
Kyber terminates
Manuel Barbosa1 and Peter Schwabe2

1University of Porto & INESC TEC
mbb@fc.up.pt

2MPI-SP & Radboud University
peter@cryptojedi.org

2023-05-17

Abstract
The key generation of the lattice-based key-encapsulation mechanism

CRYSTALS-Kyber (or short, just Kyber) involves a rejection-sampling
routine to produce coefficients modulo q = 3329 that look uniformly ran-
dom. The input to this rejection sampling is output of the SHAKE-128
extendable output function (XOF). If this XOF is modelled as a random
oracle with infinite output length, it is easy to see that Kyber terminates
with probability 1; also, in this model, for any upper bound on the running
time, the probability of termination is strictly smaller than 1.

In this short note we show that an (unconditional) upper bound for the
running time for Kyber exists. Computing a tight upper bound, however,
is (likely to be) infeasible. We remark that the result has no real practical
value, except that it may be useful for computer-assisted reasoning about
Kyber using tools that require a simple proof of termination.

1 Introduction
The lattice-based key-encapsulation mechanism Kyber [BDK+18, ABD+21],
which has recently been selected by NIST for standardization [AAC+22], works
over the ring Rq = Zq[X]/(Xn + 1), where q = 3329 and n = 256. Ky-
ber’s public keys are of the form As + e, where A ∈ Rk×k

q “looks uniform”,
and s, e ∈ Rk

q are sampled from a noise distribution. The value k ∈ {2, 3, 4}
depends on the parameter set of Kyber. More concretely, the entry at po-
sition (i, j) of the matrix A is sampled from a 32-byte public random seed
ρ = (ρ0, . . . , ρ31) as Parse(XOF(ρ, i, j)), where XOF is instantiated with SHAKE-
128 [BDPA11, Nat15].

Intuitively, the Parse routine interprets the output of XOF as a (possibly
infinitely long) sequence of 12-bit unsigned integers. The first 256 integers
in that sequence that are smaller than q are taken as the coefficients of the
output polynomial in Rq; integers larger or equal than q are discarded. A
high-level pseudocode description of Parse is given in Algorithm 1; for a more
implementation-oriented specification that takes a byte sequence as input, see
[ABD+21, Alg. 1].

1

mailto:mbb@fc.up.pt
mailto:peter@cryptojedi.org


Note that in Kyber, the output of Parse is assumed to be in NTT domain, but
this detail does not matter for the discussion here, so we ignore it in Algorithm 1
for better readability. Also note that the approach of generating A by rejection-
sampling the output of SHAKE-128 is not unique to Kyber. It was introduced in
NewHope [ADPS16, Sec. 3] and is used, for example, also in Dilithium [DKL+18,
BDK+21]. The reasoning in this short note can be adapted straightforwardly
to those schemes and possibly other lattice-based primitives that use the same
approach to generate a matrix A.

Algorithm 1 Parse : {0, . . . , 4095}∗ → Rq

Require: Sequence of 12-bit unsigned integers d0, d1, d2 · · · ∈ {0, . . . , 4095}∗
Ensure: Polynomial a ∈ Rq

1: i← 0
2: j ← 0
3: while j < n do
4: if di < q then
5: aj ← di
6: j ← j + 1
7: end if
8: i← i+ 1
9: end while

10: return a = a0 + a1X + · · ·+ an−1X
n−1

In practice, the matrix-generation step is fast, but it is not obvious to see
that there exists an upper bound on the number of XOF-output 12-bit integers
that Parse needs to look at before finding 256 coefficients smaller than q to
produce the output polynomial in Rq. In fact, as we will briefly discuss in
Section 2, for Parse on uniformly random input no such bound exists. However,
the input to Parse is not uniform, but output of SHAKE-128, on input (ρ, i, j).
This allows us to prove, in Section 3, that such an upper bound does exist.

We remark that the generation of the matrix A is the only part of Kyber
that makes termination somewhat intricate to prove. All other parts execute in
a fixed, input-independent, number of steps.

2 Parse on random input
If we consider the Parse routine operating on uniformly random input, i.e.,
model SHAKE-128 as a random oracle with infinite output length, we compute
the probability that Parse does not terminate after ℓ ≥ 256 iterations of the
main loop (Line 3) as

Pfail(ℓ) =

255∑
i=0

(
ℓ

i

)
pi(1− p)ℓ−i,

where p = 3329/4096 is the probability that a 12-bit unsigned integer is smaller
than q = 3329. The probability Pfail quickly converges towards zero as ℓ grows;
for example, for ℓ = 560 (corresponding to 5 blocks of SHAKE-128 output), we
have Pfail(560) < 2.9 · 10−79. This means that in practice, we are very unlikely
to ever need more than 5 blocks of SHAKE-128 output per entry of the matrix

2



A. However, we also see that for any value ℓ, we have Pfail(ℓ) > 0, which means
that on uniformly random input to Parse we cannot prove any upper bound on
the execution time of Kyber’s key-generation.

3 Parse on SHAKE-128 output
In reality, the input of Parse is the output of SHAKE-128. SHAKE-128 is built
from the Keccak-p[1600, 24] permutation [Nat15, Sec. 3.3]. Our reasoning does
not require any particular properties of this permutation, other than the fact
that it is a permutation over a 1600-bit state. In the following we will thus
denote the Keccak-p[1600, 24] permutation simply as π. SHAKE-128 consists
of two phases: the Absorb phase which “soaks up“ the input message into the
state and the Squeeze phase, which generates a stream of output bytes from the
state. Both Absorb and Squeeze use the same split of the state into 1344 rate
bits (168 rate bytes) and 256 capacity bits.

In the specific use case in Kyber, SHAKE-128 takes as input the concate-
nation of the 32-byte random seed ρ and indices i and j (each encoded as a
single byte). The Absorb phase on this input is fairly simple: It first produces
the 200-byte state

S-1 = (ρ0, . . . , ρ31, i, j, 31, 0, . . . , 0, 128︸ ︷︷ ︸
168-byte rate

, 0, . . . , 0︸ ︷︷ ︸
32-byte capacity

),

and then computes S0 = π(S-1). The Squeeze phase produces output in blocks
of 168 bytes by copying the rate part of Si to the output and then computing
Si+1 = π(Si) for i = 0, 1, . . .

We are now ready to prove the existence of an upper bound on the running
time of Parse(XOF(ρ, i, j)) and, as a consequence, of Kyber. Our reasoning
proceeds through three steps.

1. We use that π is a permutation and thus, a product of disjoint cycles.1
This means that starting from state S0, SHAKE-128 will permute the
state in a cycle of some length m as follows:

S0

π

−→ S1

π

−→ S2

π

−→ . . .
π

−→ Sm−1

π

−→ S0.

The output of SHAKE-128 is the concatenation of the rate parts (i.e., the
first 168 bytes) of the states Si. After 168m bytes the output repeats.

2. In order for Parse(XOF(ρ, i, j)) to not terminate, the rate parts of the states
S0, . . . , Sm−1, each interpreted as a sequence of 12-bit integers, must not
contain a single integer in {0, . . . , 3328}. If any state contained such a
12-bit integer in its rate part, this integer would be part of the output of
SHAKE-128 and 256 iterations through the permutation cycle (i.e., 256m
invocations of π) would output this integer 256 times, which is sufficient
for Parse to terminate.

1This fact alone shows that the intuition that the output of SHAKE-128 can be modelled
as a random oracle of infinite output length is incorrect.

3



3. What remains is to show that at least one of the states S0, . . . , Sm−1

necessarily contains at least one 12-bit integer in {0, . . . , 3328} in its rate
part. We do this by observing that Sm−1 = π−1(S0) = S-1 is part of the
permutation cycle. Now we simply use the fact that we know large parts
of S-1 and write its rate part as a tuple of 12-bit integers as

(r0, . . . , r20, 16i+ (ρ31 mod 16), 3840 + j, 1, 0, . . . , 0︸ ︷︷ ︸
87 times

, 2048),

where the values r0, . . . , r20 are determined by ρ. As i ∈ {0, 1, 2, 3} for all
parameter sets of Kyber, we see that S-1 contains not just one, but at least
90 values in {0, . . . , 3328}. This guarantees that, after at most 3 iterations
through the permutation cycle (i.e., 3m invocations of π), SHAKE-128 will
have produced sufficiently many 12-bit integers in {0, . . . , 3328} for Parse
to terminate.

Following this argumentation, we can easily derive an upper-bound on the
maximum number of steps that Kyber’s key-generation takes to terminate. As
the state of Keccak has 1600 bits, clearly, m ≤ 21600. Hence, each call to
Parse(XOF(ρ, i, j) takes at most 3 · 21600 invocations of π and, as there are k2

such calls, Kyber’s matrix generation is guaranteed to terminate after 3k2 ·21600
invocations of π. This bound is highly non-tight for multiple reasons:

• As Keccak attempts to approximate the characteristics of a random per-
mutation it is highly unlikely that it consists of only one cycle of length
21600.

• In order to reach S-1, the permutation cycle starting from S0 must not
produce 256 output values in {0, . . . , 3328} before reaching S-1; in order to
reach S-1 twice, it must not produce 166 such output values, and in order
to reach S-1 three times it must not produce 76 such output values from
all of the other states in the cycle. This means in particular that if we
have all 21600 possible states in one cycle, we will never reach S-1 from S0

before outputting 256 values in {0, . . . , 3328}.

• Most importantly though, for short outputs of SHAKE-128 the random-
oracle heuristic is a good approximation, if the permutation underlying the
sponge construction is modelled as being randomly sampled [BDPV08].
Consequently, we conjecture that, for all values of ρ ∈ {0, 1}256 and i, j ∈
{0, 1, 2, 3}, the computation of Parse(XOF(ρ, i, j)) will terminate after c <
8≪ 3 · 21600 invocations of Squeeze. Unfortunately, as far as we can tell,
the only way to prove this conjecture would be to try all 2260 possible
inputs, which is clearly infeasible.
However, we are offering a dinner in Casa de Chá da Boa Nova2 as a prize
for reporting a combination of ρ ∈ {0, 1}256, and i, j ∈ {0, 1, 2, 3}, such
that more than 5 blocks (840 bytes, 5 invocations of Keccak-p[1600, 24])
of SHAKE-128(ρ, i, j) output are needed for Parse to terminate.

2https://www.casadechadaboanova.pt/en/

4

https://www.casadechadaboanova.pt/en/


References
[AAC+22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh

Dang, John Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene
Peralta, Ray Perlner, Angela Robinson, Daniel Smith-Tone, and Yi-
Kai Liu. Status report on the third round of the NIST post-quantum
cryptography standardization process. NISTIR 8413, 2022. https:
//csrc.nist.gov/publications/detail/nistir/8413/final. 1

[ABD+21] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tan-
crède Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-
Kyber: Algorithm specifications and supporting documentation
(version 3.02). Round-3 submission to the NIST PQC stan-
dardization project, 2021. https://pq-crystals.org/kyber/data/
kyber-specification-round3-20210804.pdf. 1

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
Post-quantum key exchange – a new hope. In Proceedings of the
25th USENIX Security Symposium. USENIX Association, 2016. Doc-
ument ID: 0462d84a3d34b12b75e8f5e4ca032869, http://cryptojedi.
org/papers/#newhope. 2

[BDK+18] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Peter Schwabe, and Damien Stehlé. CRYS-
TALS – Kyber: a CCA-secure module-lattice-based KEM. In 2018
IEEE European Symposium on Security and Privacy, EuroS&P 2018,
pages 353–367. IEEE, 2018. https://eprint.iacr.org/2017/634. 1

[BDK+21] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS-Dilithium: Algorithm specifications and supporting
documentation (version 3.1). Round-3 submission to the NIST
PQC standardization project, 2021. https://pq-crystals.org/
dilithium/data/dilithium-specification-round3-20210208.
pdf. 2

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Ass-
che. The Keccak reference. Submission to the NIST SHA-3 competition,
2011. https://keccak.team/files/Keccak-reference-3.0.pdf. 1

[BDPV08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Ass-
che. On the indifferentiability of the sponge construction. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 181–
197. Springer, Heidelberg, April 2008. 4

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS –
Dilithium: Digital signatures from module lattices. Transactions on
Cryptographic Hardware and Embedded Systems, pages 238–268, 2018.
http://cryptojedi.org/papers/#dilithium. 2

5

https://csrc.nist.gov/publications/detail/nistir/8413/final
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
http://cryptojedi.org/papers/#newhope
http://cryptojedi.org/papers/#newhope
https://eprint.iacr.org/2017/634
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
http://cryptojedi.org/papers/#dilithium


[Nat15] National Institute of Standards and Technology. FIPS PUB 202 –
SHA-3 standard: Permutation-based hash and extendable-output func-
tions, 2015. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
202.pdf. 1, 3

6

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

	Introduction
	Parse on random input
	Parse on SHAKE-128 output

