SoK: Delay-based Cryptography

Liam Medley

Information Security Group

Angelique Faye Loe

Information Security Group

Elizabeth A. Quaglia

Information Security Group

Royal Holloway, University of London Royal Holloway, University of London Royal Holloway, University of London

United Kingdom
liam.medley.2018 @rhul.ac.uk

Abstract—In this work, we provide a systematisation of know-
ledge of delay-based cryptography, in which we discuss and
compare the existing primitives within cryptography that utilise
a time-delay. We start by considering the role of time within
cryptography, explaining broadly what a delay aimed to achieve
at its inception and now, in the modern age. We then move on
to describing the underlying assumptions used to achieve these
goals, and analyse topics including trust, decentralisation and
concrete methods to implement a delay. We then survey the exist-
ing primitives, discussing their security properties, instantiations
and applications. We make explicit the relationships between
these primitives, identifying a hierarchy and the theoretical
gaps that exist. We end this systematisation of knowledge by
highlighting relevant future research directions within the field
of delay-based cryptography, from which this area would greatly
benefit.

Index Terms—Time, Time-lock Puzzle, Delay Function

I. INTRODUCTION

Timed-release cryptography is the notion of encrypting a
message “to the future”, as first proposed by May in 1993,
in a post on the Cypherpunks mailing list [[70]. In this post,
May discusses applications including sending money into the
future to avoid taxation, or sending a message ‘in the event of
death’. Since the Cypherpunks mailing list was released the
cited applications and the methods suggested to achieve this
have been extensively augmented and modernised. However,
the concept of encrypting a message for a set length of time
has become relevant across many areas of cryptography and
often acts as a tool to enable stronger notions of security and
privacy.

The first formal treatment of this subject was provided in
1996 by Rivest, Shamir and Wagner in their seminal work
“Time lock puzzles and timed-release crypto” [78]]. In this
work, the authors suggested encrypting a message in such
a way that decrypting the message requires computing an
iterated sequential function. The underlying cryptographic
concept is that this computation must take at least a certain
amount of real-world clock time to compute. This assumption
is based upon the fact that each iteration of the function
requires the input of the previous step, and hence one cannot
run all of the steps in parallel, arbitrarily speeding up the
computation. This seemingly simple idea birthed the rich
subject of delay-based cryptography, which has found use in

United Kingdom
angelique.loe.2016 @rhul.ac.uk

United Kingdom
elizabeth.quaglia@rhul.ac.uk

many different areas of cryptography.

Paper overview

In the remainder of Section [, we will discuss how a
delay is used in cryptography, the techniques used to imple-
ment a delay, and the obstacles that exist when using such
techniques in practice. In Section we discuss the major
delay-based primitives, and important constructions thereof. In
Section we provide a discussion of how such delay-based
primitives fit into the universal composability framework of
Canetti [23]]. In Section we analyse the relations between
these primitives, providing a hierarchical structure to them,
illustrating the branching points between early primitives, and
showing which additional cryptographic tools are used to build
the more complex delay-based primitives. Furthermore, we
identify gaps in the theoretical understanding of how some of
these primitives are related. In Section[V] we highlight the two
main applications of the primitives we discussed, illustrating
how the delay improves upon the state of the art. In Section
we pose relevant research questions and areas of study that
we believe will improve the field of delay-based cryptography.
We draw our conclusions in Section [VIIl

A. Why a delay is useful

Fairness and the reduction of trust

Fairness in multi-party protocols is an important concept. In
auctions, it is important that no party sees the bid of another
party before they bid. Similarly, in voting it is important
that parties do not learn the current tally during the vote
phase. Knowing a vote tally during the voting phase can allow
someone to alter their vote to ‘vote tactically’ in an election
[47]. In a coin-flipping protocol where multiple parties each
contribute some input it is vital that no party learns the other
outputs before they commit to their own.

In each of the above examples the use of a trusted third party
would provide a simple solution to the fairness problem. If all
parties give the trusted party their inputs and the trusted party
then computes the output and sends it to all parties then a fair
solution is trivially achieved. However, this is a very strong
assumption, which leads to the natural question of who should
be trusted to perform this role.

By using a delay, it becomes possible to reduce the role of
the trusted party (typically limiting the trusted party to only

https://orcid.org/0009-0009-4533-7890
https://orcid.org/0000-0002-4010-773X

generating the public parameters) or remove it altogether
from such scenarios. Intuitively, this can be seen as all
parties submitting their input before some deadline, with the
consequence that parties can only recompute other parties’
inputs after the deadline, hence achieving fairness.

Enabling new applications

The use of delay-based primitives has allowed the order of
actions in cryptographic protocols to be altered. These ordering
alterations have lead to novel approaches to solving problems.
This has resulted in new cryptographic security properties and,
furthermore, various impossibility results have been overcome.
We provide two illustrative examples of this next.

- Overcoming an impossibility result. In 1986, Cleve [30]
proved that fair coin flipping was impossible in the standard
model. It was shown that for any k£ round protocol one of the
parties can achieve a bias of at least 1/k. The fundamental
problem with designing a fair coin flipping protocol between
two parties is that one party would always learn the output first
and could therefore abort if they did not favour the outcome.
In 2000 Boneh and Naor [18]] showed that this impossibility
result could be circumvented using timed commitments. By
using a timed-commitment if a party chose to unfairly abort
then the remaining party could compute a sequential compu-
tation in order to obtain the output.

- A modern approach to building randomness beacons.
A randomness beacon was first proposed by Rabin in 1983
[76] to remove the need for trusted intermediary parties in
protocols such as contract signing. Interest in randomness
beacons has recently seen a sharp rise, largely due to the
advent of blockchain technology. In recent years there have
been many novel approaches to constructing such a beacon to
be used in applications like the generation of cryptographic
parameters and designing consensus protocols in blockchain
technology. We refer the reader to the recent SoK paper [[77]]
for a discussion on these, and will focus on the approach
pertinent to this work: randomness beacons based upon
verifiable delay functions (VDF). By utilising an iterated
sequential function, VDF-based randomness beacons dispense
of the need for a synchronous network, or for multiple parties
to interact to compute the beacon output. Additionally, a
VDF-based randomness beacon ensures that each pulse of
randomness will come at a regular interval, which is listed by
NIST in their project on interoperable randomness beacons
[79] as a requirement for a randomness beacon. Both of these
properties are desired in an ideal randomness beacon, but
not achieved by the majority of current techniques [77]. We
will discuss randomness beacons built from VDFs further in
Section [V

Computationally efficient proof of work

A topical example of the use of delay is in the decentralised
space. It is well-documented that the rise in popularity of
blockchain technology has come with a huge computational
expense. This computational burden has a negative environ-
mental impact [43]], [88]], and is viewed as unsustainable. By

using techniques from delay-based cryptography, a proof of
sequential work is possible as an alternative to ‘classical’ proof
of work in the style of bitcoin [73]. When using a classical
proof of work, the more computational power is used, the
faster the computation will be finished. In contrast, by using
an iterated sequential function, each step requires the output
of the previous step, and hence the benefit of parallelisation
is limited to its application to each individual step. In modern
delay functions, these steps are as small as a single hash,
or a single square-and-reduction, meaning that parallelisation
has little effect. This removes the incentive to spend vast
amounts of computing power on a proof of work, and lays
the foundation for a sustainable alternative. An example of
this is in computational timestamping [1], [54], [65].

B. Techniques to achieve a delay

In order to achieve a delay, one must somehow relate
real-world ‘clock’ time to computational time. The way this
is done in practice is by assuming that there exists some
computational step that takes a minimum amount of time to
compute, regardless of the amount of computation power, and
then sequentially iterating this step. Sequentiality is therefore
at the heart of delay-based cryptography.

Definitions of Sequentiality

There are various approaches to defining what it means for
a function to be sequential.

The intuition for such a definition should capture that no
party can compute the function in less than ¢ ‘time’, for some
time-parameter ¢. In order to formalise this intuition, however,
one must choose a computation model. The two most common
such models are to consider time as either an arithmetic
circuit of depth ¢, without a bound on the breadth of the
circuit; or as ¢ steps of a parallel Turing machine{ﬂ In practice,
primitives are often modelled assuming the adversary has an
additional computational advantage to account for potentially
faster machinery. However, this intuition does not translate
easily into all cryptographic frameworks.

In particular, in the universal composability (UC) model
introduced by Canetti 23], this concept is difficult to capture.
As such, notions of time are instead given by providing parties
with access to a global clock, which partitions time into
rounds. In each round, parties can do various computations,
before sending a message to the global clock indicating that
they are ready for the next round. We will discuss the UC
framework in Section and for now restrict our attention to
the standard model, which we shall define as follows:

We say that a computation of an output y from an input z is
sequential if it can be computed in ¢ steps with overwhelming
probability, and yet any adversary .4 bounded by at most
t — 1 sequential steps, utilising polynomially many parallel
machines, cannot compute y from x with more than negligible
probability.

For the purpose of this work, we do not need to choose a model of
computation to follow, so that our discussion can be kept generic.

To build any such construction that satisfies this, we need
an iterated sequential function (ISF); that is a function with
the same domain and codomain, which takes some minimal
time to compute, that it is iterated ¢ times. We shall illustrate
the current methods of building such iterated sequential
functions next.

Approaches to building an iterated sequential function

Consider a cryptographic hash function H, which maps
elements from a set S into the same set .S. By sampling an
input z € S, we can achieve an ISF trivially by computing ¢
hashes: y = H(H(H(--- H(z)))). By the collision resistance
of H, the only way to verify the output y is to spend another
t time on the same computation.

For an ISF to be practical there is a requirement to be able
to verify the computation is correct in time significantly faster
than ¢. Therefore, it is desirable to introduce some structure
to enable an alternative method for computing or verifying
the solution. Having this property facilitates a computational
asymmetry in the amount of time taken to iteratively calculate
the solution and to efficiently verify the solution. In this
work we will refer to this property as inversion, noting
that a function with fast inversion will have more efficient
decryption/verification.

We now explore the existing methods in the literature for
computing a delay.

- Repeated squaring The original and most prevalent method
of computing a delay is using repeated squaring in an RSA
group, as first proposed by Rivest, Shamir and Wagner in [78]].
This requires a trusted party generating an RSA modulus N =
pq, where p and q are primes, and sampling an input <—p
Z’;. The delay is achieved by squaring = and reducing modulo
N.

The current state of theory is that this leads to the most
practical applications of many primitives, however there is
always a discussion on how the modulus N is generated. First,
note that if a party knows the factorisation of the modulus,
then they know ¢(N) = (p — 1)(¢ — 1). This allows them to
dramatically speed up the computation 22" as follows: they
first compute e = 2¢ (mod ¢(N)), and then compute z¢
(mod N). This is significantly faster than simply squaring and
reducing modulo N [[78].

Therefore in an untrusted setting, it is desirable that no party
learns the factorisation of N. This has led to extensive re-
search into multi-party computation protocols for the trustless
generation of an RSA modulus. We discuss the current state
of research in Section [LCl

As an alternative approach to solving this problem, it was
proposed in [90] to use class groups of an imaginary quadratic
field instead of an RSA modulus, as this does not require a
trusted third party. However, this is a non-standard security
assumption, lacking the rigorous cryptanalysis of the RSA
assumption.

- Isogeny-based techniques One of the most modern alter-
native methods of computing a delay is using random isogeny
walks over elliptic curves, together with BLS signatures [22],

[39]. This can be viewed on a high level as plugging a slow
function into a fast function - the former acts as the delay,
and the latter the verification. Currently there are practical
implementation challenges, as we shall discuss in Sections
and but as the field of isogeny-based cryptography
is rapidly growing, this is a technique that may improve as the
theory advances.

- Hash-based techniques An interesting alternative approach
to computing a delay was proposed by Mahmoody et al. in
[64], which relies on a series of hash and xor functions.
The main drawback of this technique is that to verify the
computation is correct requires the same number or hash and
xor functions, making it inefficient. On the other hand, the
minimal assumptions required by this scheme (e.g., no setup)
make this a useful scheme for proving theoretical results, as
seen in [4]].

Another interesting hash-based technique for computing a
delay is using a directed acyclic graph, a technique proposed
by Mahmoody et al. in [65]. The idea here is to compute
multiple chains of hash functions, to create a graph. Upon
publication of this graph, parties can run a verification protocol
to verify that a certain amount of time was spent computing the
graph. A construction with such public verification is known
as a proof of sequential work.

- Randomised encodings In [10]], Bitansky et al. introduce
the notion of non-parallelising languages, which are languages
which require at least ¢ time to evaluate. They then go on to
show that if one assumes the existence of such languages,
then one can build a time-lock puzzle based upon randomised
encodings. This paper provides a fascinating study as a novel
approach to building a delay, but is unfortunately theoretical
rather than practical in nature.

Considerations on assumptions and the state of the art

We have seen that there are many approaches to building
a sequential function, however many of them rely on heavy
cryptographic primitives such as indistinguishability obfusca-
tion, which makes them effectively unusable, as we discuss in
Section We now aim to distill the current state of those
delay-based assumptions which are most practical.

Accuracy of these assumptions In each of the identified
techniques the underlying assumption is that the overall com-
putation cannot be sped up by parallelism. However, it is
possible each sequential step may be parallelised to some
extent, and it is also the case that a faster machine will
compute each step faster than a slower machine. This means
in practice an adversary is generally assumed to have a high
level of parallelism, and an additional computational advantage
to account for potentially faster machinery. Due to a lack of
benchmarking, such advantages seem to be chosen arbitrarily,
and hence in Section we call for rigorous benchmarking
to provide the community with a better understanding of how
much of a speed-up can be achieved with dedicated hardware.

Community trust Although hard to measure empirically, it
seems that exponentiation in a finite group is the most trusted
delay technique used in practice. This is possibly due to its

reliance on traditional cryptographic building blocks such as
RSA, and the longstanding RSW assumption [78]]. A recent
work by Katz et al. analysed the security of time-lock puzzles
in the strong algebraic group model, showing that speeding
up a time-lock puzzle is at least as hard as factoring N [51]].
Alternative methods such as replacing the RSA group with
a class group lacks the same level of community trust, and
requires significantly more research until it can be considered
trusted.

Hash functions have been widely and consistently used,
leading to the assumption that any delay-based protocol which
inherently relies on their security [4], [64], [65]] would acquire
community trust. However, it is not as evident with use of
hash function as it is in the case of repeated squaring how
much one can expedite each step of a hash function through
parallelisation. The efficiency of such an approach would rely
on the hash function in use and the available computing
power. As a result, we believe that this method holds the
second-highest level of community trust following the repeated
squaring technique.

The area of isogeny-based cryptography is significantly
younger than RSA, and hence suffers from a similar lack of
community trust. Indeed, this lack of trust seems like it may
be warranted in this case: An important key exchange proto-
col known as SIDH (Supersingular Isogeny Diffie-Hellman),
which had recently advanced to the fourth round of NIST’s
ongoing Post-Quantum Cryptography standardization process,
was broken in a recent paper by Castryck et al. [24]]. This result
has damaged the reputation of isogeny-based cryptography.

Therefore, it is with good reason that sequential squaring in
an RSA group is the de facto method of computing a delay.
However, there is always a question in such schemes of who
should generate the RSA modulus. The advent of blockchain
technologies has elevated the interest in trustless primitives,
which has in turn led to various research into generating an
RSA modulus without a trusted party, which we discuss next.

C. Trustless generation of an RSA modulus

For any delay-based construction that is based upon the
RSW time-lock assumption, a group must be generated in
order for the repeated squaring and reduction to take place.
It is necessary that the party computing the delay does not
know any trapdoor which will speed up the computation.

The most common approach is to use an RSA group. The
trapdoor in an RSA group is the Euler phi function ¢(N) =
(p—1)(g — 1), where N = pq. When an RSA group is used,
N can be generated in one of two ways: In a trusted setting, a
trusted party will generate an RSA modulus NV, and pass it to
solving parties, who will compute the delay [29], [62], [78].

The alternative is to trust a group of random, potentially
anonymous parties to run the setup. In this case, one settles
for an efficiency/trust trade-off. To ensure a certain standard
of efficiency, the group will need to be relatively small, but if
they all collaborate they can break the security guarantees of
the construction.

For this approach, an expensive multi-party computation
(MPC) ceremony is required. Research into MPC has re-
cently developed with significant performance improvements.
In 2018, Frederiksen et al. [40] provided an implementation for
the malicious two-party setting. Using server grade hardware
connected via a 40.0 Gbps network link, they were able
to achieve average runtimes of 35 seconds - this was not
practically efficient, and only supports the 2-party case. Also
in 2018, Hazay et al. [46] introduced a method to compute
an RSA modulus using a threshold encryption scheme in the
two-party setting, and they prove security against malicious
attacks. They offer multiple optimisations, and in the best
possible case, the average CPU time required to compute an
RSA composite is 15 minutes.

In 2020, Chen et al. [26] introduced a new multi-party
protocol for the distributed generation of biprime RSA moduli,
which improved upon the models of Frederiksen et al. and
Hazay et al. by removing security issues (such as information
leakage) found in the former, and eliminated some significant
security assumptions (such as the use of additive homomorphic
encryption) in the latter.

In 2021, Chen et al. [27] extended this work, to produce
Diogenes: the first implementation of a multi-party generation
of an RSA modulus supported by thousands of parties. The
per-party communication cost of Diogenes grows logarith-
mically in the number of parties, and their security model
allows for a malicious adversary to corrupt all but one of
the parties. Further, they implemented this with as many as
4000 parties. An example timing that the authors give is to
generate a 2048-bit modulus among 1,000 parties, their passive
protocol executed in under 6 minutes and their active variant
ran in under 25 minutes. These are realistic timings, making
this multi-party generation of an RSA modulus a practical
approach. We view this as the state-of-the-art construction.

The downside of this construction, and indeed of approaches
requiring active participants [30], is the ease with which
an adversary can perform a denial-of-service attack on the
generation. Denial of service can be achieved by corrupting
only a single party. Whilst cheaters can be removed and the
protocol re-started, an adversary corrupting a large number of
parties can repeatedly perform this attack and greatly delay
the generation of N. Therefore, the practicality of its use can
be concretely impacted.

To conclude, whilst this approach has been made feasible in
recent years, significant implementation challenges still exist
in practice.

II. DELAY-BASED PRIMITIVES

The idea of associating clock time to computational time is
the basis of many delay-based primitives.

We shall categorise such primitives into two classes: those
which allow for the recomputation of an input, which include
time-lock puzzles, timed-release encryption, and timed signa-
tures; and those that do not, such as proofs of sequential work
and verifiable delay functions.

A. Time-lock puzzles and Time-lock encryption

The natural starting point of delay-based cryptography is
time-lock puzzles (TLPs), which were introduced by Rivest
et al. in 1996 [78], in what is credited as the first work to
formally discuss the idea of a cryptographic delay. In a TLP, an
encryptor takes as input a string s and a time parameter ¢, and
outputs a puzzle Z. The decryptor then spends ¢ time running
a sequential computation on the puzzle Z to re-construct the
string s. In the original construction of Rivest et al., the method
for obtaining a time-delay is repeated squaring in an RSA
group. Explicitly, the encryptor samples an RSA modulus N =
pq, where p and q are large primes, and chooses a string s,
which they suggested could be a key to a symmetric encryption
scheme. The encryptor then randomly samples r and computes
the puzzle Z = s + 2 (mod N).

The solver is then given Z and r, allowing for the computa-
tion of 72" in ¢t sequential steps, and hence the solver can learn
the string s. Note that using the trapdoor ¢(N), the encryptor
can to construct the puzzle significantly faster than the solver
can recompute it.

Whilst this is not the only method of constructing a cryp-
tographic delay, it is certainly the most popular, and it is this
construction that gave rise to many of the primitives that we
shall see later in this section.

Other notable methods for computing TLPs include the
encoding-based construction of Bitansky et al. [[10], as dis-
cussed in Section |[-B| and the UC-based construction of Baum
et al. [9]], as we shall discuss in Section However, the
construction of Rivest et al. remains the most relevant.

Whilst advances in constructions have been limited in recent
years, the theory of TLPs has continued to advance. Some of
the most important recent work has included the introduction
of non-malleable TLPs [41], TLPs which protect against
tampering attacks, by ensuring that a TLP cannot be ‘mauled’
into another, related message. This has strong applications to
auctions and fair coin-flipping, by removing the need for a
setup. We will discuss this in the context of auctions in Section
A}

As discussed in Section [[-B] a recent work by Katz et al.
[51] analysed the security of time-lock puzzles, showing that
in the strong algebraic group model, speeding up a time-lock
puzzle is at least as hard as factoring V.

A fundamental requirement for a TLP is that the generation
of the puzzle should be significantly faster than solving the
puzzle. This time-gap between generation and solving puzzles
makes constructions far more practical, but rules out simpler
constructions. If one can accept a linear time difference, then
a relaxation of TLPs is time-lock encryption (TLE).

There is a lack of consistency in the definitions of TLE and
TLPs, within the literature, with some sources claiming they
are interchangeable [29]. We do not agree with this, and posit
the following:

A timed-release encryption scheme need only be correct,
secure and sequential, whilst a time-lock puzzle must addition-
ally have the property that the time spent on puzzle generation
is significantly faster than the time spent on solving the puzzle.

What this means in practice is that every TLP is also a TLE,
but the inverse is not true.

A pertinent example of a TLE scheme is that of Mahmoody
et al., which relies on iterating a hash and xor function [64]. In
this work, the authors set out to build time-lock puzzles in the
random-oracle model. They in fact provide an impossibility
result showing that such a time-lock puzzle is impossible
due to the required time gap between puzzle generation and
puzzle solving. They instead build a scheme using a repeated
hash-and-xor technique, which does not qualify as a time-lock
puzzle, due to the slow puzzle generation. The way to verify
this puzzle is to repeatedly hash and xor ¢ times to go from
the solution to the input. Note that this is not a TLP due to
the linear gap in solving and generating a puzzle.

Initially this may seem like a weaker construction than
that of Rivest et al. due to the longer generation of puzzles.
However, this construction does not require an RSA group to
be generated, which leads to fewer assumptions, as discussed
in Section This is useful in proving theoretical results,
especially in the decentralised setting [4]].

B. Homomorphic time-lock puzzles

Malavolta et al. posit that the main drawback of using
time-lock puzzles in applications such as auctions or voting,
is the need to solve many puzzles before being able to
compute a function over the time-encrypted messages [68]].
They propose homomorphic time-lock puzzles to reduce the
number of puzzles that require solving to just one (for example
the highest bid in an auction). A homomorphic time-lock
puzzle consists of a set of puzzles with an underlying property
allowing for any party to compute a function on the set of
puzzles without learning any of the underlying messages. This
means that only the relevant puzzle needs to be decrypted
rather than all of the puzzles.

The RSW time-lock assumption is the basis of the Mala-
volta et al. construction and it is augmented with techniques
from homomorphic encryption to construct both linearly and
multiplicatively homomorphic TLPs. They additionally show
that fully homomorphic time-lock puzzles can be built using
indistinguishability obfuscation, which is unfortunately im-
practical at the current time. A follow up work by Brakerski
et al. in 2019 built fully homomorphic TLPs from standard
assumptions [19]], representing significant progress. In 2022,
Liu et al. built a scheme which significantly improved the prac-
ticality of linearly and multiplicatively homomorphic TLPs
[60]. Explicitly, they built a multiplicatively HTLP scheme
which computes solutions over Z%;, and implemented linearly
homomorphic TLP schemes, showing that they run efficiently
in practice, and have low storage. What this means in practice
is that certain classes of functions can be computed over the
set of TLPs efficiently, and others are of theoretical interest
but are currently lacking an efficient construction. This is
well-illustrated by the observation that voting requires linearly
homomorphic TLPs, and so can be instantiated in practice,
whereas auctions rely on fully homomorphic encryption,
which is not practically efficient at the current time.

C. Timed-release encryption

Timed-release encryption was first mentioned by May in
1993 [70], with the idea of sending a message and a release
time to a trusted agent, who would transfer the message at
this release time. Various constructions were proposed [25]],
[69] using such a trusted agent, and in 2008, Cheon et al. [28]
proved that the security of this concept is equivalent to that
of identity-based encryption. In [[74f], an interesting generali-
sation of TRE known as time-specific encryption (TSE) was
introduced by Paterson et al. In TSE, a time-server is used to
enable decryption of a message within a specified time interval
[to, t1], broadening the scope of applications.

In current times however, the use of a trusted agent is
generally seen as something to be avoided. Timed-release
encryption is now often seen as a combination of public-key
encryption with a delay [29], [62], [63]. On a high level, this
works by making the encryption key public, and encoding the
decryption key as the solution to a sequential computation.

As such, in more recent times there have been some attempts
to build such timed-release encryption schemes that do not rely
on a trusted server. An interesting line of research has been to
use the bitcoin protocol [73|] with witness encryption, where
one must show the solution to a hard problem in order to
decrypt a message [58]], [59]. These schemes use bitcoin as
the hard problem, on the basis that after a certain amount of
time, the correct number of blocks will have been mined, and
importantly also made public. This means that any party can
then obtain a decryption key for example, without having to
do a lot of work themselves. As is often the case, the main
issue of such schemes is their reliance on heavy cryptographic
primitives such as witness encryption that are unworkable in
practice.

In 2021, Chvojka et al. introduced the idea of taking a
TLP and using its solution in the key generation of a public-
key encryption (PKE) scheme [29]. They use this to define a
timed-release encryption (TRE) scheme where multiple parties
encrypt a message to the public key of the PKE scheme.
Then upon solving the puzzle they can reconstruct the secret
key and decrypt all of the messages. The authors explain
how to achieve this generically using standard TLP and PKE
primitives. In [62]], Loe et al. provide a concrete instantiation
of this primitive.

D. Delay Encryption

Delay Encryption, introduced by Burdges et al. in 2021
[22], is a primitive which offers a delay-based analogue to
identity-based encryption. In identity-based encryption, there
exists a master public and private key pair, which are used to
authenticate identities and generate each parties’ private key
[17]. In delay encryption, there is a session ID, and a session
key instead of this key pair. The session key is encoded as
the solution to a sequential computation, allowing any party
who runs the sequential computation to decrypt all messages
posted to the session ID.

Unfortunately, the construction of DE presented in [22],
which is currently the only published construction [|, comes
with two significant challenges for implementation: (i) The
storage requirements needed to compute the decryption key is
huge - a delay of one hour requires 12 TiB of storage; (ii)
The time taken to run setup grows proportionally to the delay,
which is very expensive.

Therefore, a more practical construction of delay encryption
would be an interesting research problem.

E. Timed commitments and timed signatures

In 2000, Boneh and Naor introduced the notion of a timed
commitment [18]], a commitment scheme in which the message
can be ‘forced’ open by completing a sequential calculation
taking a prescribed length of time ¢. They additionally in-
troduced the analogous timed signature, a commitment to a
signature which can also be forced open through similar se-
quential calculation. A key application of timed commitments
is fair contract signing: using timed signatures allows multiple
distrusting parties to commit to a signature, with a guarantee
that if any party quits the protocol, the relevant signature can
be forced open. Whilst timed commitments work well in the
two party case for such applications, they do not scale well, as
the number of sequential computations grows with the number
of parties.

Early literature which also focused on the timed-release
of signatures and other time-sensitive information worked on
the basis that there was a slow and partial release of the
information. That is, the signature would be released in small
portions a bit at a time [[12f], [34]], [38]]. Furthermore, early
delay-based signature literature ensured that standard digital
signature schemes could be leveraged into the constructions
[44]] [[45]]. This was to ensure backward compatibility and
interoperability with well-known digital signatures schemes
such as RSA and DSA.

Modern delay-based signature schemes also provide a prop-
erty known as well-formedness [435], [85]]. Well-formedness
gives the party solving the time-lock puzzle a guarantee that
the secret information will indeed be released when the puzzle
is solved. This provides assurance to the party solving the puz-
zle that they will not commit a large amount of work without
a guarantee that the secret information will be released. The
theory of verifiable timed signatures (VTS) was formalised in
2020 by Thyagarajan et al. [85]], as a practical improvement
upon a timed signature. VTS schemes utilise homomorphic
time-lock puzzles [68] in order to achieve a delay. They also
rely on digital signature schemes [50], non-interactive zero-
knowledge proofs [[80]], and threshold secret sharing [83]]. The
homomorphic time-lock puzzles are used to aggregate the
challenges of each aborting party into a single puzzle, which
allows solvers to only solve one puzzle rather than many. The
VTS constructions are compatible with standard BLS, Schnorr,
and ECDSA digital signature schemes.

2There is also an unpublished construction by Loe et al. [61] which is
shown to run efficiently, but relies upon a trusted setup.

Timed-commitments and timed-release digital signatures
have applications in pseudonymous secure computation
[SO] and non-malleable commitments which can mitigate
concurrent person-in-the-middle attacks [57]]. Furthermore,
verifiable timed signatures also have specific applications
in payment channel networks used in cryptocurrencies [67],
[87], multi-signature transactions which are used so that
multiple signatures are required to authenticate transactions
[15], and also in fair multi-party computation so that fairness
in blockchains can be achieved by financially penalising
parties which abort protocol execution [53].

We now move on to the second class of primitives, which
contains proofs of sequential work and verifiable delay func-
tions. These primitives take a different approach to those we
have discussed so far: Rather than aim to use the output of
the delay to encode a message, the following primitives simply
aim to prove that a delay has occurred.

FE. Proofs of sequential work

In 2013, Mahmoody et al. introduced ‘publicly verifiable
proofs of sequential work’ [65]]. The motivation for this work
was to provide a computational timestamping technique for
a document. They defined a non-interactive timestamping
scheme based upon a ‘hashgraph’, a directed acyclic graph
of repeated hashes. This technique is also used in other areas
of cryptography, notably including in decentralised consen-
sus protocols [6], [[71]], [84]. Their scheme was based upon
creating a hashgraph for which it is slow for an adversary
to compute any feasible alternative solution, whilst also being
efficiently verifiable by a member of the public. These proper-
ties capture the essence of a PoOSW: a computation which takes
at least a set length of time ¢ to compute, and which can be
publicly verified significantly faster than ¢. The drawbacks of
this construction, and indeed of the definition of the primitive,
is that solutions are not unique, meaning that it is possible
for a legitimate solution to be ‘mangled’ into another solution
that verifies as correct.

In 2018, Cohen and Pietrzak introduced an alternative,
similar construction [31]], which has less requirements on the
structure of the graph, and is more efficient than Mahmoody’s
construction. However, currently it seems that this construction
has little bearing on the status of theory since the introduction
of verifiable delay functions, which as we shall see in Section
are themselves proofs of sequential work.

In 2017, Lenstra and Wesolowski introduced a slow-timed
hash function, which they named Sloth [56]. Sloth makes use
of some number theoretic properties, where an evaluator is
required to solve a chain of the following puzzles: Sample an
input x from a group Z,, which is chosen such that p = 3
mod 4. The evaluator is challenged to compute /z = P

The downside to such a construction is that the output is a ¢-
bit number (for hardness parameter ¢), and hence verifying this
output is time-consuming. However, this novel paper advanced
the theory of proofs of sequential work, and can be seen as

a precursor to verifiable delay functions (VDFs), which we
explain next.

G. Verifiable delay functions

The most prominent primitive introduced in recent years in
the context of delay is the verifiable delay function (VDF).
They were first introduced by Boneh et al. in 2018 [15], in
what is now considered a seminal paper. A VDF is charac-
terised by a delay in the form of an iterated sequential function,
such that each input has a unique output that can be efficiently
and publicly verified.

Upon comparison with the previous section, one can view a
VDF as a unique proof of sequential work. A good illustration
of the importance of uniqueness can be seen in a randomness
beacon. Building a VDF-based randomness beacon critically
relies on the uniqueness (or function) property of VDFs. Recall
that a PoSW is not unique, and hence can have multiple
outputs. This means that if one is to instead use a PoSW,
then a malicious prover can compute multiple outputs, and
select the PoOSW output that yields the best beacon. This is a
very important application, which we shall discuss at length
in Section [V=Al

In [15]], along with defining and motivating the primitive,
Boneh et al. introduced various candidate approaches to con-
structing a VDF, such as using incrementally verifiable com-
putation and injective rational maps, along with the drawbacks
of each approach.

Shortly after the publication of this work, three VDF candi-
dates were proposed: Wesolowski [90] and Pietrzak [75] each
proposed an RSW-based VDF, and De Feo et al. [39] proposed
a VDF based upon pairings over supersingular isogenies over
elliptic curves. We briefly discuss each of these constructions.

Wesoloski’s and Pietrzak’s VDFs were designed concur-
rently, and are similar in nature: Both of these constructions
are based upon repeated squaring and reduction in an RSA
group modulo N (as an interesting aside, this can be seen as
contributing to the research into the multi-party generation of
an RSA modulus, as discussed in Section [[-=C)). The solver then
engages in an interactive protocol to prove to a verifier that
they computed the correct solution. Where the two construc-
tions differ however, is their verification procedures. Each uses
a different succinct public-coin argument in order to verify the
output. Wesolowski’s protocol has a stronger security assump-
tion (if it is secure then so is Pietrzak’s VDF), smaller proof
storage and faster verification. On the other hand, Pietrzak’s
VDF constructs the proof in significantly fewer operations.
We refer the interested reader to [[16] for a detailed discussion
and comparison of the two constructions. De Feo et al.’s VDF
on the other hand takes a different approach to computing
the delay and verifying the VDEF, utilising techniques from
post-quantum cryptography. Their approach to computing a
delay is to use BLS signatures together with isogeny graphs
over supersingular elliptic curves in order to produce a slow
function, that can quickly be verified. Unfortunately this
construction suffers from a trusted setup, and implementation
challenges such as very large storage requirements [[39].

TABLE I

Distinctive Feature

Primitive Functionality
TLE Encryption
TLP Encryption

HTLP Encryption
TRE Encryption
DE Encryption
TS Signature
PoSW Proof of Delay
VDF Proof of Delay

Evaluation over multiple puzzles

Delayed key encapsulation mechanism

Minimal assumptions
Fast puzzle generation

Delayed public-key encryption
Delayed Authentication

Public verification
Uniqueness

The importance of the VDF primitive is underlined by how
quickly the subject has advanced in a short time, with multiple
papers discussing VDF variants [35], [37], [71], and VDF-
based applications [[54f], [55]], [82].

In 2019, Ephraim et al. introduced the notion of a con-
tinuous VDF (cVDF) [37]]. The cVDF model presented by
Ephraim et al. introduces the notion of a state, which is an
intermediate point within the computation that can be verified.
In contrast, with a standard VDF verification is only possible
at the end of the computation. These states enable two key
applications that a standard VDF is lacking. Firstly, at any
state the solving party can pass the computation on to another
party, who can efficiently verify the state and take over the
computation. Secondly, by running the verification procedure
at each state, trusted public randomness can be extracted at
regular intervals, creating an efficient randomness beacon from
one input. We shall discuss randomness beacons further in
Section [V

We end this section by mentioning an interesting impossi-
bility result by Mahmoody et al. [|66], where the authors look
into whether one can take a black box hash function, and use
it to build a VDF. In this work it is proven that no perfectly
unique VDF (i.e., a VDF with only one solution that will verify
as correct for each input) can be constructed in the random
oracle model.

H. Miscellaneous primitives with a delay component

There exist primitives for which a delay constitutes an
essential component in terms of enabling functionality. We
mention these for completeness.

For instance, in break-glass encryption [81]] a user encrypts
their data to the cloud, and in case of an emergency, such
data can be detectably recovered without the use of any
cryptographic secret. To trigger this one-time request, the user
is contacted by the cloud on an alert address, and if after
a prescribed delay there is no answer, this is interpreted as
permission to “break the glass” and access the data. The
delay in this setting is simply wall-clock time, i.e., it is not
determined by some computation.

Time plays a key role also in a posteriori openable public-
key encryption (APOPKE) [21], a primitive designed to pro-
vide a key to “open” encrypted messages that fall within
a specific time window, the main application being lawful
interception of encrypted messages under investigation. While
seemingly close to the TRE and TSE lines of work, APOPKE
addresses a specific scenario and comes with its own security

definitions. Its realisation involves neither a time-server nor
some computational delay, but is instead based on algebraic
techniques and standard cryptographic building blocks.

1. Conclusion

We conclude this section by presenting Table [, which
provides an overview of the key properties of each primitive. In
particular, we highlight the key functionality of each primitive,
and what distinguishes them from the others.

III. UNIVERSAL COMPOSABILITY

In [23]], Canetti introduced the universal composability
framework to prove cryptographic protocols secure in a mod-
ular fashion. In this framework, any protocol II will consist
of n parties P = {P,---P,}, and an adversary A. All
parties, as well as the adversary are run by interactive Turing
machines (ITMs). The adversary has the power to corrupt a
subset I € P of parties. The UC framework also takes into
account an additional ITM known as the environment, which
accounts for any leakage of information, such as through side-
channels, that will occur in complex protocols with multiple
sessions running simultaneously.

The concept of this framework is to define an ideal function-
ality, which captures which properties a given primitive (for
example a time-lock puzzle) should achieve. Parties exchange
messages via these ideal functionalities, which securely com-
pute all computation before passing it back to the party. A
protocol for instantiating such primitives is then defined as
secure in the following way: The ideal functionality is said to
live in the ‘ideal world’, and the protocol is said to live in
the ‘real world’. In the real world, there is an adversary who
is given the power to corrupt parties, intercept messages etc.
in keeping with traditional cryptographic models. In the ideal
world, there is instead a simulator who acts as the adversary,
with the power to corrupt parties. Additionally, in both worlds
there exists the ‘environment’. The environment represents
information leaked through side channels, such as the number
of messages sent across a channel. A protocol is said to be
secure, if the environment cannot distinguish between the real
world adversary attacking the protocol, and the ideal world
simulator attacking the functionality.

This model allows one to substitute the protocols for their
functionalities when proving the security of a more complex
primitive.

What is highly interesting, is that the standard notions of
time discussed in Section [I| do not apply to this setting.

Time in UC Recently, there have been efforts to model
time-based primitives such as TLPs and TLEs in the universal
composability model [4], [8], [9]. In contrast to what we have
seen in previous sections, Baum et al. prove that in order to
build UC-secure TLPs, one must use the random oracle model
[9].

Baum et al. introduce TLPs via a ticker functionality in
TARDIS [9], which works by splitting time into units known
as clock ticks. The global clock advances a tick only when all
all honest parties have submitted a command which indicates
that they have been activated in the current tick. During each
tick, a party may interact with any number of functionalities
to send messages.

In [4]], Arapinis et al. introduce a UC TLE scheme named
Astrolabous, which relies on a global clock [52] rather than the
TARDIS model. This global clock introduces a synchronised
notion of time for all parties, who may ‘read’ the time from
the global clock at any stage.

Where the models of TARDIS and Astrolabous diverge,
is how the clock is managed: In the TARDIS model, the
‘ticker’ provides ticks to each functionality on behalf of the
environment, which means that parties do not need to observe
the time elapsed by the ticker. They instead see events that are
triggered by elapsed time. On the other hand, in Astrolabous,
parties explicitly read the time of the global clock to see what
round it is.

The key difference between these models can be seen as
follows: In the ticker model of Tardis [8]], [9] time is not
synchronised but progresses identically for all entities. In
Astrolabous [4], the model relies on the stronger assump-
tion that time is synchronised among all entities, and uses
an existing approach to using a global clock. The former
assumption appears to be weaker, as strict synchronisation is
a hard task. On the other hand, the Astrolabous model allows
for the generic group model to be avoided, which allows the
construction to be applied more widely.

In recent years, the first time-based primitives in the UC
framework have been published, allowing for various tech-
niques to be moved to a composably secure setting []1]],
[3l. This provides stronger security guarantees in complex
protocols, and it is our hope that more time-based primitives
are constructed in the UC framework.

IV. RELATING DELAY-BASED PRIMITIVES

One of the goals of this work is to provide an overview and
understanding of how delay-based primitives are related.

In our study of this field, we have identified that the core
of modern delay-based primitives is an iterated sequential
function, as we discussed in Section

An iteratively sequential function is defined as a function
which maps from a given group into itself. Additionally, it
must satisfy sequentiality: For a time hardness parameter ¢,
the following hold: i) an adversary with polynomially many
processors cannot compute a valid solution in less than t
sequential steps with more than negligible probability. ii) any

Research
TP ” Question 1

Fast puzzle /,’

generation |
I
i

Correctness

Research
Question 2

Conjecture

Eﬂ
[22] , Extraction Legend
. \ Soundness [22] | Blue box

Fast public g Green box
verifiability [65] PoSW o wor | Lo
Uni [15]

Fig. 1.

- Delay-based primitive
Other primitives
Posited relation

Identified and conjectured relations between delay-based primitives.

party can compute a valid solution in ¢ steps with overwhelm-
ing probability.

From an iterated sequential function, we can branch into the
two classes of primitives identified in Section [[I} We provide
a mapping of the relation between these primitives in Fig. [I]
Recall that we separate out the primitives that allow for the
recomputation of an input, generally encryption, from those
that instead verify that a delay has occurred.

We shall start by discussing the lower branch in the diagram.
In order to build a proof of sequential work from an iterated
sequential function, it is required that there is a method for
another party to publicly verify that the computation is correct,
which must be significantly faster than the time taken to
compute the iterated sequential function [65]. Boneh et al.
[15] show that if one takes a proof of sequential work and
imposes the condition that the iterated sequential function is
unique, this satisfies the requirement of a VDF.

Delay encryption is described as the identity-based analogue
to time-lock encryption [22f], and in Section 2.1 of [22],
various relationships between DE and other primitives are
discussed. Explicitly, they state that DE implies PoSW, and
that DE with the extraction soundness property implies a VDF.
Extraction soundness can be seen as a uniqueness property of
the session key (used for decryption) of a DE scheme, which
intuitively provides the uniqueness to build a VDF rather than
a PoSW.

These relations are not formally proven, and, in particular,
it is not shown how to build DE from specific cryptographic
primitives. Furthermore, from a functionality standpoint, we
conjecture that given an identity-based encryption scheme
and a time-lock encryption scheme, it could be possible to
construct a delay encryption scheme. These relations would
have interesting implications, and necessitate further formal
investigations.

We now turn our attention to the upper branch of the
diagram. In what follows, we assume that there is a party who
generates the puzzle, and another party who solves the puzzle.
A time-lock encryption scheme requires that the generating
party inputs a value s whilst generating the puzzle, and that
this value s is output upon solving the puzzle. As discussed

in in order to build a time-lock puzzle from a time-
lock encryption scheme, there is an additional requirement that
generating the puzzle is much faster than solving the puzzle.

We now reach another branching point in our diagram.

In the diagram we refer to the modern perspective of timed-
release encryption (TRE), which incorporates public-key cryp-
tography into time-lock puzzles without using a trusted agent
[29], [62]. It is shown by Chvojka et al. [29] that if one
has a CPA-secure public-key encryption scheme and a time-
lock puzzle, one can build a TRE scheme in the following
way. Recall that a public-key encryption scheme has a key
generation algorithm which takes some randomness as input.
Chvojka et al. build their black-box TRE scheme by using the
input value s of the time-lock puzzle as the randomness of the
key generation algorithm, and publishing the resulting public
key. This allows all parties to encrypt to the public key, and
upon solving the TLP, they can run key generation using the
puzzle output s to obtain the secret key, and hence decrypt all
the messages.

We now move to the purple box of the diagram, that
represents our posited relationships between the outstanding
primitives.

As we discussed in Section many standard signature
schemes [44], [45] have been adapted to construct timed-
signatures. However, as far as the authors are aware, it is yet
to be proven that a time-lock puzzle and a generic digital
signature scheme can be combined to make a timed-signature
scheme. Therefore we pose the following natural research
question: Can one build a generic timed-signature scheme
from a time-lock puzzle and generic signature scheme?

In [68]], the authors show how to build homomorphic time-
lock puzzles from cryptographic primitives including punc-
turable pseudorandom functions, trapdoor encryption, proba-
bilistic obfuscation and indistinguishability obfuscation. These
primitives are used variously to build linearly homomorphic,
multiplicatively homomorphic, and fully homomorphic time-
lock puzzles. Therefore we believe that there exists a strong
relation between HE and TLPs, and HTLPs. We pose an open
question as to whether one can build a (linearly, multiplica-
tively or fully homomorphic) HTLP by composing in some
way a TLP and an HE scheme.

To conclude, our analysis in this section shows how delay-
based primitives fit together, identifying a hierarchy among
them as well as theoretical gaps that would be interesting to
address, given some of the implications they may have. We
believe this is indeed a worthy pursuit, as we discuss further
in Section [VIl

V. APPLICATIONS

Often there are multiple primitives and constructions which
share the same motivating application. In this section we
look in-depth at two of the most prominent applications of
delay-based primitives, clarifying in which scenarios certain
primitives are better suited.

We start by outlining the main themes of these applications.
The two main aims of modern cryptographic research are i)

to reduce trust and ii) to improve efficiency, and commonly a
trade-off arises between the two.

Trust One theme we see repeatedly in this section is that
of trust. The main distinguishing factor between many of
the modern delay-based primitives and the older primitives
is that the modern primitives aim to reduce trust as much as
possible. Conversely, the majority of the older primitives and
constructions assume a trusted setup, or indeed a trusted agent
such as a time server.

For use in the decentralised space there is extensive
research into building cryptography with the minimum
trust assumptions possible. Delay-based cryptography is no
exception to this and indeed there exists various lines of
research which use delay-based cryptography to avoid the use
of a trusted party [[15]], [18]], [55], [68]], [78]. One highly active
research area is using MPC to generate an RSA modulus
without a trusted third party, as we discussed in another
is randomness beacons, which we shall discuss in Section [V-A]

Efficiency One of the key efficiency goals for many delay-
based primitives is to ensure that only one delay needs to be
computed, rather than many. An example of this can be found
in the applications of voting and auctions, where if one is to
use standard TLPs, each bid or vote must be encoded as a
separate puzzle. As such there have been various works on
alternative methods which provide the desired ‘solve one get
many for free’ property of only one delay computation [22],
[29], [62]], [68]. Also of importance for the majority of cases
to be practical is for inversion to be fast: one should be able to
verify that the computation is correct without having to spend
a significant amount of time on recomputation.

We next explore in greater detail two of the most promi-
nent applications of delay-based primitives, highlighting the
tensions between the need to reduce trust, whilst ensuring the
constructions remain practical.

A. VDF-based Randomness Beacons

A high-entropy source of public randomness is a necessary
component of many cryptographic protocols, including secret
sharing and key distribution [14], [33]. Since 2011 NIST have
been running a competition to build a trusted randomness
beacon (RB), with the objective of promoting the availability
of trusted public randomness as a public utility. A randomness
beacon allows a group of parties to use some shared random-
ness in a protocol, each with the guarantee that none of the
other parties has any prior-knowledge of the output. Common
applications include running a lottery and random sampling.
Random sampling can be used for selecting patients in clinical
trials or selecting officials in audits, for instance.

A modern approach to building a randomness beacon
utilises verifiable delay functions (VDFs), discussed in Section
Whilst VDFs can also be used to construct consensus
protocols and in timestamping, their flagship application is
indeed to provide a publicly verifiable randomness beacon
(32]], [54].

On a high level, a VDF samples a pseudo-random input, and
uses the output of the delay function to extract randomness.We
use the canonical example from [15]] to illustrate this: Say we
take the value of a stock price at the end of a trading session
as input: the value of a given stock is assumed to be difficult to
predict, and hold some entropy. However, a powerful adversary
may be able to alter the value this stock finishes at, by making
some large trades. One can employ a verifiable delay function
with a time parameter high enough that by the time it has
been evaluated on any candidate values, trading has finished
for the day. This ensures that no party can compute the effect
of altering the input whilst trading is still live, and hence the
output of the delay function will remain indistinguishable from
random. We next describe the most relevant protocols which
build upon a VDF to build an RB.

In 2018, Drake et al. [36] proposed a smart contract which
uses a VDF to produce random values. This approach requires
multiple parties, known as beacon chain proposers to each
contribute some local randomness. Drake assumes that there
exists a global clock and splits up time into regular epochs
of 1024 seconds. Each of these epochs is split into 8-second
blocks, each of which is ran by a beacon chain proposer.
These proposers each commit to some local entropy and
reveal it at the end of their block, where it is then broadcast
as randomness. This randomness is then used to sample a
later beacon proposer. This idea was presented as a post on
Ethereum research forum, and is currently lacking a rigorous
security analysis.

In 2020, Schindler et al. proposed randrunner [82]], an
interactive RB construction in which all participants are given
a unique trapdoor in setup. Then consecutive rounds of ran-
domness are evaluated where in each round an input is sampled
and also one leader is chosen, whose trapdoor allows them to
evaluate the VDF faster than any other party. The output of
the VDF evaluated in each round is hashed to obtain a pulse
of randomness which is the beacon output, then another input
and leader are chosen for the subsequent round. All parties are
encouraged to try to solve the VDF, even if they do not have
the trapdoor, which leads to a large amount of computational
expenditure, particularly as the number of participants grow.
Additionally, this construction suffers from various attacks,
such as the adversary being able to corrupt the round leaders,
and withhold output, whilst working on subsequent rounds.

In 2022, Lee et al. proposed HeadStart [55]], with the novel
idea of having multiple parties computing VDFs simultane-
ously in a contribution phase. During the contribution phase
each party in the protocol contributes some randomness before
a third party known as the organiser uses these inputs to
provide a verifiably random result.

An alternative approach to improve efficiency is to use a
continuous VDF, as discussed in Section |II-G

Ephraim et al. [37] build a randomness beacon from a
continuous VDF by extracting randomness at regular intervals.
Recall from Section that a cVDF consists of multiple
states where verification can occur.

In the construction of [37], an initial state state, is gen-

erated during the setup procedure. Then two algorithms are
ran in parallel on every state: algorithm Tick takes a state
state;, and outputs the next state state;,;. Algorithm Tock
takes the state state; and outputs a pulse of randomness. In
practice the randomness is obtained with a cryptographically
secure hash function. Verification can be performed on both
the computation of Tick and of Tock, to show that the state
was computed correctly, and to show that the randomness was
correctly computed from the state.

Ephraim et al. presented a construction based upon their
c¢VDF in [37], however the concrete RB resulting from this
approach has a verification time which grows in O(logt), and
hence scales badly as the time parameter increases.

B. Auctions

Sealed-bid auctions allow bidders to secretly submit a bid
for some goods without learning the bids of any other party
involved until the end of the auction. The challenge of building
a fair, efficient, and cryptographically secure auction has been
of interest to the cryptographic community for decades [11],
[20], [22], [42], [49]. It is a common motivating example for
delay-based primitives, and was mentioned as an application
for time-lock puzzles by Rivest et al. in 1996 [78].

A common approach to constructing sealed-bid auctions is
to implement a commit-and-reveal solution using an append-
only bulletin board, such as a blockchain [42]]. Such solutions
consist of two phases: a bidding phase, where parties commit
to a bid and post their commitment on the bulletin board; and
an opening phase where parties reveal their bids. However,
the main drawback of this approach is that parties are not
obliged to open their bids, which is particularly problematic
in certain auction variants where it is necessary to learn the
second highest bid as well as the first [5]], [13]], [89]]. For an
auction to be transparent and fair it is desirable that each party
must open their commitments to the bid once the bidding phase
has ended.

One can replace the commitments in the above approach
with time-lock puzzles, by requiring that each party encrypts
their bid as the solution to a time-lock puzzle, placing the
puzzle on the bulletin board rather than the commitment. This
means that in the opening phase if a party does not reveal
their bid it can instead be opened by computing the solution
to the puzzle. There exist multiple various constructions that
fit this approach to auctions, and we view the non-malleable
TLP construction of Freitag et al. [41]] as the state of the art,
as it requires no setup. However, this method does not scale
well because it leads to many different time-lock puzzles being
solved, which is computationally expensive. In recent years,
various primitives that we discussed in Section |lI| have been
applied to solve this problem more efficiently. We will now
outline these approaches.

In 2019 [68], Malavolta et al. used homomorphic time-
lock puzzles (see Section to improve upon this concept.
Their insight is that the tallier then uses techniques from
homomorphic encryption to evaluate a computation over the
set of puzzles to determine the winning bidder. This leads to

only the relevant puzzle being solved rather than the entire
set of puzzles. Whilst this is a very elegant solution, the
application relies on fully homomorphic TLP constructions,
but all current constructions of fully homomorphic TLPs
are based on indistinguishability obfuscation (I0) [22], [68]].
IO aims to obfuscate programs to make them unintelligible
whilst retaining their original functionality [7]. However, 10
is known to be impractical with no construction efficiently
implementable at the time of writing [48].

In 2021, Burdges et al. described auctions as a key moti-
vating example for their Delay Encryption primitive [22] (see
Section [[I-D).Where time-lock puzzles require each bidder to
encrypt their bid against a unique time-lock puzzle, Delay
Encryption instead requires bidders to encrypt their bid to
the public session ID. Bidders can then run the sequential
computation to extract the session key. Once the session key
has been extracted all bids can be decrypted, thus replacing the
opening phase described in the commit-and-reveal paradigm.
This works well in the context of auctions as in the opening
phase, after only one slow computation, all bids can be de-
crypted. When compared to HTLPs, this is an improvement as
rather than performing a computation to learn the one relevant
puzzle, and then decrypting it, in DE the computation can be
computed directly and then used to open every encryption.
This seems like an ideal approach on the primitive level, but
as described in Section there are instantiation challenges
with the only one candidate construction to date.

The goal of the approaches outlined above is to utilise a
time-delay to solve the auction problem in a scalable, and
trustless manner. This improves upon the efficiency of Rivest’s
solution by ensuring that only one sequential computation
(namely the puzzles containing the highest bid in [[68], and
the delay computed in [22]) needs to be run, rather than one
for each bid. However, the HTLP approach is limited in the
scope of its application, and DE is impractical.

If one is willing to compromise on the decentralisation and
utilise a trusted setup, TRE can be used instead. In 2021,
Chvojka et al. suggest using TRE (see Section [[I-C) to provide
a more efficient decryption method, in a similar vein to the
described application of DE. By using straightforward public
key decryption to decrypt all of the bids, this is a very efficient
approach. This is illustrated by Loe et al. in [[62f], where
the authors construct and implement a practical TRE scheme,
showing it runs efficiently on consumer-grade hardware.

To conclude, there have been various modern improvements
over the original approach of Rivest et al. However, we still
lack an optimal solution, that is, one that does not rely on a
trusted setup, and yet shares an efficient decryption method
for all messages. For an auction in which only the highest bid
is required, then Malavolta’s HTLP approach is the current
state of the art for a decentralised auction. On the other hand,
if one is content with a trusted setup, then TRE is the most
efficient primitive.

VI. RESEARCH QUESTIONS AND DIRECTIONS FOR FUTURE
WORK

Rigorous benchmarking for accurate parameterisation
One thing that is lacking in the field of delay-based cryptog-
raphy is a publicly available, rigorous benchmarking of the
RSW time-lock assumption.

It is worth noticing that there is a limit to how useful such
a procedure can be, due to the the vast range of devices,
and the constant improvement in both the consumer-grade
and state-of-the-art computation power. However, the authors
believe that without this, selecting parameters for adversarial
advantage will be at best vague, and at worst insecure.

We suggest that an ideal benchmarking procedure would
include a range of devices, including small IoT devices
(e.g., Raspberry Pi), various consumer grade hardware, and
specialist hardware such as an ASIC. Research into specialist
hardware was proposed by the VDF alliance [2].

Additionally, an up-to-date online resource of the fastest
algorithms and specialist hardware currently available for
computing the iterated sequential functions would also be
desirable. [86] introduces a smart contract for clients to
outsource a sequential computation to powerful servers,
which may use specialised hardware. Early research into such
hardware includes [[72].

Alternative iterated sequential functions

As we discussed in Section [[-B| if one wishes to compute a
delay, the alternative methods to RSW are limited, and largely
impractical.

A relevant question therefore, is to ask (not for the first
time) how one can use an alternative method to the RSW time-
lock assumption, whilst still retaining a practically efficient
construction.

Currently, the most promising alternative seems to be
based on isogeny-based cryptography [22[, [39]. A method
for altering the underlying method of BLS signatures
and isogeny walks in order to circumvent or mitigate the
computationally expensive trusted setup and the high storage
costs would be very beneficial for the area of delay-based
cryptography. Another interesting line of research would be
to see if there is some way of altering a known sequential
computation to give the resulting output some mathematical
properties which allow for faster inversion of the computation.

Concrete constructions of primitives

A significant achievement would be to construct a protocol
which shares the efficiency of a public-key TRE scheme such
as [[62f], whilst maintaining the minimal trust assumptions
of TLPs such as Astrolabous [4]. In particular, it would be
desirable to have an untrusted, yet practically implementable
method of decrypting n time-encrypted messages with sig-
nificantly less than n sequential computations, say log(n)
decryptions.

A related research question is to build schemes for the
delay encryption and fully homomorphic TLP primitives,

which can be implemented in an efficient manner.

Theoretical results

To facilitate the design of optimally efficient constructions,
it would be beneficial to derive theoretical bounds on efficiency
under various assumptions. Therefore we believe a highly
rewarding line of study would be into what the best efficiency
one can hope to achieve in various settings, an example of
which could be an impossibility result to demonstrate what
the optimal decryption we can hope for in a setting without
public-key infrastructure.

The research questions we pose in Section illustrate
some gaps in the theoretical knowledge of how the delay-
based primitives fit together. Exploring whether or not the
relationships we suggest hold, and providing formal security
reductions would be of benefit to the community.

Another avenue would be to further explore the various
delay-related primitives in the UC framework - for example
it would be interesting to see which relationships in Figure
can be translated into UC, and the effect that altering the
underlying assumptions such as global synchronicity has upon
such primitives.

VII. CONCLUSION

In recent years, there has been a dramatic surge in delay-
based cryptographic research. We present the first system-
atisation of knowledge (SoK) for the existing efforts on
delay-based primitives and constructions. This SoK provides
a comprehensive review of the trust assumptions and nuances
that separate the primitives, and the impact of such nuances on
standard delay-based applications. We review the underlying
techniques that exist in the literature to construct a delay, and
discuss their practicality and ways they can be improved. We
discuss the existing primitives along with the state-of the art
constructions. In Section we analyse how these primitives
are linked to each other, identifying relations and highlighting
gaps in the theoretical knowledge we have so far. Finally, we
propose promising research directions for the future design of
delay-based cryptographic techniques and protocols. It is our
hope that this inspires and aids in exciting new research in
this field.

REFERENCES

[11 A. Abadi, M. Ciampi, A. Kiayias, and V. Zikas. Timed signatures and
zero-knowledge proofs—timestamping in the blockchain era. In Applied
Cryptography and Network Security: 18th International Conference,
ACNS 2020. Springer, 2020.

[2] VDF Alliance. https://www.vdfalliance.org/news/open-vdf-asic-
introduction, 2020.

[3] M. Arapinis, A. Kocsis, N. Lamprou, L. Medley, and T. Zacharias.
Universally composable simultaneous broadcast against a dishonest
majority. In ACM Symposium on Principles of Distributed Computing,
2023.

[4] M. Arapinis, N. Lamprou, and T. Zacharias. Astrolabous: A universally
composable time-lock encryption scheme. In International Conference
on the Theory and Application of Cryptology and Information Security,
2021.

[5] L. Ausubel. A generalized vickrey auction. Econo0O metrica, 1999.

[6] L. Baird. The swirlds hashgraph consensus algorithm: Fair, fast,
byzantine fault tolerance. 2016.

[7]1 B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang. On the (im) possibility of obfuscating programs. In Annual
international cryptology conference, pages 1-18. Springer, 2001.

[8] C. Baum, B. David, R. Dowsley, J. Nielsen, and S. Oechsner. Craft:
Composable randomness beacons and output-independent abort mpc
from time. Cryptology ePrint Archive, 2020.

[9] C. Baum, B. David, R. Dowsley, J. Nielsen, and S. Oechsner. Tardis:
a foundation of time-lock puzzles in uc. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
2021.

[10] N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan,
and B. Waters. Time-lock puzzles from randomized encodings. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science, pages 345-356, 2016.

[11] E. Blass and F. Kerschbaum. Borealis: Building block for sealed
bid auctions on blockchains. In Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security, pages 558-571,
2020.

[12] M. Blum. How to exchange (secret) keys. In CCM Transactions on
Computer Systems, 1(2):175-193, 1983.

[13] A. Blume and P. Heidhues. All equilibria of the vickrey auction. Journal
of economic Theory, 114(1):170-177, 2004.

[14] C. Blundo, A. De Santis, and U. Vaccaro. Randomness in distribution
protocols. Information and Computation, 1996.

[15] D. Boneh, J. Bonneau, B. Biinz, and B. Fisch. Verifiable Delay
Functions. In Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, pages 757-788, Santa Barbara,
CA, USA, 2018.

[16] D. Boneh, B. Biinz, and B. Fisch. A survey of two verifiable delay
functions. IACR Cryptology ePrint Archive, 2018.

[17] D. Boneh and M. Franklin. Identity-based encryption from the weil
pairing. In CRYPTO 2001: 21st Annual International Cryptology
Conference. Springer, 2001.

[18] D. Boneh and M. Naor. Timed commitments. In Annual international
cryptology conference. Springer, 2000.

[19] Z. Brakerski, N. Déttling, S. Garg, and G. Malavolta. Leveraging
linear decryption: Rate-1 fully-homomorphic encryption and time-lock
puzzles. In Theory of Cryptography: 17th International Conference,
TCC 2019. Springer, 2019.

[20] F. Brandt. Auctions. In Handbook of Financial Cryptography and
Security, pages 75-84. Chapman and Hall/CRC, 2010.

[21] X. Bultel and P. Lafourcade. A posteriori openable public key encryp-
tion. In ICT Systems Security and Privacy Protection, 2016.

[22] J. Burdges and L. De Feo. Delay Encryption. In 40th Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques. EUROCRYPT 2021, pages 302-326, 2021.

[23] R. Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In Proceedings 42nd IEEE Symposium on
Foundations of Computer Science, 2001.

[24] W. Castryck and T. Decru. An efficient key recovery attack on sidh
(preliminary version). Cryptology ePrint Archive, 2022.

[25] J. Cathalo, B. Libert, and J. Quisquater. Efficient and non-interactive
timed-release encryption. In International Conference on Information
and Communications Security, pages 291-303. Springer, 2005.

[26] M. Chen, Jack Doerner, Y. Kondi, E.Lee, S. Rosefield, A. Shelat,
and R. Cohen. Multiparty generation of an rsa modulus. Journal of
Cryptology, 2022.

[27] M. Chen, C. Hazay, Y. Ishai, Y. Kashnikov, D. Micciancio, T. Riviere,
A. Shelat, M. Venkitasubramaniam, and R. Wang. Diogenes: lightweight
scalable rsa modulus generation with a dishonest majority. In 2021 IEEE
Symposium on Security and Privacy (SP), 2021.

[28] J. Cheon, N. Hopper, Y. Kim, and I. Osipkov. Provably secure timed-
release public key encryption. ACM Transactions on Information and
System Security (TISSEC), 2008.

[29] P. Chvojka, T. Jager, D. Slamanig, and C. Striecks. Versatile and
sustainable timed-release encryption and sequential time-lock puzzles.
In European Symposium on Research in Computer Security, pages 64—
85. Springer, 2021.

[30] R. Cleve. Limits on the security of coin flips when half the processors
are faulty. In Proceedings of the eighteenth annual ACM symposium on
Theory of computing, 1986.

[31] B. Cohen and K. Pietrzak. Simple proofs of sequential work. In
Advances in Cryptology — EUROCRYPT 2018, 2018.

[32] B. Cohen and K. Pietrzak. The chia network blockchain, 2019.

[33]

[34]

[35

=

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]

[46]

[47]

(48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

H. Corrigan-Gibbs, W. Mu, D. Boneh, and B. Ford. Ensuring high-
quality randomness in cryptographic key generation. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security, 2013.

I.B. Damgard. Practical and provably secure release of a secret and
exchange of signatures. In J. of Crypt., 8(4):201-222, 1995.

N. Déttling, S. Garg, G. Malavolta, and P. Vasudevan. Tight verifiable
delay functions. In International Conference on Security and Cryptog-
raphy for Networks, 2020.

Justin Drake. Minimal vdf randomness beacon. Ethereum Research,
2018.

N. Ephraim, C. Freitag, I. Komardogski, and R. Pass. Continuous Veri-
fiable Delay Functions. In Advances in Cryptology - EUROCRYPT 2020
- 39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, page 125-154, Zagreb, Croatia, 2020.

S. Even, O. Goldreich, and A. Lempel. A randomized protocol for
signing contracts. In Commun. ACM, 28(6):637-647, 1985.

L. De Feo, S. Masson, C. Petit, and A. Sanso. Verifiable Delay Functions
from Supersingular Isogenies and Pairings. In Advances in Cryptology
— ASIACRYPT 2019 — 25th Annual Conference, pages 248-277, Kobe,
Japan, 2019.

T. Frederiksen, Y. Lindell, V. Osheter, and B. Pinkas. Fast distributed
rsa key generation for semi-honest and malicious adversaries. In Annual
International Cryptology Conference. Springer, 2018.

C. Freitag, I. Komargodski, R. Pass, and N. Sirkin. Non-malleable time-
lock puzzles and applications. In Theory of Cryptography Conference,
pages 447-479. Springer, 2021.

H. Galal and A. Youssef. Verifiable sealed-bid auction on the ethereum
blockchain. In International Conference on Financial Cryptography and
Data Security, pages 265-278. Springer, 2018.

U. Gallersdorfer, L. KlaaBen, and C. Stoll. Energy consumption of
cryptocurrencies beyond bitcoin. Joule, pages 1843—1846, 2020.

J.A. Garay and M. Jakobson. Timed release of standard digital
signatures. In Financial Crypto 2002. LNCS, 2002.

J.A. Garay and C. Pomerance. Timed fair exchange of standard
signatures. In Financial Crypto 2003. LNCS, 2003.

C. Hazay, G. Mikkelsen, R. Rabin, T. Toft, and A. Nicolosi. Efficient rsa
key generation and threshold paillier in the two-party setting. Journal
of Cryptology, 2019.

N. Huber, R. Kiisters, T. Krips, J. Liedtke, J. Miiller, D. Rausch,
P. Reisert, and A. Vogt. Kryvos: Publicly tally-hiding verifiable e-voting.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022.

A. Jain, H. Lin, and A. Sahai. Indistinguishability obfuscation from
well-founded assumptions. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, pages 60-73, 2021.

A. Juels and M. Szydlo. A two-server, sealed-bid auction protocol.
In International conference on financial cryptography, pages 72-86.
Springer, 2002.

J. Katz. Digital signatures. 2010.

J. Katz, J. Loss, and J. Xu. On the security of time-lock puzzles and
timed commitments. In Theory of Cryptography: 18th International
Conference. Springer, 2020.

J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Universally composable
synchronous computation. In Theory of Cryptography: 10th Theory of
Cryptography Conference. Springer, 2013.

R. Kumaresan and 1. Bentov. How to use bitcoin to incentivize correct
computations. In ACM CCS 2015. ACM Press, 2015.

E. Landerreche, M. Stevens, and C. Schaffner. Non-interactive crypto-
graphic timestamping based on verifiable delay functions. In Interna-
tional Conference on Financial Cryptography and Data Security, pages
541-558. Springer, 2020.

H. Lee, Y. Hsu, J. Wang, H. Yang, Y. Chen, Y. Hu, and H. Hsiao.
Headstart: Efficiently verifiable and low-latency participatory random-
ness generation at scale. In Network and Distributed System Security
(NDSS) Symposium 2022, 2022.

Arjen K Lenstra and Benjamin Wesolowski. Trustworthy public ran-
domness with sloth, unicorn, and trx. International Journal of Applied
Cryptography, 2017.

H. Lin, R. Pass, and P. Soni. Two-round and non-interactive concurrent
non-malleable commitments from time-lock puzzles. In 58th IEEE Sym-
posium on Foundations of Computer Science (FOCS). IEEE Computer
Society Press, 2017.

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]

(71]

[72]

(73]
[74]

[75]

[76]
(771

(78]

(791

[80]

[81]

[82]

[83]
[84]

[85]

J. Liu, F. Garcia, and M. Ryan. Time-release protocol from bitcoin and
witness encryption for sat. Korean Circulation Journal, 40(10):530-535,
2015.

J. Liu, T. Jager, S. Kakvi, and B. Warinschi. How to build time-lock
encryption. Designs, Codes and Cryptography, 2018.

Y. Liu, Q. Wang, and S. Yiu. Towards practical homomorphic time-
lock puzzles: Applicability and verifiability. In ESORICS 2022: 27th
European Symposium on Research in Computer Security. Springer, 2022.
A. Loe, L. Medley, C. O’Connell, and E. Quaglia. A practical verifiable
delay function and delay encryption scheme. JACR Cryptol. ePrint Arch.,
2021.

A. Loe, L. Medley, C. O’Connell, and E. Quaglia. Tide: a novel approach
to constructing timed-release encryption. In Information Security and
Privacy: 27th Australasian Conference, ACISP 2022, 2022.

A. Loe, L. Medley, C. O’Connell, and E. Quaglia. Applications of
timed-release encryption with implicit authentication. 14th International
Conference on Cryptology in Africa, AFRICACRYPT 2023, 2023.

M. Mahmoody, T. Moran, and S. Vadhan. Time-lock puzzles in the
random oracle model. In Advances in Cryptology — CRYPTO 2011,
2011.

M. Mahmoody, T. Moran, and S. Vadhan. Publicly verifiable proofs of
sequential work. In Proceedings of the 4th Conference on Innovations
in Theoretical Computer Science, 2013.

M. Mahmoody, C. Smith, and D. Wu. Can verifiable delay functions
be based on random oracles? In 47th International Colloquium on
Automata, Languages, and Programming (ICALP 2020), 2020.

G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Rav.
Concurrency and privacy with payment-channel networks. In ACM CCS
2017. ACM Press, 2017.

G. Malavolta and S. Thyagarajan. Homomorphic time-lock puzzles and
applications. In Annual International Cryptology Conference, pages
620-649. Springer, 2019.

W. Mao. Timed-release cryptography. In International Workshop on
Selected Areas in Cryptography, pages 342-357. Springer, 2001.

T. May. Timed-release crypto. http://www. hks. net. cpunks/cpunks-
0/1560. html, 1993.

L. Medley and E. Quaglia. Collaborative verifiable delay functions.
In International Conference on Information Security and Cryptology
(INSCRYPT 2021), 2021.

A. Mert, E. Oztiirk, and E. Savag. Low-latency asic algorithms of
modular squaring of large integers for vdf evaluation. /IEEE Transactions
on Computers, 2020.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

K. Paterson and E. Quaglia. Time-specific encryption. In Security and
Cryptography for Networks: 7th International Conference, SCN 2010,
2010.

K. Pietrzak. Simple verifiable delay functions. In /0th Innovations in
Theoretical Computer Science Conference, ITCS 201, pages 601-615,
San Diego, California, 2019.

M. Rabin. Transaction protection by beacons. Journal of Computer and
System Sciences, 1983.

M. Raikwar and D. Gligoroski. Sok: Decentralized randomness beacon
protocols. arXiv preprint arXiv:2205.13333, 2022.

R. Rivest, A. Shamir, and D. Wagner. Time-lock puzzles and timed-
release crypto. In MIT/LCS/TR-684, MIT Laboratory for Computer
Science, 1996.

R.Peralta, H.Booth, L.Branddo, J Kelsey, and C. Miller. Interoperable
Randomness Beacons. NIST, 2019.

A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-
knowledge proof systems. In Conference on the Theory and Application
of Cryptographic Techniques, 1987.

A. Scafuro. Break-glass encryption. In PKC ’19: 22nd IACR Interna-
tional Conference on Practice and Theory of Public-Key Cryptography,
2019.

P. Schindler, A. Judmayer, M. Hittmeir, N. Stifter, and E. Weippl.
Randrunner: Distributed randomness from trapdoor vdfs with strong
uniqueness. Cryptology ePrint Archive, Paper 2020/942, 2020.

A. Shamir. How to share a secret. 2010.

W. Silvano and R. Marcelino. Iota tangle: A cryptocurrency to com-
municate internet-of-things data. Future generation computer systems,
2020.

S. Thyagarajan, A. Bhat, G. Malavolta, N. Déttling, A. Kate, and
D. Schroder. Verifiable timed signatures made practical. In Proceedings

[86]

[87]

[88]

[89]

[90]

of the 2020 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 1733-1750, 2020.

S. Thyagarajan, T. Gong, A. Bhat, A. Kate, and D. Schroder. Open-
square: Decentralized repeated modular squaring service. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2021.

S. Thyagarajan, G. Malavolta, F. Schmid, and D. Schroder. Verifiable
timed linkable ring signatures for scalable payments for monero. In
Computer Security—-ESORICS 2022: 27th European Symposium on Re-
search in Computer Security, 2022.

J. Truby. Decarbonizing Bitcoin: Law and policy choices for reducing
the energy consumption of Blockchain technologies and digital curren-
cies, 2018.

W. Vickrey. Counterspeculation, auctions, and competitive sealed
tenders. The Journal of finance, 16(1):8-37, 1961.

B. Wesolowski. Efficient Verifiable Delay Functions. In Advances in
Cryptology — EUROCRYPT 2019, page 379-407, Darmstadt, Germany,
2019.

	Introduction
	Why a delay is useful
	Techniques to achieve a delay
	Trustless generation of an RSA modulus

	Delay-based primitives
	Time-lock puzzles and Time-lock encryption
	Homomorphic time-lock puzzles
	Timed-release encryption
	Delay Encryption
	Timed commitments and timed signatures
	Proofs of sequential work
	Verifiable delay functions
	Miscellaneous primitives with a delay component
	Conclusion

	Universal Composability
	Relating Delay-Based Primitives
	Applications
	VDF-based Randomness Beacons
	Auctions

	Research questions and directions for future work
	conclusion
	References

