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Abstract

This work introduces Private Eyes, the first zero-leakage biometric database. The only leakage of the system
is unavoidable: 1) the log of the dataset size and 2) the fact that a query occurred. Private Eyes is built from
oblivious symmetric searchable encryption. Approximate proximity queries are used: given a noisy reading of a
biometric, the goal is to retrieve all stored records that are close enough according to a distance metric.

Private Eyes combines locality sensitive-hashing or LSHs (Indyk and Motwani, STOC 1998) and oblivious
maps which map keywords to values. One computes many LSHs of each record in the database and uses these
hashes as keywords in the oblivious map with the matching biometric readings concatenated as the value. At
search time with a noisy reading, one computes the LSHs and retrieves the disjunction of the resulting values
from the map. The underlying oblivious map needs to answer disjunction queries efficiently.

We focus on the iris biometric which requires a large number of LSHs, approximately 1000. Boldyreva and
Tang’s (PoPETS 2021) design yields a suitable map for a small number of LSHs (their application was in zero-
leakage k-nearest-neighbor search).

Our solution is a zero-leakage disjunctive map designed for the setting when most clauses do not match any
records. For the iris, on average at most 6% of LSHs match any stored value.

We evaluate using the ND-0405 dataset; this dataset has 356 irises suitable for testing. To scale our evaluation,
we use a generative adversarial network to produce synthetic irises. Accurate statistics on sizes beyond available
datasets is crucial to optimizing the cryptographic primitives. This tool may be of independent interest. For the
largest tested parameters of a 5000 synthetic iris database, a search requires 18 rounds of communication and
25ms of parallel computation. Our scheme is implemented and open-sourced.

Searchable Encryption, Biometrics, Proximity Search

1 Introduction

Biometrics are collected into large databases for search [BBOH96, Dau14, Fou]. Learning stored biometric val-
ues enables attackers to break authentication and privacy for a user’s lifetime [GRGB+12,MCYJ18, AF20, VS11,
HWKL18, SDDN19]. To reduce this risk, this article develops new searchable encryption techniques for biometric
databases [SWP00,CGKO11]. See previous reviews of searchable encryption [BHJP14,FVY+17,KKM+22].

Consider a data owner outsourcing a database DB to an honest but curious server that may learn information
called leakage. Prior work exploits such leakage to reveal sensitive information about the database or queries [IKK12,
CGPR15,KKNO16,WLD+17,GSB+17,GLMP18,KPT19,MT19,KE19,KPT20a,FMC+20,FP22,GPP23,KKM+22].
Since biometrics cannot be replaced or revoked, we focus on a zero-leakage system. A zero-leakage system
reveals only unavoidable information: 1) that a query occurs and 2) |DB| (which we pad to a power
of 2). Our focus is on an efficient combination of zero-leakage primitives for this task. Components can be replaced
with higher-leakage alternatives for efficiency gains.

Most biometric search systems phrase proximity queries as a large disjunction. For actual biometrics, 1) this
disjunction has hundreds or thousands of terms and 2) most clauses will not match any stored record. Our parameter
analysis shows that these specificities of biometrics result in critical inefficiencies in previous designs. We propose a
new design that avoids these pitfalls.
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Our Contributions We present PrivateEyes, the first zero-leakage proximity search system for the iris. It is
enabled by the following contributions:

1. A two-stage design that 1) finds the non-null clauses (i.e. clauses that match something in the database),
2) obliviously searches these non-null clauses only. The first stage can be built with private set intersection
(PSI) [FNP04]. The second stage is built using oblivious tree traversal [WNL+14].

2. A prototype implementation with evaluation on random data up to 25000 records and synthetic iris data up
to 5000 records [CHF24]. On synthetic data, search takes at most 25ms of parallel computation and 18 rounds
of communication. 92% of the computation and 14 rounds are in the second stage, the focus of this work.

To scale beyond the sizes of available iris datasets we also introduce a synthetic iris generation tool that may be of
independent interest.

Organization The rest of this paper is organized as follows: Section 2 reviews our design including relevant prior
work, Section 3 introduces preliminaries, Section 4 presents the details of our system, Section 5 presents the datasets,
Section 6 describes our implementation, Section 7 our evaluation, and Section 8 concludes. Appendix A describes
the architecture that generates synthetic irises.

2 Design Overview

A database is a list of biometrics DB = w1, · · · , wℓ where each wi ∈ {0, 1}n. The goal of a biometric database is,
given some biometric query w∗, to find all values wi ∈ DB that are close enough to w∗. For the Hamming metric D
and distance threshold t, that means to find all wi such that D(wi, w

∗) ≤ t.1

Like prior work [KIK12,FWG+16,WYLH14,LPW+20], we combine locality-sensitive hashes (LSHs) [IM98] with
an encrypted map.2

An LSH maps near items to the same value more frequently than it maps far items to the same value. Let H be
a family of LSHs then

Pr
LSH←H

[LSH(wi) = LSH(w∗)|wi, w
∗ are near] ≥ 1− p1,

Pr
LSH←H

[LSH(wj) = LSH(w∗)|wj , w
∗ are far] ≤ 1− p2.

where p1 < p2.
Maps associate keywords to values and are used to build inverted indices. For a map M, we use the notation

M[keyw] = value to denote that keyw is associated with value.
For a database of size ℓ, parameter β ∈ Z+, LSH family H, and maps M1, · · · ,Mβ , one can achieve proximity

search as follows:

1. Sample β LSHs, one per map: LSH1, · · · , LSHβ ← H.

2. In each map, associate all records with the same LSH output to that LSH output: for j = 1, · · · , β,
set

Mj [v] = {wi|LSHj(wi) = v}.3

3. To search for value w∗, retrieve all records with at least one LSH output in common with w∗:

(a) Compute LSH1(w
∗), · · · , LSHβ(w

∗).

(b) Retrieve ∪βj=1Mj [LSHj(w
∗)].

1This functionality differs from k-nearest neighbors where the goal is to retrieve the k closest records [BT21]. There have been leakage
abuse attacks against k-nearest neighbor systems that reveal access pattern [KPT19,KPT20b,LMWY20] and resulting systems [CCD+20].
These attacks do not apply to our leakage profile.

2We won’t discuss works that use encrypted maps but require work proportional to the total number of close points, making them
impractical for biometrics [LWW+10,WMT+13,BC14].

3If multiple records share the same LSH value our implementation concatenates the matching values. This allows us to handle a
constant number of values associated to each keyword. This condition is satisfied for the accuracy regimes discussed in this work.
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Queries are disjunctions. Boldyreva and Tang [BT21] constructed a zero-leakage encrypted map scheme called
an oblivious map with encryption or OMapE. Each clause is submitted to the relevant OMapE, the results are
concatenated as in Step 3b above.

Due to their large noise, biometrics require sampling hundreds or thousands of LSHs to achieve reasonable
accuracy (see analysis in Section 3.1 and Section 7). At the same time, few of these LSHs match anything in
the corresponding map. Constructions frequently perform heavy oblivious operations to hide the null value.

Our design separates the tasks of identifying which values are null and finding the associated values. That is, we
first try to find a small number, called δ, of LSHs values that exist in some map, and then query exactly those δ maps
in a way that hides which maps are being queried. For the above design to be successful, one needs to demonstrate:

1. Obliviousness One can hide the queried δ maps,

2. Accuracy High accuracy with δ < β, and

3. Speed The approach is faster.

We now provide a more detailed description of the approach, shown visually in Figure 1.

Oblivious Membership Check An object to check which LSHs’ outputs, LSHj(w
∗), have matches. For an

encrypted stored set X the oblivious membership check or OMC takes in a set W and returns a set W ′ of size δ.
If |W ∩ X| ≤ δ then W ′ contains W ∩ X and δ − |W ∩ X| dummy values. If |W ∩ X| > δ then W ′ contains δ
randomly selected values from W ∩ X. In our system, X is the set of all LSHs values X = {(j, LSHj(wi))}i,j and
W = {(j, v)|LSHj(w

∗) = v}j for some query w∗.
We build OMC using private set intersection and pseudorandom permutations. We benchmark this design using

VolePSI [RS21]; the resulting implementation takes 2ms and 4 rounds of communication for our largest tested
parameters.

For each parameter set, we manually find a size δ where if one only searches for δ items in the second stage, there
is only a small degradation in accuracy.

Disjunctive Oblivious Map An object that searches for the disjunction of exactly δ items. These δ values form
a set of LSHs that exist in the map4. Using an oblivious data structure with a constant number of queries yields
a zero-leakage solution. This object has the same functionality as an oblivious map that takes multiple clauses but
the fact that all clauses are presented together is crucial for security. We call this object a DOMapE for disjunctive
oblivious map with encryption. Our focus is on designing a DOMapE.

We propose a DOMapE based on oblivious tree traversal, building on the design principles of Wang et al. [WNL+14].
In our approach, each map corresponds to a tree, so one always performs δ tree traversals. We use oblivious RAMs
to store tree nodes. The oblivious RAMs are organized to minimize nodes that are stored together while ensuring
that δ tree traversals result in no leakage.

To build the encrypted database (Enc stage in figure 1) the client computes the set of all LSH values using the
OMC (with their index j). They also create the maps associating LSH values to the corresponding biometric values
and build the corresponding DOMapE. To search for query w∗ (Find stage in figure 1), the client computes the
corresponding LSH values and uses OMC.Find to find a subset of those values present in the maps. DOMapE.Find
is then used to retrieve the corresponding non-null values from the maps. The inputs to both OMC.Find and
DOMapE.Find are of constant size, yielding a zero-leakage solution.

We implemented and analyzed this construction on datasets of up to 25000 records. Since available iris datasets
are not this large, we created larger synthetic iris datasets up to 5000 records using generative adversarial networks
or GANs [CWD+18,GPAM+20] and random data to 25K records. For all tested parameters we have δ < 75 (in
contrast to a number of LSHs β > 600), so a server could reasonably process the ORAM requests at each tree level
in parallel. Thus, we report on both parallel and sequential time.

Comparison with prior work Cachet et al. [ACD+22] proposed two non-interactive iris proximity search schemes
based on inner-product encryption. Both of their constructions have more leakage than our system. The first one
leaks the distance between all returned points and the query. The other leaks whether returned records are the same

4Except for dummy values added when the total number of matches is less than δ.
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Enc
C S

OMC.EncX = {(j, LSHj(wi))}i,j

DOMapE.EncMj [v] = {wi}

Find

C S

OMC.FindW = {(j, LSHj(w
∗))}j

W ′ ⊆W ∩X

Pad W ′ so |W ′| = δ

DOMapE.Find
W ′

≤ δ results

Figure 1: System Overview Composing OMC and DOMapE. In Find one checks which LSH values exist in the
database using the OMC, finding at most δ candidates. If needed OMC pads this set of candidates with dummy
values to reach |W ′| = δ. DOMapE is designed to have no leakage if the size of the disjunction is constant (δ). See
Construction 2 for a formal description.

distance from the query. For the solution with more leakage, search took 4 minutes on a dataset of size 356. For the
solution with less leakage, the search took 1 hour [CAD+23].

Barni et al. [BBC+10] and Blanton et al. [BG11] evaluated their fingerprints identification systems on small
datasets of 320 readings. They respectively achieved search times of 16 and 0.45 seconds for the server. Their
protocols use Garbled circuits and only a single round of communication. Blanton et al. [BG11] also proposed an
iris identification system that compares two 2048 bits iris readings in 0.15s. For a database of size 356 (our smallest
setting) this would amount to 53s. For face recognition, SciFi [OPJM10] online search runtime is linear in the size
of the database: for 100 faces representations search takes 31s. Erkin et al. [EFG+09]’s system takes roughly 40s to
search over a dataset of size 320. As a reminder on 5000 irises our search is 25ms with 18 rounds. For a network
delay of 100ms, this corresponds to an overall time of ≈ 2s.

Recent work [UCK+21,GRS22, CFR23] extends PSI to the setting where one considers items a match if their
distance is small. A naive use of fuzzy PSI tells the client if the biometric exists in the database but not which
item it matches. This issue can be solved using labeled PSI, [CHLR18] which associates a label with each set value
x ∈ X. This is the approach used by Uzun et al. [UCK+21]. Uzun et al. [UCK+21] evaluate the face biometric.
At a technical level, their fuzzy PSI is similar to our approach; they store LSH outputs in the set X and encrypt
each item before sending it to the server. However, they perform a threshold version of labeled PSI, only returning
a record if there are enough matches. One match is required in our approach. Their approach is bandwidth efficient
but requires fully homomorphic encryption [Gen09] to perform the more complex matching. Uzun et al’s scheme
does not allow the client to learn about non-matching records which is not a goal of our work. Their scheme uses
β = 64 by averaging multiple biometric readings, such techniques can be applied in our setting as well. Averaging
readings is not standard in the biometric literature so we do not do it.

More work is needed to scale zero-leakage biometric databases. Our cryptographic storage overhead is around
5000 for all tested parameters. The required number of LSHs grows with the database size. Scaling to 106 irises
requires 93000 LSHs (using linear interpolation over the number of required LSHs for synthetic data with an r2 = .88)
for an overall storage of 93 billion LSH outputs (roughly 500TB for the cryptographic object). In our current testing,
we load the whole cryptographic object in memory with each query, which is not possible for larger sizes.

3 Preliminaries

Let λ be the security parameter, we use poly(λ) and negl(λ) to denote unspecified functions that are polynomial
and negligible in λ, respectively. All definitions are indexed by λ but this indexing is omitted for notational clarity.
For some n ∈ N, [n] denotes the set {1, · · · , n}. Let x ← S denote sampling x uniformly at random from the finite
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set S. Let ⊥1,⊥2, ... be a sequence of distinguished unique symbols. These symbols are allowed inputs to algorithms.
For a map M, let M.Keywords output the set of all stored keywords.

For interactive protocol Prot between a client C and a server S we use notation

(
oC

oS

)
← Prot

(
iC

iS

)
with iC, oC, iS, oS

denoting the client’s and the server’s inputs and outputs respectively. Protocols are written from the perspective of
the client with underlying interactive algorithms indicating the server’s role.

Hamming distance is defined as the distance between the bit vectors x and y of length n, D(x, y) = |{i | xi ̸= yi}|.
The fractional Hamming distance is D(x, y)/n.

Definition 1 (Locality-sensitive Hashing). Let t ∈ N, c > 1 and p1, p2 ∈ [0, 1]. H defines a (t, ct, p1, p2)-sensitive
hash family if for any x, y ∈ {0, 1}n, we have:

1. If D(x, y) ≤ t, PrLSH←H [LSH(x) = LSH(y)] ≥ 1− p1 and

2. If D(x, y) ≥ ct, PrLSH←H [LSH(x) = LSH(y)] ≤ 1− p2.

For x, y if D(x, y) ≤ t they are called near, if D(x, y) ≥ ct they are called far.

We use selection of a single random bit as our LSH. For two values x, y the probability this bit will be the
same is 1−D(x, y)/n. That is p1 ≥ t/n while p2 ≤ ct/n. The error rates p1, p2 of an LSH can be increased by randomly
sampling several LSHs and checking that they all match, an α-AND. For α-AND composition, a (t, ct, p1, p2)-LSH
yields a (t, ct, pα1 , p

α
2 )-LSH. For our LSH, this corresponds to randomly selecting α (with replacement) bits of the

input. Similarly, p1, p2 can be decreased by randomly sampling several LSHs and checking that at least one of them
matches, a β-OR. For β-OR composition, a (t, ct, p1, p2)-LSH yields a (t, ct, 1− (1− p1)

β , 1− (1− p2)
β)-LSH.

3.1 The need for many LSHs in biometric proximity search

We focus on the iris biometric and use the ND-0405 dataset [PSO+09,BF16]. The average distance between same
irises is t/n ≈ .21, using a state-of-the-art feature extractor [AF19]. Section 5 presents the datasets used in this
work. Our discussion applies to other biometrics with substantive noise such as the face 5.

If one only uses the AND of α LSHs and considers it a match when at least one LSH out of β corresponds, this
LSH can be seen as the β-OR of the α-AND of LSHs where

p′1 = 1− (1− pα1 )
β and p′2 = 1− (1− pα2 )

β .

Let w′i be a noisy reading of wi. When using w′i as a search query, a true accept is when wi is returned and the true
accept rate (TAR) is the fraction of queries where this happens. The fraction of false accepts (FFA) is the fraction
of DB \ {wi} that is returned on average.

If one assumes that p1 = t/n = .21 and p2 = .5 and all items have these average distances, then TAR is 1 − p′1
and FFA is 1− p′2. Under this assumption, achieving a TAR of .95 (p′1 = .05) and an FFA of .01 (p′2 = .99) requires
a number of LSHs 65 ≤ β ≤ 80 for the minimum α = 13. For a dataset of size 106 if one seeks at most 100 false
accepts (that is, FFA of 10−4) this requires 680 ≤ β ≤ 835 at the minimum α = 23.

However, even though the mean distance between readings of the same biometric is t/n = .21 there is substantial
variance in this distance (see Figure 11(a)), requiring β to be larger as we show in Table 2.

We call an LSH match good if it ensures the query results in a true accept and bad otherwise. For the ND-0405
dataset,6 a histogram of the number of good and bad LSH matches is in Figure 2. The average number of total LSH
matches is 23.4.

5Deng et al. [DGXZ19, Figure 6] show analogous statistics for the face.
6This uses the following experiment:

1. Storage of a single feature extracted reading for the eye for each of the 356 persons. Sample β = 225 LSHs of size α = 15.

2. Let w′
1, ..., w

′
356 be the second stored template in the ND-0405 dataset.

3. Search for each record w′
i. Record the number of good and bad LSH matches.
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Figure 2: The number of maps returning a value when searching similar values with α = 15, β = 225 trees and 356
records from the ND-0405 dataset.

3.2 Cryptographic Definitions

This work relies on oblivious RAM (ORAM) [GO96,Gol87] to achieve zero-leakage. In our constructions, we consider
static datasets and ignore write queries. Our ORAM definition reflects this choice. As we discuss in Section 6, this
definition is also satisfied by private information retrieval schemes (with appropriate encryption). We discuss other
considerations for dynamic data at the end of Section 6.

Definition 2 (Oblivious RAM). An Oblivious RAM (ORAM) scheme is two protocols, Setup and Access:(
σ,

EM

)
← Setup

(
1λ,Mem

1λ

)
,

(
v, σ′

EM′

)
← Access

(
σ, i

EM

)
.

Correctness Consider the following correctness experiment:

1. An adversary A chooses memory Mem.

2. Consider

(
σ0

EM0

)
← Setup

(
1λ,Mem

⊥

)
.

3. For 1 ≤ i ≤ q:

(a) Run yi ← A(tsi−1).

(b) Run

(
vi, σi,

EMi

)
← Access

(
σi−1, yi

EMi−1

)
.

The adversary wins if for some i, vi ̸= Mem[yi]. The ORAM scheme is correct if the probability of A winning the
game is negl(λ).

Security An ORAM scheme is secure in the semi-honest model if for any PPT adversary A, there exists a PPT
simulator Sim such that for any PPT distinguisher D we have∣∣Pr[D(RealA,q(1

λ)) = 1]− Pr[D(IdealA,Sim,q(1
λ)) = 1]

∣∣ ≤ negl(λ)

with RealA,q and IdealA,Sim,q as described in Figure 3.

The above is an adaptive simulation definition of ORAM [GMP16], all of our proofs work naturally for the standard
non-adaptive definition. We define generic oblivious searchable encryption (OSE) and in the rest of the paper, will
use specific variants of it.
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RealA,q(1
λ):

1. Mem← A(1λ).

2. Run

(
σ0,

EM0

)
← Setup

(
1λ,Mem

⊥

)
. Let ts0 denote the server’s view.

3. For 1 ≤ i ≤ q:

(a) yi ← A(tsi−1),

(b)

(
vi, σi

EMi

)
← Access

(
σi−1, yi

EMi−1

)
.

(c) Let tsi be the server’s view.

4. Output (ts0, · · · , tsq).
IdealA,Sim,q(1

λ): Output (ts0, ..., tsq)← Sim(q, |Mem|, 1λ).

Figure 3: Definition of Ideal and Real for ORAM security.

Definition 3 (Oblivious searchable encryption). Let M denote the records space, Q denote the query space and R
denote the result space. Let DB ⊆M be a database and y ∈ Q be a query. For string param, let the triple of protocols
OSE = (Setup, Enc, Find) have the following format:(

sk

pp

)
← Setup

(
1λ, param

1λ, param

)
,(

IC,

IS

)
← Enc

(
sk,DB

pp

)
,

(
J, I ′C

I ′S

)
← Find

(
sk, y, IC,

pp, IS

)
.

OSE is an oblivious searchable encryption if the following hold:

Correctness: The set J is the “same” as the result of the query. The formal definition varies per OSE variant we
consider and is defined later.

Security: Let q = poly(λ), LOSE = {LEnc,LFind =⊥} be the leakage profile of OSE’s algorithms. For any PPT
adversary A, there exists a simulator Sim such that for any PPT distinguisher D we have∣∣Pr[D(RealA,q(1

λ)) = 1]− Pr[D(IdealA,Sim,q(1
λ)) = 1]

∣∣ ≤ negl(λ)

with RealA,q and IdealA,Sim,q as described in Figure 4.

Our goal is to build an OSE scheme for proximity queries, we define this particular variant of OSE as follows:

Definition 4 (Oblivious Proximity Search). Consider Definition 3 with the following specificities. Let M = Q =
R = {0, 1}n and param = t. Consider DB = w1, · · · , wℓ where each wi ∈M.

(ϵ, t)-Approximate Correctness: For all DB, y ∈ Q define JDB,near,y := {wi|D(wi, y) ≤ t}. Let q = poly(λ) and
ϵ > 0. For all DB and all y1, ..., yq define:

(
sk

pp

)
← Setup

(
1λ

1λ

)
,(

I1C ,

I1S

)
← Enc

(
sk,DB

pp

)
,

(
Jj , IC,j+1

IS,j+1

)
← Find

(
sk, yj , IC,j

pp, IS,j

)
OSE is ϵ-approximately correct if ∀1 ≤ j ≤ q for all DB

Pr
[
Jj ⊇ JDB,near,y

]
≥ 1− ϵ.
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RealA,q,param(1
λ):

1. Compute

(
sk

pp

)
← Setup

(
1λ, param

1λ, param

)
.

Let ts0 be the server’s view.

2. DB ← A(ts0).

3. Compute

(
IC,1,

IS,1

)
← Enc

(
sk,DB

pp

)
.

Let ts1 be the server’s view.

4. For 1 ≤ j ≤ q:

(a) yj ← A(tsj).

(b)

(
Jj , IC,j+1

IS,j+1

)
← Find

(
sk, yj , IC,j

pp, IS,j

)
.

Let tsj+1 be the server’s transcript.

5. Output (ts0, ..., tsq+1).

IdealA,Sim,q,param(1
λ):

1. ts0 ← Sim(1λ, q, param).

2. DB ← A(ts0).
3. (ts1, ..., tsq+1)← Sim(LEnc(DB)).
4. Output (ts0, ...tsq+1).

Figure 4: Definition of Ideal and Real for OSE security.

Definition 4 doesn’t limit the number of false matches. Furthermore, in Section 4, we never show that our
construction satisfies approximate correctness. Instead, we evaluate approximate correctness using data in Section 7.

Our scheme first finds a list of candidate LSH matches, and then uses an appropriate oblivious map to find the
relevant records using the candidate LSH matches. The first stage is called oblivious membership checking or OMC.
An OMC can be built from private set intersection (PSI), client storage, and full set retrieval (see Section 4.4). We are
not offering constructions of OMC as a technical contribution. We benchmark separately using PSI, see discussion
in Section 7. In our full implementation we use a local Bloom filter to simplify evaluation.

OMC only handles sets, that is, a collection of values without repeats. In our search system, these values are LSH
outputs. It is possible for two distinct LSHs to have the same output. To avoid this, we prepend the LSH id to each
LSH output value. For LSH j, the corresponding values to use would then be {j || LSHj(x)}. We define OMC as a
variant of OSE:

Definition 5 (Oblivious Membership Check). Let OMC = (Enc,Find) be a pair with stored set size ρ, query size γ,
and result size δ, abbreviated ρ-ssize, γ-qsize, and δ-rsize. Consider Definition 3 with the following specificities:

• LetM = Q = R and param = (ρ, γ, β).

• Consider X ⊆M, such that |X| = γ, and Y ⊆ Q, such that |Y | = ρ. Set DB = X and query y = Y .

Correctness: We use ⊥1, · · · ,⊥β to denote a sequence of unique symbols that cannot appear in X or Y . For all
X, |X| = γ and Y, |Y | = β, let (

EC,

ES

)
← Enc

(
1λ, X

1λ

)
,

(
I,

⊥

)
← Find

(
EC, Y

ES

)
.

Then |I| = δ and for all i ∈ I such that ∀j, i ̸=⊥j it holds that Pr[i ∈ X ∩ Y ] ≥ 1− negl(λ).

Finally, we define the second stage of our system:
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Parameter Meaning
ℓ Database size
β nmaps, Total number of trees, maps, LSHs, query size to OMC
δ qsize, Result size from OMC, Number of trees to traverse/result size in DOMapE
µ msize, log2 maximum number of keywords in each map
γ Server set size in OMC, in composed protocol γ = 2µ · β

Table 1: Parameters and their usage across the different schemes.

Definition 6 (Disjunctive Oblivious Map with Encryption). Let param = (β, δ), such that β, δ ∈ N and δ ≤ β and
let µ ∈ N. Let DOMapE = (Setup,Enc,Find) be a triple with β maps, µ map size, and δ query size, abbreviated
β − nmaps, µ − msize, and δ − qsize. Then DOMapE is a disjunctive oblivious map with encryption if it satisfies
Definition 3 with the following correctness guarantee.

Correctness: LetM = {Mi | Mi : Q ← R}, where Mi denotes a map such that for 1 ≤ i ≤ β, |M.Keywords| ≤ 2µ.

Set DB = M1, · · · ,Mβ. Let ϵ > 0, q, β, δ = poly(λ) and δ ≤ β. Let param = (β, µ, δ). Fix some ({Mi}βi=1, {yj ∈
(X × [1, ℓ])δ}qj=1) and define for 1 ≤ j ≤ q:(

sk

pp

)
← Setup

(
1λ, β, δ

1λ

)
,(

σ1,

EM1

)
← Enc

(
sk,DB

pp

)
,

(
rj , σj+1,

EMj+1

)
← Find

(
sk, σj , yj

pp,EMj

)
.

DOMapE is correct if there exists a set I ⊆ [2µ] where |I| ≤ δ such that :

Pr
[
(∪irji ) \ ∅ ⊆ ∪i∈IMki

[
xj
i

]]
≥ 1− negl(λ).

4 Oblivious Proximity Search for Biometrics

This section presents our technical solutions, focusing on the design of DOMapE. We describe possible constructions
of OMC in Section 4.4. The most relevant related work is by Boldyreva and Tang [BT21], whose construction is for
the approximate k-nearest neighbors search problem. While Boldyreva and Tang discuss two ways of implementing
OMapE, one using a tree and the other using a skip list [Pug90], we present a tree based construction. In this work,
we only consider static data. For static data, B-trees and skip lists are equivalent data structures [LN+96]. However,
updates and the resulting performance differ.

4.1 Overview of DOMapE design

Recall the unprotected solution for proximity search from the Introduction:

1. Sample β LSHs, LSH1, ..., LSHβ ← H.
2. For j = 1, ..., β, set

Mj [keyw] = {wi|LSHj(wi) = v}.

3. To search w∗, compute LSH1(w
∗), ...., LSHβ(w

∗), and retrieve ∪βj=1Mj [LSHj(w
∗)].

The maps consists of yi, {wi} pairs. The keywords yi are placed into the map, sorted (lexographically) and used
as nodes in a binary tree (along with {wi}). Internal nodes have store the minimum keyword in the right subtree
and the location of the two children LC,RC. We show this design in Figure 6. Let Tr1, ...,Trβ be the output of BIndex
on maps M1, ...,Mβ respectively.

To turn this into an oblivious search algorithm, one can place each tree in a distinct ORAM. The construction
fully traverses every tree Tri meaning that there is a constant number of accesses to each ORAM with every search.
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(a) Boldyreva and Tang ORAM organization [BT21].

ORAM root

y14

y12

y8y7

y11

y6y5

y13

y10

y4y3

y9

y2y1

ORAM root

y′14

y′12

y′8y′7

y′11

y′6y′5

y′13

y′10

y′4y′3

y9

y′2y′1

(b) First optimization.

OMC((1, y1), ..., (1, y8), (2, y
′
1), ..., (2, y

′
8))
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(c) Our design.

Figure 5: ORAM Organization Strategies. Each shaded region represents data stored together in a single oblivious
RAM. In (a) one uses a separate ORAM for each LSH. In (b) we split this to one ORAM per tree level. Then (c)
is our design of DOMapE where each level across binary trees is stored in a single ORAM. This allows one to hide
which trees are accessed.

Let µi be the number of elements in Mi, define µ = ⌈logmaxi µi⌉, by padding each ORAM to length 2µ each ORAM
receives exactly µ + 1 accesses with each query ((µ + 1)β across the β trees). This corresponds to Boldyreva and
Tang’s approach and is shown in Figure 5(a) . However, since each level of each map receives a single access per
query, one can store each level of the tree in a separate ORAM. This design is shown visually in Figure 5(b), with
each shaded region representing a separate ORAM. With this approach, each shaded region sees exactly one read
for each search query. This organization allows higher levels of the tree to serve as the position map of their child
eliminating the need for a recursive ORAM [WNL+14].

Our approach Recall that our goal is a two part construction: First one queries the OMC to find out which δ ≤ β
LSHs have matches. Then one queries the relevant δ maps Mi to find records. In this new design, one does not query
every M1, ...,Mβ . As such, the set of queried maps would be leakage. We merge the ORAMs across maps to prevent

10



BIndex(M, µ):

1. Sort map M using the comparator ≤.
Let Leaves = (xi,M[xi]) be the sorted re-
sult.

2. Pad Leaves to length 2µ with pairs (⊥i,⊥i

).

3. Build balanced binary search tree Tr over
the values of xi and for each internal node,
attach pointers to its left and right child,
LC and RC.

4. Associate M[xi] as data for leaf xi.

ApplyO

(
Tr1, ...,Trβ

1λ

)
:

1. For j ∈ [0, µ]:

(a) Levelj =⊥. For all Tri∈[β], Levelj =
Levelj || Level(Tri, j).

(b)

(
σj ,

EMj

)
← O.Setup

(
1λ, Levelj

,⊥

)
2. Denote Σ := {σj}µj=0 and EM = {EMj}µj=0.

Level(Tr, j): Return all nodes at level j in Tr.

Figure 6: Build tree index and apply ORAM algorithms.

this. However, we retain a separate ORAM for each level of the trees. This is shown visually in Figure 5(c) and also
described by the ApplyO algorithm in Figure 6. This means that each query now makes δ accesses at each ORAM
level. There are µ+ 1 levels in total resulting in δ(µ+ 1) ORAM accesses. In this design, parents store the position
map of children, enabling non-recursive ORAM.

4.2 Detailed design of DOMapE

Construction 1. Let X andM be the domain and range of a map, such that elements in X are comparable with the
≤ operator. Define β maps M1, ...,Mβ. Let O = (O.Setup,O.Access) be an oblivious RAM as defined in Definition 2,
and let Oi denote its instantiation for level 0 ≤ i ≤ µ. Consider the DOMapE construction shown in Figure 7.

Theorem 1. For any δ, β ∈ N where δ ≤ β. Construction 1 describes an DOMapE for LBIndex(M1, ...,Mβ) = µ =
maxi⌈log |Mi|⌉ for β − nmaps, µ− msize, and δ − qsize.

Proof. We need to show that for every adversary ADOMapE there exists simulator SimDOMapE for DOMapE such that
RealADOMapE

(λ) ≈ IdealA,SimDOMapE
(λ) where RealADOMapE

and IdealA,SimDOMapE
are defined as in Definition 3.

The SimDOMapE gets as input µ which it uses to initialize that many levels of ORAM simulators. Let SimOj denote
the simulator for the jth level ORAM, 0 ≤ j ≤ µ. We build SimDOMapE, the simulator for DOMapE, as follows:

1. Receive inputs (q, 1λ) and param = (β = nmaps, µ = msize, δ − qsize).

2. For 1 ≤ i ≤ q · δ:

(a) For 0 ≤ j ≤ µ, run Oj simulator (tsiO,j,0, · · · , tsiO,j,β)← SimOj (β, |Levelj |, 1λ).

(b) Set tsi+1 = (tsiO,0,1, · · · , tsiO,µ,β).

3. Set ts0 =⊥ and ts1 = (ts1O,0,0, · · · , ts1O,µ,0).

4. Return (ts0, · · · , tsq·δ+1).

We then use a hybrid argument where at each step, we replace an ORAM by its corresponding simulator. We obtain
the following games

• Game 0: O0, · · · ,Oµ,

• Game j: SimO0
, · · · ,SimOj

,Oj+1, · · · ,Oµ,

• Game µ+ 1: SimO0
, · · · ,SimOµ

,
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(
β, ν, δ

β, ν, δ

)
← Setup

(
1λ, β, ν, δ

1λ

)

Enc

(
M1, · · · ,Mβ

1λ

)
:

1. Let ηi = |Mi|, define µ = ⌈logmaxi ηi⌉.
2. For i ∈ [β], client sets Tri ← BIndex(Mi, µ).

3. C initiates

(
Σ,

EM

)
← ApplyO

(
Tr1, ....,Trβ

1λ

)
.

4. Server receives EM and client keeps Σ.

Search

(
sk,Σ, y ∈ (X × [1, ℓ])ν

EM

)
:

C does:

1. Parse y = (x1, k1, ..., xν , kν) and Σ = σ1, · · · , σµ.

2. Set Nodes1 = ((k1, 1), ..., (kν , 1)), Res =⊥.
3. For j = [0, µ− 1] and for i in 1 to ν:(

σ′
j , x

′, LC,RC

EM′
j

)
← O.Access

(
σj ,Nodesj [i],

EMj

)
.

(a) If x′ ≤ xi, set
Nodesj+1 = Nodesj+1||(ki, LC).

(b) Else Nodesj+1 = Nodesj+1||(ki,RC).

4. For i in 1 to ν: (
σ′
µ, x

′,M[x′]

EMi

)
← O.Access

(
σµ,Nodesµ[i],

EMj

)
.

(a) If x′ = xi, Res = Res ∪M[x′].

5. Return Res and Σ′ = σ′
1, · · · , σ′

µ.

Figure 7: DOMAPE Construction. The BIndex algorithm is shown in Figure 6.

with 0 ≤ j ≤ µ.
Note that Game 0 contains µ + 1 ORAM instantiations, which corresponds to the real world RealADOMapE

. Also
note that Game µ + 1, contains µ + 1 ORAM simulators, which is equivalent to SimDOMapE and to the ideal world
IdealA,SimDOMapE

. Then for each Game, we show indistinguishability with the previous one by relying on the security
of the underlying Oi.

Lemma 1. For 1 ≤ i ≤ µ+ 1, Game i is indistinguishable from Game i− 1.

Proof. By security of Oi, we have Oi ≈ SimOi
. Since Game i− 1 and Game i only differ at index i, we conclude that

these two games are indistinguishable.

By applying Lemma 1 to each game, we obtain that Games 0 and µ+1 are indistinguishable, which implies that
RealADOMapE

and IdealA,SimDOMapE
are also indistinguishable and concludes this proof.

4.3 OSE design

Construction 2. For a database DB = (w1, ..., wℓ) define µ = ⌈log ℓ⌉. Fix parameters δ, ν, β ∈ N where δ ≤ ν ≤ β.
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1. Let DOMapE be a disjunctive oblivious map with encryption with β − nmaps, µ− msize, and δ − qsize,

2. Let OMC be an oblivious membership check with 2µ ∗ β − ssize, β − qsize, and δ − rsize, and

3. Let H be a family of locality sensitive hashes.

For a database DB = (w1, ..., wℓ), define OSE = (OSE.Setup,OSE.Enc, OSE.Find) as in Figure 8.

Theorem 2. Let DOMapE and OMC be as in Construction 2. Then Construction 2 is an oblivious searchable
encryption scheme with leakage LEnc(M1, ...Mβ) = µ.

Proof. Let SimOSE a the simulator for the OSE scheme. This simulator will run as follows:

1. Upon input (q, β, δ, µ, 1λ), run the simulator for the oblivious membership check with param = (β ∗ 2µ −
ssize, β − qsize, δ − rsize, (ts1OMC, · · · , ts

q+1
OMC)← SimOMC(q, γ = β2µ, β, δ).

2. Run (ts0DOMapE, · · · , ts
q+1
DOMapE)← SimDOMapE(q, param, 1λ) with param = (β − nmaps, µ− msize, δ − qsize).

3. Set ts∗0 = ts0DOMapE.

4. For 1 ≤ i ≤ q + 1, set ts∗i = (tsiOMC, ts
i
DOMapE).

5. Output transcripts ts∗0, · · · , ts∗q+1.

We use a hybrid argument to show security of OSE. Consider the following games:

1. RealOSE,

2. Sim∗OSE, which runs SimOMC and RealDOMapE,

3. SimOSE, which runs SimOMC and SimDOMapE as described above.

We want to show that game 1 is indistinguishable from game 3.

Lemma 2. Game 1 and Game 2 are indistinguishable.

Proof. The difference between games 1 and 2 is Sim∗OSE’s use of SimOMC instead of RealOMC. By security of the OMC
scheme, game 1 and 2 are indistinguishable.

Lemma 3. Game 2 and Game 3 are indistinguishable.

Proof. The difference between games 2 and 3 is SimOSE’s use of SimDOMapE instead of RealDOMapE. By security of the
DOMapE scheme, game 2 and 3 are indistinguishable.

Combining Lemmas 2 and 3, we obtain that games 1 and 3 are indistinguishable, which conclude our proof.

Theorem 2 does not handle correctness. Since there is an overlap between the histograms for real data in Figure 11
one cannot make strong correctness claims. We evaluate correctness empirically in Section 7.

4.4 Oblivious membership check constructions

We discuss options to implement OMC. We briefly cover approaches based on Bloom filter lookups. In Appendix 4.4.1,
we describe how to build OMC from private set intersection. This is the tool that we use for microbenchmarks. In
our implementation, we use a local Bloom filter to emulate an OMC.

Oblivious Bloom Filter Lookups The client’s set can be stored in a Bloom [Blo70], Cuckoo [FAKM14], or
XOR [GL20] filters which is then stored on the server in an ORAM. The client will request the relevant bits from
the ORAM. This prevents the client from having to store the entire filter on their side, but requires them to request
multiple ORAM accesses to query the relevant bits. BlindSEER [PKV+14,FVK+15] built a tree of encrypted Bloom
filters for general Boolean search. Search of each node uses Garbled circuits to decide whether to proceed to children.
One can use a single level of their tree as an OMC as long as only the client learns the response. This requires
some modification as their system was optimized for circuits that output a bit, we would need the set of matching
locations. Their system was evaluated on datasets with 108 records [FMC+15].
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OSE.Setup

(
1λ

1λ

)
:

1. Client samples LSH1, ..., LSHβ ← H(1λ) and runs(
skOMC

⊥

)
← OMC.Setup

(
1λ

⊥

)
,(

skDOMapE

ppDOMapE

)
← DOMapE.Setup

(
1λ

1λ

)
.

2. Denote pp = ppDOMapE, sk = (skOMC, skDOMapE, LSH1, ..., LSHβ).

3. Client sends pp to server and keeps sk.

OSE.Enc

(
sk,DB = (w1, ..., wℓ)

ppDOMapE

)
:

1. For 1 ≤ i ≤ β, client:

(a) Initializes map Mi.

(b) For 1 ≤ j ≤ ℓ sets Mi[keywordi,j ] = {wj |LSHi(wj) = keywordi,j}.
(c) Adds dummy values to Mi until it is of size ℓ.

2. (
⊥

ES

)
← OMC.Enc

(
skOMC,∪β

i=1 ∪
ℓ
j=1 i||keywordi,j

1λ

)
,(

σ,

EM

)
← DOMapE.Enc

(
sk,M1, ...,Mβ

ppDOMapE

)
.

3. Denote IC = σ and IS = (ES,EM).

OSE.Find

(
sk, y, IC

IS

)
:

1. Let Is = (ES,EM).

2. Client creates OMC set EC = (1||LSH1(y), · · · , β||LSHβ(y)).

3. (
ResOMC

⊥

)
← OMC.Search

(
skOMC, EC

ES

)
,(

r, σ′

EM′

)
← DOMapE.Search

(
skDOMapE, σ, ResOMC

EM

)
.

4. Denote J = (∪δ
i=1ri)\ ⊥, I ′C = σ′ and I ′S = (ES,EM′).

5. Client receives J, I ′C and server stores I ′S.

Figure 8: OSE construction from OMC, DOMapE and LSH.

4.4.1 Building OMC from PSI and pseudorandom permutations

Private set intersection (PSI) [FNP04] is a form of secure multi-party computation where a client and server hold
sets Y and X respectively. They run an interactive computation, at the end, the client learns X ∩ Y . No other
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RealA,nX ,nY (1λ):

1. (X,Y )← A(1λ) where X,Y ⊂ X .
2. If |X| > nX or |Y | > nY , return ⊥.
3. Output ts of (

Z,

⊥

)
← PSI

(
X,

Y

)
.

IdealA,Sim,nX ,nY (1λ):

1. (X,Y )← A(1λ) where X,Y ⊂ X .
2. Output ts ← Sim(1λ, param) where param =

(|X| = csize, |Y | = ssize).

Figure 9: Definition of PSI security.

information is leaked. Current implementations of PSI depend on one of two tools: oblivious polynomial evaluations
(OPE) and oblivious pseudorandom functions (OPRF).7 We show how to build OMC from honest-but-curious PSI
as follows:

1. At initialization the client applies a pseudorandom permutation (PRP) to each element in the set X.

2. The client sends the set of elements (passed through the PRP) to the server.

3. Later when the client has a set Y , they apply the pseudorandom permutation to each element of Y , and uses
the resulting values as their set for the PSI protocol.

In OMC, the simulator learns the size of both sets X,Y , using an ideal PSI, only the size of X is leaked to the
server. Both the sizes of X and Y are global parameter, β · 2µ and β respectively. We now formalize the above,
re-stating the PSI definition used for VOLE-PSI [RS21, Figure 5].

Definition 7 (Private Set Intersection (PSI)). Let X denote a set. Let the client hold a set X ⊂ X and the server

hold a set Y ⊆ X . Consider

(
Z,

⊥

)
← PSI

(
X,

Y

)
, the PSI protocol between the client and the server. The client

learns Z and the server learns nothing.

Correctness: Correctness is, Pr

[
Z ̸= X ∩ Y

∣∣∣∣∣
(
Z,

⊥

)
← PSI

(
X,

Y

)]
≤ negl(λ).

Security: PSI is secure if for any PPT adversary A, there exists a simulator Sim, such that the distributions
RealA,q and IdealA,Sim,q, described in Figure 9, are computationally indistinguishable. VOLE-PSI [RS21] uses a
different security definition for PSI, their definition implies ours.

Remark We consider PSI where both X and Y are constant size sets so we ignore the case when a party provides
too large a set.

Definition 8 (Pseudorandom Permutation (PRP)). Let F : {0, 1}λ×X → X be an efficient keyed permutation and
Fn denote the set of all permutations on X . F is a pseudorandom permutation if for any PPT adversary A,∣∣∣Pr [AFk(·)(1λ) = 1 | |k $←− {0, 1}λ

]
− Pr

[
Af(·)(1λ) = 1 | |f $←− Fn

]∣∣∣ ≤ negl(λ).

Construction 3 (OMC from PSI and PRP). Let PSI denote a PSI scheme and F : {0, 1}λ × X → X be a
pseudorandom permutation. Let X and Y be sets, such that X ⊆ X and Y ⊆ X . Then we build OMC as in
Figure 10.

7Cristofaro et al. [CT10] construct efficient PSI procotols, under the restriction that the server can do some precomputation or the
client is weak. Dong et al. [DCW13] present an efficient PSI protocol based on a variant of Bloom Filters called garbled Bloom Filters.
Dachman-Soled et al. [DSMRY09] present an efficient PSI protocol utilizing secret sharing and Reed-Soloman codes. Malicious secure
implementations of PSI utilizing OPE also depend on zero-knowledge proofs to prevent parties from deviating from the protocol.
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OMC.Setup

(
1λ

⊥

)
:

1. Client randomly samples a PRP key sk
$←−

{0, 1}λ.

OMC.Enc

(
sk, X

⊥

)
:

1. Client initializes ES = ∅.
2. For each xi ∈ X, client sets ES = ES ∪

F (sk, xi), where F is a PRP.

3. Client sends ES to server.

OMC.Search

(
sk, Y

ES

)
:

1. For each yj ∈ Y , client computes permutation F (sk, yj).

2. Client initializes a map M and inserts M[F (sk, yj)] = yj .

3. Client sets EC = {F (sk, yj)}.

4. Run

(
EC ∩ ES,

⊥

)
← PSI

(
EC,

ES

)
.

5. Client

(a) Initializes Res = ∅. For each c ∈ EC ∩ ES, set Res =
Res ∪M[c].

(b) If |Res| > δ set Res to be δ random elements of Res.

(c) If |Res| < δ append elements from ⊥1, ... to make Res size δ.

(d) Outputs Res.

Figure 10: Construction of OMC from PSI and PRP.

Theorem 3. Let PSI be a secure private set intersection scheme and F be a pseudorandom permutation, then
Construction 3 describes a secure OMC with γ − ssize, β − qsize, and δ − rsize.

Proof. Correctness is straightforward and follows from correctness of the PSI scheme and the fact that each element
in F is a permutation. If there are more than δ elements in the intersection then δ are chosen randomly. However,
the correctness guarantee only requires that non-⊥ elements returned be in the intersection. Security follows from
the security of the PRP (values seen by the server are indistinguishable from random) and the security of the PSI
scheme (server learns nothing about EC and EC ∩ ES). Formally, we build the simulator SimOMC as follows:

1. Receive inputs 1λ, number of queries q, server’s set size γ.

2. For 1 ≤ i ≤ γ, sample a random value xi
$←− X .

3. Define the server set as ES = {xi}γi=1.

4. For 1 ≤ k ≤ q: run the PSI simulator tsk ← SimPSI(1
λ, param) with param = (β = csize, γ = ssize).

5. Output ES and ts1, ..., tsq.

We then use a hybrid argument to show security of OMC. Consider the following games:

1. RealOMC,

2. Replace the PRP F by a random permutation f
$←− Fn,

3. SimOMC.

Games 1 and 2 are indistinguishable by the security of the PRP scheme, and games 2 and 3 are indistinguishable by
the security of the PSI scheme. We note that sampling a random output value is equivalent to sampling a random
input value as inputs are guaranteed to be a set.

5 Datasets

We test and evaluate our implementation on three datasets:

ND-0405 dataset This dataset [PSO+09,BF16] is a superset of the NIST Iris Evaluation Challenge [PBF+08]. It
consists of the readings of left and right irises from 356 individuals, each iris having at least 4 distinct readings. We
use the ThirdEye feature extractor [AF19] to obtain 1024 bits feature vectors from the original iris images. Since the
left irises were used to train the feature extractor, we use the right ones for testing and evaluation. The first reading
of each right iris is in the DB; queries come from the remaining readings. The Hamming distance distributions are
in Figure 11(a).
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(a) Histogram of comparisons for ND0405
dataset.

(b) Histogram of comparisons for synthetic
dataset.

(c) Histogram of comparisons for random
data.

Figure 11: Histograms of Hamming distance between readings of the same iris (in blue) and different irises (in red).
Different irises are stored in the database and queries are drawn from a different reading of an iris in the database.
The gaps in the synthetic and random blue histograms are caused by the query generation technique used (see
paragraph on random and synthetic queries generation) in Section 5.

Synthetic dataset Available irises datasets are of limited size, often no more than a few hundreds irises (356
individuals for ND-0405). Real world systems would store thousands to millions individuals, depending on the
application. Our solution is to generate synthetic irises templates, that mimic actual ones. As can be seen in Figure
11b, synthetic data same and different distributions are similar to the ND-0405 ones. The details on synthetic data
generation are in Appendix A. The high level approach is a generative adversarial network (GAN) [GPAM+20] as in
prior approaches on synthetic iris generation [AF20].

Random dataset This dataset is made from randomly generated 1024 bits vectors. The Hamming distance
between two vectors is close to 0.5 with a small variance. This is visible in the red histogram from Figure 11c.

Random and synthetic queries generation Contrary to the ND0405 dataset [BF16], the random and synthetic
datasets do not include queries. We generate queries from a distribution that resembles the one for ND-0405. We use
the common observation that like irises comparisons have a distribution close to a binomial across different feature
extractors [Dau09, Dau05, SSF19]. From Figure 11a, we extract the mean, µ = 0.21, and the standard deviation,
σ = 0.056. This yields a distribution B(n, µ)/n, the binomial distribution for n = 53. This is because for B(n, µ) it
is true that σ2 = µ(1−µ)n. Thus, by linearity of expectation for B(n, µ)/n it is true that σ2 = µ(1−µ)/n, thus one
can compute n = ⌈µ(1− µ)/σ2⌉ = ⌈52.9⌉ = 53.

We then generate queries for the random and synthetic datasets as follows:

1. Generate a binomial distribution using the mean and standard deviation of the same iris distribution for the
ND-0405.

2. For each feature vector in the dataset, create a corresponding query by sampling an error fraction from the
frac← B(53, 0.21)/53.

3. Flip the number of error bits, frac ∗ 1024, in the feature vector.

Using this technique, we obtain the same iris distributions (in blue) for synthetic and random data shown in Figures
11b and 11c. There are only 54 possible outcomes for a fraction of error bits, this leads to discontinuities in the
histograms presented in Figures 11b and 11c.

6 Implementation

We present an open-source implementation of our algorithms including the LSH parameter finding, tree building, and
oblivious search [CHF24]. This implementation is in Python 3.10 and uses the PathORAM [SDS+18] module [Hac18].
Our experiments use a Bloom filter cache on the client as an OMC to focus on the performance of the developed
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DOMapE. We separately evaluate an OMC candidate based on PSI in Section 7. Our implementation supports two
main conclusions.

1. One can set a δ < β size of the query to DOMapE that supports a high true accept rate. For a query, we define
bad matches to be the number of LSH matches that only result in incorrectly returned records; setting δ to
be 1 more than the 95% of this value. See Table 2 for a comparison of true accept rate for the setting when
δ = β and when δ < β. In all analyzed parameters δ/β < .06. The value δ is higher for real and synthetic data
than for random data; this is due to the larger variance of distances between readings of different irises. This
increases the number of false matches. As one exception, we set δ for our 25K random parameters heuristically
based on the smaller dataset sizes.

2. The two stage DOMapE approach improves search performance. While setup takes several hours, parallel
search is at most 35ms. Without the two stage approach parallel search would require a server with hundreds
of threads. See further timing discussion in Section 7.2.

We see two mechanisms for achieving better performance as datasets grow:

1. Use ORAM that supports sending multiple queries in parallel (this is a weaker object than a parallel ORAM [WST12,
BCP16,CLT16]).

2. Group LSHs into groups that are placed into a single RAM and analyze the required δ for each group. As
δ/β ≈ .06 one can use standard concentration bounds to argue about δ for each group as long as the data and
queries are independent of the LSHs.

Dataset Modifications Our implementation does not allow for insertion after the initial building of the tree.
With ORAM one can rebuild the trees using techniques of Wang et al. [WNL+14].

Alternative to ORAM In the static setting, one can use private information retrieval (PIR) [CG97,CKGS98]
with encryption. At retrieval, single server computational PIR and PathORAM [SDS+18] with “large” blocks of size
Ω(log2 N) both achieve communication complexity of O(logN), with N the number of blocks. However, time effi-
ciency would probably suffer from this change. Traditional PIR schemes require work Θ(|DB|) on the server. Doubly
efficient PIR (DEPIR) [BIM00] preserves the communication efficiency of regular PIR but with o(|DB|) server work.
To achieve this DEPIR relies on a server pre-processing stage which is allowed in our model. DEPIR constructions are
based on ring LWE [LMW23] or a non-standard secretly permuted Reed-Muller codes assumption [BIPW17,CHR17].
Currently, the ring LWE DEPIR is asymptotically efficient but inefficient in practice [OPPW24].

7 Evaluation

Evaluation is split into two parts: 1) parameter analysis and accuracy, and 2) efficiency of the resulting cryptographic
construction. Our parameter analysis focuses on the TAR and number of matches. Our efficiency analysis focuses
on network roundtrips, storage, and single-threaded computation time.

7.1 Accuracy - Parameter analysis

Each experiment is conducted on each dataset. Recall the relevant parameters: α, the length of the extended LSH,
β − nmaps, and δ − qsize.

Finding parameters The first part of the experiment was a manual search across parameters α, β, measuring
the TAR and number of bad matches. Selected parameters had TAR of at least 90%. The average number of bad
matches was at most 10 for random data and at most 50 for ND and synthetic data. Once α, β were selected we
recorded the histogram of bad matches and set δ to be one more than the 95% of this histogram (Fig. 12).
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(a) ND-0405 (b) Synthetic Data (c) Random Data

Figure 12: Number of bad matches across datasets of size 356.

(a) ND-0405 (b) Synthetic Data (c) Random Data

Figure 13: Number of good matches across datasets of size 356.

Measuring accuracy We then measured accuracy for a search that queries all β maps and one that only queries
δ maps. For these tests, we only measure the TAR to understand the impact of restricting the number of searched
values on accuracy.

As one exception, due to slow speed and high memory overhead for the 25K random dataset, we picked δ = 20
based on our parameters from smaller datasets, this dataset naturally had a larger number of bad matches but still
displayed a high TAR of .91 when restricted to δ = 20 maps.

Discussion In proximity search, high TAR requires capturing the tail of comparisons between different readings
of the same iris (shown in Figure 11). For example, for distance t = .21n and a FAR of .01, Section 3.1 proposed
β = 65 and α = 13. Table 2 shows that even for random data, we require β = 630 and α = 15. These parameters
increase further on the ND and Synthetic datasets. Parameters vary between random and synthetic data due to a
larger variance in the Hamming distance histograms, shown in Figure 11. This is in contrast to the histogram of good
matches across datasets in Figure 13 which are consistent across datasets.This leads to an increase in the selected δ.
Across dataset sizes, δ for synthetic data is about 5 times δ for random data. The ND and synthetic data statistics
align well. This gives some indication that parameters for larger synthetic dataset sizes would yield comparable
performance on real irises. Across all parameter settings δ/β < .06 validating the overall design. Restricting to only
δ accesses in the DOMapE does harm TAR. Note that the real system does not know which matches are good so
even in the case when many matches are bad it is possible for a single good match to be included in the arbitrarily
selected δ traversals.The worst degradation is for synthetic data with 5000 records where TAR drops from .91 to .83.

7.2 Speed - Cryptographic Efficiency

The implementation was tested on a AMD Ryzen Threadripper PRO 7995WX CPU with 96 cores and 768 GB of
RAM, running Ubuntu 22.04. Results are in Table 3. We did not model network delay.
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TAR
Dataset Dataset β Matches without δ with

size type α nmaps # FA Avg bad Max bad Avg good OMC qsize OMC
356 random 15 630 7.5 7.2 16 32.1 0.98 13 0.94
356 ND 18 850 14.4 16.8 55 21.6 0.95 37 0.89
356 synthetic 18 850 15.5 12.2 37 22.6 0.96 26 0.92

1000 random 18 850 3.6 3.5 11 21.2 0.96 8 0.96
1000 synthetic 19 1000 3.7 22.7 82 20.2 0.95 47 0.96
2500 random 19 1000 5.7 5.6 13 25 0.94 11 0.89
2500 synthetic 21 1200 16 38.4 569 6.6 0.92 56 0.85
5000 random 20 1200 6.9 6.7 14 21.7 0.92 12 0.87
5000 synthetic 22 1300 21.4 44.7 578 6.9 0.91 72 0.83
25000 random 22 3500 8.7 57.2 277 6.1 - 20 0.91

Table 2: TAR/FAR and the number of matches for random, ND0405, and synthetic datasets of different sizes. For
25K dataset, δ was set manually (not 95% of bad matches).

Dataset Dataset β δ # ORAM # Roundtrips Time (s) Size EDB
size, ℓ type α nmaps qsize Queries Reads seq. par. O.Init seq. par. (GB)

356 random 15 630 13 356 117 118 10 1.1× 103 .65 .013 1.1
356 ND 18 850 37 356 333 334 10 1.5× 103 .91 .013 1.1
356 synthetic 18 850 26 356 234 235 10 1.6× 103 .85 .013 1.1
1000 random 18 850 8 500 80 81 11 3.1× 103 1.06 .015 2.2
1000 synthetic 19 1000 47 500 470 471 11 3.6× 103 1.51 .016 2.2
2500 random 19 1000 11 500 132 133 13 16× 103 3.44 .018 8.9
2500 synthetic 21 1200 56 500 672 673 13 20× 103 4.52 .020 17.8
5000 random 20 1200 12 500 156 157 14 42× 103 7.41 .021 35.6
5000 synthetic 22 1300 72 500 936 937 14 45× 103 8.82 .023 35.6

25000 random 22 3500 20 100 300 301 16 552× 103 7.89 .035 285

Table 3: Efficiency results. O.Init is time to initialize all ORAMs. O.Read is average read time (across ORAM
layers). Search is time per query and includes tree traversals. Size EDB denotes the size of the ORAM files that
are stored on the server (OMC storage is ignored since it is much smaller). Sequential number of roundtrips is
1 +#ORAM Reads and Parallel Rounds trips is ⌈log2 ℓ⌉+1. All timing numbers are averaged across the number of
queries in # Queries.

Storage efficiency Feature vectors are 1024 bit vectors, so 5K irises is 640 KB. The unprotected (same structure
as DOMapE but without ORAM) index takes approximately 122.3 MB.8 This represents a storage increase factor of
around 22 between raw data and unprotected index. As shown in Table 3, for our encrypted storage this amounted
to 35.6 GB in storage. ORAM increases storage again approximately 291 times. As we discuss in the Conclusion,
one can more efficiently pack ORAM blocks using trees with a branching factor > 2.

Time efficiency The time to build the encrypted index is largely dominated by the ORAM setup time so we only
report the later (column “O.Init”). For small datasets (356 records) ORAM setup takes hours, while larger datasets
take days.

Parallel search time, the sum of the max required time to complete each ORAM read at each level, remains under
35ms on all tested parameters. We note that parallel search time is less than sequential search time divided by δ as
sequential search time includes reading all ORAMs from disk at the beginning of each search and writing them back
to disk at the end of each search. This is done with every query. Only searching δ trees is critical to process the
ORAM reads in parallel on a moderately powerful modern server.

8Internal node consists of an LSH number, a 22 LSH values, and 2 child identifiers (either the node id or the position of the child in
the next ORAM). Leaf nodes consist of a single 32 node identifier.
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Network Round Trips We report on two figures, the number of round trips using a purely sequential non-
recursive PathORAM implementation and the number of roundtrips if one is able to fully batch all requests at the
same level. One can store the position map for ORAMs in the prior tree level [WNL+14], enabling non-recursive
constructions. For the largest synthetic parameter sizes, if one assumes a fast network with 60ms responses and
unbounded bandwidth then network delays result in .84 seconds in parallel rounds trips, but slower 1s responses
results in 14 seconds.

Using a batched ORAM implementation Many existing ORAM schemes including PathORAM naturally
supported batched read/write operations where the client keeps a larger stash. In the case of PathORAM, the client
repeatedly reads and writes a “random” path on a tree. One can naturally perform all reads first and then perform
all writes, simulating the intermediate storage that would be held by the server. Parallel ORAM is a more complex
solution when the reads come from different clients [WST12].

Evaluation of OMC implementation using private set intersection On the same hardware as the rest of the
evaluation we deployed the VolePSI implementation [RS21]. To test the largest synthetic parameters, we deployed
this with a server set of size 6.5 million items and a client set of 1300 items. This corresponds to the largest set
of parameters in Table 3. VolePSI is based on OT extension and requires a setup phase. We benchmarked 32 PSI
iterations with the first taking 766ms and the rest taking 2ms of computation. We note that VolePSI requires 7
messages of communication. To get the results in our abstract and introduction, we add 2ms to Table 3 and four
rounds of communication. These results justify the focus on the design of DOMapE.

8 Conclusion

Private Eyes was tested with parallel response times of at most 35ms on databases of thousands of irises. Our
construction combines LSHs and oblivious maps. The unique aspect of our design is the recognition and mitigation
of the cryptographic inefficiencies caused by the high noise in biometric data. The statistics of biometric data inspired
a two-stage approach which filters which LSHs to query using a lighter-weight membership checking primitive before
the heavy-weight oblivious map.

We used binary trees but one could use trees with a higher branching factor (or skiplists as in [BC14]) to reduce
the number of ORAM lookups. Ideally, each node would correspond to a single ORAM block which is commonly a
multiple of 256 bytes. Our current estimate is that internal nodes account for ≤ 128 bits of storage out of the 256
byte block size. As such, one could make the tree into a 18-ary tree (32 bits for LSH number, 32 bits for left most
child, and 22 + 32 bits for each additional comparison node). This would reduce the depth of the trees and required
number of round trips by a factor of log2 18 ≈ 4.
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A Synthetic Data Generation

We now describe the neural network used to produce our synthetic templates. Our synthetic templates are built
using a generative adversarial network or GAN. A GAN trains two networks in competition, a generator which
should produce synthetic irises and a discriminator which classifies irises as real or synthetic. Yadav et al. [YCR19]
uses RaSGAN (relativistic average standard GAN) [JM19] to generate synthetic irises for the purpose of studying
their effects on presentation attack detection (PAD) algorithms. Irises from the RaSGAN perform well against PAD
and follow real iris statistics well. Kohli et al. [KYV+17] use the DCGAN architecture to generate synthetic irises.
Synthetic irises can be viewed as irises that must closely resemble bonafide irises as discussed in [YCR19,KYV+17].

We follow the approach of RESIST [AF20] which takes inspiration from synthetic data generation to invert iris
templates into realistic looking images. We denote the network as SYNTH. Training uses the ND-0405 dataset [BF16].
In a GAN formulation, noise is sampled from a multivariate normal distribution (Pz) with a mean of 0 and a
variance of 1. The generator converts this noise vector into a synthetic template. Let Py denote the distribution of
real templates and Pŷ denote the distribution of synthetic templates. We use a recently proposed relativistic average
discriminator [JM19] as our discriminator. To build up to the relativistic discriminator we first start with the original
GAN loss functions:

L(D) =− Ey∼Py [log(D(y))]− Eŷ∼Pŷ
[log(1−D(ŷ))]

L(G) =− Eŷ∼Pŷ
[log(D(ŷ))].

L(D) is called the discriminator loss and L(G) is called the generator loss, y is an actual template and ŷ is a synthetic
template generated by the generator.

The L(D) and L(G) losses are minimized using gradient descent. The generator and discriminator play a zero
sum game. The generator weights are updated based on how good its synthetic irises are while the discriminator
weights are updated on how well it differentiates between real and synthetic templates.

The last layer of the generator is the hyberbolic tangent (tanh) with output ranging from -1 to 1, this is done to
generate binary synthetic templates by substituting 0,1 with -1,1. The real templates are also converted to -1,1 for
conformity.
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Layer OutputSize Kernels
Input 1x128 -
G1 64 64
G2 128 128
G3 64 64
G4 128 128
G5 1024 1024
D1 16 16
D2 128 128
D3 1 1

Table 4: Generator architecture

Architecture SYNTH architecture is a small neural network having only dense (fully connected) layers as shown in
Table 4 where Gx are generator layers and Dx are discriminator layers. Each layer is followed by a LeakyReLU [MHN13]
activation and a batch normalization [IS15] layer. The last layers of both sub-networks are unique, the generator has
a tanh activation while the discriminator has a Sigmoid activation.

Training SYNTH is trained in two stages. First, the generator produces a synthetic template and second, the
discriminator outputs how real this synthetic template is. This training is done till convergence of the weights of
both networks. Both training stages use the Adam optimizer [KB15]. We randomly flip 2% bits of a real template as
noise to aid in network convergence. The networks is trained over 100 epochs. Each epoch having 100 steps. Each
step updates weights once by either 1) discriminating a pair of vectors or 2) generating a single synthetic template.

Once trained the SYNTH network can produce an unbounded number of distinct templates. We described how to
produce different readings from the same template in Section 5.
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