Behemoth: transparent polynomial commitment scheme
with constant opening proof size and verifier time

Istvan Andras Seres and Péter Burcsi

E6tvos Lorand University

Abstract. Polynomial commitment schemes are fundamental building blocks in
numerous cryptographic protocols, e.g., verifiable secret sharing, zero-knowledge
succinct non-interactive arguments, and many more. The most efficient polyno-
mial commitment schemes rely on a trusted setup, which is undesirable in trust-
minimized applications, e.g., cryptocurrencies. However, transparent polynomial
commitment schemes are inefficient (polylogarithmic opening proofs and/or veri-
fication time) compared to their trusted counterparts. It has been an open problem
to devise a transparent, succinct polynomial commitment scheme or prove an
impossibility result in the transparent setting. In this work, for the first time, we
create a transparent, constant-size polynomial commitment scheme called Behe-
moth with constant-size opening proofs and a constant-time verifier. The downside
of Behemoth is that it employs a cubic prover in the degree of the committed poly-
nomial. We prove the security of our scheme in the generic group model and
discuss parameter settings in which it remains practical even for the prover.

Keywords: Polynomial commitment schemes - groups of unknown order - KZG

1 Introduction

A polynomial commitment scheme (PCS or PC) allows a prover to commit to a poly-
nomial f of degree maximum d (typically over a finite field, ie., f € F5%z], and
p ~ 226 d ~ 210 — 230) Importantly, the prover can later open the committed poly-
nomial at any point. Specifically, the prover can convince a verifier about evaluations
of f at point z € IF,, of the polynomial f when the verifier is given only a short com-
mitment to f and the statement f(z) = s. PCSs were first proposed by Kate, Zaverucha,
and Goldberg (KZG) [37]. Since then, PCSs have become the cornerstone of many im-
portant cryptographic protocols, such as verifiable secret sharing, zero-knowledge sets,
zero-knowledge succinct non-interactive arguments of knowledge (zkSNARKS) [12],
Verkle trees [40] and many more. Therefore, it is of great interest to improve exist-
ing PCSs, as they directly translate to efficiency and trust assumption improvements
in numerous applications. The most efficient PCSs are derived from the original KZG
scheme [17,25,31]. The KZG scheme and its extensions offer short commitments,
evaluation proofs (both one group element), and batching capabilities for the opening
protocol at the expense of a trusted setup and a linear-sized (in the maximum degree d
of the committed polynomials) common reference string.

A trusted setup requires private randomness to generate the public parameters neces-
sary for the commitment scheme. The private randomness (“toxic waste’”) must be kept

2 I.A. Seres and P. Burcsi

secret or discarded to maintain the soundness of the PCS. If the randomness used in the
setup is known to an adversary, it is possible to break the binding property of the PCS or
create invalid opening proofs. Therefore, a successful trusted setup is paramount for the
security of the KZG PCS and its variants. Trusted setups are straightforward to perform
if there exists a trusted third party who does not disclose private randomness. In the
absence of a trusted party to distribute the trust in trusted setups, numerous multi-party
protocols have been suggested for executing the KZG trusted setup [11,21,28,39,46].
However, trusted setups are usually undesirable in trust-minimized and decentralized ap-
plications, such as cryptocurrencies. To that end, significant efforts have been dedicated
to devising transparent PCSs whose setup algorithm uses only public coins.

There is a multitude of transparent PCSs. They use various techniques and are in-
stantiated under diverse cryptographic assumptions. FRI [10] and its variants [3, 38]
only assume the existence of one-way functions, hence post-quantum secure. Bootle
et al. [19,57] and Biinz et al. [22] assume the discrete logarithm assumption in cyclic
groups. Lee builds a transparent PC in groups with non-degenerate, efficiently com-
putable, bilinear pairings [43]. A recent line of research designs PCSs [4, 13,23,26] in
groups of unknown order (GUO). An advantage of applying groups of unknown order
in cryptographic applications is that some families of GUOs can be instantiated trans-
parently [29]. Specifically, class groups of imaginary quadratic fields and Jacobians of
hyperelliptic curves [56] can be sampled efficiently and transparently using only public
randomness. For efficiency reasons, we focus mainly on instantiating our scheme in class
groups. Currently, the best known algorithms can compute the order of an imaginary
class group in subexponential time [35,53]. So far, all transparent PC schemes have had
polylogarithmic evaluation proofs and/or verifiers.

Ideally, one wants to match the efficiency properties of the KZG PC scheme also
in the transparent setting, i.e., both constant opening proofs and verifiers with possibly
batching capabilities. Hence, a natural question arises:

Is there a transparent, succinct PCS that achieves constant-size opening proofs
and constant-time verifiers with possibly batching capabilities?

In this work, we answer affirmatively. To our knowledge, we devise the first trans-
parent PCS with constant-size opening proofs and constant-time verifier, i.e., the first
transparent succinct polynomial commitment scheme.

Our contributions. In this work, we make the following contributions.

We propose Behemoth, ! the first succinct (constant opening proof size and verifier
time), transparent polynomial commitment scheme. We prove its security in the
random oracle and generic group models. Thus, we positively answer an open
question by Nikolaenko et al. [46] about the existence of succinct, transparent
polynomial commitment schemes.

As an application of our transparent PC scheme, we prove the existence of a trans-
parent zkSNARK with constant proof size and verifier time, cf. Section 6. To our
knowledge, this is the first such construction in the polynomial-IOP paradigm.

1 Behemoth is an enormous biblical monster described in the Book of Job. The name of the
scheme alludes to the huge integers used in our scheme.

Behemoth: transparent succinct polynomial commitment scheme 3

The rest of this paper is organized as follows. We provide a technical overview
in Section 2. In Section 3, we introduce the pertinent background on polynomial com-
mitment schemes, computational hardness assumptions in groups of unknown order, the
generic group model, and the applied non-interactive zero-knowledge proofs. Section 4
describes the first succinct and transparent polynomial commitment scheme whose se-
curity is proven in Section 5. Using our polynomial commitment scheme, we prove the
existence of constant, transparent SNARKSs in Section 6. We evaluate the theoretical
and practical performance of Behemoth in Section 7. Finally, we conclude our work in
Section 8§ by pointing out several remaining open problems and research directions.

2 Technical overview

This section presents the main ideas behind our polynomial commitment construction.
Our end goal is to instantiate the KZG PCS in a group of unknown order and not to resort
to techniques (e.g., inner product arguments or Merkle trees) that seem to inherently
lead to (poly)logarithmic proofs and/or verifiers.

First, we recall the KZG polynomial commitment scheme. In the KZG scheme,
the public parameters consist of the structured reference string produced by the trusted
setup: srs = {g7 }¢_, for 7 € F;. The commitment to a polynomial f € F59[z] is
the evaluation of the polynomial at a random point 7 not known even to the committer,
ie., g™ € G, for some prime-order elliptic curve group G (|G| = p) with generator
g. Furthermore, in the KZG scheme, we assume that G is equipped with an efficiently
computable, non-degenerate bilinear pairing, i.e., e : G x G — Gp. More interestingly,
in the opening proof of KZG for the statement f(z) = s, given the commitment ¢f(7),
the prover can convince the verifier by sending a commitment ¢%) to the quotient
polynomial q(z) := % This is correct because the verifier can check the equality
of polynomials q(x)(z — z) = f(z) — s in the exponent at the random point 7 using the
structured reference string and the bilinear pairing. The verification of the evaluation
proof is achieved by checking e(g9("), g7~*) - e(gfm=s g).

How can we possibly mimic the evaluation proof strategy of the KZG scheme in a
group of unknown order G? First, we observe that a KZG-style commitment ¢/(®) € G
binds the prover to the value of f(«), thanks to the unknown group order. We will show
that for a public and properly chosen o this also implies polynomial binding. 2 Therefore,
essentially, we have the same commitments to polynomials as the KZG scheme, i.e.,
g'(®) for a carefully chosen public o € Z. Since we do not know the order of the group,
we can only evaluate polynomials over the int/eg\ers in the exponent. We denote the
evaluation of a polynomial over the integers as f(«) to disambiguate from the “regular”
evaluation f(a) over the finite field F,,. We use integer representatives from [0, p) to
lift the polynomial. The first challenge is to ensure polynomial binding b)ﬁlecting «a
carefully. The intuition is that & must be large compared to F,, and d, so that f («) uniquely
determines f(«a): the coefficients can be recovered from the base « representation of
f(a). If « is small, say o = 5, then given a commitment 9127 = gf(o‘), the prover can
open this commitment to numerous polynomials, for instance, f; = 127,fs = 62+97in

2 We will make this precise later in Section 5.

4 I.A. Seres and P. Burcsi

fact for any fy = ax + b for any (a,b) € Z X Z : 5a+ b = 127. We detail in Section 4.2,
how to chose o properly to ensure polynomial and evaluation binding in ng [x].

A major challenge that a (very) large value of « poses is constructing correct
opening proofs. In the evaluation proofs, si/n\ce we do not /re\ly on private evaluation

points, the verifier can check the equality q(z)(x — z) = f(x) — § in the exponent at
the point a even without bilinear pairings. Specifically, given a commitment g9(®) to

q(x), the verifier can compute (g9(*))®~* without a bilinear pairing, since « is public.
éiownside of this approach is that now, the right-hand side of the verification equation,
f(a) —§ € Z is a large integer with =~ dlog(p) bits. We describe in Section 4.3
the applied techniques that keep both our opening proofs and verifier constant, and
the committer efficient. Moreover, along the way, we need to solve many technical
challenges to preserve evaluation binding and the knowledge soundness properties of
our proposed PCS. A major technical difficulty in proving knowledge soundness is to
show that the protocols prevent adversarial provers from using integer polynomials that
are not obtained by correctly lifting a modular polynomial. As mentioned above, one
can only work over the integers in the exponent of a group of unknown order. This
necessitates “projecting” statements over the integers back to finite fields. We achieve
this by applying several non-interactive zero-knowledge proofs, cf. Section 3.5, to ensure
the polynomial/evaluation binding and knowledge soundness of our PCS.

3 Background

3.1 Notations

In the following, we will use multiplicative notation to denote the group operation in the
applied groups G (of unknown order). To sample = from a set .S uniformly at random,
we write x €r S. Some protocols need to sample random integers from the set of the
first 2* primes that are denoted as Primes()\), where) is the security parameter. Let p
denote a large odd prime. For an univariate polynomial f(z) € F59[2] where f(2) = s,

—

let f(z) := § denote the evaluation of f at z over the integers. We use a Python-like
notation to index lists and arrays, i.e., we refer to the ith element of a list [as [[i]. Let

1— <p _ 1)d+1

1
I—(p—1))

d+1
B:= max fz)=Y (p—1)'=(p—1)
zG]Fp,f(z)GIng[z] z:zl

B is a universal upper bound for the evaluation over the integers of polynomials from
the polynomial ring ng[x}. Let v,(x) be the p-adic valuation of z, i.e., the (possibly
negative) exponent of p in the factorization of z. The commitment of a polynomial f is
denoted as . The prover and the verifier are denoted as P and V, respectively.

3.2 Polynomial Commitment Schemes

A polynomial commitment scheme PC = (GenSRS, Com, ComVerify, Open, OpenVerify)
consists of five algorithms and allows to commit to a polynomial f and later “open” the
commitment |f | at point z by proving that for some value s = f(z). More formally:

Behemoth: transparent succinct polynomial commitment scheme 5

GenSRS(1*,d): The key generation algorithm takes in a security parameter \ and a
parameter d which determines the maximal degree of the committed polynomial.
It outputs a structured reference string srs (the commitment key). Note that srs
implicitly determines A and d.

Com(srs, f,d): The commitment algorithm Com(srs, f, d) takes in srs and a polynomial
f with maximum degree d, and outputs a commitment ¢(= [f]) and a string hint €
{0, 1}* that aids the opening of the commitment c.

ComVerify(srs, f, hint, ¢): checks the validity of the opening hint for the commitment
cof f € F=4[z]. If it is valid, it outputs 1; otherwise, it outputs 0.

Open(srs, z, s,f,d): The opening algorithm takes as input srs, an evaluation point z, a
value s and the polynomial f of degree d. It outputs an opening proof .

OpenVerify(srs, ¢, d, z, s,): The verification algorithm takes in srs, a commitment ¢,
the degree d of the claimed polynomial, an evaluation point z, a value s and an
opening proof 7. It outputs 1 if 7 is a valid opening for (¢, z, s) and 0 otherwise.

If the possibly probabilistic GenSRS(-) algorithm is a public coin algorithm, then
we call the PC scheme a transparent PC scheme. Some formalizations of PCs [18,23]
define the Open and OpenVerify algorithms as interactive protocols.

A secure polynomial commitment PC should satisfy correctness, (polynomial) bind-
ing, evaluation binding, evaluation hiding, zero knowledge, and knowledge soundness
as defined below. Additionally, a PC scheme might be succinct.

Definition 1 (Correct PC scheme). A PC scheme is correct if Vf € Fy39[x] and
Vz € T, the following holds:

srs < GenSRS(1*,d),
(¢, hint) <= Com(srs, f,d),
by < ComVerify(srs, f, hint, ¢),
s« f(z),
7 < Open(srs, z, s, f,d),
by < OpenVerify(srs, ¢, d, z, s,)

Pr|bj=by=1 >1—negl()).

Definition 2 ((Polynomial) binding PC scheme). A PC scheme is (polynomial) bind-
ing if for all PPT adversaries A:

srs < GenSRS(1*,d),
(fo, hintg, f1, hinty, C) — .A(SI’S)7
by < ComVerify(srs, fo, hintg, ¢),
by < ComVerify(srs, f1, hinty, ¢)

Pr bozblzl/\ﬂ);&fl gnegl()\)

Definition 3 (Evaluation binding PC scheme). A PPT adversary A which outputs
a commitment ¢ and evaluation points z has at most negligible chance to open the
commitment to two different evaluations s,s’. That is, let ¢ € G be the commitment,
z € [, be the argument the polynomials are evaluated at, s, s’ € F, the evaluations,
and o0, 0' be the commitment openings. Then YVPPT A

OpenVerify(srs, ¢, z,8,0) = 1,
Pr | OpenVerify(srs, ¢, z,8',0') =1, | (¢, 2, 8,8",0,0") < A(srs,d) | < negl(}).

s#s

6 I.A. Seres and P. Burcsi

Definition 4 (Knowledge sound PC scheme). A PC scheme has knowledge soundness
if Vsrs output by GenSRS(1%,d), the (non-)interactive public-coin protocol Open is a
proof of knowledge for the NP relation Ropen(srs, d) defined as follows:

Ropen(srs,d) := {((e, 2, 5), (f, hint)) : f € ng[x] A f(z) = sA

2
AComVerify(srs, f, hint,¢) = 1}.)

Since most polynomial commitments are deterministic, they do not use the classical
hiding definition of commitment schemes, i.e., an indistinguishability-based game for
two committed values. Hence, we follow the approach of Kate, Zaverucha, and Goldberg
and apply a relaxed version of hiding tailored to PC schemes, called evaluation hiding.

Definition 5 (Evaluation hiding PC scheme). A PC scheme is evaluation hiding if
given srs,[f] and correct opening proofs {(z;,f(z;), TOpen,z;) * J € [1, Ld%mj]}for
f(z) €]Fg [] such that OpenVerify(srs, [f], d, z;, f(2;), TOpen,z;) = 1 for each j

- no adversary A can determine f(z') with non-negligible probability for any un-
queried index z' (computational hiding) or

— no computationally unbounded adversary A has any information about (2" for
any unqueried index z' (unconditional hiding).

Note we define evaluation hiding for LdegT(f)J opened points instead of deg(f) points.
This is because each opening proof must also open the polynomial f(-) a random point
r for knowledge soundness, cf. Section 5.3. This somewhat relaxed notion of evaluation
hiding is common in the polynomial commitment literature. For example, the FRI PC

scheme achieves a similar, relaxed evaluation hiding notion [10].

Definition 6 (Succinct PC scheme). We call a PC scheme succinct if both the opening
proof is constant-size and verifying the m takes constant time as well, i.e., independent
from the degree of the committed polynomial.

We remark that there was no known PC scheme in the transparent setting that would
be succinct before this work.

3.3 Generic group model adversaries

We prove the security of our scheme in the generic group model introduced by Shoup [52].
The generic group model (GGM) is an abstraction of an adversary that does not use the
representation of a cryptographic group. The generic group model was first applied to
groups of unknown order in 2002 by Damgérd and Koprowski in [27]. Since then, it has
been extensively used [1, 16,36,51] to show various reductions in groups of unknown
order, e.g., the equivalence of the RSA and factoring assumptions [1]. Formally, we
sample uniformly at random the order of the generic group (of unknown order) from
the interval [A, B], where A, B € N. Each group element is represented via an injective
function o : Zg| — {0, 1} for 2' > |G|. A generic group adversary A is a PPT ma-
chine with access to G = {5(0),0(1),...,0(|G| — 1)} via the following two oracles.
A list £ is initially empty and contains the representations of group elements that A had
queried from its oracles.

Behemoth: transparent succinct polynomial commitment scheme 7

— O samples r € Zg| and sends o(r) to A. Moreover, £ := L U {o(r)}.

— O, allows the adversary to compute the group operation, i.e., whenever |£| = ¢,
A sends i, j < ¢ and a sign bit to Os. The oracle O, returns o(z; + z;) to A. Let
L:=LU{o(z; £x;)}

Theorem 1 (Element representation [52]). Let G be a generic group, and A a generic
algorithm making q, queries to O1 and qs queries to Os. Let g1, . . ., gm be the outputs
of O1. There is an efficient algorithm Ext that, given as input the transcript of A’s
interaction with the generic group oracles, produces for every element u € G that A

m
outputs, a tuple (f1,..., fm) € Z™ such that u = [] glfi and f; < 2972,
i=1

3.4 Assumptions in groups of unknown order
We build upon the following cryptographic assumptions in groups of unknown order.

Definition 7 (Strong RSA Assumption [7]). Informally, the Strong RSA assumption
states that no efficient adversary can compute roots of a random group element. Specif-
ically, it holds for a group generator algorithm GGen(-) if for any probabilistic poly-
nomial time adversary A, there exists a negligible function negl(-) such that:

G & GGen())
Projyt—w, 1>1: wé G < negl(}). S
(u, 1) + A(G,w)

Definition 8 (Order assumption). This assumption mandates that, given a random
g €r G, it is hard to find any multiple of its order: i.e., an integer | such that g' = 1g.
This is known as the order problem [45].

G < GGen())
Prigi— ;. gﬁG < negl(A). 4)
I+ A(G,g)

Definition 9 (Adaptive Root Assumption [58]). For GGen if there is no efficient
adversary (Ao, A1) that succeeds in the following task. First, Ay outputs an element
w € G/{—1,1} and some state st. Then, a random prime in Primes(\) is chosen and
Ay (w, 1, 5t) outputs w/' € G/{—1,1}. For all efficient (Ao, A;):

G <& GGen())

(’U}, St) — AO(G)
ut=w#1:1 & IT) = Primes())

u <+ Ay (w,l, st)

Pr < negl(X))]

It was shown in [16] that both the order and adaptive root assumptions hold in the
generic group model. Similar reductions were proven in the algebraic group model [6].

8 I.A. Seres and P. Burcsi

3.5 Non-interactive zero-knowledge proofs

We recall the relevant syntax of non-interactive zero-knowledge (NIZK) proofs follow-
ing [14], and for the details and exact security requirements, we refer to [14]. NIZK
arguments consist of four PPT algorithms that are defined with respect to a relation
generator algorithm R-Gen(1*) that, upon receiving some security parameter), out-
puts a polynomial time decidable relation R : {0,1}* x {0,1}* for which in our case
(¢, w) € R, where ¢ is typically an algebraic statement in a ring F or in a finite field
I, and w is a valid witness for the instance.

- NIZK.Setup(R) — (crs, 7). For the relation R, the setup produces a common
reference string crs and a simulation trapdoor 7. This possibly randomized algorithm
may use public coins (transparent setup) or private coins (trusted setup).

— NIZK.Prove(R,crs, ¢,w) — m. Upon the (¢,w) € R and the common reference
string crs, the prover returns an argument 7.

— NIZK.Verify(R,crs, ¢, 7) — {0,1}. Upon the common reference string crs, the
statement ¢, and an argument 7, the verification algorithm returns O or 1.

- NIZK.Sim(R,7,¢$) — 7. Using the simulation trapdoor, 7, and statement ¢, the
simulator returns an argument 7.

This paper relies on non-interactive zero-knowledge proofs built for the following
NP languages in groups of unknown order. All of the corresponding proofs have a
constant size and constant-time verifiers. They were shown to be proofs of knowledge
in the GGM [16,55].

Chaum-Pedersen (also known as discrete logarithm equality (DLEq)) proof [24].

Rechaump = {((s,t,u,v € G);x € Z) : s =t* ANu=v"}. (6)

Thakur showed how to instantiate the original Chaum-Pedersen discrete logarithm equal-
ity proof system in a group of unknown order setting soundly [55].
Proof of Exponentiation (PoE) [48,58].

Reoe = {(u,w € G,z € Z); L) : w=u" € G}. @)

Note there is no witness in the R pog relation, i.e., the verifier knows the exponent x.
The primary goal of the PoE proof system for the verifier is to outsource a possibly large
exponentiation, i.e., for an exponent x € [2230, 2250} in a group G of unknown order.

Proof of Knowledge of Exponent (PoKE) [16].

Rpeoke = {((u,w € G);z € Z) : w =u" € G}. (8)

Note, unlike in the Rpog relation, the verifier does not know the exponent x in the
RpokEe relation. We remark that a zero-knowledge variant of the PoKE proof system,
ZKPoKE, exists due to Boneh, Biinz, and Fisch [16].

Proof of Knowledge of Exponent Modulo an odd integer (PoKEMon) [16].

RpokeMon = {((w, g € G,Z € [n]);x € Z) : w = ¢° € G,z mod n = &}. 9)

Behemoth: transparent succinct polynomial commitment scheme 9

Proof of Knowledge of Squared Exponent (PoKSE) [4].
Reese = {((w,g € Glix € Z) :w=g" € G)}. (10)
Proof of knowledge of positive exponent (PoKPE) [4].
Reokpe = {(w,g €G);z € Z) : (w=g") A (0 <))} (11)

We will denote the corresponding proofs as mpeg, TPoKE; TPoKEMons TPoKPE s TPoKSE- We
enclose the protocols for the aforementioned languages in Appendix A for completeness.
For their proofs of security, the reader is referred to [4,16,48,58]. Some of these protocols
were introduced as interactive proof systems. However, all of them were shown to be
secure as non-interactive proof systems in the random oracle model (ROM) using the
Fiat-Shamir transformation [32]. This work uses the non-interactive version of all the
aforementioned (zero-knowledge) proof systems. Thus, we assume the ROM throughout.

4 Behemoth: A Transparent, Succinct PC Scheme

This section defines the univariate Behemoth, our polynomial commitment scheme.
We formally describe our PC scheme in Figure 1. Our Open protocol relies on two
subprotocols. First, we ensure that the opening protocol is evaluation binding in the
ProveEvaluation protocol; see Figure 2. Afterwards, we build a protocol that guarantees
that the Behemoth-committed polynomial is of bounded degree d, see Figure 3.

4.1 Lifting polynomials over a finite field to over the rationals

We want to commit to polynomials f € ng [x]. However, we also want to work in a group
of unknown order (GUO). Hence, we need to work over the integers in the exponent.
A committer can represent every f in multiple ways. We call the canonical form of a
f € F59[z] polynomial, when all of its coefficients Vi € [0,d] : f; € [0, p). Jumping
ahead, an honest prover will always use the canonical representation of a committed
polynomial. Still, we cannot force this behavior, i.e., a committer can represent internally
their committed polynomial in any equivalent form. All of our protocols will work with
the canonical representation of a polynomial. Let us consider the following example.

Example. Suppose we want to commit to univariate polynomials in F?z [x] in a group
of unknown order G. As we already alluded to, the Behemoth commitment to f will

be ¢f(®) € G for g €x G and for a carefully chosen «. For the sake of concreteness,
let @ := 2% + 1 = 33. Let us consider f(z) := 4(z? + z) = ””2% = 7”21’%5:” mod 7.
All of these polynomials are equivalent mod 7. Yet, there are crucial differences
we must point out. The first polynomial 4(z% + z) is the canonical representation of
the polynomial. The second representation of the polynomial “"2; L € Q[z] is integer-
valued everywhere and can be used to commit to the polynomial since it is an integer-

valued polynomial. Note that the Behemoth commitments of 4(x? + z) and "”2% are

different since 4(a? + o) # 0‘2% even though the polynomials are equivalent mod7.

10 I.A. Seres and P. Burcsi

Nonetheless, we remark that the representation £ +”” cannot be opened everywhere, as it

will be apparent in Section 4.3 once we 1ntr0duce our opening proofs. On the other hand,

the third representatlon of the polynomial £ 2?4152 jg pot integer-valued everywhere. In

142
+15a

particular, & ¢ 7. Specifically, suppose the committer “thinks of”” the polynomial

4(2? +) as & +15“" . In that case, it cannot even commit to it unless it could compute
arbitrary roots (142th roots in this example) in a group of unknown order G, which is
deemed to be computationally infeasible as long as the strong RSA assumption holds
in G, cf. Section 3.4. Motivated by this discussion, we define a homomorphism from
rational polynomials to polynomials over finite fields, which maps polynomials to their
canonical representations.

Project() : Q=9[z] N {f|Vi : v, (f;) > 0} — F<d[l;
d
Project(f* Z , such that f; = f{ mod p A f; € [0, p).

=0

We remark that the requirement {f|Vi : v, (f;) > 0} is necessary for the polynomials
in the domain of Project(-). If v, (f;) < 0 was for some 4, then f; could not be mapped to
IF,.. Note that Project(-) is a many-to-one projection, cf. the example above. Therefore,
when one wants to define the “inverse” of this homomorphism, we select a canonical
pre-image. This “inverse” mapping Lift(-) is defined as follows.

d
Lift(-) : F5 (2] — Z59[a]; Lift(f) := Y fix’, suchthar Vi:f; €[0,p). (12)
=0

Provers may proceed with different representations of a polynomial in different
protocols of the Behemoth PC scheme. We only guarantee correctness for the canonical
representation of committed polynomials. If provers represent internally polynomials
in a non-canonical form, then our protocols (both the commitment Com and the Open
protocols) may or may not work. However, (knowledge) soundness of the protocol is
guaranteed to hold for every representative of a committed f € F;d[m] polynomial for
which the prover has a non-negligible probability of successfully opening it.

4.2 Behemoth: a high-level description

The Behemoth univariate polynomial commitment scheme consists of the following five
PPT algorithms, cf. Figure 1. This high-level description contains two proof systems,
i.e., ProveEvaluation and PoKDegUp, introduced formally in Section 4.3. These proof
systems allow one to prove membership succinctly in the following NP relations.

7zProveEvaIuation f Z, 5 - {l € G f 6 @[l’], Z,S8 €]Fp : gf(a) = /\ f(Z) = S}

Rpokeguplf d] = {[fl € G, f(z) € Qla],d € Z : ¢ =[F] A deg(f) < d}.

Behemoth: transparent succinct polynomial commitment scheme 11

The Behemoth polynomial commitment scheme

GenSRS(1*,d): G & GGen()). go €r G. Let a 1= 200D ([losrT+1) 4 gd(logpl+1),

and g := god . Then srs[i] := g afm D _ = g8, wherei € [0,2(d + 1)].
d _ d
Com(srs, f,d): = gf(a) = H(gal)f'i = Hsrs[(d +1)+4]% where
i=0 i=0

d
f=> fix' €F;[a]
=0
Output: .

ComVerify(srs, f, [f]): [f]= Com(srs, f,d) A f € F59[z].
Open(srs, f,d, z,s): The prover P convinces the verifier V that for | f|it holds that f(z) =
s A deg(f) < d. P and V execute the following protocols.

f,z,s

1. P runs the ProveEvaluation(f, z, s) protocol and sends the g, e\ aation © Vs
see Figure 2. //This ensures that f(z) = s.

2. P samples 2’ € g F,, using the Fiat-Shamir transformation.

H oo f
3. P runs the ProveEvaluation(f, z’, s") protocol and sends the TrPriv:Evaluatlon to

V, see Figure 2. //This step is needed for knowledge soundness and ensures that
f(z') =5

4. P runs the PoKDegUp(f(x), d) protocol with V, see Figure 3. //This ensures that
deg(f) < d.

5. P runs the PoKDegUp(z%f(1/x), d) protocol with V, see Figure 3. //This ensures
that f(z) does not contain monomials of ™" for any i € Z.

. f,z,s f,2',s fd 29f(1/z),d
OUtput TOpen ‘= (ﬂ-ProveEvaluatlom 7TProveEvaIuatlom 71-PoKDegUp7 7TPOKDegUp)
OpenVerify(srs, [f], d, z, s,ﬂopen)' Parse TOpen as TOpen =
(f,z,s f,z',s’ df(l/z>)
T proveEvaluation? ﬂ—ProveEvaluatlom 7TPoKDegUp’ TPOKDegUp
f,z,s
OUtPUt- NIZK~Venfy(RProveEvaluatlon, CI'SProveEvaluation s ¢ProveEva|uation7 ﬂ-ProveEvaluatlon) A
’

. f,z',s

A NIZK-Ve”fy(RProveEvaluation7 CI'SproveEvaluation QSProveEvaluatiom ﬂ-ProveEvaIuatlon) A
. f,d

A NIZK Verify (RpokDegUp, CrSPoKDegUp > PPoKDegUps WpoKDegUp) A

. 29f(1/2),d
A NIZK.Verify (R pokDegUp, CrSPoKDegUp; PPoKDegUp) T poKDegUp)

Fig.1: The formal description of the five efficient algorithms
(GenSRS, Com, ComVerify, Open, OpenVerify) of the Behemoth polynomial commit-
ment scheme for univariate polynomials.

Remarks. First, note that in the GenSRS algorithm « is public. Hence, if the setup
GGen(\) of the underlying group of unknown order G does not require a trusted setup,
then our PC scheme can be instantiated with a transparent setup. For instance, this can be
achieved with class groups of imaginary quadratic fields or hyperelliptic Jacobians [29].
Furthermore, it is important that « is large (i.e., a > p?), (see the toy attack example
with small « in Section 2), and has a low Hamming weight for efficiency reasons. Note
that o cannot be a power of two since an efficient algorithm exists in class groups to
compute square roots due to Gauss. If a was a power of two, our Open protocol would

12 I.A. Seres and P. Burcsi

not be sound. For more discussion on the choice of «, see Section 4.2. The public
exponent « is large, specifically, o has O(d log(p)) bits, making the GenSRS algorithm
a computationally heavy computation, i.e., O(d?logp). In other words, for certain
parameter settings, GenSRS essentially behaves as a verifiable delay function [15].
Practically speaking, this means that when d > 22° for larger finite fields (p ~ 22°6),
the GenSRS(1*,d) algorithm of the Behemoth PC scheme becomes computationally
heavy, i.e., finishing the transparent setup takes several months on specialized hardware.

The size of the srs is linear in the degree d of the committed polynomial. Note that
the srs needs to contain negative degrees of « in the exponent of g® fori € [1,d]. This
seems unattainable since we cannot compute a-roots in a group of unknown order G
(we can only compute roots of powers of two in class groups) as it would contradict the
strong RSA assumption, see Appendix 3.4. In practice, one would compute the powers
of « in the forward direction, i.e., g, 9%, ... ,g‘l2d and designate g“d as the “new” g.
Lastly, one can attach PoE proofs [48,58] to convince resource-constrained devices that
the transparent setup was computed correctly.

Once the srs is computed, committing to f & ng [z] can be in O(d) time as it
requires d “small” exponentiations, i.e., each exponent (coefficient of f) with bit-length
~ log(p). Additionally, this computation can be parallelized.

We remark that the evaluation proof has constant size; it is independent of the
degree d of the committed polynomial. This holds, as we shall see because all the
applied underlying zero-knowledge proofs have constant size. Moreover, the verifier
also runs in constant time. To the best of our knowledge, this is the first transparent
polynomial commitment scheme with constant evaluation proofs and constant verifier.
The verifier’s efficiency comes at the cost of a computationally heavy prover, i.e., a
cubic prover. The bulk of the prover’s work comes from the difficulty of finding the

—

three (or four) squares decomposition of § = f(z) ~ B over the integers. This results
in a cubic computation using the state-of-the-art square decomposition algorithm of
Pollack and Trevifio [49]. To concretely reduce the prover’s running time (unfortunately,
the asymptotic complexity still remains cubic), in our construction, we decompose
5 = € + ¢ to the sum of a small positive integer € and a prime ¢ that can be further
decomposed to two squares much faster than decomposing 5 to the sum of three squares.
Still, the cubic computational complexity constrains the prover to a specific range of
parameters to preserve the practicality of our scheme. We further expand on our scheme’s
theoretical and practical performance in Section 7.

Strong correctness. The original KZG commitment scheme satisfies the property of
strong correctness, i.e., it is computationally infeasible to commit to polynomials of
degrees larger than the maximum allowed degree d, i.e., the length of the srs, as long as
the d-polyDH assumption holds. This property is beneficial and even wanted in certain
applications, e.g., verifiable secret sharing. We note, however, that strong correctness is
not satisfied by our polynomial commitment scheme as the srs is extensible by anyone.
The possibility to extend the srs is valuable in certain applications, e.g., zkSNARKSs.
The extensible nature of the srs does not limit the complexity of the circuit one wants
to prove statements about. It is conceivable that in the imminent future, when the
community wants to support computational integrity proofs for statements with ever-

Behemoth: transparent succinct polynomial commitment scheme 13

increasing complexity (e.g., training or inference in zero-knowledge machine learning),
then currently available srs strings with length ~ 228 will likely fall short in supporting
such complex computations. Recall that the srs cannot be extended indefinitely without

increasing « since that would forfeit evaluation binding, i.e., it must hold for d and
d+1)
pthat B = Y (p—1)" < a, see Section 5.2. However, computing a larger, updated

i=1
value of o/ > o and updating the srs = {g® " }?idOH) tosrs’ = {go" TV 2eHD

accordingly can be computed with much less effort than initializing a new PC instance.
On the other hand, a malicious prover can use the extended srs to its favor, but we prove
that this does not yield an attack on the security of our polynomial commitment scheme.

On the choice of o in class groups. It is well-known that the ability to compute
square roots in an RSA group, i.e., mod N(= p - ¢) with unknown factorization, is
equivalent to factoring. However, in class groups, given hy := g* € CI(A), one can
efficiently compute the “square root of h;” given the factorization of A (in cryptographic
applications of class groups A < 0 and prime). Specifically, given a group element A4,
the algorithm outputs hy = g¥ such that h3 = g?¥ = g%, or output L if square roots do
not exist [5]. This algorithm is due to Lagarias [41]. Assume for now that a = 2k,

We show next that such an « would render Behemoth insecure. If o = 2%, then for
z=0,Vs € Fp,Imopen,s : OpenVerify(srs,,d,O, S, Topen,s) = 1 and such Topen.s
can be found efficiently. In this case, the OpenVerify(-) verification equation would be:

—— 2k —
gq<a><afz>:(gq<a)) L gfl@=s, (13)

This check is vacuous if o = 2* since the adversary can efficiently compute the 2*-th

root of any group element of ¢f(®)=% on the right-hand side of Equation (13). Thus, if
a = 2% for any k € Z, the PC scheme’s evaluation binding property would not hold.
Therefore, o cannot be a power of two, i.e., a # 2k, Similarly, o cannot be any value
for which 3z € F,, such that o — 2 is a power of two. For efficiency reasons, that is, to
ensure a low Hamming weight for o, we set « = 28 428~ fora k € Z s.t. a > B.

4.3 Subprotocols of the Behemoth Open protocol

Next, we detail the subprotocols of our Open protocol. First, we introduce a protocol
called ProveEvaluation that allows the prover to convince the verifier that a Behemoth-
committed polynomial f is evaluated to s at z. Second, we describe a protocol that allows
the prover to show that a Behemoth-committed polynomial has degree maximum d.

The ProveEvaluation protocol In this protocol, we want to prove membership in
the relation Repa; = {(f], 2, 5:f)|f(2) = s A Com(srs,f,d) = [f]}. The goal of the
ProveEvaluation protocol is to mimic the KZG opening strategy soundly in the group
of unknown order setting. Specifically, in the KZG opening proof to show that f(z) = s,

14 I.A. Seres and P. Burcsi

the prover demonstrates that 2z — z divides f(x) — s by sending a commitment to q(z)
such that the following verification equation is satisfied in the exponent

q(z)(x — z) =f(z) — s. (14)

The challenge in our setting is that we need to work over the integers since the order of

—

the group is hidden. This renders our statement to be f(z) = s. Therefore we check the
KZG opening verification Equation 14 in the exponent over the integers, i.e., we check
polynomial equality in a:

—

a(a)(a—2) = f(a) - & (15)

This strategy entails several technical challenges that we solve with techniques
mainly introduced in [4, 16, 58]. In particular, the following technical challenges arise
when one translates the KZG opening strategy to the group of unknown order setting:

—

1. The prover can only compute q(«) and not q(«) mod p in the exponent. The prover
sends Q := ¢%®) as part of the opening proof. The prover uses the algorithm

outlined in Figure 4 to compute ¢g9(*).

2. Dueto efficiency reasons (recall a—z has ~ d log p bits), the verifier cannot compute
Q“~7* from the left-hand side of the verification Equation 15 on its own, unlike in
the bilinear pairing setting. This would entail a O(log d + loglog p) computation
that would prevent us from achieving a constant-time verifier. Therefore, the verifier
outsources this large exponentiation to the prover; that is, the prover needs to
convince the verifier about the correctness of the exponentiation Q“~* with a
constant-size proof and in constant time [58].

3. On the right hand side of the verification Equation 15, the prover computes 3 in the
exponent, i.e., g°. The prover must convince the verifier with a constant proof in
constant time that 5 in gg has the same remainder modp as s, i.e., s = s mod p.
This is achieved by the PoKEMon proof introduced in [16], see Figure 7.

4. Finally, the prover shows that the exponent 5 in ¢° lies in the appropriate range,
ie.,, 0 < 5 < B, recall that B is defined as a uniform upper lﬁ)&nd on the integer

evaluations at any polynomial, i.e., B := max f(z), cf. Section 3.1.

z€F,,f(x) EFEd (]

Lemma 1. The ProveEvaluation protocol (cf. Figure 2) satisfies evaluation binding,
Le., it is not possible to show simultaneously that f(2) = s Af(z) = s’ such that s # '
for a Behemoth-committed polynomial f.

Proof. The proof is provided in Section 5.2. |

Note that at this point, we did not ensure that the committed polynomial f is in
the desired polynomial ring]ng [x]. In particular, the committer might use polynomials
of 1) higher degree than d, and 2) due to availability of negative powers of « in the
exponent, i.e., gaﬂ, in the srs, the committer might include monomials of 2% in the
committed polynomial. Next, we develop tools to prevent an adversarial prover from
successfully opening such polynomials, i.e., with non-negligible probability.

Behemoth: transparent succinct polynomial commitment scheme 15

The ProveEvaluation(f, z, s) protocol

Statement: f(z) = s A Com(srs, f,d) = (: gff@).
Input: (P(srs,f, z, s), V(g*,[f], z, s)).

o

1. P sends gq@), where g(o) = Hlo)=5 “and § := f/(—z\) over the integers. //gq@) is

a—z

calculated using an algorithm in Figure 4.

a—z

2. P computes gi(@(e=2) and obtains ThoE =
NIZK.Prove(Rpog, Crspok, (g""("‘>, gl a=2) o z),L).

— In the verification of 75.g”, the verifier would need to compute o — z mod p’ =
amod p’ — zmod p’, where p' €r Primes()\), see Wesolowski’s proof
of exponentiation protocol in Appendix A.2. Computing « mod p’ would
entail computing O(logd) multiplications in Z;,. Hence, the verifier out-

sources this computation to the prover to avoid this logarithmic computation.

o, mod p' | __
PoKEMon T

The correctness of this outsourced computation is proved by
NIZK.Prove(RpokEMon, CrSPoKEMon; (9%, 9 Q).
3.7 sends g¢° to the verifier V and calculates w;ﬁ(EMon =
NIZK.Prove(RpokEMon, CrSPokEMons (G°, gg),). /[This ensures that s = § mod p.
4. Let J = gB/g°. The prover creates the proof Th.br =
NIZK.Prove(RpokpE, Crspokpe, J, B — &) and also computes mhoxpe =

NIZK.Prove(RpokpE, CrSpokPE, gg, §). //These proofs ensure that 0 < § < B.

a mod p')

.z . a—z o, mod pl s,8 B—3 K
The pr00f~ T'ProveEvaluation *— (ﬂ—PoE) WPoKEMon I ﬂ—PoKEMon’ 7TPOKPEa ﬂ-POKPE)'
Verification: Parse the 7f,ovebvaluation Proof as the tuple mfoveEvaluation =

a—z a,a mod p’ s,8 B—3 3
(TPoE > ThokEMon > TPoKEMon» TTPokPE TPoKPE)-
. > a—z
Output: NIZK.Verify(Rpok, Crspoe, pok, Tpog) A

. a,a mod p’
A NIZK Verify(RpokEMon; CrSPoKEMon , PPoKEMon TPoKEMon PN

A NIZK.Verify (R pokeMon, CrSPoKEMon, PPoKEMons TpokEMon)
A NIZK Verify(RpokPE, CrSpoKPE ;s PPoKPE WF?OT(;E) A
A NIZK Verify (RpokPE, CrSpokPE , PPoKPE ; TPoKPE) -

Fig.2: Behemoth ProveEvaluation protocol formal description. In the ProveEvaluation
protocol, the prover convinces the verifier that f(z) = s. It is a subprotocol of the
Behemoth Open protocol, cf. Figure 1.

Proving a degree bound of the Behemoth-committed polynomial A crucial part of
the Open protocol is to ensure that the committed polynomial f € ng [x] has a degree
less than or equal to d. This is not immediate in our setting, unlike in the KZG setting.
Specifically, in the KZG PCS, if the srs has length d, then an efficient prover cannot
commit to polynomials of degree larger than d as long as the d-polyDH assumption
holds. This is because the exponents in the KZG srs are hidden, thanks to the trusted
setup. However, in our setting, anyone can freely extend the srs to be able to support
larger degree polynomials. Therefore, we must deal with malicious provers that can
commit to arbitrarily large degree polynomials; deg(f) € O(poly())). We follow the

16 I.A. Seres and P. Burcsi

footsteps of Thakur and adapt his zero-knowledge proof systems about KZG-committed
polynomials introduced in [54] to the group of unknown order setting.

Proof of knowledge of a polynomial with a degree upper bound (PoKDegUp). The
main goal of this subsection is to build a proof system that can show that a Behemoth-
committed polynomial has degree most d using the previously introduced building
blocks, i.e., POKE, PoOKPE, ProveEvaluation. We adapt Thakur’s corresponding proof
system for KZG-committed polynomials [54] to Behemoth-committed polynomials.
Thakur observes that Vd € N, Vf € Z[z] : deg(f) < d <= x|z9*!.f(z7!). Note

the verifier already knows a commitment to 29t from the srs, i.e., let a := be the
corresponding srs commitment to the monomial of degree d + 1. The prover then sends

a Behemoth-commitment to b := along with a PoKE(g®,b) that shows
that b is a commitment to a polynomial divisible by z. This is where it is important that
« is not a power of two. Otherwise, this PoOKE(g®, b) proof is vacuous since, in class
groups, it is possible to compute the roots of powers of two due to Lagarias [41]. We
remark that we need the “negative” powers of « in the srs to commit to f(1/x). Now, the
prover shows the well-formedness of commitment b, i.e., that it is indeed a commitment
to x9+1f(z~1). For a randomly generated challenge v €r I, the prover verifiably

sends the element ¢f(?), along with an evaluation proof that this is a commitment to the
evaluation of f(z) at -, see the ProveEvaluation protocol at Figure 2. The prover also
sends the element ¢ := |291f(7)| = ¢ along with a Chaum-Pedersen proof [24]
(also known as the discrete logarithm equality (DLEq) proof) to show that the discrete

logarithms between the pair (g, gf")) and the pair (gadH,C) are the same, namely

—

the common discrete logarithm is f(+). Next, the prover shows that the polynomial
h(x) := 29T f(2~!) committed in b satisfies the following relation:

yh(z) = 24T () mod (yz — 1). (16)
The prover does so by producing a (ya—1)-throotof b7 -¢~7 = g’mdﬂfm) —7a? (),
Since v is randomly and uniformly generated, this implies that with overwhelming
probability, h(z) = x4+ . f(z~1), due to the order assumption, see Section 3.4. Hence,

the following proof system is an honest verifier zero-knowledge proof for the following
relation:

RpokpegUpf, d] = {{f] € G,f(z) € Q[z],d € Z : ¢"®) =[f], deg(f) < d}.

Example. What would constitute a soundness break of the PoKDegUp protocol? Con-
sider the polynomial f(x) = z? + 3a3. This polynomial has the same Behemoth-
commitment as g(z) = 32 + 22. From the verifier’s perspective, it is indistinguishable
which of these polynomials f or g are “in the prover’s head”. However, it is easy to
see that the prover can only run successfully the ProveEvaluation(f, z, s) protocol for
any z € F, with the evaluations of s := g(z) due to the applied range checks in
the ProveEvaluation protocol. We call such two polynomials evaluation equivalent, cf.

Behemoth: transparent succinct polynomial commitment scheme 17

The PoKDegUp(f, d) protocol

Statement: The prover P knows a polynomial f (') € Q[x] such that[f] = gf(‘;) Ndeg(f) < d.
nput: (P(srs, f,d,[F), V(g*"", d.[F]).

1. P sends the element b := gadﬂ'm/"‘) with a proof for PoOKE[g®, b].

2. P samples a challenge v €r [, using the Fiat-Shamir transformation.

3. P sends the elements g' and ¢ := g“dﬂf(“’) with a Chaum-Pedersen DLEq proof
for the pairs (g, gf(”) and (go‘dJrl ,C).

4. P runs the protocol ProveEvaluation(f,~, f(v)), i.e., the prover convinces the verifier
that f(+) evaluates to a certain value.

5. P sends proofs for POKE[g* 7, ¢"®)~f ()] and PoKE[g"*~*, b7 ¢ 7].

The proof: ”;fKDegup := (PoKE[g®, b], ChaumP[g,gf('y\),g“Hl,c]),

ProveEvaluation|f, v, f(v)], PoKE[¢g* ™7, ngJ)’f("T)L PoKE[g" ™!, b7¢ 7).
Verification: V) verifies the ProveEvaluation, PoKE, and the Chaum-Pedersen DLEq proofs.

Fig. 3: Proof of knowledge of a polynomial with degree upper bounded (PoKDegUp).
The prover convinces the verifier that the degree of the Behemoth-committed polynomial
f is upper bounded by an integer d. PoKDegUp is a subprotocol of the Behemoth Open
protocol, cf. Figure 1.

Definition 10. Motivated by this discussion, we want the prover not to be able to prove
that its committed polynomial f has deg(f) < 2. It is easy to see that this holds in this
simple case. If the prover wants to show that deg(f) < 2 in the commitment , then
f(1/x) = 24 + 3a3. In the last step of the PoKDegUp protocol, the prover must show

— —

that ya — 1|yfga@ 1 (1/a) — yfgadt1f (7). In this particular example, this check entails
toya—1ye? (L +3a%) —ya® (72 + 3+%) = ya(1+30°) —ya(y?a? + 3y3a?). Since
ged(ya — 1,ya) = 1, therefore ya — 1|30 — 30273 — (ya+ 1) (ya — 1) <= ~ya —
1|13a® —3a%y3 = 302 (a® —73) <= (ya—1)|(a®—~3). Since ged(ya—1,a3) = 1,
we have that (ya — 1)|(a® —73) <= (ya—1)[a®(a® —73) = a® — y3a?. Because
of (ya — 1)|v3a® — 1, it suffices to show that (ya — 1)|a® — 1, where the right-hand
side does not contain -y anymore, that is chosen by the verifier uniformly at random. We
conclude that the prover cannot convince the verifier that f(x) = 22 4 33 is a quadratic
polynomial. Next, we prove that the PoKDegUp protocol is secure in full generality.

Lemma 2. The PoKDegUp protocol, see Figure 3, is knowledge sound for the relation
RpokpegUp = { (], d;f)|f € Q2] A deg(f) < d} in the generic group and random
oracle models.

Proof. Suppose a PPT algorithm A outputs an accepting transcript. The extractability
of the subprotocols PoKE[g*~7, ¢gf(®)=f(")] and PoKE[g7*~!, b7¢ 7] imply that with
overwhelming probability, A can output polynomials f(x), g(x) = z91f(y), h(z) =

18 I.A. Seres and P. Burcsi

297 (1/2) such that

g =[], g8@ = g1 = b,) ") = ¢, Ah(z) = yg(x) mod (yz — 1).
a7
Since we do not assume the Knowledge of Exponent Assumption (KEA), we cannot
immediately claim that such polynomials can be extracted from the prover. Instead, we
argue as follows. Due to the extractability of the applied NIZK proof systems, the prover
must know an integer in the exponent for every Behemoth commitment. Therefore,
whenever we say that the prover knows a polynomial for a commitment, we refer to the
unique polynomial that is derived from the a-adic representation of the integer known
by the prover in the exponent. The Chaum-Pedersen DLEq proof implies that

gad“f(A'V) —af == gh(a) (18)
Thus, the verifier checks in the exponent that
e (27!) = g(a) mod (yz — 1), (19)

and since v was randomly and uniformly generated, this implies that with overwhelming
probability g(x) = x9t1f(z~1) holds. This is because if it was the case that g(z) #
29T (271) and there was a non-negligible probability of finding a suitable ~ for
which g(y) = 44T (y™!) mod ord(G), then g(v) — v+ f(y™1) =0 mod ord(G)
contradicting the order assumption, see Section 3.4. Finally, the subprotocol PoKE[¢g, b]
implies that with overwhelming probability, g(x) is divisible by x, hence it follows that
deg(f) < d.

The only thing remaining to show is the case when the prover does not use the
canonic a-adic polynomial representation of a polynomial. Let deg,, (f) be the degree
of the canonical a-adic representation of the Behemoth-committed polynomial . On
the other hand, let deg™ (f) be the degree of the malicious prover’s interpretation of ,
where deg™ (f) # deg,,(f). Due to the correctness of this protocol, the following check
for the honest prover needs to be satisfied,

(va = 1)|yh(a) — a=DFyf(y), (20)
Now, suppose that the prover applies a different polynomial h’ in the check, that is,
(yor = D' (@) — @ O+ yf(y), @1

If we subtract Equation 21 from Equation 20, then we find that the malicious prover
must satisfy the following division,

(va — Dy(h(a) — (@) — y(a®9a® — qdes™O) (), 22)

where ged(ya — 1,7) = 1, thus we can eliminate v. Note that f(y) can be opened
to a single evaluation due to the evaluation binding property of the ProveEvaluation
protocol. Towards contradiction, assume that o9« (f) o£ @¢9™ () We have the following

—

congruence for f(7y),

- _ _ h(a) = ()
f(y) = der (O ades™ mod (ya —1). (23)

Behemoth: transparent succinct polynomial commitment scheme 19

Both the nominator (h(«) — h’(c)) and the denominator a%9a () — 29" () are estab-
lished before v €r I, is sent to the prover from the verifier or equivalently in the random

—

oracle model, sampled via the Fiat-Shamir transformation [32]. Since f(-y) is proved by
the committer to be the evaluation of f at «, and the evaluation binding property of
the ProveEvaluation protocol has been shown, we conclude that Equation 23 can be
satisfied only with negligible probability. |

Flexible Behemoth Open proofs over multiple fields. Since the Behemoth-commitment
of a polynomial f commits to it over the integers, one can reuse a commitment to later
open the same commitment over different fields IF,, and IF,,. This flexibility might have
several applications, as discussed next. Observe that all steps except one in the whole
Open protocol are oblivious to the choice of the field F,, over which the committed
polynomial is opened. The sole exception is the third step in the ProveEvaluation
protocol, namely where the prover shows for the opening statement f(z) = s that § = s
mod p holds with a PoOKEMon proof, cf. Figure 2 and Figure 7. If the p-dependent
bound B for evaluations of polynomials (cf. Equation 1) remains smaller than «, one
can safely open a Behemoth-committed polynomial over that field IF,, as well.

5 Security Proofs

In this section, we prove the security of our polynomial commitment scheme.

Theorem 2. (Behemoth is a secure PC scheme) The Behemoth PC scheme is a secure,
succinct PC scheme, i.e., it satisfies correctness (cf. Section 5.1), evaluation binding
(cf- Section 5.2), knowledge soundness (cf. Section 5.3), polynomial binding (cf. Sec-
tion 5.4), and evaluation hiding (cf. Section 5.5) in the generic group and random oracle
models.

Concrete assumptions and the generic group model for GUOs Even though the
generic group model (GGM) implies most of the applied concrete assumptions (e.g.,
order assumption, discrete logarithm assumption, adaptive root assumption), in the
following, we spell out the concrete assumptions used in individual proofs as well. This
demonstrates the minimal assumptions necessary to prove certain security properties of
our PC scheme. Note we only assume the GGM for knowledge soundness. The other
properties (i.e., correctness, polynomial binding, evaluation binding, and evaluation
hiding) are reduced to concrete assumptions.

Generic group model for class groups We refrained from introducing a new oracle
in the GGM to model the ability to compute square roots in class groups of imaginary
quadratic fields; see Section 4.2. Related works that use the GGM for class groups also do
not model this added capability in their security modelling for multiple reasons [6, 16].
First, an added square root oracle would make the class group GGM variant weaker.
Second, in all Behemoth subprotocols, the prover is forced to compute e-th roots of class
group elements for a randomly chosen prime e. Computing random e-th roots in groups

20 I.A. Seres and P. Burcsi

of unknown order is equivalent to the order assumption in the GGM [5, 6]. Third, in our
protocols, we purposefully avoided any powers of two in the exponent (see Section 4.2)
exactly to counter these square root computing capabilities in class groups.

5.1 Correctness

Lemma 3. The Behemoth PC scheme satisfies correctness.

Proof. The OpenVerify(-) algorithm checks whether Q®~% = /gé, for Q = ¢a(®
and |f] = ¢f(®). In particular, the verifier checks the polynomial equality q(a)(a —

—

z) = f(a) — f(z) in the exponent. The additional NIZKs ensure the soundness of
the Open protocol, i.e., range checks, equality checks mod p, and degree bound on
the committed polynomial. These applied NIZKs are as follows: for the languages
RchaumP s RpoE, RPoKE; RPoKEMon, RPoKPE; RZKPoKPE, RPokDegUp- All these NIZKs
were proved to satisfy correctness in prior work [4, 16,48, 58], and in Section 4.3.
We apply the probabilistic Pollack-Trevifio algorithm [49] in the Lagrange four-square
decomposition in the proof of knowledge of positive exponent protocol (PoKPE,
cf. Appendix A.5). Therefore, we can only claim correctness with probability at least
1 — negl()\) for some negligible function negl(-). |

5.2 Evaluation binding

Lemma 4. The ProveEvaluation protocol (cf. Figure 2) satisfies evaluation binding if
the order assumption holds in G, i.e., it is not possible for a PPT adversary to show that
f(2) = s ANf(2) = &' such that s # s’ for a Behemoth-committed polynomial f.

Proof. Adversary A; in its security game needs to compute the order of the GUO G.
To that end, A; instantiates the Behemoth PC protocol in the GUO G and invokes an
adversary Ay breaking the evaluation binding property of Behemoth to compute |G]|.

Towards contradiction, assume there is an efficient adversary Ay who breaks eval-
uation binding with non-negligible probability, i.e., Ay outputs an evaluation point z
for which Ay knows s, s1, (S0 # $1) and Topen,0, Topen,1 asserting that f(z) = sg
and f(z) = s respectively, and both statements and proofs are accepted by the verifier.
Formally, this entails that the following two equalities are verified successfully in the
exponent:

— — — —

qo(a)(e — z) = f(a) = S0 A qu(a)(a — 2) = f(a) — 51, 24)

where sg = §9 mod p, s; = §; mod p, i.e., the evaluations of f of z over the integers.
Subtracting these two equalities in Equation 24 from one another we get:

(90(e) — q1(a))(a — z) = 81 — 0. (25)
The right side of Equation 25 is non-zero by assumption and §; — o € [—1, B]. On the
other hand, by assumption g () # ¢1 () and by construction (« — z) > B. Therefore,
the left-hand side of Equation 25 never falls into the interval §; — §g € [—B, B, i.e., they

cannot be equal over the integers. If Equation 25 is satisfied, then (go () — g1 () (av —

Behemoth: transparent succinct polynomial commitment scheme 21

z) — (81 — 80) = 0 mod ord(G), hence breaking the order assumption. In other words,
A; can break the order assumption using .4, as a black box. The success probability
and running time of .4, breaking the order assumption is the same as those of A;. W

5.3 Knowledge soundness

Due to the transparent nature of our PCS, it is inherent that a prover is only bound

—

to f() rather than a unique polynomial f € F59[z]. At first, this seems to violate
knowledge soundness. However, since evaluation binding holds, see Section 5.2, the
map g : z — f(z) mod p is set to stone after committing to f. Below we show that the
existence of this map g implies the knowledge of a mod p polynomial f* in the desired
polynomial ring F¢[x].

Consider |f|:= g, it may seem ambiguous whether it is a commitment to f(z) = x
or f(x) = a. We remark that in the ProveEvaluation protocol, the prover can only
open the f(x) = x polynomial. This is because the applied range proofs in the
ProveEvaluation protocol, i.e., the prover needs to show that at the evaluated point

—

z, we have that 0 < f(z) < B(< «). Therefore, it is clear that the prover can only
evaluate the f(z) = x polynomial for every z € F,. Note that without range proofs on

f(z) in the ProveEvaluation protocol, the prover could convince the verifier about the

—

validity of any f(z) + h(2)(a — z) value evaluated of the committed polynomial at z.
Thanks to the applied range proof, the committer can only evaluate the commitment

as f(z) = z, this being the smallest positive representative of f(z) mod a — z. This
observation motivates the following definition.

Definition 10 (Evaluation Proxy). The polynomial f; € Q=%[x] is an evaluation
proxy for fg € Q=4[x), i.e., fo —gval f1 if V2 : OpenVerify(srs, ,Z,fQ(Z),ﬂf([))F’);) =

1; ﬁz\) = fT(;) mod « — z. Put differently, f?(;) = T(?) + h(z)(a — 2), for some
h(z) € Z. In other words, whenever f is opened successfully at z, it has the same
evaluation as 1 at z. If fg —gval f1 A f1 —Eval To holds, then we say that fy and f1 are
evaluation equivalent, i.e., fy =gya f1.

Example. o + 3o —gval 22 + 3x. They are different polynomials mod p, but they
behave the same from an evaluation point of view. Even though the former polynomial
can be considered a constant polynomial, anywhere the committer can open o + 3«
it will “behave” as a polynomial 2 + 3z. For every z € F,, the committer can create
convincing ProveEvaluation proofs such that f(z) = 22 + 3z. The previously proved
evaluation binding property implies that this is the only way the prover can open a
Behemoth commitment of a polynomial in Q[z]. Similarly, it is easy to see that 2% +
32 —Eval & + 3a holds.

a2+a-z a2+a~:1:
2 . 2

«a =z mod 2. And at any successfully openable point z, & ';(”“' has exactly the same

o¢2+a<rc
2

could not be opened.

Example 2. —Eval 2. One can only open successfully at points where

evaluation as z2. Observe that, on the other hand, 2% —gya| , since there exist

042+a~93
2

points z where 22 can be opened, while for

22 I.A. Seres and P. Burcsi

Polynomials that can be opened at least at a single point z with non-negligible prob-
ability will play a crucial role in our knowledge soundness proof. Recall from Figure 1,
steps (2) and (3) in the Open protocol, this means that the prover can successfully run
the ProveEvaluation protocol with non-negligible probability for a randomly chosen
2" € F,,. We define openable polynomials formally as follows.

Definition 11 (Openable polynomials). Given a valid srs, a polynomial f € (Q N
Z,)<9z] is said to be openable if

EIzEIsEIwg’;’eiVnegl()\) : Pr[OpenVerify(srs, [f], d, z, 377%’;(’;) =1] > negl()\), (26)

f -)
where ﬂg’p(’; a maliciously generated opening proof for f, z, s.

As we saw in the proof of correctness in Section 5.1, honest provers can always
convince the verifier about correct openings. However, as noted above, we cannot force
provers to use the canonical lifts of polynomials in]F;d[x]. For instance, consider the
polynomial of 22% —2+7. Due to its linear term Lift(Project(22% —2+7)) # 223 —2+7,
but the prover can open everywhere the Behemoth commitment of 222 — x4 7. It is easy
to argue that the opened values are always the same mod p as for Lift(Project(22% —
r+7)) = 223+ (p— 1)z + 7, as expected. Thus, mod p knowledge soundness holds.

Definition 12 (p-faithful polynomial). A polynomial f € Q<9[x] is said to be p-faithful
if V2 € F, where f can be opened with non-negligible probability, the evaluation
f(z) = s = Project(f)(z) mod p.

By the design of the ProveEvaluation protocol, all polynomials in ng [x] are p-
faithful. As the example above shows, there are polynomials in Q=9[z] \ F59[z] that
are p-faithful. What poses a challenge to proving knowledge soundness is that not all
openable polynomials are p-faithful polynomials.

Example. f(x) = «. Observe that f is not p-faithful. Although it is openable everywhere
and its evaluations are congruent mod p to the f(z) = x polynomial. Yet, the commit-
ment to the f polynomial could be viewed as a commitment to a constant polynomial.
Even if the prover considers the committed polynomial a constant, it can only open it
as the identity function of IF,,. This does not contradict knowledge soundness since the
prover’s behavior is identical to a prover who considers the committed polynomial as
f(z) = .

As we shall show, the opening behavior of any openable polynomial can be repro-
duced by a p-faithful polynomial.

Lemma 5. If fy € Q<Y[z] is an openable polynomial, then there exists t* such that
fo —eval f* and £* is p-faithful.

Proof. If fy is an openable polynomial, we rewind d + 1 times the execution of the
Open protocol to immediately before step (2), cf. Figure 1, with fresh randomness
z; €r Fp in each round ¢ € [0, d]. Every round Vi : ¢ € [0, d], the prover must also run
the ProveEvaluation(fg, 2;, s;) protocol. Thus, the extractor obtains with non-negligible

Behemoth: transparent succinct polynomial commitment scheme 23

probability, two vectors T := {z;}9_, and {s;}9_, such that Vi € [0,d] : fo(2;) = s;
holds. The soundness of the PoKDegUp protocol, cf. Section 4.3, ensures that f; is
a maximum d degree polynomial. Therefore, next, the extractor Lagrange-interpolates
a degree d polynomial f* € Q=9[x] given the obtained valid evaluations from the
rewinding process. These evaluations are unique due to evaluation binding proved in
Section 5.2. Hence, the Lagrange-interpolation f* of f has the form:

d d d d
f*(x) ::Zsiﬁi(q}) :ZSZ- H Zx 72/] < Z H x._ZZJ. =
i=0 i=0 j=0,#i " i=0 | j=0,j7#4 Zi J
= (- 1)_2 £iz)
1=0 (27)

where we call the polynomials {£;(x)}¢_, as Lagrange polynomials or Lagrange basis.
We want to obtain an upper-bound for the Lagrange-interpolation polynomial f* on
[0, p) using Equation 27. Let us divide the [0, p) interval into 2d equal length intervals

C . [pi pe(i+1)y2d—1
Si =[5, %)i,

. For a better estimate on m[ax) f*(z), we slightly increase
z€[0

the running time of the extractor until we obtain sample points z; that are sufficiently
close to being equidistant. This helps us obtain a better upper bound on the Lagrange
basis polynomials by avoiding “too small” denominators. Thus, the extractor selects
uniformly at random interpolation points z; from the interval [0, p). According to the
coupon collector’s problem [30], the extractor must sample ~ 2d log 2d points on average
to sample at least one interpolation point from every segment in S* := {S; : i = 0
mod 2}. Let the set of interpolation points, 7' = {z;}9_,, consisting of the d + 1 points
chosen so that we choose one point from every segment in S*. Note that points in 7'
are close to be equidistant, i.e., Vi : 25 < |2 — 2i41] < L 'We upper bound for these
interpolation points max,¢|o) f*(x) as follows.

d -

g .« g _%—I#‘ (J"';l)P
max f*(z) < —IZ H J sz jd;’JZ <
=€[0,p) =0 | jmoji 1T % i=0 ((2j+1)p)2

2d
j=0,j#1
d

d OH#'(J' +1)

=0V, (2
<2d+1pz Jd/2] 2MH1p(d £ 1) < a

=0 (2 +1)2

J=0,j#i

Next, we show that f* is p-faithful, i.e., p-faithfulness is implied by the following:

max f*(z) < a. (28)
z€[0,p)

24 I.A. Seres and P. Burcsi

A successful evaluation of f* at a point z means that f*(z) — k(z — «) € [0, B] for
some k € Z. Equation 28 implies that this can only happen for £ = 0. Therefore, since
k = 0 for every opened evaluation point, the extracted polynomial gives the correct
mod p evaluation, i.e., f*(z). This concludes the proof of knowledge soundness as we
showed that the extracted polynomial f* behaves as fy from an evaluation point of view,
more formally serves as an evaluation proxy for fy, cf. Definition 10. Additionally, the
extracted polynomial f* has the property of p-faithfulness (which fy may lack), i.e.,
opening the integer substitution value at a point z and reducing it mod p yields the same
result as taking all coefficients of f* mod p.]

5.4 Polynomial binding

Lemma 6. The Behemoth PC satisfies polynomial binding if the order assumption holds
in the applied group of unknown order G.

Proof. Adversary A; in its security game needs to compute the order of the GUO G.
To that end, A4; instantiates the Behemoth PC protocol in the GUO G and invokes an
adversary Ay breaking the polynomial binding property of Behemoth to compute |G]|.
Assume towards contradiction a PPT adversary A, that successfully outputs two
polynomials fy,f; € ng [] such that fy # f; and their commitment is the same.
We create an efficient adversary .A4; who breaks the order assumption, see Section 3.4
and [45]. Let us assume that Ag can open th the commitment c to polynomlals fo, f1,fo # f1.

Since ¢ = gfo(a) =g" fi(a) , therefore gfo o(e)~fi(a) — =1,ie. m —fl() =0mod |G|.
Now, A; outputs with non- neghglble probablhty fo(a) — f1() which is a multiple of

the group order |G| whenever fo() # fl() contradicting the order assumption.
Now, we deal with the case when fy(a) = f; («) A fo #+fi. Letg := fo— f1 and the
first non-zero monomial of g be z*. Observe that Z (fo i—fi)at <2p Zz bl =

% < o, The first inequality follows from Vi : | f;| < p, and the second inequality
follows from 2p < «. Put differently, the first non-zero monomial dominates the rest
of the sums of the remaining monomials. Hence, it cannot be the case for polynomials

fo,f1 € F59[2] that fo () = f1 (@) Afo # fi. n

5.5 Evaluation hiding

Lemma 7. The Behemoth PC satisfies computational evaluation hiding if the discrete
logarithm problem is hard in the group of unknown order G.

Proof. We can repeat the proof of evaluation hiding for the KZG polynomial commit-
ment scheme. Suppose there exists an adversary A that breaks the evaluation hiding
property of commitment ¢ and correctly computes polynomial f(x) (without loss of
generality deg(f) = d) given d valid witness tuples (z;,f(2;), Topen,i). We show how
to use A to construct an adversary B that can break the discrete logarithm assumption
in G. Let (g,9%) € G x G be a discrete logarithm instance that 3 needs to solve. 5
generates srs for A by appropriately picking o € Z and computing srs = («, {g® }4_).
B sets (j,f(j)) €r Z3 as polynomial f(x)’s evaluations at indices j. It then assumes

Behemoth: transparent succinct polynomial commitment scheme 25
f(0) = a, which is the answer for the discrete logarithm instance, and computes gf(®)
using d 4 1 exponentiated evaluations: (0, g%) and the d other chosen pairs (j, g"?)).
Finally, B computes as part of the witnesses ¢; for the d chosen evaluations (j,f(j))
as ¢; = (gf(®) /¢f)1/(@=3) "and sends srs and d witness tuples (j, (), Topen,;) to A.
Once A returns polynomial f(x), BB returns the constant term f(0) as the solution for
the discrete logarithm instance. It is easy to see that the success probability of solving
the discrete logarithm instance is the same as the success probability of A, and the time
required is a small constant larger than the time required by .A. |

6 Transparent, Constant ZKSNARKSs

A well-known and popular recipe for devising efficient zkSNARKSs for NP is to combine
asecure PC scheme with a polynomial interactive oracle proofs (IOP) protocol [23, The-
orem 4.] to obtain a zZkSNARK. In the polynomial IOP paradigm, the prover sends oracles
to polynomials that the verifier can query at random points [12]. After several rounds of
communication, the verifier, having seen some evaluations of the received polynomial
oracles, decides whether the claimed statement is true or not. For a formalization of
the polynomial IOP paradigm, the reader is referred to [12,23]. The polynomial oracles
sent by the prover to the verifier can be instantiated with polynomial commitments.
Polynomial IOPs and polynomial commitment schemes offer a vast design and trade-off
space, allowing practitioners to choose the characteristics (e.g., trust assumptions, prover
and verifier efficiency, proof size, etc.) that best suit their applications. At the time of
writing, the state-of-the-art polynomial IOP is the PLONK polynomial IOP by Gabi-
zon, Williamson, and Ciobotaru [33]. Plonk is a 3-round honest verifier zero-knowledge
polynomial IOP with preprocessing for any NP statement R with arithmetic complexity
n that makes 12 queries to 12 univariate degree n polynomial oracles. The total number
of distinct query points is 2. The preprocessing verifier does O(n) work to check 7 of
the univariate degree n polynomials.

When the Plonk polynomial IOP is compiled with the Behemoth PC scheme, it yields
the first transparent zkSNARK with constant communication and verifier complexity in
the polynomial-IOP paradigm.

Theorem 3. (Transparent, Constant SNARK.) There exists an O(1)-round public coin
interactive argument of knowledge for any NP relation of arithmetic complexity n that has
O(1) communication, O(1) online verification, cubic prover time, and a preprocessing
step that is verifiable in quasilinear time. The argument of knowledge has knowledge
soundness, assuming it is instantiated with a group G of unknown order in which the
strong RSA assumption and the adaptive root assumption hold.

We note that transparent, succinct arguments with the same asymptotics exist outside
the polynomial-IOP paradigm due to Lai and Malavolta [42]. They apply subvector
commitments and probabilistically checkable proofs (PCP) to achieve constant-size,
transparent arguments with constant-time verifiers.

7 Performance Analysis

This section studies the theoretical and practical performance of our PC scheme.

26 I.A. Seres and P. Burcsi

7.1 Transparent Setup Efficiency

The GenSRS(1*,d) algorithm is transparent and somewhat time-sensitive as it incurs

large exponentiations; computing gad entails dlog « repeated squaring. Since o ~
p9, the setup algorithm has a quadratic complexity O(d?logp) in the degree d of
the committed polynomial. This transparent setup only needs to be performed once.
It is extensible in the sense that there is no limitation on the maximum degree of
the committed polynomial. The extensibility of the srs might be valuable in certain
applications, e.g., zZkSNARKSs. Whoever computes the Behemoth srs can also prove
the correctness of the setup by proving that for every pair of neighboring elements
in the srs, the exponentiation was done correctly. They can prove this by enclosing

i

proofs of exponentiations for Vi : (g“ , g‘lwl)‘f:_o1 [48, 58]. In a typical parameters

setting (d = 220,p ~ 2256), the setup algorithm entails computing gad, i.e., one
must compute ~ d?logp = 28 repeated squarings to complete the transparent setup.
This computation has a similar computational complexity to the LCS time-lock puzzle
created by Rivest [50]. To compute the LCS time-lock puzzle, one needed to compute
~ 247 repeated squarings. Originally, the LCS time-lock puzzle was intended to last 35
years. However, on specialized hardware using novel techniques [44], it is possible to
accomplish this computation in less than two months. Certainly, the complexity of the
setup algorithm becomes more feasible for smaller polynomial commitment schemes,
e.g., d € {212,213 214 215} Such a shorter PC scheme has been recently deployed
for a data availability application on the Ethereum blockchain [59]. We evaluate the
practical performance cost of completing the Behemoth transparent setup in RSA and
class groups for various parameter settings when using the currently available best,
specialized hardware implementations of the corresponding group operations [44, 60],
cf. Table 1. Our transparent setup for larger committed polynomials, i.e., d ~ 225 — 230
becomes practically infeasible to complete when the polynomial ring is defined over a
prime with 256 bits.

Degree d 10 12 13 14 15 20 25 30
m 2 2 2 2 2 2 2 2

RSA 2048-bits 18.27 years 18706 years
Class 2048-bits 63.3 years 64800 years 6.64 - 107 years

Table 1: We provide time estimates for completing the transparent setup for a given GUO
G and maximum supported degree d of the committed polynomial. For every cell, we
consider the size of the base field of the polynomial ring]ng [x] to be a 256-bit prime,
as it is the case in most applications. The state of the art is that on specialized hardware,
i.e., ASICs, one iteration of the function f(¢) : t — th takes 2ns for a 2048-bit RSA
group. In the case of class groups with 2048-bit discriminant, we have that one iteration
of the VDF function takes 7.11s [60].

Behemoth: transparent succinct polynomial commitment scheme 27

Open proof sizes Open time complexity
|Com| [TOpen| Prove Verify |srs] Setup

KZG [37] 1Gp Trusted
Bootle et al. [19] 1G O(Wd)G O(Wd)
Bulletproofs [22] 1G O(d)
FRI[10] 1G
DARK [23] 1Gy
Dory [43] 1Gp
Dew [4] 1Gy O(d?/logd)
Behemoth (this work) 1Gy O(d?/logd)

Table 2: Comparing the theoretical performances of polynomial commitment schemes.
We only enclose the most efficient representative from each cryptographic approach
to keep the table compact to obtain PC schemes. Properties in red are undesirable
or impractical, and properties in become an issue for polynomials with larger
degrees d. Properties achieved in indicate practical, efficient constructions or
desirable characteristics. To account for the differences in the concrete efficiency of the
applied groups, we denote the applied cryptographic groups differently. Specifically,
schemes that are instantiated in groups equipped with bilinear pairings are denoted as
G p, while groups of unknown orders are denoted as G;. Groups where one only needs
to assume the discrete logarithm assumption or the existence of one-way functions are
denoted as G. Here, we report an optimized Behemoth proof size achieved by proof
batching described in Section 7. Recall that Dew’s verifier complexity is O(log d) field
operations, i.e., for practical parameter choices, logarithmic verifier complexity might
be better than O(1) verifier complexity.

7.2 Prover Efficiency

Committing to a polynomial f can be done by computing gf(®). Though the size of f(«/)
is huge over the integers (=~ p?*!), the prover can compute this exponentiation in O(d)
time, since all the monomials g of « are provided in the srs. Hence, the prover only
needs to compute d small exponentiations with exponents of length log p.

Computing the opening proof for the statement f(z) = s is more computationally

heavy. First, the prover needs to compute g9(*), where the quotient polynomial q(z) is

defined as q(x) := % . The prover computes directly this polynomial division using

Horner’s method. It computes gq(a) on a rolling basis, i.e., monomial by monomial,
using the algorithm detailed in Figure 4. This strategy leads to an O(d?) computation.
Completing the opening proof (both to compute the ProveEvaluation and the PoKDegUp
proofs) requires the computation of the following NIZKs.

Tpoe: using the techniques of Wesolowski [58], a PoE proof consists of a single group
element, see Appendix A.2. The biggest chunk of the prover’s work in this NIZK is
incurred by computing a large modular division: = = ¢l + r, where z ~ p9*! and
l,r = \. Computing q € Z takes quasi linear time in the number of digits of z, i.e.,
O(dlogdlogp).

28 I.A. Seres and P. Burcsi

Polynomial division algorithm for the ProveEvaluation protocol.

fla)—5

—

Input: (srs,f(z) € Fplz], z,s = f(2)).P wants to compute q() =

in the exponent.

1. Let @ :=g°.
2. Vi € [0,d] do the following:
— Compute g4, i.e., the (d —)th coeflicient of % Let@Q:=Q- (gadﬂ)qd—i.

Output: Q = g%,

Fig. 4: Polynomial division algorithm to compute c@ = %, and gq@) in the
exponent as part of the ProveEvaluation protocol. We note here that log,(qq—;) ~
ilog, (p), hence, this is a quadratic algorithm in the degree of the committed polynomial.

TPoKEMon: @ POKEMon proof consists of a single group element and a small integer r
with size =~ p, see Appendix A.3. Also, in this case, the prover’s work is quasi-linear,
ie., O(dlogdlogp).

TpokpE: Arguing about the positivity of § and B — § for § = f/(;) requires the prover to
find three (four) squares that sum up to § and 5 — §, respectively. The size of both of
these integers §, B — § is roughly (d + 1) log p bits. The state-of-the-art algorithm by
Pollack and Trevifio finds the (three) four squares decomposition of an integer n in
time O(log® n/loglogn). Hence, creating the PoKPE proof takes approximately
O(d?log® p/(logd + loglog p)) arithmetic operations, i.e., quasi quadratic in the
degree of the committed polynomial. Since the algorithm operates on integers of
length d log p bits, in practice, the computational complexity of creating the PoKPE
proof via the three square decompositions is cubic. The proof consists of 6 group
elements and 3 small (= p) integers.

TpokE: this proof system has the same complexity as the PoE proof thatis O(d log d log p),
though the proof consists of a group element from G and an integer in F,.

Tchaump: the Chaum-Pedersen DLEq proof has the same complexity as generating two
PoKE proofs. It has a proof size of two group elements from G and two small
integers from IF,.

The ProveEvaluation protocol consists of 1 PoE, 2 PoKEMon, and 2 PoKPE
proofs. The PoKDegUp proof consists of 3 PoKE, 1 Chaum-Pedersen DLEq, and 1
ProveEvaluation proof. Altogether the Open protocol requires the computation of 4
PoE, 8 PoOKEMon, 8 PoKPE, 6 PoKE, and 2 Chaum-Pedersen DLEq proofs. Therefore,
the unoptimized Behemoth Open proof size consits of 70G and 42F,, elements. Next,
we mention techniques to shrink the proof size even further.

Batching the applied NIZK proofs. The Open protocol applies 24 instances of the
PoKE, PoKPE, ChaumP, PoKEMon proofs where the verification equation checks that
the prover knows a random prime x;-root w; of a public element a;, i.e., w;* = a;
for i € [0,24]. We have that with overwhelming probability for the A-bit challenge

Behemoth: transparent succinct polynomial commitment scheme 29

primes: Vi, j(i # j) : ged(z;, ;) = 1. That allows us to make the opening proof
even more succinct by batching the underlying NIZK proofs due to the protocol POKCR
(aggregating knowledge of co-prime roots) introduced in [16], see also Appendix A.6.

7.3 Verifier Efficiency

The verifier runs in constant time. Verifying an opening proof entails verifying several
NIZKs as subprotocols, i.e., PoE, PoOKEMon, PoKPE, PoKE, ChaumP, all requiring
constant time. The verifier needs to compute a constant number of group operations to
verify a Behemoth Open proof. In particular, an unoptimized (without proof batching)
version of the Open protocol requires the computation of 210 group operations.

‘P’s concrete complexity V’s concrete complexity

|7l G F, G F,
PoE(Q, o — 2)* [58] 1G O(dlogp) O(dlogdlogp) 3 0
PoKEMon [16] 1G + 1F, O(dlogp) O(dlogdlogp) 3 0
PoKE [16] 1G + 1F, O(dlogp) O(dlogdlogp) 3 0
ChaumP (DLEq) [16,24] 2G +2F, O(dlogp) O(dlogdlogp) 6 0
PoKPE [4] 6G + 3F, O(dlogp) O(d*log®p/(logd + loglogp)) 24 0
ProveEvaluation (cf. Section 4.3) 15G + 8F,, O(dlogp) O(d3/logd) 33 0
PoKDegUp (cf. Section 4.3) 20G + 13F, O(dlogp) O(d?/logd) 72 0
Open (cf. Section 4.2) 70G + 42F, O(dlog p) O(d3/logd) 210 0

Table 3: Behemoth Open protocol’s proof sizes and concrete computational costs for
the prover and verifier, respectively. The Open protocol consists of several subprotocols.
For each subprotocol, we enlist the proof size and the number of group operations the
prover and the verifier needs to compute in the applied group of unknown order G and
the base field IF), of the polynomial ring ng []. The Open protocol consists of two
executions of the ProveEvaluation and the PoKDegUp protocols. This table considers
an unoptimized version of the Behemoth Open protocol, i.e., without proof batching.

“ Note that in our variant of Wesolowski’s PoE protocol, the verifier outsources its computation
in IF, to the prover. Hence, the verifier does not need to compute group operations in IF'p,.

8 Conclusion and Open Problems

In this work, to the best of our knowledge, we constructed the first transparent polynomial
commitment scheme that achieves both constant-size opening proofs and verification
time. The main idea of our construction is to instantiate the KZG opening strategy in a
group of unknown order. Hence, our construction affirmatively answers the question of
succinct, transparent polynomial commitment schemes raised in [46]. However, several
challenging open problems and research directions remain.

30 I.A. Seres and P. Burcsi

8.1 Prover efficiency

The downside of our construction is the increased prover cost. Ideally, one wants to
achieve a (quasi)-linear prover time that is also concretely efficient. Unfortunately,
cubic prover time is concretely impractical in most applications. Hence, making our
prover asymptotically and concretely more efficient would be fascinating. One of the
bottlenecks of our construction is finding the four-square decomposition of an integer.
Is there a concretely efficient algorithm that finds the four-square decomposition of an
integer in quasi-linear time (in the integer’s bit length)?

8.2 Batching opening proofs and other extensions

The KZG PCS offers batching capabilities for opening proofs. Batching opening proofs
for the same polynomial was already introduced in the KZG paper. Boneh et al. introduce
an extension of the KZG scheme [17], where one can batch opening proofs for multiple
points opened at multiple polynomials. Feist and Khovratovich design a protocol that
allows the fast computation of KZG opening proofs where primitive roots are the opened
points [31]. It seems accessible to adapt all these techniques to the group of unknown
order setting. We leave the security and efficiency analysis of these protocols in the
Behemoth setting as future work. Another fruitful direction of future work might be to
extend Behemoth commitments to multivariate commitments akin to Papamanthou et
al. [47], who extended the KZG PC scheme to multivariate polynomials at the expense
of increased srs, i.e., quadratic, (‘2‘) in the case of bivariate polynomials, and (2) for
k-variate polynomials.

8.3 Succinct, transparent, post-quantum polynomial commitment schemes

Existing PC schemes with constant-size evaluation proofs and verifiers are not post-
quantum secure. The ultimate PC scheme would possess these beneficial performance
characteristics and post-quantum security as well. Therefore, it is an interesting re-
search direction to design post-quantum secure, transparent polynomial commitment
schemes [9, 34] with both constant evaluation proofs and constant verifier. The cur-
rently known most efficient, post-quantum secure PC schemes [2,8,20] apply lattice-
based cryptographic assumptions. At the time of writing, there is no known post-
quantum secure, transparent polynomial commitment scheme with constant-size proofs
and constant-time verifier. Therefore, we conclude with an exciting open question:

Is there a transparent, plausibly post-quantum secure polynomial commitment
scheme that achieves constant-size opening proofs and constant-time verifiers?

We leave the design of such a PC scheme or an impossibility result to future work.

Behemoth: transparent succinct polynomial commitment scheme 31

Acknowledgements

This research was supported by the Ministry of Culture and Innovation and the National
Research, Development, and Innovation Office within the Quantum Information National
Laboratory of Hungary (Grant No. 2022-2.1.1-NL-2022-00004).

References

10.

11.

12.

13.

14.

. Aggarwal, D., Maurer, U.: Breaking rsa generically is equivalent to factoring. IEEE Transac-

tions on Information Theory 62(11), 6251-6259 (2016) 6

. Albrecht, M.R., Fenzi, G., Lapiha, O., Nguyen, N.K.: Slap: succinct lattice-based polynomial

commitments from standard assumptions. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 90-119. Springer (2024) 30

. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sublinear

arguments without a trusted setup. In: Proceedings of the 2017 acm sigsac conference on
computer and communications security. pp. 2087-2104 (2017) 2

. Arun, A., Ganesh, C., Lokam, S., Mopuri, T., Sridhar, S.: Dew: Transparent constant-sized

zksnarks. Cryptology ePrint Archive (2022) 2,9, 14, 20, 27, 29, 35, 36

. van Baarsen, A.: Imaginary quadratic class groups and a survey of time-lock cryptographic

applications (2023) 13, 20

. van Baarsen, A., Stevens, M.: On time-lock cryptographic assumptions in abelian hidden-

order groups. In: Advances in Cryptology—ASIACRYPT 2021: 27th International Conference
on the Theory and Application of Cryptology and Information Security, Singapore, December
6-10, 2021, Proceedings, Part II 27. pp. 367-397. Springer (2021) 7, 19, 20

. Bari¢, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without

trees. In: International conference on the theory and applications of cryptographic techniques.
pp. 480-494. Springer (1997) 7

. Baum, C., Bootle, J., Cerulli, A., Del Pino, R., Groth, J., Lyubashevsky, V.: Sub-linear

lattice-based zero-knowledge arguments for arithmetic circuits. In: Advances in Cryptology—
CRYPTO 2018: 38th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2018, Proceedings, Part II. pp. 669—-699. Springer (2018) 30

. Belling, A., Soleimanian, A.: Vortex: Building a lattice-based snark scheme with transparent

setup. Cryptology ePrint Archive (2022) 30

Ben-Sasson, E., Bentov, 1., Horesh, Y., Riabzev, M.: Fast reed-solomon interactive oracle
proofs of proximity. In: 45th international colloquium on automata, languages, and program-
ming (icalp 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018) 2, 6, 27
Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of public
parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium on Security and
Privacy. pp. 287-304. IEEE (2015) 2

Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Theory of Cryptography
Conference. pp. 31-60. Springer (2016) 1, 25

Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Time-and space-efficient
arguments from groups of unknown order. In: Advances in Cryptology—CRYPTO 2021: 41st
Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20,
2021, Proceedings, Part IV 41. pp. 123-152. Springer (2021) 2

Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In:
Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali, pp. 329-349. ACM (2019) 8

32

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

I.A. Seres and P. Burcsi

Boneh, D., Bonneau, J., Biinz, B., Fisch, B.: Verifiable delay functions. In: Annual interna-
tional cryptology conference. pp. 757-788. Springer (2018) 12

Boneh, D., Biinz, B., Fisch, B.: Batching techniques for accumulators with applications to
iops and stateless blockchains. In: Annual International Cryptology Conference. pp. 561-586.
Springer (2019) 6, 7, 8,9, 14, 19, 20, 29, 34, 35, 37

Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Efficient polynomial commitment schemes for
multiple points and polynomials. Cryptology ePrint Archive (2020) 1, 30

Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: Proof-carrying data from additive
polynomial commitments. In: Annual International Cryptology Conference. pp. 649—-680.
Springer (2021) 5

Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments
for arithmetic circuits in the discrete log setting. In: Annual International Conference on the
Theory and Applications of Cryptographic Techniques. pp. 327-357. Springer (2016) 2, 27
Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: A non-pcp approach to succinct
quantum-safe zero-knowledge. In: Advances in Cryptology—CRYPTO 2020: 40th Annual
International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August
17-21, 2020, Proceedings, Part II. pp. 441-469. Springer (2020) 30

Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-snark parameters
in the random beacon model. Cryptology ePrint Archive (2017) 2

Biinz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short
proofs for confidential transactions and more. In: 2018 IEEE symposium on security and
privacy (SP). pp. 315-334. IEEE (2018) 2, 27

Biinz, B., Fisch, B., Szepieniec, A.: Transparent snarks from dark compilers. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques. pp.
677-706. Springer (2020) 2, 5, 25, 27

Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Annual international cryp-
tology conference. pp. 89-105. Springer (1992) 8, 16, 29, 34

Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing
zksnarks with universal and updatable srs. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 738-768. Springer (2020) 1

Chu, H., Fiore, D., Kolonelos, D., Schroder, D.: Inner product functional commitments with
constant-size public parameters and openings. Cryptology ePrint Archive (2022) 2
Damgérd, I., Koprowski, M.: Generic lower bounds for root extraction and signature schemes
in general groups. In: International Conference on the Theory and Applications of Crypto-
graphic Techniques. pp. 256-271. Springer (2002) 6

Das, S., Xiang, Z., Ren, L.: Powers of tau in asynchrony. Cryptology ePrint Archive (2022) 2
Dobson, S., Galbraith, S.D., Smith, B.: Trustless unknown-order groups. Cryptology ePrint
Archive (2020) 2, 11

Erdds, P., Rényi, A.: On a classical problem of probability theory. Magyar Tud. Akad. Mat.
Kutaté Int. Kozl 6(1), 215-220 (1961) 23

Feist, D., Khovratovich, D.: Fast amortized kzg proofs. Cryptology ePrint Archive (2023) 1,
30

Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature
problems. In: Conference on the theory and application of cryptographic techniques. pp.
186-194. Springer (1986) 9, 19

Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive (2019) 25
Golovnev, A., Lee, J., Setty, S., Thaler, J., Wahby, R.S.: Brakedown: Linear-time and post-
quantum snarks for rlcs. Cryptology ePrint Archive (2021) 30

Hafner, J.L., McCurley, K.S.: A rigorous subexponential algorithm for computation of class
groups. Journal of the American mathematical society 2(4), 837-850 (1989) 2

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Behemoth: transparent succinct polynomial commitment scheme 33

Jager, T., Schwenk, J.: On the analysis of cryptographic assumptions in the generic ring
model. Journal of cryptology 26, 225-245 (2013) 6

Kate, A., Zaverucha, G.M., Goldberg, 1.: Constant-size commitments to polynomials and
their applications. In: International conference on the theory and application of cryptology
and information security. pp. 177-194. Springer (2010) 1, 27

Kattis, A., Panarin, K., Vlasov, A.: Redshift: transparent snarks from list polynomial com-
mitment iops. Cryptology ePrint Archive (2019) 2

Kohlweiss, M., Maller, M., Siim, J., Volkhov, M.: Snarky ceremonies. In: International
Conference on the Theory and Application of Cryptology and Information Security. pp.
98-127. Springer (2021) 2

Kuszmaul, J.: Verkle trees. Verkle Trees 1 (2019) 1

Lagarias, J.C.: Worst-case complexity bounds for algorithms in the theory of integral quadratic
forms. Journal of Algorithms 1(2), 142—186 (1980) 13, 16

Lai, R.W., Malavolta, G.: Subvector commitments with application to succinct arguments. In:
Advances in Cryptology—CRYPTO 2019: 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I 39. pp. 530-560. Springer
(2019) 25

Lee, J.: Dory: Efficient, transparent arguments for generalised inner products and polynomial
commitments. In: Theory of Cryptography Conference. pp. 1-34. Springer (2021) 2, 27
Mert, A.C., Ozturk, E., Savas, E.: Low-latency asic algorithms of modular squaring of large
integers for vdf evaluation. IEEE Transactions on Computers (2020) 26

Miller, G.L.: Riemann’s hypothesis and tests for primality. Journal of computer and system
sciences 13(3), 300-317 (1976) 7, 24

Nikolaenko, V., Ragsdale, S., Bonneau, J., Boneh, D.: Powers-of-tau to the people: Decen-
tralizing setup ceremonies. Cryptology ePrint Archive (2022) 2, 29

Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In: Theory of
Cryptography Conference. pp. 222-242. Springer (2013) 30

Pietrzak, K.: Simple verifiable delay functions. In: 10th innovations in theoretical computer
science conference (itcs 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018) 8,
9,12, 20, 26

Pollack, P., Trevifio, E.: Finding the four squares in lagrange’s theorem. Integers 18, AlS5
(2018) 12, 20, 36

Rivest, R.L.: Description of the lcs35 time capsule crypto-puzzle. Retrieved at<> Published
on: Apr 4, 6 (1999) 26

Rotem, L., Segev, G.: Generically speeding-up repeated squaring is equivalent to factoring:
Sharp thresholds for all generic-ring delay functions. In: Annual International Cryptology
Conference. pp. 481-509. Springer (2020) 6

Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Advances in
Cryptology—EUROCRYPT’97: International Conference on the Theory and Application
of Cryptographic Techniques Konstanz, Germany, May 11-15, 1997 Proceedings 16. pp.
256-266. Springer (1997) 6, 7, 34

Sutherland, A.V.: Order computations in generic groups. Ph.D. thesis, Massachusetts Institute
of Technology (2007) 2

Thakur, S.: Batching non-membership proofs with bilinear accumulators. Cryptology ePrint
Archive (2019) 16

Thakur, S.: Arguments of knowledge via hidden order groups. Cryptology ePrint Archive
(2020) 8, 34

Thakur, S.: Constructing hidden order groups using genus three jacobians. Cryptology ePrint
Archive (2020) 2

34 I.A. Seres and P. Burcsi

57. Wahby, R.S., Tzialla, L., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zksnarks without
trusted setup. In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 926-943. IEEE
(2018) 2

58. Wesolowski, B.: Efficient verifiable delay functions. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 379-407. Springer (2019) 7,
8,9, 12, 14, 20, 26, 27, 29, 34

59. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper 151(2014), 1-32 (2014) 26

60. Zhu, D., Tian, J., Li, M., Wang, Z.: Low-latency hardware architecture for vdf evaluation in
class groups. IEEE Transactions on Computers (2022) 26

A The applied NIZK proof systems

In this paper, we rely on non-interactive zero-knowledge proofs built for the following
efficiently decidable languages. The following proof systems were proven secure in the
generic group model [52] by Boneh, Biinz, and Fisch [16], and Thakur [55].

A.1 Chaum-Pedersen proof for discrete logarithm equality (ChaumP)

Chaum and Pedersen [24] introduced an efficient proof system for the following relation.
Rehaump = {((s,t,u,v € G);z €Z) : s =" ANu = v*}. (29)

Their protocol is not directly applicable in our case, as we work in a group of unknown
order, while the original ChaumP protocol was introduced for cyclic groups with known
prime order. However, Thakur showed in [55] how to adapt the original Chaum-Pedersen
discrete logarithm equality (DLEq) protocol to the group of unknown order setting.

Params: G < GGen(A), g € G. Inputs: s,t,u,v € G,z € Z. Claim: t* = s Av® = u.

1. Psends g :=g“to V.

2. Vsends ! €r Primes()) to P.

3. Pcomputes g = | 7] € Z Ar € [l], where 2 = gl + . P also computes Q; = t7 €
G,Q2 =v7 € G,g* := g% and sends (Q1, Q2,9*,7) € G* x [I] to V.

4. V checks r € [I] and verifies the equations s Z QU Au= Qv A (g")'g" = 4.

Fig. 5: The ChaumP discrete logarithm equality protocol for groups of unknown order.

A.2 Proof of Exponentiation (PoE)

Wesolowski introduced a constant-size proof system for the following language [58]:

Reoe = {((u,w €G),z €Z); L) : w=1u" € G)}. (30)

Behemoth: transparent succinct polynomial commitment scheme 35

Note there is no secret witness in the language Rpoe. The following protocol yields
a proof for Rpoe that consists of one group element. The verifier’s work consists of
two group operations in G and the computation of ¢ = [7] € Z. In our application
r ~ o ~ p?. Since computing ¢ takes O(logd) steps and we want a constant verifier,
therefore, we outsource this computation to the prover with the help of the following

proof system.

Params: G < GGen(\). Inputs: u, w € G,z € Z. Claim: u* = w.

1. Vsends! €r Primes(\) to P.
2. Pcomputesq = | 7] € ZAr € [l], wherex = gl +r. Psends Q = u? € Gto V.

3. V computes r = x mod ! and checks w < Q.

Fig. 6: The PoE protocol.

A.3 Proof of Knowledge of Exponent Modulo an odd integer (PoKEMon)

An efficient proof system for the following useful language in GUOs was given in [16].

Rpokemon = {(w € G, & € [n]);z € Z) : w=¢° € G,z mod n = &}. (31)

Params: G < GGen()\), g € G. Inputs: Odd prime n,w € G, # € [n]. Witness: z € Z;
Claim: ¢ = w A x = & mod n.

1. Vsends! €r Primes(X) to P.

2. Pcomputesq € ZAr € [l-n],wherex = ¢g(l-n)+r.PsendsQ =g € Gandr
to V,ie.,m=(Q,r).

3. Vaceceptsifr € [l -n]Ar =2 modnAw Qg

Fig.7: The PoKEMon protocol.

A4 Proof of Knowledge of Squared Exponent (PoKSE)

For the following important language, a useful proof system was devised in [4, 16].

Reokse = {(w € G);z € Z) i w = ¢* € G)}. (32)

36 I.A. Seres and P. Burcsi

Params: G < GGen()\),g €r G. Inputs: w € G. Witness: z € Z; Claim: g‘”2 =w.

1. Psends z = g“ to V.

2. Vsends ! €r Primes(\) to P.

3. Pcomputes g € ZAr € [l],wherex = gl + 7. Psends Q = 29,Q" = g? € Gandr
toV,ie,m=(Q,Q,r).

4. Vacceptsifr € [[] Aw ZQ A2z = Q.

Fig. 8: The PoKSE protocol.

A.5 Proof of Knowledge of Positive Exponent (PoKPE)

The following proof system allows one to prove with a constant-size proof that a commit-
ted integer is non-negative in a group of unknown order [4]. We note that this essentially
yields an efficient range proof.

Rpokpe = {(w € Gz € Z) : (w=g") A (0 <))} (33)

Params: G <> GGen(N),g €r G.Inputs: w € G. Witness: z € Z; Claim: ¢° = wA0 < z.

4
=1

1. Pcomputesz = >+, a? € Z using the probabilistic Pollack-Trevifio algorithm [49].

Let P, = g"’?.
2. P and V execute the POKSE protocol for each P;.
3. Vacceptsifall POKSE’s output is accept and atleastone P; # landifw = Py P, P3 Py.

Fig.9: The PoKPE protocol.

A.6 Aggregating Knowledge of Co-prime Roots (PoKCR)

In most of the applied NIZKs above, the verification equation checks a witness w; as a
random prime x;th-root of an element a;. These verification equations can be batched
into a single check whenever Vi, j, i # j : ged(i, j) = 1, i.e., there exists a constant-size
proof for the following language,

RpoKCcR = {CL eG"xeZ”:w= ¢(X) S G}, (34)

where ¢(-) : Z™ — G is a group homomorphism. The following protocol allows us
to prove membership efficiently in the Rpokcr language; the proof is a single group
element. Note, the verifier has a slightly increased computation cost, as verifying the
aggregated proof now requires O(nlogn) group operations with exponents of size
max; |z;|. Since, in the case of the Behemoth PC verifier, n is constant, this added
computation overhead does not change the asymptotic overhead of our verifier.

Behemoth: transparent succinct polynomial commitment scheme 37

Params: G < GGen(A), g € G.Inputs: a € G, x € Z" such that gcd(z1,...,z,) = 1.
Witness: w € G” such that w;’ = a;.

1. P computes w =]}, w;, and P sends w to V.
2. V computes z* = [[7, zs, and y = [, a; /i using a recursive algorithm of

Boneh et al. [16]. V accepts if w® = Y.

Fig. 10: The PoKCR protocol.

	Behemoth: transparent polynomial commitment scheme with constant opening proof size and verifier time

