [Fis05], which induces an overhead of roughly one order
of magnitude in terms of computation and communication.

Somewhat later, Canetti et al. [CGG+20] presented a four-round signing
protocol that essentially followed the same core protocol layout as Gennaro and
Goldfeder [GG18], but they replaced the interactive masked signature verifica-
tion to validate honest behaviour with a conceptuatlly-straightforward GMW-
style [GMW87] mechanistm in which the parties prove honest execution of
each step in zero-knowledge. The advantage of this alteration is an improved
round count and the ability to identify cheating parties. The downside is the
increased computational cost due to performing zero-knoweledge proofs over
cryptographic statements. Parties must prove at every step that certain Paillier
ciphertexts encrypt the discrete logarithms of public values, the results of some

5



affine operations, or values in some restricted range.
Lindell and Nof, Gennaro and Goldfeder, and Canetti et al. all instantiated

their secure multiplication primitives using Paillier encryption, and thus they
rely upon expensive range proofs to guarantee correctness. In a recent update
to Lindell and Nof’s work, Haitner et al. [HLNR23] replaced the original secure
multiplication protocol with OT-based weak multiplication (which guarantees
privacy but not correct outputs), and achieved a round count of five by making
optimizations at the expense of breaching abstraction boundaries.

Castagnos et al. [CCL+23] started from the protocol of Canetti et al. and
replaced Paillier encryption with the Castagnos-Laguillaumie (CL) encryption
scheme [CL15] from class groups of imaginary quadratic order, which eliminated
the zero-knowledge range proofs required by Canetti et al. and yielded a signif-
icant bandwidth improvement, but did not reduce the computational burden of
the original protocol due the inherently higher cost of CL encryption, relative
to Paillier.

Generic Approaches. Smart and Talibi [ST19] and Dalskov et al. [DOK+20]
concurrently proposed generic MPC approaches to ECDSA signing. Both
groups observed that the MAC checks of SPDZ-style [DPSZ12] protocols can be
evaluated in an elliptic curve group directly. SPDZ-style protocols are typically
black-box in a Beaver-triple generator, which is essentially an authenticated se-
cure multiplication primitive, and since SPDZ-style protocols are generic, they
can compute any rewriting of the ECDSA signing equation. The downside
of such generic approaches was evident in the benchmarks that Dalskov et al.
reported [DOK+20]: the overhead due generating MACs amounts to several ad-
ditional rounds of interaction relative to other approaches, and a factor of two
in terms of bandwidth and computation.

Abram et al. [ANO+22] studied how to construct threshold ECDSA in the
Pseudorandom Correlation Generator (PCG) paradigm, using a variant of the
Ring-LPN assumption. This involves first defining a multiparty correlation that
can be derandomized into an ECDSA signature, and then constructing crypto-
graphic machinery to derive many instances of the correlation non-interactively
after a one-time setup. The correlation they defined comprises (ϕ, r, u, v) such
that u = ϕ · r and v = ϕ · sk. They refer to it as an “ECDSA Tuple.” Assum-
ing a linear secret sharing scheme, this correlation can be assembled with the
message into an ECDSA signature in one round by locally computing shares of
w = a · ϕ + b · v and then publishing shares of both w and u, and publicly com-
puting s = w/u. This correlation essentially distills Lindell and Nof’s [LN18]
rewriting of the ECDSA equation into a clean, succinct format, suitable for
many different kinds of secure computation machinery. Abram et al. themselves
took a generic approach: they augmented the correlation with BeDOZa-style
MACs [BDOZ11], which can be checked in an elliptic curve group much as
SPDZ-style MACs can be, and used these MACs to authenticate the honest
generation and assembly of the correlation.

6



1.2 Our Approach and Contributions
Just as we have done with prior works, we can break down our protocol into
a rewriting of the ECDSA equation, a mechanism for securely computing the
operations in the rewritten equation, and an approach to hardening the secure
computation against malicious adversaries.

Rewriting ECDSA. In this work, we propose a protocol that securely com-
putes R = r·G and w = (a+sk·b)·ϕ and u = r·ϕ, where a = SHA2(m) is a public
coefficient, b = rx is the x-coordinate of R, and r is a uniform secret. Once R,
w, and u are known to the signing parties, they can information-theoretically
construct an ECDSA signature by locally calculating s = w/u. This is the
same formulation of the signing equation originally introduced by Lindell and
Nof [LN18] and later explicitly construed as a random correlation by Abram
et al. [ANO+22]. Unlike Lindell and Nof, we leverage the fact that under this
formulation (as opposed to others), the three nonlinear relations defining R,
w, and u can be securely computed in parallel. This is critical for achieving
a three-round protocol. Unlike Abram et al. [ANO+22], we compute the cor-
relation exactly as we have written it, rather than extending it with explicit
BeDOZa-style MACs.

Computing the ECDSA Correlation Securely. We propose a protocol
that leverages the structure of the correlation itself to achieve security against
malicious adversaries, rather than relying upon zero-knowledge proofs or explicit
MACs on computed values. Specifically, we propose to use a pairwise consis-
tency check that depends only upon the inputs and outputs of the operations
in our rewritten signing equation. This frees us to model the operations of the
signing equation as ideal objects and to instantiate them modularly. Among
prior works, only Doerner et al. [DKLs18, DKLs19] use a similar approach, but
our consistency checks are pairwise and statistical, whereas theirs were global
and computational, and the simulation strategy used in their proof requires the
checks to be evaluated over the course of multiple rounds, whereas ours can be
performed simultaneously with the computation of the correlation.

As we have said, our protocol securely computes R = r · G and w = (a +
sk · b) · ϕ and u = r · ϕ, where a = SHA2(m) is a public coefficient, b = rx is the
x-coordinate of R, and r is a uniform secret. The computation of secret shares
of w can be performed locally by the parties given shares ϕ and v = sk · ϕ.
Assuming that shares of the two products v and u are computed ideally (i.e.
in each case it is guaranteed that nothing is leaked in the course of computing
the product, and that the outputs are really shares of the product of the shared
inputs), there are only a few avenues to cheat:

1. A corrupt party could bias the sampling of r. This can be prevented by us-
ing a standard commit-and-release sampling mechanism: the parties sample
shares of r, commit to corresponding shares of R (which collectively fix r),
and then decommit the latter shares. This requires two rounds. So long as r

7



is otherwise information-theoretically hidden until after the commitment is
complete, this precludes any bias on the part of the adversary.

2. A corrupt party could use inconsistent values of ϕ in the computations that
produce v and u. This can be prevented by using a vectorized multiplication
primitive to compute both values at once, given a single value of ϕ. Specif-
ically, we use vector oblivious linear evaluation (VOLE), which is evaluated
pairwise. Given any ordinary two-party two-message OLE (i.e. multiplica-
tion) protocol in which the party who speaks first supplies a share of ϕ, the
party who speaks second can vectorize their input simply by reusing the first
message for multiple responses. This essentially fuses the two multiplications.

3. In the computations that produce v and u, a corrupt party could use values
of sk and r that are not actually the respective discrete logarithms of pk
and R. To mitigate this form of attack, we devise an extremely simple
consistency check mechanism hinging on the observation that if the shares of
ϕ are interpreted as MAC keys, then the parties are already in possession of
BeDOZa-style MACs on each other’s shares of sk and r. Furthermore, these
MACs can be checked in the elliptic curve group against the publicly known
values of pk and R, and if the party that supplies a share of ϕ speaks first
in the multiplication protocol, and the protocol requires two messages, then
the check can be performed simultaneously and without additional messages.
Let us be more specific: ϕi is party Pi’s share of ϕ, rj is Pj ’s share of r, and
Rj = rj · G is known to both parties. The two parties use a two-message
multiplication protocol that privately outputs c to Pj and d to Pi such that
c + d = rj · ϕi. If the multiplication protocol involves two messages and Pi

speaks first, then Pj must learn c after receiving the first message from Pi.
To ensure consistency, we specify that Pj transmits Γ = c · G to Pi along
with the second message of the multiplication protocol, and then Pi checks
that Γ + d · G = ϕi · Rj . The same check can be performed with respect to
pkj = skj ·G.
This statistical check is cheap, overwhelmingly sound, and extremely simple
to simulate. Since Γ can be computed as a function of Rj and the secrets of
Pi, simulating this value toward Pi without knowledge of rj is trivial. On the
other hand, fixing Rj , ϕi, and d fixes exactly one value of Γ that will cause
the consistency check to pass. Since ϕi and d are uniform and information-
theoretically hidden from Pj , the correct value of Γ can be guessed with
probability at most 1/q if rj ·G 6= Rj . Finally, even if the check is passed—
that is, if Rj and a the correct value of Γ are known to Pj—the remaining
degree of freedom defining the relationship between ϕi and d ensures that ϕi

is information-theoretically hidden from Pj , and thus it remains safe to use
ϕi in constructing the signature even though it is also used in this check.

4. A corrupt party could send an incorrect share of v or u, after they are com-
puted. Since fixing m, R, and pk fixes the corresponding ECDSA signature
exactly, a cheat of this kind can be detected perfectly by verifying the signa-
ture that is assembled.

8



We have discussed a two-round commit-and-release mechanism to compute
R and a two-round fused multiplication protocol with a consistency check that
requires (shares of) R to be known after the second round. These two operations
can be performed concurrently. Afterward, only one more round is needed to
assemble the signature from the correlation, and the final check is performed
locally. Thus our protocol requires three rounds, in total. Our final theorem
statement is:

Theorem 1.1 (Informal Threshold ECDSA Security Theorem). In the
(FCom,FZero,FRVOLE,FRelaxedKeyGen)-hybrid model, πECDSA(G, n, t) statistically
UC-realizes FECDSA(G, n, t) against a malicious adversary that statically cor-
rupts up to t− 1 parties.

where n is the number of parties in total, t is the threshold of parties required
for a signature to be produced, and G is the description of an elliptic curve.
In addition to the commitment functionality FCom and the randomized VOLE
functionality FRVOLE,2 our protocol uses FZero to generate secret-sharings of
zero, and we abstract the key generation process behind FRelaxedKeyGen.

Machinery for Multiplication. The protocol we have just described re-
quires a two-message vector OLE protocol in which the first party to speak
supplies one value, and the second supplies two. Doerner et al. [DKLs18]
gave a two-round multiplication protocol based upon oblivious transfer (OT),
and in a follow-up work they gave a three-round variant with reduced band-
width [DKLs19]. In this work, we refine their techniques and propose a new
VOLE protocol2 that has lower concrete bandwidth costs than either of their
protocols, only two rounds, and no new assumptions or primitives. In other
words, our new protocol is the best of both worlds. Specifically, if FEOTE is
an endemic OT-extension functionality,3 which can be realized efficiently from
many public-key assumptions using well-known techniques, we prove:

Theorem 1.2 (Informal Random VOLE Security Theorem). In the FEOTE-
hybrid non-programmable global random oracle model, πRVOLE(q, ℓ) UC-realizes
FRVOLE(q, ℓ) against a PPT malicious adversary that statically corrupts no more
than one party.

Since FEOTE can be instantiated efficiently assuming only the decisional
or computational Diffie-Hellman assumption over the signing curve [MR19,
CSW20], it is possible to implement our protocol entirely from native assump-
tions, much as Doerner et al. did [DKLs18, DKLs19]. We believe this VOLE
protocol to inhabit a practically-advantageous position in the spectrum of band-
width/computation tradeoffs, but we stress that our protocol can use any VOLE
protocol that realizes a suitable functionality, and in particular, if bandwidth

2 Technically, we only require and only propose a random VOLE protocol, but such a
protocol can be trivially lifted to the standard notion of VOLE.

3We introduce this functionality and the rationale behind it in section 5. For now it can
be thought of as as performing batches of oblivious transfers, with random inputs.

9



savings is paramount, then a VOLE derived from additively-homomorphic en-
cryption [CGG+20, CCL+23] can be substituted.

Zero Zero-Knowledge Required. Because our signing protocol uses ideal
multiplication, and our consistency check ensures that the inputs to the multipli-
cation functionality are the discrete logarithms of Ri and pki for each party Pi,
the multiplication functionality can be used to extract the adversary’s secrets.
Viewed in this way, the multiplication and consistency check together form a
designated-verifier zero-knowledge proof of knowledge. Since the adversary’s
secrets are required only to simulate the last message in the signing protocol,
after the extraction has occurred, no additional proofs of knowledge are nec-
essary, even during key generation. This allows us to introduce a relaxed key
generation functionality and an extremely simple commit-release-and-complain
protocol to realize that functionality, and it allows us to completely avoid the
overhead typically incurred when proofs of knowledge are compiled for straight-
line extraction via the Fischlin [Fis05] or Kondi-shelat [Ks22] transforms. This
is particularly advantageous when new keys are generated almost as frequently
as signatures, as is sometimes the case in blockchain contexts.

Bandwidth and Computational Efficiency. We show via closed-form
analysis that when our VOLE protocol is used with our threshold ECDSA
protocol, the overall bandwidth cost is significantly reduced relative all prior
OT-based threshold ECDSA schemes [DKLs18, DKLs19, DOK+20]. In terms of
bandwidth, our combined protocol is competitive with techniques based on weak
multiplication [HMRT22, HLNR23], which require more rounds. In terms of
concretely demonstrated performance (i.e. minimal wall-clock time in practical
benchmarks), the protocols of Doerner et al. [DKLs18, DKLs19] have heretofore
remained the state of the art due to the fact that competing approaches based
upon Paillier encryption [Pai99, CGG+20] or class groups [CL15, CCL+23] have
excessive computational costs. We show empirically that the protocol in this
work provides a strict improvement upon and fully subsumes the works of Do-
erner et al.. Moreover, the modularity and simplicity of our ECDSA signing
protocol imply that its performance properties can be adjusted to mimic those
of threshold ECDSA schemes based on other approaches simply by replacing
the VOLE with a different instantiation.

Organization of this Paper. After our preliminaries, we introduce our
Threshold ECDSA protocol in section 3 and prove it secure in section 4. In
section 5 we give our random VOLE construction, and we prove it secure in
section 6. In section 7 we give our key generation protocol. In section 8 we
give a closed-form cost analysis of all of our prototocols, and in section ?? we
discuss a proof-of-concept implementation and report benchmark results in a
number of settings. Finally, we give a brief account of a significantly simplified
two-round honest-majority protocol in section 9.

10



2 Preliminaries
2.1 Notation
We use = for equality, ..= for right-to-left assignment, =.. for left-to-right as-
signment, and ← for right-to-left sampling from a distribution. Single-letter
variables are set in italic font, function names are set in sans-serif font, and
string literals are set in slab-serif font. We use X for an unspecified domain,
G for a group, Z for the integers, and N for the natural numbers. We use λc and
λs to denote the computational and statistical security parameters, respectively,
and κ is the number of bits required to represent an element of the order field
of an elliptic curve.4

Vectors and arrays are given in bold and indexed by subscripts; thus ai is the
ith element of the vector a, which is distinct from the scalar variable a. When
we wish to select a row or column from a multi-dimensional array, we place a ∗
in the dimension along which we are not selecting. Thus b∗,j is the jth column
of matrix b, bj,∗ is the jth row, and b∗,∗ = b refers to the entire matrix. We use
bracket notation to generate inclusive ranges, so [n] denotes the integers from
1 to n and [5, 7] = {5, 6, 7}. We use |x| to denote the bit-length of x, and |y|
to denote the number of elements in the vector y. Elliptic curve operations are
expressed additively, and curve points are typically given capitalized variables.

We use Pi to indicate a party with index i; in a typical context, there will be
a fixed set of n parties denoted P1, . . . ,Pn. In contexts with only two parties,
they are given indices A and B and referred to as Alice and Bob, respectively.
The threshold is denoted t.

2.2 Security and Communication Model
We consider a malicious PPT adversary who can statically corrupt up to t− 1
parties. All of our proofs are expressed in the Universal Composition frame-
work [Can01]. Our techniques do not rely on any specific properties of the
framework. We assume that all of the parties in any protocol are fully con-
nected via authenticated channels, and that the network is asynchronous. We
do not assume a broadcast channel, and we do not guarantee output or termi-
nation.

2.3 The ECDSA Signature Scheme
All algorithms in the ECDSA signature scheme are parameterized by G =
(G, G, q), which is the description of an elliptic curve group G of order q that is
generated by G. Here κ = |q|. At a minimum, security requires a curve-sampling
algorithm G ← GrpGen(1λc) against which the discrete logarithm assumption
must hold.5 In practice, the group description is fixed and standardized.

4In the context of non-pairing-friendly curves, κ = 2 · λc, and all three security parameters
are asymptotically equivalent.

5This is necessary, but not known to be sufficient; as of writing ECDSA cannot be proven
secure under any standard assumption.

11



Algorithm 2.1. ECDSAGen(G)
1. Uniformly choose a secret key sk← Zq.

2. Calculate the public key as pk ..= sk ·G.

3. Output (pk, sk).

Algorithm 2.2. ECDSASign(G, sk ∈ Zq, m ∈ {0, 1}∗)
1. Uniformly choose an instance key r ← Zq.

2. Calculate R ..= r ·G and let rx be the x-coordinate of R, modulo q.

3. Calculate
s ..= SHA2(m) + sk · rx

r

4. Output σ ..= (s, rx).

Algorithm 2.3. ECDSAVerify(G, pk ∈ G, m ∈ {0, 1}∗, σ ∈ Z2
q)

1. Parse σ as (s, rx).

2. Calculate
R′ ..= SHA2(m) ·G + rx · pk

s

and let rx′ be the x-coordinate of R′, modulo q.

3. Output 1 if and only if rx′ = rx.

3 t-Party Three-Round Threshold ECDSA
We present the functionality that our threshold ECDSA protocol realizes. In
contrast to the functionality given by Doerner et al. [DKLs19], ours uses the
ECDSA algorithms as black boxes, does not leak R early, and formally distin-
guishes aborts, which prevent further interactions with the functionality, from
failed signatures, which do not. This distinction is important in threshold func-
tionalities, because a single corrupt party should not, by participating in one
signing, be able to prevent signatures from being created in the future by other
groups of parties that exclude it.
Functionality 3.1. FECDSA(G, n, t): Threshold ECDSA

This functionality is parameterized by the party count n, the threshold t,
and the elliptic curve G = (G, G, q). The setup phase runs once with n
parties, and the signing phase may be run many times between (varying)
subgroups of parties indexed by P ⊆ [n] such that |P| = t. If any party is

12



corrupt, then the adversary S may instruct the functionality to abort se-
lectively during the setup phase only. S may also instruct the functionality
to fail during the signing phase if any party indexed by P is corrupt, but
in this case the functionality does not halt, and further signatures may be
attempted.

Setup: On receiving (init, sid) from some party Pi such that sid =..

P1‖ . . . ‖Pn‖sid′ and i ∈ [n] and sid is fresh, send (init-req, sid, i) to S.
On receiving (init, sid) from all parties,

1. Sample the joint secret and public keys, (pk, sk)← ECDSAGen(G).

2. Store (secret-key, sid, sk) in memory.

3. Send (public-key, sid, pk) directly to S.

4. On receiving (release, sid, i) for i ∈ [n] from S, send
(public-key, sid, pk) to Pi and store (pk-delievered, sid, i) in
memory. On receiving (abort, sid, i), send (abort, sid) to Pi, and do
not interact with Pi any further in this session.

Signing: On receiving (sign, sid, sigid, mi) from any party Pi, parse
sigid =.. P‖sigid′ such that |P| = t and ignore the message if i 6∈ P or
P 6⊆ [n] or sigid is not fresh or if (pk-delievered, sid, i) does not exist in
memory. Otherwise, send (sig-req, sid, sigid, i, mi) directly to S.
On receiving (sign, sid, sigid, mi) from Pi for every i ∈ P, sample σ ←
ECDSASign(G, sk, mP1) and then

5. If there is any pair of signers Pi and Pj such that SHA2(mi) 6=
SHA2(mj), then for every i ∈ P, then send (failure, sid, sigid) to Pi.

6. If a corrupt party is indexed by P, and S sends (fail, sid, sigid, i)
such that i ∈ P, send (failure, sid, sigid) to Pi and ignore any future
(fail, sid, sigid, i) or (proceed, sid, sigid, i) message.

7. If a corrupt party is indexed by P, and S sends (proceed, sid, sigid, i)
such that i ∈ P, send (signature, sid, sigid, σ) to Pi and ignore any
future (fail, sid, sigid, i) or (proceed, sid, sigid, i) message.

8. If no corrupt parties are indexed by P, send (signature, sid, sigid, σ) to
Pi for every i ∈ P.

9. Once every signing party has received an output, ignore all future mes-
sages with this sigid value.

In this work we do not make any assumptions about the SHA2 function.
If it is assumed to be collision resistant, then step 5 of FECDSA(G, n, t) can be
changed to emit a failure when the messages are unequal, rather than when
their images under SHA2 are unequal.

13



3.1 Building Blocks
Here we define simpler functionalities from which our protocol will be con-
structed. All are standard and can be realized via standard techniques. We also
give notes on realization strategies and performance.

We begin with a functionality that samples Shamir sharings of keys for
discrete-log cryptosystems (e.g. ECDSA, the Schnorr signature scheme, the
ElGamal encryption scheme, the BBS+ signature scheme, etc). We refer to
this functionality as the relaxed key generation functionality, because it does
not explicitly sample a secret key, and it may not even have enough informa-
tion interally to compute the secret key, depending on the values of t and n.
However, it always denies the adversary the ability to compute the secret key,
assuming that the discrete logarithm problem is hard. In section 7 we discuss
this design decision and its implications, and introduce a protocol to realize our
functionality.

Functionality 3.2. FRelaxedKeyGen(G, n, t): Relaxed DLog Keygen
This functionality is parameterized by the party count n, the threshold t,
and the elliptic curve G = (G, G, q). The adversary S may corrupt up to
t− 1 parties that are indexed by P∗, and if |P∗| ≥ 1, then the adversary S
may instruct the functionality to abort.

Key Generation: On receiving (keygen, sid) from some party Pi

such that sid =.. P1‖ . . . ‖Pn‖sid′ and i ∈ [n] and sid is fresh, send
(keygen-req, sid, i) to S. On receiving (keygen, sid) from all parties,

1. Receive (adv-poly, sid, {p̌(i)}i∈[n]\P∗ , {P̌ (j)}j∈P∗) from S. Let P̌ (i) ..=
p̌(i) ·G for i ∈ [n] \P∗, and abort if P̌ is not a degree-(t− 1) polynomial
over G.

2. Sample a degree-(t − 1) polynomial p̂ uniformly over Zq. Let P̂ (k) ..=
p̂(k)·G and P (k) ..= P̌ (k)+P̂ (k) for all k ∈ [n], and let p(i) ..= p̌(i)+ p̂(i)
for i ∈ [n] \ P∗. Note that P is a polynomial of degree t − 1 over G.
Interpolate P (0).

3. Send (hon-poly, sid, P (0), {P̂ (i)}i∈[n]\P∗ , {p̂(j)}j∈P∗) directly to S.

4. On receiving (release, sid, i) for i ∈ [n] directly from S, if Pi is honest,
then send (key-pair, sid, P (0), p(i)) to Pi. If Pi is corrupt, then do
nothing. If (abort, sid, i) is received instead, then send (abort, sid) to
Pi.

Next, we introduce the standard commitment functionality, which can be
realized in the random oracle model via a folklore method: the commitment is
the image under the oracle of the committed value concatenated with a salt of
length 2λc, and the decommitment is simply the committed value plus the salt.

14



Functionality 3.3. FCom: Commitment [CLOS02]
In each instance one specific party PS commits, and the other party PR
receives the commitment and committed value.

Commit: On receiving (commit, sid, x) from party PS, parse sid =..

PS′‖PR‖sid′. If sid is a fresh value and S′ = S, then store
(commitment, sid, x) in memory and send (committed, sid) to PR.

Decommit: On receiving (decommit, sid) from PS, if a record of the form
(commitment, sid, x) exists in memory, then send (opening, sid, x) to PR.

We use a functionality that non-interactively samples uniform secret-sharings
of zero. It can be implemented in the FCom-hybrid random oracle model: to
initialize the protocol, each pair of parties commits and decommits a pair of
λc-bit seeds to one another, then sums the pair to form a single shared seed.
When a party invokes the protocol, it evaluates the random oracle on each of
its shared seeds concatenated with the next index in sequence, and accumulates
the outputs: it subtracts oracle outputs for the party pairs in which it is lower-
indexed, and adds oracle outputs for the party pairs in which it is higher-
indexed. The seeds can be reused indefinitely.
Functionality 3.4. FZero(G, n): Zero-Sharing Sampling [DKL+23]

This functionality is parameterized by the party count n and a group G.

Sample: Upon receiving (sample, sid) from some party Pi such that
sid =.. P1‖ . . . ‖Pn‖sid′ and i ∈ [n] and sid is fresh, uniformly sample x← Gn

conditioned on
∑

i∈[n] xi ≡ 0G and send (mask, sid, xi) to Pi. Upon receiv-
ing (sample, sid) from any other Pj for j ∈ [n] \ {i}, send (mask, sid, xj) to
Pj .

Finally, we use a randomized VOLE functionality FRVOLE:6 the first party
(Bob) to invoke the functionality receives a single random value; the second
party (Alice) then supplies a vector of chosen values, and FRVOLE outputs to
both of them secret shares of the product of the random value and each of the
elements in the vector. We give a protocol to realize FRVOLE in section 5, and
prove it secure in section 6.
Functionality 3.5. FRVOLE(q, ℓ): Random Vector OLE

This functionality interacts with two parties, PA and PB, who we refer to
as Alice and Bob. It also interacts directly with the ideal adversary S, who
can instruct the functionality to abort at any time. It is parameterized by
a prime q that determines the order of the field over which multiplications
are performed.

6As we discuss in section 5, this is equivalent to plain VOLE under a simple information-
theoretic transformation.

15



Sampling: On receiving (sample, sid) from Bob such that sid =..

PB‖PA‖sid′ and sid is fresh and no record of the form (instance, sid, ∗)
exists in memory, sample b ← Zq if Bob is honest, or receive
(bob-sample, sid, b) from S if he is corrupt, and then store (instance, sid, b)
in memory, send (sample, sid, b) to Bob, and send (ready, sid) to Alice.

Multiplication: On receiving (multiply, sid, a) from Alice, where a ∈
Zℓ

q, if there exists a message of the form (instance, sid, b) in memory, and
if (complete, sid) does not exist in memory, then:

• If Alice is corrupt, receive (alice-share, sid, c) from S and compute
d ..= {ai · b− ci}i∈[ℓ].

• If Bob is corrupt, send (alice-multiplied, sid) to S, wait for
(bob-share, sid, d) in response, and compute c ..= {ai · b− di}i∈[ℓ].

• If neither party is corrupt, sample c← Zℓ
q and d← Zℓ

q uniformly subject
to {ai · b}i∈[ℓ] = {ci + di}i∈[ℓ].

and send (share, sid, c) to Alice, send (share, sid, d) to Bob, and store
(complete, sid) in memory.

3.2 The Basic Three-Round Protocol
In this section we give our three round signing protocol. We begin by developing
some intuition, building upon the sketch of our protocol in section 1.2. Suppose
that each party Pi knows additive shares ri and ski of r and sk respectively, and
samples a uniform mask ϕi. Suppose also that they know ui and vi such that∑

i∈P
ui =

∑
i∈P

ri ·
∑
i∈P

ϕi and
∑
i∈P

vi =
∑
i∈P

ski ·
∑
i∈P

ϕi

It is easy to see that given these correlations,∑
i∈P(SHA2(m) · ϕi + rx · vi)∑

i∈P ui
= SHA2(m) + rx · sk

r

is a valid signature on m under pk = sk · G when combined with the nonce
R = r · G. Assuming the correlation to be generated with security against
malicious adversaries, it remains only to ensure that pk = sk · G and that
R = r · G, and to ensure that the adversary does not add any offsets to the
correlation when the signature is assembled. For the latter problem, once m, R,
and pk are fixed, there exists only one valid ECDSA signature, and so output
offsets can be detected perfectly by verifying the signature after it is assembled.
This leaves the problem of consistency.

Towards ensuring consistency, our main contribution is a novel method to
verify an enriched version of the correlation: each Pi knows cu

i,j and cv
i,j and

16



each Pj knows du
j,i and dv

j,i such that

cu
i,j = ri · ϕj − du

j,i and cv
i,j = ski · ϕj − dv

j,i

Under this correlation, if Pi sends Ri = ri · G and pki = ski · G to Pj , then it
can also send Γu

i,j = cu
i,j ·G and Γv

i,j = cv
i,j ·G to authenticate the former values.

Because ϕj is uniform and information-theoretically hidden from Pi, if Pi sends
Ri 6= ri ·G, then its chance of sending Γu

i,j satisfying

Γu
i,j = Ri · ϕj − du

j,i ·G

is exactly 1/q. Thus by checking the latter equality, Pj can ensure that Pi has
behaved consistently with overwhelming probability. A similar check allows Pj

to ensure the consistency of pki and ski via cv
i,j and dv

j,i. Finally, it is easy to
compute an appropriate value ui given knowledge of ri, ϕi, cu

i,∗, and du
i,∗, and

to compute an appropriate vi given knowledge of ski, ϕi, cv
i,∗, and dv

i,∗, which
implies that signature assembly can happen as before.

A few adjustments to the above simple scheme are required to write a security
proof. First, we do not insist that each Pi use a consistent inversion mask ϕi with
all of the other parties: instead, it uses an individual random mask with each
counterparty and checks consistency relative to that mask, and then adjusts
the correlation before signature assembly. This allows the correlation to be
generated by FRVOLE. Second, Ri is not sent, but committed and then released,
to avoid adversarial bias. Third, the shares of pk are rerandomized during each
signature, in order to prevent the adversary from inducing offsets that depend
on the honest parties’ secrets by using its mask values inconsistently among the
honest parties.

Our final protocol is three rounds. In the first round, each Pi commits to
Ri and instantiates an FRVOLE instance toward each of the other parties. In the
second round, each party decommits Ri, inputs ski and ri into the instances
of FRVOLE that the other parties have instantiated toward it, and sends each of
the parties the values necessary to authenticate its inputs to FRVOLE and adjust
the outputs of FRVOLE so that they can be assembled into a signature. After
the second round, the inputs to FRVOLE are authenticated. In the third round,
shares of the signature are swapped.
Protocol 3.6. πECDSA(G, n, t): t-Party Three-Round ECDSA

This protocol is parameterized by the party count n, the threshold t, and
the elliptic curve G = (G, G, q). The setup phase runs once with par-
ties P1, . . . ,Pn, and the signing phase may be run many times between
(varying) subsets of parties of size t. The parties in this protocol in-
teract with the ideal functionalities FCom, FZero(Zq, t), FRVOLE(q, 2), and
FRelaxedKeyGen(G, n, t). The SHA2 function is not assumed to have any cryp-
tographic properties.

Setup:

1. On receiving (init, sid) from the environment Z, each party Pi checks

17



whether there exists a record of the form (key-pair, sid, pk, p(i)) in
memory. If not, then Pi sends (keygen, sid) to FRelaxedKeyGen(G, n, t).

2. On receiving (key-pair, sid, pk, p(i)) from FRelaxedKeyGen(G, n, t) each Pi

stores this message in memory and outputs (public-key, sid, pk) to the
environment. If FRelaxedKeyGen(G, n, t) aborts, then Pi aborts to the en-
vironment.

3. The parties perform any initialization procedure associated with
FRVOLE(q, 2) and FZero(Zq, t).a

Signing:

4. On receiving (sign, sid, sigid, m) from the environment Z, Pi parses
P‖sigid′ ..= sigid such that |P| = t, and ignores the environment’s mes-
sage if i 6∈ P or P 6⊆ [n] or sigid is not fresh or (key-pair, sid, pk, p(i))
does not exist in memory. Otherwise, Pi continues to the next step.

5. Pi samples a secret instance key ri ← Zq and an inversion mask ϕi ← Zq

and computes

Ri
..= ri ·G

P-j ..= P \ {j} for j ∈ P

6. Pi sends

• (commit,Pi‖Pj‖sid‖sigid, Ri) to FCom for everyj ∈ P-i

• (sample,Pi‖Pj‖sid‖sigid) to FRVOLE(q, 2) for everyj ∈ P-i

• (sample,PP1‖ . . . ‖PPt‖sid‖sigid) to FZero(Zq, t)

This completes the first round.

if pipelining, supply m hereb

7. On receiving

• (committed,Pj‖Pi‖sid‖sigid) from FCom for every j ∈ P-i

• (ready,Pj‖Pi‖sid‖sigid) from FRVOLE(q, 2) for every j ∈ P-i

• (sample,Pi‖Pj‖sid‖sigid,χi,j) from FRVOLE(q, 2) for every j ∈ P-i

• (mask,PP1‖ . . . ‖PPt
‖sid‖sigid, ζi) from FZero(Zq, t)

Pi computes
ski

..= p(i) · lagrange(P, i, 0) + ζi

18



and sends (multiply,Pj‖Pi‖sid‖sigid, {ri, ski}) to FRVOLE(q, 2) for j ∈
P-i, and receives (share,Pj‖Pi‖sid‖sigid, {cu

i,j , cv
i,j}) for j ∈ P-i in re-

sponse. Then Pi computes

Γu
i,j

..= cu
i,j ·G

Γv
i,j

..= cv
i,j ·G

pki
..= ski ·G

ψi,j
..= ϕi − χi,j

for every j ∈ P-i and for every j ∈ P-i sends

• (decommit,Pi‖Pj‖sid‖sigid) to FCom

• (check-adjust, sid, sigid, Γu
i,j , Γv

i,j ,ψi,j , pki) to Pj

if presigning, supply m hereb

8. On receiving

• (opening,Pj‖Pi‖sid‖sigid, Rj) from FCom

• (share,Pi‖Pj‖sid‖sigid, {du
i,j , dv

i,j}) from FRVOLE(q, 2)
• (check-adjust, sid, sigid, Γu

j,i, Γv
j,i,ψj,i, pkj) from Pj

for every j ∈ P-i, Pi checks whether

χi,j ·Rj − Γu
j,i = du

i,j ·G
χi,j · pkj − Γv

j,i = dv
i,j ·G

for every j ∈ P-i, and whether∑
k∈P

pkk = pk

and if these equations hold, then Pi computes

R ..=
∑
j∈P

Rj

ui
..= ri ·

(
ϕi +

∑
j∈P-i

ψj,i

)
+
∑

j∈P-i

(cu
i,j + du

i,j)

vi
..= ski ·

(
ϕi +

∑
j∈P-i

ψj,i

)
+
∑

j∈P-i

(cv
i,j + dv

i,j)

wi
..= SHA2(m) · ϕi + rx · vi

19



where rx is the x-coordinate of R, and sends (fragment, sid, sigid, wi, ui)
to Pj for every j ∈ P-i. On the other hand, if Pi’s shared instance of
FRVOLE with Pj aborts, or if any of the aforementioned equations do not
hold for some j ∈ P-i, then Pi sends (fail, sid, sigid) to all other parties
and sends an analogous message at the corresponding point in all con-
current signing sessions that involve Pj , outputs (failure, sid, sigid) to
the environment, does not continue to step 10, and does not participate
in any future signature signing sessions involving Pj . This completes
the third round.

9. On receiving (fail, sid, sigid) from any Pj for j ∈ P, Pi outputs
(failure, sid, sigid) to the environment, and does not continue to
step 10.

10. On receiving (fragment, sid, sigid, wj , uj) from Pj for every j ∈ P-i, Pi

computes

s ..=

∑
j∈P

wj∑
j∈P

uj

and outputs (signature, sid, sigid, (s, rx)) to the environment if and
only if ECDSAVerify(G, pk, m, (s, rx)) = 1; otherwise, Pi outputs
(failure, sid, sigid).
aThe functionalities have no such initialization per se, but their realizations might,

and this is the appropriate time for it.
bIn this case, the signing phase is initiated with a (pre-sign, sid, sigid) message from

the environment, and waits at the indicated point for a (sign, sid, sigid, m) message from
the enviornment. See section 3.3.

3.3 Pipelining and Presigning
We have marked the above protocol in two places to show how it can be mod-
ified to add pipelining or presigning in order to reduce the number of rounds
under certain circumstances (like several previous works [DOK+20, CGG+20,
CCL+23]). In each case, the parties must supply the message m to the protocol
at the indicated point, instead of at the beginning of the protocol.

Pipelining. Pipelining allows the first round of the protocol to be evaluated
before the message is known. If a single group of parties signs many messages
together, they can evaluate the first round of one signing instance along simulta-
neously with the third round of a previous signature, which enables the signing
procedure to be completed with only two rounds of latency. Because the nonce
R is not defined until the second round, the standard order of quantifiers, in
which the message cannot depend upon R is respected, and the output signa-
tures are secure if single-party ECDSA signatures are. However, R becomes
well-defined from the point of view of the adversary as soon as the the honest

20



parties are activated by the environment, and potentially before the corrupt
parties are. This necessitates a revised functionality, which we present below.
Functionality 3.7. FPipelinableECDSA(G, n, t): Pipelineable TECDSA

This functionality is parameterized by the party count n, the threshold t,
and the elliptic curve G = (G, G, q). The setup phase runs once with n
parties, and the signing phase may be run many times between (varying)
subgroups of parties indexed by P ⊆ [n] such that |P| = t. If any party
is corrupt, then the adversary S may instruct the functionality to abort
during the setup phase. S may also instruct the functionality to fail during
the signing phase if any party indexed by P is corrupt, but in this case the
functionality does not halt, and further signatures may be attempted.

Setup: On receiving (init, sid) from some party Pi such that sid =..

P1‖ . . . ‖Pn‖sid′ and i ∈ [n] and sid is fresh, send (init-req, sid, i) to S.
On receiving (init, sid) from all parties,

1. Sample the joint secret and public keys, (pk, sk)← ECDSAGen(G).

2. Store (secret-key, sid, sk) in memory.

3. Send (public-key, sid, pk) directly to S.

4. On receiving (release, sid, i) for i ∈ [n] from S, send
(public-key, sid, pk) to Pi and store (pk-delievered, sid, i) in
memory.

Signing: On receiving (pre-sign, sid, sigid) from any party Pi, parse
sigid =.. P‖sigid′ such that |P| = t and ignore the message if i 6∈ P or
P 6⊆ [n] or sigid is not fresh or if (pk-delievered, sid, i) does not exist in
memory. Otherwise, send (presig-req, sid, sigid, i) directly to S and store
(ready, sid, sigid, i) in memory.
On receiving (sign, sid, sigid, m) from Pi for some i ∈ P, if
(ready, sid, sigid, j) exists in memory for all j ∈ P then

5. If (signature, sid, sigid, σ) does not exist in memory, then sample
σ ← ECDSASign(G, sk, m), store (signature, sid, sigid, σ) in mem-
ory, and if at least one party indexed by P is corrupt, then send
(leakage, sid, sigid, rx) directly to S.

6. If at least one party indexed by P is corrupt, then send
(sig-req, sid, sigid, i, m) directly to S.

Once every Pi for i ∈ P has sent (sign, sid, sigid, m),

7. If the value of m submitted is not consistent among all parties,
then for every i ∈ P, wait for S (fail, sid, sigid, i) and then send
(failure, sid, sigid) to Pi.

21



8. If a corrupt party is indexed by P, and S sends (fail, sid, sigid, i)
such that i ∈ P, send (failure, sid, sigid) to Pi and ignore any future
(fail, sid, sigid, i) or (proceed, sid, sigid, i) message.

9. If a corrupt party is indexed by P, and S sends (proceed, sid, sigid, i)
such that i ∈ P, send (signature, sid, sigid, σ) to Pi and ignore any
future (fail, sid, sigid, i) or (proceed, sid, sigid, i) message.

10. If no corrupt parties are indexed by P, send (signature, sid, sigid, σ) to
Pi for every i ∈ P.

11. Once every signing party has received an output, ignore all future mes-
sages with this sigid value.

Presigning. Presigning allows the first two rounds of the protocol to be eval-
uated before the message is known, which leaves only the last round (containing
nothing but a few simple field operations and one signature verification per
party) as the only round that must be evaluated online. Unlike pipelining, pre-
signing does not preserve the standard order of quantifiers: the environment
can potentially condition the message on R, which is fixed in the second round.
Groth and Shoup [GS22b] gave a proof under a new assumption on SHA2 in
a variant of the generic group model that ECDSA is secure even if this oc-
curs. They also show a number of conditions under which presigning can lead
to attacks (none of which apply to our protocol, as presented). We warn that
presigning should only be used in practice by those who understand and ac-
cept the implications and risks associated with it. Nevertheless, our protocol is
compatible with it.

3.4 Comparison to DKLs19
The clearest single ancestor of our protocol is the t-of-n signing protocol of Do-
erner et al. [DKLs19], hereafter referred to as the 2019 DKLs protocol. Although
our protocol contains some of the same fundamental ideas as that one, ours re-
arranges the main protocol structure and the eliminates an intermediate func-
tionality (the so-called inverse-sampling functionality) to yield a significant im-
provement in the number of rounds and a completely new information-theoretic
proof. Specifically, whereas the 2019 DKLs protocol requires either 6 + log t or
10 rounds under the computational Diffie-Hellman assumption in the signing
curve, our new protocol requires only 3 rounds (one of which is pipelineable)
and is statistically secure without a random oracle. Both protocols are oth-
erwise expressed in similar hybrid models. Our new protocol requires exactly
as many secure multiplications to be performed as does the 10-round version
of the 2019 protocol, whereas the (6 + log t)-round version requires fewer. In
spite of this fact, our improvements to the secure multiplication protocol (i.e.
our random VOLE) ensure that our new protocol has a lower bandwidth cost
overall, as we discuss in section 8. While the number of rounds is significantly

22



improved relative to the 2019 DKLs scheme, we note that the number of elliptic
curve scalar operations grows with the number of signers in our new scheme,
whereas in the 2019 DKLs scheme it is a constant.

The heart of the structural difference between the two protocols lies in the
way they compute shares of 1/r and sk/r, and in the way they check the correct-
ness of these computations. In the 2019 DKLs protocol, a distinct functionality
is defined to sample R along with shares of r and 1/r. This functionality is
realized by a protocol that samples multiplicative shares of r, inverts them lo-
cally, and then uses a O(log t)-long sequence of pairwise secure multiplications
to compute additive shares of both r and ϕ/r, where ϕ is a uniform mask. A
single commit-and-release check assures the well-formedness of the shares in the
2019 scheme, before they are unmasked. At this point shares of 1/r are mul-
tiplied by shares of sk, and an additional commit-and-release check establishes
the correctness of this multiplication with respect to pk. The 2019 protocol’s
higher round count is due the fact that it performs the inversion and multi-
plication operations sequentially, and the fact that it performs two sequential
commit-and-release checks. In contrast the protocol introduced here performs
inversion, multiplication with sk, and consistency checking simultaneously.

3.5 Two-Party Two-Message ECDSA
In addition to their general t-of-n protocol, Doerner et al. also proposed a
specialized 2-of-n protocol [DKLs18] that required only one message to be sent
in each direction. When t = 2, a simple modification of our new protocol allows
it to match the communication properties of theirs. In each signing instance,
one of the two parties is chosen as the initiator. We will label the initiator
as Alice, and the other party as Bob. Only Alice will receive the signature at
the end. The parties run πECDSA with pipelining, as described in sections 3.2
and 3.3, and make the following modifications:

1. Alice’s pipelined first message is not triggered by any message from the envi-
ronment. Instead, she sends her first message with her second message, upon
receiving (sign, sid, sigid) from the environment.

2. Bob’s second message is not triggered by a (sign, sid, sigid) message from
the environment. Instead, upon receiving Alice’s first and second messages,
Bob outputs (sig-req, sid, sigid) to the environment, and sends his second
message only after the environment responds with (proceed, sid, sigid, m).

3. Bob sends his third message at the same time he sends his second message.
Since Alice’s second message has already been received, this is possible.

4. Alice never sends her third message, depriving Bob of the s component of
the output signature.

We note that these modifications to the protocol are secure because they are
essentially equivalent to rushing behavior, and our proof in section 4 already
acounts for rushing adversaries. We illustrate the modifications in figure 1.

23



pre-sign pre-sign pre-sign

sign m sign m sign m

signature σ signature σ

signature σ

proceed m

original round 1 original round 2 original round 3

P
A

P
B P

A
P
B

pipelined

Figure 1: Two-party Message Structures Illustrated. On the left is the
protocol structure, with pipelining, as described in sections 3.2 and 3.3. On the
right is the protocol structure suggested for the two-party setting in this section.

The resulting protocol comprises three messages, and if the parties pipeline the
messages of each signature to occur simultaneously with the last message of a
previous signature, then the resulting protocol has two messages in effect, just
like the 2018 2-of-n DKLs protocol.

Comparison to DKLs18. Compared to the 2-of-n DKLs protocol from 2018,
our new protocol requires pipelining (and thus the storage of intermediate state)
in order to achieve a two-round structure. We note that in the two party-case
the downside implied by this is minimal: the stored state is exclusively pairwise,
just like the stored state already required by the OT-extension protocol that is
used to realize FRVOLE. On the other hand, our new protocol realizes a stan-
dard threshold signing functionality, whereas the 2018 DKLs protocol realizes a

24



weaker functionality that allows the adversary to bias R, and that is only known
to be equivalent to the standard functionality in the generic group model. More-
over, our protocol is statistically secure, whereas the 2018 protocol requires a
reduction to the computational Diffie-Hellman assumption in the signing curve,
and a reduction to the forgery game for ECDSA. Finally, our protocol improves
upon the efficiency of the 2018 protocol. We do not make use of zero-knowledge
proofs of knolwedge, whereas the 2018 DKLs protocol does; this allows us to
avoid the overhead of straight-line extractable proofs [Fis05, Ks22], which is by
far the most computationally-expensive component of the 2018 protocol. We
also improve upon the bandwidth of the 2018 protocol: the chosen-input mul-
tiplication subprotocols used in that work require a total of 4κ + 4λs correlated
OT instances, half of which have a payload size of 2κ and half of which have
a correlation size of 4κ. Realizing the randomized VOLE instances required
by our new protocol via the VOLE protocol proposed in section 6 requires a
total of 2κ + 4λs correlated OT instances, all of which have a correlation size
of 3κ. When κ = 256 and λs = 80, as is common in practice, this yields a
38% savings in the bandwidth due to the OT payload alone. This improvement
is independent of improvements due to new OT-extension techniques, and in-
dependent of an additional bandwidth-saving optimization that we introduce
in our VOLE construction. As discussed in section 8, the overall bandwidth
reduction achieved by our protocol when these improvements are considered is
57.3%.

4 Proof of Security for t-Party ECDSA
In section 1, we stated our security theorem:

Theorem 1.1 (Informal Threshold ECDSA Security Theorem). In the
(FCom,FZero,FRVOLE,FRelaxedKeyGen)-hybrid model, πECDSA(G, n, t) statistically
UC-realizes FECDSA(G, n, t) against a malicious adversary that statically cor-
rupts up to t− 1 parties.

There is, however, one caveat we must address when formalizing the above
theorem. The UC model officially captures only a computational notion of
security, and if it is extended to permit unbounded environments and adver-
saries, then a problem arises when considering protocols that realize reactive
functionalities such as FECDSA: if each invocation implies a statistically negli-
gible chance of distinguishing the real and ideal worlds, but the environment
is allowed exponentially-many invokations, then, the overall probability of dis-
tinguishing such a protocol from its functionality becomes noticeable. To avoid
this, we enforce explicit (but arbitrary) polynomial bounds on both the number
of parties and the number of times the honest parties may be invoked, while al-
lowing the environment to be otherwise unbounded. Thus we have the following
formal theorem:

Theorem 4.1 (Formal Threshold ECDSA Security Theorem). For every mali-
cious adversary A that statically corrupts up to t−1 parties, there exists a PPT

25



simulator SA
ECDSA that uses A as a black box, such that for every environment

Z and every pair of polynomials µ, ν, if µ(λ) bounds the number of times Z
invokes any honest party, thenRealπECDSA(G,n,t),

A,Z
(λ, z) :

G ← GrpGen(1λ)


λ∈N, n∈[2,ν(λ)],
t∈[2,n], z∈{0,1}∗

≈s


IdealFECDSA(G,n,t),

SA
ECDSA(G,n,t),Z

(λ, z) :

G ← GrpGen(1λ)


λ∈N, n∈[2,ν(λ)],
t∈[2,n], z∈{0,1}∗

Proof. We begin by specifying the simulator SA
ECDSA(G, n, t), after which we will

give a sequence of hybrid experiments to establish that it produces a view for
the environment that is indistinguishable from the real world.
Simulator 4.2. SA

ECDSA(G, n, t): t-Party ECDSA
This simulator is parameterized by the party count n, the threshold t, and
the elliptic curve G = (G, G, q). The simulator has oracle access to the
adversary A, and emulates for it an instance of the protocol πECDSA(G, n, t)
involving the parties P1, . . . ,Pn. The simulator forwards all messages from
its own environment Z to A, and vice versa. When the emulated protocol
instance begins, A announces the identities of up to t− 1 corrupt parties.
Let the indices of these parties be given by P∗ ⊆ [n]. SA

ECDSA(G, n, t)
interacts with the ideal functionality FECDSA(G, n, t) on behalf of every
corrupt party, and in the exeriment that it emulates for A, it interacts with
A and the corrupt parties on behalf of every honest party and on behalf of
the ideal oracles FCom, FZero(Zq, t), FRVOLE(q, 2), and FRelaxedKeyGen(G, n, t).

Setup:

1. On receiving (keygen, sid) from Pi for some i ∈ P∗ on behalf of
FRelaxedKeyGen(G, n, t), send

• (init, sid) to FECDSA(G, n, t) on behalf of Pi

• (keygen-req, sid, i) directly to A on behalf of FRelaxedKeyGen(G, n, t)

2. On receiving (init-req, sid, j) for some j ∈ [n] \ P∗ directly from
FECDSA(G, n, t), send (keygen-req, sid, j) directly to A on behalf of
FRelaxedKeyGen(G, n, t).

3. On receving (abort, sid) from A on behalf of FRelaxedKeyGen(G, n, t), send
(abort, sid) to FECDSA(G, n, t).

4. On receiving (adv-poly, sid, {p̌(i)}i∈[n]\P∗ , {P̌ (j)}j∈P∗) from A on be-
half of FRelaxedKeyGen(G, n, t), compute P̌ (i) ..= p̌(i) · G for i ∈ [n] \ P∗

26



and abort if P̌ (i) is not a polynomial of degree t− 1 over G.

5. On receiving

• (public-key, sid, pk) directly from FECDSA(G, n, t)

• (adv-poly, sid, {p̌(i)}i∈[n]\P∗ , {P̌ (j)}j∈P∗) from A on behalf of
FRelaxedKeyGen(G, n, t)

sample p̂i(j)← Zq uniformly for all j ∈ P∗ and i ∈ [n]\P∗ and compute

P (j) ..= P̌ (j) +
∑

i∈[n]\P∗

p̂i(j) ·G

for every j ∈ P∗. Let P (0) ..= pk. If there are fewer than t points
fixed on the polynomial P , then fix t − 1 − |P∗| points uniformly.
Now, interpreting P as a polynomial of degree t − 1 over G, inter-
polate P (i) for i ∈ [n] \ P∗ and compute P̂ (i) ..= P (i) − p̌(i) · G.
Send (hon-poly, sid, {P̂ (i)}i∈[n]\P∗ , {p̂(j)}j∈P∗) directly to A on behalf
of FRelaxedKeyGen(G, n, t), and store (public-key, sid, pk, {P (i)}i∈[n]) in
memory.

6. On receiving (release, sid, i) or (abort, sid, i) from A on behalf of
FRelaxedKeyGen(G, n, t), forward this message directly to FECDSA(G, n, t).

7. On receiving (public-key, sid, pk) from FECDSA(G, n, t) on behalf of Pj

for j ∈ P∗, store (sk-released, sid, j) in memory.

8. Initialize the blacklist for sid to be empty.

Signing:

9. On receiving (sig-req, sid, sigid, j, mj) from FECDSA(G, n, t) on behalf of
the corrupt signers, compute

P‖sigid′ ..= sigid such that |P| = t

C ..= P ∩P∗

H ..= P \C
P-k ..= P \ {k} for k ∈ P

and if there is any i ∈ P-j such that (j, i) is in the blacklist for sid,
then ignore these messages and act as though they had never arrived.
Otherwise, for every i ∈ C send to Pi

• (committed,Pj‖Pi‖sid‖sigid) on behalf of FCom

• (ready,Pj‖Pi‖sid‖sigid) on behalf of FRVOLE(q, 2)

27



10. Upon receiving (sample,PP1‖ . . . ‖PPt‖sid‖sigid) from Pi on
behalf of FZero(Zq, t), sample ζi ← Zq and respond with
(mask,PP1‖ . . . ‖PPt

‖sid‖sigid, ζi) on behalf of FZero(Zq, t). Note
that this step may occur at any time.

11. Upon receiving

• (sample,Pi‖Pj‖sid‖sigid) from Pi on behalf of FRVOLE(q, 2)
• (adv-sample,Pi‖Pj‖sid‖sigid,χi,j) from A on behalf of FRVOLE(q, 2)

for some i ∈ C and some j ∈ H, send (sample,Pi‖Pj‖sid‖sigid,χi,j) to
Pi on behalf of FRVOLE(q, 2).

12. Upon satisfying satisfying step 9 for every j ∈ H and also receiving

• (commit,Pi‖Pj‖sid‖sigid, Ri,j) from Pi on behalf of FCom

• (sample,Pi‖Pj‖sid‖sigid) from Pi on behalf of FRVOLE(q, 2)
• (adv-sample,Pi‖Pj‖sid‖sigid,χi,j) from A on behalf of FRVOLE(q, 2)
• (adv-share,Pi‖Pj‖sid‖sigid, {du

i,j , dv
i,j}) from A on behalf of

FRVOLE(q, 2)

for every i ∈ C and some consistent j ∈ H, if sigid is fresh and the records
(public-key, sid, pk, {P (i)}i∈[n]) and (sk-released, sid, i) for every i ∈
C are stored in memory, then

• if Pj is not the last honest party for whom these conditions hold,
then sample rj ← Zq, skj ← Zq, ϕj ← Zq, δu

j ← Zq, and δv
j ← Zq,

and compute Rj
..= rj ·G and pkj

..= skj ·G
• if Pj is the last honest party for whom these conditions hold,

then let h ..= j. For every i ∈ C, send (sign, sid, sigid, mh) to
FECDSA(G, n, t) on behalf of Pi and send (proceed, sid, sigid, i) directly
to FECDSA(G, n, t). If (signature, sid, sigid, (s, rx)) is received in reply
on behalf of the corrupt parties, reconstruct R from the x-coordinate
rx and compute

Rh
..= R−

∑
k∈P-h

Rk and pkh
..= pk−

∑
k∈P-h

pkk

If (failure, sid, sigid) is received in reply, then sample R ← G and
s← Zq uniformly and compute Rh and pkh as above.

28



and then for every i ∈ C compute

ψj,i ← Zq

Γu
j,i

..= χi,j ·Rj − du
i,j ·G

Γv
j,i

..= χi,j · pkj − dv
i,j ·G

and send to Pi

• (opening,Pj‖Pi‖sid‖sigid, Rj) on behalf of FCom

• (check-adjust, sid, sigid, Γu
j,, Γv

j,i,ψj,i, pkj) on behalf of Pj

• (share,Pi‖Pj‖sid‖sigid, {du
i,j , dv

i,j}) on behalf of FRVOLE(q, 2)

13. Upon satisfying satisfying steps 9 and 12 for every j ∈ H and receiving
(abort,Pj‖Pi‖sid‖sigid) directly from A on behalf of FRVOLE(q, 2) for
some i ∈ C and some j ∈ H, send (fail, sid, sigid) to all corrupt parties
on behalf of Pj , send the fail message on behalf of Pj at the corre-
sponding point in all concurrent signing sessions involving Pj and Pi,
append (j, i) to the blacklist for sid, and ignore all future instructions
pertaining to the signature ID sigid.

14. Upon satisfying satisfying steps 9 and 12 for every j ∈ H and receiving

• (multiply,Pj‖Pi‖sid‖sigid, {au
i,j , av

i,j}) from Pi on behalf of
FRVOLE(q, 2)

• (adv-share,Pj‖Pi‖sid‖sigid, {cu
i,j , cv

i,j}) from A on behalf of
FRVOLE(q, 2)

for some i ∈ C and some j ∈ H, send
(share,Pj‖Pi‖sid‖sigid, {cu

i,j , cv
i,j}) to Pi on behalf of FRVOLE(q, 2).

15. Upon satisfying satisfying steps 9 and 12 for every j ∈ H and receiving

• (decommit,Pi‖Pj‖sid‖sigid) from Pi on behalf of FCom

• (multiply,Pj‖Pi‖sid‖sigid, {au
i,j , av

i,j}) from Pi on behalf of
FRVOLE(q, 2)

• (adv-share,Pj‖Pi‖sid‖sigid, {cu
i,j , cv

i,j}) from A on behalf of
FRVOLE(q, 2)

• (check-adjust, sid, sigid, Γu
i,j , Γv

i,j ,ψi,j , pki,j) from Pi on behalf of Pj

for every i ∈ C and some consistent j ∈ H,

29



• If there exists some i ∈ C such that au
i,j ·G 6= Ri,j or av

i,j ·G 6= pki,j

or Γu
i,j 6= cu

i,j ·G or Γv
i,j 6= cv

i,j ·G, or if∑
i∈C

pki,j +
∑
k∈H

pkk 6= pk

then send (fail, sid, sigid, k) directly to FECDSA(G, n, t) for every k ∈
H, send (fail, sid, sigid) to all corrupt parties on behalf of Pj , send
the fail message on behalf of Pj at the corresponding point in all
concurrent signing sessions involving Pj and Pi, append (j, i) to the
blacklist for sid, and ignore all future instructions pertaining to the
signature ID sigid.

• If j 6= h and au
i,j · G = Ri,j and av

i,j · G = pki,j and Γu
i,j = cu

i,j · G
and Γv

i,j = cv
i,j ·G for every i ∈ C, and if∑

i∈C
pki,j +

∑
k∈H

pkk = pk

then compute

uj
..= rj ·

∑
i∈C

ψi,j + δu
j

+
∑
i∈C

(
(ϕj −ψj,i) · au

i,j

+ χi,j · rj − cu
i,j − du

i,j

)
vj

..= skj ·
∑
i∈C

ψi,j + δv
j

+
∑
i∈C

(
(ϕj −ψj,i) · av

i,j

+ χi,j · skj − cv
i,j − dv

i,j

)
wj

..= SHA2(mh) · ϕj + rx · vj

and send (fragment, sid, sigid, wj , uj) to Pi for every i ∈ C on behalf
of Pj .

• If j = h and au
i,h · G = Ri,h and av

i,h · G = pki,h and Γu
i,h = cu

i,h · G
and Γv

i,h = cv
i,h ·G for every i ∈ C, and if∑

i∈C
pki,j +

∑
k∈H

pkk = pk

then sample uh ← Zq and compute

ϕi
..= ψi,h + χi,h for i ∈ C

30



û ..=
∑
i∈C

au
i,h ·

( ∑
k∈P-h

ϕk +ψh,i

)
+ cu

i,h + du
i,h


+

∑
j∈H\{h}

(
δu

j + rj ·
∑
i∈C

ϕi

)

v̂ ..=
∑
i∈C

av
i,h ·

( ∑
k∈P-h

ϕk +ψh,i

)
+ cv

i,h + dv
i,h


+

∑
j∈H\{h}

(
δv

j + skj ·
∑
i∈C

ϕi

)

ŵ ..= SHA2(mh) ·
∑

k∈P-h

ϕk + rx · v̂

wh
..= s · uh + s · û− ŵ

and send (fragment, sid, sigid, wh, uh) to Pi for every i ∈ C on behalf
of Ph.

16. On receiving (fail, sid, sigid) from Pi on behalf of Pj for some j ∈ H
and some i ∈ C, send (fail, sid, sigid, j) directly to FECDSA(G, n, t).

17. On receiving (fragment, sid, sigid, wi,j , ui,j) from Pi on behalf of Pj for
some j ∈ H and every i ∈ C, if∑

k∈H
wk +

∑
i∈C

wi,j∑
k∈H

uk +
∑

i∈C
ui,j

= s

then send (proceed, sid, sigid, j) directly to FECDSA(G, n, t); otherwise,
send (fail, sid, sigid, j) directly to FECDSA(G, n, t).

Our sequence of hybrid experiments begins with the real world

H0 =

RealπECDSA(G,n,t),
A,Z

(λ, z) :

G ← GrpGen(1λ)


λ∈N, n∈[2,ν(λ)],
t∈[2,n], z∈{0,1}∗

and proceeds by gradually replacing the code of the real parties with elements
of the simulator until SA

ECDSA(G, n, t) is fully implemented and the experiment
is the ideal one.

Hybrid H1. This hybrid experiment replaces all of the individual honest parties
and ideal functionalities in H0 with a single simulator machine S that runs

31



their code and interacts with the adversary, environment, and corrupt parties
on their behalf. Since S interacts with the adversarial entities on behalf of the
ideal functionalities, it learns any values they receive or that are defined by
their internal state (for example, the value p̂(0) that defines the honest parties’
contributions to the secret key sk). This is a purely syntactical change, and so
it must be the case that H1 = H0.

Hybrid H2. This hybrid behaves identically to H1, except that the consistency
checks that are performed by S on behalf of the honest parties in step 8 of
πECDSA are replaced. Let Ri,j denote the value of Ri actually transmitted from
party Pi to party Pj (although the protocol specifies that Pi should use a single
consistent value Ri with all honest parties, Pi might use inconsistent values if
it is corrupt and misbehaves). Similarly, let pki,j be the value of pki actually
transmitted to Pj . In H2, S does not check whether

χj,i ·Ri,j − Γu
i,j = du

j,i ·G (1)
χj,i · pki,j − Γv

i,j = dv
j,i ·G (2)

but instead checks whether au
i,j ·G = Ri,j and av

i,j ·G = pki,j and Γu
i,j = cu

i,j ·G
and Γv

i,j = cv
i,j ·G, as specified in step 15 of SECDSA.

Because the code of FRVOLE enforces that

χj,i · au
i,j = cu

i,j + du
j,i and χj,i · av

i,j = cv
i,j + dv

j,i

we know that if the consistency checks evaluated in H2 pass, then the checks
in H1 also pass. We also know that if au

i,j ·G = Ri,j and av
i,j ·G = pki,j , then

the checks in both hybrids pass if and only if Γu
i,j = cu

i,j ·G and Γv
i,j = cv

i,j ·G.
Thus, the adversary can only distinguish the two by setting au

i,j · G 6= Ri,j

or av
i,j · G 6= pki,j for some corrupt Pj and contriving to pass the consistency

check in H1, while failing the check (with certainty) in H2. Because Ri,j is
fixed, there is exactly one value of Γu

i,j that will satisfy equation 1 for any
assignment of χj,i and du

j,i. Since χj,i and du
j,i are uniformly sampled and

information-theoretically hidden from the adversary at the time that it must
commit to Γu

i,j , the probability that the adversary sends this value is exactly
1/q if au

i,j ·G 6= Ri,j . A similar argument implies that the adversary has a 1/q
probability of satisfying equation 2 if av

i,j ·G 6= pki,j .
Note that if a consistency check fails, the honest party that observes the

failure will never again allow a signing session to produce an output when it
involves the party that caused the failure. Even if an unbounded environment
were permitted to invoke an unbounded number of signing sessions, at most
(t−1) · (n− t+1) failed consistency checks can occur before there are no honest
parties that are willing to sign with any corrupt party. The probability that at
least one of the first (t − 1) · (n − t + 1) distinguishing attempts will result in
success is upper-bounded by (t− 1) · (n− t + 1)/q ≤ n2/q, and since n = ν(λ)
is polynomially-bounded while q is exponential in λ, it follows that H2 ≈s H1.

32



Hybrid H3. This hybrid behaves identically to H2, except that if the environ-
ment triggers a single signing instance with ID sigid among a group of exclu-
sively honest parties with messages that have consistent images under SHA2,
then the protocol code no longer runs. Instead, upon (sign, sid, sigid, m) on
behalf of all of the parties, S reconstructs sk from the honest parties’ points
on the polynomial p, locally evaluates σ ← ECDSASign(G, sk, m), and outputs
(signature, sid, sigid, σ) to the environment on behalf of all parties.

Observe that in H2, a group of honest parties compute their views such that

ri ← Zq for every i ∈ P (3)
ri · χj,i = cu

i,j + du
j,i for every i, j ∈ P : i 6= j

ski · χj,i = cv
i,j + dv

j,i for every i, j ∈ P : i 6= j

ψj,i = ϕj − χj,i for every i, j ∈ P : i 6= j

u =
∑
i∈P

(
ri · ϕi +

∑
j∈P\{i}

(ri ·ψj,i + cu
i,j + du

i,j)
)

= r · ϕ

v =
∑
i∈P

(
ski · ϕi +

∑
j∈P\{i}

(ri ·ψj,i + cv
i,j + dv

i,j)
)

= sk · ϕ

s = SHA2(m) · ϕ + rx · v
u

= SHA2(m) + rx · sk
r

(4)

The consistency checks introduced in H2 trivially pass when all of the par-
ticipants are honest, and by inspection we can see that equations 3 and 4 yield
a signature with a distribution identical to that produced by ECDSASign, which
implies that the verification check in step 10 of πECDSA always passes when all
signing parties are honest. Thus the output distributions for all signing parties
are identical in H3 and H2, and in both hybrids the probability of a failed sig-
nature is zero. No other values are observable by the adversary, and so the two
hybrids are perfectly indistinguishable.

Hybrid H4. This hybrid behaves identically to H3, except when the environ-
ment triggers a single signing instance with ID sigid between a group containing
two or more honest parties, but uses inconsistent messages with the honest par-
ties. Suppose Ph is the last honest party in the group to be activated by the
environment. In H4, S replaces mj with mh in the calculations of every honest
Pj for j ∈ H \ {h}. If there exists some j ∈ H \ {h} such that environment
sends (sign, sid, sigid, mj) to Pj and SHA2(mj) 6= SHA2(mh), then S samples
wh ← Zq instead of calculating wh per the instructions in step 8 of πECDSA as
in H3, always outputs (failure, sid, sigid) to the environment on behalf of all
honest parties, and ignores all future messages with the same sigid.

In H3, honest parties fail if they do not receive a valid signature as out-
put, and we have argued in the context of H3 that a group of signers always
receives a valid signature as output when their messages have the same image

33



under SHA2 and nobody deviates from the protocol. In H3, S always calculates
wh

..= SHA2(mh) · ϕh + rx · vh and wj
..= SHA2(mj) · ϕj + rx · vj . We make

three observations. First, the leftmost terms of these equations are the only
constituent parts of the final signature that depend upon mh or mj . Second,
S effectively samples wh and wj uniformly subject to a condition on their sum,
because vj and vh depend linearly on cv

j,h + dv
j,h and cv

h,j + dv
h,j respectively,

and the latter values are sampled uniformly subject to a condition on their sum.
Third, due to similar linear dependencies upon cu

j,h + du
j,h and cu

h,j + du
h,j , we

can conclude that uj and uh commit S to the sum of ϕj and ϕh, but S still has
a degree of freedom in choosing the individual values.7

Summing and rewriting, we have

wh + wj = SHA2(mh) · (ϕh + ϕj) + rx · (vh + vj)
+ (SHA2(mj)− SHA2(mh)) · ϕj

If SHA2(mh) = SHA2(mj), then (SHA2(mj) − SHA2(mh)) · ϕj = 0 and the
signature is valid if the corrupt parties follow the protocol. If SHA2(mh) 6=
SHA2(mj), then (SHA2(mj)− SHA2(mh)) ·ϕj is distributed uniformly, because
ϕj is, as we have observed, uniformly sampled and information-theoretically
hidden from the adversary. All other terms that the honest parties contribute
to the signature are the same in either case. In other words, if SHA2(mh) 6=
SHA2(mj), then wh and wj are not uniform subject to a condition on their
sum, but simply uniform. This implies that the joint distribution of wi for
every i ∈ H is identical in H4 and H3, both when SHA2(mh) = SHA2(mj) and
when SHA2(mh) 6= SHA2(mj).

Once the message, public key, and nonce are fixed, there is exactly one valid
ECDSA signature. When SHA2(mh) 6= SHA2(mj) and wh and wj are uniform
without constraint, the chance that the resulting signature will be valid for any
honest party’s message (and that party will consequently output a signature
in H3) is no greater than t/q in each signing session. Since t < n = ν(λ)
is polynomial in λ, and we have assumed the number of signing sessions to
be bounded by µ(λ), which is polynomial in λ, but q is exponential in λ, we
can conclude that the distribution of honest party failures in H4 is statistically
indistinguishable from the distribution in H3. It follows that H4 ≈s H3 overall.
For the remainder of this proof, we will assume that if any group of honest
signing parties does not output a failure, then their messages have identical
images under SHA2.

Hybrid H5. The behavior of this hybrid differs from H4 when the environment
triggers a signing instance among a group of parties, some of whom are corrupt.
In H5, if the honest parties receive messages that have identical images under
SHA2, then S uses the ECDSASign to generate the signature, and embeds it into
the protocol by altering the code of one of the honest signers. Specifically, S

7Fixing one of these two values also fixes the other, but the simulator cannot calculate
both without implicitly breaking the discrete logarithm problem on R. Fortunately it will not
be necessary to calculate both.

34



follows the code of the honest parties on their behalves until step 7 of πECDSA.
Whichever honest party reaches this step last is designated Ph (as before), and
if the honest parties have messages with identical images under SHA2, then the
code of Ph is replaced for the remainder of the protocol.

When the time comes for S to decommit Ph’s contribution to the nonce on
behalf of FCom, rather that decommitting the value of Rh that was committed
by Ph in step 6 of πECDSA, S instead computes

sk ..=
∑
i∈C

av
i,h +

∑
i∈H

ski

samples (s, rx) ← ECDSASign(G, sk, m), reconstructs R from the x-coordinate
rx, computes

Rh
..= R−

∑
k∈P-h

Rk

and then decommits this value of Rh on behalf of FCom. This embeds the value
of rx that was sampled by ECDSASign into the protocol output, if the parties do
not deviate from the protocol. Note that the distribution of rx has not changed:
in both H5 and H4 it is uniform.

Next, if the consistency checks (specified in step 15 of SECDSA) pass, then S
uses its knowledge of the corrupt parties’ inputs and outputs from FRVOLE to
predict the values of ui and wi that all of the parties apart from Ph would use,
if no parties cheated. We will denote the sum of these predicted values as û
and ŵ respectively. These values depend upon ϕi for i ∈ C, which might have
been used inconsistently in interactions with the different honest parties, if the
corrupt parties have misbehaved. S defines the true value of ϕi to be the value
implied by the interaction between Pi and Ph. Note that ϕi − ψi,h − χi,h = 0
by definition, which implies that there is no discrepancy between the values Ph

computes if the corrupt parties follow the protocol and the values it computes
if they misbehave, conditioned on the fact that the consistency check passes.

If we let δu
j for j ∈ H \ {h} represent the sum of the terms comprising uj

that arise from interactions between the honest Pj and the other honest parties,
and likewise let δv

j represent the sum of the honestly-derived terms comprising
vj , then we have

δu
j = rj · ϕj +

∑
k∈H\{j}

(cu
j,k + du

j,k) for j ∈ H

δu
j = skj · ϕj +

∑
k∈H\{j}

(cv
j,k + dv

j,k) for j ∈ H

û ..=
∑
i∈C

au
i,h ·

( ∑
k∈P-h

ϕk +ψh,i

)
+ cu

i,h + du
i,h


+

∑
j∈H\{h}

(
δu

j + rj ·
∑
i∈C

ϕi

)

35



v̂ ..=
∑
i∈C

av
i,h ·

( ∑
k∈P-h

ϕk +ψh,i

)
+ cv

i,h + dv
i,h


+

∑
j∈H\{h}

(
δv

j + skj ·
∑
i∈C

ϕi

)

ŵ ..= SHA2(m) ·
∑

k∈P-h

ϕk + rx · v̂

Note that because cu, du, cv, and dv are uniformly sampled subject to con-
straints upon their component-wise sums, δu

j and δv
j are uniform when considered

indepently of the view of Ph. Note also that when the consistency check passes
for Ph, we can be sure that av

i,h · G = pki,h for every i ∈ C, which implies
that sk · G = pk. By the same argument as we made in the context of H3,
these constraints imply that the output of the protocol in H4 is a valid ECDSA
signature on m under pk and R when all parties follow the protocol.

In H5, S samples uh ← Zq and δu
j ← Zq and δv

j ← Zq for j ∈ H \ {h}
uniformly, calculates û and ŵ as defined above, and then computes

wh
..= s · uh +

∑
k∈P-h

(
s · ûk − ŵk

)
This embeds the value of s that was sampled by ECDSASign into the protocol
output, if the parties do not deviate from the protocol. In both hybrids uj and
wj for j ∈ H are all uniformly distributed subject to the fact that s is the single
valid ECDSA signature on m that exists under pk and R when no party deviates
(and the honest parties have messages with identical images under SHA2). If
the corrupt parties do deviate then the offsets they induce upon the output
satisfy the same algebraic relationship with the embedded value of s in H5 as
they do with the hypothetical value of s that would occur if they did not cheat
in H4. Thus H5 = H4.

Hybrid H6. This final hybrid differs from H5 in the following way: S no longer
acts on behalf of any honest parties, nor does it use ECDSAGen or ECDSASign
internally to sample signatures. Instead, SA

ECDSA(G, n, t) is fully implemented
in H6 (that is, S = SA

ECDSA(G, n, t)), and the experiment now incorporates
FECDSA(G, n, t). The honest parties run dummy-party code as is standard for
ideal-world experiements in the UC model, and SA

ECDSA(G, n, t) speaks to FECDSA
on behalf of corrupt parties.

The differences between H6 and H5 are purely syntactical, which is to say
that H5 = H6. Notice that in H5, S did not require knowledge of rh or skh

in order to simulate, except insofar as skh determined sk. Moreover, because
skk for k ∈ P were computed by adding a uniform secret-sharing of zero ζk to
the interpolated Shamir-shares lagrange(P, k, 0) · p(k) of the secret key, skk for
k ∈ P were uniform subject to ∑

k∈P

skk ·G = pk

36



In H6, at initialization time, S invokes FECDSA(G, n, t) on behalf of the corrupt
parties, and learns pk but not the discrete logarithm of pk. At signing time, it
samples skj for j ∈ H \ {h} uniformly, and computes pkh such that the above
equation holds. S waits to invoke FECDSA on behalf of the corrupt parties until
after FECDSA is invoked by the very last honest party Ph, and uses mh (the
message on which a signature was requested by Ph) on the corrupt parties’
behalves. If S receives (s, rx) from FECDSA on the corrupted parties’ behalves,
then it embeds these values into the protocol just as it did in H5. If it receives
a failure message from FECDSA, then it samples (s, rx) uniformly amd embeds
them, just as it did inH5. Since the failure conditions are identical, pkj for j ∈ H
are identically distributed, the signature values are identically distributed, and
the embedding of the signature is otherwise performed identically in the two
hybrids, H6 = H5.

We now have

H6 =


IdealFECDSA(G,n,t),

SA
ECDSA(G,n,t),Z

(λ, z) :

G ← GrpGen(1λ)


λ∈N, n∈[2,ν(λ)],
t∈[2,n], z∈{0,1}∗

and by transitivity we also have

H6 ≈s H0 =

RealπECDSA(G,n,t),
A,Z

(λ, z) :

G ← GrpGen(1λ)


λ∈N, n∈[2,ν(λ)],
t∈[2,n], z∈{0,1}∗

where the total statistical distance between H6 and H0 is upper-bounded by
ν(λ) · (ν(λ) + µ(λ))/q, such that ν and µ are polynomials and q is exponential
in λ. We can conclude that theorem 4.1 holds.

5 Random Vector OLE from Random OT
In section 3.1, we introduce the random VOLE functionality FRVOLE and here
we describe a protocol to realize it.

Recall that Vector OLE is a one-sided vectorization of Oblivious Linear Eval-
uation, i.e. the secure computation of additive shares of a product. This is in
contrast to two-sided vectorization, which is sometimes referred to as Batch.
The term VOLE was coined by Applebaum et al. [ADI+17]; protocols realiz-
ing OLE, VOLE, etc. have traded under many names, including simply secure
multiplication or multiplicative-to-additive conversion. A large and diverse set
of approaches for constructing such protocols is available, and most variants of
the functionality can be realized via most approaches.

Of particular note are folkloric approaches based on additively homo-
morphic encryption. Such approaches are implicitly used in many other
threshold ECDSA protocols that do not make explicit use of an OLE func-
tionality. For example, Lindell [Lin17], Lindell and Nof [LN18], Gennarro

37



and Goldfeder [GG18], and Canetti et al. [CGG+20] all implicitly construct
OLE protocols8 using Paillier’s encryption scheme [Pai99]. Castagnos et
al. [CCL+20, CCL+23] make similar use of homomorphic encryption from class
groups [CL15]. It is also known how to construct VOLE from code-theoretic as-
sumptions [ADI+17, CRR21] and lattice assumptions [dJV21, BDM22], and
in the amortized setting the celebrated silent random VOLE protocol fam-
ily [BCGI18, BCG+19, SGRR19, YWL+20] has bandwidth costs almost in-
dependent of the vector length.

It should be stressed that it is possible to realize FRVOLE using any of these
techniques, and therefore the security of our threshold ECDSA protocol can be
founded on any of the above assumptions while achieving a wide variety of po-
tential performance tradeoffs. However, we do make a specific recommendation
that we believe leads to concretely efficient results in many use-cases.

Our VOLE protocol ultimately derives from one of the oldest OLE tech-
niques, Gilboa’s OT-based multiplication protocol [Gil99], which uses a simple
schoolbook technique to destructure a multiplication in an arbitrary field of
size q into |q|-many one-bit multiplications, which are performed using oblivious
transfer. Gilboa’s protocol is secure only against semi-honest adversaries. Keller
et al. [KOS16] implicitly constructed a version with malicious security as a com-
ponent in a protocol for generating Beaver triples. Two years later, Doerner et
al. [DKLs18] explicitly constructed a malicious-secure variant of Gilboa’s OLE
protocol. To our knowledge, this was the first two-message maliciously secure
OLE protocol. In a follow-up work, Doerner et al. [DKLs19] presented batched
version of their protocol with somewhat reduced bandwidth requirements, at
the cost of an additional round. Later, Haitner et al. [HMRT22] made another
moderate reduction in the bandwidth cost of this technique, again requiring
three rounds, but only realizing a weakened functionality that does not ensure
correct outputs are produced in the event that the protocol completes without
an abort.

In this work, we revisit and improve Doerner et al.’s malicious OLE tech-
nique. We construct a (random) VOLE with two rounds, which has concretely
lower bandwidth requirements than either their original or their batched con-
struction, and also lower bandwidth requirements than the protocol of Haitner
et al. under some parameterizations, even though it realizes a stronger function-
ality in fewer rounds. As with prior iterations of this idea, our protocol is based
upon vectors of OT instances, which we model using an OT-extension function-
ality (although this can be realized using a vector of normal OT functionalities,
if desired). We choose to base our scheme upon an endemic OT-extension func-
tionality [MR19]; that is, upon vectors of OT instances wherein the adversary
is always allowed to determine the outputs of any corrupt party. This is the
weakest well-defined OT functionality, and all other varieties of OT trivially
imply it. The specific functionality is as follows:

8Though not necessarily ones that achieve security independently of the context in which
they are embedded.

38



Functionality 5.1. FEOTE(X, ℓOT): Endemic OT Extension
This functionality interacts with two active participants, PA and PB, who
we refer to as Alice and Bob, and with the ideal adversary S.

OT Extension: On receiving (choose, sid,β) from Bob, if sid is fresh,
and β ∈ {0, 1}ℓOT , then:

• If Alice is corrupt, then send (bob-chosen, sid) to S and wait for
(alice-messages, sid,α0,α1) in response such that α0 ∈ XℓOT and
α1 ∈ XℓOT

• If Alice is corrupt, then wait for (bob-message, sid,γ) from S such that
γ ∈ XℓOT , and then for i ∈ [ℓOT] let αβi

i
..= γ and sample α1−βi

i ← X.

• If either party is corrupt and S sends (abort, sid), then forward this
message to both parties and perform no further instructions related to
the session with ID sid.

• If neither party is corrupt, then sample α0 ← XℓOT and α1 ← XℓOT .

Finally send (choice-made, sid,α0,α1) to Alice and (chosen, sid,γ) to
Bob.

We suggest to realize the foregoing functionality via the recent SoftSpoken
random OT-extension protocol of Roy [Roy22], because it requires only one
round in the Random Oracle model (under a simple modification that we will
describe in section 5.1), performs well in the non-amortized setting given a fast
one-time setup procedure, and assumes only ideal OT. Most other OT and
OT-extension protocols are also suitable, and in particular we expect silent
OT-extension [BCG+19] to be the most efficient option when a large number
of signatures must be generated at once. Next, we give our protocol. Since it
derives strongly from Doerner et al. [DKLs18, DKLs19], the proof of security
that we present in section 6 is inspired by theirs.
Protocol 5.2. πRVOLE(q, ℓ): OT-Based Random Vector OLE

This protocol is parameterized by the vector length ℓ and modulus q of
the group Zq over which multiplication is to be performed. Let κ = |q|
and for convenience let ξ = κ + 2λs and ρ = dκ/λce. This protocol makes
use of a public gadget vector g ← Zξ

q,a and it invokes the FEOTE(Zℓ+ρ
q , ξ)

functionality and the non-programmable global random oracle ROX, which
has a paramatric range specified by its subscript.

Sampling:

1. When Bob receives (sample, sid) from the environment, where sid is a
fresh session ID, Bob samples a set of uniform OT choice bits β ←
{0, 1}ξ and calculates his random “input” b ..= 〈g,β〉 and then he sends

39



(choose, sid,β) to FEOTE(Zℓ+ρ
q , ξ), and outputs (sample, sid, b) to the

environment.

2. Upon receiving
(
choice-made, sid,α0,α1) from FEOTE(Zℓ+ρ

q , ξ), Alice
outputs (ready, sid) to the environment.

Multiplication:

3. When Alice has received both (multiply, sid, a) from the environment
and

(
choice-made, sid,α0,α1) from FEOTE(Zℓ+ρ

q , ξ),b she computes her
output share, samples a set of check values, derandomizes her OT mes-
sages using her inputs as correlations, calculates a challenge via the
Fiat-Shamir heuristic, and compresses her response via the random or-
acle

c ..=

−∑
j∈[ξ]

gj ·α0
j,i


i∈[ℓ]

â← Zρ
q

ã ..=
{{
α0

j,i −α1
j,i + ai

}
i∈[ℓ] ‖

{
α0

j,ℓ+k −α1
j,ℓ+k + âi

}
k∈[ρ]

}
j∈[ξ]

θ ..= ROZℓ×ρ
q

(sid, ã)

η ..=

âk +
∑
i∈[ℓ]

θi,k · ai


k∈[ρ]

µ ..=


α0

j,ℓ+k +
∑
i∈[ℓ]

θk,k ·α0
j,i


k∈[ρ]


j∈[ξ]

µ ..= RO{0,1}2λc (sid,µ)

and after this, she sends (multiply, sid, ã,η, µ) to Bob and outputs out-
puts (share, sid, c) to the environment.

4. When Bob receives (multiply, sid, ã,η, µ) from Alice and
(chosen, sid,γ) from FEOTE(Zℓ+ρ

q , ξ), Bob computes

θ ..= ROZℓ×ρ
q

(sid, ã)

ḋ ..=
{{
γj,i + βj · ãj,i

}
i∈[ℓ]

}
j∈[ξ]

d̂ ..=
{{
γj,ℓ+k + βj · ãj,ℓ+k

}
k∈[ρ]

}
j∈[ξ]

40



µ′ ..=


d̂j,k +

∑
i∈[ℓ]

θi,k · ḋj,i − βj · ηk


k∈[ρ]


j∈[ξ]

and checks whether µ = RO{0,1}2λc (sid,µ′). If this check failsc then Bob
aborts. If it passes, then Bob computes

d ..=

∑
j∈[ξ]

gj · ḋj,i


i∈[ℓ]

and outputs (share, sid, d) to the environment.
aThis vector can be sampled by Bob and reused, or it can be a CRS reused by multiple

Bobs in different instances of the protocol.
bIf FEOTE(Zℓ+ρ

q , ξ) aborts instead of delivering a choice-made message, then Alice
aborts to the environment.

cOr if FEOTE(Zℓ+ρ
q , ξ) aborts instead of delivering a chosen message.

Derandomizing our Random VOLE. Finally, we note that it is trivial to
construct standard chosen-input VOLE using the random VOLE functionality
that the foregoing protocol realizes: Bob simply transmits to Alice the differ-
ence between his true input and b, and for each of Alice’s inputs, she adds the
product of this difference and her input to her corresponding output. This re-
quires no additional rounds, and allows our performance improvements to be
applied to other protocols that use the DKLs OLE protocols, including Chen
et al.’s [CCD+20] RSA modulus sampling protocol and Doerner et al.’s thresh-
old BBS+ protocol [DKL+23], in which context it saves more than half of the
bandwidth cost.

5.1 One-Message SoftSpokenOT in the ROM
As previously mentioned, we must modify the SoftSpokenOT protocol in order
to achieve our round count target. The modification we make is well-explored
and does not alter the security analysis of the protocol in a significant way. It
requires the use of a non-programmable random oracle. An analogous technique
is used by the KOS OT-extension protocol [KOS15], and by our own VOLE
construction and its progenitors, and it was previously suggested to apply this
modification to SoftSpokenOT by Doerner et al. [DKL+23]. In this subsection,
we describe SoftSpokenOT in terms of the notation of Keller et al. [KOS15],
who describe a version of SoftSpokenOT in a recent update to their work.

As written, SoftSpokenOT requires three rounds to create a batch of ex-
tensions, after the initial one-time setup is complete. These rounds comprise
a statistical check with the form of a sigma protocol: first the OT-extension
receiver commits, then the sender transmits a challenge, then the receiver re-
sponds. However, the protocol does not require rewinding to achieve secu-

41



rity, and the simulator does not use this test to extract anything from the
receiver’s view. As a result, we can apply the Fiat-Shamir transform using a
non-programmable (and even non-observable) global random oracle, and the
protocol retains UC security. That is, in the notation of Keller et al., we com-
pute (χ1, . . . , χm) $← H(u1, . . . , uκ). This reduces the protocol to a single round
from receiver to sender (after the initial setup). Note that because the adversary
can attempt to find a convenient challenge by brute force under this optimiza-
tion, each occurrence of the statistical parameter (s in the notation of Keller
et al.) in the original protocol must be replaced by the computational security
parameter (κ in the notation of Keller et al.).

6 Proof of Security for OT-Based VOLE
In section 1, we stated the following security theorem for our protocol:

Theorem 1.2 (Informal Random VOLE Security Theorem). In the FEOTE-
hybrid non-programmable global random oracle model, πRVOLE(q, ℓ) UC-realizes
FRVOLE(q, ℓ) against a PPT malicious adversary that statically corrupts no more
than one party.

In this section, we give our security theorem formally, and provide a proof.

Theorem 6.1 (Formal OT-Based Random VOLE Security Theorem). For ev-
ery malicious PPT adversary A that statically corrupts either PA or PB, there
exists a PPT simulator SA

RVOLE that uses A as a black box, such that for every
PPT environment Z and every polynomial ν,{

RealπRVOLE(q,ℓ),A,Z (λ, z)
}

λ∈N, n∈[2,ν(λ)], t∈[2,n],
q∈[2ν(λ)] : q is prime, ℓ∈[ν(λ)], z∈{0,1}∗

≈c

{
IdealFRVOLE(q,ℓ),SA

RVOLE(q,ℓ),Z (λ, z)
}

λ∈N, n∈[2,ν(λ)], t∈[2,n],
q∈[2ν(λ)] : q is prime, ℓ∈[ν(λ)], z∈{0,1}∗

Proof. Lemma 6.2 in section 6.1 asserts that there exists a simulator SRVOLE-Alice
under which theorem 6.1 holds, conditioned on A corrupting only PA.
Lemma 6.11 in section 6.2 asserts the existence of SRVOLE-Bob such that the-
orem 6.1 holds when A corrupts only PB. The conjunction of these statements
yields theorem 6.1.

6.1 Simulating Against Alice
Lemma 6.2 (OT-Based VOLE Security against Alice). For every malicious
PPT adversary A that statically corrupts only PA, there exists a simulator
SA

RVOLE-Alice that uses A as a black box, such that for every PPT environment Z

42



and every polynomial ν,{
RealπRVOLE(q,ℓ),A,Z (λ, z)

}
λ∈N, n∈[2,ν(λ)], t∈[2,n],
q∈[2ν(λ)] : q is prime, ℓ∈[ν(λ)], z∈{0,1}∗

≈c

{
IdealFRVOLE(q,ℓ),SA

RVOLE-Alice(q,ℓ),Z (λ, z)
}

λ∈N, n∈[2,ν(λ)], t∈[2,n],
q∈[2ν(λ)] : q is prime, ℓ∈[ν(λ)], z∈{0,1}∗

Proof. We begin by presenting SA
RVOLE-Alice, after which we prove the lemma via

a sequence if hybrid experiments.
Simulator 6.3. SA

RVOLE-Alice(q, ℓ): Random VOLE against Alice
This simulator is parameterized by the vector length ℓ and modulus q of the
group Zq over which linear evaluation is to be performed. The simulator
has oracle access to the adversary A that statically corrupts PA (i.e. the
party playing Alice) only, and emulates for it an instance of the protocol
πRVOLE(q, ℓ) involving the parties PA and PB. The simulator forwards all
messages from its own environment Z toA, and vice versa. SA

RVOLE-Alice(q, ℓ)
interacts with the ideal functionality FRVOLE(q, ℓ) on behalf of PA, and in
the exeriment that it emulates for A, it interacts with A and PA on behalf
of PB and on behalf of the ideal oracle FEOTE(Zℓ+ρ

q , ξ). As in πRVOLE(q, ℓ),
let κ = |q| and ξ = κ+2λs and ρ = dκ/λce, let g← Zξ

q be a uniform gadget
vector, and let ROX be a non-programmable global random oracle with a
paramatric range specified by its subscript.

Sampling:

1. On receiving (ready, sid) from FRVOLE(q, ℓ) on behalf of PA, send
(bob-chosen, sid) to A on behalf of FEOTE(Zℓ+ρ

q , ξ) and wait
to receive (alice-messages, sid,α0,α1) in response, then send(
choice-made, sid,α0,α1) to PA on behalf of FEOTE(Zℓ+ρ

q , ξ). IfA sends
abort instead of alice-messages, then send (abort, sid) to FRVOLE(q, ℓ)
and perform no further instructions related to the session with ID sid.

Multiplication:

2. On receiving (multiply, sid, ã,η, µ) from Alice, check the table of
queries that have been made to the global random oracle for a query
on a value µ ∈ Zξ×ρ

q such that µ = RO{0,1}2λc (sid,µ). If there is not ex-
actly one such value, then send (abort, sid) to FRVOLE(q, ℓ) and perform
no further instructions related to the session with ID sid. Otherwise,
continue to the next step.

3. Using the value µ extracted in the previous step, compute two vectors
of offsets, relative to the expectation:

θ ..= ROZℓ×ρ
q

(sid, ã)

43



δµ ..=


µj,k −α0

j,ℓ+k −
∑
i∈[ℓ]

θi,k ·α0
j,i


k∈[ρ]


j∈[ξ]

δη ..=



α1

j,ℓ+k −α0
j,ℓ+k + ãj,ℓ+k − ηk

+
∑
i∈[ℓ]

θj,i ·
(
α1

j,i −α0
j,i + ãj,i

)


k∈[ρ]


j∈[ξ]

Note that if Alice has behaved honestly, then δµ and δη will contain
only zeros. Sample β∗ ← {0, 1}ξ and if∨

k∈[ρ]
j∈[ξ]

δµ
j,k 6= β∗

j · δ
η
j,k

then send (abort, sid) to FRVOLE(q, ℓ) and perform no further instruc-
tions related to the session with ID sid. Otherwise, continue to the next
step.

4. Find j∗ ∈ [ξ] such that δη
j,k = 0 for every k ∈ [ρ], and let this index

define Alice’s true input:

a ..=
{
α1

j∗,i −α0
j∗,i + ãj∗,i

}
i∈[ℓ]

If there are multiple candidate values for j∗, then choose the small-
est one. If there exists no j∗ satisfying these conditions then send
(abort, sid) to FRVOLE(q, ℓ) and perform no further instructions related
to the session with ID sid. Otherwise, continue to the next step.

5. Compute Alice’s output, and the offset induced into Bob’s output by
any “undetected” cheats, and subtract the latter from the former

c ..=

−∑
j∈[ξ]

gj ·α0
j,i


i∈[ℓ]

δd ..=

∑
j∈[ξ]

gj · β
∗
j · (α1

j,i −α0
j,i + ãj,i − ai)


i∈[ℓ]

c∗ ..=
{

ci − δd
i

}
i∈[ℓ]

and then send

44



• (multiply, sid, a) to FRVOLE(q, ℓ) on behalf of Alice.
• (alice-share, sid, c∗) directly to FRVOLE(q, ℓ).

Our sequence of hybrid experiments begins with the real world

H0 =
{

RealπRVOLE(q,ℓ),A,Z (λ, z)
}

λ∈N, n∈[2,ν(λ)], t∈[2,n],
q∈[2ν(λ)] : q is prime, ℓ∈[ν(λ)], z∈{0,1}∗

and proceeds by gradually replacing the code of the real PB with elements of
the simulator until SA

RVOLE-Alice is fully implemented and the experiment is the
ideal one.

Hybrid H1. This hybrid experiment replaces the honest party PB and the
ideal functionality FEOTE in H0 with a single simulator machine S that runs
their code and interacts with the adversary, environment, and corrupt party
PA on their behalf. Since S interacts with the adversarial entities on behalf of
FEOTE it learns any values that FEOTE receives or that are defined by its internal
state. Furthermore, S is permitted to observe queries to the random oracle, but
not to program the output. These changes are purely syntactical, and so it must
be the case that H1 = H0.

Hybrid H2. In this hybrid, S aborts on behalf of Bob upon receiving
(multiply, sid, ã,η, µ) from Alice if there does not exist exactly one value
µ ∈ Zξ×ρ

q such that µ = RO{0,1}2λc (sid,µ). This can be determined efficiently
by scanning the table of random oracle queries.

We claim that H2 ≈c H1. Consider the two distinguishing cases: first, that
no query of the form Zξ×ρ

q has ever yielded the output µ, and second, that
more than one has. In the first case, we know S will query a value that has
never before been queried, per Bob’s code in step 4 of the protocol, and so
the probabilty that µ = RO{0,1}2λc (sid,µ′) is exactly 2−2λc . The second case
implies that the environment has found a collision in the random oracle. The
probability that a collision occurs within the first Q queried values is the sum
of the probabilities that each new attempt produces a collision; specifically, the
probability of a collision is within the first Q queried values is

0 + 2−2λc + 2 · 2−2λc + 3 · 2−2λc + . . . + (Q− 1) · 2−2λc ≤ Q2 · 2−2λc−1

and by union bound, we have a total distinguishing probability no greater than
Q2 · 2−2λc−1 + 2−2λc . Since the environment can make only polynomially many
random oracle queries, this probability is negligible in λc.

Hybrid H3. In this hybrid, S does not condition an abort on whether µ =
RO{0,1}2λc (sid,µ′) as specified in step 4 of the protocol. Instead, S computes
implements step 3 of SRVOLE-Alice, but uses Bob’s actual choice bits β instead of

45



β∗. More precisely, in H3, S computes

θ ..= ROZℓ×ρ
q

(sid, ã)

δµ ..=


µj,k −α0

j,ℓ+k −
∑
i∈[ℓ]

θi,k ·α0
j,i


k∈[ρ]


j∈[ξ]

δη ..=



α1

j,ℓ+k −α0
j,ℓ+k + ãj,ℓ+k − ηk

+
∑
i∈[ℓ]

θj,i ·
(
α1

j,i −α0
j,i + ãj,i

)


k∈[ρ]


j∈[ξ]

and then aborts if ∨
k∈[ρ]
j∈[ξ]

δµ
j,k 6= βj · δ

η
j,k

We claim that H3 ≈s H2. Observe that in H2, the exeriment aborts with
certainty if there is not exactly one correctly formatted preimage µ of µ under
the random oracle. Because µ is the only (correctly formatted) preimage of µ,
we have

Pr
[
µ = RO{0,1}2λc (sid,µ′) : µ 6= µ′] = 2−2λc

or, in other words, conditioned on µ being well-defined, H2 aborts with over-
whelming probability if µ 6= µ′, and if µ = µ′ then it does not abort. We
will show that H3 aborts if and only if µ 6= µ′, again conditioned on µ being
well-defined.

We can subtract
α0

j,ℓ+k +
∑
i∈[ℓ]

θi,k ·α0
j,i


k∈[ρ]


j∈[ξ]

from both sides of µ 6= µ′ to yield
µj,k −α0

j,ℓ+k −
∑
i∈[ℓ]

θi,k ·α0
j,i


k∈[ρ]


j∈[ξ]

6=


µ′

j,k −α0
j,ℓ+k −

∑
i∈[ℓ]

θi,k ·α0
j,i


k∈[ρ]


j∈[ξ]

and then substituting in the definitions of µ′ and δµ we have

δµ 6=


d̂j,k +

∑
i∈[ℓ]

θi,k · ḋj,i −α0
j,ℓ+k − βj · ηk −

∑
i∈[ℓ]

θi,k ·α0
j,i


k∈[ρ]


j∈[ξ]

46



after which, substituting the definitions of ḋ and d̂ and then the definition of γ
and simplifying yields

δµ 6=


βj ·

α
1
j,ℓ+k −α0

j,ℓ+k + ãj,ℓ+k − ηk

+
∑
i∈[ℓ]

θi,k · (α1
j,i −α0

j,i + ãj,i)




k∈[ρ]


j∈[ξ]

which is equivalent to ∨
k∈[ρ]
j∈[ξ]

δµ
j,k 6= βj · δ

η
j,k

and it follows from this that H3 ≈s H2 with statistical distance 2−2λc .

Hybrid H4. In this hybrid, S implements step 4 of SRVOLE-Alice. That is, it
finds the smallest j∗ ∈ [ξ] such that δη

j,k = 0 for every k ∈ [ρ], and defines

a ..=
{
α1

j∗,i −α0
j∗,i + ãj∗,i

}
i∈[ℓ]

if such a j∗ exists, or aborts if no such j∗ exists.

We claim that H4 ≈s H3. Consider an adversary that distinguishes the two
hybrids; specifically, consider an adversary that fixes δη such that for every
j ∈ [ξ] there exists some k ∈ [ρ] such that δη

j,k 6= 0. If this adversary avoids an
abort in H3, then ∧

k∈[ρ]
j∈[ξ]

δµ
j,k = βj · δ

η
j,k

or, in other words, that it has exactly guessed the entire vector β of Bob’s choice
bits. Notice that Bob’s output b is the only value that depends upon β in the
view of the environment at the point that δη and δη are fixed.

We now construct an alternative experiment. In our alternative experiment
behaves exactly like H4, except that S samples b ← Zq uniformly rather than
deriving it from β, and our alternative experiment terminates when Bob receives
(multiply, sid, ã,η, µ) from Alice, fixing δη and δη. We make a sequence of
claims:

Claim 6.4. In our alternative experiment,

Pr

 ∧
k∈[ρ]
j∈[ξ]

δµ
j,k = βj · δ

η
j,k

∣∣∣∣∣∣∣∣
∧

j∈[ξ]

δη
j,∗ 6= {0}

ρ

 ≤ 2−ξ

Our first claim holds because β is perfectly information-theoretically hidden
from the adversary in our alternative experiment: no value derived from it
enters the adversary’s view. When δη contains no zero values, the adversary’s
best strategy for avoiding the abort condition is to guess.

47



Claim 6.5. At the moment of our alternative experiment’s termination, the
statistical difference between the adversary’s view in our alternative experiment
and its view at the equivalent point in H4 is at most 2−λs .

Our second claim holds because the only distinction between the two is the
way in which b is calculated. In our alternative experiment it is uniform and
independent of all other values, whereas in H4 we have b = 〈g,β〉 and no other
values depend upon β. Because (by construction) κ < ξ, we can apply part 2 of
proposition 1.1 of Impagliazzo and Naor [IN96] to conclude that the statistical
difference between the two experiments is at most 2(κ−ξ)/2 = 2−λs .

Claim 6.6. In H4,

Pr

 ∧
k∈[ρ]
j∈[ξ]

δµ
j,k = βj · δ

η
j,k

∣∣∣∣∣∣∣∣
∧

j∈[ξ]

δη
j,∗ 6= {0}

ρ

 ≤ 2−ξ + 2−λs

Our final claim holds by conjunction of claims 6.5 and 6.4, and it implies
that H4 ≈s H3 with statistical distance at most 2−ξ + 2−λs .

Hybrid H5. This hybrid changes the way in which S computes an output for
Bob. In H4, Bob’s output d was calculated via his protocol code. In H5, if
no abort occurs, then S uses the index j∗ that was initially defined in H4 to
extract an ideal input for Alice

a ..=
{
α1

j∗,i −α0
j∗,i + ãj∗,i

}
i∈[ℓ]

and in addition, S calculates the output c that Alice will emit if she behaves
honestly, and uses this to compute the ideal output d∗ that Bob would emit
if Alice behaved honestly. S then computes the vector δd of additive offsets
induced into Bob’s outputs by Alice’s cheats, and applies them to Bob’s ideal
output in order to calculate his actual output d

c ..=

−∑
j∈[ξ]

gj ·α0
j,i


i∈[ℓ]

d∗ ..= {b · ai − ci}i∈[ℓ]

δd ..=

∑
j∈[ξ]

gj · βj · (α1
j,i −α0

j,i + ãj,i − ai)


i∈[ℓ]

d ..=
{

d∗
i + δd

i

}
i∈[ℓ]

This effectively implements step 5 of SRVOLE-Alice, but using Bob’s actual choice
bits β instead of β∗.

48



We claim that H5 and H4 are identically distributed. Observe that by
substituting the definitions of δd and d∗ into the equation that defines d in
H5, we have

d =

b · ai − ci +
∑
j∈[ξ]

gj · βj · (α1
j,i −α0

j,i + ãj,i − ai)


i∈[ℓ]

and since b = 〈g,β〉 we can plug in the definition of c and simplify to arrive at

d =

∑
j∈[ξ]

gj · βj · (α1
j,i −α0

j,i + ãj,i) +
∑
j∈[ξ]

gj ·α0
j,i


i∈[ℓ]

wherafter we can substitute γj,i + (βj − 1) ·α0
j,i = βj ·α1

j,i, which follows from
the code of FEOTE, to yield

d =

∑
j∈[ξ]

gj ·
(
βj · ãj,i + γj,i

)
i∈[ℓ]

=

∑
j∈[ξ]

gj · ḋj,i


i∈[ℓ]

which is precisely the equation used to calculate Bob’s output in H4.

Hybrid H6. This hybrid is identical to H5, except that in H6, b ← Zq is
sampled uniformly, rather than being computed as b ..= 〈g,β〉. Note that while
b is now independent of β, S still aborts based upon β, and Bob’s output d
depends upon both.

We claim that H6 ≈c H5. Recall that in both, Alice’s true input is defined
to be

a ..=
{
α1

j∗,i −α0
j∗,i + ãj∗,i

}
i∈[ℓ]

where j∗ ∈ [ξ] is the smallest number such that δη
j,k = 0 for every k ∈ [ρ]. We

now define some additional values:

â ..=
{
α1

j∗,ℓ+k −α0
j∗,ℓ+k + ãj∗,ℓ+k

}
k∈[ρ]

δa ..=
{{
α1

j,i −α0
j,i + ãj,i − ai

}
i∈[ℓ]

}
j∈[ξ]

δâ ..=
{{
α1

j,ℓ+k −α0
j,ℓ+k + ãj,ℓ+k − âk

}
k∈[ρ]

}
j∈[ξ]

δḋ ..=
{{
βj · δ

a
}

i∈[ℓ]

}
j∈[ξ]

∆ ..= {j ∈ [ξ] : δη
j,∗ 6= {0}

ρ}

For clarity, â is defined to be Alice’s true check vector, δa and δâ are vectors
of the offsets by which Alice has deviated from her true input and check vector

49



respectively, and δḋ is a vector of the offsets that her deviations induce into
Bob’s output. Notice that

δd =

∑
j∈[ξ]

gj · δ
ḋ
j,i


i∈[ℓ]

Finally, ∆ indexes all of the elements in β that might influence the probability
that the experiment aborts; an abort may also happen with certainty indepen-
dent of these elements. We now make a sequence of claims, from which we will
construct our argument that H6 ≈c H5:

Claim 6.7. If for some j ∈ [ξ] there exists i ∈ [ℓ] such that δa
j,i 6= 0, then

Pr [j ∈∆] ≥ 1−Q ·2−λc , where Q is the number of random oracle queries made
by the adversary.

Suppose j 6∈∆. This implies that δη
j,∗ = {0}ρ, and for every k ∈ [ρ] we haveα

1
j,ℓ+k −α0

j,ℓ+k + ãj,ℓ+k

+
∑
i∈[ℓ]

θj,i ·
(
α1

j,i −α0
j,i + ãj,i

)
=

α
1
j∗,ℓ+k −α0

j∗,ℓ+k + ãj∗,ℓ+k

+
∑
i∈[ℓ]

θj∗,i ·
(
α1

j∗,i −α0
j∗,i + ãj∗,i

)
Recall that α0 and α1 are fixed and then the adversary computes θ =

ROZℓ×ρ
q

(sid, ã). For any given adversarial choice of ã, the probability over the
coins of the random oracle that the above equality holds simultaneously for
every k ∈ [ρ] is 1/qρ ≤ 2−λc . If we let Q be the total number of random oracle
queries made by the adversary over the course of the experinment, then the
claim follows.

Claim 6.8. In H5, if a is well-defined, then the probability that the experiment
does not abort is at most 2−|∆|.

For every j ∈ ∆, the experiment aborts if δµ
j,∗ 6= {βj · δ

η
j,k}k∈[ρ], which

happens with probability at least 1/2.9 Thus the probability of an abort is at
least 1− 2−|∆| and taking the complement yields claim 6.8.

Claim 6.9. The probability that H6 aborts and the probability that H5 aborts
have an absolute difference no greater than 2−λs .

The above claim follows from the same argument as claim 6.5.

Claim 6.10. If |∆| ≤ 2λs and neither hybrid aborts, then the statistical differ-
ence between H6 and H5 is upper-bounded by 2−(ξ−κ−|∆|)/2 + ξ ·Q · 2−λc , where
Q is the number of random oracle queries made by the adversary.

9The experiment aborts with probability 1 if δµ
j,∗ 6= δη

j,∗ and δµ
j,∗ 6= {0}ρ.

50



To aid our analysis of this claim, we will first develop an alternate view of
H6 and H5. Suppose that in H5, we write

b∆ ..=
∑
j∈∆

gj · βj and b∆̄ ..=
∑

j∈[ξ]\∆

gj · βj and b ..= b∆ + b∆̄

which is, of course, only a syntactical change. Now in H6 we write

b∆ ..=
∑
j∈∆

gj · βj and b∆̄ ← Zq and b ..= b∆ + b∆̄

and again, we have not changed the distribution of H6; bremains uniform. As-
suming |∆| < ξ − κ = 2λs, we can again apply part 2 of proposition 1.1 of
Impagliazzo and Naor [IN96] to conclude that the statistical difference between
b∆̄ in H6 and H5 is at most 2−(ξ−κ−|∆|)/2.

It remains to show that no variables in either experiment depend upon βj

for j ∈ [ξ]\∆, except indirectly via b. For every j ∈ [ξ]\∆ we have by definition
that δη

j,∗ = {0}ρ, which implies that δµ
j,k 6= βj · δ

η
j,k is satisfied (or not) for all

k ∈ [ρ] independently of the value of βj . Similarly, claim 6.7 implies that for
each j ∈ [ξ] \∆, we have Pr[δa

j,∗ 6= {0}ℓ] ≤ Q · 2−λc . Taking the compliment of
the union bound over all j ∈ [ξ] \∆, we have

Pr

 ∧
j∈[ξ]\∆

δa
j,∗ = {0}ℓ

 ≥ 1− ξ ·Q · 2−λc

This implies that δḋ and consequently δd and are independent of βj for j ∈
[ξ] \∆ with probability no less than 1 − ξ · Q · 2−λc . If they are independent,
then the statistical distance between the two hybrids is at most 2−(ξ−κ−|∆|)/2,
and if they are dependent, then we assume the two hybrids can be distinguished
with probability 1. Claim 6.10 follows.

Finally, we are ready to complete our argument that H6 ≈c H5. Per
claim 6.8, the probability that H5 completes without an abort is at most 2−|∆|.
Per claim 6.9, the distribution of aborts in H6 is statistically indistinguishable
from the distribution of aborts in H5. The we can pair the input tapes for
H6 and H5 in such a way that the fraction of pairs that cause both hybrids to
compete without aborting with is at most 2−|∆|−2−λs , and the fraction of pairs
that cause both to abort is at least 1− 2−|∆| − 2−λs .

The only variable that distinguishes an aborted instance of H6 from an
aborted instance of H5 is b. A simple application of part 2 of proposition 1.1 of
Impagliazzo and Naor [IN96] (as already performed twice before in this proof)
implies that the statistical distance between the distributions of the two hybrids
is upper bounded by 2−(ξ−κ)/2 = 2−λs , conditioned on both hybrids aborting.

The probability that |∆| > 2λs and neither hybrid aborts is less than 2−2λs +
2−λs . We assume that if |∆| > 2λs and the experiment does not abort, then the
adversary can distinguish.

51



Per claim 6.10, if |∆| ≤ 2λs and neither hybrid aborts, then the statistical
difference between H6 and H5 is upper-bounded by 2−(ξ−κ−|∆|)/2 + ξ ·Q · 2−λc .

Putting the pieces together, the total statistical distance between the two
hybrids is no greater than(

2−|∆| − 2−λs
)
·
(

2−(ξ−κ−|∆|)/2 + ξ ·Q · 2−λc
)

+
(

1− 2−|∆| − 2−λs
)
· 2−λs + 2 · 2−λs + 2−2λs + 2−λs

< 2−|∆| ·
(

2−(2λs−|∆|)/2 + ξ ·Q · 2−λc
)

+ 5 · 2−λs

= 2−λs−|∆|/2 + 2−|∆| · ξ ·Q · 2−λc + 5 · 2−λs

< ξ ·Q · 2−λc + 6 · 2−λs

which is negligible in λc so long as Q is at most polynomial in λc.

Hybrid H7. This final hybrid differs from H6 in the following way: S no
longer acts on behalf of any honest parties. Instead, SA

RVOLE-Alice(q, ℓ) is fully im-
plemented inH7, and the experiment now incorporates FRVOLE(q, ℓ). The honest
parties run dummy-party code as is standard for ideal-world experiements in the
UC model, and SA

RVOLE-Alice(q, ℓ) speaks to FRVOLE on behalf of corrupt parties.

The differences between H7 and H6 are essentially syntactical, which is to
say that H6 = H7. The simulator’s choice bit vector is now denoted β∗ (whereas
inH6 it was denoted β). The simulator uses this vector to determine whether an
abort will occur and to calculate the vector of offsets δd induced into the output
by Alice’s inconsistencies, as before, but instead of adding these offsets to Bob’s
output, the simulator instead computes c∗

i
..= ci − δd

i for i ∈ [ℓ] and supplies c∗

to FRVOLE in place of Alice’s output d. The functionality then computes c such
that for every i ∈ [ℓ] it holds that ai · b = c∗

i + di, and thus the relationship
between a, b, c, and d is maintained.

We now have

H7 =
{

IdealFRVOLE(q,ℓ),SA
RVOLE-Alice(q,ℓ),Z (λ, z)

}
λ∈N, n∈[2,ν(λ)], t∈[2,n],
q∈[2ν(λ)] : q is prime, ℓ∈[ν(λ)], z∈{0,1}∗

and by transitivity we also have

H7 ≈c H0 =
{

RealπRVOLE(q,ℓ),A,Z (λ, z)
}

λ∈N, n∈[2,ν(λ)], t∈[2,n],
q∈[2ν(λ)] : q is prime, ℓ∈[ν(λ)], z∈{0,1}∗

where the total statistical distance between the H7 and H0 is no more than

ξ ·Q · 2−λc + 6 · 2−λs + 2−ξ + 2−λs + 2−2λc + Q2 · 2−2λc−1 + 2−2λc

< ξ ·Q · 2−λc + Q2 · 2−2λc−1 + 8 · 2−λs + 2 · 2−2λc

and since the environment is PPT, we know that the total number of random
oracle queries Q is at most polynomial in λc. We can conclude that Lemma 6.2
holds.

52



6.2 Simulating Against Bob
Lemma 6.11 (OT-Based VOLE Security against Bob). For every malicious
PPT adversary A that statically corrupts only PB, there exists a simulator
SA

RVOLE-Bob that uses A as a black box, such that for every PPT environment
Z and every polynomial ν,{

RealπRVOLE(q,ℓ),A,Z (λ, z)
}

λ∈N, n∈[2,ν(λ)], t∈[2,n],
q∈[2ν(λ)] : q is prime, ℓ∈[ν(λ)], z∈{0,1}∗

=
{

IdealFRVOLE(q,ℓ),SA
RVOLE-Bob(q,ℓ),Z (λ, z)

}
λ∈N, n∈[2,ν(λ)], t∈[2,n],
q∈[2ν(λ)] : q is prime, ℓ∈[ν(λ)], z∈{0,1}∗

Proof. We begin by presenting SA
RVOLE-Bob, after which we present an argument

for the indistinguishability of the two experiments.
Simulator 6.12. SA

RVOLE-Bob(q, ℓ): Random VOLE against Bob
This simulator is parameterized by the vector length ℓ and modulus q of the
group Zq over which linear evaluation is to be performed. The simulator
has oracle access to the adversary A that statically corrupts PB (i.e. the
party playing Bob) only, and emulates for it an instance of the protocol
πRVOLE(q, ℓ) involving the parties PA and PB. The simulator forwards all
messages from its own environment Z to A, and vice versa. SA

RVOLE-Bob(q, ℓ)
interacts with the ideal functionality FRVOLE(q, ℓ) on behalf of PB, and in
the exeriment that it emulates for A, it interacts with A and PB on behalf
of PA and on behalf of the ideal oracle FEOTE(Zℓ+ρ

q , ξ). As in πRVOLE(q, ℓ),
let κ = |q| and ξ = κ + 2λs and ρ = dκ/λce, let g ∈ Zξ

q be an arbitrary non-
zero gadget vector,a and let ROX be a non-programmable global random
oracle with a paramatric range specified by its subscript.

Sampling:

1. On receiving (choose, sid,β) from Bob on behalf of FEOTE(Zℓ+ρ
q , ξ), com-

pute b ..= 〈g,β〉 and send

• (sample, sid) to FRVOLE(q, ℓ) on behalf of Bob
• (bob-sample, sid, b) directly to FRVOLE(q, ℓ).

2. On receiving (bob-message, sid,γ) from A on behalf of FEOTE(Zℓ+ρ
q , ξ),

send (chosen, sid,γ) to Bob on behalf of FEOTE(Zℓ+ρ
q , ξ). If A sends

abort instead of bob-message, then send (abort, sid) to FRVOLE(q, ℓ)
and perform no further instructions related to the session with ID sid.

Multiplication:

3. After receiving both

• (alice-multiplied, sid) from FRVOLE(q, ℓ)

53



• (bob-message, sid,γ) from A on behalf of FEOTE(Zℓ+ρ
q , ξ)

sample ã← Zξ+ρ
q and η ← Zρ

q , compute

ḋ ..=
{{
γj,i + βj · ãj,i

}
i∈[ℓ]

}
j∈[ξ]

d̂ ..=
{{
γj,ℓ+i + βj · ãj,ℓ+i

}
i∈[ρ]

}
j∈[ξ]

µ ..=


d̂j,k +

∑
i∈[ℓ]

θi,k · ḋj,i − βj · ηk


k∈[ρ]


j∈[ξ]

µ ..= RO{0,1}2λc (sid,µ)

d ..=

∑
j∈[ξ]

gj · ḋj,i


i∈[ℓ]

and send

• (multiply, sid, ã,η, µ) to Bob on behalf of Alice.
• (bob-share, sid, d) directly to FRVOLE(q, ℓ).
aWhen simulating against a corrupt Bob, it is not necessary that g have any particular

distribution.

The view of the environment in the two experiments is characterized by the
view of the corrupt Bob, and by Alice’s input a, and her output c. Bob’s view
is characterized by the vector β, which determines b, by the vector γ that he
receives from FEOTE, and by the values ã, η, and µ that he receives from Alice.
We claim that the joint distribution of these values is identical in the real and
ideal experiments.

In both experiments, a is chosen by the environment, β is chosen bythe
corrupt Bob, and γ is supplied directly by the adversary. In both experiments,
µ = RO{0,1}2λc (sid,µ) for some µ, and θ = ROZℓ×ρ

q
(sid, ã). The values ã, η, and

µ, are calculated by the simulator in the ideal experiment and c is calculated
by FRVOLE; in the real experiment, these four values are all calculatd by honest
Alice.

In the ideal experiment η is sampled uniformly per step 3 of SRVOLE-Bob,
whereas in the real experiment Alice calculates

η ..=

âk +
∑
i∈[ℓ]

θi,k · ai


k∈[ρ]

(5)

per step 3 of πRVOLE. â is sampled uniformly by Alice, and none of the variables
that we have analyzed so far depend upon it; therefore, from the adversary’s
perspective, η is uniform in both worlds when considered jointly with (a,β,γ).

54



In the ideal experiment, ã is sampled uniformly, whereas in the real experi-
ment Alice calculates

ã ..=
{{
α0

j,i −α1
j,i + ai

}
i∈[ℓ] ‖

{
α0

j,ℓ+k −α1
j,ℓ+k + âk

}
k∈[ρ]

}
j∈[ξ]

(6)

For every j ∈ [ξ] and k ∈ [ρ], α1−βj

j,k is uniformly sampled by FEOTE and
information-theoretically hidden from the adversary in the real experiment,
which implies that from the adversary’s point of view, ã is uniform in both
experiments when considered jointly with (a,β,γ,η). This also implies that
the distribution of θ is identical in both experiments.

In the ideal experiment, SRVOLE-Bob calculates

µ ..=


d̂j,k +

∑
i∈[ℓ]

θi,k · ḋj,i − βj · ηk


k∈[ρ]


j∈[ξ]

and by substituting in the equations that S uses to calculate d̂ and ḋ, we have

µ =



γj,ℓ+k + βj · ãj,ℓ+k

+
∑
i∈[ℓ]

θi,k · (γj,k + βj · ãj,k)− βj · ηk


k∈[ρ]


j∈[ξ]

(7)

in the ideal world. In the real experiment, Alice calculates

µ ..=


α0

j,ℓ+k +
∑
i∈[ℓ]

θi,k ·α0
j,i


k∈[ρ]


j∈[ξ]

which expands to

µ =




(1− βj) ·α0
j,ℓ+k + βj ·α0

j,ℓ+k

+
∑
i∈[ℓ]

θi,k ·
(
(1− βj) ·α0

j,i + βj ·α0
j,i

)


k∈[ρ]


j∈[ξ]

and since γj,i = (1− βj) ·α0
j,i + βj ·α1

j,i, if follows that

µ =



γj,ℓ+k + βj · (α0

j,ℓ+k −α1
j,ℓ+k)

+
∑
i∈[ℓ]

θi,k ·
(
γj,i + βj · (α0

j,i −α1
j,i)
)


k∈[ρ]


j∈[ξ]

(8)

in the real experiment. Now rearanging equation 6 to solve for α0
j,i − α1

j,i and
then substituting it into equation 8, we find that

µ =



γj,ℓ+k + βj · (ãj,ℓ+k − âk)

+
∑
i∈[ℓ]

θi,k ·
(
γj,i + βj · (ãj,i − ai)

)


k∈[ρ]


j∈[ξ]

(9)

55



in the real experiment, and finally, substituting equation 5 into equation 9 yields
equation 7, which is the ideal-world distribution. Thus the distribution of µ
is identical in the real and ideal experiments, when considered jointly with
(a,β,γ,η, ã,θ).

The final variable is c. In the ideal world, FRVOLE calculates c, and plugging
in the definitions of the values supplied to FRVOLE by SRVOLE-Bob, we have

c =

∑
j∈[ξ]

gj · (βj · ai + βj · ãj,i − γj,i)


i∈[ℓ]

(10)

in the ideal world. In the real world, Alice calculates

c ..=

−∑
j∈[ξ]

gj ·α0
j,i


i∈[ℓ]

(11)

and we can rewrite equation 6 and substitute the result into equation 11 to find
that

c =

∑
j∈[ξ]

gj · (ai − ãj,i −α1
j,i)


i∈[ℓ]

and adding 0 = (1− βj) ·α0
j,i + βj ·α1

j,i − γj,i to this we find

c =

∑
j∈[ξ]

gj · (ai − ãj,i + (βj − 1) · (α1
j,i −α0

j,i)− γj,i)


i∈[ℓ]

(12)

in the real experiment. Finally, rewriting equation 6 and plugging it into equa-
tion 12 yields equation 10. It follows that the distribution of c is identical in the
real and ideal experiments when considered jointly with (a,β,γ,η, ã,θ,µ), and
from this it follows that the two experiments are identically distributed overall,
and lemma 6.11 holds.

7 Relaxed Threshold Key Generation
In this section we discuss our key generation functionality, FRelaxedKeyGen, which
was introduced in section 3.1. In section 7.1 we introduce a protocol to realize
our functionality, and in section 7.2 we prove it to be perfectly secure.

We refer to our key generation functionality as relaxed because it differs in a
crucial way from those used in prior works. Consider as an example of the typical
approach the key generation functionality that accompanies the threshold BBS+
protocol Doerner et al. [DKL+23]. This functionality works in the “obvious”
way: it samples a uniform secret key internally and outputs a corresponding
public key to all parties, accepts Shamir shares of the secret key from the corrupt

56



parties, and outputs consistent shares to each of the honest parties. To prove
that any protocol realizes this functionality, it is necessary for the simulator
to program into the views of the corrupt parties a specific public key, and to
extract their Shamir shares so that the functionality can produce consistent ones.
In order to enable this, the three-round protocol that Doerner et al. specify
includes a proof of knowledge for the contributions of each party. Such proofs
of knowledge are a hallmark of simulation-secure key generation protocols in the
dishonest-majority setting,10 and in the context of universal composability, they
must be straight-line extractable, which implies significant overhead in terms
of both computation and communication due to the use of the Pass [Pas03],
Fischlin [Fis05], or Kondi-shelat [Ks22] transforms.

Consider the above “obvious” key generation formulation. The outputs of
the functionality to the honest parties are non-negotiable, since they will be
forwarded directly to the environment in the UC model. The interface with the
corrupt parties, on the other hand, is driven by the needs of the simulators:
both the simulator for the key generation protocol, and also the simulator for
any eventual signing protocol that uses the key generation functionality and
requires knowledge of the adversary’s shares in order to simulate signing.

Our signing protocol differs from many others in that it does not require the
adversary’s contributions to the secret key to be extracted during key genera-
tion, because the secret key shares are rerandomized and extracted afresh by
FRVOLE for each signature. This liberates us in our choice of a key generation
functionality: we need only ensure that the public key is uniformly sampled,
and that the honest parties’ shares are distributed consistently with the corrupt
parties’ shares. In this section, we achieve these guarantees without extracting
the corrupt parties’ shares; that is, our key generation protocol has no proofs
of knowledge.

The intuition behind our relaxed functionality is simple: the ideal adversary
(i.e. the simulator) sends it the corrupt parties’ additive contributions to the
honest parties’ Shamir shares and to the public key, but the corrupt parties’
additive contributions to their own Shamir shares are supplied only in the same
group G as the public key (from which they cannot be recovered, under the
hardness of discrete logarithm). The functionality can check (in G) that these
contributions form a polynomial of the correct degree, and if so, it samples a
uniform additive contribution (i.e. another polynomial of correct degree) to
the Shamir shares of all parties on behalf of the honest parties. As in other
approaches, the public key is uniform from the perspective of the adversary, and
the joint secret key is unrecoverable by the adversary (assuming that the discrete
logarithm problem is hard in G), so long as the number of corruptions is less than
the threshold. Unlike other approaches, the secret key is also unrecoverable to
the functionality itself, if the number of honest parties is less than the threshold.

We stress that our relaxed key generation functionality is sufficient for use
with the signing protocol proposed in this work, but it cannot necessarily be

10See, for example, [Lin17, DKLs18, LN18, GG18, DKLs19, CGG+20, CCL+20, Lin22,
HLNR23, CCL+23]. [DOK+20, ANO+22] use full-blown MPC for key generation.

57



used with other threshold signing protocols that use discrete-log keypairs. Con-
sider for example, the classic folkloric threshold Schnorr protocol, as recently
discussed by Lindell [Lin22]: in this protocol, the secret key shares of the corrupt
parties are required in order to simulate signing, but they are only extracted
during key generation. Consequently Lindell’s protocol becomes unsimulatable
if his key generation functionality is replaced by ours.

Finally, we note that our functionality is strictly weaker than the more typi-
cal functionality of Doerner et al. [DKL+23], which we discussed above. Because
our functionality can be replaced with theirs, our protocol can also be replaced
with theirs, if desired.

7.1 The Protocol
In this work, we have restricted ourselves to point-to-point authenticated chan-
nels and studiously avoided the use of broadcast channels. As a consequence
we have achieved only security with selective abort. Because public keys may
be linked irrevocably to identity or authority, it is often desirable to achieve at
least unanimous abort in key generation protocols, so that each honest party
is convinced that all honest parties can participate in signing and that a single
agreed-upon public key exists, if no abort is observed. We present our key gen-
eration protocol in the hybrid model of a broadcast commitment functionality
FCom(n), which behaves like the version of FCom introduced in section 3.1, ex-
cept that it delivers consistent outputs to n− 1 recipients simultaneously. This
functionality is easily realized by combining any UC-secure commitment scheme
with a broadcast channel. We will refer to the non-broadcast commitment func-
tionality as FCom(2) hereafter.

When only point-to-point channels are assumed, as is otherwise the case in
our work, our the broadcast channel underlying our enhanced FCom(n) can be
replaced by the echo-broadcast technique of Goldwasser and Lindell [GL05], in
which each broadcasted message is sent to all parties in a point-to-point fashion,
and then the parties swap hashes of the broadcast channel to ensure that the
messages they received are consistent. The result is that the adversary can
force FCom(n) (and therefore our key generation protocol) to abort selectively.
The echo can occur simultaneously with the last round of our key generation
protocol, and thus the number of rounds is not affected by this technique.

On the other hand, if a true broadcast channel is available, then the final
round of messages in our key generation protocol can also make use of it, and
the result is that our protocol achieves unanimous abort.
Protocol 7.1. πRelaxedKeyGen(G, n, t): Relaxed DLog Keygen

This protocol is parameterized by the party count n, the threshold t, and
the elliptic curve G = (G, G, q). The parties P1, . . . ,Pn participate in this
protocol and interact with the ideal functionality FCom.

58



Key Generation:

1. On receiving (keygen, sid) from the environment, each party Pi samples
a random degree polynomial pi of degree t − 1 over Zq. Let Pi denote
the corresponding polynomial in G; i.e. let Pi(x) = pi(x) ·G for x ∈ Zq.

2. Pi computes P-j ..= [n] \ {j} for every j ∈ P, and then sends

• (commit,Pi‖PP-i
1
‖ . . . ‖PP-i

n−1
‖sid, {Pi(j)}j∈[0,t−1]) to FCom(n).

• (commit,Pi‖Pj‖sid, pi(j)) to FCom(2) for j ∈ P-i.

3. Upon being notified of all other parties’ commitments, each party Pi

releases its committed values by sending

• (decommit,Pi‖PP-i
1
‖ . . . ‖PP-i

n−1
‖sid) to FCom(n).

• (decommit,Pi‖Pj‖sid) to FCom(2) for j ∈ P-i.

4. Each party Pi receives

• (opening,Pj‖PP-j
1
‖ . . . ‖PP-j

n−1
, {Pi(j)}j∈[0,t−1]) from FCom(n)

• (opening,Pi‖Pj‖sid, pj(i)) from FCom(2) for j ∈ P-i

for each j ∈ P-i. Let P denote the sum of Pj for j ∈ [n]; i.e. let
P (x) =

∑
j∈[n] Pj(x) for x ∈ Zq. Pi computes

P ′(i) ..=
∑

j∈[n]

pj(i) ·G

and then verifies that

P ′(i) =


P (i) if i ∈ [t− 1]
P (0)−

∑
j∈[t−1]

lagrange([t− 1] ∪ {i}, j, 0) · P (j)

lagrange([t− 1] ∪ {i}, i, 0)
otherwise

and if this equality holds, then Pi sends (ok, sid) to all other parties. If
this equality does not hold, then Pi sends (abort, sid) to all parties.

5. If any party sends (abort, sid) to Pi, or Pi itself sent such a message,
then Pi outputs (abort, sid) to the environment, and performs no fu-
ture instructions related to this session. If Pi transmitted (ok, sid) and
receives an identical message from all other parties, then it outputs
(key-pair, sid, P (0), p(i)) to the environment.

59



7.2 Proof of Security
Theorem 7.2 (Key Generation Security Theorem). For every group described
by G and every malicious adversary A that statically corrupts up to t−1 parties,
there exists a simulator SA

RelaxedKeyGen that uses A as a black box, such that for
every environment Z it holds that{

RealπRelaxedKeyGen(G,n,t),A,Z (λs, z)
}

λs∈N,n∈N:n>1,t∈[2,n],z∈{0,1}∗

=
{

IdealFRelaxedKeyGen(G,n,t),SA
RelaxedKeyGen(G,n,t),Z (λs, z)

}
λs∈N,n∈N:n>1,t∈[2,n],z∈{0,1}∗

Proof. This proof is direct, without any hybrid experiments. The simulator is
as follows:
Simulator 7.3. SA

RelaxedKeyGen(G, n, t): Relaxed DLog Keygen
This simulator is parameterized by the party count n, the threshold t,
and the elliptic curve G = (G, G, q). The simulator has oracle access
to the adversary A, and emulates for it an instance of the protocol
πRelaxedKeyGen(G, n, t) involving the parties P1, . . . ,Pn. The simulator for-
wards all messages from its own environment Z to A, and vice versa.
When the emulated protocol instance begins, A announces the identities
of up to t − 1 corrupt parties. Let the indices of these parties be given
by P∗ ⊆ [n]. SA

RelaxedKeyGen(G, n, t) interacts with the ideal functionality
FRelaxedKeyGen(G, n, t) on behalf of every corrupt party, and in the exeriment
that it emulates for A, it interacts with A and the corrupt parties on behalf
of every honest party and on behalf of the ideal functionality FCom.

Key Generation:

1. On receiving (keygen-req, sid, j) from FRelaxedKeyGen(G, n, t) such that
j ∈ [n] \ P∗, compute P-i ..= [n] \ {i} for every i ∈ P and send to each
Pi for i ∈ P∗

• (committed,Pj‖PP-j
1
‖ . . . ‖PP-j

n−1
‖sid)) on behalf of FCom(n).

• (committed,Pj‖Pi‖sid) on behalf of FCom(2).

2. On receiving

• (commit,Pi‖PP-i
1
‖ . . . ‖PP-i

n−1
‖sid, {Pi(j)}j∈[0,t−1]) on behalf of

FCom(n).
• (commit,Pi‖Pj‖sid, pi(j)) on behalf of FCom(2) for some consistent

j ∈ P-i \P∗.

from every Pi for i ∈ P∗

• If there exists some j′ ∈ P-i \P∗ with respect to which such messages
have not all been received, such that j′ 6= j, then sample pj(i)← Zq

60



uniformly for each i ∈ P∗ and sample Pj as a uniform polynomial of
degree t− 1 over G such that Pj(i) = pj(i) ·G for every i ∈ P∗.

• If j is the last value which satisfies the above conditions, then
(a) For every i ∈ P∗ and k ∈ [t, n] compute

Pi(k) ..=
Pi(0)−

∑
l∈[t−1]

lagrange([t− 1] ∪ {k}, l, 0) · Pi(l)

lagrange([t− 1] ∪ {k}, k, 0)

and then for every k ∈ [n] \P∗ compute

p̌(k) ..=
∑

i∈P∗

pi(k)

P̌ (k) ..=
∑

i∈P∗

Pi(k)

(b) Send (adv-poly, sid, {p̌(k)}k∈[n]\P∗ , {P̌ (i)}i∈P∗) directly to
FRelaxedKeyGen(G, n, t).

(c) On receiving (hon-poly, sid, P (0), {P̂ (k)}k∈[n]\P∗ , {p̂(i)}i∈P∗)
from FRelaxedKeyGen(G, n, t), compute

P̂ (i) ..= p̂(i) ·G for i ∈ P∗

pj(i) ..= p̂(i)−
∑

k∈P-j\P∗

pk(i) for i ∈ P∗

Pj(k) ..= P̂ (k)−
∑

i∈P-j\P∗

Pj(k) for k ∈ [t− 1]

Pj(0) ..= P (0)−
∑

i∈P-j

Pi(0)

(d) If (abort, sid) is received from FRelaxedKeyGen(G, n, t) instead of
hon-poly, then sample pj(i) ← Zq uniformly for each i ∈ P∗

and sample Pj as a uniform polynomial of degree t − 1 over G
such that Pj(i) = pj(i) ·G for every i ∈ P∗.

and finally, send to each Pi for i ∈ P∗

• (opening,Pj‖PP-j
1
‖ . . . ‖PP-j

n−1
‖sid, {Pj(k)}k∈[0,t−1]) on behalf of

FCom(n).
• (opening,Pj‖Pi‖sid, pj(i)) on behalf of FCom(2).

3. On receiving

• (decommit,Pi‖PP-i
1
‖ . . . ‖PP-i

n−1
‖sid) on behalf of FCom(n).

61



• (decommit,Pi‖Pj‖sid) on behalf of FCom(2) for some consistent j ∈
P-i \P∗.

from every Pi for i ∈ P∗, if p̌(j) · G 6= P̌ (j), then send (abort, sid)
to all corrupt parties on behalf of Pj and send (abort, sid, k) to
FRelaxedKeyGen(G, n, t) for every k ∈ [n] \ P∗. Otherwise send (ok, sid)
to all corrupt parties on behalf of Pj .

4. On receiving (abort, sid) from Pi on behalf of Pj for some i ∈ P∗ and
j ∈ [n] \P∗, send (abort, sid, j) to FRelaxedKeyGen(G, n, t).

5. On receiving (ok, sid) from Pi on behalf of Pj some consistent j ∈ [n]\P∗

and every i ∈ P∗, if p̌(k) · G = P̌ (k) for every k ∈ [n] \ P∗, then send
(release, sid, j) to FRelaxedKeyGen(G, n, t).

The view of the adversary is completely characterized by the values trans-
mitted by the corrupt parties and by the values emitted by the honest parties,
both in the protocol and to the environment. That is, the adversary’s view is
characterized by the public key P (0) and for every j ∈ [n] \ P∗ by the secret
key share p(j), the polynomial Pj , and the selected discrete logarithms pj(i) of
points on Pj , for i ∈ P∗.

We argue first about the distribution of aborts, then about the distribution
of values when an abort occurs, then about the distribution of values when an
abort does not occur.

We observe first of all that in the ideal world, the values {P̌ (i)}i∈P∗ supplied
to FRelaxedKeyGen by SRelaxedKeyGen are interpolated from the adversary’s commit-
ments to t polynomial points. These, therefore, lie on a degree t− 1 polynomial
(or many such polynomials, if |P∗| < t−1), and it follows that an abort based on
the conditions in step 1 only occurs if the values {p̌(k)}k∈[n]\P∗ are inconsistent
with this polynomial (or with all polynomials that pass through {P̌ (i)}i∈P∗ , if
|P∗| < t− 1). Recall that per step 2,

p̌(k) =
∑

i∈P∗

pi(k) and P̌ (k) =
∑

i∈P∗

Pi(k)

for every k ∈ [n] \P∗. In the real world, per step 4 of πRelaxedKeyGen, each honest
party Pk for k ∈ [n] \P∗ signals the other parties to abort if∑

i∈[n]

pi(k) ·G 6=
∑
i∈[n]

Pi(k)

where Pi(k) is interpolated from the first t points on Pi, if necessary. Since
pj(k)·G = Pj(k) for all j, k ∈ [n]\P∗ by construction, this condition is equivalent
to the ideal-world abort condition expressed by FRelaxedKeyGen.

Next, we analyze the distributions of the values in the protocol, conditioned
on an abort occurring. In the ideal world, the SRelaxedKeyGen samples pk for
k ∈ [n] \ P∗ uniformly, whereas in the real world, Pk samples pk for k ∈ [n] \

62



P∗ uniformly. In both worlds, we have Pk(x) = pk(x) · G for x ∈ Zq, and
neither world does the environment learn p(k), due to the fact that an abort
occurs. Thus the two worlds are identically distributed, conditioned on an abort
occurring.

If an abort does not occur, then the situation is very similar. The distinction
is that FRelaxedKeyGen samples p̂ uniformly, defines P̂ (x) = p̂(x) · G for x ∈ Zq,
and sends {P̂ (k)}k∈[n]\P∗ and {p̂(i)}i∈P∗ to SRelaxedKeyGen. If we let Ph denote
the last honest party to decommit in step 4 of the protocol, then we can see
that in the ideal world, SRelaxedKeyGen samples pk for k ∈ P-h \P∗ uniformly as
before, calculates Ph(x) such that

P̂ (x) =
∑

j∈[n]\P∗

Pj(x)

for every x ∈ Zq, and calculates ph(i) such that

p̂(i) =
∑

j∈[n]\P∗

pj(i)

for i ∈ P∗. Thus the joint distributions of Pj for j ∈ [n] and pj(i) for j ∈ [n] and
i ∈ P∗ are identical in the real and ideal worlds. It remains finally to observe
that in the ideal world, each honest party Pj emits p(j) = p̌(j) + p̂(j), whereas
in the real world, it emits

p(i) =
∑

j∈[n]

pj(i)

which is distributed identically.

8 Analytical Efficiency
In this section, we give a closed-form accounting of the bandwidth costs of our
protocol and its various building blocks. We account for the number of elliptic
curve scalar operations that our protocol requires during signing, since this is
a substantial portion of the computational cost. We begin by analyzing the
realizations for non-VOLE building blocks that were suggested in section 3.1:
an FCom commitment to any payload requires 2λc bits to be transmitted, and
a decommitment to a payload of size x requires 2λc + x bits. We assume that
the “broadcast” variant of FCom multiplies the foregoing costs by the number
of recipients, and that then adds 2λc transmitted bits per recipient in order to
implement echo-broadcast. We assume FZero(Zq, t) requires a one-time setup cost
of (t−1) commitments and decommitments to λc bits on the part of each party,
and that invocation by that same set of parties is free in terms of bandwidth
thereafter.

8.1 Oblivious Transfer
Our VOLE protocol relies on OT, which we realize via the OT-extension protocol
of Roy [Roy22], using the one-round optimization introduced in section 5.1, with

63



base OTs supplied by the two-round UC-secure endemic OT protocol of Masny
and Rindal [MR19]. We instantiate the latter primitive from the decisional
Diffie-Hellman assumption over the same group G in which signatures are to
be computed. For ℓOT OT instances, the protocol of Masny and Rindal has an
average per-party bandwidth cost of

EOTCost(|G|, ℓOT) 7→ 2 · |G| · ℓOT

and it requires each party to compute 3ℓOT elliptic curve scalar operations, on
average.

Roy’s protocol requires a one-time setup that comprises exactly λc instances
of OT. This is followed by any number of extension batches. Per the accounting
of Doerner et al. [DKL+23], each batch of ℓOTE endemic OT instances has an
average per-party bandwidth cost of

EOTECost(λc, ℓOTE) 7→
(

3
2

+ 1
2kSSOT

)
· (λc

2 + λc) + λc · ℓOTE
2kSSOT

where kSSOT is a parameter that also impacts computation time. Roy sug-
gested that kSSOT = 2 yields a strict improvement over all other OT-extension
protocols; we adopt this value when calculating concrete costs. If correlated
OT-extension instances are required then

COTECost(λc, ℓOTE, |m|) 7→ ℓOTE · |m|/2 + EOTECost(λc, ℓOTE)

where |m| is the size of the correlation in bits.

8.2 Our VOLE
For the purposes of our cost analysis, we assume that setup for endemic OT
extension is performed once per pair of parties, and reused thereafter in all
instances of the protocol realizing FEOTE among those two parties. Our protocol
involves an endemic OT-extention batch of size ℓOTE = ξ = κ + 2λs, and the
transmission of (ℓ + 1) · ξ + 1 elements of Zq and 2λc bits directly from Alice
to Bob. This brings the total online (i.e. excluding one-time setup) average
per-party bandwidth cost of our DKLs-derived VOLE protocol to

VOLECost(λc, λs, κ, ℓ) 7→
EOTECost(λc, κ + 2λs) + (κ/2 + λs) · (ℓ + 1) · κ + κ/2 + λc

The one-time setup for our protocol comprises the one-time setup for en-
demic OT-extensions, plus the sending of a single security-parameter-length seed
from Bob to Alice. Thus, assuming Roy’s OT-extension protocol and Masny
and Rindal’s OT protocol are used, we have an average per-party bandwidth
cost of

VOLESetupCost(λc, λs, κ, |G|) 7→ EOTCost(|G|, λc) + λc/2

64



8.3 VOLE from HMRT22
Next, we present the cost of using an alternate VOLE protocol derived from
the work of Haitner et al. [HMRT22]. Their protocol realizes a weaker function-
ality than the one we have specified, and we have not proven the combination
secure, and we remind the reader that the protocol of Haitner et al. requires
an additional round, relative to the DKLs-derived VOLE described in section 5.
Nevertheless, we include a cost analysis of their protocol for the sake of com-
parison.

Haitner et al.’s description of their protocol specifies correlated OT rather
than correlated OT-extension. In order to make an apples-to-apples comparison
against our VOLE, we assume OT-extension is used, and as a consequence it is
necessary to perform a one-time setup procedure. Thus

VOLESetupCost(λc, λs, κ, |G|) 7→ EOTCost(|G|, λc) + λc/2

The evaluation stage of their protocol involves a batch of ℓOTE = κ + 4λs
correlated OT instances. Per a random-oracle-based optimization mentioned in
their paper, the only additional data that must be sent is a single λc-bit seed,
plus a single element of Zq.11 If we derive a VOLE from their OLE in the same
way that we derived πRVOLE from the DKLs OLE protocols, then the average
per-party bandwidth cost is

VOLECost(λc, λs, κ, ℓ) 7→ COTECost(λc, κ + 4λs, κ · ℓ) + (κ · ℓ + λc)/2

Assuming that SoftSpokenOT is used to realize the correlated OT-extension,
their protocol outperforms ours in terms of bandwidth costs only when

2λc · λs
kSSOT

+ 2λs · κ · ℓ + κ · ℓ < κ2 + 2λs · κ + κ + λc

8.4 Our Key Generation and ECDSA Protocols
When the echo-broadcast synchronization messages are coalesced, the band-
width cost of realizing FRelaxedKeyGen(G, n, t) via the protocol introduced in sec-
tion 7 is given by

KeyGenCost(n, λc, κ, |G|) 7→ (n− 1) · (10λc + t · |G|+ κ)

The one-time initialization for πECDSA involves running FRelaxedKeyGen and
initializing two instances of FRVOLE per pair of parties. Each party must also
commit and release a pair of λc-bit seeds, in order to initialize the protocol
that realizes FZero. Our signing protocol is very simple. Each pair of parties
performs two VOLE evaluations, and each party Pi commits and releases Ri

11They specify only that the random oracle can be used to compress the value denoted
in their paper as v, but do not give specifics. We assume that a seed is used to generate a
random vector, and the single Zq element is used to adjust that vector such that it meets the
constraints that they require.

65



and transmits Γu
i,j , Γv

i,j , ψi,j , pki, wi, and ui to every Pj such that j 6= i. This
gives us a total average per-party bandwidth cost of

SignCost(t, λc, λs, κ, |G|) 7→
(t− 1) · (4λc + 3κ + 4|G|+ 2 · VOLECost(λc, λs, κ, 2))

Finally, each party must perform 6t − 2 elliptic curve scalar operations in
order to generate a signature. To set up their VOLE instances (for all counter-
parties), each party must perform 6λc · (n− 1) scalar operations. To generate a
shared keypair, each party must perform at most 2t scalar operations.

8.5 Concrete Results
In table 1, we substitute values into the above equations to derive the concrete
average per-party bandwidth costs for common security parameters. We assume
that point compression is used for elements of G, such that they require only
one byte more than elements of Zq.12 In all cases, we assume that κ = 2λc
and λs = 80. Note that the seeds used to initialize the VOLE protocol and
the protocol that realized FZero can be combined, which implies that the cost
of VOLE setup (and therefore the overall setup cost) is the same regardless of
which VOLE method is used.

For comparison, when λc = 256 and λs = 80, the 2-of-n signing protocol of
Doerner et al. [DKLs18] requires each party to send 116.4 KiB (on average),
whereas our new protocol (with our new DKLs-derivedVOLE) requires only
49.7 KiB per party to be sent. On the other hand, our new protocol has the
same communication pattern as theirs (under pipelining), requires fewer ellip-
tic curve scalar operations than theirs does,13 realizes a standard functionality,
whereas their functionality allows the adversary to bias R, and achieves sta-
tistical security, whereas theirs is secure only assuming that the computational
Diffie-Dellman problem is hard in G and that ECDSA is a signature scheme
over G. We therefore claim that our protocol is strictly superior to the original
2-of-n DKLs protocol.

The t-of-n protocol of Doerner et al. [DKLs19] requires (t − 1) · 88.3 KiB
to be sent by each party (on average) when the (dlog2(t)e+ 6)-round variant is
used.14 Our new protocol requires only (t − 1) · 49.7 KiB to be sent, has only
three rounds (or two, if pipelining is employed), and achieves statistical security
if the VOLE is ideal, whereas theirs is secure assuming that the computational
Diffie-Hellman problem is hard in G. However, their protocol requires each
party to compute only 6 elliptic curve scalar operations during signing, and
ours requires 6t− 2. Given the efficiency of elliptic curve operations on modern
hardware, and the additional latency incurred by additional parties, we believe

12This is not true of elliptic curves in general, but is true of the ones over which ECDSA is
most commonly deployed.

13While their protocol only requires 9 such operations as implemented, achieving UC-
security for their protocol requires a straight-line extractable proof of knowledge [Fis05, Ks22],
which requires many more.

14Their 10-round variant requires more bandwidth, but they do not give a precise figure.

66



our new protocol to have the advantage in nearly any real-world deployment
scenario.

λc 128 192 256
κ 256 384 512
|G| 264 392 520

Setup (n− 1) · 137232 (n− 1) · 304144 (n− 1) · 536592
Signing (our VOLE) (t− 1) · 406752 (t− 1) · 812864 (t− 1) · 1354144
Signing (HMRT22) (t− 1) · 392544 (t− 1) · 742400 (t− 1) · 1194656

Table 1: Bandwidth Costs, in total bits transmitted per party, for t signers
out of n total parties. We assume the worst-case cost for setup; i.e. t = n. Note
that in all cases, the statistical parameter λs = 80.

9 A Two-Round Protocol for Honest Majorities
When the number of corrupt parties is strictly less than t/2, a much simpler pro-
tocol is possible than the one presented in section 3, leveraging honest-majority
techniques for significant bandwidth and round-efficiency improvements. In
spite of its simplicity, we present it here for the sake of completeness, and give
a provisional theorem.

Theorem 9.1 (Informal Honest-Majority Security Theorem). When
(t choose dt/2e) ∈ poly(λ), there exists a two-round protocol that UC-
realizes FECDSA(G, n, t) against a malicious adversary that statically corrupts
fewer than t/2 parties, assuming the existence of pseudo-random functions.

The protocol begins by sampling replicated secret shares of sk, r, ζ = 0,
and ϕ, with a reconstruction threshold of dt/2e. To non-interactively generate
replicated secret shares of zero, there is a direct extension of the protocol we have
given for realizing FZero in section 3.1. To non-interactively sample replicated
secret shares of a uniform value, one can use a classic protocol of Cramer,
Damgård, and Ishai [CDI05]: simply replicate shares of a seed, and use a PRF
to expand the replicated seeds when necessary.

It is possible to perform multiplications of the shared values in replicated
form; however, the output shares would also be replicated and therefore ineffi-
cient to send. Instead, the parties non-interactively convert their replicated shar-
ings into Shamir sharings of degree dt/2e − 1 via another technique of Cramer,
Damgård, and Ishai [CDI05], and then perform a standard non-interactive mul-
tiplication (as in the BGW protocol [BGW88], without degree-reduction) to
compute Shamir shares of u and v. The latter sharings are of degree t − 1 if t
is odd, or t− 2 if t is even. Following this, a non-interactive linear combination
yields Shamir shares of w.

67



The final honest-majority protocol, then, is two rounds: the parties perform
all of the non-interactive operations specified above, and swap degree-(dt/2e−1)
shares shares of R over G. They check that these shares lie on a polynomial of the
correct degree, and if so, then they interpolate R and use rx to compute shares
of w, which they swap. These are interpolated and the signature assembled and
verified.

Honest-majority techniques make our consistency check and the commit-
and-release mechanism for R superfluous. Since the honest parties’ shares fully
specify R, any attempt by the adversary to bias this value will result in a
polynomial of incorrect degree, which can be detected. Since the multiplica-
tion operations are completely non-interactive, any cheating on the part of the
adversary must be independent of the honest parties’ secrets, and therefore ex-
pressable in terms of simple linear offsets relative to the expected values, which
can be perfectly detected by verifying the signature, just as in the protocol from
section 3. In terms of communication, each party must only send a single share
of R to the others, followed by one share each of u and w; thus, when κ = 256,
the total amount of data sent by every party to each of the others is 776 bits.

Note that in the above scheme, the size of each replicated secret share is a
factor of (t choose dt/2e) greater than the size of an ordinary additive share.
In the case that this yields impractically large shares, Shamir sharing can be
used throughout the protocol, and sharings of zero and uniform values can be
sampled interactively via the well-known techniques of Feldman [Fel87] and
Pedersen [Ped91]. Under this modification, the protocol requires three rounds.

Acknowledgements
The authors of this work are supported by NSF grants 1646671, 1816028,
and 2055568, by the ERC projects NTSC (742754), SPEC (803096), and HSS
(852952), by ISF grant 2774/2, by AFOSR award FA9550-21-1-0046, by the
Azrieli Foundation, by the Brown University Data Science Institute, and by the
Carlsberg Foundation under the Semper Ardens Research Project CF18-112
(BCM).

References
[ADI+17] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen,

and Lior Zichron. Secure arithmetic computation with constant
computational overhead. In Advances in Cryptology – CRYPTO
2017, part I, 2017.

[ANO+22] Damiano Abram, Ariel Nof, Claudio Orlandi, Peter Scholl, and
Omer Shlomovits. Low-bandwidth threshold ECDSA via pseudo-
random correlation generators. In Proceedings of the 43rd IEEE
Symposium on Security and Privacy (S&P), 2022.

68



[BB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant
computing in constant number of rounds of interaction. In Proceed-
ings of the 8th Annual ACM Symposium on Principles of Distributed
Computing (PODC), 1989.

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa
Kohl, and Peter Scholl. Efficient pseudorandom correlation gen-
erators: Silent OT extension and more. In Advances in Cryptology
– CRYPTO 2019, part III, 2019.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Com-
pressing vector OLE. In Proceedings of the 25th ACM Conference
on Computer and Communications Security (CCS), 2018.

[BCK+22] Mihir Bellare, Elizabeth C. Crites, Chelsea Komlo, Mary Maller,
Stefano Tessaro, and Chenzhi Zhu. Better than advertised security
for non-interactive threshold signatures. In Advances in Cryptology
– CRYPTO 2022, part IV, 2022.

[BDM22] Pedro Branco, Nico Döttling, and Paulo Mateus. Two-round obliv-
ious linear evaluation from learning with errors. In Proceedings of
the 25th International Conference on the Theory and Practice of
Public-Key Cryptography (PKC), part I, 2022.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias.
Semi-homomorphic encryption and multiparty computation. In Ad-
vances in Cryptology – EUROCRYPT 2011, 2011.

[BGG17] Dan Boneh, Rosario Gennaro, and Steven Goldfeder. Using level-1
homomorphic encryption to improve threshold DSA signatures for
bitcoin wallet security. 2017.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Complete-
ness theorems for non-cryptographic fault-tolerant distributed com-
putation (extended abstract). In Proceedings of the 20th Annual
ACM Symposium on Theory of Computing (STOC), 1988.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from
the weil pairing. In Advances in Cryptology – ASIACRYPT 2001,
2001.

[BP23] Luís T. A. N. Brandão and René Peralta. NISTIR 8214c ipd NIST
first call for multi-party threshold schemes (initial public draft). In
Computer Security Resource Center, 2023.

[Can01] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In Proceedings of the 42nd Annual Sympo-
sium on Foundations of Computer Science (FOCS), 2001.

69



[CCD+20] Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa
Lee, Schuyler Rosefield, and abhi shelat. Multiparty generation of
an RSA modulus. In Advances in Cryptology – CRYPTO 2020, part
III, 2020.

[CCL+20] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico
Savasta, and Ida Tucker. Bandwidth-efficient threshold EC-DSA.
In Proceedings of the 23rd International Conference on the Theory
and Practice of Public-Key Cryptography (PKC), part II, 2020.

[CCL+23] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico
Savasta, and Ida Tucker. Bandwidth-efficient threshold EC-DSA re-
visited: Online/offline extensions, identifiable aborts proactive and
adaptive security. Theoretical Computer Science, 939, 2023.

[CDI05] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion,
pseudorandom secret-sharing and applications to secure computa-
tion. In Proceedings of the 2nd Theory of Cryptography Conference
(TCC), 2005.

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos
Makriyannis, and Udi Peled. UC non-interactive, proactive, thresh-
old ECDSA with identifiable aborts. In Proceedings of the 27th ACM
Conference on Computer and Communications Security (CCS),
2020.

[CHI+21] Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele
Micciancio, Tarik Riviere, Abhi Shelat, Muthu Venkitasubrama-
niam, and Ruihan Wang. Diogenes: Lightweight scalable RSA mod-
ulus generation with a dishonest majority. 2021.

[CL15] Guilhem Castagnos and Fabien Laguillaumie. Linearly homomor-
phic encryption from DDH. In Proceedings of the Cryptographers’
Track at the RSA Conference (CT-RSA), 2015.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai.
Universally composable two-party and multi-party secure computa-
tion. In Proceedings of the 34th Annual ACM Symposium on Theory
of Computing (STOC), 2002.

[CMI93] Manuel Cerecedo, Tsutomu Matsumoto, and Hideki Imai. Efficient
and secure multiparty generation of digital signatures based on dis-
crete logarithms. In IEICE TRANSACTIONS on Fundamentals of
Electronics, Communications and Computer Sciences, Vol.E76-A,
No.4, pp.532-545, 1993.

[CRR21] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Sil-
ver: Silent VOLE and oblivious transfer from hardness of decoding
structured LDPC codes. In Advances in Cryptology – CRYPTO
2021, part III, 2021.

70



[CSW20] Ran Canetti, Pratik Sarkar, and Xiao Wang. Blazing fast OT for
three-round UC OT extension. In Proceedings of the 23rd Interna-
tional Conference on the Theory and Practice of Public-Key Cryp-
tography (PKC), part II, 2020.

[DJN+20] Ivan Damgård, Thomas Pelle Jakobsen, Jesper Buus Nielsen,
Jakob Illeborg Pagter, and Michael Bæksvang Østergaard. Fast
threshold ECDSA with honest majority. 2020.

[dJV21] Leo de Castro, Chiraag Juvekar, and Vinod Vaikuntanathan. Fast
vector oblivious linear evaluation from ring learning with errors.
In Proceedings of the 9th on Workshop on Encrypted Computing &
Applied Homomorphic Cryptography (WAHC), 2021.

[DKL+23] Jack Doerner, Yashvanth Kondi, Eysa Lee, abhi shelat, and LaKyah
Tyner. Threshold BBS+ signatures for distributed anonymous cre-
dential issuance. In Proceedings of the 44th IEEE Symposium on
Security and Privacy (S&P), 2023.

[DKLs18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure
two-party threshold ECDSA from ECDSA assumptions. In Proceed-
ings of the 39th IEEE Symposium on Security and Privacy (S&P),
2018.

[DKLs19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Thresh-
old ECDSA from ECDSA assumptions: The multiparty case. In
Proceedings of the 40th IEEE Symposium on Security and Privacy
(S&P), 2019.

[DKLs24] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Thresh-
old ECDSA in three rounds. In Proceedings of the 45th IEEE Sym-
posium on Security and Privacy (S&P), 2024.

[DOK+20] Anders P. K. Dalskov, Claudio Orlandi, Marcel Keller, Kris
Shrishak, and Haya Shulman. Securing DNSSEC keys via thresh-
old ECDSA from generic MPC. In Proceedings of the 25th European
Symposium on Research in Computer Security (ESORICS), Part II,
2020.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption.
In Advances in Cryptology – CRYPTO 2012, 2012.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable se-
cret sharing. In Proceedings of the 28th Annual Symposium on Foun-
dations of Computer Science (FOCS), 1987.

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of
knowledge with online extractors. In Advances in Cryptology –
CRYPTO 2005, 2005.

71



[FLOP18] Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and
Benny Pinkas. Fast distributed RSA key generation for semi-honest
and malicious adversaries. In Advances in Cryptology – CRYPTO
2018, part II, 2018.

[GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold
ECDSA with fast trustless setup. In Proceedings of the 25th ACM
Conference on Computer and Communications Security (CCS),
2018.

[GGN16] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan.
Threshold-optimal DSA/ECDSA signatures and an application to
bitcoin wallet security. 2016.

[Gil99] Niv Gilboa. Two party RSA key generation. In Advances in Cryp-
tology – CRYPTO 1999, 1999.

[GJKR96] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Ra-
bin. Robust threshold DSS signatures. In Advances in Cryptology –
EUROCRYPT 1996, 1996.

[GL05] Shafi Goldwasser and Yehuda Lindell. Secure multi-party computa-
tion without agreement. Journal of Cryptology, 18(3), 2005.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or A completeness theorem for protocols with honest
majority. In Proceedings of the 19th Annual ACM Symposium on
Theory of Computing (STOC), 1987.

[GS22a] Jens Groth and Victor Shoup. Design and analysis of a dis-
tributed ECDSA signing service. Cryptology ePrint Archive, Paper
2022/506, 2022.

[GS22b] Jens Groth and Victor Shoup. On the security of ECDSA with
additive key derivation and presignatures. In Advances in Cryptology
– EUROCRYPT 2022, part I, 2022.

[HLNR23] Iftach Haitner, Yehuda Lindell, Ariel Nof, and Samuel Ranellucci.
Fast secure multiparty ecdsa with practical distributed key genera-
tion and applications to cryptocurrency custody. Cryptology ePrint
Archive, Paper 2018/987, Version 20230529:135032, 2023.

[HMRT12] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, and Tomas Toft.
Efficient RSA key generation and threshold paillier in the two-party
setting. In Proceedings of the Cryptographers’ Track at the RSA
Conference (CT-RSA), 2012.

[HMRT22] Iftach Haitner, Nikolaos Makriyannis, Samuel Ranellucci, and Eliad
Tsfadia. Highly efficient OT-based multiplication protocols. In Ad-
vances in Cryptology – CRYPTO 2022, part I, 2022.

72



[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending
oblivious transfers efficiently. In Advances in Cryptology – CRYPTO
2003, 2003.

[IN96] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes
provably as secure as subset sum. Journal of Cryptology, 9(4), 1996.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure
OT extension with optimal overhead. In Advances in Cryptology –
CRYPTO 2015, part I, 2015.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT:
faster malicious arithmetic secure computation with oblivious trans-
fer. In Proceedings of the 23th ACM Conference on Computer and
Communications Security (CCS), 2016.

[Ks22] Yashvanth Kondi and abhi shelat. Improved straight-line extraction
in the random oracle model with applications to signature aggre-
gation. In Advances in Cryptology – ASIACRYPT 2022, part II,
2022.

[Lan95] Susan K. Langford. Threshold dss signatures without a trusted
party. In Advances in Cryptology – CRYPTO 1995, 1995.

[Lin17] Yehuda Lindell. Fast secure two-party ECDSA signing. In Advances
in Cryptology – CRYPTO 2017, part II, 2017.

[Lin21] Yehuda Lindell. Secure multiparty computation. Communications
of the ACM, 64(1), 2021.

[Lin22] Yehuda Lindell. Simple three-round multiparty schnorr signing with
full simulatability. Cryptology ePrint Archive, Paper 2022/374,
2022.

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with
practical distributed key generation and applications to cryptocur-
rency custody. In Proceedings of the 25th ACM Conference on Com-
puter and Communications Security (CCS), 2018.

[MR01] Philip D. MacKenzie and Michael K. Reiter. Two-party generation
of DSA signatures. In Advances in Cryptology – CRYPTO 2001,
2001.

[MR19] Daniel Masny and Peter Rindal. Endemic oblivious transfer. In
Proceedings of the 26th ACM Conference on Computer and Com-
munications Security (CCS), 2019.

[Nat13] National Institute of Standards and Technology. FIPS PUB 186-
4: Digital Signature Standard (DSS). http://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.186-4.pdf, 2013.

73

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf


[NRS21] Jonas Nick, Tim Ruffing, and Yannick Seurin. Musig2: Simple
two-round schnorr multi-signatures. In Advances in Cryptology –
CRYPTO 2021, part I, 2021.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite de-
gree residuosity classes. In Advances in Cryptology – EUROCRYPT
1999, 1999.

[Pas03] Rafael Pass. On deniability in the common reference string and
random oracle model. In Advances in Cryptology – CRYPTO 2003,
2003.

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic se-
cure verifiable secret sharing. In Advances in Cryptology – CRYPTO
1991, 1991.

[Roy22] Lawrence Roy. SoftSpokenOT: Communication-computation trade-
offs in OT extension. In Advances in Cryptology – CRYPTO 2022,
part I, 2022.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart
cards. In Advances in Cryptology – CRYPTO 1989, 1989.

[SGRR19] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mari-
ana Raykova. Distributed vector-ole: Improved constructions and
implementation. In Proceedings of the 26th ACM Conference on
Computer and Communications Security (CCS), 2019.

[ST19] Nigel P. Smart and Younes Talibi Alaoui. Distributing any elliptic
curve based protocol. In IMA International Conference on Cryptog-
raphy and Coding, 2019.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang.
Ferret: Fast extension for correlated OT with small communication.
In Proceedings of the 27th ACM Conference on Computer and Com-
munications Security (CCS), 2020.

74


	Introduction
	A Brief History of Threshold ECDSA
	Our Approach and Contributions

	Preliminaries
	Notation
	Security and Communication Model
	The ECDSA Signature Scheme

	t-Party Three-Round Threshold ECDSA
	Building Blocks
	The Basic Three-Round Protocol
	Pipelining and Presigning
	Comparison to DKLs19
	Two-Party Two-Message ECDSA

	Proof of Security for t-Party ECDSA
	Random Vector OLE from Random OT
	One-Message SoftSpokenOT in the ROM

	Proof of Security for OT-Based VOLE
	Simulating Against Alice
	Simulating Against Bob

	Relaxed Threshold Key Generation
	The Protocol
	Proof of Security

	Analytical Efficiency
	Oblivious Transfer
	Our VOLE
	VOLE from HMRT22
	Our Key Generation and ECDSA Protocols
	Concrete Results

	A Two-Round Protocol for Honest Majorities

