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ABSTRACT
Information sharing between financial institutions can uncover

complex financial crimes such as money laundering and fraud.

However, such information sharing is often not possible due to pri-

vacy and commercial considerations, and criminals can exploit this

intelligence gap in order to hide their activities by distributing them

between institutions, a form of the practice known as “layering”.

We describe an algorithm that allows financial intelligence an-

alysts to trace the flow of funds in suspicious transactions across

financial institutions, without this impinging on the privacy of un-

involved individuals and without breaching the tipping off offence

provisions between financial institutions. The algorithm is light-

weight, allowing it to work even at nation-scale, as well as for it

to be used as a building-block in the construction of more sophis-

ticated algorithms for the detection of complex crime typologies

within the financial data. We prove the algorithm’s scalability by

timing measurements done over a full-sized deployment.

KEYWORDS
anti money laundering, financial crime, graph analytics, homomor-

phic encryption, private graph analysis

1 INTRODUCTION
There is no doubt that policing against financial crimes such as

money laundering and fraud is easiest when all information regard-

ing a particular crime is pooled together. However, this information

is often siloed among the different financial institutions, and cannot

be shared due to legal, privacy and commercial considerations.

We introduce FinTracer, a privacy-preserving algorithm that pro-

vides a solution for the safety-vs-privacy dilemma in the context

of financial crime investigation. It allows patterns of criminal ac-

tivity, known as criminal typologies, to be searched for and their

occurrences in the data to be retrieved as though the typologies

had been queried on a graph database that includes all relevant

financial information, but without any breach of privacy.
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Other algorithms that can be run in a privacy-preserving way

across financial institutions exist (e.g., [22]). FinTracer’s innovations

are that it is both

(1) Extremely lightweight, and

(2) Highly customisable.

The combination of both traits is what allows FinTracer to be used

as a powerful building block, and for it to be easily customised to

define varied complex typologies, making it suitable in the context

of the exceedingly adaptable nature of financial crime.

2 MOTIVATING EXAMPLE
On its own, FinTracer can be used for the detection of fraud; for

connecting accounts suspected of laundering money with accounts

demonstrating unexplained wealth, for finding connections be-

tween persons of interest, or for grouping instances of unrelated-

looking suspicious events into larger clusters, just to name a few

examples. In conjunction with other privacy-preserving techniques,

its uses are even more varied.

For concreteness we begin by introducing one motivating exam-

ple, which will serve both to explain the constraints within which

FinTracer was designed to operate and, later on in the paper, to

show how concrete parameter choices for the algorithm can be

used to solve different problems in combating financial crime.

Australia’s National Disability Insurance Scheme (NDIS) pro-

vides eligible Australians, who have a permanent or significant

disability, with funding to assist them in their daily lives. The NDIS

was introduced “to improve the lives of people with disability and

the community more generally by providing insurance for all Aus-

tralians and lowering future costs of disability support” [1].

According to the National Disability Insurance Agency (NDIA),

there are around 4.3 million Australians who have a disability. Ac-

cording to [19], in the years 2020–2025 alone, the NDIS will provide

more than AU$22 billion in funding a year, to an estimated 500,000

Australians who have permanent and significant disability.

While such incentives are designed to support people with dis-

abilities, they also provide opportunities for economic crime. Ac-

cording to the Australian Criminal Intelligence Commission (ACIC)

chief Michael Phelan, organised criminal gangs have been defraud-

ing billions of dollars from the NDIS scheme [17]. The Australian

Government is committed to preventing such fraud to ensure vital

funding, such as the NDIS, supports Australians who need it [1].

The Australian Transaction Reports and Analysis Centre (AUS-
TRAC) is Australia’s anti-money laundering and counter-terrorism
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financing regulator and financial intelligence unit. It is the govern-

ment agency “responsible for preventing, detecting and responding

to criminal abuse of the financial system to protect the community

from serious and organised crime” [3].

The Anti-Money Laundering and Counter-Terrorism Financing

Act 2006 (AML/CTF Act) [13] requires reporting entities to maintain

an AML/CTF program. Each reporting entity is required to provide

a report to AUSTRAC on International Funds Transfer Instructions,

cash deposits, withdrawals equal to or greater than AU$10,000, and

cross-border movements, as well as to submit Suspicious Matter

Reports (SMRs).

Regulated entities are required to analyse their own data to

identify any suspicious activity. If a suspicion is formed that an

entity or transaction may be linked to a crime, an SMR must be

submitted to AUSTRAC. Reporting entities do not have access to

data from other financial institutions in their analysis process. In

fact, they “must not disclose any information about an SMR, or do

anything which could reasonably infer that [they] have submitted

an SMR or are required to submit an SMR about one of [their]

customers (except for certain limited circumstances)” [2] – to do so

would in most circumstances be a criminal offence.

Data on domestic transactions, i.e. payments made between bank

accounts within Australia, are not reportable to AUSTRAC in the

absence of a suspicion being formed on an entity.

Criminals may seek to conceal their activities by moving funds

across multiple financial institutions. Consider, again, the example

of NDIS fraud. One indicator of NDIS fraud may be sending large

amounts of NDIS sourced funds overseas [1]. The existence of a sin-

gle indicator does not necessarily indicate criminal activity, but the

presence of multiple indicators may warrant further investigation.

If a criminal fraudulently receives an NDIS payment and imme-

diately moves the funds off-shore, this activity can be detected by

the financial institution the criminal banks with. A criminal may,

however, seek to conceal their activity by moving the funds domes-

tically across accounts owned by different financial institutions,

before ultimately moving the money off-shore. This action (which

is a form of layering), means that neither the financial institutions

that own the accounts, nor AUSTRAC, see the full picture. Without

receiving other intelligence, it may not be possible to connect the

money moving offshore with the source of the money — in this

case from NDIS payments.

On the face of it, detecting this type of crime requires increased

data sharing between financial institutions and AUSTRAC.

There is a tension between protecting the privacy of individu-

als and protecting Australian society through the analysis of per-

sonal data in order to identify criminal activity. FinTracer, however,

presents an approach that addresses both goals without needing to

trade them off.

FinTracer allows for such typologies as the criminal seeking

to conceal their NDIS fraud activities by layering to be searched

for by AUSTRAC without any breach of privacy for ‘innocent by-

standers’, nor any information exchange beyond what is allowed

by the AML/CTF Act.

We will show how FinTracer can be used to detect NDIS fraud by

appropriate parameter choices, but readers will find it straightfor-

ward to adapt the algorithm with other parameter choices to tackle

a large variety of investigative scenarios, far beyond this individual

example.

3 THE PROBLEM STATEMENT
As with any real-world problem, there is no single, objective prob-

lem statement. Many different tools can help intelligence analysts

in different ways to pinpoint financial crime. The key to FinTracer

was that it needed to be lightweight enough to scale up to the size

of the Australian economy,
1
, and in addition allow FinTracer to

serve as a basic building block in the construction of more advanced

algorithms.

To this end, let 𝐹 be a set of financial institutions, let 𝐴 be the

set of accounts managed by these financial institutions, and let

𝑚 : 𝐴 → 𝐹 be a function mapping each account to the financial

institution managing it.

Furthermore, for each 𝑓 ∈ 𝐹 , let𝐴𝑓 def

= {𝑥 ∈ 𝐴|𝑚(𝑥) = 𝑓 } be the
set of accounts managed by 𝑓 , noting that the 𝐴𝑓 partition 𝐴.

Additionally, let𝑇 be the set of transactions between the accounts

in 𝐴, and let 𝑇 𝑓 + be the subset of 𝑇 where money is transferred

from an account managed by 𝑓 and 𝑇 𝑓 − be the subset of 𝑇 where

money is transferred to an account managed by 𝑓 , noting that both

the 𝑇 𝑓 + and the 𝑇 𝑓 − form partitions of 𝑇 .

The practice in the financial world is that each financial insti-

tution, 𝑓 , maintains substantial amounts of information regarding

each account in 𝐴𝑓 and each transaction in 𝑇 𝑓 + and 𝑇 𝑓 − . By con-

trast, a financial institution has no knowledge of any transaction

that does not appear in 𝑇 𝑓 + and 𝑇 𝑓 − , and no knowledge of any

account that is not in 𝐴𝑓 and does not participate in 𝑇 𝑓 + or 𝑇 𝑓 − .
AUSTRAC itself has, for our purposes, no knowledge about 𝐴 and

𝑇 at all, unless a suspicion exists regarding specific accounts or

specific transactions that requires AUSTRAC to be alerted to them.

Our privacy requirements for FinTracer are that it upholds this

status quo: FinTracer must not divulge to any financial institution

information about any account or any transaction that it is not

already privy to, and AUSTRAC must not learn about any account

or any transaction that does not have suspicion attached to them.

The purpose of FinTracer, however, is to surface new types of

suspicion, previously obscured by layering, and to alert AUSTRAC

regarding the accounts and transactions involved.

A FinTracer query does not run directly on the rich data set of

everything known to the financial institutions. Instead, FinTracer

expects its query to relate to a digraph, 𝐺 = ⟨𝑉 , 𝐸⟩, where 𝐸 de-

scribes those pairs of accounts, (𝑎, 𝑏), that exhibit a relation that

we want FinTracer to follow, and 𝑉 is the set of accounts induced

by 𝐸.

The relation described by (𝑎, 𝑏) ∈ 𝐸 is not arbitrary. It is a

function of the transactions that have occurred between 𝑎 and 𝑏.

The transactions in both directions are taken into account, but not

in a direction-agnostic manner.

Here is an example of a function, using arbitrary parameter

selections, that may generate such an 𝐸: An ordered pair (𝑎, 𝑏)
appears in 𝐸 if all of the following holds true:

1
Australia’s Gross Domestic Product (GDP) was $1.423T as of 2020 [11], making it

the world’s 13
th
largest economy. Size metrics directly related to the performance of

FinTracer are discussed in Section 8.
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• There were no transactions between 𝑎 and 𝑏, in either direc-

tion, prior to March 30
th
2020,

• There were no transactions from 𝑏 to 𝑎 on any date, and

• At least $10, 000 were transferred from 𝑎 to 𝑏 since March

30
th
2020.

It is assumed that if no transactions occurred in either direction

between 𝑎 and 𝑏, then (𝑎, 𝑏) ∉ 𝐸.
A FinTracer query is composed of four parts:

G: The connection digraph,
S: The source accounts, a subset of 𝑉 ,
D: The destination accounts, also a subset of 𝑉 , and

k: The maximal path length, a natural.

FinTracer was designed so as to allow an operator on the AUS-

TRAC node to specify queries. This operator, however, must design

their queries without the information of which accounts exist or

what transactions occur between them. It therefore cannot actually

determine 𝐺 , 𝑆 and 𝐷 . Instead, FinTracer queries are asked in the

form ⟨𝑄𝐺 , 𝑄𝑆 , 𝑄𝐷 , 𝑘⟩, where each of the first three elements is a

function that allows the relevant information to be determined by

the receiving financial institutions.

For example, 𝐺 may be as in the example given above, 𝑆 may be

the set of accounts receiving NDIS payments, and 𝐷 may be the

accounts transferring funds above a certain amount overseas. These

descriptions can be sent to the financial institutions (preferably in

some unambiguous way, such as by means of a SQL query), and

each financial institution can separately resolve them.

In the particular case of the 𝐺 given in the example, the graph’s

most salient condition for including (𝑎, 𝑏) in 𝐸 (𝐺) is that 𝑎 trans-
ferred money to 𝑏. When this is the case, the algorithm behaves as

if it is “following the money”. Importantly, however, this is only one

type of use. In other cases, we may want to follow the money back-

wards, and in other cases still (such as in the examples mentioned of

attempting to find connections between people or between events)

the edges in 𝐸 (𝐺) are oblivious to the direction of money flow

(because such connections are inherently undirected relationships).

Naturally, because no financial institution is privy to the full 𝐴

or the full 𝑇 , none of them is able to determine the full𝐺 , 𝑆 or 𝐷 ,

however, each 𝑓 can determine 𝑆 𝑓
def

= 𝑆 ∩𝐴𝑓 , 𝐷 𝑓 def

= 𝐷 ∩𝐴𝑓 , and
similarly also 𝐸 𝑓 + and 𝐸 𝑓 − , each of which partitions 𝐸.

With this preliminary set of definitions, we can now finally

define our chosen objective. Namely, given ⟨𝑄𝐺 , 𝑄𝑆 , 𝑄𝐷 , 𝑘⟩, we
are interested in a privacy-preserving algorithm that returns to

AUSTRAC the account set 𝑅 = {𝑦 ∈ 𝐷 |∃𝑥 ∈ 𝑆, s.t. there is a path
of length at most 𝑘 on 𝐺 from 𝑥 to 𝑦}.

Considering, once again, our running example of NDIS fraud,

if certain accounts 𝑆 received NDIS payments and the account

owners then moved the funds from account to account across a

small number (≤ 𝑘) of hops until reaching some final accounts, then

we are interested in finding those final accounts which transferred

money overseas.

To be privacy-preserving, the algorithm must be implemented

as a protocol over all involved parties (AUSTRAC and the financial

institutions) that ultimately returns 𝑅 to relevant officers in AUS-

TRAC, with AUSTRAC learning in this process no new information

other than 𝑅 (and potentially some general, non-privacy-invasive

statistics), and with each financial institution 𝑓 learning in this

process no new information other than the parameters of the query

and the partial result 𝑅 𝑓 = 𝑅 ∩𝑉 𝑓 .
We note that one may consider alternative problem setups in

which 𝑓 learns even less information. E.g., 𝑓 may conclude the pro-

tocol without learning 𝑅 𝑓 . However, this algorithm was developed

for real use by AUSTRAC and the Australian financial institutions,

so was designed to provide tangible benefits to all involved parties

(all of whom participated voluntarily). In such a scenario, providing

𝑅 𝑓 to each 𝑓 gives each financial institution important information

regarding their own risk landscape.

To be of practical use, the chosen algorithm had to be able to

scale up to process data from the entire Australian economy, while

remaining both frugal in its communication requirements and fast.

4 FINTRACER AS A BUILDING BLOCK
Before going on to detail how FinTracer is implemented, consider

its uses in investigating financial crime.

A typology is a pattern of behaviour among one or more entities.

Investigators within a financial institution trying to detect occur-

rences of any particular typology can match the characteristics

of entities involved in the typology based on the client informa-

tion that they collect. Such data is commonly known as Know Your
Customer (KYC) information. This information must be gathered

and retained to establish the legitimacy of a customer’s identity

and to identify their risk factors [14]. Thus, investigators are able

to match profile descriptions against customers, and customers

against their accounts. On the other hand, individual institutions

typically cannot match the characteristics of interactions based on

a profile description. This is because such interactions can describe

money flows that are not fully visible to any financial institution.

This can be for one or both of two reasons:

(1) The flow is indirect and passes through accounts in multiple

institutions, and

(2) Part of the profile description relates to attributes of the two

accounts at either end, which may not belong to the same

institution.

With FinTracer, queries can specify:

• The type of account required on each end of a target flow,

• The type of account required for intermediate accounts,

• The characteristics of the flow itself, and

• The desired level of indirectness for a flow.

On its own, this allows FinTracer to be used in discovering and

investigating typologies that involve one connection between two

types of accounts of interest, but when combining multiple Fin-

Tracer queries, the result is essentially a general graph query, al-

lowing analysts to query for arbitrarily complex typologies.
2

5 THE BASIC SOLUTION ALGORITHM
We introduce the FinTracer algorithm here in a basic form, adding

improvements and extra functionality in later sections.

The FinTracer algorithm works in three phases:

(1) Initialisation,

(2) Propagation (which is repeated 𝑘 times), and

(3) Result reading.

2
We discuss methods for combining FinTracer queries in a separate upcoming paper.
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We will describe these in turn.

5.1 The FinTracer tag
The core data structure used in the FinTracer algorithm is the

FinTracer tag. The algorithm’s initialisation creates a new tag, prop-

agation manipulates the tag’s values, and result reading retrieves

information from the tag.

A FinTracer tag is a partial mapping from 𝑉 to a semi-homo-

morphically-encrypted value. Specifically, for reasons of execu-

tion speed, we use ElGamal encryption [12, 18] over the additive

Curve25519 [4] twisted Edwards elliptic curve group [5], storing

curve points in their extended projective form [15]. This is the

same curve as is used in the Ed25519 digital signature algorithm [7].

It is a form optimised for speed, and is especially suited for GPU

implementations, as was done in, e.g., [10]. We developed our own

optimised GPU implementation of it based on libsodium [6].

In total, this data structure amounts to some subset of the ac-

counts in 𝑉 being mapped to a single encrypted value, with that

value being stored in 256 bytes.

Though the plaintext space for Ed25519 values is substantial, at

over 2
252

elements, additive ElGamal encryption is not conducive

to fully decrypting an arbitrary plaintext. As a result, we will only

use each plaintext to store a single bit, a zero plaintext will signify

“False” and a non-zero plaintext will signify “True”. Thus, each

account will be associated with a single bit value, but that value

will be stored in encrypted form over 256 bytes. (Accounts that are

not mapped against any ciphertext will be considered as associated

with a “False” value.)

Note that no single participant in the FinTracer algorithm can

store a complete tag. This is because the account identifiers that are

the domain of the tag’s mapping are only known to the financial

institutions managing said accounts. To store a tag, we shard it

between the participating financial institutions. Each institution 𝑓

stores the portion of the mapping whose domain is within 𝑉 𝑓 .

We refer to the Boolean to which a tag maps any particular

account as that account’s tag value.
A crucial point in the FinTracer algorithm is that the key used

for the ElGamal encryption is one generated by AUSTRAC. While

all participants hold the ElGamal public key, AUSTRAC alone holds

the ElGamal private key.

5.2 Initialisation
Different implementation flavours of FinTracer propagation require

slightly different initialisations, but the basic principle is always

that accounts are mapped to “True” when they are “accounts of

interest”.

In our specific implementation, we will use two tags, 𝑡= and 𝑡≤ .
The former will answer the question of which destination accounts

are exactly 𝑘 hops from any source account; the latter — which are

at most 𝑘 hops away.

Initially, we will set both 𝑡= and 𝑡≤ to the set of source accounts.

Given 𝑄𝑆 , each financial institution can create this tag indepen-

dently.

In practice,𝑄𝑆 comes in the form of a database query, typically in

SQL, that retrieves those accounts that match the relevant criteria.

In our running example, these will be the accounts that received

NDIS payments.

Once the accounts are retrieved, a FinTracer tag is created that

assigns a “1” to each account in 𝑆 . Accounts not in 𝑆 do not need to

be assigned values at all.

The full initialisation process is described in Algorithm 1. We

assume the existence of a computing system where both AUSTRAC

and each of the financial institutions has a separate computation

node, allowing for local computation visible only to that party.

(In practice, each node may be implemented using one or more

computers.) We name the AUSTRAC node “AT”, and each node

managed by a financial institution is named by its member in 𝐹 .

Here and throughout this document, we use “on” blocks to indicate
which nodes code runs on. Lines of code that run on multiple nodes

can run in parallel. The command “transmit” is used to indicate

inter-node communication. It sends information from the executing

nodes to designated target nodes. The command “receive” indi-
cates receipt of the information at the target nodes. It is assumed

that all such communication is cryptographically and/or physically

protected at the channel level, to ensure that it cannot be inter-

cepted other than by the sending and the receiving party. All other

commands run in embarrassingly-parallel fashion.

Because commands run completely independently on the differ-

ent nodes, we will not, as a general rule, differentiate the variable

names based on the nodes they are on. Thus, the variable 𝑡=, for

example, refers to the local value of this variable on whichever node

is currently performing the processing. More rigorously, one can

think of these as distinct variables, 𝑡
𝑓
= . In the code, such superscripts

(or subscripts) will only be used where disambiguation is necessary.

Algorithm 1 FinTracer initialisation (Basic version)

1: on AT do:
2: Generate public/private ElGamal key pair ⟨𝐾

pub
, 𝐾priv⟩.

3: transmit ⟨𝐾
pub

, 𝑄𝐺 , 𝑄𝑆 , 𝑄𝐷 , 𝑘⟩ to 𝐹 .
4: end on
5: on all 𝑓 ∈ 𝐹 do:
6: receive ⟨𝐾

pub
, 𝑄𝐺 , 𝑄𝑆 , 𝑄𝐷 , 𝑘⟩ from AT.

7: zero← Enc𝐾pub
(0).

8: one← Enc𝐾pub
(1).

9: Retrieve 𝑆 𝑓 based on 𝑄𝑆 .

10: Retrieve 𝐷 𝑓 based on 𝑄𝐷 .

11: Retrieve 𝐸 𝑓 + and 𝐸 𝑓 − based on 𝑄𝐺 .

12: for all 𝑎 ∈ 𝑆 𝑓 do
13: 𝑡= (𝑎) ← one.
14: end for
15: 𝑡≤ ← 𝑡=.

16: end on

5.3 Propagation
The heart of the FinTracer algorithm is the propagation step.

Consider the accounts in𝐴 as though each𝑎 ∈ 𝐴was represented

by a unique vector position 𝑝 (𝑎). This is impossible to do in practice,

because no party is aware of all elements in 𝐴, but given such a

hypothetical mapping 𝑝 (𝑎) one can think of a FinTracer tag 𝑡 as

representing an (encrypted) vector 𝑡 , such that 𝑡 [𝑝 (𝑎)] = 𝑡 (𝑎).
Using the same mapping 𝑝 , the digraph𝐺 can be represented by

its adjacency matrix𝑀𝐺 .

4
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The purpose of the propagation step is to compute the matrix

by vector product𝑀𝐺 𝑡 .

The main tool used by the algorithm to allow such propagation

efficiently is a property of𝐺 we refer to as two-sided visibility. This
is defined as follows.

Definition 1. A query 𝑄𝐺 defining a graph 𝐺 is considered two-
sided visible if the conditions determining for every𝑎, 𝑏 ∈ 𝐴whether

the pair (𝑎, 𝑏) is in 𝐸 (𝐺) are ones that can be resolved independently
by both𝑚(𝑎) and𝑚(𝑏).

In particular, we defined 𝑄𝐺 in the context of the FinTracer

algorithm as resolving whether (𝑎, 𝑏) ∈ 𝐸 (𝐺) by use of the set of

transactions, in either direction, between 𝑎 and 𝑏. We will require,

for the FinTracer algorithm, that the details of these transactions

actually used for this determination will be those details visible to

both participating parties. This includes all the main data regarding

transactions: from party, to party, date, time and amount.

Where 𝑄𝐺 is two-sided visible, Algorithm 2 can be used as a

naive way to perform the propagation.

Here, a refresh operation on a ciphertext is the summation to it

of a never-before-used encryption of zero. This is an operation that

we will perform before sending any ciphertext from one node to

another, so as to prevent, e.g., repetition attacks.

The propagation process described above updates the tag val-

ues as desired. However, it has many redundancies. Algorithm 3

and Algorithm 4 present two methods that can be used to reduce

these redundancies, which we refer to as from-compressing and

to-compressing, respectively.
The idea behind both types of compression is that the informa-

tion carried by 𝑃
𝑓
𝑔 in its uncompressed form is highly redundant.

From-compressing utilises the fact that all (𝑎, 𝑏) ∈ 𝑃 𝑓𝑔 with the

same 𝑎 values carry the same encrypted value, and can therefore

be transmitted only once. To-compressing utilises the fact that all

values associated with (𝑎, 𝑏) ∈ 𝑃 𝑓𝑔 with the same 𝑏 ultimately get

summed into the value of 𝑡= (𝑏), so only their sum needs to be

communicated.

These compression methods do not reduce the overall time com-

plexity of the algorithm, but reduce the communication volumes

from O(𝐸 (𝐺)) to the typically much smaller O(𝑉 (𝐺)).
See Section 6 for a discussion of when to use each of the three

propagation methods.

5.4 Result reading
After 𝑘 propagation steps, it is time to read the results. Specifically,

the results are stored in 𝑡≤ , but they are still in encrypted form

and the financial institution holding them is not able to read them.

To complete the algorithm, we still need to divulge the following

information.

• To AUSTRAC: the identity of those accounts that are in 𝐷

and have a nonzero value in 𝑡≤ ;
• To each 𝑓 ∈ 𝐹 : the identity of the subset of these accounts

that are in 𝐷 𝑓 .

The financial institution should not receive any additional informa-

tion, and AUSTRAC should not receive any information beyond

general statistics. In particular, AUSTRAC should not be able to de-

termine which accounts are in dom(𝑡≤ ) or even the size |dom(𝑡≤ ) |.

Algorithm 2 FinTracer propagation (Uncompressed)

1: on all 𝑓 ∈ 𝐹 do:
2: for all 𝑔 ∈ 𝐹 do
3: Initialise 𝑃

𝑓
𝑔 as an empty partial mapping.

4: for all (𝑎, 𝑏) ∈ 𝐸 𝑓 + where𝑚(𝑏) = 𝑔 do
5: 𝑃

𝑓
𝑔 ((𝑎, 𝑏)) ← 𝑡= (𝑎).

6: end for
7: if 𝑔 ≠ 𝑓 then
8: for all (𝑎, 𝑏) ∈ dom(𝑃 𝑓𝑔 ) do
9: Refresh 𝑃

𝑓
𝑔 ((𝑎, 𝑏)).

10: end for
11: end if
12: transmit 𝑃 𝑓𝑔 to 𝑔.
13: end for
14: end on
15: on all 𝑔 ∈ 𝐹 do:
16: Initialise 𝑡= to an empty partial mapping.

17: for all 𝑓 ∈ 𝐹 do
18: receive 𝑃 𝑓𝑔 from 𝑓 .

19: for all (𝑎, 𝑏) ∈ dom(𝑃 𝑓𝑔 ) do
20: if 𝑏 ∉ dom(𝑡=) then
21: 𝑡= (𝑏) ← 𝑃

𝑓
𝑔 ((𝑎, 𝑏)).

22: else
23: 𝑡= (𝑏) ← 𝑡= (𝑏) + 𝑃 𝑓𝑔 ((𝑎, 𝑏)).
24: end if
25: end for
26: end for
27: for all 𝑏 ∈ dom(𝑡=) do
28: if 𝑏 ∉ dom(𝑡≤ ) then
29: 𝑡≤ (𝑏) ← 𝑡= (𝑏).
30: else
31: 𝑡≤ (𝑏) ← 𝑡≤ (𝑏) + 𝑡= (𝑏).
32: end if
33: end for
34: ⊲ We will, in later listings, abbreviate the above loop as

“𝑡≤ ← 𝑡≤ + 𝑡=”.
35: end on

It should also not be able to determine which accounts are in 𝐷 ,

unless they have nonzero tag values.

From information-theoretic considerations, it is clear that it is

not possible to perform such result reading without AUSTRAC

learning some information about the size of each |𝐷 𝑓 |.3 Divulging
the exact |𝐷 𝑓 | is still potentially privacy-invasive, for which reason

we will not allow it. However, if the relevant officers in AUSTRAC

learn only an approximate size for 𝐷 𝑓 (which may be commercially

sensitive information, but provably not privacy intrusive), this is

deemed acceptable.

The result-reading procedure is given in Algorithm 5. It contains

the line “Add noise to 𝑟 𝑓 ”.Without this line, the algorithm functions,

but reveals to AUSTRAC the exact value of |𝐷 𝑓 |. We will expand

3
The financial institution needs to communicate to AUSTRAC at least |𝐷 𝑓 | bits of
information.
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Algorithm 3 FinTracer propagation (From-compressed)

1: on all 𝑓 ∈ 𝐹 do:
2: for all 𝑔 ∈ 𝐹 do
3: Initialise 𝑃

𝑓
𝑔 as an empty partial mapping.

4: for all 𝑎 ∈ 𝑉 𝑓 s.t. ∃𝑏, where (𝑎, 𝑏) ∈ 𝐸 𝑓 + and𝑚(𝑏) = 𝑔
do

5: 𝑃
𝑓
𝑔 (𝑎) ← 𝑡= (𝑎).

6: end for
7: if 𝑔 ≠ 𝑓 then
8: for all 𝑎 ∈ dom(𝑃 𝑓𝑔 ) do
9: Refresh 𝑃

𝑓
𝑔 (𝑎).

10: end for
11: end if
12: transmit 𝑃 𝑓𝑔 to 𝑔.
13: end for
14: end on
15: on all 𝑔 ∈ 𝐹 do:
16: Initialise 𝑡= to the empty mapping.

17: for all 𝑓 ∈ 𝐹 do
18: receive 𝑃 𝑓𝑔 from 𝑓 .

19: for all (𝑎, 𝑏) ∈ 𝐸𝑔− where𝑚(𝑎) = 𝑓 do
20: if 𝑏 ∉ dom(𝑡=) then
21: 𝑡= (𝑏) ← 𝑃

𝑓
𝑔 (𝑎).

22: else
23: 𝑡= (𝑏) ← 𝑡= (𝑏) + 𝑃 𝑓𝑔 (𝑎).
24: end if
25: end for
26: end for
27: 𝑡≤ ← 𝑡≤ + 𝑡=.
28: end on

later on, in Algorithm 6, how noise is added, to hide the set’s exact

size.

Some notes regarding Algorithm 5:

(1) The reason we add zero-valued entries to 𝑟 𝑓 is to ensure

that the starting size of 𝑟 𝑓 is exactly |𝐷 𝑓 |. We ultimately do

not want AUSTRAC to learn the exact size of 𝐷 𝑓 , and our

algorithm adds noise to make sure that this is not revealed.

However, AUSTRAC nevertheless learns the approximate

value of |𝐷 𝑓 |. Based on the specifics of the real-world prob-

lem, we have determined that this particular information

leak of non-private general statistics is allowable. However,

if 𝑟 𝑓 is not padded to |𝐷 𝑓 | size, AUSTRAC will learn the

approximate value of another statistic, for which we cannot

determine whether it is an allowed information leak or not.

(2) “Sanitising” a ciphertext refers to multiplying it by a ran-

dom, uniformly-chosen, non-zero integer in the cyclic group

modulo the size of the elliptic curve. The result is zero if the

original value was zero, and otherwise is a uniformly dis-

tributed non-zero value. As a result, this operation erases all

information in a tag value other than its zero/non-zero status.

When sanitising an entire tag, each tag value is sanitised

using an independent random multiplier.

(3) It is not possible to fully decrypt an element in our chosen

encryption scheme. The result of decryption is a Curve25519

Algorithm 4 FinTracer propagation (To-compressed)

1: on all 𝑓 ∈ 𝐹 do:
2: for all 𝑔 ∈ 𝐹 do
3: Initialise 𝑃

𝑓
𝑔 as an empty partial mapping.

4: for all 𝑏 s.t. ∃𝑎, where (𝑎, 𝑏) ∈ 𝐸 𝑓 + and𝑚(𝑏) = 𝑔 do
5: if 𝑏 ∉ dom(𝑃 𝑓𝑔 ) then
6: 𝑃

𝑓
𝑔 (𝑏) ← 𝑡= (𝑎).

7: else
8: 𝑃

𝑓
𝑔 (𝑏) ← 𝑃

𝑓
𝑔 (𝑏) + 𝑡= (𝑎).

9: end if
10: end for
11: if 𝑔 ≠ 𝑓 then
12: for all 𝑏 ∈ dom(𝑃 𝑓𝑔 ) do
13: Refresh 𝑃

𝑓
𝑔 (𝑏).

14: end for
15: end if
16: transmit 𝑃 𝑓𝑔 to 𝑔.
17: end for
18: end on
19: on all 𝑔 ∈ 𝐹 do:
20: Initialise 𝑡= to the empty mapping.

21: for all 𝑓 ∈ 𝐹 do
22: receive 𝑃 𝑓𝑔 from 𝑓 .

23: for all 𝑏 ∈ dom(𝑃 𝑓𝑔 ) do
24: if 𝑏 ∉ dom(𝑡=) then
25: 𝑡= (𝑏) ← 𝑃

𝑓
𝑔 (𝑏).

26: else
27: 𝑡= (𝑏) ← 𝑡= (𝑏) + 𝑃 𝑓𝑔 (𝑏).
28: end if
29: end for
30: end for
31: 𝑡≤ ← 𝑡≤ + 𝑡=.
32: end on

group element, not the plaintext from which it was gener-

ated. Returning to the plaintext requires a discrete logarithm,

which is assumed to be a hard problem as part of the security

assumptions of the ElGamal cryptosystem. However, while

it is not possible to decrypt the value, it is nevertheless pos-

sible to compare two Curve25519 elements for equality. This

is how the condition “Dec𝐾priv
(𝑣 𝑓 [𝑖]) ≠ 0” is evaluated.

To complete the description, we still need to explain line 7 of

Algorithm 5.

The main idea is that in order to hide the exact size of 𝐷 𝑓 , we

add to the mapping 𝑟 𝑓 a randomly chosen number 𝑥 𝑓 of “fake”

entries. These are entries whose domain is not an account at all,

but they cannot be selected by AUSTRAC because their values are

all (encrypted) zeroes.

To determine how to best choose 𝑥 𝑓 , it is important to under-

stand why this noise is needed. If an adversary is purely interested

in knowing the size of 𝐷 𝑓 (e.g., for competitive business intelli-

gence) then knowing its approximate size is likely to be equally

effective. The reason to hide the exact size is therefore different.

Namely, it is purely for the purpose of privacy preservation. We

6
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Algorithm 5 Result reading (Basic version)

1: on all 𝑓 ∈ 𝐹 do:
2: Let 𝑟 𝑓 be 𝑡≤ reduced to only its entries in 𝐷 𝑓 .

3: for all 𝑎 ∈ 𝐷 𝑓 \ dom(𝑟 𝑓 ) do
4: 𝑟 𝑓 (𝑎) ← zero. ⊲ See Note 1, above.

5: end for
6: Sanitise 𝑟 𝑓 . ⊲ See Note 2, above.

7: Add noise to 𝑟 𝑓 . ⊲ See Algorithm 6.

8: Let 𝜋 be a uniformly-chosen random bijection from

1, . . . , |𝑟 𝑓 | to the domain of 𝑟 𝑓 .

9: for all 𝑖 ∈ 1, . . . , |𝑟 𝑓 | do
10: 𝑣 𝑓 [𝑖] ← 𝑟 𝑓 (𝜋 (𝑖)).
11: end for
12: transmit 𝑣 𝑓 to AT.

13: end on
14: on AT do:
15: for all 𝑓 ∈ 𝐹 do
16: receive 𝑣 𝑓 from 𝑓 .

17: for all 𝑖 ∈ 1, . . . , |𝑣 𝑓 | do
18: 𝑑 𝑓 [𝑖] ← Dec𝐾priv

(𝑣 𝑓 [𝑖]) ≠ 0. ⊲ See Note 3, above.

19: end for
20: transmit 𝑑 𝑓 to 𝑓 .
21: end for
22: end on
23: on all 𝑓 ∈ 𝐹 do:
24: receive 𝑑 𝑓 from AT.

25: 𝑅 𝑓 ← {}.
26: for all 𝑖 ∈ 1, . . . , |𝑑 𝑓 | do
27: if 𝑑 𝑓 [𝑖] then
28: 𝑅 𝑓 ← 𝑅 𝑓 ∪ {𝜋 (𝑖)}.
29: end if
30: end for
31: transmit 𝑅 𝑓 to AT.

32: end on
33: on AT do:
34: 𝑅 ← {}.
35: for all 𝑓 ∈ 𝐹 do
36: receive 𝑅 𝑓 from 𝑓 .

37: 𝑅 ← 𝑅 ∪ 𝑅 𝑓 .
38: end for
39: end on
40: ⊲ 𝑅 is the final result retrieved by AUSTRAC.

41: ⊲ 𝑅 𝑓 is the partial result learned by 𝑓 .

wish to avoid revealing the information of whether particular ac-

counts appear in 𝐷 𝑓 (other than those directly retrieved by the

query), even in a scenario where AUSTRAC is free to craft 𝐷 𝑓 so

that it either includes or does not a specific account of interest, or

where AUSTRAC is free to run multiple queries that differ only by

a single account of interest.

To this aim, we choose 𝑥 𝑓 so as to satisfy the criterion of (𝜖, 𝛿)-
differential privacy. A probabilistic algorithm,A is said to be (𝜖, 𝛿)-
differentially private if for any input 𝑋 (described as a set), with

probability at least 1 − 𝛿 , the output of A on 𝑋 , 𝑣 , is such that for

any input 𝑌 that is different to 𝑋 by only a single element,

𝑒−𝜖Prob[A(𝑌 ) = 𝑣] ≤ Prob[A(𝑋 ) = 𝑣] ≤ 𝑒𝜖Prob[A(𝑌 ) = 𝑣] .
The idea behind (𝜖, 𝛿)-differential privacy is that it is “almost

always” the case that it is “almost impossible” to tell whether any

element was added to or subtracted from the set of interest, which,

in our case, is the set of accounts 𝐷 𝑓 \ 𝑅 𝑓 . This provides, for every
account (except for those in 𝑅 𝑓 ), protection against leakage of the

information of whether or not they are in 𝐷 𝑓 \ 𝑅 𝑓 , thus protecting
their privacy.

The (𝜖, 𝛿)-differential privacy paradigm differs from its more

popular cousin, 𝜖-differential privacy, in that 𝜖-differential privacy

guarantees that it is always the case that it is “almost impossible” to

tell whether any element was added to or subtracted from the set

of interest. In our case, this would not have been possible, however,

because when hiding a value in 𝜖-differential privacy by adding

to it a noise factor Δ, that Δ must have a positive probability of

being any integer. In particular, it must have a positive probability

of being negative. In our case, we can only add fake entries to 𝑟 𝑓 ,

not subtract them, so our 𝑥 𝑓 must be nonnegative.

If𝐷 𝑓 is of some size |𝐷 𝑓 | and 𝑥 𝑓 happens to be chosen to be zero,
AUSTRAC will be able to tell that the true value of |𝐷 𝑓 | cannot be
one more than this. As a result, at least at 𝑥 𝑓 = 0, we cannot satisfy

𝜖-differential privacy. We can, however, require the next best thing,

which we refer to as strict (𝜖, 𝛿)-differential privacy.

Definition 2. An algorithm that adds a non-negative, integer num-

ber, 𝑥 , of fake entries into a set in order to provide (𝜖, 𝛿)-differential
privacy will be said to satisfy strict (𝜖, 𝛿)-differential privacy if the

probability that 𝑥 = 0 is at most 𝛿 , and whenever 𝑥 > 0, the condi-

tions of 𝜖-differential privacy are satisfied.

Theorem 1. Algorithm 6 describes an algorithm for determining
𝑥 , the number of fake entries to add to a set, such that

(1) Adding 𝑥 fake entries to the result set provides strict (𝜖, 𝛿)-
differential privacy to an algorithm reporting the size of the
result set after the addition of the fake entries, and

(2) Algorithm 6 is optimal, in the sense that this distribution for
𝑥 has the minimal expectation of any distribution satisfying
strict (𝜖, 𝛿)-differential privacy.

Algorithm 6 Adding (𝜖, 𝛿)-differential privacy
1: on all 𝑓 ∈ 𝐹 do:
2: 𝛾 ← 1 − 𝑒−𝜖 .
3: 𝑌 ← max

(
0,

⌈
log

(
𝛾 (𝛾−𝛿 )
𝛿 (1−𝑒−2𝜖 ) + 1

)
/𝜖
⌉)
.

4: 𝑡 ← 1 + (𝛿 − 1)𝑒−𝜖 − 𝛿𝑒 (𝑌−1)𝜖 .
5: 𝑟 ← RandomFloat(1 − 𝛾/𝑡, 1). ⊲ Uniform between these

bounds. Independent between 𝑓 s.

6: if 𝑟 > 0 then
7: 𝑥 𝑓 ← 𝑌 + ⌊− log(𝑟 )/𝜖⌋.
8: else
9: 𝑥 𝑓 ← 𝑌 +

⌊
log

(
1 + 𝑟𝑡

𝛿𝑒 (𝑌 −1)𝜖

)
/𝜖
⌋
.

10: end if
11: Add 𝑥 𝑓 fake accounts with encrypted zero values to 𝑟 𝑓 .

12: end on

7
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Proof. consider any distribution 𝑃 over the nonnegative inte-

gers such that for every 𝒙 ∼ 𝑃 , Prob[𝒙 = 𝑥] ≤ 𝑒𝜖Prob[𝒙 = 𝑥 + 1].
Such a distribution is necessarily a weighted average of shifted

exponential distributions, 𝐸𝑦 , where the probability for 𝒙 ∼ 𝐸𝑦
to be any value 𝑥 ≥ 𝑦 is proportional to exp(−𝜖 (𝑥 − 𝑦)) and zero

otherwise.

Consider any distribution created by such a weighted average

that also meets all other criteria for strict (𝜖, 𝛿)-differential privacy.
The weight 𝛼0 associated with 𝐸0 cannot be greater than what

would give Prob[𝒙 = 0] = 𝛿 , and for all 𝑦 > 0 the weight 𝛼𝑦
associated with any 𝐸𝑦 cannot be greater than what would give for

𝒙𝒚 ∼ 𝐸𝑦

Prob[𝒙𝒚 = 𝑦] = 𝛿 exp(𝜖 (𝑦 − 1)) (exp(𝜖) − exp(−𝜖)) .

This is because 𝛿 exp(𝜖 (𝑦 − 1)) is the greatest possible value for
Prob[𝒙 = 𝑦−1] and exp(𝜖) −exp(−𝜖) is the greatest possible value
for 𝛼𝑦/Prob[𝒙 = 𝑦 − 1].

If there exists a strictly (𝜖, 𝛿)-differential-privacy-preserving dis-
tribution 𝐷 described by a weighted average 𝛼𝑦 over all 𝐸𝑦 for

which it is true that there exists a 𝑌 such that for all 𝑦 < 𝑌 , 𝛼𝑦
attains its maximum possible value, and for all 𝑦 > 𝑌 , 𝛼𝑦 equals

zero, by necessity this distribution is the unique global minimiser

of the expectation among all such distributions.

The distribution described by Algorithm 6 meets these crite-

ria, for which reason it is the unique optimum. The full technical

calculations that demonstrate this are in Appendix A. □

6 ENHANCEMENTS
Throughout, we make the point that the algorithms presented are

naive implementations of the FinTracer idea. Below are some meth-

ods that we have used to improve the efficiency of the algorithm in

a practical setting.

Nonce stockpiles: One time-consuming part of the algorithm

is the refresh needed for every communicated tag value at

each propagation round. Refreshing involves encrypting a

zero value, then adding that zero value to the existing tag

value. While the addition is fast, encryption is much slower.

Fortunately, it is also completely independent of the problem

parameters. It is therefore possible to generate a stockpile of

encrypted zeroes offline, before the algorithm is invoked, in

order to speed up its online performance.

Compressed sending format: As described above, what is

sent between computation nodes in each propagation round

is a mapping (either from accounts or from account pairs)

to encrypted values. In practice, this not only carries much

overhead, but also runs the risk that the data structure hold-

ing the mapping will include unintended information that

will in this way be leaked to the recipient. A better implemen-

tation is one where each pair (𝑓 , 𝑔) of financial institutions
sends in each round only a vector of tag values, without any

additional structure. This can be done by each such (𝑓 , 𝑔)
coordinating at initialisation time the length of the vector

and the identity of the account / account-pair associated

with each vector position. Because the propagation condi-

tion is two-sided visible, each node can separately compute

the length necessary for the vector and the set that needs to

be mapped to its positions, so such coordination can occur

without any information being leaked. The actual ordering of

the values can be chosen randomly, to ensure that it contains

no exploitable information.

One-sided criteria: In a real-world implementation, many cri-

teria of intelligence value are not two-sided criteria. Every

financial institution knows a great deal about the owners of

each account, so is in a good position to determine whether

certain accounts or certain graph connections are innocuous

and can be ignored. Ignoring a signal can be done by the

relevant financial institution substituting the correspond-

ing tag value with an encrypted zero before processing it

further. However, note that depending on the nature of the

filtering involved, such filtering may prohibit the use of

particular compression schemes. This is why all three com-

pression schemes (uncompressed, from-compressed and to-

compressed) are needed.

Size limits: Our implementation depicts the FinTracer result

to always be reported to AUSTRAC. In practice, if the result

set is too large, this indicates that the query was from the

get-go not a privacy-preserving query. In a real implementa-

tion, both AUSTRAC and the financial institutions should

first check what size their result sets are, and abort further

execution unless these are smaller than a given threshold.

Noise on result set size: In our implementation, we only add-

ed differential noise to the number of non-matching accounts

that are tracked. There was no need to obfuscate the number

of matching accounts, as this account set was going to be

reported to AUSTRAC in any case. However, if the process

may be aborted, as per the previous point, it is important to

also add noise in the form of fake matches, not just fake non-

matches. Algorithm 6 can be used to determine the number

of the fake matches, too.

Commitment: In a scenario where it is possible for AUSTRAC
to report to the financial institutions which accounts are a

match, but for the institutions to then reply with an account

set that is smaller than what AUSTRAC expected (due to

the added noise), it is important for the financial institutions

to first make a cryptographic commitment to AUSTRAC re-

garding the number of fake matches. Otherwise, a financial

institution could use the protocol in order to gain informa-

tion from AUSTRAC regarding the value of particular tags.
4

7 CORRECTNESS
Theorem 2. The FinTracer algorithm returns the subset of the

destination set 𝐷 composed of the accounts 𝑎 to which there is a path
of length up to 𝑘 on 𝐺 from any element in 𝑆 , unless the number of
walks on𝐺 of length up to𝑘 from 𝑆 to 𝑎 is a multiple of the Curve25519
group size.

Proof. By induction, the value, under the encryption, of 𝑡≤ (𝑎)
and 𝑡= (𝑎) for any account 𝑎 after 𝑖 propagation rounds of the al-

gorithm is precisely the number of walks of length up to 𝑖 and of

length exactly 𝑖 , respectively, from 𝑆 to 𝑎, modulo the group size.

4
It is presumed that once AUSTRAC receives a result set, it will continue investigating

it in the clear, so will be able to confirm that all results it received are true matches.

Together with the commitment regarding the number of fake matches, this does

not leave any room for a player to plant in the set of tag values to be decrypted by

AUSTRAC any whose value does not correspond to what the protocol expects them to

be.

8



FinTracer YYYY(X)

Because the shortest such walk is also a path, the number of walks

counted by 𝑡≤ (𝑎) is nonzero if and only if the number of paths is

nonzero. If the number of walks is not a multiple of the group size,

then this corresponds to whether 𝑡≤ (𝑎) is an encrypted nonzero

value or an encrypted zero value. The value ultimately communi-

cated to AUSTRAC, based on which the result set is determined, is

𝑡≤ (𝑎) after 𝑘 propagation rounds, multiplied by a uniform nonzero

group element. This multiplication preserves whether a value is

zero or not.
5 □

We deem the case where the number of walks is precisely a

multiple of the group size unrealistic, both on practical grounds

and because the group size is large enough for the number of walks

to never reach it when the algorithm is invoked with practically-

beneficial choices for the algorithm parameters, for which reason

in normal conditions this caveat can be safely ignored.

8 PERFORMANCE
We tested the behaviour of the system against real Australian trans-

action data, kindly provided by AUSTRAC, in order to validate

that the system is able to detect actual crime typologies and ac-

tual instances of financial crime in the real dataset. However, for

the purpose of measuring the system’s ability to scale out (as well

as to provide results that will be reproducible without access to

classified data), we ran the system on synthetic, random graphs

scaling up to the size of the full Australian monthly transaction

graph. These graphs were generated using the R-MAT method [9]

with parameters (0.57, 0.19, 0.19, 0.05), following, e.g., [8, 16].
In terms of complexity, the algorithm, in either its from-com-

pressed or to-compressed variants, requires for 𝑘 FinTracer prop-

agation steps 𝑘 |𝐸 | ciphertext summations, with the complexity of

all other operations being at most O(𝑘 |𝑉 |). The complexity of com-

munication size required for the same operation is O(𝑘 |𝑉 |) and the
complexity of required memory size is O( |𝑉 |).

According to [20], the number of transactions in Australia in a

typical month is roughly 2
28
. This is an upper bound on |𝐸 |, because

many of these transactions will represent the same edge in 𝐺 . (The

actual transaction graph is a multigraph, not an ordinary digraph.)

The number of customers served by each of Australia’s four

major financial institutions is approximately 15 million [21, 23], or

roughly 2
26

customers across all Australian banks. We therefore

estimate |𝑉 | at 227, for an average of 2 accounts per customer.

We generated, using R-MAT, random graphs with this |𝑉 | and
|𝐸 |. To show the system’s scale-out behaviour, a subset of the ver-

tices was chosen, and the algorithm was re-ran on the sub-graph

induced by these vertices. Each such experiment was ran 5 times,

to demonstrate the system’s consistent performance in each case.

Tables 1, 2 and 3 list the timing results for the initial FinTracer

propagation step (from a known-sized set of source accounts), for a

subsequent FinTracer propagation step (at this point managing |𝑉 |
tags) and for final result reading, respectively. The graphs depict

the view of a single processing node, corresponding to a single 𝑓 .

Timing information is listed against the size of 𝐸 𝑓 = 𝐸 𝑓 + ∪ 𝐸 𝑓 − ,
the set of edges of the propagation graph visible to 𝑓 , and the size

of 𝑆 𝑓 , the set of source accounts managed by 𝑓 .

5
In some scenarios, a user may actually wish to test for the number of walks of a

given length 𝑘 exactly, rather than walks of length up to 𝑘 . When this is the case, it is

possible to read 𝑡= instead of 𝑡≤ .
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Figure 1: Propagation time scales essentially linearly with
|𝐸 𝑓 |, and is largely independent of all other factors (for which
reason all six plots overlap almost completely).

Run times were measured on a distributed deployment on the

AWS cloud. Each of Australia’s four major banks was represented in

the experiment by a single EC2 g4dn.12xlarge node. These nodes

were chosen due to their large memory sizes (192GB each). Despite

the algorithm being straightforward to parallelise, code only used

one vCPU out of the 48 available on each EC2 instance, and only one

NVIDIA T4 GPU (each having 16GBs of memory) of the 4 available.

Thus, these timing measurements refer to non-parallelised, single

CPU/GPU runs.

Altogether, the following parameters were tested:

• Number of directed edges, from approximately 10,000 to

approximately 100 million going through each node.

• Number of source accounts, from 100 to 1,000,000.

• Number of overall accounts, from approximately 500,000 to

approximately 50 million in each node.

These were tested across

• Multiple iterative propagation steps.

• Five tests per configuration.

• Four transaction-holding nodes, simulating Australia’s four

major banks.

The results show that the system scales linearly with the number

of transactions, that even at full scale it completes a propagation

step in roughly 600 CPU+GPU seconds, and that these numbers do

not change based on how many accounts have positive values or

what the original tag size was. This is demonstrated also in Figure 1.

In all experiments, the number of target accounts to be read was

kept at 100, this simulating the realistic scenario where not too

many results can be returned, in order to maintain privacy. The

table shows that reading time is independent of the size of the

propagation graph, as well as of the number of sources tagged.

Regarding communication sizes, in our implementation cipher-

texts are transported between nodes in their extended projective

representation. At 256 bytes per ciphertext, this translates to a total

of 32GB communicated each round, for |𝑉 | = 2
27
. This could have

9
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Table 1: FinTracer first-step propagation times (seconds).

|𝐸 𝑓 | |𝑆 𝑓 | min max mean std relative std

10775 100 0.8 0.8 0.8 0.02 2.1%

10775 10000 0.8 0.8 0.8 0.02 3.0%

10775 1000000 0.8 0.8 0.8 0.03 3.4%

98711 100 1.5 1.6 1.6 0.04 2.9%

98711 10000 1.5 1.6 1.5 0.06 3.7%

98711 1000000 1.5 1.7 1.6 0.08 4.8%

907565 100 7.0 7.4 7.2 0.17 2.4%

907565 10000 7.1 7.5 7.3 0.18 2.5%

907565 1000000 7.3 7.8 7.5 0.17 2.3%

9586273 100 62.7 64.8 63.6 0.70 1.1%

9586273 10000 63.9 65.8 64.8 0.65 1.0%

9586273 1000000 65.4 66.2 65.8 0.32 0.5%

87288800 100 523.7 540.2 533.0 5.50 1.0%

87288800 10000 534.6 553.1 544.2 6.91 1.3%

87288800 1000000 541.5 564.5 552.6 7.52 1.4%

Table 2: FinTracer subsequent-step propagation times (seconds).

|𝐸 𝑓 | |𝑆 𝑓 | min max mean std relative std

10775 100 0.8 0.8 0.8 0.02 2.5%

10775 10000 0.8 0.8 0.8 0.03 3.4%

10775 1000000 0.8 0.8 0.8 0.03 3.5%

98711 100 1.5 1.6 1.6 0.04 2.6%

98711 10000 1.5 1.6 1.6 0.04 2.8%

98711 1000000 1.5 1.6 1.6 0.05 3.4%

907565 100 7.4 7.9 7.7 0.16 2.0%

907565 10000 7.4 7.9 7.6 0.16 2.1%

907565 1000000 7.4 7.9 7.6 0.20 2.6%

9586273 100 67.8 69.3 68.6 0.56 0.8%

9586273 10000 68.3 69.7 69.0 0.51 0.7%

9586273 1000000 68.5 70.3 69.1 0.62 0.9%

87288800 100 587.2 599.2 593.2 4.49 0.8%

87288800 10000 597.1 614.7 605.2 5.72 0.9%

87288800 1000000 597.6 610.9 601.6 5.21 0.9%

easily been compressible by a factor of 4 by converting the cipher-

texts to a more compressed representation before communicating

them, at negligible addition to the computation times.

We see, therefore, that in both communication amounts and

computation speeds, even at the scale of a national economy our

system is not only practical, but also allows for interactive work,

and for FinTracer to be used as a building block for other, more

complex algorithms.

9 PRIVACY PRESERVATION
Theorem 3. If all parties follow the FinTracer algorithm protocol,

the financial institutions gain from the data sent to them no knowledge
other than the algorithm’s inputs ⟨𝑄𝐺 , 𝑄𝑆 , 𝑄𝐷 , 𝑘⟩ and the algorithm’s
output (each 𝑓 learns the subset of𝐷 𝑓 matching the query). AUSTRAC
gains from the data sent to it no knowledge other than the approximate
size of each 𝐷 𝑓 , and the algorithm’s outputs (the subset of 𝐷 that
matches the query).

Proof. During the propagation steps of the protocol, all parties

exchange between them only encrypted values in an amount that

is known ahead of time to the receiving parties. The encrypted

values are all refreshed, and therefore unique, and the receiving

party does not have the decryption key. Thus, propagation does

not add knowledge to any party.

In the result reading step, AUSTRAC receives tags in an amount

the provides the approximate value of |𝐷 𝑓 |, but these tags have been
sanitised, and therefore carry only the information of whether they

are zero or nonzero. Furthermore, their order has been permuted

with a random permutation, so, in fact, only the total number of

nonzero entries is revealed to AUSTRAC. This total is, however,

the size of the result, so is not additional information given to

AUSTRAC. □

For completion, we note that in terms of non-data attacks on this

algorithm, the only additional information that can be divulged by

10
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Table 3: FinTracer reading times (seconds).

|𝐸 𝑓 | |𝑆 𝑓 | min max mean std relative std

10775 100 0.09 0.11 0.10 0.007 6.8%

10775 10000 0.10 0.13 0.11 0.011 10.4%

10775 1000000 0.10 0.11 0.11 0.006 5.9%

98711 100 0.09 0.12 0.10 0.010 9.3%

98711 10000 0.09 0.11 0.10 0.004 4.2%

98711 1000000 0.09 0.11 0.10 0.005 4.8%

907565 100 0.09 0.11 0.10 0.006 5.9%

907565 10000 0.10 0.11 0.10 0.004 4.0%

907565 1000000 0.10 0.12 0.11 0.008 7.9%

9586273 100 0.09 0.11 0.10 0.006 5.6%

9586273 10000 0.09 0.11 0.10 0.006 6.2%

9586273 1000000 0.09 0.12 0.11 0.011 10.2%

87288800 100 0.09 0.12 0.11 0.010 8.9%

87288800 10000 0.10 0.11 0.11 0.002 2.4%

87288800 1000000 0.09 0.12 0.11 0.011 10.4%

the parties are general bounds regarding the size of 𝐸 𝑓 + by virtue

of the time it takes each financial institution to process the data.
6

However, financial institutions can mask this by performing extra

summations so as to always round the number of summations up

to some upper bound such as 2
27
.
7

In a typical analysis of the privacy preservation properties of

computing protocols, one would now consider also the possibility

that some computing parties may maliciously diverge from the pro-

tocol and/or collude. In the case of this system these eventualities

are less of a concern because AUSTRAC is a governmental agency

and the financial institutions are regulated by AUSTRAC. The Fin-

Tracer protocol, accordingly, knowingly does not protect against

some extreme eventualities, the most notable of which being a col-

lusion between AUSTRAC and a financial institution in order to

gain (some) information regarding financial transactions in other

institutions. It also does not protect against AUSTRAC receiving

incorrect information if participating financial institutions decide

to report untruths. The main protection that it does offer is the

following.

Theorem 4. If financial institutions collude and/or are untruthful,
this does not breach the privacy guarantees of Theorem 3 for the
owners of accounts in non-colluding financial institutions.

Proof. The proof of Theorem 3 continues to apply, as nowhere

did it rely on the truthfulness of the inputs provided to any party,

or any other semantic property of it, other than the structure of the

input. □
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A DIFFERENTIAL PRIVACY CALCULATIONS
We present here the calculations proving that Algorithm 6 yields a

value 𝑥 𝑓 that is distributed according to the distribution that is the

unique solution described in the proof to Theorem 1.

Let 𝒙 be a random value distributed according to the desired dis-

tribution. The distribution has the following characteristics, which

fully define it.

(1) The support of the distribution is Z≥0.
(2) P(𝒙 = 0) ≤ 𝛿 .
(3) There is some 𝑌 such that for all 0 ≤ 𝑦 < 𝑌 , P(𝒙 = 𝑦) =

P(𝒙 = 0)𝑒𝜖𝑦 .
(4) For said 𝑌 , for all 𝑦 > 𝑌 , P(𝒙 = 𝑦) = P(𝒙 = 𝑌 )𝑒−𝜖 (𝑦−𝑌 ) .
(5) For all 𝑦, P(𝒙 = 𝑦) ≤ 𝑒𝜖P(𝒙 = 𝑦 + 1).
(6) For all 𝑦 > 0, P(𝒙 = 𝑦) ≤ 𝑒𝜖P(𝒙 = 𝑦 − 1).
(7) If 𝑌 > 0, P(𝒙 = 0) = 𝛿 .
To show that the distribution generated by Algorithm 6 meets

all criteria when using the 𝑌 value derived in the algorithm itself,

consider first that because it returns an 𝑥 𝑓 value in every case, what

the algorithm generates is certainly a distribution, in the sense that

if we sum up the probabilities for all possible values of 𝑥 𝑓 we will

necessarily reach 1.

Algorithm 6 relies on generating a uniform 𝑟 in the range [1 −
𝛾/𝑡, 1]. Importantly, if we compute 𝛾 − 𝑡 we get

𝛾 − 𝑡 = 𝛿𝑒−𝜖
(
𝑒𝑌𝜖 − 1

)
. (1)

By its construction in Algorithm 6 we know 𝑌 ≥ 0, so from (1) we

get that 𝛾 ≥ 𝑡 and therefore 1 − 𝛾/𝑡 ≤ 0.

We can therefore divide the range of 𝑟 to [1 − 𝛾/𝑡, 0) and (0, 1].
(ignoring zero-probability events like 𝑟 = 0). Specifically, we will

show that if 𝑟 is in the range [1 − 𝛾/𝑡, 0), this contributes to the

part of the distribution with 𝑦 values lower than the critical 𝑌 , and

if 𝑟 is in (0, 1], the remainder.

Consider first the case 𝑟 ∈ (0, 1]. In this case, the value of 𝑥 𝑓

is set to 𝑌 + ⌊− log(𝑟 )/𝜖⌋. Thus, at 𝑟 = 1, 𝑥 𝑓 receives the value 𝑌 ,

and the lower 𝑟 is the greater 𝑥 𝑓 will be, until as 𝑟 approaches 0,

𝑥 𝑓 approaches infinity. The key is that the critical values for 𝑟 in

which the value of 𝑥 𝑓 changes have a spacing between them that

decreases each time by a factor of 𝑒−𝜖 , so as long as 𝑟 is uniformly

distributed in this range, which it is, the resulting distribution will

satisfy criterion 4.

For exactly the same reason, when 𝑟 ∈ [1 − 𝛾/𝑡, 0) and

𝑥 𝑓 = 𝑌 +
⌊
log

(
1 + 𝑟𝑡

𝛿𝑒 (𝑌−1)𝜖

)
/𝜖
⌋
, (2)

we get probabilities that rise in accordance with criterion 3. The

fact that a linear transformation is applied on 𝑟 prior to the log

does not change this, because the distribution of the result after the

linear transformation is still uniform within a given range.

To verify the edge conditions we plug 𝑟 = 0 and 𝑟 = 1 − 𝛾/𝑡 into
(2). The former yields 𝑥 𝑓 = 𝑌 directly. For the latter, we can use (1)

to determine that it yields the threshold point for 𝑥 𝑓 = 0. Both fall

on critical values for 𝑟 .

By construction, any 𝑥 𝑓 output by the algorithm is an integer,

so combined with the above this also proves criterion 1.

To satisfy criteria 2 and 7, that the probability of 𝑥 𝑓 = 0 is

bounded by 𝛿 and equals it exactly if 𝑌 > 0, we calculate the critical

value for 𝑟 that delineates those 𝑟 values that yield 𝑥 𝑓 = 0 from

those that yield 𝑥 𝑓 = 1 in (2). This turns out to be 𝛿𝛾/𝑡 , but because
the distribution for 𝑟 was uniform over a range of length 𝛾/𝑡 , this
translates to a probability of 𝛿 exactly.

The other alternative to get 𝑥 𝑓 = 0 is from positive 𝑟 values, in

the case 𝑌 = 0. However, as can be seen in the definition of 𝑌 on

Line 3 of Algorithm 6, 𝑌 can only be zero if 𝛾 ≤ 𝛿 , meaning that

1 − 𝑒−𝜖 , the probability for 𝑥 𝑓 to be zero (noting that 𝑟 in this case

ranges in (0, 1]) is at most 𝛿 , as desired.

Lastly, we want to show that the formula for 𝑌 in Line 3 of

Algorithm 6 is such that conditions 5 and 6 are both satisfied.

For this, consider the values of 𝛼𝑡 used in the proof of Theorem 1.

These can be computed as

𝛼𝑦 = P(𝒙 = 𝑦) − 𝑒−𝜖P(𝒙 = 𝑦 − 1) .
As per the proof, in the optimal distribution,

𝛼𝑦 =


𝛿 𝑦 = 0 and 𝑌 > 0

𝛿
(
1 − 𝑒−2𝜖

)
𝑒𝜖𝑦 0 < 𝑦 < 𝑌

𝑇 𝑦 = 𝑌

0 otherwise

,

where 𝑇 is such that the total of all 𝛼𝑦 is 1 − 𝑒−𝜖 .
The fact that the 𝛼𝑦 must sum to 1 − 𝑒−𝜖 can be proved by

considering that each 𝛼𝑦 contributes exactly

𝛼𝑦
1−𝑒−𝜖 probability to

the distribution.

In order to prove conditions 5 and 6, we need to show

0 ≤ 𝑇 < 𝛿

(
1 − 𝑒−2𝜖

)
𝑒𝜖𝑌 .

In other words, 𝛼𝑌 should be the first 𝛼 value that is lower than

the geometric sequence of values given for the case 0 < 𝑦 < 𝑌 .

Let us therefore compute the 𝑌 value for which this would be the

case, in order to demonstrate that this is the value computed in

Algorithm 6.

We can find the correct 𝑌 by noting that if 𝑌 > 0 then 𝑌 is the

minimal value for which

𝑌∑︁
𝑦=1

𝛿

(
1 − 𝑒−2𝜖

)
𝑒𝜖𝑦 > (1 − 𝑒−𝜖 ) − 𝛼0 .

Substituting in the sum for the geometric formula, we reach the

𝑌 value described in Line 3 of Algorithm 6.
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