
SDitH in the QROM

Carlos Aguilar-Melchor1, Andreas Hülsing2⋆, David Joseph1,
Christian Majenz3⋆⋆, Eyal Ronen4⋆ ⋆ ⋆, and Dongze Yue1

1 SandboxAQ, Palo Alto, USA, firstname.lastname@sandboxaq.com
2 Eindhoven University of Technology, The Netherlands, andreas@huelsing.net

3 Technical University of Denmark, Kgs. Lyngby, Denmark, chmaj@dtu.dk
4 Tel Aviv University, Tel Aviv, Israel, eyal.ronen@cs.tau.ac.il

Abstract. The MPC in the Head (MPCitH) paradigm has recently led to significant improvements
for signatures in the code-based setting. In this paper we consider some modifications to a recent
twist of MPCitH, called Hypercube-MPCitH, that in the code-based setting provides the currently
best known signature sizes. By compressing the Hypercube-MPCitH five-round code-based iden-
tification scheme into three-rounds we obtain two main benefits. On the one hand, it allows us
to further develop recent techniques to provide a tight security proof in the quantum-accessible
random oracle model (QROM), avoiding the catastrophic reduction losses incurred using generic
QROM-results for Fiat-Shamir. On the other hand, we can reduce the already low-cost online part
of the signature even further. In addition, we propose the use of proof-of-work techniques that allow
to reduce the signature size. On the technical side, we develop generalizations of several QROM
proof techniques and introduce a variant of the recently proposed extractable QROM.

Keywords: Post-quantum cryptography, code-based signatures, provable security, SDitH, MPCitH,
QROM, QROM+, Fiat-Shamir.

1 Introduction
The advent of large scale quantum computers will render the security of virtually all public-key
cryptography that is deployed today obsolete [28]. While it is an ongoing debate if and when
such devices will be built (c.f., [18]) the potential impact would be so catastrophic, that betting
on this never happening is not an option. For that reason, NIST initiated a competition to select
future cryptographic standards for post-quantum secure signatures and key encapsulation, in
2016 [30]. In 2022, NIST selected of one KEM (Kyber) and three digital signature systems
(Dilithium, Falcon, SPHINCS+) as the end of the third round of the competition [29]. However,
the competition is not over, yet. While NIST is still about to select another KEM, there also
seem to be good candidates from coding-theory [3, 1, 4]. On the other hand, the situation
is worse for signatures. Dilithium [26] and Falcon [31] are both based on lattice-assumptions,
and SPHINCS+ [20] while solely relying on the security of a cryptographic hash function, has
significantly worse performance. Just before the selection, the last remaining candidates from
multivariate cryptography were fatally attacked [6]. Consequently, there is currently a lack of
signature proposals that are not based on lattice-assumptions and have good overall performance.
For that reason, NIST started an “on-ramp” process for new signature proposals.

A promising area for new signature proposals is code-based cryptography which dates back
to the work of McEliece [27]. Code-based cryptography grounds the security of construction in
the hardness of decoding problems, like the general decoding problem or the syndrome decoding
problem. Traditionally, code-based cryptography is rather well-known for public key encryption
schemes. Proposals for signature schemes have also been known for a long time [32] but have
⋆ Andreas Hülsing is supported by an NWO VIDI grant (Project No. VI.Vidi.193.066).

⋆⋆ Christian Majenz is supported by a NWO VENI grant (Project No. VI.Veni.192.159).
⋆ ⋆ ⋆ Eyal Ronen is partially supported by Len Blavatnik and the Blavatnik Family foundation, the Blavatnik ICRC,

and Robert Bosch Technologies Israel Ltd.

https://orcid.org/0000-0003-2745-884X
https://orcid.org/0000-0003-2215-4134
https://orcid.org/0000-0002-6040-4061
https://orcid.org/0000-0002-1877-8385
https://orcid.org/0000-0002-6013-7426
https://orcid.org/0000-0002-8608-5046

2 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

never really been competitive. However, in recent years this area has received new interest with
several new schemes proposed, like WAVE [10], and, most recently, Syndrome-Decoding in the
Head (SDitH) [14]. SDitH is a new approach to code-based signatures that applies the MPCitH
approach [22] to the Syndrome Decoding Problem to build an identification scheme (IDS). The
latter is then turned into a signature scheme using the Fiat-Shamir heuristic [15]. MPCitH is a
well known approach in post-quantum cryptography (PQC). Picnic [33], one of the long-standing
contenders in the NIST competition was built on this approach. The SDitH authors manage to
show that applying the MPCitH concept to a coding theory problem enables one to achieve
better performance for the overall protocol. This performance has further been improved by a
recent work [2] that proposes what they call Hypercube-MPCitH, to amplify the soundness of
MPCitH in an efficient way, and apply it to the SDitH signature. We will call the resulting
scheme the Hypercube-SDitH scheme.

The works proposing SDitH and Hypercube-SDitH come with security proofs. However, these
security arguments only consider classical adversaries. This does not give a formal post-quantum
security guarantee, especially because they use the Random Oracle Model (ROM) which is
insufficient in that setting. An oracle modeling a hash function, a public primitive, needs to
permit quantum queries, as an attacker can implement a hash function on a quantum computer.
Hence the Quantum-accessible Random Oracle Model (QROM) was introduced [7]. It is now
common practice to provide a QROM proof for post-quantum security.

Our contribution. In this work, we present a security proof for (a minor modification of)
Hypercube-SDitH in the QROM. Our proof establishes the security of previously used param-
eters against quantum attacks at NIST security level 1 (the only parameter set considered for
Hypercube-SDitH so far). For our proof we revist the Hypercube-SDitH and SDitH construc-
tions. They build a 5-round IDS and turn this into a signature scheme. 5-round IDS are not
that well understood and results about, e.g., the Fiat-Shamir transform are often only given for
the canonical 3-round IDS. We notice that the IDS in both proposals can actually be viewed as
3-round IDS in the (Q)ROM.

On the one hand, this change in point of view increases the conceptual complexity of the
scheme in two ways: i) The 3-round IDS needs to be constructed to readily include any parallel
repetitions of the 5-round IDS. ii) While the 5-round IDS has statistical special soundness, the 3-
round IDS only has computational special soundness, requiring additional work to prove security.

On the other hand, the change in point of view has several benefits. First of all, it allows
making use of results for three-round IDS. In particular, a recent result about the security of
commit-and-open IDS in the QROM [11], which is only given for three-round schemes, applies
after a mild generalization. Second, for Hypercube-SDitH it was noticed that a huge part of the
signing cost is caused by operations that do not depend on the message. This enables an online-
offline trade-off in the sense of [13], where precomputation can be done during an offline phase
to speed up signing during the online phase when messages to be signed become available. That
way, it becomes easier feasible to deal with traffic peaks. With our observation, the balance shifts
even more and the online phase can be reduced to a mere assembly of a signature from previously
computed values. Finally, this enables a more modular proof than in previous approaches which
hopefully makes the result more accessible.

Why is the reduction to three rounds possible? The previous proposals need two challenge
rounds (and thereby five rounds total): one for a polynomial zero test that is used to proba-
bilistically verify that the syndrome known by the prover / signer has low weight, and one for
MPCitH. However, the first challenge is not necessary to achieve zero-knowledge. One indication
for this is that the proofs in [14, 2] allow to extract a syndrome from two valid transcripts that
agree in the initial three messages but differ in the fourth (the second challenge). In our analysis

SDitH in the QROM 3

we proceed in two Fiat-Shamir steps. First, we make the polynomial zero test non-interactive.
This step is secure unless an adversary can solve a certain random oracle search problem that we
characterize in the ROM as well as in the QROM. This step leads to the advertised 3-round IDS.
More precisely we prove a reduction from a family of computational special soundness properties
of the 3-round IDS to a family of QROM oracle search problems. The second step constructs
a digital signature. We thus analyse (some form of special) soundness and honest-verifier zero
knowledge (HVZK) of the three round IDS. Based on these properties, we prove UF-CMA-security
of the Signature scheme.

As mentioned, the QROM proof we obtain is clean and modular. We analyze HVZK in the
multi-transcript setting, necessary when considering computational in place of statistical HVZK
as is the case in Hypercube-SDitH. We prove security of the now non-interactive polynomial
test. For this, we apply recent QROM lower bound methods by Chung, Fehr, Hsuan and Liao [9]
based on Zhandry’s compressed oracle technique [34]. We then prove a computational version of
special-soundness in the QROM. Next, we develop a generalization of the recent result of [11] to
the case of computational special soundness, and apply them towards security for Fiat-Shamir
transformed IDS under no-message attacks. For this last step we introduce the QROM+, a model
similar to the extractable QROM as recently defined in [19] (which maybe of independent inter-
est), and develop an extension of the techniques from [9] to the QROM+. The QROM+ serves
as a proof tool: it allows us to generalize a common, modular proof strategy, where intermedi-
ate algorithms require to learn the preimages of certain queries to the QROM. To eventually
obtain a security bound that does not refer to the QROM+, we prove an explicit bound for
the adversarial advantage against computational special soundness in the QROM+. Finally, we
extend the result to security under chosen message attacks using the adaptive reprogramming
technique from [17].

Besides the change in point of view that allows for improved analysis including a QROM
proof, we also make some actual modifications to the scheme. We note that we can optimize
the computation cost without increasing the signature size. This is done in a counter-intuitive
way: it turns out that by increasing the communication cost of the IDS sending certain data
in the clear instead of just a commitment, we can reduce the signing cost. The considered
data are the communication transcripts and final outputs of the MPC parties which will all be
revealed eventually. We assume that this information was previously sent in committed form to
optimize communication cost of the IDS. However, as the data is recomputable from the opening
information provided in the last message, it does not have to be included in this first message.
As a side effect, this simplifies the structure of the protocol and the security proof.

Finally, we present performance numbers of our proposed signature scheme. The total signa-
ture times are comparable to the original Hypercube-SDitH, but most of the computational cost
is moved from online time to offline time. In addition, we also show that it is possible to make
use of a proof-of-work (PoW) technique similar to the recently proposed SPHINCS+C in [24]
to decrease signature sizes by minimally increasing signing and verification times.

Outline. We discuss the identification scheme in Sec. 2, including necessary background, a
summary of the ideas behind SDitH, and Hypercube-SDitH (A table of symbols is available
in the Supp.Mat. A). We analyze the security of the IDS in Sec. 3. In Sec. 4, we discuss the
signature scheme and its security. Finally, in Sec. 5 we provide performance results and the PoW
trick.

4 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

2 SDitH as a 3-Round Identification Scheme
In this section we present SDitH and the hypercube variant thereof as a three round, public coin,
commit and open identification scheme (IDS). We first provide background on the cryptographic
tools used in our construction. Afterwards, we give a high level intuition of the scheme, before
we end with a detailed, modular description of the IDS.

2.1 Preliminaries
In the following we provide the definitions for a PRG, a TreePRG, commitments, and identifi-
cation schemes. At the end of the section we introduce the syndrome decoding problem we use
as hardness assumption.

PRG. A pseudorandom generator (PRG) is an efficiently computable function PRG : {0, 1}n →
{0, 1}en where e is the expansion factor. Security of a PRG is defined in terms of a real-or-random
game. The advantage of a possibly quantum adversary A is defined as

AdvrorPRG (A) := |Pr[x← {0, 1}en : 1← A(x)]− Pr[x← {0, 1}n : 1← A(PRG(x))]| .

TreePRG. In this work we make use of a specific PRG called TreePRG, initially proposed by
Goldreich, Goldwasser, and Micali [16]. TreePRG makes use of a standard PRG with expansion
factor e = 2 and reaches e = 2λ building a binary tree of height λ. The root of the tree is the input
and the leaves are the outputs. To build the tree, every inner node is fed to PRG to generate its
two child nodes. Let Outi denote the ith leaf / output block of TreePRG. We define as TP.extract
the function that given a seed x and an index i returns the sibling path for Outi, i.e., the minimal
set of inner nodes that allows to compute all Out values except Outi. For our construction we
require that Outi is pseudorandom even when given the output of TP.extract(x, i). We define an
even stronger notion as it is easily achievable: For a possibly quantum adversary A we define
the advantage against TreePRG as

AdvrorTreePRG (A) :=
∣∣∣Pr[{xj}λj=0 ← ({0, 1}n)λ : 1← A({xj}λj=0)]

− Pr[x, y ← {0, 1}n : 1← A(TP.extract(x, i),Outi))]| .

A standard hybrid argument can be used to show that AdvrorTreePRG (A) ≤ (λ − 1)AdvrorPRG (B)
where TIME(B) ≤ TIME(A) + (λ − 1)TIME(PRG): One replaces the outputs on the path to
leaf i by random values, one by one. The beginning is the real case (right probability above).
Once all outputs on the pathare replaced, we get the random case (left probability above). The
computational distance between any two consecutive hybrids is bounded by AdvrorPRG (B) where
B replaces the outputs where the two hybrids differ by its input and then runs A.

Com. In this work we consider only hash-based commitments. Hence, we define commitment
scheme as an algorithm Com that given an input x and randomness ρ ∈ {0, 1}r produces a
commitment com = Com(x; ρ) ∈ {0, 1}c. We make the randomness explicit as given (com, x, ρ)
everybody can check that indeed com = Com(x; ρ). From our commitment schemes we require
two properties: binding and hiding.

We define the advantage of a possibly quantum adversary A against the computational
binding property of Com as

AdvbindCom (A) := Pr[((x1, ρ1), (x2, ρ2))← A : Com(x1; ρ1) = Com(x2; ρ2)].

SDitH in the QROM 5

We define the advantage of a possibly quantum adversary A against the computational hiding
property of Com as

AdvhideCom (A) :=
∣∣∣Pr[((x1, x2)← A; ρ← {0, 1}k : 1← A(Com(x1; ρ)]

− Pr[((x1, x2)← A; ρ← {0, 1}k : 1← A(Com(x2; ρ)]
∣∣∣ .

2.1.1 Identification Schemes.

In this work we are concerned with 3-round, public coin, commit and open identification schemes
which we will denote by IDS. An IDS is an interactive protocol between a prover P and a verifier
V. It is defined by a tuple of algorithms (Keygen,Commit,Resp,Vrf) and a challenge space C.
Prior to any interaction, Keygen is run and outputs a key pair (pk, sk). A protocol run starts
with P running (st,w)← Commit(sk). The commitment message w is sent to V which samples a
challenge c from the uniform distribution over C and sends it to P. Upon receiving c, the prover
P runs z ← Resp(st, c) and sends z to V. The verifier accepts if Vrf(pk,w, c, z) = 1 and rejects
otherwise.

The transcript of a run of the IDS is the tuple (w, c, z) of messages exchanged. We are
only interested in IDS that are correct, i.e., for any key pair output by Keygen, we want that
the execution of IDS between honest P and V always accepts. A property that can be handy
when turning IDS into signatures is that of commitment-recoverable IDS. An IDS is commitment
recoverable if there exists an algorithm Rcvr, such that for any valid transcript (w, c, z), we have
Rcvr(c, z) = w.

We expect IDS to provide two security propertes which are defined below.

HVZK. The most commonly used version of honest-verifer zero-knowledge (HVZK) is the sta-
tistical version. This version has the advantage that it trivially also gives a bound for multiple
transcripts. However, in our setting where we use hash-based commitments the amount of com-
mitment randomness required to achieve statistical HVZK in place of computational HVZK is
greater by a factor 2.5 as shown in [25]. This has a huge impact on signature size and so we aim
only at computational HVZK. As pointed out in [17], deriving a bound for HVZK of multiple
transcripts is not straight-forward when in the computational setting. Hence, we directly prove
multiple transcript, computational HVZK below. To define this property, we first have to define
an honest transcript generator Trans and an HVZK simulator Sim. In our definitions we closely
follow [17] as we later use the HVZK property in a result of that work.

Definition 1 (HVZK simulator and honest transcript generator). An HVZK simulator
for IDS is an algorithm Sim that takes as input the public key pk and outputs a transcript (w, c, z).
An honest transcript generator for IDS is an algorithm Trans that takes as input the secret key
sk and outputs a transcript (w, c, z) by means of an honest execution of IDS.

Based on this definition we can define computational t-HVZK of an IDS as follows:

Definition 2 (Computational t-HVZK). We define the advantage of a possibly quantum
adversary A against the computational t-HVZK of IDS with simulator Sim, making no more than
t queries to its (transcript-)oracle as

Advt−HVZK
IDS,Sim (A) :=

∣∣∣Pr[(pk, sk)← Keygen() : 1← ASim(pk)(pk)]

− Pr[(pk, sk)← Keygen() : 1← ATrans(sk)(pk)]
∣∣∣ .

6 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

Special Soundness. Also for special soundness (spS) we slightly deviate from the common
definition. The reason is again that statistical special soundness would be too expensive in terms
of signature size (requiring length preserving commitments). Moreover, as we turn the five- into
a three-round protocol it becomes inherently impossible to achieve statistical special soundness:
the polynomial test can now be cheated by solving a search problem for the hash function.
Bounding the hardness of this search problem will be a large part of the spS-proof.

It turns out that we need an even more fine-grained notion of special soundness as we are
considering a τ -fold parallel-composition of some basic IDS’. Looking ahead, in the case we are
interested in, IDS is the parallel repetition of the five-round identification scheme considered in
[2], with the Fiat-Shamir transform for proof systems applied to the first three rounds. As an
abstraction of this parallel composition, we say IDS has a splittable challenge if a challenge c
of IDS has form c = (c1, . . . , cτ), where ci are challenges of IDS’. We let the distance between
two IDS challenges Dist(c1, c2) as the number of IDS’ challenges on which they disagree, i.e., the
number of indices 1 ≤ i ≤ τ for which (c1)i 6= (c2)i.

Definition 3 ((Query-bounded) distance-d special soundness for IDS with splittable
challenge). We define the advantage of a possibly quantum adversary A against the query
bounded special soundness of a composed IDS with respect to extractor Ext in the (quantum-
accessible) random oracle model as follows

Advd−spSIDS,Ext (A) :=Pr[(sk, pk)← Keygen(); ((w1, c1, z1), (w2, c2, z2))← ARO(pk);

sk′ ← ExtRO((w1, c1, z1), (w2, c2, z2)) : Vrf(pk,wi, ci, zi) = 1, i ∈ {1, 2}
∧ (w1 = w2) ∧ d = Dist(c1, c2) ∧ (sk′, pk) 6∈ Keygen()],

where q is the maximum number of queries that A makes to RO and we consider it understood
that in this case all IDS algorithms may depend on RO.

Syndrome Decoding. The hardness assumption that we use in this work is that of the Coset
Weights variant of the Syndrome Decoding (SD) problem, shown to be NP-complete [5].

Definition 4 (Coset Weights Syndrome Decoding problem). Sample a uniformly random
parity check matrix H ∈ F(m−k)×m

SD , and binary vector x ∈ Fm
SD with wt(x) = ω. Let syndrome

y = Hx. Then given only H,y, it is difficult to find x′ ∈ Fm
SD such that Hx′ = y with wt(x′) ≤ ω.

Furthermore, for cryptographically relevant parameters, with overwhelming likelihood there
exists only one short preimage of weight ≤ ω, and that is the x sampled initially.

2.2 SDitH and the hypercube approach
In the following we summarize the previous works that we build on. We first briefly sketch the
MPC in the Head (MPCitH) paradigm [22]. Then we discuss the work syndrome decoding in
the head [14], and finally a recent extension to that work called the hypercube approach [2].

MPCitH. The MPCitH approach is a technique to build a zero-knowledge proof (ZKP) by
simulating an MPC computation in the head and building on the security properties of the
MPC protocol. More precisely, MPCitH can be used to prove knowledge of some x such that
F (x) = ACCEPT for a function F that outputs either ACCEPT or REJECT in zero-knowledge.
Roughly, the protocol works as follows. The input x is secret shared among all parties (we limit
ourselves here to additive secret sharing over a finite field) and the MPC protocol is used to
evaluate F on this shared x. For this the MPC protocol would exchange messages between

SDitH in the QROM 7

parties to implement multiplications of secret shared data while linear operations can be done
locally by every party on their shares. Finally, all parties output their secret share of the result
which can be summed up to get the result.

To turn this into a ZKP, in MPCitH the prover P first does the secret sharing and then
executes the MPC protocol for all parties to compute the communication transcript of in- and
outgoing messages for each party, as well as the secret share of the result. Then, P commits to the
view of all parties which contains the initial secret share, their random tape, and communication
transcripts. The commitments together with all secret shares of the result are sent to the verifier
V. In response, V sends a random number i between 1 and t. As last message, P then sends
the openings for the views of all parties but the ith. (We limit ourselves to the case where all
but one state are opened. In general, less than t− 1 parties might be opened.) For verification,
V checks the views of all opened parties, making sure that the communications agree with the
initial state and both together lead to the secret share of the result for this party.

Intuitively, zero-knowledge is obtained due to the privacy of the MPC protocol and one
party not being opened. Soundness is obtained by the correctness of the MPC protocol, and
the observation that a P that does not know x can at most compute t − 1 consistent views.
Consequently, the view of one party has to be inconsistent which is observed by V with probability
1− t−1.

SDitH. In [14], an application of MPCitH to the syndrome decoding problem is proposed.
Intuitively, it is clear that we can use MPCitH to prove knowledge of an x such that Hx = y
setting F (x) := Hx − y and defining 0 to indicate ACCEPT and any other value to indicate
REJECT. The problem is that this does not guarantee that wt(x) ≤ ω.

The crucial novelty in [14] is to overcome this problem by proposing a weight check routine
which we describe in detail later. Roughly, this routine computes a polynomial S from x as well
as some other polynomials Q,P, and F such that S ·Q−P ·F = 0 iff wt(x) ≤ ω. This equation
is then probabilistically checked on a set of random points, chosen by the verifier (which makes
their protocol five-round). To avoid running two MPCitH instances, the authors link the two
as follows. They consider only H = (H′|I) given in standard form. This means, one can split
x = (xA|xB) such that y = H′xA+xB. Exploiting this, they store only xA as secret and start the
weight check routine by recomputing xB = y−H′xA, and then deriving S from the recombined
x = (xA|xB). Thereby, this extended weight check also verifies that Hx = y.

The final protocol is then obtained applying MPCitH to F being the extended weight check
function that starts with xA. The protocol deviates from the basic MPCitH recipe as it also
obtains the random evaluation points from V. For this, P generates the initial secret shares of
xA, Q, and P (F is public and the secret share of S is derived from the secret share of xA).
It commits to all of this and sends it to the verifier that responds with the random evaluation
points (and some values necessary to deal with multiplication of shares). Then P can simulate
the MPC computation of F and the protocol from there on follows the standard MPCitH receipt.

A standard optimization. One way to reduce the size of the opening information above is
based on the properties of additive secret sharing. Namely, the initial state of all parties consists
of a secret sharing of the secret x and in case of SDitH also of some secret sharings of further
values (the polynomials Q, and P , as well as values needed to do multiplication of shares).
Generation of the secret shares in additive secret sharing can be done by picking the first t− 1
shares at random and then computing the final share as the difference of the shared value and
the sum of the t− 1 shares. The first t− 1 shares can hence be replaced by short random seeds
which are expanded to the full shares using a PRG. These seeds can be bitstrings of the length
of the security parameter while the secret shares in the above protocols are significantly longer.

8 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

Given that we commonly send the shares together with the commitment randomness as opening
information, this massively reduces communication cost as we now only have to send the seeds
to open parties 1 to t− 1. Only for party t we are unable to compress the opening information.
We call this the auxiliary state aux.

A further way of optimizing communication cost can be achieved using TreePRG. Instead
of sampling t − 1 random seeds for the initial secret sharing, these seeds are generated using
TreePRG. This allows to open all seeds with log2(t − 1) values and if i 6= t (using TP.extract)
and with just a single value in case i = t (in the former case we still have to send along the full
auxiliary state aux to open that one). This reduces the biggest part of the communication cost
from linear in the number of parties to logarithmic.

Hypercubes. In a recent work [2], an improvement to the SDitH protocol is proposed that
allows to boost soundness in a size efficient way. The protocols above have a soundness error of
1/t. To achieve a negligible soundness error, we require amplification. There are two common
ways to go for a soundness error of t−τ : First, we can simply increase the number of parties to tτ

which comes with an exponential increase in runtime and communication cost but the number
of aux states remains the same. Second, we can run τ iterations of the protocol in parallel at
the cost of a τ fold increase in communication, especially, we get τ aux states, but also only a
τ fold increase in runtime (compared to the exponential increase).

The improvement proposed in [2] is the hypercube approach. The idea is to generate an
ND secret sharing of the initial state values, i.e., all the values that are secret shared for the
initial states of parties. This means we get a single auxiliary state. Then, these shares are used
to create D instances of the MPC protocol with N parties each. For each of these D instances,
they partition the ND shares into N subsets of D shares each and recombine the secret shares
in each subset by summing them up. This recombination results in N secret shares of the shared
values, i.e., the initial states of N parties necessary for the MPC protocol. This is related to a
hypercube as the partitioning is done by arranging the original ND shares in a hypercube and
for each of the D partitions we recombine by projection onto one of the D dimensions. The
protocol essentially then runs the SDitH protocol for D instances with a few little differences.
First, P commits to all the ND initial shares independently instead of committing to the shares
of the parties in the actual MPC protocol. This is intuitively fine as P thereby still commits
to all the information. Second, V still only picks one index i now between 1 and ND. Then P
opens all secret shares of the original ND shares except share i (which is possible because of
the independent commitments). Due to the properties of the partitioning and the secret sharing
scheme, this means that in each protocol instance, there is one party for which the initial state
remains unopened as one share is lacking for the partial recombination.

All in all, this approach allows us to achieve the best of both worlds: We get the soundness
error N−D at computational and communication cost of parallel composition (D parallel repe-
titions of the N party protocol), while we get just one auxiliary state as if we had increased the
number of protocol parties to ND (as pointed out in [2], there are more computational improve-
ments possible when looking at the details, like balancing the party preparation phase and the
MPC phase; for those we refer to [2]).

2.3 Polynomial zero test

In the identification schemes presented here, the prover P gives a zero knowledge proof (ZKP)
that he knows a solution x ∈ Fm

SD to the syndrome decoding problem,i.e., such that Hx = y
with wt(x) ≤ ω. In order to do this, P constructs four polynomials S,Q, P, F in Fpoly[X] which

SDitH in the QROM 9

should satisfy the relation S ·Q = P · F , and the ZKP proceeds by checking the relation is true
at various points in a space Fpoints ⊇ Fpoly.

Let ϕ : FSD → Fpoly be the canonical embedding. Then S is computed by interpolating
over the coordinates of x. That is, S(fi) = ϕ(xi) where fi runs over the first m elements of
Fpoly, so deg(S) ≤ m − 1 as S is the interpolation over the m coordinates of x. Next, Q is∏

fi∈E(X − fi), where E is a set of order ω which contains the nonzero coordinates of S. Thus,
the nonzero points of S are all roots of Q[X] which has degree ω. Polynomial F is public, and is
F [X] =

∏
[m](X − fi), meaning it has roots everywhere in the first m coordinates of Fpoly. And

finally, P is defined as S ·Q/F , in order to ensure that both sides of the relation have the same
degree, which is ≤ m+ ω − 1.

Checking the polynomial is not done by directly checking the polynomials, but implicitly
by checking that the polynomial relation is true at several points r ∈ Fpoints. This is because if
two polynomials are equal, then they will be equal at every point at which they are evaluated,
however if they are not equal, then it becomes increasingly unlikely that they will be equal if
we check them at an increasing number t of randomly selected points, by the Schwarz-Zippel
lemma [14]. When selecting points at which to evaluate the polynomials, we draw from a larger
domain Fpoints ⊇ Fpoly, in order to make it harder to find points at random where non-equivalent
polynomials coincide.

In summary, when evaluated on the first m coordinates of Fpoly, S has zeros everywhere
except the ω nonzero coordinates of x; Q has zeroes everywhere that S does not by construction,
F has zeroes everywhere, and P serves to make left and right hand sides equal. Any party that
knows a valid solution to the Coset Weights SD problem can therefore build polynomials S,Q, P
that satisfy this relation. Note that a party who can solve the SD problem and finds x′ such
that wt(x′) < ω would also be able to construct a valid but different set of S,Q, P .

2.4 Protocol formulation
SDitH and Hypercube-SDitH are presented as five round IDS. Here we give a description as
three-round IDS. The advantage of observing that they can be turned into three-round IDS, is
threefold. First, it reduces the number of interactions between parties. Second, when turning it
into a signature scheme using the Fiat-Shamir transform, we can apply the tight QROM proof
recently introduced in [11] which only applies to three round IDS. Third, more of the computation
done during signature generation is independent of the message, thus can be precomputed.
Indeed, the required online computation consists merely of computing a hash and assembling a
message from the local state.

In the following we describe the protocol in terms of the different steps it encompasses. For
a full picture of the protocol see Algorithms 1 and 2. We give our description for τ = 1 and
explain a detailed change to the standard parallel compoisition for τ > 1 afterwards.

Parameters. Hypercube-SDitH has the following building blocks and parameters. The seed
length for the used PRG is n. We assume that PRG can produce an arbitrary number of n byte
output blocks and we truncate to the required amount. Commitments take r bits of randomness
and produce commitments of length c. It uses a hypercube of dimension D and N parties per
MPC computation. We use parallel composition of τ instances to reduce the soundness error.
Finally, the parameters of the syndrome decoding problem are m, k, and ω.

Key Generation. Prover P samples H′
$← F(m−k)×k

SD and x
$← Fm

SD,ω where Fm
SD,ω is the set of

all elements a ∈ Fm
SD with wt(a) = ω. It splits x = (xA|xB) with xA ∈ Fm−k

SD,ω and sets sk = xA.
Then it computes y = (H′|Im−k)x and sets pk = (H′,y).

10 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

Algorithm 1 3-round Hypercube-SDitH – Part 1: P.Commit

Algorithm P.Commit:
Input: Secret key sk = xA ∈ Fm−k

SD .
Output: Commitment message w (For simplicity we keep st implicit).

Set-up:
1: Choose E ⊂ [m] such that |E| = w and the non-zero coordinates of x are in E.
2: Compute Q(X) =

∏
i∈E(X − γi) ∈ Fpoly(X).

3: Compute S(X) ∈ Fpoly(X) by interpolation over the coordinates of x.
4: Compute P (X) = S(X) ·Q(X)/F (X) with F (X) ∈ Fpoly(X) s.t. F (X) =

∏m
i=1(X − γi).

5: Sample a root seed: seed← {0, 1}λ.
6: Expand root seed seed recursively using TreePRG to obtain ND leafs seed′i which are further expanded to

(seedi, ρi)← PRG(seed′i), 0 ≤ i < ND

7: The index of a main party is (k, j) ∈ {0, . . . , D− 1}×{0, . . . , N − 1} and contains all leaf parties i whose k-th
coordinate is j when i is represented as radix N integer.

8: for each party (k, j) ∈ {0, . . . , D − 1} × {0, . . . , N − 1} do
9: Set [xA](k,j), [Q](k,j), [P](k,j), [a](k,j), [b](k,j), and [c](k,j) to zero.

Expand leaf party seeds and commit:
10: for each leaf i ∈ {0, . . . , ND − 1} do
11: if i ̸= ND − 1 then
12: (JaKi, JbKi, JcKi, JxAKi, JQKi, JP Ki)← PRG(seedi)
13: statei = seedi
14: else
15: JaKND−1, JbKND−1 ← PRG(seedND−1), JcKND−1 = ⟨a, b⟩ −

∑
i ̸=ND−1JcKi

16: JxAKND−1 = xA −
∑

i ̸=ND−1JxAKi
17: JQKND−1 = Q−

∑
i ̸=ND−1JQKi, JP KND−1 = P −

∑
i ̸=ND−1JP Ki,

18: aux = (JxAKND−1, JQKND−1, JP KND−1, JcKND−1), and stateND−1 = seedND−1||aux
19: Leaf parties commit to their state comi = Com(statei, ρi).
20: Compute w1 = Hash(com0, . . . , comND−1).

Derive evaluation points and masks:
21: P derives t challenge points r ∈ Fpoints and masks ϵ ∈ Fpoints from commitment hash: {r, ε}t−1

0 = PRG(w1).
Build main parties:

22: for Dimension k ∈ {0, . . . , D − 1} do
23: for Main party j ∈ {0, . . . , N − 1} do
24: Let (i1, . . . , iD) be the radix N representation of i.
25: Let S be the set of leaf parties with ik = j.
26: [xA](k,j) =

∑
i∈SJxAKi, [Q](k,j) =

∑
i∈SJQKi, [P](k,j) =

∑
i∈SJP Ki

27: [a](k,j) =
∑

i∈SJaKi, [b](k,j) =
∑

i∈SJbKi, [c](k,j) =
∑

i∈SJcKi
Execute MPC protocol:

28: for Dimension k ∈ {0, . . . , D − 1} do
29: Execute MPC protocol (Algorithm 6) between the main parties (k, 1), . . . , (k,N) to

compute communication and result shares {[α](k,j), [β](k,j), [v](k,j)}
N−1
j=0 .

30: Set w2 =

{{
[α](k,j), [β](k,j), [v](k,j)

}N−1

j=0

}D−1

k=0

, and send w = (w1,w2) to V.

SDitH in the QROM 11

Algorithm 2 3-round Hypercube-SDitH – Part 2: V.Challenge, P.Resp, V.Vrf
Algorithm V.Challenge:

Input: Commitment message w.
Output: Challenge c.
1: V samples c

$← {0, . . . , ND − 1} and sends it to P.
Algorithm P.Resp:

Input: Commitment message w, challenge c (and internal state st that we left implicit).
Output: Response z.
2: Run the local computations of Algorithm 6 using the shares of leaf party c to obtain its contribution to the

overall communication (JαKc, JβKc).
3: P sets z = (TP.extract(seed, c), comc, (JαKc, JβKc), adds aux if c ̸= ND − 1 and sends it to V.

Algorithm V.Vrf:
Input: Public key pk = (H′,y) ∈ F(m−k)×k

SD × F(m−k)
SD , commitment message w, challenge c and response z.

Output: Decision (ACCEPT/REJECT).
4: for i ∈ ({0, . . . , ND − 1} \ c) do
5: Compute (statei, ρi) from z using TreePRG.
6: Compute com′

i = Com(statei, ρi).
7: Compute w′

1 = Hash(com′
0, . . . , comc, . . . com

′
ND−1).

8: for (k ∈ {0, . . . , D − 1}) do
9: Run Alg. 7 on inputs derived from {statei}N

D−1
i ̸=c,i=0, (JαKc, JβKc),

and {r, ε}t−1
0 = PRG(w1) to get

{
[α′](k,j), [β

′](k,j), [v
′](k,j)

}N−1

j=0
.

10: if (w′
1,w

′
2) ̸= w where w′

2 =

{{
[α′](k,j), [β

′](k,j), [v
′](k,j)

}N−1

j=0

}D−1

k=0

then return REJECT.

11: return ACCEPT.

Generating leaf parties. The prover P first generates the polynomials S,Q, P as explained
above. Then it creates a secret sharing for each of them as follows. P first picks a fresh random
seed and generates shares for all ND leaf parties using TreePRG to generate (statei, ρi) which
are the leaf’s seed, and its commitment randomness. From statei, the prover then derives the
ith share of each of the polynomials JSKi, JP Ki, JQKi, as well as its share of the Beaver tripleJaKi, JbKi, JcKi using PRG to expand statei. For the auxiliary party (i = ND−1), the secret share
is then computed such that the shares sum up to the right values. This share is then appended
to the auxiliary party’s statei. Then P commits to each state: comi = Com(statei, ρi).

Building main parties. Next the prover builds the main parties for the MPC computations.
The prover runs D MPC computations. For this, [2] aggregates the secret shares of the ND leaf
parties into an N party protocol in D different ways. This is done using D different partitions
of the ND leaf parties.

The partitions are computed as follows. First the index i of a leave party is turned into a vec-
tor of D values, the hypercube representation, taking its radix N representation i = (i0, . . . , iD−1).
The leaf parties that are summed up to form the share of the j-th main party of the k-th MPC
instance are those parties for which ik = j. For K = 1, i.e., considering the first hypercube
index, one obtains an N party MPCitH protocol, where the first party is the aggregation of all
leave parties of the form (0, i1, . . . , iD−1), the second contains leaves of the form (1, i1, . . . , iD−1),
and so on. This process is repeated for each of the D dimensions of the hypercube, giving D
independent N -party MPCitH protocols.

Evaluation points. The next step is generating the points for validating the polynomial
relation S ·Q = P ·F , the objective of which is for the prover to demonstrate that the preimage
x they know for the syndrome decoding problem y = Hx has low weight, i.e. wt(x) ≤ ω. To

12 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

that end, points rj ∈ Fpoints and masks ϵj for j = 0, . . . , t − 1 are sampled. Then for each j,
S(rj), Q(rj), P (rj), F (rj) are computed via MPC and the identity S(rj) ·Q(rj) = (P · F) (rj) is
checked probabilistically via an MPC protocol using the mask ϵj .

In the five-round IDS of [2] and [14], the evaluation points and masks are selected at random
by the verifier as the first challenge. However in the three round scheme we present here, the
evaluation points are derived from the transcript of the previous steps that have occurred up to
that point, i.e. they are generated by expanding the hash of the commitments w1 using PRG.

MPC operations. At this stage P has all the information required to perform the MPC
operations - the inputs being the shared main party polynomials evaluated at the challenge
points to give [s], [q], [pf]. Beaver multiplication is then performed to verify the triple s, q, pf
by sacrificing the Beaver triple a, b, c, as defined in Figure 3. This creates the communication
shares [α], [β], [v]. In each of the D dimensions k ∈ D the prover runs Γ on each set of main
party inputs, resulting in communication and output shares {[α](k,j), [β](k,j), [v](k,j)}

N−1
j=0 . This

is repeated for each of the D dimensions of the hypercube, and all communications. Note that
for honest P, vk = 0 for all k ∈ {0, . . . , D − 1}.

Challenge. P sends the commitment hash w1 together with all the communication and main

party sharings w2 =

{{
[α](k,j), [β](k,j), [v](k,j)

}N−1

j=0

}D−1

k=0

to V. The MPCitH challenge is then

randomly sampled by the verifier and returned to the prover. This challenge is interpreted as an
index c of one of the ND leaf parties that does not need to be opened.

Response. P opens the views of all leaf parties except for c, by sending (statei, ρi). This is
done more efficiently using TP.extract(seed, c) to extract the sibling path path for leaf c from
TreePRG and sending this instead. The prover also sends the initial commitment comc and
communications (JαKc, JβKc) for the hidden (leaf) party, and aux in case that c 6= ND − 1. Note
that the communication shares would not have to be sent for the IDS as they are already part
of w. However, we send them as we want Hypercube-SDitH to be commitment-recoverable.

Verification. The verifier first recomputes the commitment hash w1 by computing commit-
ments {com′i}i ̸=c for each of the states of the ND − 1 leaf parties that have been revealed, and
then combining with comc to compute w′1.

Next the verifier expands the commitment hash to get the evaluation points and masks, and
compiles the polynomial shares for each of the main parties from the given state information.
Once this is done, they execute the MPCitH protocol on main parties as in the original SDitH
proposal [14] for each of the D dimensions k using JαKc, JβKc. Here we exploit that by linearity
of the calculations of [α] and [β] the communications of the main party k, i′k that contains the
unopened leaf party c can be computed by assembling the respective leaf party shares, and
that v = 0 when determine [v]k,ck . The final main party communications and output shares
{[α]k,j , [β]k,j , [v]k,j}

N−1
j=0 for each dimension k ∈ {0, . . . , D− 1} are then assembled to obtain w′2.

This part also represents the commitment recovery algorithm Rcvr for Hypercube-SDitH. The
final output is the result of the comparison (w′1,w

′
2)

?
= w.

Parallel composition (Π). In the above, we did describe the routines performed in the atomic
three round IDS (τ = 1), which takes soundness error ' 1/ND. In order to reach negligible
soundness error of 2−n one can repeat the IDS many times independently in parallel such that
(1/ND)τ ≤ 2−n.

SDitH in the QROM 13

However, we note here that since the evaluation points are generated offline by the prover,
it is possible to make the polynomial test harder to cheat by deriving the challenge points
from a hash of the commitments com from all τ parallel repetitions. Denote the τ -fold parallel
IDS as Π. Then to generate the challenge points/masking point pairs

{
{rji , ε

j
i}

t−1
i=0

}τ−1

j=0
we take

w1 = PRG ◦ Hash(com1, . . . , comτND−1), therefore the evaluation points for all τ repetitions
depend on the state commitments of all leaves in the entire τ -fold protocol Π.

3 Security of the 3-Round IDS
In this section we discuss the security of our IDS. We prove that the IDS is multi-transcript
honest-verifier zero-knowledge (HVZK) and has special-soundness. We begin with HVZK proving
the following theorem:

Theorem 1 (Honest-Verifier Zero Knowledge (HVZK)). The algorithm SimΠ shown
in Algorithm 3 is an HVZK simulator for Π such that for any quantum algorithm A in distin-
guishing TransΠ from SimΠ making at most qzk queries to its oracle there exist algorithms B–
distinguishing the outputs of TreePRG from random – and C– breaking the hiding property of
Com– which fulfill

AdvhvzkΠ,Sim (A) :=
∣∣∣Pr[1← ASimΠ]− Pr[1← ATransΠ]

∣∣∣
≤ qzkτ(Adv

hide
Com (C) + AdvrorTreePRG (B)),

where B and C run in time TIME(B) = TIME(C) = TIME(A) + TIME(Trans) respectively.

On a high level, our proof follows a sequence of game hops, where we slowly change the oracle
given to the adversary. We start with Trans, i.e., the honest execution of the protocol, in GAME0.
In the first hop, we switch the order of operations and sample the challenges first. This defines
GAME1. In GAME2, we replace the seed seedc and the commitment pseudorandomness ρc for
the commitments that remain unopened by truly random bits. To be consistent with TreePRG,
we also sample a random sibling path path which we use to derive the values for the opened
commitments. This whole change is only detectable up to a τ -fold distinguishing advantage
against TreePRG per oracle query. Next, we replace the state of the unopened parties by truly
random bits in GAME3. This is undetectable up to a τ -fold advantage against the hiding property
of the commitment scheme per oracle query. At this point, the distribution of the auxiliary state
(of party ND − 1) is independent of the sum of the other shares. Hence, in GAME4 we sample
that state uniformly at random. To preserve consistency of the communications, we compute
the communications of all opened parties using the original algorithm. Then we compute the
communication of the unopened parties to agree with these. At this point we don’t need the
secret key anymore and observe that the oracle in GAME4 corresponds to Sim. The full proof
can be found in Supp.Mat. D

We now move on to prove soundness of Π. Maybe not surprisingly, this is based on the
binding property of the used commitment and the soundness of the non-interactive polynomial
test which we prove first.

Soundness of the non-interactive polynomial test.

Here, we prove a query lower bound on the oracle search problem of finding inputs x, P and
Q that “cheat” on the polynomial test implemented as MPC computation in Commit of Π (c.f.,
Algorithm 1). More generally, we will show concrete query lower bounds for the family of search

14 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

Algorithm 3 HVZK simulator SimΠ (Simplified version [τ = 1])
Step 1: Sample challenge.

1: c← {0, . . . , ND − 1}.
Step 2: generate ND leaf party states and witness shares.

2: Sample sibling path path←$ {0, 1}n×log2 ND for leaf c and {(seedc, ρc)} ←$ {0, 1}n.
3: for i′ ̸= do
4: Generate {(seedi, ρi)} via TreePRG(path) and PRG.
5: if i′ ̸= ND − 1 then
6: Set statei = seedi.
7: Expand seedi into witness shares.
8: else
9: To generate aux for the last leaf party, i′ = ND − 1, randomly drawJxAKND−1, JQKND−1, JP KND−1, and JcKND−1.

10: Set stateND−1 = (seedND−1∥aux).
Step 3: generate leaf party commitments

11: for i′ ̸= c do Compute comi′ = Hash(statei′ , ρi′)

12: Draw comc at random.
13: Compute commitment hash w1 = Hash(com0, . . . , comi∗, . . . , comND−1).

Step 4: compute evaluation points
14: {rl, ϵl}tl=1 ← PRG(w1)

Step 5: generate party communications
15: Draw JαKc and JβKc uniformly at random from their respective domains.
16: for k ∈ {0, . . . , D − 1} do
17: Let the main party to which c belongs be (k, j∗)
18: for (k, j) ̸= (k, j∗) do
19: Compute communications [α]k,j∗ , [β]k,j∗ , [v]k,j∗ following Algorithms 1 and 6
20: for (k, j∗) do
21: Compute party communication shares [α]k,j∗ , [β]k,j∗ , [v]k,j∗ by running Π on the sum of the wit-

nesses of the ND−1 − 1 revealed leaf parties in main party (k, j∗), as described in Algorithm 1, then add onJαKc and JβKc
22: Set vc = −

∑
i′ ̸=cJvK.

Step 6: Output transcript ((w1,w2), c, z):
23: w2 = {{[α](k,j), [β](k,j), [v](k,j)}

D−1
k=0 }

N−1
j=0 , c = c

24: z = comc, {(statec, ρc) ∀ i ̸= c}.

problems where the goal is to cheat ℓ out of τ parallel repetitions of the polynomial test, where
the challenge points for all repetitions are generated by hashing all commitments together.

We begin by finding a more abstract formulation that is a common generalization of all
the mentioned problems of cheating (some of) the polynomial zero tests. To that end, let
P(P1, ..., Pnp) be a predicate on polynomials Pi ∈ Pi ⊂ Fpoly[X], i = 1, ..., np. The domains
Pi can be different for every polynomial and can, e.g., reflect degree limitations (e.g. for polyno-
mials P and Q in Π) or that a polynomial has been obtained via interpolation (e.g. for polynomial
S in Π). Let T = (T1, . . . , Tnt) be a list of test polynomials Ti ∈ R[X1, ..., Xnp], i = 1, ..., nt for
R = Fpoly[X] such that P(P) = 0 =⇒ Ti(P) = 0 for all i, where P = (P1, ..., Pnp) ∈ P =
P1 × P2 × . . . × Pnp .5 In addition, let M be a randomized algorithm that takes as input a
testing polynomial T , a tuple of polynomials P, an evaluation point r and a random masking
point ϵ ∈ E, with the purpose that if T (P)(r) 6= 0 then the probability that M outputs 0 is
small. We define the false-positive probability

pfpT,ℓ = max
P:P(P)=1

 Pr
r←Fnt

points

ϵ←Ent

[
|{i ∈ [nt]|M(Ti,P, r; ϵi) = 0}| ≥ ℓ

] , (1)

5 In our application, we only need Ti with coefficients in Fpoly ⊂ Fpoly[X].

SDitH in the QROM 15

Algorithm 4 Abstract non-interactive polynomial zero test for secret-shared polynomials T
Input: Secret-shared polynomials (statei, ρi)

nc
i=1, threshold ℓ

Output: Boolean value b ∈ {0, 1}.

state = (statei)
nc
i=1

P = R(state)
comi = Com(statei, ρi) for all i = 1, . . . , nc(
(ri,j)(i,j)∈[nt]×[t], (ϵi,j)(i,j)∈[nt]×[t]

)
= G((comi)

nc
i=1)

Perform zero checks:
count= 0
for i ∈ [nt] do

for j ∈ [t] do
if M (Ti,P, ri,j ; ϵi,j) = 0 then

count=count+1

b = 1
if count≥ ℓ then b = 0

return b

where the maximum is over P = (P1, ..., Pnp) such that Pi ∈ Pi. In words, this is the maximum
probability for any set of polynomials that doesn’t fulfil the predicate to pass a test where each
testing polynomials Ti is evaluated at a random point usingM, and at least ℓ of the results are
0.

In Round 1 of Π, P is secret shared. The secret shares of P are generated using a two stage
PRG structure, first using TreePRG to generate seeds seedi from a single root seed seed followed
by PRG to expand the seedi into secret shares, commitment randomness, and other objects
irrelevant here). The evaluation points and masks for the polynomial test are then derived
from the individual commitments to all seedi by hashing all these commitments together. This
complicates the analysis because this three-step process is not exactly indistinguishable from a
random oracle. We will not need the pseudorandomness properties to give a query bound for
our search problems. For this section it is sufficient to define two black box algorithms S, and
R which abstract away the generation of the secret shared values and their recombination as
follows:

S(P; seed) = (statei, ρi)
nc
i=1 and R(state) = P,

where we set state = (statei)
nc
i=1. Let S be such that (statei, ρi) ∈ S for all i, T a tuple

of testing polynomials for a predicate P, t a non-negative integer and Com : S → C and
G : Cnc → F2t·nt

points two hash functions modeling the commitment scheme and the use of PRG for
computing the challenge points and masks. We define the abstract non-interactive polynomial
zero test algorithm T in Algorithm 4.

We now model the hash functions Com and G as random oracles. The most natural oracle
search problem associated with the task of cheating the polynomial test in Algorithm 4 would be
to find inputs P and seed such that P(P) = 1, i.e., the predicate is not satisfied, yet P evaluates
to zero at the challenge points, i.e. running algorithm S followed by T (Algorithm 4) returns 0.
Unfortunately, a special soundness extractor for Π cannot solve this problem, as the root seed
is never revealed. A search problem that can be solved using a special soundness extractor for
the protocol in Algorithms 1 and 2 is to find (statei, ρi)

nc
i=1 such that for R(state) = P we have

P(P) = 1 but executing Algorithm 4 directly results in output b = 0. We are now ready to
define our search problem.

Definition 5 (Non-interactive polynomial zero test cheating problem). Let P,T, t be as
above. An oracle algorithm ACom,G with access to random oracles Com and G as above solves the

16 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

non-interactive polynomial zero test cheating problem CheatP,T,t,ℓ if it outputs o = (statei, ρi)
nc
i=1

such that P(R(o)) = 1 but TT,t(o, ℓ) = 0.

We first give a query bound for the case where A has classical oracle access only. In the
following, for O ∈ {Com, G}, let DO be the list of pairs (x,O(x)) for queries x made by A to its
oracle O. We overload the list symbols by writing

DO(x) =

{
y (x, y) ∈ DO

⊥ else.

Remark 1. We can now regard Com and G as domain-separated parts of the same random oracle
F . We assume that F has a sufficiently large output space F and introduce truncation functions
truncO such that Com = truncCom ◦ F |S and G = truncG ◦ F |Cnc . We let D be the query list
for F . The lists DO for O ∈ {Com, G} are obtained as sublists of D with truncO applied to all
outputs. In the following, we try to keep the notation lean by omitting the truncation functions.

Following [9] we call a predicate on query lists a database property. For database properties
P and Q, the classical transition capacity is defined as

[P → Q] = max
L:P (D)
s∈S∪Cnc

Pr
u←F

[Q(D ∪ (s, u))].

Here, D ∪ (s, u) denotes the query list D with the pair (s, u) added if D did not contain a pair
(s, y) yet. The proof strategy for the following theorems bears some similarity to the proof of
Lemma 4.1 in [11].

Theorem 2. Let ACom,G be an algorithm that makes qCom, and qG classical queries to its oracles
Com, and G, respectively and let q = qCom + qG. Then

Pr
o←ACom,G

[(P(R(o)) = 1) ∧ (T (o, ℓ) = 0)] ≤ (q + nc + 1)max

(
pfpT,ℓ, nc

qG
|C|

)
.

Proof. We denote by TD the variant of the zero test T where for O ∈ {Com, G}, any call to
the oracle O is replaced by a call to DO. If any such call outputs ⊥, TD outputs ⊥. Let ACom,G

be an algorithm as in the theorem statement. We define A′Com,G as follows. A′Com,G computes
o ← ACom,G, makes queries comi = Com(oi) and r = G(com1, . . . , comnc), and outputs o. Now
we have

Pr
o←ACom,G

[(P(R(o)) = 1) ∧ (T (o, ℓ) = 0)]

= Pr
o←A′Com,G

[(P(R(o)) = 1) ∧ (TD(o, ℓ) = 0)]

≤ Pr
o←A′Com,G

[∃o′ : (P(R(o′)) = 1) ∧ (TD(o′, ℓ) = 0)]. (2)

On an intuitive level the above inequality reflect the fact that the adversary A′ is guaranteed to
perform the test T on its own output, so if the test checks out, a combination of input-output
pairs which certifies the existence of a successful output can be found in the query list. The
event in the last probability expression defines the database property

Found(D) = (∃o′ : P(R(o′)) = 1 ∧ TD(o′) = 0).

SDitH in the QROM 17

Now let Di be the list of queries after A′ has been run until its ith query (of any kind). Clearly,
Found(Di) =⇒ Found(D). We thus get

Pr[Found(D)] =Pr[Found(Dq̃)]

=

q̃∑
k=1

Pr[Found(Dk) ∧ ¬Found(Dk−1)]

≤
q̃∑

k=1

[¬Found ∧ (|D| ≤ k − 1)→ Found], (3)

where the right hand side represents the sum of transition probabilities, and

q̃ = q + nc + 1. (4)

It remains to bound the transition capacities in the sum. For this we now make a case distinction.
Setting P = ¬Found ∧ (|D| ≤ k − 1), we have

[P → Found] = max
D:P (D)
s∈S∪Cnc

Pr
u←F

[Found(D ∪ (s, u))]

=max
(

max
D:P (D)
s∈S

Pr
u←F

[Found(D ∪ (s, u))], max
D:P (D)
s∈Cnc

Pr
u←F

[Found(D ∪ (s, u))]
)

If ¬Found(D) and Found(D ∪ (s, u)) for some s ∈ S, then there exist i ∈ nc and (oi′ , comi′) ∈
DCom for i′ 6= i such that (com1, . . . , comi−1, u, comi+1, . . . , comnc) ∈ DG. Upper-bounding the
first event by 1, we obtain the bound

max
D:P (D)
s∈S

Pr
u←F

[Found(D ∪ (s, u))] ≤ nc
|DG|
|C|
≤ nc

qG
|C|

, (5)

as for each entry of DG there are nc targets for the output of Com to match. If ¬Found(D)
and Found(D ∪ (s, u)) for some s ∈ Cnc , then (oi, comi) ∈ DCom for i ∈ [nc] such that s =
(com1, . . . , comnc), and T(R(o1, . . . , onc))(G(x)) = 0. Based on only the last condition, we get

max
D:P (D)
s∈Cnc

Pr
u←F

[Found(D ∪ (s, u))] ≤ pfpT,ℓ (6)

Combining the last three equations we get

Pr[Found(L)] = q̃max

(
pfpT,ℓ, nc

qG
|C|

)
. (7)

Combining Equations (2), (3) and (7) yields the desired bound.

We now move on to bound the success probability of an algorithm trying to solve CheatP,T,t

given quantum access to the random oracle(s). This is necessary to later prove the security of
our digital signature scheme in the quantum-accessible random oracle model (QROM).

In [9], a generic method for proving such bounds is introduced that essentially generalizes (a
very general version of) the technique used in the proof of Theorem 2 to the QROM. Their tech-
nique uses Zhandry’s compressed oracle method [34], but their results are sufficiently versatile
to allow us to prove our desired bound without introducing compressed oracles.

In fact, we need to prove a bound in a slightly stronger model. As we will use the technique
of [11] to construct a special soundness adversary from an adversary against the signature

18 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

scheme, that special soundness adversary can only work in a model where the quantum-accessible
random oracle is instantiated with the efficient oracle simulation via Zhandry’s compressed oracle,
and any adversary can proceed by i) making a number of queries to the oracle, ii) obtain the
measurement outcome of measuring the internal state of the oracle simulation, and iii) computing
the output. The measured internal state of the oracle essentially contains a query transcript
of the adversarial algorithm. A classical adversary can just compile such a query transcript
themselves, without relying on augmented access to the random oracle. In the quantum setting,
the no-cloning principle prevents the adversary from recording a query transcript. This can be
an issue if the adversary has a black-box subroutine that makes queries and relies knowledge of
these queries. For solving an oracle search problem, however, the additional power of obtaining
the measured query transcript does not help. It is important to notice that we use this model
as a proof tool and don’t have to ascribe it any predictive power for real-world hash functions.
We call this model QROM+. In Appendix B, we prove the following lemma, specializing and
slightly improving a combination of results from [9].

Lemma 1 (A compressed oracle query bound lemma). Let F : X → Y be a random
oracle and let PF be a predicate on some set Z that can be computed using at most qP classical
queries to F . Let further AF be a QROM+ algorithm making at most q quantum queries to F
and outputing z ∈ Z. Then

√
Pr

z←AF
[P (z)] ≤

q+qP∑
k=1

max
x,D:
|D|≤k

¬Found(D)

√
10 Pr

u←Y
[FoundP(D[x 7→ u])] (8)

where FoundP is the database property

FoundP = (∃z ∈ Z : PD(z)) (9)

and PD is the algorithm that computes P but makes queries to D instead of F , and if any query
returns ⊥, PD ouptuts ‘false’.

We use this lemma to prove a quantum query complexity bound for CheatP,T,t,ℓ.

Theorem 3. Let ACom,G be a QROM+ algorithm that makes qCom and qG quantum queries to
its oracles Com and G, respectively, and let q̃ = qCom + qG + nc + 1. Then

Pr
o←ACom,G

[P(R(o)) = 1 ∧ T (o, ℓ) = 0] ≤ 10 ·

{
q̃2pfpT,ℓ if ncq̃ ≤ pfpT,ℓ|C|
nc

q̃3

|C| else.

Proof. We again view the two random oracles as being constructed from a single one using
domain separation and truncation, see Remark 1. Using the same reasoning as for Equations (5)
and (6), but without taking a maximal size of the sub-database corresponding to G into account,
we get for |D| ≤ k that

Pr
u←F

[FoundP(D[x 7→ u])] ≤ max

(
pfpT,ℓ, nc

k

|C|

)
.

Suppose now first that ncq̃ ≤ pfpT,ℓ|C|. Then we have

nc
k

|C|
≤ nc

q̃

|C|
≤ pfpT,ℓ

SDitH in the QROM 19

and thus
max

(
pfpT,ℓ, nc

k

|C|

)
= pfpT,ℓ.

If on the other hand ncq̃ > pfpT,ℓ|C|, we have

max

(
pfpT,ℓ, nc

k

|C|

)
≤ max

(
pfpT,ℓ, nc

q̃

|C|

)
= nc

q̃

|C|
.

Note that the predicate checking whether A has solved CheatP,T,t makes nc +1 queries. Setting

η =

{
pfpT,ℓ if ncq̃ ≤ pfpT,ℓ|C|
nc

q̃
|C| else,

we apply Lemma 1 to obtain

√
Pr

o←ACom,G
[P(R(o)) = 1 ∧ T (o, ℓ) = 0] ≤

q̃∑
k=1

max
x,D:
|D|≤k

¬Found(D)

√
10 Pr

u←Y
[FoundP(D[x 7→ u])]

≤
q̃∑

k=1

√
10η = q̃

√
10η.

Squaring both sides of the inequality yields the desired bound.

We proceed to apply the above theorems to the particular polynomial zero test that appears
in Hypercube-SDitH. In this test, there are τ parallel repetitions of the atomic test described in
Section 2.3, and the evaluation points for all of them are generated by hashing all commitments
together. Each test involves 3 polynomials in addition to the public polynomial F , , i.e. we have
np = 3τ + 1. Denoting the polynomials involved in the ith test by S(i), P (i), Q(i) and F , we
set Pi = S(i), Pτ+i = P (i) and P2τ+i = Q(i) for i = 1, . . . , τ , and P3τ+1 = F . We define the
corresponding domains. For i = 1, . . . , τ we set

Pi = {S ∈ Fpoly[X]| deg(S) ≤ m} ,
Pτ+i =Fpoly[X]

P2τ+i =
{
Q ∈ Fpoly[X]|Q(x) = xω +Q′(x) with deg(Q′) ≤ ω − 1

}
, and

P3τ+1 ={F}.

The predicate P is defined by

P(P) =

{
0 if ∃i ∈ [τ] : PiP2τ+i = Pτ+iP3τ+1

1 else
(10)

and Ti = PiP2τ+i−Pτ+iP3τ+1. The intuition behind this predicate is, that any one out of the τ
sets of four polynomials can be used to extract the secret key if it fulfils the polynomial identity.
Define

p = max
P:Ti(P) ̸=0

Pr
(r.ϵ)←F2

points

[M(Ti,P, r; ϵ) = 0]. (11)

A bound for this probability can be obtained as follows. The polynomial SQ − FP is non-zero
and has degree at most m+ w − 1. Setting |Fpoints| = ∆, we get

Pr
r←Fpoints

[(SQ− FP)(r) = 0] ≤ m+ ω − 1

∆
.

20 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

In case (SQ − FP)(r) 6= 0, the probabilistic product verification fails with probability 1
∆ . We

thus get

p ≤ m+ ω − 1

∆
+

(
1− m+ ω − 1

∆

)
1

∆
=

m+ ω

∆
− m+ ω − 1

∆2
. (12)

The t evaluation points and t masks are sampled independently, so the false positive probability
for a single test with t points is just pt. The probability that the t tests with random masks and
evaluation points all fail for Ti, for all i ∈ J ⊂ [τ] with |J | = ℓ is just ptℓ. Via a union bound,
we obtain

pfpT,ℓ ≤
(
τ

ℓ

)
ptℓ.

Combining the discussion above, we get the following

Corollary 1. Let ACom,G be an adversary that makes qCom, and qG queries to its oracles Com,
and G, respectively, and let q̃ = qCom + qG + nc + 1, where nc = τ · ND is the number of
commitments. The probability that its output wins CheatP,T,t,ℓ in this case is bounded by

Pr
o←ACom,G

[(P(R(o)) = 1) ∧ (T (o, ℓ) = 0)] ≤ q̃max

((
τ

ℓ

)
ptℓ, τ ·ND qG

2c

)
.

in the ROM. In the QROM+, the bound

Pr
o←ACom,G

[P(R(o)) = 1 ∧ T (o, ℓ) = 0] ≤ 10 ·

{
q̃2
(
τ
ℓ

)
ptℓ if q̃ ≤

(
τ
ℓ

)
ptℓ2c

τ ·ND q̃3

2c else

holds.

Distance-d Special Soundness in the QROM+.

We can now use Corollary 1 to prove that the identification scheme given in Algorithms 1 and 2
has query-bounded distance-d special soundness. The special soundness extractor ExtCom,G

d is
defined in a straight-forward way: Given two valid transcripts with the same w and challenges
of distance d, for all repetitions i where the challenges differ do the following: If the openings
are not consistent, abort. Here consistency means that all openings of the same commitments
agree. Otherwise, reconstruct x from the secret shares and check if Hx = y and wt(x) ≤ ω. If
not, move on to the next i, if yes, output x.

Theorem 4. Our identification scheme Π has query-bounded distance-d special soundness. More
precisely, let ACom,G be a distance-d special soundness adversary making at most qCom and qG
queries to its oracles Com and G, respectively, and set q = qCom + qG and q̃ = q + τ · ND + 1.
Then the bounds

Advd−spSIDS,Ext (A) ≤

{
(τND + 1) q̃

2

2c + q̃
(
τ
d

)
pt·d in the ROM

(10τND + 47) q̃
3

2c + 10q̃2
(
τ
d

)
pt·d in the QROM+

hold, where c is the output length of Com.

Proof. Given adversary A and extractor Extd, we construct adversaries B against the binding
property of the commitment scheme and C against CheatP,T,t,d as follows. Let E be the event
that the side-conditions for spS are fulfilled,

E = (Vrf(pk,wi, ci, zi) = 1, i ∈ {1, 2} ∧ (w1 = w2) ∧ d = Dist(c1, c2)).

SDitH in the QROM 21

The adversary B runs ((w1, c1, z1), (w2, c2, z2)) ← ACom,G(pk). If z1 and z2 are consistent, B
outputs ⊥. Otherwise, B uses the inconsistency to break the binding property: Let comi and
(statei, ρi) 6= (s̃tatei, ρ̃i) be a commitment and two distinct openings for it that are present in
((w1, c1, z1), (w2, c2, z2)) causing the inconsistency of z1 and z2. The two transcripts are valid, so
the openings must be as well. B outputs (statei, ρi), (s̃tatei, ρ̃i).

The adversary C runs ((w1, c1, z1), (w2, c2, z2)) ← ACom,G(pk). If A aborts, C aborts. Other-
wise, C outputs the set (statei, ρi)

τ ·ND

i=1 = z1 ∪ z2.
Moreover, we observe that Extd successfully extracts a matching secret key for pk whenever

A outputs transcripts such that E holds, B fails (i.e., z1 and z2 are consistent), and C fails
(implying that the polynomial test was cheated for at most d − 1 challenges). The reason is
that if B fails, we know that E will be able to extract x such that Hx = y and the result of
the polynomial zero test is 0, according to the correctness of the MPC protocol. If C fails, we
additionally have that the polynomial test cannot have been cheated for all d challenges and
therefore we can extract at least one x such that Hx = y and wt(x) ≤ w.

Putting things together, we now bound the success probability of A. Consider the experi-
ment where Extd, B and C use the same runs of A. The probabilities are taken over (sk, pk) ←
Keygen(); ((w1, c1, z1), (w2, c2, z2)) ← ACom,G(pk); sk′ ← ExtCom,G((w1, c1, z1), (w2, c2, z2)) and
abusing notation we define the event that B or C succeed by B and C, respectively. We bound

Advd−spSIDS,Ext (A) =Pr[E ∧ (sk′, pk) 6∈ Keygen()]

≤Pr[E ∧ (A ∨B)]

≤Pr[A] + Pr[B],

where the inequality results from dropping the condition E and a union bound. Considering that
we implement Com using a random oracle and applying a standard bound for collision finding
in the ROM, we obtain

Pr[B] ≤ q2

2c
, in the ROM.

The bound in Theorem 5.29 in [9], for k = 1, which generalizes to the QROM+ by Lemma 2 in
Appendix B, yields

Pr[B] ≤ 47
(q + 1)3

2c
, in the QROM+

after simplifying the constants. The adversary C plays the CheatP,T,t,d game. According to
Corollary 1, we thus have

Pr[C] ≤

{
q̃
((

τ
d

)
pt·d + τND qG

2c

)
in the ROM

10q̃2
(
τ
d

)
pt·d + 10τND q̃3

2c in the QROM+

Combining the inequalities with qG ≤ q + 1 ≤ q̃ yields the desired bound.

4 The Signature Scheme
The main target of this paper is not the security of Π but that of the resulting signature scheme
that we obtain by applying the Fiat-Shamir transform to it. This is what we focus on now. We
start with necessary definitions and previous results, then we present our results for the security
of the signature scheme.

22 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

Game UF-NMA

(pk, sk)← Keygen()

(m∗, σ∗)← A(pk)

return Vrfy(pk,m∗, σ∗)

Game UF-CMA

L ← {}
(pk, sk)← Keygen()

(m∗, σ∗)← ASign(sk,·)(pk)

if m∗ ∈ L return 0

return Vrfy(pk,m∗, σ∗)

Sign(sk,m)

L := L ∪ {m}
σ ← Sign(sk,m)

return σ

Fig. 1: Games UF-CMA and UF-NMA.

Sign(sk,m)

(w, st)← Commit(sk)

c := RO(w,m)

z← Resp(sk,w, c, st)

return σ := (w, z)

Vrfy(pk,m, σ = (w, z))

c = RO(w,m)

return Vrf(pk,w, c, z)

Fig. 2: Signing and verification algorithms of DSS = FS[IDS,RO].

Definitions. Below we define syntax and security of digital signature schemes as well as the
well known Fiat-Shamir transform. We again closely follow [17] for our definitions.

Definition 6 (Signature scheme). A digital signature scheme DSS is defined as a triple of
algorithms DSS = (Keygen, Sign,Vrfy).

– The probabilistic key generation algorithm Keygen() returns a key pair (pk, sk). We assume
that pk defines the message space M.

– The possibly probabilistic signing algorithm Sign(sk,m) returns a signature σ.
– The deterministic verification algorithm Vrfy(pk,m, σ) returns 1 (accept) or 0 (reject).

UF-CMA, and UF-NMA security. We define unforgeability under chosen message attacks
(UF-CMA), and unforgeability under no message attacks, i.e., with no access to a signing oracle
(also known as UF-KOA, or UF-CMA0) success functions of a possibly quantum adversary A
against DSS as

SuccUF-X
DSS (A) := Pr[1← UF-XA

DSS] ,

where the games for X ∈ {CMA,NMA} are given in Fig. 1.

The Fiat-Shamir transform. Here we describe the standard Fiat-Shamir transform. To an
identification scheme IDS = (Keygen,Commit,Resp,Vrf) with commitment space COM, and
random oracle RO : COM×M→ C for some message space M, we associate

FS[IDS,RO] := DSS := (Keygen, Sign,Vrfy) ,

where algorithms Sign and Vrfy of DSS are defined in Fig. 2.
In [17] the following result was stated that relates the UF-NMA and UF-CMA security of a

Fiat-Shamir transformed IDS in the QROM, and the HVZK property of the IDS. The bound
makes use of what they call commitment entropy:

γw := Emax
w

Pr[w] ,

SDitH in the QROM 23

where the expectation is taken over (pk, sk)← Keygen, and the probability is taken over (w, st)←
Commit(sk).

Theorem 5. [17, Theorem 3] For any (quantum) UF-CMA adversary A issuing at most qS
(classical) queries to the signing oracle sign and at most qH quantum queries to RO, there exists
a UF-NMA adversary B and a qS-HVZK adversary C such that

SuccUF-CMA
FS[IDS,RO] (A) ≤ SuccUF-NMA

FS[IDS,RO] (B) + AdvqS−HVZKIDS (C)

+
3qS
2

√
(qH + qS + 1) · γw , (13)

and the running time of B and C is about that of A, where γw is the maximum over the probability
that w takes any given value. The bound given in Eq. (13) also holds for the modified Fiat-Shamir
transform that defines challenges by letting c := RO(w,m, pk) instead of letting c := RO(w,m).

In our actual construction, for efficiency reasons, we use a variant called Fiat-Shamir for
commitment-recoverable IDS (see e.g., [23]), where the challenge c is sent instead of the first
message w (sometimes referred to as the commitment). As defined in Sec. 2.1.1 a commitment-
recoverable scheme like Π provides a function Rcvr that allows to recover the first message from
the other two Rcvr(c, z) = w. In Fiat-Shamir for commitment-recoverable IDS the verifier first
recovers w using Rcvr and then checks that indeed c = RO(w,m).

From a security perspective the two are equivalent as Rcvr allows to compute the values of a
standard Fiat-Shamir signature from one resulting from a commitment recoverable scheme. The
other direction, i.e., get c from w– RSP is not needed – is as simple as c = RO(w,m).

In our implementation, we use a nonce per signature, which we call salt. The nonce is
included as a prefix in calls to all commitments, PRG operations, and Hash functions, in order to
domain separate between distinct signature queries. This allows to minimize the impact of multi-
target attacks. For the sake of readability, we do not consider the nonce in our formal security
arguments (and therefore gain a loss in tightness) but we discuss the impact on practical security
when selecting parameters.

4.1 Signature Scheme Security

The security of the signature scheme FS[Π,RO] obtained by applying the Fiat-Shamir transform
to our three round IDS, can be argued in two steps as is commonly done. First, we show that
we can turn any UF-NMA adversary against the scheme into an adversary against the special
soundness of Π. This step follows the recipe of [11]. Afterwards, we apply Theorem 5 to argue
full UF-CMA security. In [11], a tight online-extractability result is proven for the Fiat-Shamir
transform of sigma-protocols with commit-and-open structure, both for simple random-oracle-
based commitments and for tree commitments. The following is a specialized variant of the tree
commitment variant of the result for query-bounded distance-d special soundness. We give a
description of how the proof of Theorem 5.2 in [11] implies the below variant in Supp.Mat. B.

Theorem 6 (Variant of Theorem 5.2 from [11]). Let ΠCom,G be a distance-d special-
sound commit-and-open identification scheme with ϕ-ary tree commitment with nc leaves using
a random oracle Com with output length c, splittable challenge, challenge space Cτ and an
additional random oracle G. Let further A be a UF-NMA-adversary against FS[Π,RO] making
qRO, qCom and qG queries to RO, Com and G respectively. Then there exists a (qCom, qG)-query
QROM+ adversary B against the query-bounded distance-d special soundness of ΠCom,G with

24 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

respect to the special soundness extractor Extd of Π such that

AdvUF-NMA
FS[IDS,RO] (A) ≤Pr[sk′ ← Extd ◦ B : (sk′, pk) ∈ Keygen()]

+ Advd−spSIDS,Ext (B) + (22nc logϕ nc + 60)q32−c + 20q2
1

|C|τ−d
,

where q = qCom+qRO. The runtime of B is bounded as TIME(B) ≤TIME(A)+γ(q+qG)
2)), where

γ is polynomial in the input and output lengths of the random oracles.

As a corollary, we get a UF-NMA-security result for our signature scheme in the QROM.
We note that this corollary does not need to refer to the QROM+ anymore, as it combines a
reduction to an adversary agains the query-bounded distance-d special soundness in the QROM+
with an explicit bound on the success probability of such an adversary.

Corollary 2. Let A be a UF-NMA-adversary against FS[Π,RO] that makes qRO ≥ τ · ND + 1,
qCom and qG quantum queries to RO, Com and G respectively. Then for all d = 0, 1, . . . , τ we get

AdvUF-NMA
FS[IDS,RO] (A) ≤ϵSD + (32τND + 107)

q3

2c
+ 10 · q2

(
τ

d

)
pt·d + 20q2

1

ND·(τ−d) .

Here, ϵSD is the maximal success probability that an adversary with runtime TIME(A)+TIME(CompOr(q))+
TIME(Extd), where TIME(CompOr(q)) is the runtime of a compressed oracle simulation for q
queries, can solve syndrome decoding. Also q = qCom+qRO+qG is the total number of random or-
acle queries of A, c is the output length of Com, and the atomic polynomial zero test false-positive
probability p is defined and bounded in Equation (11) and Equation (12).

Note that the restriction on qRO is almost without loss of generality (τ ·ND+1, qCom queries
to RO can be made in time similar to, e.g., the signing time) and is only needed to allow for a
less cluttered bound expression.

Proof. Π uses a commitment that works by hashing each state with some randomness, and then
hashing all theses hashes together to produce a single collective commitment. This is a τ ·ND-ary
tree commitment with τ ·ND leaves, so we can apply Theorem 6 for these parameters. Plugging
in the number of possible split-challenges ND, we get

AdvUF-NMA
FS[IDS,RO] (A) ≤Pr[sk′ ← Extd ◦ B : (sk′, pk) ∈ Keygen()]

+ Advd−spSIDS,Ext (B) + (22nc + 60)q32−c + 20q2N−D·(τ−d),

where c is the length of the commitments. Pr[sk′ ← Extd ◦B : (sk′, pk) ∈ Keygen()] is the success
probability of Extd ◦ B as a syndrome decoding algorithm and thus

Pr[sk′ ← Extd ◦ B : (sk′, pk) ∈ Keygen()] ≤ ϵSD.

Setting q̃ = qCom + qG +ND + 1, by Theorem 4, we have the bound

Advd−spSIDS,Ext (B) ≤(10τN
D + 47)

q̃3

|C|
+ 10q̃2

(
τ

d

)
pt·d

≤(10τND + 47)
q3

|C|
+ 10q2

(
τ

d

)
pt·d

where the second inequality holds because q̃ ≤ q by assumption on qRO. Combining the inequal-
ities yields the desired bound.

SDitH in the QROM 25

Finally we obtain a bound for the UF-CMA security as follows:

Corollary 3. Let A be a UF-CMA-adversary against FS[Π,RO] that makes qRO ≥ τ · ND + 1,
qPRG, qCom and qG quantum queries to RO, PRG, Com and G respectively, and qS (classical)
signing queries. Then for all d = 0, 1, . . . , τ ,

AdvUF-CMA
FS[IDS,RO] (A) ≤ ϵSD + (32τND + 107)q32−c + 10 · q2

(
τ

d

)
pt·d + 20q2

1

ND·(τ−d)

+ qSτ

(
16qCom2

−r/2+ log(ND − 1)
(qPRG + qSτ)

2

2n

)
+

3qS
2

√
qRO + qS + 1

2n
, (14)

Here ϵSD is the maximal success probability that an adversary that runs in time TIME(A) +
TIME(CompOr(q)) + TIME(Extd), where TIME(CompOr(q)) is the runtime of a compressed
oracle simulation for q queries, can solve syndrome decoding. Moreover, q = qCom + qRO + qG
is the total number of random oracle queries of A, c is the output length of Com, and the
atomic polynomial zero test false-positive probability p is defined in Equation (11) and bounded
in Equation (12), n is the seed length of TreePRG, r is the length of commitment randomness.

Proof. This follows by applying Theorem 5 to Corollary 2. Moreover, we plug in the HVZK
bound from Theorem 1 and observe that γw, the entropy of the commitment messages, in Π is n
bits. Further we note that the reduction in the HVZK proof makes up to τqS additional calls to
TreePRG, and use the bound for the security of TreePRG given in Sec. 2.1. We finally apply the
QROM bound for hiding of Com from [25] and note that for the security of PRG when modeled
as QRO, a standard search bound applies. The reason is that without seeing an input that maps
to a challenge, the adversary can do no better than guessing.

Discussion. Corollary 3 provides a tight bound for UF-CMA security in terms of the hardness
of syndrome decoding. The additive terms are all benign. The first additive term is matched
by a collision finding attack on the hash function used for commitment [8], up to the constant
preceding q32−c. The second and third additive terms are similar to the ones appearing in the
bounds in [14, 2], and are matched by a “divide-and-conquer” attack: An adversary can first
search for polynomials allowing them to cheat d out of τ polynomial zero tests, and then search
for a message to be signed that allows cheating the MPCitH proof of the remaining τ − d
repetitions. When p ' (1/ND) the divide and conquer attack is most powerful, with d = τ

2 . But
when p � (1/ND) the attack complexity tends towards (1/ND)τ , and parameters in section 5
are selected accordingly. The 16qCom2

r/2 term in the second line stems from the computational
hiding property of the commitments and is matched by a Grover search for the used commitment
randomness. The term in the last line is negligible compared to the last term in the second line,
which is matched by a Grover search attack on PRG.

Comparing the bound in Corollary 3 to the ROM bound proven in [2], we observe that each
term in Corollary 3 either has been neglected in [2] (e.g. the term corresponding to the hiding
security of RO-based committments), or leaves at most the possibility for a quadratic speed-up
due to Grover search, up to small mutiplicative constants (e.g. the terms characterizing the
security of the polynomial identity test and MPCitH proof).

5 Performance
The tweaks introduced to the original Hypercube-SDitH scheme not only make possible a security
proof in the QROM setting, they also have a positive impact on the performance of the scheme.
They allow to slightly reduce signature size and to significantly reduce the online signing time.

26 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

Algorithm 5 PoW - Proof-of-Work for challenge derivation
Input: Commitment-message hash hw ← H(w,m), number of iterations 2kiter .
1: dgst← hw

2: for ctr ∈ {0, . . . , 2kiter − 1} do
3: dgst← H(dgst∥hw)

4: return dgst

Signing with one hash. The original Hypercube-SDitH signature is based on a five round
identification scheme with two verifier challenges, the first challenge being between the evaluation
points. When applying the Fiat-Shamir transform, the message is required to compute the first
challenge, so the online phase of the original Hypercube-SDitH signature scheme (the part that
requires presence of the message) includes both the MPC computation and the MPC party
opening.

In the three round version, the online phase of the signature corresponds just to one random
oracle call and the MPC party opening. In practice this can be as fast as one hash call, plus
arithmetic to compute JαKc, JβKc, plus building sibling paths required for the openings.

Reducing the online cost of a signature to just one hash is amazing. However, some appli-
cations may prefer smaller signatures at the cost of a slightly slower online phase. For this we
introduce an online-time - signature-size trade-off which stretches the challenge generation time
in order to reduce the signature size.

Proof-of-Work. Our trade-off is inspired by the Proof-of-Work (PoW) technique used in
SPHINCS+C [24]. In our scheme, we exchange the counter based PoW, with 2kiter times iterative
hashing. To generate the challenge c, we first generate the hash hw ← H(w,m). We then apply
the PoW routine (Algorithm 5) to increase the cost of the hash computation, such that the final
challenge is c← PoW (hw).

The proof-of-work technique (PoW) does not change the applicability of the security proof
as it only replaces one hash function by a more costly one. However, the choice of parameters
according to the PoW cannot be supported by our security proof. Because of this, we only
introduce the proof-of-work trick here as an optimization. To be covered by the security proof,
we would need our bound to distinguish between queries made to the different functions that
are modeled as random oracles. This is not possible with our current proof as we are using the
technique from [11] in a black box manner where possible and [11] does not distinguish between
queries to different functions.

We note, that unlike the PoW counter-based solution of [24], there is no variability in the
runtime of our PoW algorithm. The downside, is that unlike the counter-based solution, our
iterative solution adds the same running time to the verifier. However, at the same time it
reduces the running time as we are able to reduce the number of parallel repetitions τ of Π
(c.f.,Table 1).

For concrete parameters, we increase the cost of the message-hash query by 2kiter , but can in
turn reduce the requirement on D and τ to ≈ (1/ND)τ ≤ 2−λ · 2kiter = 2−λ+kiter . As discussed
below, we use N = 2. Choosing kiter = D increases the attack complexity by a factor 2D, and
each additional parallel repetition increases the attack complexity by a factor ≈ ND = 2D. Thus
selecting kiter = D allows us to use τ ′ = τ − 1 at the same security level. This means that by
using the PoW, we need one less repetition of the protocol and can thereby reduce the overall
size of the signature. However, this is clearly not the only possible choice for kiter. Reasonable
values would be any multiple of D, as kiter = kD means that we can run the protocol with
τ ′ = τ − k parallel repetitions. Moreover, as D and τ are integers, we might find cases where
(1/ND)τ is slightly larger than 2−λ, forcing us to increase the parameters and signature size, also

SDitH in the QROM 27

this could be compensated for using the PoW. Thereby, we can increase our degree of freedom
in choosing parameters, possibly resulting in better-optimized variants.

Parameters. For our implementation we stick with the parameters from [14] also used in [2].
Our security bound is (except for some small constants) the same as in [2] up to the generic
Grover search and quantum collision finding bounds. These were already (heuristically) consid-
ered in the parameter selection by the previous works. For security we target NIST security
level I which refers to 128bit security against conventional attacks and 64 bit security against
quantum attacks. We use the Variant 3 parameters of the original SDitH scheme (also used in
the Hypercube scheme). These parameters use the syndrome decoding problem in FSD = F28

with m = 256, k = 128, and w = 80. When looking at the original Hypercube proposal, they
fix N = 2 and define further parameters applying different trade-offs between signature-size
and speed (chosen to match the equally named parameter sets proposed in [14]). We focus on
the “Short” (D = 8, τ = 17) and “Shorter” (D = 12, τ = 12) configurations from Hypercube-
SDitH since they offer the most interesting trade-offs in our opinion. We use these parameters
as baseline to demonstrate the impact of our results.

It remains to fix the values for the seed length n, the commitment randomness length r, and
the commitment length c. For these values we use n = r = 128 bit and c = 256 bit. Taking a
close look at the terms of the sum on the RHS of Equation (14) shows that our choice for the
values of n and r are ignoring the qSτ log(N

D − 1) and qSτ factors respectively. Examining the
proof shows that these factors are caused by the hybrid arguments which reflect multi-target
attacks. When modeling the PRG and the commitment as random oracles, these attacks can be
mitigated using domain separation (as for example demonstrated in [21]). Hence, as mentioned
previously, our implementation makes use of an additional random 128 bit nonce, called salt,
which is freshly chosen for each signature. This nonce is used as a prefix to the inputs to the
PRG, the commitment, and the hash function. Thereby, it domain-separates these calls over
different signature calls, effectively removing the need of the factor qS in the bound. This leaves
as worst case the τ log(ND − 1) factor to be considered for the seed length. For our parameters,
this accounts to a less then 8 bit loss in security. Given that we count hash function calls as a
single operation while this takes more than 256 bit operations, we consider this compensated for.
We note that we did not consider this domain separation in our proof as it would significantly
hurt readability of the arguments at rather limited novelty given that this kind of solution was
discussed already in previous works.

Implementation Results. We base our implementation of the tweaked scheme on top of
the previous Hypercube-SDitH implementation from [2], using the XKCP library (SHAKE) for
all symmetric primitives (hashes, commitments, and PRGs). Before making modifications, we
thoroughly examined the Hypercube-SDitH implementation regarding constant execution time
and identified and hardened several key routines that rely on signer-private information and
could leak information if done naively.

Next, we benchmarked the original 5-round Hypercube-SDitH scheme with the updated
implementation to obtain reference values. Then, we benchmarked the 3-round version of this
scheme (Ours - Vanilla), and the same scheme but applying the PoW algorithm above (Ours -
PoW) with parameter kiter = D.

For the benchmarks we used an optimized implementation that leverages AVX2 instructions
to parallelize SHAKE and SHA3 calls. The experiments ran on an Intel Xeon E-2378 with
frequency fixed at 2.6 GHz and Turbo Boost disabled. We prepared a test routine that runs
keygen, sign, and verify on a fixed text input. Finally, we run the test routine for 100 times
sequentially on a single CPU core and average the timing measurement results.

28 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

Table 1: Implementation benchmarks of Hypercube-SDitH vs our tweaked scheme for NIST
security level I. For the PoW, the parameter kiter = D is used.

Scheme Aim Signature Parameters Sign Time (in ms) Verify Time

Size (bytes) |Fpoints| t D τ Offline Online Total (in ms) Total

Hypercube-SDitH
[2]

Short 8464 224 5 8 17 3.83 0.68 4.51 4.16
Shorter 6760 224 5 12 12 44.44 0.60 45.04 42.02

Ours
Vanilla

Short 8464 224 5 8 17 4.45 0.049 4.50 4.17
Shorter 6760 224 5 12 12 44.98 0.080 45.06 42.02

Ours
PoW

Short 7968 224 5 8 16 4.20 0.14 4.34 4.00
Shorter 6204 224 5 12 11 41.06 1.49 42.55 39.75

The implementation is available at https://github.com/sandbox-quantum/sdith-impl-release.

References
[1] C. Aguilar Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P.

Gaborit, E. Persichetti, G. Zémor, J. Bos, A. Dion, J. Lacan, J.-M. Robert, and P. Veron.
HQC. Tech. rep. available at https : / / csrc . nist . gov / Projects / post - quantum -
cryptography/round-4-submissions. National Institute of Standards and Technology,
2022.

[2] C. Aguilar Melchor, N. Gama, J. Howe, A. Hülsing, D. Joseph, and D. Yue. “The Return
of the SDitH”. In: EUROCRYPT 2023, Part V. Ed. by C. Hazay and M. Stam. Vol. 14008.
LNCS. Springer, Heidelberg, Apr. 2023, pp. 564–596. doi: 10.1007/978-3-031-30589-
4_20.

[3] M. R. Albrecht, D. J. Bernstein, T. Chou, C. Cid, J. Gilcher, T. Lange, V. Maram, I.
von Maurich, R. Misoczki, R. Niederhagen, K. G. Paterson, E. Persichetti, C. Peters,
P. Schwabe, N. Sendrier, J. Szefer, C. J. Tjhai, M. Tomlinson, and W. Wang. Classic
McEliece. Tech. rep. available at https://csrc.nist.gov/projects/post-quantum-
cryptography/round-4-submissions. National Institute of Standards and Technology,
2022.

[4] N. Aragon, P. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Gaborit,
S. Gueron, T. Guneysu, C. Aguilar Melchor, R. Misoczki, E. Persichetti, N. Sendrier,
J.-P. Tillich, G. Zémor, V. Vasseur, S. Ghosh, and J. Richter-Brokmann. BIKE. Tech. rep.
available at https://csrc.nist.gov/Projects/post-quantum-cryptography/round-
4-submissions. National Institute of Standards and Technology, 2022.

[5] E. Berlekamp, R. McEliece, and H. Van Tilborg. “On the inherent intractability of certain
coding problems (corresp.)” In: IEEE Transactions on Information Theory 24.3 (1978),
pp. 384–386.

[6] W. Beullens. “Breaking Rainbow Takes a Weekend on a Laptop”. In: CRYPTO 2022,
Part II. Ed. by Y. Dodis and T. Shrimpton. Vol. 13508. LNCS. Springer, Heidelberg, Aug.
2022, pp. 464–479. doi: 10.1007/978-3-031-15979-4_16.

[7] D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry. “Random
Oracles in a Quantum World”. In: ASIACRYPT 2011. Ed. by D. H. Lee and X. Wang.
Vol. 7073. LNCS. Springer, Heidelberg, Dec. 2011, pp. 41–69. doi: 10.1007/978-3-642-
25385-0_3.

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1007/978-3-031-30589-4_20
https://doi.org/10.1007/978-3-031-30589-4_20
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1007/978-3-031-15979-4_16
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3

SDitH in the QROM 29

[8] G. Brassard, P. Høyer, and A. Tapp. “Quantum Cryptanalysis of Hash and Claw-Free
Functions”. In: LATIN ’98. Ed. by C. L. Lucchesi and A. V. Moura. Vol. 1380. Lecture
Notes in Computer Science. Springer, 1998, pp. 163–169. doi: 10.1007/BFb0054319.

[9] K.-M. Chung, S. Fehr, Y.-H. Huang, and T.-N. Liao. “On the Compressed-Oracle Tech-
nique, and Post-Quantum Security of Proofs of Sequential Work”. In: EUROCRYPT 2021,
Part II. Ed. by A. Canteaut and F.-X. Standaert. Vol. 12697. LNCS. Springer, Heidelberg,
Oct. 2021, pp. 598–629. doi: 10.1007/978-3-030-77886-6_21.

[10] T. Debris-Alazard, N. Sendrier, and J.-P. Tillich. “Wave: A New Family of Trapdoor One-
Way Preimage Sampleable Functions Based on Codes”. In: ASIACRYPT 2019, Part I.
Ed. by S. D. Galbraith and S. Moriai. Vol. 11921. LNCS. Springer, Heidelberg, Dec. 2019,
pp. 21–51. doi: 10.1007/978-3-030-34578-5_2.

[11] J. Don, S. Fehr, C. Majenz, and C. Schaffner. “Efficient NIZKs and Signatures from
Commit-and-Open Protocols in the QROM”. In: CRYPTO 2022, Part II. Ed. by Y. Dodis
and T. Shrimpton. Vol. 13508. LNCS. Springer, Heidelberg, Aug. 2022, pp. 729–757. doi:
10.1007/978-3-031-15979-4_25.

[12] J. Don, S. Fehr, C. Majenz, and C. Schaffner. “Online-Extractability in the Quantum
Random-Oracle Model”. In: EUROCRYPT 2022, Part III. Ed. by O. Dunkelman and S.
Dziembowski. Vol. 13277. LNCS. Springer, Heidelberg, 2022, pp. 677–706. doi: 10.1007/
978-3-031-07082-2_24.

[13] S. Even, O. Goldreich, and S. Micali. “On-Line/Off-Line Digital Schemes”. In: CRYPTO’89.
Ed. by G. Brassard. Vol. 435. LNCS. Springer, Heidelberg, Aug. 1990, pp. 263–275. doi:
10.1007/0-387-34805-0_24.

[14] T. Feneuil, A. Joux, and M. Rivain. “Syndrome Decoding in the Head: Shorter Signatures
from Zero-Knowledge Proofs”. In: CRYPTO 2022, Part II. Ed. by Y. Dodis and T. Shrimp-
ton. Vol. 13508. LNCS. Springer, Heidelberg, Aug. 2022, pp. 541–572. doi: 10.1007/978-
3-031-15979-4_19.

[15] A. Fiat and A. Shamir. “How to Prove Yourself: Practical Solutions to Identification and
Signature Problems”. In: CRYPTO’86. Ed. by A. M. Odlyzko. Vol. 263. LNCS. Springer,
Heidelberg, Aug. 1987, pp. 186–194. doi: 10.1007/3-540-47721-7_12.

[16] O. Goldreich, S. Goldwasser, and S. Micali. “How to Construct Random Functions (Ex-
tended Abstract)”. In: 25th FOCS. IEEE Computer Society Press, Oct. 1984, pp. 464–479.
doi: 10.1109/SFCS.1984.715949.

[17] A. B. Grilo, K. Hövelmanns, A. Hülsing, and C. Majenz. “Tight Adaptive Reprogram-
ming in the QROM”. In: ASIACRYPT 2021, Part I. Ed. by M. Tibouchi and H. Wang.
Vol. 13090. LNCS. Springer, Heidelberg, Dec. 2021, pp. 637–667. doi: 10.1007/978-3-
030-92062-3_22.

[18] E. Grumbling and M. Horowitz. Quantum Computing: Progress and Prospects. 1st. Na-
tional Academies of Sciences, Engineering, and Medicine. The National Academies Press,
Apr. 2019. isbn: 9780309479691. doi: 10.17226/25196.

[19] K. Hövelmanns, A. Hülsing, and C. Majenz. “Failing Gracefully: Decryption Failures and
the Fujisaki-Okamoto Transform”. In: ASIACRYPT 2022, Part IV. LNCS. Springer, Hei-
delberg, Dec. 2022, pp. 414–443. doi: 10.1007/978-3-031-22972-5_15.

[20] A. Hulsing, D. J. Bernstein, C. Dobraunig, M. Eichlseder, S. Fluhrer, S.-L. Gazdag,
P. Kampanakis, S. Kolbl, T. Lange, M. M. Lauridsen, F. Mendel, R. Niederhagen, C.
Rechberger, J. Rijneveld, P. Schwabe, J.-P. Aumasson, B. Westerbaan, and W. Beullens.
SPHINCS+. Tech. rep. available at https://csrc.nist.gov/Projects/post-quantum-
cryptography/selected-algorithms-2022. National Institute of Standards and Tech-
nology, 2022.

https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/978-3-030-77886-6_21
https://doi.org/10.1007/978-3-030-34578-5_2
https://doi.org/10.1007/978-3-031-15979-4_25
https://doi.org/10.1007/978-3-031-07082-2_24
https://doi.org/10.1007/978-3-031-07082-2_24
https://doi.org/10.1007/0-387-34805-0_24
https://doi.org/10.1007/978-3-031-15979-4_19
https://doi.org/10.1007/978-3-031-15979-4_19
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.17226/25196
https://doi.org/10.1007/978-3-031-22972-5_15
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

30 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

[21] A. Hülsing, J. Rijneveld, and F. Song. “Mitigating Multi-target Attacks in Hash-Based
Signatures”. In: PKC 2016, Part I. Ed. by C.-M. Cheng, K.-M. Chung, G. Persiano, and
B.-Y. Yang. Vol. 9614. LNCS. Springer, Heidelberg, Mar. 2016, pp. 387–416. doi: 10.
1007/978-3-662-49384-7_15.

[22] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. “Zero-knowledge from secure multi-
party computation”. In: 39th ACM STOC. Ed. by D. S. Johnson and U. Feige. ACM Press,
June 2007, pp. 21–30. doi: 10.1145/1250790.1250794.

[23] E. Kiltz, V. Lyubashevsky, and C. Schaffner. “A Concrete Treatment of Fiat-Shamir Sig-
natures in the Quantum Random-Oracle Model”. In: EUROCRYPT 2018, Part III. Ed. by
J. B. Nielsen and V. Rijmen. Vol. 10822. LNCS. Springer, Heidelberg, 2018, pp. 552–586.
doi: 10.1007/978-3-319-78372-7_18.

[24] M. A. Kudinov, A. Hülsing, E. Ronen, and E. Yogev. “SPHINCS+C: Compressing SPHINCS+
With (Almost) No Cost”. In: IACR Cryptol. ePrint Arch. (2022), p. 778. url: https:
//eprint.iacr.org/2022/778.

[25] D. Leichtle. Post-quantum signatures from identification schemes. Master’s thesis, Tech-
nische Universiteit Eindhoven. https : / / pure . tue . nl / ws / portalfiles / portal /
125545339/Dominik_Leichtle_thesis_final_IAM_307.pdf. 2018.

[26] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe, G. Seiler, D. Stehlé, and
S. Bai. CRYSTALS-DILITHIUM. Tech. rep. available at https : / / csrc . nist . gov /
Projects/post-quantum-cryptography/selected-algorithms-2022. National Insti-
tute of Standards and Technology, 2022.

[27] R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. The Deep Space
Network Progress Report 42-44. https://ipnpr.jpl.nasa.gov/progress_report2/42-
44/44N.PDF. Jet Propulsion Laboratory, California Institute of Technology, 1978, pp. 114–
116.

[28] M. Mosca. “Cybersecurity in an Era with Quantum Computers: Will We Be Ready?” In:
IEEE Security & Privacy 16 (Sept. 2018), pp. 38–41. doi: 10.1109/MSP.2018.3761723.

[29] NIST. National Institute for Standards and Technology. PQC Standardization Process:
Announcing Four Candidates to be Standardized, Plus Fourth Round Candidates. https:
//csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4.
Mar. 2022.

[30] NIST. Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptog-
raphy Standardization Process. https://csrc.nist.gov/CSRC/media/Projects/Post-
Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf. 2016.

[31] T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Ricosset,
G. Seiler, W. Whyte, and Z. Zhang. FALCON. Tech. rep. available at https://csrc.nist.
gov/Projects/post-quantum-cryptography/selected-algorithms-2022. National
Institute of Standards and Technology, 2022.

[32] J. Stern. “Designing Identification Schemes with Keys of Short Size”. In: CRYPTO’94.
Ed. by Y. Desmedt. Vol. 839. LNCS. Springer, Heidelberg, Aug. 1994, pp. 164–173. doi:
10.1007/3-540-48658-5_18.

[33] G. Zaverucha, M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rech-
berger, D. Slamanig, J. Katz, X. Wang, V. Kolesnikov, and D. Kales. Picnic. Tech. rep.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/round-3-submissions. National Institute of
Standards and Technology, 2020.

[34] M. Zhandry. “How to Record Quantum Queries, and Applications to Quantum Indifferen-
tiability”. In: CRYPTO 2019, Part II. Ed. by A. Boldyreva and D. Micciancio. Vol. 11693.

https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1007/978-3-319-78372-7_18
https://eprint.iacr.org/2022/778
https://eprint.iacr.org/2022/778
https://pure.tue.nl/ws/portalfiles/portal/125545339/Dominik_Leichtle_thesis_final_IAM_307.pdf
https://pure.tue.nl/ws/portalfiles/portal/125545339/Dominik_Leichtle_thesis_final_IAM_307.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://doi.org/10.1109/MSP.2018.3761723
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/3-540-48658-5_18
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

SDitH in the QROM 31

LNCS. Springer, Heidelberg, Aug. 2019, pp. 239–268. doi: 10.1007/978-3-030-26951-
7_9.

https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9

32 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

A Notation summary

Table 2: Notation
Indices:
i index of a leaf party, in {0, . . . , ND − 1}
i∗ index of challenge party, which remains hidden
(i1, . . . , iD) representation of i on dimension D hypercube with side N

(k, j) index of a main party in {0, . . . , D−1}×{0, . . . , N−1}, where k indexes the hypercube
dimension

Fpoly field of coefficients from which S,Q, P, F are drawn
Fpoints field from which α, β, v, r, ϵ are drawn
MPC:
Π the MPC computation, described in Alg 6
a, b, c elements of the Beaver triplet such that a · b = c

α, β, v Communications output, drawn from Fpoints

(r, ε) (evaluation point, masking point)JXKi ith leaf party secret share of X
[X]kj main party (k, j)’s secret share of X
{[X]kj}k,j=0,...,N a full main party sharing, such that all shares add up to give X

Parameters:
λ security parameter
ϵ soundness
Syndrome Decoding proof:
S,Q, P, F polynomials in Fpoly which encode the syndrome decoding proof
aux uncompressed secret shares of leaf party i = ND − 1, JSK|JQK|JP K|JaK|JbK|JcK
(statei, ρi) state and commitment randomness of a leaf party. For i ̸= ND − 1, statei is a pseudo-

random seed, and stateND−1 = (seedND−1||aux)
Polynomial test:
P polynomial domain (abstract notation)
P(P) predicate on polynomials P

S, (C) state (commitment) space

B Additional QROM definitions and proofs
In the following, we write D[x 7→ y] for the database where the pair (x, y) replaces any pre-
existing pair (x, y′) and is added otherwise. We write D[x 7→ ⊥] for the database D with any
pair (x, y′) removed. More generally, we freely use notation from [9].

To formalize the QROM security reduction for our signature scheme in a modular way, we
need to prove certain intermediate results for algorithms in a slightly strengthened version of the
QROM which we call QROM+. In this model, we instantiate the quantum-accessible random
oracle with a compressed-oracle-based simulation. After making all its queries to the oracle, the
adversary can also request a computational basis measurement of the entire oracle database. We
begin by formalizing this model, which is somewhat similar in spirit to the extractable QRO
model defined in [12] and further studied in [19].

Definition 7 (QROM+). A QROM+ algorithm AF trying to fulfil a predicate PF is a pair of
algorithms (AF

0 , A1) which are run in the following experiment.

SDitH in the QROM 33

1. The first stage of A gets access to a compressed oracle simulation of F with database D which
we denote by FD and outputs a quantum state st, st ← AFD

0 (inp), where inp is the input A
expects.

2. The database D is measured in the computational basis to obtain outcome D̂, keeping the
post-measurement state on D.

3. The second stage of A is run on inputs st and D̂, out← A1(st, D̂) where out is As output.
4. The predicate P is evaluated, making oracle queries to FD (and ignoring the fact that D has

been measured), b← PFD(out).

A is successful if b = 0.

We remark that this definition can be extended to more complex settings, but the above
definition suffices for our purposes.

To simplify the formalism, we introduce the purified computational basis measurement op-
erator

M = CNOT⊗N ,

acting on the database register D and a fresh auxiliary register D′ of the same size. Here,N is the
number of qubits in D. For database properties P and Q, denote by P̂ and Q̂ the corresponding
projectors acting on a compressed oracle database. Suppose that PQ = 0. Then it also holds
that

P̂DMDD′Q̂D = 0. (15)

We recall the definition of the quantum transition capacity from [9] (we only need the non-
parallel case).

Definition 8 (Quantum transition capacity). Let P, P ′ be two database properties. Then,
the quantum transition capacity is defined asq

P
q→ P ′

y
:= sup

U1,...,Uq−1

‖P ′cOUq−1 cO · · · cOU1 cOP‖ .

where the supremum is over all adversary register sizes and all unitaries U1, . . . , Uq−1 acting on
the adversary’s registers. We writeq

P → P ′
y
:=

q
P

1→ P ′
y
= ‖P ′cOP‖

To analyze the query complexity of search tasks in the QROM+, we define the transition
capacity with a final measurement,q

P
q→ P ′

y
M

:= sup
U1,...,Uq−1,Uq

‖P ′MUqcOUq−1 cO · · · cOU1 cOP‖ .

Here it is understood that M is the only operator that acts on D′.
Any bounds on the success probability for oracle search tasks derived using the framework

of [9] hold in the QROM+ as well. This is a direct consequence of the following

Lemma 2. q
P

q→ P ′
y
M

=
q
P

q→ P ′
y
.

Proof. The operators M and P ′ are both diagonal in the computational basis on D (for M ,
this holds in the sense that MDD′ =

∑
D̂ |D̂〉〈D̂|D ⊗M

(D̂)
D′ for unitaries M (D̂)). The operators

34 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

therefore commute, P ′DMDD′ = MDD′P ′D. Also P ′ acts on D only, so it commutes with any
unnitary acting on the adversary registers only. We thus haveq

P
q→ P ′

y
M

= sup
U1,...,Uq−1,Uq

‖P ′MUqcOUq−1 cO · · · cOU1 cOP‖

= sup
U1,...,Uq−1,Uq

‖MUqP
′cOUq−1 cO · · · cOU1 cOP‖

= sup
U1,...,Uq−1,Uq

‖P ′cOUq−1 cO · · · cOU1 cOP‖

=
q
P

q→ P ′
y
.

The following Lemma combines several results from [9] to avoid the additive error term that
exists in, e.g., Theorem 5.7 in [9], and generalizes the technique to the QROM+.

Lemma 1 (A compressed oracle query bound lemma). Let F : X → Y be a random
oracle and let PF be a predicate on some set Z that can be computed using at most qP classical
queries to F . Let further AF be a QROM+ algorithm making at most q quantum queries to F
and outputing z ∈ Z. Then

√
Pr

z←AF
[P (z)] ≤

q+qP∑
k=1

max
x,D:
|D|≤k

¬Found(D)

√
10 Pr

u←Y
[FoundP(D[x 7→ u])] (8)

where FoundP is the database property

FoundP = (∃z ∈ Z : PD(z)) (9)

and PD is the algorithm that computes P but makes queries to D instead of F , and if any query
returns ⊥, PD ouptuts ‘false’.

Proof. Without loss of generality, we instantiate F via a random oracle F̂ : X → Y × Y ′ by
setting F (x) = (F̂ (x))1. Theorem 5.7 in [9] generalizes to the QROM+ in a straightforward
manner, with an unchanged bound, by Lemma 2. Applying that generalization to the algorithm
A′ that runs z ← AF̂ and then computes P F̂ (z), we get

√
Pr

z←AF̂

[P (z)] ≤
q+qP∑
k=1

q
¬Found ∧ (|D| ≤ k − 1)→ Found

y
+

qP
|Y||Y ′|

, (16)

Where the quantum transition capacities are defined for a compressed oracle modeling F̂ , and
we slightly abuse notation by writing Found for the database property on DF̂ . Using a straight-
forward generalization of Theorem 5.17 in [9] , we getq

¬Found ∧ (|D| ≤ k − 1)→ Found
y
≤ max

x,D:
|D|≤k

¬Found(D)

√
10 Pr

u←Y
[Found(D[x 7→ u])] (17)

via uniform strong recognizability and the local property

Lx,D =

{
{y ∈ Y : Found(D[x 7→ y])} if |D| ≤ k

∅ else.

SDitH in the QROM 35

√
Pr

z←AF̂

[P (z)] ≤
q+qP∑
k=1

max
x,D:
|D|≤k

¬Found(D)

√
10 Pr

u←Y
[Found(D[x 7→ u])] +

qP
|Y||Y ′|

Taking the limit |Y ′| → ∞ finishes the proof.

We describe here how the proof of Theorem 4.2 in [11] implies Theorem 6, restated here fore
convenience:

Theorem 6 (Variant of Theorem 5.2 from [11]). Let ΠCom,G be a distance-d special-
sound commit-and-open identification scheme with ϕ-ary tree commitment with nc leaves using
a random oracle Com with output length c, splittable challenge, challenge space Cτ and an
additional random oracle G. Let further A be a UF-NMA-adversary against FS[Π,RO] making
qRO, qCom and qG queries to RO, Com and G respectively. Then there exists a (qCom, qG)-query
QROM+ adversary B against the query-bounded distance-d special soundness of ΠCom,G with
respect to the special soundness extractor Extd of Π such that

AdvUF-NMA
FS[IDS,RO] (A) ≤Pr[sk′ ← Extd ◦ B : (sk′, pk) ∈ Keygen()]

+ Advd−spSIDS,Ext (B) + (22nc logϕ nc + 60)q32−c + 20q2
1

|C|τ−d
,

where q = qCom+qRO. The runtime of B is bounded as TIME(B) ≤TIME(A)+γ(q+qG)
2)), where

γ is polynomial in the input and output lengths of the random oracles.

Proof. (Differences to the proof of [11, Theorem 5.2]) Theorem 5.2 in [11] is formulated and
proven for binary tree commitments. It is easy to check that the proof also works for ϕ-ary tree
commitments for any ϕ, the only change being that the logarithm in the bound needs to be
taken with basis ϕ instead.

The structure of the argument in [11] is as follows. First, it is shown that except with a small
probability that depends on the number of oracle queries, after an adversary A that produces
a valid forgery has interacted with a compressed oracle simulation of Com and RO, using the
databases to invert the tree commitment algorithm on the commitments output by A reveals an
extractable set of transcripts. In the setting of statistical distance-d special soundness, a set of
transcripts S being extractable is equivalent to S containing two valid transcripts with the same
w and challenges of distance at least d. In summary, it is shown in [11] that except with small
probability, running A with a compressed oracle simulation of Com and RO allows producing
two valid transcripts with the same w and challenges of distance at least d.

We can use this intermediate result of [11] to build the (qCom, qG)-query QROM+ adversary
B against the query-bounded distance-d special soundness of ΠCom,G with respect to the special
soundness extractor Extd. B runs A, simulating RO using a compressed oracle. It then measures
the database of Com (allowed in the QROM+) to invert Com on the commitments output by
A. It then constructs two valid transcripts and outputs them. Noting that the online extraction
error εex defined in [11] fulfils

εex ≥ AdvUF-NMA
FS[IDS,RO] (A)− Pr[sk′ ← Extd ◦ B : (sk′, pk) ∈ Keygen()]−Advd−spSIDS,Ext (B)

via a union bound in our setting, we get the desired bound.

C Additional subroutines and algorithms
In Figure 3 we describe the protocol to verify via MPC evaluation points of polynomials.

36 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

Verify Beaver multiplication

Verify the triple JsK, JqK, JpfK with sacrificed triple JaK, JbK, JcKand mask point ε

Set JαK = ϵ · JqK + JaK and set JβK = JsK + JbK
Parties open JαK and JβK on bulletin board and sum to construct α and β

Parties set JvK = ϵ · JpfK− JcK + α · JbK + β · JaK− α · β
Parties open JvK to obtain v

return (v = 0)

Fig. 3: Verify Beaver multiplication on evaluation points.

Algorithm 6 Execute Π on a full set of parties
Input:

{
[xA]i, [Q]i, [P]i, [a]i, [b]i, [c]i

}N−1

i=0
, {rl, εl}t−1

l=0 .
Output: {[α], [β], [v]}N−1

i=0

Parties locally set [xB]i = y −H′[xA]i.
Parties locally compute [S]i via interpolation of [x]i = ([xA]i | [xB])i.

// Compute [α], [β], [v] coordinate-wise:
for l ∈ {0, . . . , t− 1} do

Parties locally compute [S(rl)]i, [Q(rl)]i, [P (rl)]i.
Parties locally set [αl]i = εl[Q(rl)]i + [al]i.
Parties locally set [βl]i = [S(rl)]i + [bl]i.
Parties open [αl]i and [βl]i and recombine to get αl, βl.
Parties locally set

[vl]i = −[cl]i + ⟨εlF (rl) · [P (rl)]i⟩+ ⟨αl, [bl]i⟩+ ⟨βl, [al]i⟩ − ⟨αl, βl⟩.

return {[α], [β], [v]}N−1
i=0 .

Algorithm 7 Verify a partition of parties
Input: Index c and communication αc,βc of the hidden leaf party. Secret-shares{

[xA]i, [Q]i, [P]i, [a]i, [b]i, [c]i
}N−1

i ̸=c;i=0
, and challenge points {rl, εl}t−1

l=0 . The Party i′ that contains the
hidden leaf party c (hereafter partially-disclosed Party) uses as shares the partial aggregation from its disclosed
leaf parties.

Output: [α], [β], [v]
Parties locally set [xB] = y −H′[xA].
Parties locally compute [S] via interpolation of [x] = ([xA] | [xB]).
for l ∈ [t] do ▷ Compute [α], [β], [v] coordinate-wise.

Parties locally evaluate [S(rl)], [Q(rl)], [P (rl)].
Parties set [αl] = εl[Q(rl)]+ [al]. and [βl] = [S(rl)]+ [bl].
The Partially-disclosed Party adds c communications to JαlK and JβlK.
Parties open [αl] and [βl] to get αl, βl.
All Parties but the partially-disclosed one locally set

[vl] = −[cl]+ ⟨ϵlF (rl) · [P (rl)]⟩+ ⟨αl, [bl]⟩+ ⟨βl, [al]⟩ − ⟨αl, βl⟩.

The local share [vl] of the partially-disclosed Party is set so that vl = 0

SDitH in the QROM 37

D Proof of Theorem 1
Here we give the detailed proof for Theorem 1:

Theorem 1 (Honest-Verifier Zero Knowledge (HVZK)). The algorithm SimΠ shown
in Algorithm 3 is an HVZK simulator for Π such that for any quantum algorithm A in distin-
guishing TransΠ from SimΠ making at most qzk queries to its oracle there exist algorithms B–
distinguishing the outputs of TreePRG from random – and C– breaking the hiding property of
Com– which fulfill

AdvhvzkΠ,Sim (A) :=
∣∣∣Pr[1← ASimΠ]− Pr[1← ATransΠ]

∣∣∣
≤ qzkτ(Adv

hide
Com (C) + AdvrorTreePRG (B)),

where B and C run in time TIME(B) = TIME(C) = TIME(A) + TIME(Trans) respectively.

Proof. Consider the following sequence of games as given in the proof sketch. We start with
Trans, i.e., the honest execution of the protocol, in GAME0. In the first hop, we switch the order
of operations and sample the challenges first. This defines GAME1. In GAME2, we replace the seed
seedi∗ and the commitment pseudorandomness ρi∗ for the commitments that remain unopened
by truly random bits. To be consistent with TreePRG, we also sample a random sibling path path
which we use to derive the values for the opened commitments. Next, we replace the state of the
unopened parties by truly random bits in GAME3. In GAME4 we sample that state uniformly
at random. To preserve consistency of the communications, we compute the communications
of all opened parties using the original algorithm. Then we compute the communication of the
unopened parties to agree with these.

To prove the claimed bound, we bound the distinguishing advantage of A

δi := |Pr[1← GAMEi(A)]− Pr[1← GAMEi−1(A)]|

between any two consecutive games. First, note that δ1 = 0 as the change from GAME0 to
GAME1 does not change the output distribution of the oracle at all.

To bound δ2, we have to apply a two-stage hybrid argument, first over the oracle calls, then
over the parallel executions in one call. The outer hybrid games Hybk sample the commitment
randomness and seed for the unopened commitments in the first k oracle calls at random – as
well as the path – and use pseudorandom bits for the remaining calls. Consequently, we have
that Hyb0 = GAME1 and Hybqzk = GAME2. It also follows that there has to exist at least one k
such that δk := |Pr[1← Hybk(A)]− Pr[1← Hybk−1(A)]| ≥ q−1zk δ2.

To further bound δk we define inner hybrids Hybk,ℓ which act like Hybk except when answering
the k + 1-th query. For that query, the commitment randomness and seed for the unopened
commitment and the path in the first ℓ repetitions of the basic IDS are sampled uniformly at
random while the remaining repetitions make use of the pseudorandom values. Again, Hybk,0 =
Hybk, and Hybk,τ = Hybk+1. Given that there are τ repetitions, it follows that for any k, there
has to be at least one ℓ such that

∣∣Pr[1← Hybk,ℓ(A)]− Pr[1← Hybk,ℓ−1(A)]
∣∣ ≥ τ−1δk.

Now note that the difference of any two consecutive such hybrids is upper bounded by
the distinguishing advantage against the used TreePRG. This can be shown by a reduction
B that given a bit string r∗ and a sibling path path∗ which are either a leaf and its sibling
path as produced by TreePRG (for an unknown fresh random seed) or random bit strings. B
then parses r∗ = (seedi∗ℓ , ρi

∗
ℓ
) and uses ρi∗ℓ as commitment randomness for the ℓ-th unopened

commitment in Hybk,ℓ and the sibling path as the opening information in z. When A makes
a decision, B simply forwards that decision. If the strings are random this perfectly simulates

38 Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, Yue

Hybk,ℓ, if the values were computed using TreePRG, this perfectly simulates Hybk,ℓ−1. Hence,
AdvrorTreePRG (B) =

∣∣Pr[1← Hybk,ℓ(A)]− Pr[1← Hybk,ℓ−1(A)]
∣∣ ≥ τ−1δk ≥ τ−1q−1zk δ2 and we get

δ2 ≤ τqzk ·AdvrorTreePRG (B) .

Upon inspection B runs A and answers qzk transcript queries, so TIME(B) = TIME(A) + qzk ·
TIME(Trans). Especially, the number of queries that B makes to TreePRG in addition to those
made by A are bounded by τqzk.

To analyze δ3, we follow exactly the same hybrid structure. Only this time, we replace the
value committed to in the unopened commitments by a random bit string. This means, the
atomic code snipped that distinguishes two consecutive inner hybrids is distinguishing which
message gets committed to, the real one or a freshly sampled random one. Hence, the difference
between these two games is upper bounded by the hiding property of the commitment. More
precisely, following the approach above, we can define an algorithm C that follows Hyb′k,ℓ (which
always uses random values as commitment randomness and commits to a random message for
the first ℓ repetitions in the k + 1-th query and to the actual message otherwise) but for the
ℓ-th repetition of the basic IDS, in the k+1-th query, C samples a random bit string and sends
it together with the message it would commit to in an honest execution to its oracle from the
hiding game. It will receive back a commitment that commits to one of the two. In the end, C
outputs whatever A outputs. When the commitment contained the real message, this perfectly
simulates Hybk,ℓ−1, else Hybk,ℓ. Consequently, we obtain

δ3 ≤ τqzk ·AdvhideCom (C) .

Moreover, C does essentially the same as B, so TIME(C) = TIME(B).
Finally, the transition from GAME3 to GAME4 does not change the output distribution of

the games. Hence, δ4 = 0. The final bound is then obtained applying the triangle inequality.

	SDitH in the QROM
	Introduction
	SDitH as a 3-Round Identification Scheme
	Preliminaries
	SDitH and the hypercube approach
	Polynomial zero test
	Protocol formulation

	Security of the 3-Round IDS
	The Signature Scheme
	Signature Scheme Security

	Performance
	Notation summary
	Additional QROM definitions and proofs
	Additional subroutines and algorithms
	Proof of Theorem 1

