
Schnorr protocol in Jasmin

José Bacelar Almeida 5 6, Denis Firsov 1 4, Tiago Oliveira 2,
and Dominique Unruh 3

1Tallinn University of Technology, Estonia
2Max Planck Institute for Security and Privacy, Bochum, Germany

3University of Tartu, Estonia
4Guardtime, Tallinn, Estonia

5Universidade do Minho, Braga, Portugal
6INESC TEC, Porto, Portugal

June 16, 2023

Abstract
We implement the Schnorr protocol in assembler via the Jasmin

toolchain, and prove the security (proof-of-knowledge and zero-knowledge
properties) and the absence of leakage through timing side-channels of
that implementation in EasyCrypt.

In order to do so, we provide a semantic characterisation of leakage-
freeness for probabilistic Jasmin programs (that are not constant-time).
We design a library for multiple-precision integer arithmetic in Jasmin –
the “libjbn” library. Among others, we implement and verify algorithms
for fast constant-time modular multiplication and exponentiation (using
Barrett reduction and Montgomery ladder). We also implement and verify
correctness and leakage-freeness of the rejection sampling algorithm. And
finally, we put it all together and show the security of the overall implemen-
tation (end-to-end verification) of the Schnorr protocol, by connecting our
implementation to prior security analyses in EasyCrypt (Firsov, Unruh,
CSF 2023).

Contents
1 Introduction 2

1.1 Related Work . 8

2 Preliminaries 9
2.1 EasyCrypt . 9
2.2 Jasmin Workbench . 10

2.2.1 Jasmin Basics . 10
2.2.2 Leakage-Freeness . 12

1

https://orcid.org/0000-0003-0011-7455
https://orcid.org/0000-0003-1267-7898
https://orcid.org/0000-0001-7395-3070
https://orcid.org/0000-0001-8965-1931

3 Leakage-Freeness and Constant-Time 14

4 Rejection Sampling 16
4.1 Rejection Sampling in EasyCrypt 17
4.2 Uniform Sampling in Jasmin . 18
4.3 Leakage-Freeness . 20

5 Multiple-Precision Integer Arithmetic Library 23

6 Barrett Reduction 25
6.1 Barrett Reduction in EasyCrypt 25
6.2 Barrett Reduction in Jasmin . 26
6.3 Modular Multiplication . 28

7 Montgomery Ladder 28
7.1 Abstract and Modular Exponentiation 29

8 Schnorr Protocol 31
8.1 Schnorr in Jasmin . 33
8.2 Properties for Schnorr in Jasmin 34
8.3 Instance of Schnorr Protocol . 36

A EasyCrypt Basics 40

B Montgomery Ladder in Jasmin 42

1 Introduction
Cryptographic proofs are hard. Implementations are buggy.

When developing and deploying cryptographic systems we are faced with
these two challenges. Cryptographic security proofs tend to be hand-written
mathematical proofs, likely containing oversights and other mistakes. They
will be read by other humans who may also often overlook those mistakes,
especially if they are buried in a high level of detail. In addition, even if a
cryptographic scheme is indeed secure, its proof correct, and the underlying
computational assumptions unbroken, the final implementation may still contain
bugs: Translating an abstract specification into actual code is an error-prone
process in itself, leading to new bugs in the final code, making the security proof
in the abstract cryptographic setting inapplicable. And finally, adding insult to
injury, even if we manage to make code that indeed exactly implements what the
specification requires, we could face insecurity due to side-channel attacks. E.g.,
the code may leak information about our secrets because its runtime depends on
some bits of the secret.

The EasyCrypt [BGHB11] and Jasmin [ABB+17] frameworks aim to resolve
this issue. EasyCrypt is a tool in which we can write cryptographic security

2

proofs and verify them using the computer, ensuring high-reliability proofs.1
However, EasyCrypt does not address implementation issues. The schemes are
written in a high level language, very different from what we would find in an
actual implementation. Jasmin addresses the implementation side. It consists
of an assembler-like language and a compiler. In Jasmin, we can write a highly
optimized implementation of some cryptographic function, and have it compiled
to actual assembler (for various platforms such as x86-64). In addition, Jasmin
produces EasyCrypt code that is guaranteed2 to be functionally equivalent to
the generated assembler code! This allows us to do cryptographic security proofs
in EasyCrypt, and know that they also apply to the assembler implementation
(which hopefully is the one actually used in the end).

But Jasmin goes further than that: The exported EasyCrypt code contains
instructions that explicitly describe side-channel leakage that can happen in the
assembler code (e.g., timing leakage). Then, again in EasyCrypt, we can prove
that the leakage does not depend on the secret inputs and that guarantee then
carries over to the assembler code. The current released versions of Jasmin aims
at timing attacks in what they call the “baseline model” in which control flow
(i.e., the program counter) and the addresses of memory accesses are leaked.
Also, there exist development branches of the Jasmin compiler which support
other leakage models (e.g., leaking the cache line, and variable time assembler
instructions) [SBG+22]. Unfortunately, these branches of Jasmin does support
instructions for random byte sampling which are necessary for our project.

Putting these pieces together, we can get end-to-end verified implementations
of cryptographic schemes, taking into account everything from the security
property to implementation bugs and side-channel leakage.

But we stress that this is not an automatic processes: For each protocol,
considerable human effort is needed to write the proofs and implementations.
And the proofs not only need to cover high-level security properties but also
relate the high-level representation of the protocol with Jasmin’s low-level code,
and additionally prove the absence side-channel leakage. Because of this, there
are only very few end-to-end analyses in Jasmin to date (see Sec. 1.1).

In this work, we extend this to cover another protocol: The Schnorr proof
system [Sch90].

In a nutshell, for a fixed prime p, and group element s ∈ Z∗p (and a fixed
generator g ∈ Z∗p), this protocol allows us to prove that we know the discrete
logarithm of s, i.e., some w such that gw = s. It’s message flow is:

P
z := gr−−−−−−−−−−−−−−−−−−−−−−−−−−→ V

random c←−−−−−−−−−−−−−−−−−−−−−−−−−−
t := r + cw−−−−−−−−−−−−−−−−−−−−−−−−−−→ Check: gt = zsc

1This is not perfect, of course. There remains the issue that EasyCrypt itself can have
soundness bugs. Or that the security properties are formulated incorrectly. Or that we use a
broken cryptographic assumption. These problems are beyond the scope of this work.

2Of course, we again need to assume that Jasmin itself does not contain bugs here.

3

The protocol is, for example, useful as an identification scheme, but also as a
proof system, and as a building block for group-based signature schemes [Sch90].
But besides the intrinsic interest in this protocol, it helps us to better understand
the Jasmin/EasyCrypt ecosystem and its power. Namely, while the protocol
itself is quite simple, it has a number of features that push the boundary of what
has been done in Jasmin so far:

• It is an interactive protocol (with two parties, one of them potentially
corrupt).

• It involves randomness in a crucial way. It crucially relies on the unpre-
dictability of the message from the other party.

• The security properties (proof-of-knowledge and zero-knowledge) are more
advanced, involving not only an adversary, but existentially quantified
entities such as an extractor and simulator.

• The security analysis relies on a technique that pushes the boundaries of
EasyCrypt, namely “rewinding”.3

• It involves modular arithmetic for multiple-precision integers. In particular,
modular exponentiation is extremely important in many cryptosystems, yet
the gap in abstraction level between EasyCrypt’s mathematical definition
of the ring Zp, and an optimized constant-time implementation in Jasmin
is very large. Verified and reusable optimized implementations of modular
arithmetic for multiple-precision integers will benefit end-to-end verification
of other protocols, too.

Our contribution. Our work on Schnorr’s protocol lead to the following
contributions:

Probabilistic leakage-freeness. The need for randomization in our work triggered
the addition of a randombytes primitive in Jasmin, allowing to write protocols
that use randomness. However, the existing approach in Jasmin for showing
leakage-freeness is to show, essentially, that the code is constant-time (leakage
only depends on the public inputs). Yet, in probabilistic programs, the runtime
may well depend on the random choices (not constant-time) but still not leak
anything about any secrets. Hence the existing approach can be too restrictive
(and is for “rejection sampling”, see below). We show how to model leakage-
freeness for Jasmin programs in the probabilistic setting, and prove (for backwards
compatibility and ease-of-use) that the more restrictive definition of constant-time
implies the new leakage-freeness. (The latter we formalized in EasyCrypt.)

Rejection sampling. In Schnorr’s protocol, we need to pick random numbers
from {0, . . . , p−1}. However, random number generators (such as randombytes)

3Rewinding has been covered in EasyCrypt already in [FU23]. However, we believe it is
important to validate that this carries over to end-to-end verification in the Jasmin/EasyCrypt
framework.

4

usually provide only a sequence of random bits (or bytes). This can be interpreted
as a random number from {0, . . . , 2` − 1} for some `, but not {0, . . . , p − 1}.
(As p is a prime and thus not a power of two.) This problem can be resolved
by rejection sampling: For some ` with 2` ≥ p, sample from repeatedly from
{0, . . . , 2` − 1} until you get a value < p.

We implement rejection sampling in Jasmin, and prove (in EasyCrypt) that
rejection sampling always returns uniform element within the desired range. More
interestingly, we show (in EasyCrypt) that the Jasmin implementation is indeed
leakage-free. Since the running time of the rejection sampling is randomized,
and since it is not possible to mask it by upper bounding the time,4 we cannot
show that it is constant-time (the usual approach of showing leakage-freeness in
Jasmin) but use our new relaxed criterion instead.

Finally, we stress that we made sure that our rejection sampling algorithm
and analysis is very generic: It is parameterized over an arbitrary predicate that
describes what values are “valid”, and returns a uniformly random “valid” value.
(For Schnorr, this predicate is simply P (x) := (x < p).)

Big-number arithmetic support for Jasmin. We collected dispersed contributions
of Jasmin code and corresponding correctness proofs into a coherent library
for multiple-precision integer arithmetic in Jasmin – the libjbn library. The
development is of independent interest, and is made publicly available for general
use by the Jasmin user comunity at https://github.com/formosa-crypto/
libjbn. Some concrete contributions specifically developed to address specific
needs of this paper’s use-case are detailed bellow.

Modular multiplication and Barrett reduction. We develop modular multiplication
over big numbers (now available in libjbn library).

When speed matters, modular multiplication is nontrivial since the repeated
computation of the modulo-operation will be a major performance bottleneck.
A solution to this problem is the Barrett reduction [Bar87]: Here a slow precom-
putation is done once to derive a so-called Barrett factor. (Involving division,
and depending only on the modulus n.) And using that Barrett factor, we can
perform a reduction modulo n using only cheap operations such as additions/mul-
tiplications over integers. Based on this, we can then implement multiplication
as an integer multiplication followed by a Barrett reduction.

We implement the Barrett reduction and modular multiplication algorithms
in Jasmin, and prove their correctness and constant-time property in EasyCrypt.
Our approach in this (and in the contributions below) is to develop both the
low-level Jasmin code, as well as a simpler, less low-level EasyCrypt version,
prove the properties of the latter, and show equivalence to the Jasmin code.

Modular exponentiation and Montgomery ladder. Once we have modular multi-
plication, we implement modular exponentiation on top (also made available in
libjbn library). The well-known square-and-multiply algorithm computes xn
in any monoid. However, square-and-multiply is not constant time: Depending

4At least not if we want perfectly uniform numbers. In that case, no sampling algorithm
with bounded running time exists that uses only random bits [KSU13].

5

https://github.com/formosa-crypto/libjbn
https://github.com/formosa-crypto/libjbn

on the Hamming weight of n, we may have more or less multiplications, leaking
information about n. A variation of the square-and-multiply algorithm that
avoids this, while keeping its high efficiency, is the Montgomery ladder [Mon87].

We implement the Montgomery ladder in Jasmin, using the multiplication
based on Barrett reduction, and prove its correctness (that it actually computes
xn) and its constant-time property in EasyCrypt.

Our implementation and analysis of the Montgomery ladder is generic. By
replacing the modular multiplication algorithm by a constant-time multiplication
algorithm in another monoid, one gets a constant-time exponentiation algorithm
for that semigroup without redoing any proofs. For example, future work might
use this to implement exponentiation in elliptic curves.

Schnorr protocol. We now have leakage-free algorithms for random sampling,
modular multiplication and exponentiation; we can implement the Schnorr
protocol.

We implement the protocol in Jasmin. More precisely, we implement four
Jasmin procedures for the prover’s first message, the verifier’s challenge genera-
tion, and the prover’s second message, and the verifier’s final decision whether
it accepts. Note that Jasmin does not provide any mechanism to put them
together as an interactive protocol. Instead, we write a C wrapper that in-
vokes the compiled Jasmin procedures. This serves as a demonstration how
the Jasmin procedure can be embedded in a larger application (say a network
protocol). We prove each of them leakage-free by using the results from the
previous contributions (in EasyCrypt).

The interesting part here is the security of the resulting code. We prove the
zero-knowledge property that informally says that a (malicious) verifier cannot
learn anything about the witness while it interacts with the honest prover. To
the best of our knowledge this security property of Schnorr protocol was not
previously formalized. In particular, in [FU23] authors explain that Schnorr
protocol does not have zero-knowledge property in case when the set of challenges
is exponentially big. In our work we address this issue and develop a variation
of Schnorr protocol which is parameterized by an arbitrary (non-empty) set
of challenges. As a result of this change we express and prove a meaningful
zero-knowledge property for Schnorr protocol by using the generic framework
of [FU23].

Here, we also need to reformulate the security property for the Jasmin pro-
grams. (We cannot directly apply the existing definition since Jasmin programs
cannot, for example, keep internal state.) What makes this security property
interesting is that it is defined not only with respect to an all-quantified adversary
breaking the protocol, but also an existentially quantified entity (the simulator)
“helping” the protocol. In EasyCrypt, such entities are typically given as explicitly
spelled out source code. So we end up with the interesting case where we have
three kinds of entities in our definition: (a) All-quantified adversaries who could
be any unspecified EasyCrypt program. (b) Explicit protocol specification from
Jasmin. (c) Explicit entities (simulator) written abstractly in EasyCrypt.5 In our

5One may ask why they should not be written in Jasmin and verified in Jasmin. The reason

6

work we also address proof-of-knowledge property (a.k.a. knowledge soundness)
that informally says that a prover cannot succeed in Schnorr’s protocol unless
it actually knows a witness w with s = gw. This security property was already
formalized in [FU23] in EasyCrypt (in its abstract, far from low-level form).

We believe that our solution also provides guidance for future proofs of other
cryptographic properties for Jasmin protocols that use a simulation or extraction
paradigms.

Unfortunately, we were not able to reuse the security proofs of Schnorr
protocol from [FU23] directly since it depends on the formalization of cyclic
groups which vanished from the latest edition of EasyCrypt standard library.
Instead we used their framework and latest standard library of EasyCrypt
to re-implement the abstract version of the Schnorr protocol and re-derive
completeness, proof-of-knowledge, and also extend their development with the
zero-knowledge property.

But we also cannot directly apply the properties developed in the framework of
[FU23] to our Jasmin protocols. This is because of the slightly different interface
of the Jasmin code (e.g., state is explicitly passed) but more importantly because
the Jasmin code works on low-level representations of the group elements (arrays
of bytes) while the existing EasyCrypt implementation works on an abstract type
of elements of a cyclic group. This difference is cryptographically relevant – a
careless implementation of the abstract specification might introduce insecurities,
e.g., by leaking data in the specific choice of representation of a specific group
element. We use a principled approach and carry over the properties from the
protocol implemented on the high-level of abstraction (such as [FU23]) to the
low-level (i.e., protocol implemented in Jasmin). More specifically, we relate
inputs and outputs of all protocol procedures of abstract and low-level procedures;
after that, showing that the security properties carry over is a matter of few
lines of EasyCrypt code. We believe that this approach also provides guidance
for similar situations in future work.

Reusability, reproducibility. Throughout this work, we have striven to make our
results general and reproducible. While the overall result is specific to the Schnorr
protocol, where possible we made individual building blocks independently
reusable. The rejection sampling works for arbitrary sets; the library for multiple-
precision integer arithmetic is of independent interest and made publicly available;
Barret reduction and modular modularization is independent of the Schnorr
protocol; the Montgomery ladder is not specific to modular arithmetic but
analyzed for any monoid.

Where this was not possible, we tried to make sure that the overall structure
of our results is clean and simple to understand, and tried to explain them in
this paper in a way that makes it easy to understand especially the modeling
and overall structure of our proofs to enable future work on other protocols that
follows our work with as little changes as possible.

is that these refer to some hypothetical adversary (more specifically, the are reductions that
transform one adversary into another), and there is no reason to assume that this adversary is
written specifically in a Jasmin-related assembler.

7

Our development is available as a GitHub repository [AFOU23].

1.1 Related Work
The Jasmin toolchain was introduced with Coq proofs of the correctness of the
compiler in [ABB+17]; it was connected to EasyCrypt in [ABB+20]; the toolchain
was extended to cover leakage-freeness guarantees in [BGLP21, SBG+22]. Sev-
eral cryptographic schemes have been implemented in Jasmin: the ChaCha20
streamcipher, the Poly1305 and Gimli hash function (all in [ABB+20]), the
scalar multiplication algorithm for the elliptic curve Curve25519 in [ABB+17],
the SHA-3 hash function in [ABRB+19], the Kyber public-key encryption scheme
in [ABB+23], and the MPC-in-the-head protocol in [ABC+21]. Of these, most
only contain functional correctness proofs. Only [ABC+21] contains a study of
security properties, but not of the Jasmin code itself. (See below.) We are not
aware of prior work that verifies the security of the assembly in EasyCrypt.

Two of these works merit closer attention in the context of our work, [ABC+21]
and [ABB+23].

The work [ABC+21] has a similar aim as our work – it analyses a zero-
knowledge proof system in EasyCrypt, and parts of that protocol are implemented
in Jasmin. The protocol is different from the one considered here, it is the MPC-
in-the-head (MitH) protocol from [IKOS07]. They prove in EasyCrypt that
MitH is a restricted variant of zero-knowledge,6 and that it has soundness. They
also aim at end-to-end verification of the protocol but with a different approach
than we do here: They implement the protocol in EasyCrypt and translate the
EasyCrypt code to OCaml (using code extraction). Then they re-implement
some of the operations (namely, the code for addition and multiplication gates)
and show that this code is equivalent to the EasyCrypt code and then link it
together with the OCaml code using a special-purpose C wrapper. Compared to
a full end-to-end verified implementation in Jasmin (as we do here for Schnorr’s
protocol), this has some limitations. First, the joining of the autogenerated
OCaml code, and the manually written Jasmin code is unverified: While there
is an EasyCrypt proof that the Jasmin code is equivalent to the EasyCrypt code
in certain sense, there is no principled method that checks that the interfacing
is done properly; we trust the unverified implementation of the wrapper do
deal with combining a high- and a low-level language in a way that makes their
semantics match up. (This is non-trivial since OCaml is a garbage collected
language, and the wrapper needs to “understand” the foreign function interface
of OCaml and deal with memory allocations etc.) Compared with an approach
that verifies everything in one language, this introduces additional points of

6Restricted in the sense that they only show that there is a simulator that fails with
constant probability, while for zero-knowledge, we would need to have a simulator that succeeds
with overwhelming probability. They prove a meta-theorem that such an aborting simulator
implies the existence of the desired simulator, but as explained in more detail in [FU23], the
meta-theorem cannot be applied to the aborting simulator that is constructed due to a lack of
generality of the meta-theorem. (It only applies to simulators that are of the specific form
that they have just one step, side-effect free sampling from a given distribution.)

8

failure. Second, we lose one of the selling points of Jasmin, the leakage-freeness.
No guarantees can be given about the leakage (e.g., though timing) of the OCaml
code, and even if the Jasmin code fragments are constant-time, this property
is lost when the data is processed by the OCaml code. We also stress that the
security proofs are about the EasyCrypt implementation of the overall program
– for the Jasmin programs, functional properties are shown. In our present work,
we aim to avoid those limitations by implementing all EasyCrypt code in Jasmin,
and verifying in EasyCrypt that the security properties hold specifically for the
Jasmin code.

The recent independent work [ABB+23] that analyses various Kyber
[BDK+18] implementations in Jasmin and analyses their functional correct-
ness (i.e., that they match the abstract specification in EasyCrypt). At the
moment the published preprint does not cover security properties and only briefly
mentions constant-time property. It does not provide any information on how
“constant-time” is defined or derived. We believe that our new definitions of
leakage-freeness would come in handy especially because Kyber is a probabilistic
algorithm which also makes use of rejection sampling.

Their work also contains an implementation of Barrett reduction, and of
rejection sampling. Their implementations are very specialized to Kyber: Jasmin
impplementation of Barrett reduction is done for 16-bit words and hence does
not apply to integers modulo a large prime which is needed in our setting.
Their rejection sampling is a routine from the Kyber standard for sampling
elements from a specific ring, and functional correctness (i.e., uniformity) is
not shown for the actually implemented sampling but an idealized version of
it (with hash functions replaced by fresh random values). This is a necessary
consequence of the fact that the Kyber specifications prescribe a very specific
sampling algorithm that simply happens not to be exactly uniform, and also
probably hard to prove even approximately uniform outside the random oracle
model. In our work, Jasmin implementation of rejection sampling is provably
uniform and Barret reduction is for large integers. Additionally, we specify and
obtain leakage-freeness for rejection sampling and show constant-time for Barrett
reduction.

2 Preliminaries

2.1 EasyCrypt
EasyCrypt is an interactive framework for verifying the security of cryptographic
protocols in the computational model. In EasyCrypt security goals and crypto-
graphic assumptions are modelled as probabilistic programs (a.k.a. games) with
abstract (unspecified) adversarial code. EasyCrypt supports common patterns
of reasoning from the game-based approach, which decomposes proofs into a
sequence of steps that are usually easier to understand and to check [BDG+13].

This paper was inspired by the formalization of rewinding [FU22] and zero-
knowledge protocols in EasyCrypt [FU23]. To facilitate reading, in this paper we

9

used the same style of presentation and set of syntactical conventions as [FU22].
To our readers who are not familiar with EasyCrypt also suggest to read a
short EasyCrypt introduction in [FU22, Section 2] or in Appendix A. More
information on EasyCrypt can be found in the EasyCrypt tutorial [BDG+13].

To readers who are familiar with EasyCrypt we only give a brief overview of
our syntactical conventions: we write ← for <-, $← for <$, ∧ for /\, ∨ for \/, ≤
for <=, ≥ for >=, ∀ for forall, ∃ for exists, m for &m, GA for glob A, Gm

A for
(glob A){m}, λx. x for fun x => x, × for *. Furthermore, in Pr-expressions, in
abuse of notation, we allow sequences of statements instead of a single procedure
call. It is to be understood that this is shorthand for defining an auxiliary
wrapper procedure containing those statements.

2.2 Jasmin Workbench
Jasmin is a toolchain for high-assurance and high-speed cryptography [ABB+17].
The ultimate goal for Jasmin implementations is to be efficient, correct, and
secure. The Jasmin programming language follows the “assembly in the head”
programming paradigm. The programmers have access to low-level details such
as instruction selection and scheduling, but also can use higher-level abstractions
like variables, functions, arrays, loops, and others.

The semantics of Jasmin programs is formally defined in Coq to allow users
to rigorously reason about programs. The Jasmin compiler produces predictable
assembler code to ensure that the use of high-level abstractions does not result in
run-time penalty. The Jasmin compiler is verified for correctness. This justifies
that many properties proved about the source program will carry over to the
corresponding assembly (e.g., safety, termination, functional correctness).

The Jasmin workbench uses the EasyCrypt theorem prover for formal verifi-
cation. Jasmin programs can be extracted to EasyCrypt to address functional
correctness, cryptographic security, or security against timing attacks.

2.2.1 Jasmin Basics

We explain the basics and workflow of Jasmin development on a simple exam-
ple. More specifically, our goal is to implement a procedure which with equal
probabilities returns values 0 or 1 (encoded as bytes). Below is the “naive”
implementation of such a program in Jasmin:
inline fn random_bit_naive () → reg u8{

stack u8[1] byte_p;
reg ptr u8[1] _byte_p;
reg u8 r;

_byte_p = byte_p;
byte_p = #randombytes(_byte_p);
if (byte_p [0] < 128){

r = 0;
}else{

r = 1;
}

10

return r;
}

The program has no arguments and outputs an usigned byte allocated in the
register (type reg u8). The body of the program starts by declaring the
variables and their respective types. In particular, we declare a variable byte_p
of type stack u8[1] which has an effect of allocating a memory region on
the stack. The variable _byte_p has type reg ptr u8[1] which indicates
that it uses a register to store a pointer to value u8[1]. Next, we store a
pointer to byte_p in _byte_p . Next, we generate a random byte with a
systemcall #randombytes . The systemcall takes a pointer to the byte array
as its argument and fills its entries with randomly generated bytes. In this way,
we sample a single random byte into local variable byte_p [0]. Hence, with
probability 1/2 the value byte_p [0] is smaller than 128 and the result of
computation is 0; otherwise, we return the value 1.

To address correctness of random_bit_naive we can instruct the Jasmin
compiler to extract an EasyCrypt model of random_bit_naive program.7
This produces a module MC with a procedure random_bit_naive . Jasmin
extracts programs to EasyCrypt by systematically translating all datatypes and
Jasmin programming constructs. See the code below.
module type Syscall_t = {

proc randombytes 1 (b:W8.t Array1.t): W8.t Array1.t }.

module SCD : Syscall_t = {
proc randombytes 1 (a:W8.t Array1.t) : W8.t Array1.t = {

a $← dmap WArray1.darray
(λ a ⇒ Array1.init (λ i ⇒ WArray1.get8 a i));

return a;
}}.

module MC(SC:Syscall_t) = {
proc random_bit_naive () : W8.t = {

var r:W8.t;
var byte_p , _byte_p:W8.t Array1.t;
_byte_p ← witness;
byte_p ← witness;
_byte_p ← byte_p;
byte_p <@ SC.randombytes 1 (_byte_p);
if ((byte_p .[0] \ult (W8.of_int 128))) {

r ← (W8.of_int 0);
} else {

r ← (W8.of_int 1);
}
return (r);

}
}.

7The command jasminc -ec random_bit_naive -oec Dest.ec Source.jazz tells Jasmin
compiler to extract to EasyCrypt the function random_bit_naive from Jasmin source file
Source.jazz and produce an EasyCrypt file Dest.ec.

11

For example, Jasmin datatype reg u8 of 8-bit words was translated to the
EasyCrypt type W8.t. The type of a single-entry 8-bit array stack u8[1]
and a pointer to such array reg ptr u8[1] were both translated to
W8.t Array1.t. EasyCrypt model does not recognize a difference between
values allocated on stack and in registers, so this information is abstracted away
during translation.

Since random_bit_naive uses a systemcall #randombytes then Jas-
min generates a module MC which is parameterized by a “provider” of systemcalls
SC. In our example, the systemcall #randombytes is translated to an in-
vocation of SC.randombytes 1 procedure. Clearly, that such interpretation
of systemcalls makes it harder to rigorously define the semantics of Jasmin
programs, but at the same time it allows users to choose their own interpre-
tation of systemcalls. Also, Jasmin produces a module SCD with the “default”
interpretation of systemcalls. In our work we use the default interpretation (i.e.,
function SCD.randombytes 1) which models #randombytes as a generator
of truly random byte. Alternatively, one could interpret #randombytes as an
invocation of pseudo-random generator.

The main purpose of the EasyCrypt’s module MC is to address the correctness
of the Jasmin’s implementation. More specifically, we can use the EasyCrypt’s
built-in probabilistic Hoare logic to prove that random_bit_naive returns
values 0 and 1 with probabilities equal to 1/2.8

2.2.2 Leakage-Freeness

Another important aspect of the Jasmin framework is that it allows users to
analyze whether the implementation is “leakage-free”. Intuitively, the program
is “leakage-free” if its execution time does not leak any additional information
about its (secret) inputs and the output. To perform leakage-free analysis a user
can instruct Jasmin compiler to extract a program to EasyCrypt with leakage
annotations (leakage annotations are added automatically by Jasmin). In this
case, the resulting EasyCrypt module MLhas a global variable leakages which is
used in the EasyCrypt procedures to accumulate information which can get leaked
in case of a timing attack. For example, if we compile random_bit_naive
to EasyCrypt with leakage annotations then the result is as follows:9

module ML(SC:Syscall_t) = {
var leakages : leakages_t

proc random_bit_naive () : W8.t = {
var r, aux 0 : W8.t;
var aux , byte_p , _byte_p:W8.t Array1.t;
_byte_p ← witness;
byte_p ← witness;

8In our work we do not actually implement the function random_bit_naive because as we
will see later it is not leakage-free, instead we develop a function random_bit for which we
derive correctness and constant-time property.

9The command jasminc -CT -ec random_bit_naive -oec Dest_ct.ec Source.jazz tells
Jasmin compiler to extract to EasyCrypt the function random_bit_naive from Jasmin source
file Source.jazz and produce an EasyCrypt source file Dest_ct.ec.

12

leakages ← LeakAddr ([]) :: leakages;
aux ← byte_p;
_byte_p ← aux;

leakages ← LeakAddr ([]) :: leakages;
aux <@ SC.randombytes 1 (_byte_p);
byte_p ← aux;

leakages ← LeakCond ((byte_p .[0] \ult (W8.of_int 128)))
:: LeakAddr ([0]) :: leakages;

if ((byte_p .[0] \ult (W8.of_int 128))) {
leakages ← LeakAddr ([]) :: leakages;
aux 0 ← (W8.of_int 0);
r ← aux 0 ;

} else {
leakages ← LeakAddr ([]) :: leakages;
aux 0 ← (W8.of_int 1);
r ← aux 0 ;

}
return (r);

}
}.

The entries in the leakages accumulator must be understood as a data which
an attacker could learn if they would carry-out a timing attack. The leakage
annotations are added for every basic statement of the Jasmin program.

Observe that in procedure ML.random_bit_naive the call to
SC.randombytes 1 only adds a leakage value LeakAddr [] to the
leakages accumulator. This means that this operation does not leak any
information about result of its computation. At the same time, since its exe-
cution requires time then this is modelled by adding an empty leakage value
LeakAddr [].

Also notice that if-statements leak the boolean value of the conditional
statement. As a result the boolean value byte_p .[0] < W8.of_int 128
is added to the accumulator. This indicates that a timing attack might reveal
which branch of the if-statement was executed. As a result, we can say that
the current implementation of random_bit_naive is not leakage-free since
it leaks some data about the actual dataflow of the program execution.

Let us implement a procedure random_bit which gets rid of the problematic
if-statement:
inline fn random_bit () → reg u8{

stack u8[1] byte_p;
reg ptr u8[1] _byte_p;
reg u8 r;
_byte_p = byte_p;
byte_p = #randombytes(_byte_p);
r = byte_p [0];
r &= 1;
return r;

}

13

In random_bit definition we convert a random byte byte_p [0] to the values
0 or 1 by doing a bitwise “and” operation of byte_p [0] with value 1 and
return the result.

We prove that the new version of random_bit is a uniform distribution of
values 0 and 1. However, the more interesting aspect is whether the new version
is leakage-free. In fact, after extraction to EasyCrypt with leakage-annotations
we get the following EasyCrypt code:
module ML(SC:Syscall_t) = {

var leakages : leakages_t

proc random_bit () : W8.t = {
var r, aux 0 : W8.t;
var aux , byte_p , _byte_p: W8.t Array1.t;
_byte_p ← witness;
byte_p ← witness;

leakages ← LeakAddr ([]) :: leakages;
aux ← byte_p;
_byte_p ← aux;
leakages ← LeakAddr ([]) :: leakages;
aux <@ SC.randombytes 1 (_byte_p);
byte_p ← aux;
leakages ← LeakAddr ([0]) :: leakages;
aux 0 ← byte_p .[0];
r ← aux 0 ;
leakages ← LeakAddr ([]) :: leakages;
aux 0 ← (r ‘&‘ (W8.of_int 1));
r ← aux 0 ;
return (r);

}
}.

Now it must be easy to see that after execution of random_bit function
the leakages accumulator does not contain any data specific to the output
of the program. Moreover, the same list of leakages is generated on every
execution of the random_bit function (i.e., the resulting ML.leakages is
deterministic and not probabilistic). Therefore, we can “intuitively” conclude
that random_bit is leakage-free.

However, to be able to argue about leakage-freeness formally we must give rig-
orous definitions of leakage-freeness and cryptographic constant-time (see Sec. 3).

3 Leakage-Freeness and Constant-Time
We assume that Jasmin programs have public inputs and secret inputs. The
intention of our definition is to guarantee safety against timing attack. In other
words, we want to ensure that programs which satisfy our definition of leakage-
freeness must not leak any information about their secret inputs and the result
of their computation through timing-attacks.

14

Definition 1 (Leakage-Free Jasmin Programs) Let p be a total Jasmin
program and ML be the result of extraction of p to EasyCrypt with leakage anno-
tations. Also, let pin and sin be public and secret inputs, respectively. Then
we say that p is a leakage-free program with respect to systemcall provider SC iff:
∃ f, ∀ sin pin a l mmm, ML.leakages{mmm} = []
⇒ let v = Pr[out ← ML(SC).p(pin ,sin)@mmm: ML.leakages = l ∧ out = a] in

let w = Pr[out ← ML(SC).p(pin ,sin)@mmm: out = a] in
⇒ 0 < w
⇒ v/w = f(pin ,l).

In the definition above v/w denotes a conditional probabily of producing leakages
l given that output is a. Intuitively, the program is leakage-free if there exists
a function f such that the conditional probability v/w can be computed only
from public inputs and the list l. That is “leakage” distribution does not depend
on the sin and out.

Let us apply this definition to random_bit function defined in Sec. 2.2.2
(assuming the default systemcall provider).
op f l = let random_bit_l = [LeakAddr []; LeakAddr [0];

LeakAddr []; LeakAddr []] in
if l = random_bit_l then 1 else 0.

Here, f checks if the list of leakages l is well-formed (i.e., equals to a constant
list denoted by random_bit_l) in which case it returns 1, and 0 otherwise.

By using the basic EasyCrypt reasoning we can prove that the Jasmin
program random_bit with function f as defined above satisfy the definition
of being leakage-free according to Definition 1.

If we analyze the leakages generated by random_bit function then we
notice that it always prepends the same constant (equal to random_bit_l)
to the leakages accumulator. For such simple probabilistic programs we give an
alternative definition of constant-time which is compositional and is simpler to
derive:

Definition 2 (Constant-Time for Probabilistic Jasmin Programs) Let
p be a probabilistic Jasmin program and ML be the result of the extraction of p to
EasyCrypt with leakage annotations. Also, let pin and sin be public and secret
inputs, respectively. Then we say that p is a constant-time program with respect
to the systemcall provider SC iff:
∃ f, ∀ sin pin l mmm, ML.leakages{mmm} = l
⇒ Pr[ML(SC).p(pin ,sin)@mmm: ML.leakages = (f pin) ++ l] = 1.

We prove that Definition 2 implies the more general Definition 1.
For deterministic10 programs we can give even simpler definition of constant-

time property which for such programs is equivalent to Definition 1, but in
EasyCrypt the latter definition could usually be established almost entirely

10In EasyCrypt we say that the program p is deterministic iff there exists a (pure) function
which computes the same outputs as p for all inputs.

15

automatically by using probabilistic relational Hoare logic with combination of
simulation tactic sim:

Definition 3 (Constant-Time for Deterministic Jasmin Programs)
Let p be a deterministic Jasmin program and ML be the result of extraction
of p to EasyCrypt with leakage annotations. Also, let pin be a public input
and sin 1 with sin 2 be secret inputs. Then we say that p is a constant-time
program with respect to systemcall provider SC iff:
∀ sin 1 sin 2 pin l mmm, ML.leakages{mmm} = []
⇒ Pr[ML(SC).p(pin ,sin 1)@mmm: ML.leakages = l]

= Pr[ML(SC).p(pin ,sin 2)@mmm: ML.leakages = l].

We also formally prove in EC that Definition 3 implies Definition 1.
To sum up:

• The Definition 1 is the most general and applies to programs which are
not constant-time (see Sec. 4). At the same time it is not compositional
and deriving it directly requires significant effort.

• The Definition 2 applies to probabilistic constant-time programs, implies
Definition 1, and could be used in a compositional way with the help of
probabilistic Hoare logic.

• The Definition 3 applies only to deterministic programs, implies Definition 1,
and could be proved almost entirely automatically by applying the sim
tactic. Notice that this definition must be used with caution as it only
makes sense when the program p is deterministic. Using EasyCrypt to
formally derive the fact that a program is deterministic will usually require
a significant effort.

The formal treatment relating the above definitions could be found in the
supplementary code in folder proof/definition_analysis/.

4 Rejection Sampling
In Jasmin we can use #randombytes systemcall to generate bytes uniformly
at random. However, this does not immediately give us uniform distributions on
sets whose cardinality is not power of 2. Therefore, in this section our goal is to
describe verified (correct and leakage-free) Jasmin implementation of uniform
sampling of arbitrary size. One solution to this problem is “rejection sampling”.
In rejection sampling we are drawing random elements from a given distribution
d and rejecting those samples that don’t satisfy some predefined criteria. If the
sampled element was rejected then we sample again until the element is accepted.
For example, if d is a uniform distribution from [0 . . . 7] and we perform rejection
sampling from d with criteria that the resulting element must be smaller than 3
then we can prove that this precisely gives a uniform distribution of 0,1, and 2.

16

The downside of rejection sampling is that it does not have an apriori
termination time which means that we do not know how long will it take to
produce an element which satisfies the criteria. Nonetheless we can prove that if
the source distribution d has elements which satisfy the criteria then the rejection
sampling is always terminating.11

In this section, we first start by implementing a generic rejection sampling
algorithm in EasyCrypt and proving its properties (termination and correct-
ness)12. Then we implement a uniform sampling in Jasmin as a special case of
rejection sampling. Next, we extract the Jasmin implementation to EasyCrypt
and show that it is correct by establishing equivalence with the “high-level”
EasyCrypt implementation. Finally, we extract the Jasmin sampling algorithm
to EasyCrypt with leakage annotation and prove that it is leakage-free.

4.1 Rejection Sampling in EasyCrypt
We start by implementing a rejection sampling algorithm in EasyCrypt. Our
algorithm is parameterized by a lossless distribution d of parameter type X. We
implement a module RS with procedure rsample(P), where P is a predicate on
the elements of the distribution. In this procedure we run a while loop in which
we sample an element x from d on each iteration. The while-loop terminates
when the sampled element x satisfies the predicate P.
type X.
op d : X distr.
axiom d_ll : is_lossless d.

module RS = {
proc rsample(P : X → bool) : X = {

var b : bool;
var x : X;
x ← witness;
b ← false;
while (!b){
x $← d;
b ← P x;

}
return x;

}
// also includes rsample1 which unfolds while -loop once.

}.

To help with the derivation of correctness of rsample we also implement
rsample1 procedure which is computationally equivalent to rsample , but
with the explicit unrolling of the first iteration of the while loop.

11We considered implementing alternative algorithms which have apriori termination time,
however to the best of our knowledge, those only are able to produce approximations of target
distributions.

12We discovered that the standard library of EasyCrypt has formalization (independent of
ours) of rejection sampling algorithm in theory Dexpected.ec. However, the proof strategies of
two formalizations are different. In our work derive the probability mass function for rejection
sampling by solving a recurrence.

17

Let us now address the correctness and termination of the RS.rsample
procedure. In the first step, we show that RS.rsample and RS.rsample1
are computationally equivalent. This is easily proved by using probabilistic
relational Hoare logic (pRHL) and expanding the while loop in rsample with
the unroll tactic.
lemma samples_eq mmm P Q:
Pr[x ← RS.rsample(P)@mmm: Q x] = Pr[x ← RS.rsample1(P)@mmm: Q x].

Observe that if rsample(P) terminates then the returned element x must
satisfy the predicate P. Therefore, in the rest we will address only predicates Q
which define subsets of P (denoted by Impl Q P). In the next step towards
correctness of rsample we express the probability of events of rsample1 in
terms of the probability of the same events of rsample . To achieve that we use
probabilistic Hoare logic (pHL) and split the total probability into cases which
correspond to the branches of the if-statement in rsample1 :
lemma rsample1_rsample mmm P Q: Impl Q P
⇒ Pr[x ← RS.rsample1(P)@mmm: Q x]

= (µ d !P) * Pr[x ← RS.rsample(P)@mmm: Q x] + µ d Q.

Now, we can combine samples_eq and rsample1_rsample and arrive at
the following recurrence:
lemma rsample_rec mmm P Q: Impl Q P
⇒ Pr[x ← RS.rsample(P)@mmm: Q x]

= (µ d !P) * Pr[x ← RS.rsample(P)@mmm: Q x] + µ d Q.

If the total probability mass of the predicate P is not zero then the above
recurrence has the following solution:
lemma rsample_pmf mmm P Q: Impl Q P ⇒ (µ d P) 6= 0
⇒ Pr[x ← RS.rsample(P)@mmm: Q x] = (µ d Q) / (1 - µ d !P).

We can also rewrite the right-hand side as (µ d Q)/(µ d P) which denotes
a condtional probability of Q given P.

As a simple consequence we get that the procedure RS.rsample(P) returns
an element x which satisfies the predicate P with probability 1. This also means
that the procedure rsample is terminating (or lossless in the parlance of
EasyCrypt):
lemma rsample_ll mmm P: (µ d P) > 0
⇒ Pr[x ← RS.rsample(P)@mmm: P x] = 1.

4.2 Uniform Sampling in Jasmin
In Jasmin we cannot implement a rejection sampling algorithm as generic as
our implementation of RS.rsample(P) in EasyCrypt (see Sec. 3.1).13 For the

13Jasmin does not have function types, so a predicate cannot be passed as an argument to a
program. Also, Jasmin does not have any built-in types of distributions and the only way to
generate randomness in Jasmin is by using the randombytes systemcall.

18

purposes of Schnorr protocol, we implement in Jasmin a function which specializes
the predicate P to λ x. x < a (for a parameter a) and uses #randombytes
systemcall as a distribution d. In this way, we implement a uniform sampling
from an interval [0 . . .a-1] for a given parameter a.

Another current restriction of Jasmin language is that it is impossible to
express arrays of parametric length. Therefore, in the preamble of all our Jasmin
development we define a constant nlimbs and then represent the inputs and
outputs of our programs by an arrays of size nlimbs of 64-bit unsigned binary
words.14

Now we describe an implementation of a Jasmin program bn_rsample(a)
(prefix bn stands for big-number) whose input a is a nlimb-array representing
a number from the interval [0...264·nlimbs − 1] which is allocated on stack. The
program returns the pair (i,p), where i is a counter of while-loop iterations
and p is a binary array which represents a number sampled uniformly at random
from the interval [0 . . .a-1]. In our implementation, the counter i is a “logical”
variable of type int (i.e., unbounded integer) which is only needed to facilitate
proving in EasyCrypt.

In the implementation below we run a while-loop and at every iteration we
use the systemcall #randombytes to sample a random number p from the
interval [0...264·nlimbs − 1]. Then we subtract p from a by using a bn_subc
function.15 The result of subtraction is stored in the memory of the first argument
of bn_subc . Therefore, to preserve the initial value of p, we first copy it to the
variable q by using the bn_copy call. Importantly, in additional to the result
of subtraction the program bn_subc also returns the “carry” flag cf which is
set to true if the first argument is smaller than the second. The while loop is
iterated until the flag cf is set to true which would indicate that the sampled
number p is smaller than a as desired:
inline fn bn_rsample(stack u64[nlimbs] a)

→ (inline int , stack u64[nlimbs]){
stack u64[nlimbs] q p;
reg ptr u64[nlimbs] _p;
reg bool cf;
inline int i;
i = 0;
p = bn_set0(p);
_, cf, _, _, _, _ = #set0 ();
while (!cf) {

_p = p;
p = #randombytes(_p);
q = bn_copy(p);
cf, q = bn_subc(q,a);
i = i + 1;

}
return (i,p);

}

14In our work we put nlimbs := 32, but our development can be recompiled with any value.
15The implementation of bn_subc is included into the libjbn library. Moreover, it comes

with associated EasyCrypt proofs which show that it is correct and constant-time.

19

Next we compile bn_rsample to EasyCrypt without leakage-annotations to
address correctness. This produces a module MC with the EasyCrypt’s version of
bn_rsample algorithm. The module also includes all functions which were used
in the implementation of Jasmin’s bn_rsample , namely, bn_set0 , bn_copy ,
and bn_subc . The result of this compilation can be found in the accompanying
code in file proof/jasmin_extracts/W64_SchnorrExtract.ec.

Due to the fact that Jasmin’s bn_rsample implements a special case
of rejection sampling, we found that it was easy to relate the “high-level”
EasyCrypt implementation RS.rsample to the Jasmin’s “low-level” extract
MC.bn_rsample . In particular, we use the EasyCrypt’s built-in probabilistic
relational Hoare logic to establish that MC.bn_rsample returns a number y
with the same probability as the procedure RS.rsample :
lemma bn_rsample_spec mmm (a y : W64xN.t):

let P = λ x. x < [a] in
Pr[out ← RS.rsample(P)@mmm: out = y]

= Pr[(_,out) ← MC(SCD). bn_rsample(a)@mmm: [out] = y].

Here, W64xN.t stands for the type of an array of size nlimbs of 64-bit binary
words (i.e., Array32.t W64.t). To simplify the presentation we write [x]
to denote a value of type W64xN.t converted to usigned integer (in EasyCrypt
this is done by using function W64xN.valR).

As a consequence of bn_rsample_spec and rsample_pmf we can im-
mediately conclude the correctness of usample :
lemma bn_rsample_pmf mmm (a y : W64xN.t) : 0 ≤ [y] < [a]
⇒ Pr[(_,out) ← MC(SCD). bn_rsample(a)@mmm: out = y] = 1/[a].

4.3 Leakage-Freeness
In the previous section we discussed the correctness of implementation of
bn_rsample in Jasmin. In this section we address its leakage-freeness. To do
that, we compile bn_rsample to an EasyCrypt module with leakage annota-
tions. The result is as follows:16

module ML(SC:Syscall_t) = {
var leakages : leakages_t

proc bn_rsample(a:W64xN.t): (int × W64xN.t) = {
var q p i aux;
p ← witness;
q ← witness;
i ← 0;
leakages ← LeakAddr [] :: leakages;
p <@ bn_set0(p);

leakages ← LeakAddr [] :: leakages;
cf ← false;

16For the sake of clarity of presentation we clean the extracted EasyCrypt code and remove
automatically generated boilerplate such as auxilliary variables and extra assignments.

20

leakages ← LeakCond (!cf) :: LeakAddr [] :: leakages;
while (!cf) {

leakages ← LeakAddr [] :: leakages;
aux <@ SC.randombytes_32 (init_array nlimbs 64);
p ← (Array32.init (λ i0 ⇒ get64

(WArray256.init8 (λ i0 ⇒ aux.[i0])) i0));

leakages ← LeakAddr [] :: leakages;
q <@ bn_copy(p);

leakages ← LeakAddr [] :: leakages;
(cf , q) <@ bn_subc(q, a);
i ← i + 1;
leakages ← LeakCond (!cf) :: LeakAddr [] :: leakages;

}
return (i, p);

}

// also includes leakage -annotated bn_subc , bn_copy , bn_set0.
}.

Recall that in the implementation of bn_rsample the counter i is a “logical”
variable which we will use to derive properties of bn_rsample .

The module ML also includes leakage-annotated versions of bn_subc ,
bn_copy , and bn_set0 which we skip here for brevity. The libjbn library
contains proofs that these auxiliary functions are correct and constant-time.

The analysis of leakage-freeness of bn_rsample is unusual because even
if we proved that the procedure bn_rsample terminates with probability 1
then we do not know in advance for how many iteartions will it run. As a result,
the contents of ML.leakages accumulator is probabilistic and depends on the
number of iterations.

In the first step of our analysis we derive the probability of bn_rsample
running for exactly i iterations and returning a specific element x. The proof is
by induction on the number of iterations i.
op fail_once (a : int) : real = µ [0..2 nlimbs*64 -1] (λ x ⇒ a ≤ x).

lemma bn_rsample_pr mmm a i y: let t = 2 nlimbs*64 in
1 ≤ i ⇒ 0 ≤ [x] < [a]
⇒ Pr[(c,x) ← ML(SCD). bn_rsample(a)@mmm: c = i ∧ x = y]

= (fail_once [a])^(i-1) / t.

Here, (fail_once x) denotes the probability of failure of a loop iteration in
bn_rsample which equals to the probability of uniformly sampling an element
which is larger or equal than x from interval [0..2 nlimbs*64 -1].

In the second step we prove that the contents of the leakage accumulator is
in the functional relation with the number of iterations of the while-loop. More
specifically, we define a function samp_t and establish that after termination
of ML.bn_rsample the contents of ML.leakages equals to (samp_t i).
Intuitively, this shows that the leakages do not depend on the input arguments.
At the same time, it does not mean that the result of the computation is
independent of leakages.

21

op samp_t i =
let prefix = [LeakAddr []; . . .] ++ set0_L ++ [. . .] in
let suffix = [LeakAddr []; . . .] ++ copy_L ++ [. . .] in
let loop j = repeat (j-1) [LeakAddr []; LeakAddr []; . . .] in

prefix ++ loop i ++ suffix.

The constant prefix equals to leakages before the while loop (here set0_L
is a constant corresponding to leakages of bn_set0 function). The constant
suffix corresponds to the last iteration of while loop (here, copy_L corre-
sponds to the leakages produced by a bn_copy procedure). And (loop i)
corresponds to the first i-1 iterations of the loop.

We show that samp_t correctly captures the contents of ML.leakages by
proving that the probability of ML.leakages being equal to a list l equals to
the probability of (samp_t i) being equal to l:
lemma samp_t_correct a y l mmm: ML.leakages{mmm} = []
⇒ Pr[(_,x) ← ML(SCD). rsample(a)@mmm: ML.leakages = l ∧ x = y]

= Pr[(i,x) ← ML(SCD). rsample(a)@mmm: samp_t i = l ∧ x = y].

Next, we observe that function samp_t is injective and therefore we can express
the number of iterations i as an inverse of the leakages (if l is not in the image
of samp_t then the inverse returns value -1):
lemma bn_rsample_leakf a y l mmm: ML.leakages{mmm} = []
⇒ Pr[(_,x) ← ML(SCD). rsample(a)@mmm: ML.leakages = l ∧ x = y]

= Pr[(i,x) ← ML(SCD). rsample(a)@mmm: i = inv samp_t l ∧ x = y].

If we combine bn_rsample_leakf with bn_rsample_pr then we get the
formula for the probability of producing list l and outputting the element x:
lemma bn_rsample_v a y l mmm: ML.leakages{mmm} = []
⇒ let t = 2 nlimbs*64 in

let i = inv samp_t l in
Pr[(_,x) ← ML(SCD). bn_rsample(a)@mmm: ML.leakages = l ∧ x = y]
= if i ≤ 0 then 0 else (fail_once [a])^(i-1) / t.

Finally, by combining bn_rsample_v with bn_rsample_pmf we can derive
that bn_rsample is leakage-free with respect to public input a (see Defi-
nition 1). In particular, we define a function bn_rsample_f(a,l) which
returns the conditional probability of generating leakages l with the public input
a given that the procedure bn_rsample returned an element x:
op bn_rsample_f(a,l) = let i = inv samp_t l in

let t = 2 nlimbs*64 in
if i ≤ 0 then 0 else (fail_once [a])^(i-1)*([a]/t).

lemma bn_rsample_leakfree mmm y a l: ML.leakages{mmm} = [] ⇒
let v = Pr[(_,x) ← ML(SCD). rsample(a)@mmm: ML.leakages = l ∧ x = y] in
let w = Pr[(_,x) ← ML(SCD). rsample(a)@mmm: x = y] in

0 < w ⇒ v/w = bn_rsample_f(a,l).

The function bn_rsample_f computes the inverse of samp_t on list l which
is denoted by i. If i is larger than zero then we know that it would take exactly
i iterations to produce leakages l (i.e., ML.leakages = l) and therefore we

22

return probability which corresponds to bn_rsample running for exactly i
iterations. In other case (i.e., i ≤ 0) the list l is not in the image of samp_t
and, therefore, the probability of generating leakages l is 0.

To sum up, we have shown that Jasmin’s bn_rsample proce-
dure is correct (lemma bn_rsample_pmf) and leakage-free (lemma
bn_rsample_leakfree).

5 Multiple-Precision Integer Arithmetic Library
libjbn is a library supporting efficient multiple-precision integer arithmetic in
Jasmin. In its core, libjbn is based on a Jasmin port of portions of the portable
RELIC toolkit[AGM+], as well as contributions dispersed among different devel-
opments (e.g., [ABB+17, ABB+20, ABC+21]).

A multiple-precision integer is encoded in libjbn as a fixed sized array of
64-bit words. The size (number of limbs nlimbs) is a parameter that is left
uninitialised in the library code, and is expected to be instantiated by the
user. The correctness proofs are abstracted from the number of limbs, meaning
that they are instantiable with different sizes. Additionally, the safety and
constant-time properties of functions in libjbn has been established.

Examples of some basic functions made available by the library are given
bellow, alongside with the corresponding correctness statements.
fn bn_muln (reg ptr u64[nlimbs] a b, reg ptr u64[2*nlimbs] r)

→ reg ptr u64[2*nlimbs]

lemma bn_muln_ph _a _b:
phoare [bn_muln: a=_a ∧ b=_b => [res] = [_a] * [_b]] = 1.

fn bn_subc (reg ptr u64[nlimbs] a b) → reg bool , reg ptr u64

lemma bn_subc_ph _a _b:
phoare [bn_subc: a=_a ∧ b=_b

=> [res. ’2] - b2i res. ’1 * [modulus] = [_a] - [_b]] = 1.

These are examples of operations exposed as non-inlined functions expecting
arguments/results in the stack (reg ptr u64[nlimbs] refers to a pointer
for an array of size nlimbs in the stack). Function bn_subc computes the
subtraction inplace (result is stored on the first argument), and additionally
returns the carry flag (the borrow bit). Notice that the result type of the
function includes the computed subtraction (stored in the memory region of the
first argument), thus allowing a functional interpretation that is explicit in the
correctness assertion (in there, [_] refers to injection of libjbn numbers into
the integers, and .‘1 and .‘2 are projections from pairs). Function bn_muln
performs wide multiplication of big-numbers, resulting in a double-wide number.

Currently, Jasmin has very limited modularity capabilities – in essence, it
provides a require directive that includes the library code into the compila-
tion unit. Hence, the inclusion order will determine dependency on expected

23

parameters. As an example, a end-user should declare the nlimbs parameter
before requiring the libjbn library itself. Likewise, if a component of the library
depends on some other parameters, they are expected to be declared prior to its
inclusion. Such constraints had led to a layered organization of the library:

• bn_generic: elementary multiple-precision arithmetic. It provides basic
functionalities such as addition; multiplication; comparisons; etc. The only
parameter it depends on is nlimbs .

• bn_montgomery: Montgomery reduction and modular arithmetic in
Montgomery form (upto modular exponentiation17). Even if the library
itself only depends on the nlimbs parameter, operations typically have
several additional arguments holding other parameters (e.g. prime p and
related pre-computed data), reason why it is mostly intended for internal
use.

• bn_barret: Barret reduction and corresponding modular arithmetic
operations. Again, mostly intended for internal use.

• fp_montgomery: field operations in Montgomery form. This is indeed a
thin layer that depends on some global declarations to instantiate functions
provided by bn_montgomery .

• fp_barret: field operations with Barret reduction. Again, depend-
ing on some global declarations to instantiate operations provided by
bn_barret .

There are some additional modules providing support for specific needs, such
as modular operations on different moduli, etc. The following snippet illustrates
the inclusion sequence that could be found in the preamble of a user-file:
param int NLIMBS = 32;
from Libjbn require "params/rfc3526/modp2048 ";
from Libjbn require "fp_montgomery ";
from Libjbn require "bn_modq ";

After fixing the size of numbers, the module modp2048 defines globals for the
project, including the prime p (bn_glob_p) and related pre-computed values
needed by fp_montgomery . The module bn_modq is another instantiation
of modular code, this time instantiating the modulus with another prime q
(bn_glob_q).

Limitations and future developments. libjbn uses the limited Jasmin
modularity capabilities in a creative way to provide an user experience that
simulates the instantiation of the library with given parameters. But this
instatiation is merely syntactical, making it impossible to instantiate multiple

17We included two variants of the modular exponentiation algorithm – a constant time
variant presented below, and a non-constant time variant that should be used for public
exponents (e.g. Fermat’s inversion).

24

instances of modules (e.g. two field structures). It also leads to substantial
duplication of code – examples include variants of functions operating on double-
wide numbers, or algorithms that are parametric on some values or operations
(e.g. modular exponentiation). In fact, libjbn appears to be an excellent
use-case for driving the inclusion of some modularity features in the Jasmin
framework.

Another aspect on the library usage refers how does the user has access
to proofs provided by the library. Currently, in order to prove correctness of
concrete extracted code, one needs to write simple bridging lemmas that relates
it to the corresponding size-abstracted version that was proved correct in the
library. Even if it is a low-effort task, it is certainly annoying and redundant —
ideally, one would be able pick directly the right instantiation of the proofs for
a given library instantiation, thus allowing to immediately use their properties
on the underlying development. This is indeed something that appears to
be achievable with recently added capabilities to EasyCrypt’s theory cloning
mechanism. However, it also asks for a significant restructure of the proof
organization, which is currently in progress.

6 Barrett Reduction
In the Schnorr protocol parties need to multiply elements of a cyclic group. In
practice, group multiplication is usually implemented as multiplication followed
by modular reduction. In other words, we need to compute many instances of
ab mod m for a fixed modulus m (where 0 ≤ a, b < m). At the same time, the
naive implementation of modular reduction by using number division is slow. In
our work we perform modular reductions using a specialized Barrett reduction
algorithm [Bar87]. In Barrett reduction we precompute a so-called Barrett factor
for every particular modulus m and thereafter the computations of ab mod m
only involve multiplications, subtractions, and shifts (all of which are faster
operations than long division of numbers).

In Sec. 6.1 we implement the Barrett reduction in EasyCrypt and prove its
correctness. In Sec. 6.2, we develop the same algorithm in Jasmin and prove its
correctness by relating it to the “high-level” EasyCrypt implementation from
this section.

6.1 Barrett Reduction in EasyCrypt
To reduce 0 ≤ x < m2 modulo m, the Barrett reduction computes t = x −
bxr/4kcm, where k = dlog2me and r = b4k/mc (known as Barrett factor). Note
that Barrett factor depends only on the modulus m. Also, it is important
to understand that in the context of high-perfomance implementations, the
factor r is not easy to compute since it requires division by m (which can be
arbitrary). As a result the Barrett factor is usually precomputed and hardcoded
for a given m. It is easy to see that t ≡ x mod m, but it is also true (but not

25

trivially) that 0 ≤ t < 2m. In our work, we prove this fact by mostly following
an elegant proof from [Nay19]:
op t (x m k : real) : real =
let r = floor (4^k/m) in x - (floor (x * r/4^k)) * m.

lemma barrett_bound: ∀ x m k,
⇒ 0 ≤ x < m*m
⇒ 0 ≤ m < 2^k
⇒ 0 ≤ t x m k < 2*m.

Hence, x mod m equals to either t if t < m or t − m, otherwise. No-
tice that the above function t computes with real numbers – this greatly
simplified the proof of lemma barrett_bound . Next, we implement the
barrett_reduction function which receives positive integers x and m then
computes t ’ := (ti x m k) (here, function ti implements the same com-
putations on integers as t on reals) and outputs t ’ if t ’ < m and t ’ - m, oth-
erwise. To avoid confusion we stress that the function barrett_reduction
is never executed on its own, but it merely acts as a computational algorithm for
which we derive correctness. In the next section, we implement the same Barrett
reduction algorithm in Jasmin. The Jasmin implementation is then proved to be
correct by relating its computations to the barrett_reduction function.
op barrett_reduction (x m k : int) : int =

let t ’ = ti x m k in (if t ’ < m then t ’ else t ’ - m).

lemma barrett_reduction_correct (x m k : int) :
0 ≤ x < m*m
⇒ 0 < m < 2^k
⇒ 0 ≤ k
⇒ barrett_reduction x m k = x %% m.

The lemma barrett_reduction_correct is derived from lemma
barrett_bound by relating computations of function ti to computations of
function t.

6.2 Barrett Reduction in Jasmin
The function bn_breduce(r,x,m) implements the Barrett reduction algo-
rithm in Jasmin. The input is the Barrett factor r (precomputed for the modulus
m), and the number x which we want to reduce modulo m. Recall that in Jasmin
we cannot implement a function whose input would be an array of a parameter
size. As a result, the implementation of the Barrett reduction in Jasmin turns
out to be a bit cumbersone since we need to track the sizes of all intermediate
results and then use procedures which work with inputs of exactly that size. For
example, the input x to the bn_breduce function is 2*nlimbs-long (recall
that x is a result of multiplication of a and b where 0 ≤ a,b < m). Hence, we
cannot multiply x and r by using the function bn_muln since it only multiplies
nlimb-long inputs. Instead, we must instantiate the multiplication function
(we call it dbn_muln) for numbers where the arguments are 2*nlimbs-long

26

and the result is 4*nlimbs-long. The function call div2(xr ,2*nlimbs)
computes x*r/4 nlimbs*64 .18 The function dcminusP(mm ,t) is a constant-
time implementation of if t < mm then t else (t - mm) expression.
At the end of the computation, we have the value t which must be equal to
x %% m but the value is 2*nlimbs-long so as a final step in bn_breduce
we use bn_shrink(t) which discards the nlimbs highest words (without
changing the value).
inline fn bn_breduce(stack u64[2*nlimbs] r x, stack u64[nlimbs] m)
→ (stack u64[nlimbs]){
stack u64[nlimbs] xrfd r;
stack u64[2*nlimbs] xrf xrfm t mm;
stack u64[4*nlimbs] xr;

xr = dbn_muln(x,r); // x*r
xrf = div2(xr, 2*nlimbs); // x*r/4 nlimbs*64

xrfd = bn_shrink(xrf);
xrfm = bn_muln(xrfd ,m); // (x*r/4 nlimbs*64)*m
t = dbn_subc(x, xrfm); // x - (x*r/4 nlimbs*64)*m
nn = bn_expand(m);
t = dcminusP(mm, t); // if t < mm then t else (t - mm)
r = bn_shrink(t);

return r;
}

Correctness To prove the correctness of bn_breduce , we want to show that
it computes the same function as barrett_reduction from previous sec-
tion. To do that, we derive correctness properties for all procedures used in
the implementation of bn_breduce (i.e., dbn_muln computes multiplication,
dbn_subc computes subtraction, etc.). For example, we established the follow-
ing correctness property of bn_expand function which converts an nlimbs
number to 2*nlimbs number without changing its value:
lemma bn_expand_correct mmm a:
Pr[out ← MC.bn_expand(a)@mmm: [out] = [a]] = 1.

After establishing correctness properties for all procedures used in
bn_breduce we use the probabilistic Hoare logic to relate bn_breduce
to barrett_reduction function. At the end of it, the correctness of
bn_breduce follows from barrett_reduction_correct lemma:
op barrett_factor(m : int) = 4 nlimbs*64 /m.

lemma bn_breduce_correct nnn r x m:
[r] = barrett_factor [m]
⇒ 0 < [m]
⇒ [x] < [m]*[m]
⇒ Pr[out ← MC.bn_breduce(r,x,m)@nnn: [out] = [x] %% [m]] = 1.

Constant-Time Property The function bn_breduce itself and all func-
tions which are used in its implementation are deterministic. Unfortunately,

18In this section a/b denotes integer division.

27

proving that bn_breduce is deterministic in EasyCrypt is not easy and this
fact does not follow from correctness bn_breduce_correct because cor-
rectbess gas lemma has premises. Therefore, we use Definition 2 to show
that bn_breduce is constant-time (all inputs are secret). To do so, we de-
fine a constant bn_breduce_f which corresponds to leakages produced by
bn_breduce on every execution:
lemma bn_breduce_ct mmm l r x n: ML.leakages{mmm} = l
⇒ Pr[ML.bn_breduce(r,x,n)@mmm: ML.leakages = bn_breduce_f ++ l] = 1.

6.3 Modular Multiplication
We now implement modular multiplication as “big” multiplication followed by
modular reduction:
inline fn bn_mulm(stack u64[2*nlimbs] r, stack u64[nlimbs] m a b)
→ stack u64[nlimbs]{
stack u64[2*nlimbs] c;
c = bn_muln(a,b);
a = bn_breduce(r,c,m);
return a;

}

The correctness of bn_mulm is a direct consequence of correctness of “big” multi-
plciation bn_muln and modular reduction bn_breduce .
lemma bn_mulm_correct_pr nnn a b m r:

[a] < [m]
⇒ [b] < [m]
⇒ [r] = barrett_factor [m]
⇒ Pr[out ← ML.bn_mulm(r,m,a,b)@nnn: [out] = [a]*[b] %% [m]] = 1.

Also, since bn_muln and bn_breduce are constant-time with respect to Defi-
nition 2 therefore bn_mulm also satisfies Definition 2 (all inputs are secret):
lemma bn_mulm_ct mmm l r a b n: M.leakages{mmm} = l
⇒ Pr[ML.bn_mulm(r,m,a,b)@mmm : M.leakages = mulm_t ++ l] = 1.

(Here, mulm_t is a constant which is equal to leakages produced by bn_mulm on
every execution.)

7 Montgomery Ladder
In previous section we described the implementation of Barrett algorithm which
is used to efficiently compute modular reduction. Using Barrett reduction we
derived modular multiplication as a number multiplication followed by modular
reduction.

In this section our goal is to use modular multiplication to implement effi-
cient, correct, and constant-time modular exponentiation. The reader might
already guess that if we naively implement xn as n− 1 multiplications then the

28

resulting program will not be constant-time. For this reason, we implement the
Montgomery ladder [Mon87] which is a specialized algorithm which computes
exponentiation in constant-time.

In what follows we implement a “high-level” Montgomery ladder algorithm
in EasyCrypt and discuss its correctness. We also comment on the Jasmin
implementation of Montgomery ladder and present its properties.

7.1 Abstract and Modular Exponentiation
We implement the Montgomery ladder algorithm which computes xn = x·x·. . .·x
by utilizing the “square-and-multiply” technique. The algorithm is parametric in
the “multiplication” operation as long as it forms a monoid. In our EasyCrypt
formalization we develop Montgomery ladder algorithm which is parameterized by
a monoid. Later we specialize this implementation to the modular multiplication
which results in algorithm which computes modular exponentiation.

To compute xn the algorithm iterates over the binary representation of the
power n, starting from the most significant bit (in our work, we use the convention
that the most significant bit is the rightmost one). We assume that n is given
as a binary string (i.e., list of booleans) of a fixed length L. The variable i is
initialized with L− 1. The main computations are performed in the loop which
at each iteration decreases i by 1 and the loop runs while 0 < i. Over the course
of its computation the Montgomery ladder algorithm maintains the following
loop-invariant: x1 = xn>i and x2 = xn>i+1 , where n>i denotes the number n
with its i lowest bits dropped. Hence, if the invariant is preserved then after
loop terminates (i.e., i = 0) we can return x1 as a result of the computation.

Let us address the invariant preservation. At the beginning (i = |n|), we
have n>i = 0, so the invariant holds initially if we set x1 = e and x2 = x. We
assume that the invariant holds for i and show it for i− 1. If the i− 1-bit is 0
then to maintain the invariant we must simulateneously update variables x1 and
x2 with values x1 · x1 and x1 · x2, respectively. Indeed, n>i−1 = 2n>i, hence,
x1 · x1 = xn>i · xn>i = x2n>i and x1 · x2 = xn>i · xn>i+1 = x2n>i+1 as desired. In
the other case, when the (i− 1)st most significant bit is 1 then n>i−1 = 2n>i +1
and we must simultaneously update the variables x1 and x2 with values x1 · x2
and x2 · x2, respectively. It must be easy to verify that the invariant is preserved
in this case as well. Due to the symmetry in the above computations we can
encode the above with two swaps. First, depending on whether the current bit is
0 or 1 we swap the values of x 1 and x 2 : (x1 ,x2) ← swap b x1 x2 (here,
b is the current bit of power n). Next, we compute a pair (x 1 *x 1 , x 1 *x 2)
and then depending on the bit b we assign it to either (x 1 ,x 2) or (x 2 ,x 1).
// monoid structure parameters
type R.
op (*) : R → R → R.
op e : R.

axiom op_assoc (a b c : R) : (a * b) * c = a * (b * c).
axiom op_id (x : R) : x * e = x.
axiom op_id ’ (x : R) : e * x = x.

29

module ML = {
proc mladder (x:R, n:bits) : R = {

var x1, x2, i, b;
(x1 ,x2) ← (e,x);
b ← false;
i ← size n;
while (0 < i) {

i ← i - 1;
b ← ith_bit n i;
(x1 ,x2) ← swap b (x1 , x2);
(x1 ,x2) ← swap b (x1*x1 , x1*x2);

}
return x1;

}
}.

Notice that our implementation of Montgomery ladder is as efficient as sequential
multiplication in the worst case: our exponentiation uses 2|n| multiplications.

Using the invariant which we described above we prove that
ML.mladder(x,n) correctly computes exponentiation (i.e., iteration of
moinoidal operation):
lemma mladder_correct (x : R) (n : bits) mmm:

Pr[out ← ML.mladder(x,n)@mmm: out = exp x (bs2int n)] = 1.

(Here, exp x n denotes an n-1 iteration of monoidal operation, and bs2int
converts a list of Booleans (type bits) to integers.) In Jasmin we implement
function bn_expm(r,m,x,n) which uses Montgomery ladder to compute
modular exponentiation (the argument r is the Barrett factor needed by modular
multiplication function, see Sec. 6.1). The function bn_expm implements the
same algorithm as EasyCrypt’s procedure ML.mladder (see Appendix B for
the Jasmin code). The function bn_expm instantiates “monoidal operation”
with modular multiplication bn_mulm(r,m,x1,x2) (here, r and m are fixed
parameters). Then we extract Jasmin function bn_expm to EasyCrypt and
derive its correctness by establishing a relation between ML.mladder and
MC.bn_expm procedures. After this the correctness of bn_expm is a consequence
of mladder_correct lemma:
lemma bn_expm_correct mmm r m x n:

[x] < [m]
⇒ [r] = barrett_factor [m]
⇒ Pr[out ← MC.bn_expm(r,m,x,n)@mmm: [out] = [x]^[n] %% [m]] = 1.

Since we already proved that bn_mulm is constant-time then it is now easy to
show that bn_expm satisfies property Definition 2 (all inputs are secret).
lemma bn_expm_ct mmm l r m x n: ML.leakages{mmm} = l
⇒ Pr[ML.bn_expm(r,m,x,n)@mmm: ML.leakages = expm_t ++ l] = 1.

(Here, expm_t is a constant which is equal to leakages produced by bn_expm
on every execution.)

30

8 Schnorr Protocol
The Schnorr protocol is defined for a cyclic group Gq of order q with generator
g. The language of the Schnorr protocol consists of all group elements. In the
Schnorr protocol the prover tries to convince a verifier that it knows a discrete
logarithm of the statement. In other words, if s ∈ Gq is a statement then a
corresponding witness is an element w so that s = gw. The group Gq and the
generator g are public parameters. The prover interacts with the verifier as
follows:

• The prover chooses a r ∈ Zq uniformly at random and sends z := gr as
the commitment.

• The verifier replies with a challenge c ∈ C ⊆ Zq chosen uniformly at
random.

• The prover responds with t = r + cw if c ∈ C. Otherwise, t = r + c′w
where c′ is a fallback challenge.

• The verifier accepts if gt = zsc.

Above, the set of allowed challenges C and the fallback challenge c′ ∈ C are
parameters of the protocol.

The Schnorr protocol is known to have completeness, proof-of-knowledge, and
zero-knowledge. In this work we skip the formal definitions of these properties
and only provide the intuitive description of these standard properties of ZK
protocols.

• Completeness ensures the correct operation of the protocol if both prover
and verifier follow the protocol honestly (in other words, exactly as pre-
scribed above).

• Proof-of-knowledge guarantees that any prover that successfully convinces
the honest verifier actually knows a witness (and not only abstractly that
it exists).

• Zero-knowledge ensures security guarantees for honest provers. This is
achieved by expressing that malicious verifiers cannot get any “new infor-
mation” about the witness of a statement from the communication with
the honest prover.

In [FU23], the authors develop a zero-knowledge framework in EasyCrypt
and then use it to prove that Schnorr protocol is correct and secure (proof-of-
knowledge property). Authors do not address the zero-knowledge property since
they set C := Zq and the security level of zero-knowledge is proportional to
1/‖C‖. Their proofs are done in the fully abstract setting. More specifically, they
define commitments and statements as elements of an abstract cyclic group. The
exponents (i.e., challenge, response, and secret r) of that group are also elements
of an abstract type which form a finite field of prime order. As mentioned earlier

31

we adjusted their formalization of Schnorr protocol to make it compatible with
the latest edition of EasyCrypt standard library (in the following we will refer
to this formalization as “high-level” Schnorr protocol). Moreover, to be able to
derive meaningful zero-knowledge property we introduced parameters for the
set of allowed challenges and the fallback challenge (i.e., set C and challlenge c′,
respectively).

The caveat of the “high-level” implementation of Schnorr protocol is that the
prover has state (this is forced by the interface requirements of the ZK-framework
from [FU23]). More specifically, in the commitment procedure prover receives a
pair of statement and a witness which are not needed to produce commitment but
these values are stored in the prover’s state for later computations. Unfortunately,
Jasmin does not have convenient infrastructure to work with global variables.
As a result we decided to implement the stateless versions of prover and verifer.
In this implementation the commitment procedure does not take any arguments,
but returns a commitment g^r (for a randomly sampled r) paired with the
“secret” exponent r. We expect that the handling and dispatching of the secret r
is handled outside of Jasmin by a program which compiles together the phases of
the prover. Also, this implementation is done on the “middle-level” of abstraction
as we refine datatypes to get closer to the final “low-level” implementation in
Jasmin. More specifically, in the “middle-level” Schnorr (see the code below) the
types commitment and statement are defined as synonyms for the abstract
type zmod which in EasyCrypt denotes a type of elements of an finite field
given by integers modulo p, where p is a prime number. The types witness ,
secret , and response are synonyms for the type of unbounded integers int.
Also, this implementation is parameterized by a generator g and prime number
q, so that g^q = one (i.e., g induces subgroup of prime order q).

In EasyCrypt we implement a module SchnorrProver with procedures
commitment and response which correspond to the first and third mes-
sages of Schnorr protocol. The module SchnorrVerifier has procedure
challenge which computes the second message of the Schnorr protocol and
procedure verify which decides if to accept the message exchange.
module SchnorrProver = {

proc commitment (): commitment × secret = {
var r;
r $← [0..q-1];
return (g^r, r);

}
proc response(w: witness , r: secret ,

c: challenge): response = {
c ← c %% q;
c ← if c ∈ challenge_set then c else fallback_challenge;
return (r + c * w) %% q;

}
}.

module SchnorrVerifier = {
proc challenge (): challenge = {

var c;
c $← duniform challenge_set;

32

return c;
}
proc verify(s: statement , z: commitment ,

c: challenge , t: response): bool = {
var v, v ’;
v ← z * s^c;
v ’← g^t;
return (v = v ’) ∧ s^q = one;

}
}.

With little effort we carry over the proofs of completeness and proof-of-knowledge
from “high-level” to “middle-level” Schnorr protocol. At the same time, in this
process we need to address details which are absent on the “high-level”. For
example, notice that in the code above the verify procedure checks that
s^q = one. This is needed to guarantee that statement s belongs to the
subgroup generated by g. In the “high-level” implementation such checks are
not needed because statements and commitments are definitionally elements of
the cyclic group induced by the generator. Also, to get zero-knowledge in the
response procedure we need to normalize the exponents which on that level
are represented by integers.

In the next sections, our goal is to use Jasmin to implement a “low-level”
version of the Schnorr protocol. Later we will also discuss how to carry over
the security properties from the “middle-level” to the “low-level” implementation.
Also, at the “low-level” we address the leakage-freeness.

8.1 Schnorr in Jasmin
In the following we give “low-level” Jasmin implementation of the main procedures
of the prover of the Schnorr protocol. For brevity we skip the detailed description
of the Jasmin implementation of the verifier which can be found in the file
src/schnorr_protocol.jazz of our supplementary code.

In the code below the constants bn_glob_g , bn_glob_p , bn_glob_q ,
bn_glob_pb and bn_glob_pq are (hard-coded) values of generator g, group
order p, exponent order q, Barrett parameter for p, and Barrett parameter for q,
respectively (see Sec. 8.3). The function check_challenge(c) checks if c
belongs to the set of challenges challenge_set , otherwise it returns fallback
challenge.19

inline fn commitment () → (stack u64[nlimbs], stack u64[nlimbs]){
stack u64[nlimbs] secret_power commitment

group_generator group_order exp_order;
stack u64[2*nlimbs] barrett_parameter;

exp_order = bn_glob_q;
group_order = bn_glob_p;
group_generator = bn_glob_g;
barrett_parameter = bn_glob_bp;

19In the concrete Jasmin code we set challenge_set = [0;1] and fallback_challenge = 0.

33

_, secret_power = bn_rsample(exp_order);
commitment = bn_expm(barrett_parameter , group_order ,

group_generator , secret_power);
return (commitment , secret_power);

}

inline fn response(stack u64[nlimbs] witness
secret_power challenge)

→ (stack u64[nlimbs]){
stack u64[2*nlimbs] exp_barrett;
stack u64[nlimbs] exp_order response product;

exp_order = bn_glob_q;
exp_barrett = bn_glob_bq;

challenge = bn_breduce_small(exp_barrett ,
challenge , exp_order);

secret_power = bn_breduce_small(exp_barrett ,
secret_power , exp_order);

witness = bn_breduce_small(exp_barrett ,
witness , exp_order);

challenge = check_challenge(challenge);

product = bn_mulm(exp_barrett , exp_order , challenge , witness);
response = bn_addm(exp_order , secret_power , product);

return response;
}

Notice that in the response procedure we start by normalizing the given argu-
ments (i.e., reduce them modulo prime q). The function bn_breduce_small
implements Barrett reduction algorithm for nlimbs-sized words (in Sec. 6.2 we
developed procedure bn_breduce which reduced values of 2*nlimbs-sized,
since these values were results of the “big” multiplication).

Leakage-Freeness. We also prove that procedures verify , challenge ,
and response are constant-time and commitment is leakage-free. Indeed,
response , verify , and challenge are both implemented in terms of
constant-time procedures so it is a matter of couple of lines of EC code to
derive that they also satisfy Definition 2. The procedure commitment is
probabilistic and not constant-time, so we prove that it is leakage-free with
respect to Definition 1 by using similar approach as we carried out for the
rejection sampling algorithm (see Sec. 4).20

8.2 Properties for Schnorr in Jasmin
Recall that in the beginning of this section we presented the “middle-level”
Schnorr protocol by implementing EasyCrypt’s modules SchnorrProver and

20In the future we plan to prove that the composition of leakage-free procedures is leakage-free.
This result would simplify the proof that commitment is leakage-free.

34

SchnorrVerifier . Moreover, we explained that for these modules we have
derived completeness, zero-knowledge, and proof-of-knowledge properties by
carrying them over from the “high-level” Schnorr protocol. Both implementations
are defined in terms of “analytical types” which allow us to carry out simpler
proofs because we do not need to worry about low-level details like overflow,
representation of group elements, exponents as bitstrings, etc.

At the same time the low-level representation is important if we want to
execute the protocol on the real-world computers. For example, a verifier needs
to know how many bits to read from the network when it receives a commitment
from a prover. Also, the honest prover wants assurance that when it computes
commitment then no information is leaked from the side-channel.

Another important aspect is that low-level representation of data in cryp-
tographic protocols is important for “high-level” security properties like zero-
knowledge and proof-of-knowledge. For example, SchnorrVerifier and
SchnorrProver compute with group elements which have unique representa-
tion (property of elements of type zmod) which greatly simplifies the proofs. At
the same time, in real-world where group elements are represented as bitstrings
(e.g., as elements of type W64xN.t) the same group element can have multiple
representations (e.g., reduced or not reduced modulo group order). Therefore,
to prove that real-world protocol is secure we also needs to prove that it handles
different representation of data correctly.

We start by extracting Jasmin code to EasyCrypt. The result of the extraction
are EasyCrypt modules JProver and JVerifier (here, we assume that both
are already applied to default systemcall provider).

In our approach, to establish completeness, zero-knowledge, and proof-of-
knowledge for the “low-level” implementation we first prove a relation between
“middle-level” procedures of SchnorrProver , SchnorrVerifier and “low-
level” procedures of JProver and JVerifier . More speecifically, we show
that for any arguments (normalized or not) procedures compute the same ele-
ments of the respective groups. For example, we use probabilistic relational Hoare
logic (pRHL) to establish the following equivalence for the verify procedures:
lemma verify_eq: equiv [SchnorrVerifier.verify ~ JVerifier.verify:

asint s{1} = [statement {2}] %% p
∧ asint z{1} = [commitment {2}] %% p
∧ c{1} %% q = [challenge {2}] %% q
∧ t{1} %% q = [response {2}] %% q
=> (res{1} = true) = (res{2} = W64.one)].

(Here, asint is an injection from zmod to integers.) Intuitively, the lemma
states that if inputs of verify procedures are equal as elements of the respective
groups (represented as integers) then the SchnorrVerifier accepts (i.e.,
returns true) iff JVerifier returns binary constant W64.one.

We also prove similar results for the remaining three procedures (i.e.,
commitment_eq , challenge_eq , and response_eq). Then we use these
results to prove the completeness, zero-knowledge, and proof-of-knowledge for
JProver and JVerifier from the same properties of SchnorrProver and
SchnorrVerifier .

35

Let us illustrate our approach on the completeness. The completeness for
Jasmin implementation is defined as the following “game”:
module CompletenessJ = {

proc main(s:W64xN.t, w:W64xN.t) = {
var z,c,r,t,v;
(z,r) <@ JProver.commitment ();

c <@ JVerifier.challenge ();
t <@ JProver.response(w,r,c);
v <@ JVerifier.verify(s,z,c,t);

return v 6= W64.zero;
}

}.

This module encodes a message exchange between honest prover and honest
verifier. The goal is to prove that in CompletenessJ the verifier always
accepts.

In the similiar way (mutatis mutandis) we defined completeness module
CompletenessG for “middle-level” Schnorr protocol and then we derived the
following completeness lemma from “high-level” Schnorr protocol:
lemma completenessG (s: zmod) (w: int)@mmm: (inzmod g)^w = s
⇒ Pr[r ← CompletenessG.main(s,w)@mmm : r] = 1.

(Here, inzmod is an embedding of integers into finite field zmod .) Next, we prove
equality of success probabilities of CompletenessJ and CompletenessG
games:
lemma completeness_eq mmm (s w: W64xN.t): [g]^[w] %% p = [s] %% p
⇒ Pr[r ← CompletenessJ.main(s,w)@mmm: r]

= Pr[r ← CompletenessG.main(inzmod [s],[w])@mmm: r].

We emphasize that the proof of completeness_eq is only few lines of code
where the main step is the sequential use of verify_eq , response_eq ,
challenge_eq , and commitment_eq lemmas.

The lemma completenessG together with completeness_eq imme-
diately imply that “low-level” Schnorr protocol as defined by JProver and
JVerifier has completeness.

Using the same approach we also establish zero-knowledge and proof-of-
knowledge for “low-level” Schnorr protocol in a matter of few lines of EasyCrypt
code.

8.3 Instance of Schnorr Protocol
On the EasyCrypt side our results depend on the following parameters and
constraints:
op g, p, q, bp, bq : int

axiom q_prime : prime q.
axiom p_prime : prime p.
axiom bp_correct : bp = barrett_factor p.
axiom bq_correct : bq = barrett_factor q.

36

axiom g_correct : g^q %% p = 1.
axiom g_less_p : 1 ≤ g < p.
axiom q_less_p : q < p.
axiom q_val_prop1 (x : W64xN.t) : [x] < q*q.
axiom p_less_modulusR : p < 2 nlimbs*64

Here, g is a generator, bp and bq are Barrett parameters for primes p and
q, respectively. The lemma g_correct makes sure that g is a generator of
subgroup of order q. The lemma q_val_prop1 establishes that any value in
the interval [0..2 nlimbs*64 - 1] must be smaller that q*q. This property is
needed to make sure that we can use Barrett reduction (see Sec. 6) to normalize
any element of type W64xN.t (on the practical side, this property tells that
binary representation of q as W64xN.t cannot have half of its highest bits equal
to zero). The lemma p_less_modulusR tells that p must fit into W64xN.t
datatype.

To run and test our development we instantiate these parameters. We set
nlimbs := 32, so that W64xN.t is a type which corresponds to 2048-bit values.
Next, we choose p as a 2048-bit safe prime from RFC 3526 [KK19]. The prime
q in this case is also 2048-bit value which is equal to (p -1)/2 and generator g
is equal to 2. In EasyCrypt we prove that these values satisfy all the constraints
listed above except of primality of p and q. Unfortunately, we do not know how
to efficiently prove primality of big numbers in EasyCrypt.

Also, the above parameters must be embedded into Jasmin implementation
of the Schnorr protocol. Since the numbers p, q, bp, and bq are large then in
Jasmin they must be encoded as multilimb arrays. To make sure that we do not
introduce accidental mistakes when encoding these values we provide a Python
script which given primes p and q produces a file constants.jazz with
Jasmin definition of global constants bn_glob_g , bn_glob_p , bn_glob_q ,
bn_glob_bp , bn_glob_bq which are used to refer to the respective values.
To provide full guarantees the script generates the following lemmas and their
respective proofs:
axiom bn_glob_p_correct: [bn_glob_p] = p.
axiom bn_glob_q_correct: [bn_glob_q] = q.
axiom bn_glob_g_correct: [bn_glob_g] = g.
axiom bn_glob_bp_correct: [bn_glob_bp] = bp.
axiom bn_glob_bq_correct: [bn_glob_bq] = bq.

Unfortunately, at the moment Jasmin does not have primitives which would
allow us to implement the exchange of messages between parties (i.e., sending
messages over the network). As a result, the final implementation of prover and
verifier must be done outside of Jasmin. In our development, the final versions
of prover and verifier are implemented in C. The role of the C wrapper is to link
the protocol procedures (which were previously compiled by Jasmin) and handle
a dispatching of messages.

Nontheless, after setting the parameters and discharging the above proof
obligations we expect to have guarantees that when Jasmin implementation of
Schnorr protocol is compiled to assembly and correctly linked by the C wrapper

37

then the resulting protocol shall be complete, zero-knowledge, proof-of-knowledge,
and leakage-free.21

We give detailed instructions on how to compile and run the protocol in the
file src/README.md of the accompanying code.

References
[ABB+17] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot,

Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco,
Benedikt Schmidt, and Pierre-Yves Strub. Jasmin: High-assurance
and high-speed cryptography. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
pages 1807–1823, 2017.

[ABB+20] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin
Grégoire, Adrien Koutsos, Vincent Laporte, Tiago Oliveira, and
Pierre-Yves Strub. The last mile: High-assurance and high-speed
cryptographic implementations. In 2020 IEEE Symposium on Se-
curity and Privacy (SP), pages 965–982. IEEE, 2020.

[ABB+23] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Ben-
jamin Grégoire, Vincent Laporte, Jean-Christophe Léchenet, Tiago
Oliveira, Hugo Pacheco, Miguel Quaresma, Peter Schwabe, et al.
Formally verifying Kyber episode IV: Implementation correct-
ness. Cryptology ePrint Archive, Paper 2023/215, 2023. https:
//eprint.iacr.org/2023/215.

[ABC+21] José Bacelar Almeida, Manuel Barbosa, Manuel L Correia, Karim
Eldefrawy, Stéphane Graham-Lengrand, Hugo Pacheco, and Vitor
Pereira. Machine-checked zkp for np-relations: Formally verified
security proofs and implementations of mpc-in-the-head. Cryptology
ePrint Archive, Paper 2021/1149, 2021. https://eprint.iacr.
org/2021/1149.

[ABRB+19] José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles
Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte,
Tiago Oliveira, Alley Stoughton, and Pierre-Yves Strub. Machine-
checked proofs for cryptographic standards: Indifferentiability of
sponge and secure high-assurance implementations of sha-3. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 1607–1622, 2019.

[AFOU23] José Bacelar Almeida, Denis Firsov, Tiago Oliveira, and Dominique
Unruh. https://github.com/dfirsov/jasmin-zk, 2023. Ac-
cessed: 2023-05-24.

21This claim should be taken with a grain of salt as it only holds modulo large trusted code
base which assumes that EasyCrypt is sound, Jasmin compilation and extraction mechanism
is correct, system calls for randomness generation return random bytes, etc.

38

https://eprint.iacr.org/2023/215
https://eprint.iacr.org/2023/215
https://eprint.iacr.org/2021/1149
https://eprint.iacr.org/2021/1149
https://github.com/dfirsov/jasmin-zk

[AGM+] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby,
and K. Liao. RELIC is an Efficient LIbrary for Cryptography.
https://github.com/relic-toolkit/relic.

[Bar87] Paul Barrett. Implementing the rivest shamir and adleman public
key encryption algorithm on a standard digital signal processor. In
Andrew M. Odlyzko, editor, Advances in Cryptology — CRYPTO’
86, pages 311–323, Berlin, Heidelberg, 1987. Springer Berlin Heidel-
berg.

[BDG+13] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz,
Benedikt Schmidt, and Pierre-Yves Strub. EasyCrypt: A tutorial.
In Foundations of Security Analysis and Design VII, pages 146–166.
Springer, 2013.

[BDK+18] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. Crystals-kyber: a cca-secure module-lattice-based
kem. In 2018 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 353–367. IEEE, 2018.

[BGHB11] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santi-
ago Zanella Béguelin. Computer-aided security proofs for the work-
ing cryptographer. In Annual Cryptology Conference, pages 71–90.
Springer, 2011.

[BGLP21] Gilles Barthe, Benjamin Gregoire, Vincent Laporte, and Swarn
Priya. Structured leakage and applications to cryptographic
constant-time and cost. Cryptology ePrint Archive, Paper 2021/650,
2021. https://eprint.iacr.org/2021/650.

[FU22] Denis Firsov and Dominique Unruh. Reflection, rewinding, and
coin-toss in easycrypt. In Proceedings of the 11th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pages
166–179, 2022.

[FU23] Denis Firsov and Dominique Unruh. Zero-knowledge in easycrypt.
In Proceedings of the 36th IEEE Computer Security Foundations
Symposium (to appear), 2023.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation. In Proceedings
of the thirty-ninth annual ACM symposium on Theory of computing,
pages 21–30, 2007.

[KK19] Mika Kojo and Tero Kivinen. More Modular Exponential Diffie-
Hellman groups for Internet Key Exchange. https://datatracker.
ietf.org/doc/rfc3526, 2019. Accessed: 2023-05-24.

39

https://github.com/relic-toolkit/relic
https://eprint.iacr.org/2021/650
https://datatracker.ietf.org/doc/rfc3526
https://datatracker.ietf.org/doc/rfc3526

[KSU13] Lee Klingler, Rainer Steinwandt, and Dominique Unruh. On using
probabilistic turing machines to model participants in cryptographic
protocols. Theoretical Computer Science, 501:49–51, 2013.

[Mon87] Peter Montgomery. Speeding the pollard and elliptic curve methods
of factorization. Mathematics of computation, 48(177):243–264,
1987.

[Nay19] Nayuki. Barrett reduction algorithm. https://www.nayuki.io/
page/barrett-reduction-algorithm, 2019. Accessed: 2023-05-
12.

[SBG+22] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin
Grégoire, Vincent Laporte, and Swarn Priya. Enforcing fine-grained
constant-time policies. Cryptology ePrint Archive, Paper 2022/630,
2022. https://eprint.iacr.org/2022/630.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for
smart cards. In Advances in Cryptology—CRYPTO’89 Proceedings
9, pages 239–252. Springer, 1990.

A EasyCrypt Basics
In the following we comment on the main constructs of EasyCrypt which include
types, operators, lemmas, axioms, theories, module types, and modules. More
information on EasyCrypt can be found in the EasyCrypt tutorial [BDG+13].

Types and Operators. EasyCrypt has built-in and user defined types. The
examples of built-in types are bool , int, real , and unit . Also, every type t
is associated with a type t distr of its discrete (sub)probability distributions.
A discrete (sub)probability distribution over a type is defined by its probability
mass function, i.e. by a non-negative function from t to real . Also, EasyCrypt
allows users to define recursive datatypes and functions based on a polymorphic
typed lambda calculus. On the top-level, pure functions can be defined using the
op keyword. For example, we can define the negation on booleans as follows:
op not (b: bool): bool =

if b then false else true.

In addition, the standard library of EasyCrypt includes the implementation and
properties of lists, arrays, finite sets, maps, probability distributions, etc.

Ambient Logic. EasyCrypt has built-in logics which are specialized for
reasoning about programs (such as Hoare logic). Furthermore it implements an
ambient logic which is a higher-order classical logic for proving mathematical
facts and connecting judgements from the other logics. For example, we can use
ambient logic to prove that double negation is identity. In lemmas and axioms
we will use symbols ∀ and ∃ instead of official keywords forall and exists,
respectively.

40

https://www.nayuki.io/page/barrett-reduction-algorithm
https://www.nayuki.io/page/barrett-reduction-algorithm
https://eprint.iacr.org/2022/630

lemma notnot: ∀ (b: bool), not (not b) = b.
proof. progress. smt. qed.

In EasyCrypt, proofs consist of series of tactic applications which either discharge
the proof obligation or transform it into new subgoal(s).

Theories. In EasyCrypt, theories can be used to group together related
definitions. Theories can have parameters in the form of declared but undefined
operators, types, and axioms. For example:
theory MonoidTheory.

% parameters
type M.

op f: M → M → M.
op e: M.

axiom assoc: ∀ a b c, f (f a b) c = f a (f b c).
axiom elaws: ∀ a, f a e = a ∧ f e a = a.

% more useful results and definitions . . .
end MonoidTheory.

Later, the theory can be “cloned” and the operators and types instantiated with
concrete values for which the axioms are provable. This enables modular design
of theories.

Modules. In EasyCrypt, cryptographic games are modelled as modules,
which consist of procedures written in a simple imperative language. Modules
may be parameterized by abstract modules. Modules can be stateful, having
global variables. The global variables of a module contains the variables declared
in the module and any variables its procedures can access (directly or indirectly).

For example, we can implement a module BitSampler which has one
procedure and one global variable log. The procedure run samples a uniform
Boolean b, adds the result to the log, and returns b as the result of the call:
module BitSampler = {

var log: bool list
proc run() = {

var b: bool;
b $← duniform [false; true];
log ← b :: log;
return b;

}}.

Note that BitSampler does not initialize its log variable. In this case, the
contents of this variable will depend on the initial memory. In EasyCrypt, the
whole memory (state) of a program is referred to by &m (or &n etc.). If A is a
module then we can refer to the tuple of all global variables of the module A
in &m as (glob A){m}. The type of all global variables of A (i.e., the type
of (glob A){m}) is denoted by glob A. For example, glob BitSampler
equals to bool list , and (glob Bitsampler){m} is the same as log{m}
which is the value of log variable in memory &m.

41

For readability, we will use syntax GA for the type glob A. Memories &m
will be typed in bold without the & (i.e., m for &m), and Gm

A will denote the
EasyCrypt value (glob A){m}.

Module Types. In EasyCrypt, module types specify the types of the
procedures in a module, but say nothing about the global variables of the
module.

For example, BitSampler can be typed as Runnable :
module type Runnable = {

proc run (): bool
}.

Probability Expressions. EasyCrypt has built-in Pr-constructs which are
used to express the probabilities of events in program executions. The general
form of Pr-expression is as follows: Pr[program @ initial memory: event].
For example, the expression Pr[r ← BitSampler.run() @mmm: P r] de-
notes the probability that the return value r of procedure run of module
BitSampler given the initial memory m satisfies the predicate P.

In EasyCrypt, the program in Pr-notation can only be a single procedure
call. To simplify the presentation, we relax this restriction and allow us to write
multiple statements. In the actual EasyCrypt code the same can be expressed
by defining module wrappers with a procedure that contains those statements.

To give an example, we can prove that for any adversary A, the success
probability of guessing the output of a BitSampler is exactly ½. In the
following we reuse the Runnable module type to universally quantify over
adversaries. In EasyCrypt, the notation M <: T indicates that the module M
satisfies the module type T.
lemma example: ∀ (A <: Runnable{-BitSampler }) mmm,

Pr[b1 ← BitSampler.run ();
b2 ← A.run() @mmm: b1 = b2] = 1/2.

It is important to understand that the module type Runnable also includes ad-
versaries (i.e., modules) that read from and/or write to BitSampler ’s log (e.g.,
BitSampler itself). To exclude such “cheating” adversaries, EasyCrypt allows
us to write Runnable{-BitSampler} to denote the subset of adversaries
whose global variables are disjoint from those of BitSampler .

B Montgomery Ladder in Jasmin

inline fn bn_expm(stack u64[dnlimbs] r, stack u64[nlimbs] m x n)
→ (stack u64[nlimbs])
{

reg u64 i b;
stack u64[nlimbs] x1 x2 x11;

x1 = bn_set1(x1);
x2 = bn_copy(x);
x11 = bn_copy(x1);

42

i = nlimbs * 64;
b = 0;
while(i > 0){

i = i - 1;
b = ith_bit(n,i);
(x1 ,x2) = swapr(x1 ,x2,b);
x11 = bn_copy(x1);
x1 = bn_mulm(r,m,x1 ,x1);
x2 = bn_mulm(r,m,x11 ,x2);
(x1 ,x2) = swapr(x1 ,x2,b);

}
return x1;

}

43

	Introduction
	Related Work

	Preliminaries
	EasyCrypt
	Jasmin Workbench
	Jasmin Basics
	Leakage-Freeness

	Leakage-Freeness and Constant-Time
	Rejection Sampling
	Rejection Sampling in EasyCrypt
	Uniform Sampling in Jasmin
	Leakage-Freeness

	Multiple-Precision Integer Arithmetic Library
	Barrett Reduction
	Barrett Reduction in EasyCrypt
	Barrett Reduction in Jasmin
	Modular Multiplication

	Montgomery Ladder
	Abstract and Modular Exponentiation

	Schnorr Protocol
	Schnorr in Jasmin
	Properties for Schnorr in Jasmin
	Instance of Schnorr Protocol

	EasyCrypt Basics
	Montgomery Ladder in Jasmin

