
Improved Distributed RSA Key Generation
Using the Miller-Rabin Test

Jakob Burkhardt1, Ivan Damg̊ard1, Tore Kasper Frederiksen2⋆, Satrajit Ghosh3, and Claudio Orlandi1

1 Department of Computer Science, Aarhus University, Denmark
2 Zama France,

3 Indian Institute of Technology, Kharagpur, India
jakob@cs.au.dk, ivan@cs.au.dk, tore.frederiksen@zama.ai, satrajit@cse.iitkgp.ac.in, orlandi@cs.au.dk

Abstract. Secure distributed generation of RSA moduli (e.g., generating N = pq where none of
the parties learns anything about p or q) is an important cryptographic task, that is needed both in
threshold implementations of RSA-based cryptosystems and in other, advanced cryptographic protocols
that assume that all the parties have access to a trusted RSA modulo. In this paper, we provide a novel
protocol for secure distributed RSA key generation based on the Miller-Rabin test. Compared with
the more commonly used Boneh-Franklin test (which requires many iterations), the Miller-Rabin test
has the advantage of providing negligible error after even a single iteration of the test for large enough
moduli (e.g., 4096 bits).
From a technical point of view, our main contribution is a novel divisibility test which allows to perform
the primality test in an efficient way, while keeping p and q secret.
Our semi-honest RSA generation protocol uses any underlying secure multiplication protocol in a black-
box way, and our protocol can therefore be instantiated in both the honest or dishonest majority setting
based on the chosen multiplication protocol. Our semi-honest protocol can be upgraded to protect
against active adversaries at low cost using existing compilers. Finally, we provide an experimental
evaluation showing that for the honest majority case, our protocol is much faster than Boneh-Franklin.

⋆ Majority of this work was done while at the Alexandra Institute, Aarhus, Denmark and some while at Protocol
Labs.

Table of Contents

1 Introduction . 3
1.1 Our Contributions . 4
1.2 Technical Overview . 5

2 Related Work . 5
3 Preliminaries . 7

3.1 Notation . 7
3.2 Probabilistic Primality Test . 7
3.3 From Distributed Biprimality Testing to Distributed Key RSA Generation 8

4 Sub-protocols . 8
4.1 Multiplication . 8
4.2 Basic sub-protocols . 10
4.3 Sample random shared value . 10
4.4 From smaller to large domain . 11
4.5 From integer shares to constrained domain . 12
4.6 From multiplicative to additive shares . 12
4.7 Computing Inverses . 13
4.8 Computing Set-Membership . 15

5 New divisibility test . 18
6 Efficient Biprimality Test . 20

6.1 How to achieve active security. 25
6.2 Achieving O(1) online multiplications . 25

7 Experimental Evaluation . 26

1 Introduction

The RSA cryptosystem [RSA78] is one of the earliest public-key cryptosystems and remains in use today. In
classical applications of RSA, each user stores their secret key and uses it to decrypt or sign, as the case may
be. However, this creates a single point of attack, which is often undesirable. The problem can be solved by
using a distributed or threshold version, where a number of devices each have a share of the secret key and
can therefore collaborate to decrypt or sign. This can be set up such that breaking into any minority of the
servers will neither compromise the secret key, nor compromise the availability of the system.

However, to really avoid a single point of attack, one needs to perform also the key generation phase
in a distributed fashion so that the secret key can never be stolen from a single location. Moreover, many
modern cryptographic protocols and primitives (e.g., time-lock puzzles [RSW96], accumulators [Bd94,CL02],
VDFs [BBBF18], etc.) assume that all parties have access to some RSA modulus whose factorization is known
to none of the parties.

Thus, the problem we consider in this paper is: we are given n parties, of which any t < n can be
corrupted by an adversary, and we want a secure protocol that outputs a random and valid RSA modulus
N = pq where p, q are primes of a given size, while the adversary learns nothing but N from the protocol. The
standard approach to RSA key generation is to select random candidates for p and q and test for primality.
This is non-trivial in the distributed setting, as we can of course not afford to make p or q public. Therefore
generating the modulus is usually a bottleneck in distributed RSA systems. There is a rich literature on
distributed RSA key generation, see the related work section below for details. However, with two exceptions
we return to below, all previous works on this make use of the Boneh-Franklin bi-primality test [BF97].

The idea in most such protocols is that the parties create shares of two random numbers p, q of the desired
size. They then compute securely the product N = pq and make it public. Now, one can very efficiently
run the Boneh-Franklin test by exploiting that N is public and the candidate numbers p, q are secret shared
among the parties. Without going into details, this test has the property that it always accepts when p and
q are prime, and otherwise accepts with probability at most 1/2. While this is a worst case bound, no better
bound is known for the average case behavior, so in order to make sure the probability of outputting an
invalid N is negligible, one needs to repeat the test security parameter many times.

The first paper in the literature that uses a different approach is by Algesheimer et al. [ACS02]. They use
generic MPC methods to generate the prime factors by testing random candidate numbers individually for
primality using the well-known Miller-Rabin test [Mil76,Rab80]. Since this test requires an exponentiation
modulo the number to test, one needs an MPC protocol for exponentiation where the base, the exponent
and the modulus must all remain secret. This protocol has the advantage that it can generate each of the
two primes independently of the other, in contrast to the approach followed by all other protocols, where one
generates pairs of candidates and must wait until both are prime. However, it is still a very inefficient protocol
by today’s standards. In particular, it inherently requires many rounds because each secure multiplication
costs at least one round, and the multiplications done during the exponentiation cannot be parallelized, as
far as we know.

A subsequent paper, by Damg̊ard and Mikkelsen [DM10], also uses the Miller-Rabin test but obtains
a much more efficient protocol. Their idea is also to generate p and q, compute N = pq, make N public
and finally test p and q individually using Miller-Rabin. In a moment we will get back to how this is done
without revealing p and q, but first we note that very good bounds on the average case behavior of the
Miller-Rabin test are known [DLP93]. Hence, while the test may accept a composite with probability 1/4
in the worst case, the error probability is much smaller for a random input. So much so, in fact, that when
numbers get large enough, we only need to do the test once (see Table 1) to ensure a negligible probability
of outputting a composite, assuming we choose random candidates and output the first one that passes the
test [DM10,DLP93].

In [DM10], this result is used as follows: they make sure that p = q = 3 mod 4, as this simplifies the
Miller-Rabin test, and it proceeds as follows (for p and similarly for q): choose random γ ∈ Z∗

p and accept

if γ(p−1)/2 = ±1 mod p. The high-level idea is then to choose a random γ ∈ Z∗
N and compute (in secret

shared form) γ(p−1)/2 − 1 mod N (and γ(p−1)/2 + 1 mod N). This can be done efficiently and in constant-
round by exploiting the fact that p is already secret shared and N is public. The remaining problem is

3

that to complete the test, we need to check whether p divides one of these two numbers. This problem was
solved in [DM10], and they obtained two protocols for 3 players, secure against 1 semi-honest, respectively 1
malicious corruption. However, there were two drawbacks: First, for malicious security, a set-up assumption
is required to establish a commitment scheme for integers, and players are required to commit to every share
of every secret generated in the protocol, which requires large-scale exponentiations each time. Second, the
test for divisibility uses secure computation modulo a very large prime, whose bit-length must be Ω(nk)
where n is the number of parties and k is the bit-length of N . While this was not so serious in the context
of [DM10], as they only handled the case of n = 3 explicitly, it raises the following question:

Can we use the Miller-Rabin test for efficient distributed RSA key generation,
with more than 3 parties and without set-up assumptions?

1.1 Our Contributions

Semi-honest security. In this paper, we address the open problem described above. We first propose a
protocol for distributed generation of RSA moduli that is secure against semi-honest corruption of t of the
n parties, for any t < n. The protocol is statistically secure, assuming access to a functionality for secure
multiplication. The functionality can be implemented with unconditional security by standard Shamir-sharing
based methods if t < n/2 (or replicated secret-sharing for small n), and otherwise requires a computationally
secure approach. Like the 3-party protocol from [DM10], ours is based on the Miller-Rabin test and only
requires one iteration of the test for large enough target modulus sizes. We follow the blueprint from [DM10]
but propose a new divisibility test which, like the one from [DM10], requires secure computation modulo
an auxiliary prime, but we only require it to have bit length O(k + log n), rather than Ω(nk). Hence our
protocol, instantiated for n = 3, t = 1, compares favorably to the semi-honest protocol from [DM10].

We also compare favorably to semi-honest secure protocols using the Boneh-Franklin test, such as [BF97]:
the computational complexity of both protocols is dominated by the required exponentiations modulo N .
Boneh-Franklin needs s of these per player where s is the security parameter, while we need only 2 (one
for each prime factor). As for the communication complexity of Boneh-Franklin, this is also dominated by
the Ω(s) iterations of the test, as each player needs to send a k-bit number to the others per iteration. On
the other hand, we need O(n) secure multiplications modulo N . For t < n/2, a secure multiplication using
standard methods requires each player to send a k-bit number to the others, so as long as n << s, our
communication complexity is smaller. As one would typically want s ≈ 60 − 100, n will be much smaller
than s in many practical settings. For t ≥ n/2, the picture is less clear since our protocol become dominated
by the more expensive method used for secure multiplication in this setting. Finally, both Boneh-Franklin
and our protocol can be done in a constant number of rounds. In particular, twice in our protocol we need
to multiply together O(n) secret values, and this can be done in constant round using an idea by Bar-Ilan
and Beaver [BIB89]4.

Malicious security. There are several ways to upgrade from semi-honest to malicious security. A very efficient
approach is to use the compiler from [DOS18], which was implemented and optimized in [EKO+19]. It takes
a semi-honest protocol and produces an actively secure one tolerating a smaller number of corruptions. The
compiler does not use zero-knowledge proofs, but is based on several players doing the same computation
so that they can verify each others’ actions. It is therefore very efficient, but is most interesting for a small
number n of players, asymptotically it only tolerates Θ(

√
n) active corruptions. Using this approach, we can

obtain a maliciously secure protocol for n = 3, t = 1, the same setting as [DM10], but without any set-up
assumptions and no need for a computationally expensive commitment scheme. This gives security with
abort, but we can also get a protocol for n = 4, t = 1 with guaranteed output delivery. In both cases the
overhead over the semi-honest version is a small constant factor. More details in Section 6.1.

Another approach to getting malicious security is to use zero-knowledge proofs. This has been done
many times in constructions based on the Boneh-Franklin test (see the related work section for examples).

4 for a small number of parties, it is faster to do the multiplications in a standard tree structure. See Section 7 for
details about the best cut-off point between the two techniques.

4

Usually, the idea is to optimistically run the tests with a semi-honest protocol and then prove afterwards
that everything was done correctly. This allows tolerating more corruptions but on the other hand degrades
performance, and the zero-knowledge step is usually the bottleneck in earlier work: if compact proofs such as
SNARKS are used, proofs are short, but a heavy computational burden is placed on the prover. Alternatively,
more “classical” zero-knowledge protocols can be used that are more efficient for the prover, but where the
communication complexity will increase with s, the number of iterations of the test. The same approach can
be used with our protocol, but with less performance degradation, because the local computation that must
be proved correct is much smaller in our case, as explained above. We leave working out the details of this
approach for future work.

Experimental Evaluation. We implemented our semi-honest protocol as well as a semi-honest version of the
protocol using the Boneh-Franklin test, for 2, 3, 5, 7, 9 and 11 players5. Details on the implementation
and results are found in Section 7. The results clearly show that our protocol is much faster than Boneh-
Franklin in case of honest majority, by a factor 3.2-14 in latency and 42-77 in throughput, while we are
slower for dishonest majority. This confirms what one might expect from the fact that we need several
secure multiplications, which are cheap for honest majority, but expensive for dishonest majority. While in
contrast, Boneh-Franklin is slowed down by the computational load of the many exponentiations, but does
not need secure multiplications. We also benchmark the extra steps needed for the maliciously secure version
for n = 3, t = 1 based on the compiler from [DOS18]. We found that this was slower than the semi-honest
version by a factor between 1.8x and 4x depending on the metric 6.

1.2 Technical Overview

We follow the blueprint of the protocol in [DM10], i.e., we generate a random candidate modulus N = pq,
where we individually test p and q for primality using Miller-Rabin. As described in the introduction, the
problem to solve is to do a secure and efficient test to decide if one secret-shared number divides another.
More precisely, the setting is as follows: we have a public number N and an (additive) secret sharing of a
divisor f in N . We use [f]Z as shorthand for shares in f held by the parties, where the integer sum of the
shares is f . We also have an additive sharing modulo N , [δ]N , where δ ∈ Z∗

N and the subscript N means
that the shares add to δ modulo N . The goal is to decide whether f divides δ.

The basic idea is to choose a public prime P > N and exploit the fact that if indeed f divides δ, then
δ · f−1 mod P = δ/f . It is relatively easy to obtain [δ]P and [f]P from what we are given (there are some
caveats we gloss over here for simplicity). And then we can compute [δ · f−1 mod P]P using standard
methods. We then do exactly the same for another large prime Q to obtain [δ · f−1 mod Q]Q. The point
is now that if f divides δ, then the two numbers shared modulo P and Q are the same, namely both are
equal to δ/f . But if not, we can show that if Q is random and large enough, the two numbers are equal
with only negligible probability. So we now need an equality test between values shared in different domains.
While this is not a standard MPC primitive, we show a relatively easy solution to solve this problem. The
resources needed for this is simple linear computations on shares and O(n) secure multiplications where n is
the number of parties.

2 Related Work

In [BF97] Boneh and Franklin presented the first efficient distributed RSA key generation protocol in a
semi-honest setting. They proposed an algorithm to check whether a number is the product of two primes or

5 We implemented only the actual bi-primality test, and not the part of a full RSA modulus generation where bad
candidates are rejected. This would in practice be done the same way no matter how the final output is confirmed,
namely by test division by small primes (or sieving) and by a single execution of Boneh-Franklin, which heuristically
will reject almost all bad candidates, though a proof of this is not known, as mentioned.

6 One could, of course, also compile the Boneh-Franklin protocol but this would lead to similar overhead factor, and
so a comparison would still come out in favor of our protocol.

5

not, without knowing the factors, and used it to build a protocol for generating RSA keys securely assuming
an honest majority. Most of the works in literature use the Boneh-Franklin bi-primality test along with other
cryptographic primitives to design protocols for distributed RSA key generation. [ACS02] and [DM10] are
notable exceptions, as discussed in Section 1.

In [FMY98] Frankel, MacKenzie and Yung modified the [BF97] protocol to propose a maliciously secure
protocol in the honest majority settings. Later in [PS98] Poupard and Stern presented a maliciously secure
two-party protocol using oblivious transfer. Unfortunately, their protocol leaks some information about the
primes to the adversary. The first fully secure and concretely efficient protocol for the two-party settings
appeared in [HMRT12]. In [Gil99] Gilboa improves the efficiency of the semi-honest secure two-party proto-
col by introducing efficient techniques for computing the modulus from additive shares. Specifically, [Gil99]
proposed three different techniques based on homomorphic encryption, oblivious polynomial evaluation, and
oblivious transfer respectively. The maliciously secure protocol by Hazay et al. [HMRT12] uses the homo-
morphic encryption-based technique from [Gil99] and zero-knowledge proof to ensure semi-honest behavior.
In the two-party setting Frederiksen et al. [FLOP18] propose a semi-honest secure protocol and a mali-
ciously secure protocol in OT hybrid model. Their maliciously secure protocol outperforms [HMRT12] by
an order of magnitude, but allows slight leakage. In recent work, Chen et al. [CDK+22] took a protocol-
modular approach and proposed an actively secure protocol for more than two parties that uses a combined
sampling-and-sieving technique, based on the Chinese Remainder Theorem (CRT), both in order to eliminate
the leakage of [FLOP18], but also to increase the overall efficiency. The idea of the CRT-based sampling
was originally discussed by Malkin et al. [MWB99] and consists of sampling secret shared non-zero numbers,
modulo small distinct primes (CRT-components). Using these the CRT these are combined into a large
prime-candidate. The approach has the advantage of ensuring that the prime candidate does not have any
small divisors, and hence has a greater chance of being a prime than if it was randomly sampled. In a
follow-up work, Chen et al. [CHI+21] proposed a construction for maliciously secure distributed RSA key
generation involving multiple parties. Similar to [CDK+22], [CHI+21] uses a Chinese Remainder Theorem
(CRT)-based prime sampling technique. Though unlike [CDK+22], they adopt a monolithic construction in
order to facilitate different optimizations. Other than that they also assume a specific communication model
with a semi-honest aggregator and many weak malicious clients. All these factors help them to enhance the
concrete performance of their protocol. Consequently, they presented an efficient instantiation of distributed
RSA key generation which can scale to more than 1000 parties. Unfortunately, these optimizations lead to
different attacks when this protocol is used in real-world systems, as demonstrated in [Shl20a,Shl20b].Later,
Guilhem et al. [DMRT21] introduced another optimization to the sampling of secret shared prime-candidates.
Similar to Chen et al. [CDK+22,CHI+21], they use a CRT-based approach. However, unlike previous pro-
tocols, Guilhem et al.samples each CRT component using multiplicative secret-sharing. They observe that
converting these multiplicative shares to additive shares, using a semi-honest protocol, can still result in
a protocol for distributed RSA key generation which is maliciously secure and more efficient than doing
non-zero random sampling based on additive shares.

We take a modular approach like [CDK+22], which leads to a simple protocol description and helps us
optimize individual modules in order to enhance the overall performance. We would like to emphasize that
unlike most of the recent works [CDK+22,CHI+21] in the literature, we optimize distributed Miller-Rabin
test and use that instead of the Boneh-Franklin bi-primality test. That along with a new divisibility test and
other optimizations help us to design an efficient protocol for distributed RSA key generation. We refer the
reader to Section 1.1 for a brief overview of our contributions.

Protocols for secure distributed generation of an RSA modulus have numerous applications, both in
theory and practice, and they are used as building blocks in many complex protocols. For instance, RSA-
based accumulators and verifiable delay functions (VDF) have already been implemented and deployed in
Blockchain settings [BBF19,Wes19] and require an RSA group of unknown order (which can be generated
using a secure distributed setup). Furthermore, secure distributed generation of RSA moduli finds usage by
companies offering distributed key management, that offer the replacement of Hardware Security Modules
(HSM) with interactive protocols. Apart from that, RSA is still widely employed “in the wild” by legacy
applications, for instance in the banking world.

6

3 Preliminaries

3.1 Notation

We work with n-parties denoted by P = {P1, . . . , Pn}, and [n] denotes the set of integers {1, . . . n}. Like
most previous work in this area we consider the case of static corruptions and synchronous networks.

For secret sharings, we use the following notation and conventions: [α]β will denote the secure additive
sharing of value α in the integer domain Zβ . It thus means that for all i ∈ [n], party Pi is in possession
of α(i) ∈ Zβ , and

∑
i∈[n] α

(i) mod β = α. Writing [α]Z, defines an additive secret sharing in the integers.

Similarly, ⟨α⟩β denotes the multiplicative sharing of α in Zβ . So party Pi with i ∈ [n], has αi ∈ Zβ and∏
i∈[n] αi mod β = α.7

For α, γ, c ∈ Zβ whe write c · [α]β + [γ]β to mean that each party Pi ∈ P locally computes cα(i) + γ(i)

mod β. This then implies an additive sharing [cα + γ]β . Writing [α]β + c means that party P1 computes
α(1) + c mod β, which implies [α + c]β . Finally, for multiplicative sharings ⟨α⟩β · ⟨γ⟩β makes all parties
Pi ∈ P compute αi · γi mod β, which implies ⟨α · γ⟩β .

We let s be a statistical security parameter, p and q denote the two prime candidates and they consist
of k bits. We assume, as it is the case in practice, that the length of the primes k satisfies k > 2s. Capital P
and Q will denote two big primes, such that n222k < nP < Q. It will later be specified, how exactly those
are picked.

3.2 Probabilistic Primality Test

We use the Damg̊ard and Mikkelsen [DM10] variant of the original Miller-Rabin test, where the main
modification is that the exponentiations are done modulo N . The test takes as input integers f and N such
that f ≡ 3 mod 4 and f divides N . Also, f ∈ [2k−1, 2k] and N ∈ [22k−2, 22k], for some integer k. To test
whether or not f is a prime, the test now proceeds as follows.

1. Choose an element v from ZN uniformly at random.

2. Compute γ = v
f−1
2 mod N .

3. If γ ≡ ±1 mod f , then output probably-prime, else output composite.

[DM10] gives an upper bound on the error probability, showing that the probability of outputting a composite
already gets negligible after just a single iteration, when k is chosen big enough (See Table 1). Note that
the reported values are statistical errors which are independent of the computing power of the adversary.
Furthermore, since 4096 bit moduli is already the minimum recommended modulus size, 1 iteration of the
test should be acceptable in practice.

log2(N) = 2048 3072 4096
t = 1 37 50 61
t = 2 67 81 103

Table 1: The table shows − log2(α), where α is the probability that, given N = pq, either p or q are not
prime after t iterations of the test.

7 This notation does not capture instantiations based on Shamir secret sharing or replicated secret sharing. However,
these forms of secret sharing are only used in some cases for implementing the functionality for secure multiplication
that we assume access to, and do not appear in the main protocol. Therefore, for simplicity, we restrict the notation
to additive sharing.

7

3.3 From Distributed Biprimality Testing to Distributed Key RSA Generation

Starting from the seminal work by Boneh and Franklin [BF97] all existing distributed RSA key generation
protocols we are aware of, with the notable exception of Algesheimer et al. [ACS02], follow some standard
steps.

In the first step, all the involved parties sample shares of two random numbers which become the prime
candidates p, q. Thanks to the prime number theorem, we know that a random k-bit number is prime with
probability about 1/k. Now, the parties run divisibility tests to ensure that each of the sampled numbers is
not divisible by small primes. After this sieving step, they run a secure multiplication protocol with input
the two prime candidates to get a candidate bi-prime N = pq. Once N is known to all the parties, the parties
run a bi-primality test to ensure that N is a product of two primes8. Finally (in applications that require
it) the parties run a distributed computation to securely generate the public key and shared secret key for
the RSA cryptosystem [RSA78] or other factoring-based schemes such as Pailler [Pai99,HMRT12,HMR+19].
Note that, in order to avoid having to run for multiple rounds of “rejection sampling” due to the significant
probability that N turns out not to be a bi-prime, in many applications it is more desirable to run several
instances of the protocol sketched above in parallel.

Crucially, we observe that the bi-primality test is typically the most expensive single step of the entire
procedure. For this reason the rest of this paper will focus solely on optimizing this step.

4 Sub-protocols

Our main protocol is built modularly from several subprotocols aka macros. See an overview of all protocols
and macros in this paper in Table 2. In this section we describe the subprotocols (or macros) that our protocol
is built from. We choose to present the protocol in a modular way, since the subprotocols are used multiple
times within the final protocol and they have separate semantic meanings thus simplifying the exposition of
the main protocol.

Since the macros take place within a larger protocol, we define them to take place in a certain parametrized
context, sometimes with an assumption on how input parameters are distributed. We do so via the Pre
specification. The actions to be carried out by the participating parties when calling the macro are specified
in the Execute specification. Finally, for completeness, we specify what is achieved after the execution of
the macro in the Post specification. All macros are implicitly parameterized by the number of parties n,
which is omitted for better readability.

For all macros, we will argue for their correctness and construct a simulator that constructs a view for
the corrupt parties. In the simulations, we always assume (without loss of generality) that party P1 is honest
and parties P \ {P1} are corrupt. More concretely, all macro-simulators take the same input as the macro
they simulate, together with a state. The idea when simulating is then, that the bigger simulator at some
point calls the sub simulator with the already simulated values for its input. A state is passed through all
sub simulators, and updated with all simulated values on the way, to enable us to reconstruct correlations
when simulating the final view in the protocol calling sub simulators. Thus every macro-simulator outputs
an updated state and a sub view that will be used in the main simulation. On top of that, it outputs the
simulated values of what the macro would output. In theory, all values that are input to the macro-simulators
could also be extracted from the sate by the simulator, and the simulated output could instead be entered
into the state. Though we chose this convention to make calling a sub simulator more readable.

4.1 Multiplication

The multiplication macro Mult in Figure 4.1 is different from the others, as it embodies a generic multiplica-
tion functionality, instead of an actual implementation. For this generic macro, we simply assume that there
exists a simulator that simulates the macro implementing it. As discussed in the introduction, this allows
to provide a generic exposition of our protocol that can later be instantiated with different thresholds for

8 Note that, if the test fails, both p, q need to be discarded since N has been made public.

8

Ref. Usage Notes
Share and Open

4.2 Share(ZA, Pi, x)→ [x]A Party Pi creates a random additive sharing of x in ZA. Similar
for ⟨x⟩A.

4.2 OpenTo(ZA, Pi, [x]A)→ x Secret value x is revelaed to Pi. Similar for ⟨x⟩A.
4.2 OpenAll(ZA, [x]A)→ x Secret value x is revealed to everyone. Similar for ⟨x⟩A.

Local Commands
3.1 [x]A + [y]A, c · [x]A, [x]A + c Local linear computation on shares.
3.1 ⟨x⟩A · ⟨y⟩A Local multiplicative computation on shares.
4.3 Random-sample(ZA)→ [r]A Distributed generation of random value.
4.4 Larger-domain(ZA,ZB , [x]A)→ [x+ cAA]B Local share domain conversion from ZA to ZB with B suffi-

ciently larger than A. Does not produce random shares.
4.5 Int-to-mod(ZA, [x]Z)→ [x mod A]A Local share domain conversion from integer to ZA. Does not

produce random shares.
Interactive Subprotocols

4.1 Mult(ZA, [x]A, [y]A)→ [x · y]A Secure multiplication, which outputs random shares. Can be
instantiated in different ways.

4.6 Mult-to-add(ZA, ⟨x⟩A)→ [x]A Secure conversion of multiplicative into additive sharing.
4.7 Invert(ZP , [x]P)→ [x−1]P Secure inverse computation, assumes x ̸= 0. Only in prime

domains ZP .
4.8 Membership(ZP ,X, [x]P)→ [z]P Secure membership testing that outputs z = 0 if x ∈ X, or

some non-zero (non-random) value z otherwise. Assumes x ̸= 0
and 0 ̸∈ X. Only in prime domains ZP .

Novel Protocols
5 Divisible(k, s,ZN ,ZP ,ZQ, [δ]N , [f]Z)→ [y]Q Secure membership testing that outputs y = 0 if f divides δ or

some non-zero (non-random) value y otherwise. Assumes that
f divides N , and that N,P,Q are of appropriate size.

6 Biprime(k, s,ZP ,ZQ, N, [p]Z, [q]Z)→ b Secure biprimality testing that outputs whether N is a biprime
or not. Assumes N = pq and other conditions on the input
shares.

Table 2: Overview of macros, subprotocols, and protocols in this paper.

the number of corrupted parties, using different underlying secure multiplication protocols. On top of this,
we will sometimes call the Mult macro with more than two sharing arguments, which should be interpreted
as running it multiple times in a row, obtaining the product of all its arguments. Note that this requires a
number of rounds logarithmic in the number of inputs. We can also multiply multiple (non-zero) elements
in constant round using a randomization trick due to Bar-Ilan and Beaver [BIB89]. The trick is discussed
further when implementing the sub-protocol for membership testing later on.

FIGURE 4.1 (Mult(ZA, [x]A, [y]A)→ [x · y]A)

This functionality is parametrized by a domain ZA, and takes as input sharings [x]A and [y]A.

Pre: All parties hold shares of [x]A and [y]A.
Post: All parties hold shares of [z]A = [x · y mod A]A with uniformly random z(i) ∈ ZA for all parties i.

Generic interface for secure multiplication

9

Multiplication of two additively shared values [x]A and [y]A will be treated as a black box in the form of
a generic macro that once called outputs random shares of x · y mod A to all parties. Figure 4.1 presents
this multiplication functionality. When using it in later macros and the main protocol, one should think of
using a securely implemented version of it instead. Having specified multiplication in this way, enables us to
use several different secure multiplication protocols in our implementation.

In general, we sometimes withdraw the sharing arguments when referring to a macro. Using the multi-
plication macro as an example, we sometimes write Mult(ZA), when the sharing inputs are not yet specified.

Simulation. When simulating, we will assume that the macro implementing the multiplication functionality
in Figure 4.1 has a simulator that produces a view and a state in the usual manner. We will write

([x]A, view, state2)← SMult(ZA, [x1]A, . . . , [xℓ]A, state1),

when calling the multiplication simulator with the shared values x1, . . . , xℓ. When ℓ > 2 this is an abbreviation
for saying that we call the multiplication simulator ℓ−1 times providing each call with the state from the last
call. The produced view view is then a concatenation of all the views produced by the individual simulator
calls.

The simulator for the multiplication protocol, by assumption of the multiplication protocol being secure,
produces a view indstingusihable from the multiplication protocols we will be using.

4.2 Basic sub-protocols

We have already (Section 3.1) defined the basic linear operations on additive and multiplicative sharings
which are executed locally.

When writing OpenAll(Zβ , [α]β) (similar for multiplicative sharings), it means that each party Pi ∈ P
sends α(i) to every other party. Each party then computes α =

∑n
i=1 α

(i) mod β. Only opening to party Pj ∈
P, is done by writing OpenTo(Zβ , Pj , [α]β) (similar for multiplicative sharings). Finally, Share(Zβ , Pj , [α]β)
makes party Pj share value α in Zβ . So party Pj samples values α(1), . . . , α(n) uniformly at random such
that α =

∑n
i=1 α

(i) mod β and then sends α(i) to party Pi.

Simulation. All commands involving only local share manipulation are trivially simulated by following the
protocol instructions. As no information is transferred simulation is perfect. Additive sharing of a value is
simulated by selecting random shares for the corrupt party and a dummy share for the honest party, which
leads to perfect simulation. When opening a secret value (in the interesting case where at least one of the
corrupted parties learns the result) is as usual simulated by first simulating the value to be opened (all values
that will be opened will either be random or a function of the desired output of the function), and then
setting the share of the honest party to the only value that matches the value to be opened and the shares
of the corrupt parties (that the simulator keeps track of within its state). This leads to an indistinguishable
view as long as we can argue that the adversary had no information about the share of the honest party
right before the opening process.

4.3 Sample random shared value

Macro Random-sample (Figure 4.2), samples some uniformly random value r ∈ ZA in a distributed manner
by making all parties sample their share r(i) uniformly at random. This results in a uniformly random shared
value r in ZA.

Simulation. Figure 4.3 provides a simulator for the Random-sample macro. As no communication is happen-
ing, the only thing it does is to pick every share at random. The state is updated with the entire sharing
[r]A, while the view is constructed only with the corrupt shares.

Since no communication is involved, and the shares of the corrupt parties are sampled at random, it is
straightforward to argue that the view of the corrupt parties produced by the simulator is identical to their
view in the protocol.

10

FIGURE 4.2 (Random-sample(ZA)→ [r]A)

This macro is parametrized by a domain ZA.

Post: All parties hold shares of [r]A with r ∈ ZA being sampled uniformly at random.
Execute: Each party Pi ∈ P proceeds as follows:

1. Sample r(i) ∈ ZA uniformly at random.

Secure sampling of a random shared value

FIGURE 4.3 (SRandom-sample(ZA, state1)→ ([r]A, view, state2))

This simulator takes as input a state state1, and produces a new state state2 and a view view for the
macro.

Simulate:
1. Sample sharing [r]A = (r(1), . . . , r(n)) uniformly at random
2. Set state2 = state1 ∪ {[r]A}
3. Set view = {r(2), . . . , r(n)}
4. Return ([r]A, view, state2)

Simulator for the Random-sample macro

4.4 From smaller to large domain

Macro Larger-domain (Figure 4.4) lifts shares from one integer-domain to a larger one, by having all parties
interpret their shares in the new domain. This introduces an error, which can be bound as a function of the
number of parties and the size of the shares. Note that the produced shares are not uniformly distributed,
but this is enough in the context where the protocol is used later on.

FIGURE 4.4 (Larger-domain(ZA,ZB , [x]A)→ [x+ cAA]B)

This macro is parametrized by domains ZA,ZB such that B > nA, and takes as input a sharing [x]A.

Pre: All parties hold shares of [x]A.
Post: All parties hold shares of [y]B = [x+ cAA]B with cA < n.
Execute: Each party Pi ∈ P, proceeds as follows:

1. Interpret [x]A as shares in ZB i.e., sety(i) = x(i).

Secure conversion to larger domain

Correctness. Note that the protocol simply interprets shares from the source domain as shares in the target
domain. This works, since ∑

i∈[n]

y(i) mod B =
∑
i∈[n]

x(i) mod B

= x+ cAA mod B = x+ cAA,

where cA < n, due to all the shares x(i) being less than A. The last equality holds over the integers since we
assumed B > nA.

Simulation. The simulator for the Larger-domain macro is provided in Figure 4.5 and the only thing it does
is to update the state with the output sharing. As for other macros which do not involve communication,
the simulation of the view of the corrupt parties is trivially perfect.

11

FIGURE 4.5 (SLarger-domain(ZA,ZB , [x]A, state1)→ ([y]B , view, state2))

This simulator takes as input domains ZA and ZB , sharing [x]A, and a state state1. It produces a new
state state2 and a view view for the macro.

Simulate:
1. Set [y]B = (x(1), . . . , x(n))
2. Set state2 = state1 ∪ {[y]B}
3. Return ([y]B , {}, state2)

Simulator for the Larger-domain macro

4.5 From integer shares to constrained domain

Figure 4.6 shows macro Int-to-mod, which converts the integer sharing of a value, to a sharing in some
constrained integer domain. The only thing it makes the parties do, is to perform a modulo operation, which
restricts their shares to the constrained domain. Note that also this macro produces shares that are not
uniformly random in the new domain.

Correctness. Summing over the newly computed shares in the target domain, gives us the following∑
i∈[n]

y(i) mod A =
∑
i∈[n]

(x(i) mod A) mod A

=
∑
i∈[n]

x(i) mod A

= x mod A,

which is exactly what the macro promises after being invoked.

FIGURE 4.6 (Int-to-mod(ZA, [x]Z)→ [x mod A]A)

This macro is parametrized by a domain ZA, and takes as input a sharing [x]Z.

Pre: All parties hold shares of [x]Z.
Post: All parties hold shares of [y]A = [x mod A]A.
Execute: Each party Pi ∈ P, proceeds as follows:

1. Interpret [x]Z as shares in ZA i.e., set y(i) = x(i) mod A.

Secure conversion from integer to modular shares

Simulation. The simulator for the Int-to-mod macro is provided in Figure 4.7 and the only thing it does is to
constrain the shares to ZA and then update the state with them. As for other macros which do not involve
communication, the simulation of the view of the corrupt parties is trivially perfect.

4.6 From multiplicative to additive shares

Figure 4.8 shows a protocol that converts the multiplicative sharing of a value to an additive sharing of
the same value using O(n) multiplications. In Section 6.2, we describe a variant of this protocol that only
requires O(1) online multiplications, assuming preprocessing. The basic version of the macro, simply makes
all parties additively share their shares of the input. It then makes the parties compute the product of the n
sharings, producing an additive sharing of the input (as already discussed, this can be done in either O(log n)
or O(1) rounds)

12

FIGURE 4.7 (SInt-to-mod(ZA, [x]Z, state1)→ ([y]A, view, state2))

This simulator takes as input a domains ZA, sharing [x]Z, and a state state1. It produces a new state
state2 and a view view for the macro.

Simulate:
1. Set [y]A = (x(1) mod A, . . . , x(n) mod A)
2. Set state2 = state1 ∪ {[y]A}
3. Return ([y]A, {}, state2)

Simulator for the Int-to-mod macro

FIGURE 4.8 (Mult-to-add(ZA, ⟨x⟩A)→ [x]A)

This macro is parametrized by a domain ZA, and takes as input a sharing ⟨x⟩A. The macro assumes access
to Mult(ZA).

Pre: All parties hold multiplicative shares of ⟨x⟩A = (x1, . . . , xn).
Post: All parties hold additive shares of [x]A.
Execute: Each party Pi ∈ P, proceeds as follows: let xi be Pi’s share of ⟨x⟩A, then

1. [xi]A ← Share(ZA, Pi, xi)
2. Calculate [x]A ← Mult(ZA, [x1]A, . . . , [xn]A)

Secure conversion from multiplicative to additive shares

Correctness. For correctness, we only need that the produced sharing is actually a sharing of x, which it is
since

n∑
i=1

x(i) mod A =

n∏
i=1

xi mod A = x.

Simulation. The simulator first samples the additive sharings of the honest party multiplicative share uni-
formly at random, while it generates additive shares for the multiplicative shares of the corrupt parties
following the protocol. It then calls the multiplication simulator and constructs the view by combining the
multiplication view with all but one of the uniformly random values. The only share that is not included in
the view, is the first party’s own share of her share x1, as everything else is either on the corrupt parties’
random tape or in their transcript. The view of the corrupted parties produced by the simulator is dis-
tributed identically as in the protocol, thanks to the assumption on the underlying multiplication protocol,
and the fact that the honest party (additive) share of their own (multiplicative) share is never revealed. The
simulator is given in Figure 4.9.

4.7 Computing Inverses

Macro Invert (Figure 4.10), given an additively shared x in some prime field ZP , computes shares of its inverse
x−1. The macro is a special case of the one used by Algesheimer et al. [ACS02], which is originally due to
Bar-Ilan and Beaver [BIB89]. The main underlying idea is that performing the inversion in the cleartext space
is much more efficient than doing so in the secret-shared domain and, thanks to the assumption that x ̸= 0,
we can invert a randomized version of the input instead, and then correct the result in the secret-shared
domain.

Correctness. First note that in macro Invert, x is invertible, since P is a prime and it is required that x ̸= 0.
To see that the macro actually computes the inverse of x ∈ ZP , let us sum over the shares that are output

13

FIGURE 4.9 (SMult-to-add(ZA, ⟨x⟩A, state1)→ ([x]A, view, state2))

This simulator takes as input a domains ZA, sharing ⟨x⟩A, and a state state1. It produces a new state
state2 and a view view for the macro.

Simulate:
1. Sample sharing [x1]A = (x

(1)
1 , . . . , x

(n)
1) uniformly at random

2. For i = 2, . . . , n
(a) Sample sharing [xi]A = (x

(1)
i , . . . , x

(n)
i) uniformly at random under the constraint that their

sum in ZA is equal to xi.
3. Call ([x]A, view1, state2)← SMult(ZA, [x1]A, . . . , [xn]A, state1)
4. Construct state3 = state2 ∪ {[x1]A, . . . , [xn]A}
5. Construct view = view1 ∪ {(x(2)

1 , . . . , x
(n)
1), (x

(1)
2 , . . . , x

(n)
2), . . . , (x

(1)
n , . . . , x

(n)
n)}

6. Return ([x]A, view, state3)

Simulator for the Mult-to-add macro

FIGURE 4.10 (Invert(ZP , [x]P)→ [x−1]P)

This protocol is parametrized by domain ZP with P ∈ N being a prime, and takes as input a sharing
[x]P . The macro assumes access to Mult(ZP), and Random-sample(ZP).

Pre: All parties hold additive shares of [x]P such that x ̸= 0.
Post: All parties hold shares of [x−1]P .
Execute: Each party Pi ∈ P, proceed as follows:

1. Obtain [r]P ← Random-sample(ZP).
2. Compute v ← OpenAll(ZP ,Mult(ZP , [r]P , [x]P))
3. Compute locally [x−1]P = v−1 · [r]P .

Secure computation of inverse

at the end;

n∑
i=1

z(i) mod P =

n∑
i=1

(r · x)−1r(i) mod P

= x−1 · r−1
n∑

i=1

r(i) mod P

= x−1 mod P,

where (z(1), . . . , z(n)) denotes the sharing [x−1]P which is output by the macro.

As a final remark, we note that the only way rx can be non-invertible, is if r = 0 This happens only with
negligible probability in s though, due to our assumptions on P , k and s; P > n22k > n24s.

Simulation. Here the simulator first calls simulators SRandom-sample and SMult, and then executes the same
calculation as the simulated macro, except that it reveals a uniformly random value v′ instead of the output
of the calculations (when opening, it sets the share of the honest party to be consistent with v′ and the
shares of the corrupt parties that the simulator keeps track of). In order to argue that the view produced
by the simulator is indistinguishable to the one of the real protocol, it is crucial to observe that the opened
value v is the direct output of a (secure) multiplication protocol, and therefore the honest party’s share of
v is uniformly random in the view of the adversary right before the opening. Thus, the simulator can freely
“lie” about it. Then, notice that the opened value v′ is distributed uniformly to the actual value v, since r
is random and not used anywhere else and x ̸= 0. The simulator is provided in Figure 4.11.

14

FIGURE 4.11 (SInvert(ZP , [x]P , state1)→ ([x−1]P , view, state2))

This simulator takes as input a domains ZP with P ∈ N being prime, sharing [x]P and a state state1. It
produces a new state state2 and a view view for the macro.

Simulate:
1. Call ([r]P , view1, state2)← SRandom-sample(ZP , state1)
2. Call ([v]P , view2, state3)← SMult(ZP , [r]P , [x]P , state2)
3. Pick v′ ∈ ZP uniformly at random
4. Set v(1) = v′ −

∑n
i=2 v

(i)

5. Compute y = v′−1 mod P
6. Set [x−1]P = (y · r(1), . . . , y · r(n))
7. Construct state4 = state3 ∪ {[x−1]P }
8. Construct view = view1 ∪ view2 ∪ {v(1)}
9. Return ([x−1]P , view, state4)

Simulator for the Invert macro

4.8 Computing Set-Membership

Figure 4.12 provides macro Membership which checks if a secret shared value [x]P is a member of some set
∆. It does so by computing [z]P =

∏
δ∈∆([x]P − δ). This computation will result in z = 0 if and only if

x ∈ ∆ and some non-zero value otherwise. Note that this non-zero value might leak some information about
the input. A (standard) easy way of dealing with this is to multiply the result with a random value before
opening it, but this is not necessary in the context in which the protocol will be used (looking ahead, we will
multiply the result of two membership tests together and we are only interesting in protecting the inputs in
the case at least one of the two values is 0, which leads to the result being 0 regardless of which of the two
items was in the set). 9

Note that computing this product in the naive way would result in log2(|∆|) rounds, when computing
the product in a binary tree structure (where the product of two numbers is multiplied with the product of
two other numbers). To improve efficiency and get a constant round protocol, we exploit an idea by Bar-Ilan
and Beaver [BIB89]. What Bar-Ilan and Beaver shows is that when wanting to compute x1 · x2 · x3 it is
possible to compute and open y1 = x1 · r−1

1 · r2, y2 = x2 · r−1
2 · r3 and y3 = x3 · r−1

3 · r1 in parallel (and
therefore constant rounds). It is then possible to compute y1 · y2 · y3 = x1 · x2 · x3 in the open. This of
course scales for arbitrary-sized products. Unfortuantely this does not directly work for set-membership,
since xi = x − δ = 0 when x = δ ∈ ∆. Thus there will be a value yi = 0 for some i, which leaks exactly
which element in ∆ that is equal to x. To prevent this leakage we instead suggest considering the polynomial
F (X) =

∏
δ∈∆(X − δ) = Xm + cm−1 · Xm−1 + · · · + c1 · X + c0 where m = |∆| and ci ∈ ZP . When

testing for membership, we can then evaluate this polynomial, by computing the powers xi of the input
value for i ∈ [2;m]. Though, we now need to assume that the input satisfies x ̸= 0 to avoid leaking auxiliary
information. Note also, that the computation of xi−1 can be used in xi, by opening and reusing partial
products. We avoid leakage by picking m − 1 auxiliary random values, αi for i ∈ [2,m] and opening values
equal to xi · αi to avoid leaking information, while enabling the evaluation of the polynomial. At the same
time the values xi−1 · r−1

i−1 are used with x · ri−1 to allow reusing partial computations. 10

Correctness. First see that, since x ̸= 0 we know that vi, wi ̸= 0 for all i ∈ [2;m] except with negligible
probability (less than 2/P), since αi and ri are uniformly random sampled from ZP . This implies that in

9 Note that in case where one needs the answer as a bit in secret shared format, one can use a technique by Tomas
Toft [Tof07, Sec. 9.2], to get this with O(s) extra multiplications, except with negligible probability.

10 We note that if ∆ is a contiguous range of integers, e.g., ∆ = {5, 6, 7, 8, 9} then the membership testing problem
could also be solved using two comparisons. This can be achieved in constant rounds and linear complexity in
log2(|∆|) [Cd10].

15

FIGURE 4.12 (Membership(ZP ,∆, [x]P)→ [z]P)

This macro is parametrized by domain ZP with prime P ∈ N, and takes as input a set ∆ ⊆ Z∗
P and a

sharing [x]P . Define m = |∆|. Assumes access to Random-sample(ZP), Invert(ZP) and Mult(ZP).

Pre: All parties hold additive shares of [x]P , such that x ̸= 0 and δ ̸= 0 ∀δ ∈ ∆.
Post: All parties hold random shares of [z]P with z = 0 if x ∈ ∆ and a (non-random) zero-value in Z∗

P

otherwise.
Membership: Each party Pj ∈ P, proceed as follows:

1. Call Random-sample(ZP) 2m− 2 times to sample:
– [ri]P for i ∈ [2;m];
– [αi]P for i ∈ [2;m]

2. Use Invert(ZP) 2m− 2 times to compute
– [r−1

i]P ← Invert(ZP , [ri]P) for i ∈ [2;m].
– [α−1

i]P ← Invert(ZP , [αi]P) for i ∈ [2;m].
3. Use Mult(ZP) 3m− 5 times to compute the values:

– [ti]P ← Mult(ZP , [x]P , [r
−1
i]P) for i ∈ [2;m] and let [t1]P = [x]P .

– [vi]P ← Mult(ZP , [αi]P , [ti]P) for i ∈ [2;m]
– [wi]P ← Mult(ZP , [ti−1]P , [ri]P) for i ∈ [2;m]

4. For i ∈ [2;m] reveal vi ← OpenAll(ZP , [vi]P) and wi ← OpenAll(ZP , [wi]P)
5. Locally compute yi = vi

∏i
j=2 wj mod P for i ∈ [2;m]. // yi = αi · xi

6. Locally compute the coefficients ci ∈ ZP , i ∈ [0;m− 1] of the polynomial over X as

F (X) =
∏
δ∈∆

(X − δ) = Xm + cm−1 ·Xm−1 + · · ·+ c1 ·X + c0

7. Compute and return // [z]P = F ([x]P)

[z]P = [α−1
m]P · ym + cm−1 · [α−1

m−1]P · ym−1

+ · · ·+ c2 · [α−1
2]P · y2 + c1 · [x] + c0

Secure membership testing of a secret value in a public set.

step 5, yi ̸= 0 and thus for i ∈ [2;m]:

yi = vi

i∏
j=2

wj mod P

= αi · x · r−1
i

i∏
j=2

x · r−1
j−1 · rj mod P

= αi · xi .

The last equality follows due to all the rj values canceling out from r2 up to ri, as there is exactly one rj
and one r−1

j for j ∈ [i] in the product (in the above product r1 and therefore r−1
1 are both equal to 1). Next

we will argue that value z computed in step 7, is actually the polynomial evaluated on [x]P ;

z = α−1
m · ym + cm−1 · α−1

m−1 · ym−1 + · · ·+ c2α
−1
2 · y2 + c1 · x+ c0

= xm + cm−1 · xm−1 + · · ·+ c1 · x+ c0

= F (x),

where the second equality follows from the fact that α−1
i · yi = α−1

i · (αi ·xi) = xi. Since each δ ∈ ∆ is a root
of the polynomial F (X), it is clear that if x ∈ ∆ then F (x) = 0. If on the other hand x /∈ ∆ then, per the
argument above, F (x) ̸= 0 except with negligible probability in P .

16

Simulation. As before, the simulation calls the already defined subsimulators, does the exact same calcu-
lations as the macro and updates the view and the state along the way. When opening the values in step
4, the simulator instead picks some random values v′i, w

′
i and opens these instead, faking the share of the

honest party to be consistent with these values and the shares of the corrupted parties that the simulator
keeps track of. Note that both the values being opened are the fresh output of a multiplication protocol,
where the values are multiplied by a random mask that has not been used anywhere else (αi for vi and ri
for wi). Note finally that the output of the protocol is not guaranteed to be random. This will not matter in
the context where the protocol is used. The membership macro is simulated by Figure 4.13.

FIGURE 4.13 (SMembership(ZP ,∆, [x]P , state1)→ ([z]P , view, state2))

This simulator takes as input a domains ZP with P ∈ N being a prime, sharing [x]P , a set ∆ of size m,
and a state state1. It produces a new state state2 and a view view for the macro.

Simulate:
1. Let [r1]P be canonical sharing of 1
2. Set view = {}
3. Set state0 = {}
4. For i = 2, . . . ,m

(a) Call ([ri]P , view1, state1)← SRandom-sample(ZP , state0)
(b) Call ([r−1

i]P , view2, state2)← SInvert(ZP , [ri]P , state1)
(c) Call ([αi]P , view3, state3)← SRandom-sample(ZP , state2)
(d) Call ([α−1

i]P , view4, state4)← SInvert(ZP , [αi]P , state3)
(e) Set view = view ∪ view1 ∪ view2 ∪ view3 ∪ view4
(f) Set state0 = state4 ∪ {[ri]P , [r−1

i]P , [αi]P , [α
−1
i]P }

5. Call ([t1]P , view5, state1)← SMult(ZP , [x]P , [r
−1
1]P , state0)

6. Set view = view ∪ view5
7. For i = 2, . . . ,m

(a) Call ([ti]P , view6, state2)← SMult(ZP , [x]P , [r
−1
i]P , state1)

(b) Call ([vi]P , view7, state3)← SMult(ZP , [αi]P , [ti]P , state2)
(c) Call ([wi]P , view8, state4)← SMult(ZP , [ti−1]P , [ri]P , state3,)
(d) Pick v′i ∈ ZP uniformly at random
(e) Pick w′

i ∈ ZP uniformly at random

(f) Set v
(1)
i = v′i −

∑n
j=2 v

(j)
i

(g) Set w
(1)
i = w′

i −
∑n

j=2 w
(j)
i

(h) Compute yi = v′i
∏i

j=2 w
′
j mod P

(i) Set view = view ∪ view6 ∪ view7 ∪ view8 ∪ {v(1)i , w
(1)
i }

(j) Set state1 = state4 ∪ {yi}
8. For i ∈ [0;m− 1], compute the coefficient ci of polynomial

∏
δ∈∆(X − δ)

9. Calculate [z]P such that

z(1) = (α−1
m)(1) · ym + cm−1 · (α−1

m−1)
(1) · ym−1 + · · ·+ c2 · (α−1

2)(1) · y2 + c1 · x(1) + c0

z(i) = (α−1
m)(i) · ym + cm−1 · (α−1

m−1)
(i) · ym−1 + · · ·+ c2 · (α−1

2)(i) · y2 + c1 · x(i)∀i = 2, . . . , n

10. Construct state = state1 ∪ {c0, . . . , cm−1, [z]P }
11. Return ([z]P , view, state)

Simulator for the Membership macro

17

5 New divisibility test

We present now our novel distributed divisibility test Divisible (Figure 5.1), which uses uses several macros
from Section 4: Assuming that the parties have shares of [δ]N over ZN , and [f]Z over the integers11, Divisible
outputs whether or not f divides δ. On top of having distributed shares of [δ]N and [f]Z, we as well assume
that f divides N . As proven below, the procedure works except with a negligible probability of false positives.

Let k denote the length of f , i.e. f ∈ [2k−1, 2k] and N ∈ [22k−2, 22k]. As part of the setup, we need
two big primes P and Q, such that n222k < nP < Q < T (i.e. n2N < nP < Q < T) and Q is chosen in
]P, T [at random. We also assume some statistical security parameter s, such that 2s < k, which implies
that f,Q > 2s. Here, the upper bound T on Q is chosen such that there are 2s primes between P and T . A
concrete expression for T can easily be derived from the prime number theorem, T = 2P would be sufficient.
In the argument for the divisibility test, it will be important that Q is independent of the inputs to the
divisibility test. However, as we work with passive security, P and Q can be picked and fixed before the
protocol is run.

FIGURE 5.1 (Divisible(k, s,ZN ,ZP ,ZQ, [δ]N , [f]Z)→ [y]Q)

This protocol is parameterized by the length of the tested integer k and a security parameter s s.t k > 2s.
It is also parameterized by domains ZP and ZQ such that n222k < nP < Q, P and Q are primes
and Q is chosen at random independent of P . Finally ZN is a domain such that N ∈ [22k−2, 22k].
The protocol uses Mult(ZA), Int-to-mod(ZA), Larger-domain(ZA,ZB), Invert(ZA) and Membership(ZA) for
various combinations of A,B ∈ {N,P,Q}.

Pre: All parties hold additive shares of [δ]N and [f]Z such that f divides N and f ∈ [2k−1, 2k].
Post: All parties hold additive shares of [y]Q, with y = 0 if f divides δ and a (non-random) value in Z∗

Q

otherwise.
Execute: Each party Pi ∈ P proceeds as follows:

1. Convert [δ + c1N]P ← Larger-domain(ZN ,ZP , [δ]N)
2. Convert [δ + c1N]Q ← Larger-domain(ZN ,ZQ, [δ]N)
3. Convert [f]P ← Int-to-mod(ZP , [f]Z)
4. Convert [f]Q ← Int-to-mod(ZQ, [f]Z)
5. Compute [f−1]P ← Invert(ZP , [f]P)
6. Compute [f−1]Q ← Invert(ZQ, [f]Q)
7. Compute [a]P ← Mult(ZP , [δ + c1N]P , [f

−1]P)
8. Compute [b]Q ← Mult(ZQ, [δ + c1N]Q, [f

−1]Q)
9. Convert [a+ c3P]Q ← Larger-domain(ZP ,ZQ, [a]P)

10. Compute [z]Q = [a+ c3P]Q − [b]Q
11. Test [y]Q ← Membership(ZQ, {1, . . . , n}, (P−1 · [z]Q) + 1)

Protocol for passively secure divisibility testing

Correctness. The correctness of our divisibility test is summarized in the following Lemma, which is proven
below.

Lemma 5.2. Consider the protocol from Figure 5.1 and assume of the input that f ∈ [2k−1, 2k] and N ∈
[22k−2, 22k]. If f divides δ, all parties will end up with an additive sharing of 0. If on the other hand f does
not divide δ, all parties obtain an additive share of a non-zero value, except with negligible probability in s.

Proof. First note, that both pairs (N,P) and (N,Q) satisfy the conditions of Larger-domain since both
P > nN and Q > nN . Therefore, lifting δ to domain ZP and ZQ respectively in steps 1 and 2, results in the

11 When using this divisibility test later, f will correspond to some candidate RSA prime and δ will correspond to
γ ± 1 in the Miller-Rabin primality test.

18

same constant c1, since there is no overflow in either case. Now remember that we assumed that f divides
N , which implies that in ZQ

[b]Q = [δ + c1N]Q · [f−1]Q

= [δf−1
Q + c1g mod Q]Q

= [(δf−1
Q mod Q) + c1g − b1Q]Q, (1)

where N = fg for some g < Q/n2 and f−1
Q = (f−1 mod Q) denotes the inverse of f in ZQ. We can upper-

bound g, since N and thus its factors f and g are smaller than Q/n2 by construction. Then in the above,
b1 ∈ {0, 1}, since c1 ≤ n and thus c1g can only make the sum overflow at most once.

Similarly, we have that lifting a to domain ZQ in step 9 gives

[a+ c2P]Q = [(δf−1
P mod P) + c1g − b2P + c2P]Q, (2)

where g is the same as before and f−1
P = (f−1 mod P) denotes the inverse of f in ZP . By the same reasoning

as before, b2 ∈ {0, 1}, as c1g can only trigger a single overflow.
Summarizing the constants, we have two bits b1 and b2 that arose from moving c1g out of the modulus,

and two constants c1, c2 ≤ n stemming from domain changes. The two divisibility cases will now be handled
separately in the following.

f |δ: In this case, there exists some non-negative constant α < δ ≤ N < Q, such that δ = αf . Since δ < Q,
this translates directly to the ZQ domain, as δ ≡ αf mod Q. But then multiplying by the inverse of f
in ZQ, which exists as Q is prime, we get that

δf−1
Q ≡ α mod Q.

Since N < P as well, the same reasoning gives us that

δf−1
P ≡ α mod P.

Combining those two observations with Eq. (1) and Eq. (2), we have that in step 10, z will be given in
ZQ by the following

[z]Q = [a+ c2P]Q − [b]Q

= [α+ c1g − b2P + c2P]Q − [α+ c1g − b1Q]Q

= [((c2 − b2)P + b1Q) mod Q]Q

= [c2P mod Q]Q

= [c2P]Q

where c2 ≤ n, since nP < Q (see Figure 4.4). In the above calculation, we first insert a and b as described
before and then use the fact that b1 = b2 = 0 if f divides δ. To see this, remember that b1 in Eq. (1)
came from moving c1g out of the modulus, but when f |δ both δf−1

Q and c1g are smaller than P/2s (as
δ, c1N < P and f > 2s), so no overflow will occur. The same holds for b2.
But then in step 11, y will be zero, which follows from the correctness of macro Membership.

f ∤ δ: If on the other hand f does not divide δ, z will be given by the following, where we again make use of

Eq. (1) and Eq. (2)

[z]Q = [(δf−1
P mod P) + c1g − b2P + c2P]Q

− [(δf−1
Q mod Q) + c1g − b1Q]Q

= [(δf−1
P mod P)− b2P + c2P

− (δf−1
Q mod Q) + b1Q+ b3Q]Q

= [(δf−1
P mod P) + c3P − (δf−1

Q mod Q) + d1Q]Q,

19

where c2 − b2 = c3 ≤ n and b1 + b3 = d1 ∈ {0, 1, 2}. In the above, b3 ∈ {0, 1} is again a bit, since the
entire minus operation can only trigger one underflow.
What we now need to argue, is that

(δf−1
P mod P)− (δf−1

Q mod Q) + d1Q, (3)

is non-zero with overwhelming probability over the randomness of Q. This would namely imply that z
is not a small multiple of P (z ̸= cP with c ≤ n), and thus in step 11, y is non zero so non-dividing is
output except with negligible probability.
In order to prove that the above is non-zero except with negligible probability, note first that the state-
ment is equivalent to

δf−1
P − uP = δf−1

Q − (v + d1)Q,

for some integers u < P and v < Q. Multiplying by f on both sides

δf−1
P f − ufP = δf−1

Q f − (v + d1)fQ.

Now note that by definition of f−1
P and f−1

Q , there exist some integers α and β such that f−1
P f = 1+αP

and f−1
Q f = 1+ βQ. Furthermore we know that α < P and β < Q, as multiplying the two elements can

not trigger more than P or Q overflows respectively. Thus the above is equivalent to

δ + (δα− uf)P = δ + (δβ − (v + d1)f)Q.

In the above, (δβ−(v+d1)f) is different from 0. To see this, assume for contradiction that it is actually 0.
But then δ would be a multiple of f , leading to a contradiction, since we assumed that f ∤ δ. Subtracting
δ on both sides of the above then implies that if the above is satisfied, Q divides (δα−uf)P . This in turn
means that we can bound the probability of Eq. (3) being equal to 0 by the probability of Q dividing
(δα− uf)P ;

Pr((δf−1
P mod P)− (δf−1

Q mod Q) + d1Q = 0)

≤ Pr(Q|(δα− uf)P)

= Pr(Q|(δα− uf)),

where we use that P is a prime. Note that |δα−uf | ≤ P 2 and P < Q. So (δα−uf) has at most 2 prime
factors in the interval]P, T [where Q is chosen. Hence the probability of hitting one of those, is bounded
by

Pr(Q|(δα− uf)) ≤ 2

2s
.

Here we are reliant on the fact that Q is independent of P and of the choice of inputs to the test, and
that there are at least 2s choices for Q. As the above probability is negligible in the statistical security
parameter s, we conclude that Eq. (3) is non-zero with overwhelming probability. But then, assuming
Membership is correct, Divisible outputs an additive sharing of a non-zero value, concluding the proof12.

Simulation. The simulator for this protocol is provided in Figure 5.3. In a nutshell, the simulator simply
calls all the simulators of the underlying protocols to keep track of the shares of the corrupt parties. Note
that no values are being opened in the protocol.

6 Efficient Biprimality Test

In Figure 6.1, we present protocol Biprime, which receives shares of [p]Z and [q]Z together with biprime
candidate N from each party Pi. After being executed all parties learn whether or not N = pq is a biprime.

12 If we instead choose Q to be a fixed prime such that Q > P 2, we could conclude in the proof that Q can never
divide (δα− uf), and so the test would have error probability 0. But this would require a larger Q and lead to a
somewhat less efficient protocol.

20

FIGURE 5.3 (SDivisible(k, s,ZN ,ZP ,ZQ, [δ]N , [f]Z, state1)→ ([y]Q, view, state2))

This simulator takes as input domains ZN , ZP and ZQ, sharings [δ]N and [f]Z and integers k and s, such
that the the pre-conditions of Divisible are met. It also takes as input a state state1 and produces a new
state state2 and a view view for the macro.

Simulate:

1. Set state0 = {[δ]N , [f]Z}
2. Call ([δ1]P , view1, state1)← SLarger-domain(ZN ,ZP , [δ]N , state0)
3. Call ([δ2]Q, view2, state2)← SLarger-domain(ZN ,ZQ, [δ]N , state1)
4. Call ([f]P , view3, state3)← SInt-to-mod(ZP , [f]Z, state2)
5. Call ([f]Q, view4, state4)← SInt-to-mod(ZQ, [f]Z, state3)
6. Call ([f−1]P , view5, state5)← SInvert(ZP , [f]P , state4)
7. Call ([f−1]Q, view6, state6)← SInvert(ZQ, [f]Q, state5)
8. Call ([a]P , view7, state7)← SMult(ZP , [δ1]P , [f

−1]P , state6)
9. Call ([b]Q, view8, state8)← SMult(ZQ, [δ2]Q, [f

−1]Q, state7)
10. Call ([a1]Q, view9, state9)← SLarger-domain(ZP ,ZQ, [a]P , state8)

11. Compute [z]Q = (a
(1)
1 − b(1), . . . , a

(n)
1 − b(n))

12. Compute [z1]Q = ([z]Q · P−1) + 1
13. Set state9 = state9 ∪ {[z]Q, [z1]Q}
14. Call ([y]Q, view10, state10)← SMembership(ZQ, {1, . . . , n}, [z1]Q, state9)
15. Set view =

⋃10
i=1 viewi

16. Output ([y]Q, view, state10)

Simulator for the Divisible protocol

On the way, the protocol makes use of all the macros described in Section 4 and the proposed divisibility
test from Section 5. As described in the introduction, the main idea of the protocol is to run the [DM10]

version of the Miller-Rabin test on secret-shared inputs. The first step is to compute γ = v
f−1
2 mod N with

f ∈ {p, q} and random v. (In the semi-honest model we can ask an arbitrary party to sample v). Since we
have secret sharings of p, q over the integers, we can ask the parties to locally raise v to their share of p, q
to perform the step above (as the order of the group Z∗

N is unknown this would not have been possible with
modular secret sharings). Thus, the parties now hold multiplicative shares of the result and we therefore use
one of our macros to convert the result back to additive sharing. We then test whether f ∈ {p, q} divides
γ ± 1 using the divisibility test from the previous section. Note that we are only interested in security if N
is a biprime (if it is not we can leak and throw away p, q anyway), thus we can assume that the result of
one of the two divisibility tests will be 0. Still, we cannot leak which of the two divisibility tests succeeded,
as this would leak a bit of the candidate prime. This is solved by computing the products of the two results
and then revealing the outcome, which will always be 0 when N is biprime.

Input assumptions. In order for protocol Biprime to work, we need to make some assumptions regarding its
parameters and input. Given [p]Z, [q]Z, N , n, k, security parameter s and primes P and Q, we assume the
following;

1. N = pq
2. p, q ≡ 3 mod 4
3. p, q ∈ [2k−1, 2k] and N ∈ [22k−2, 22k]
4. p(1) and q(1) are odd while all other shares are even
5. n222k < nP < Q, i.e. n2N < nP < Q
6. Q was sampled at random, independent of P

Of the above, the first three assumptions are necessary to enable the usage of the primality test from
Section 3.2. Assuming that p(1) and q(1) are odd and all other shares are even, makes us able to compute
a multiplicative sharing of γ in step 1b of the protocol. Note that these assumptions are without loss of

21

FIGURE 6.1 (Biprime(k, s,ZP ,ZQ, N, [p]Z, [q]Z)→ b)

This protocol is parameterized by the length of the primes, k and a security parameter s such that k > 2s.
It is also parameterized by domains ZP and ZQ such that n222k < nP < Q, P and Q are primes and
Q is chosen at random independent of P . It takes as input shares [p]Z, [q]Z and integer N satisfying
the conditions specified in Pre below. The protocol assumes access to Mult(ZQ), Mult-to-add(ZN) and
Divisible(k, s,ZN ,ZP ,ZQ).

Pre: All parties hold additive shares of [p]Z and [q]Z and an integer N , such that
– N = pq
– p, q ≡ 3 mod 4
– p, q ∈ [2k−1, 2k] and N ∈ [22k−2, 22k]
– p(1) and q(1) are odd while all other shares are even

Post: All parties output b ∈ {biprime, not-biprime} indicating whether or not N = pq is biprime.
Execute: Each party Pi ∈ P, proceeds as follows:

1. Let G = ∅, and do the following for each f ∈ {p, q}:
(a) Party Pn samples a uniformly random value v ∈ ZN and sends it to all other parties.

(b) Compute ⟨γ⟩N = v[
f−1
2]Z mod N by doing:

γ1 = v
f(1)−1

2 mod N, and for i ̸= 1 γi = v
f(i)

2 mod N

(c) Compute [γ]N ← Mult-to-add(ZN , ⟨γ⟩N).
(d) Compute [γ − 1]N and [γ + 1]N .
(e) For δ ∈ {γ − 1, γ + 1} compute

[yδ]Q ← Divisible(k, s,ZN ,ZP ,ZQ, [δ]N , [f]Z)

(f) Compute [y]Q ← Mult(ZQ, [yγ−1]Q, [yγ+1]Q)
(g) Reveal y ← OpenAll(ZQ, [y]Q)
(h) If y = 0, set G = G ∪ {f}

2. If G = {p, q} output biprime, otherwise output not-biprime.

Protocol for biprimality testing secure against a passive adversary

generality: in the semi-honest model, we can just ask the parties, when sampling the random sharings of [p]Z
and [q]Z, to do so in a way to satisfy the conditions. The last two assumptions on the auxiliary primes P,Q
are needed to make the divisibility test go through (see Section 5).

Correctness. The correctness of protocol Biprime follows directly from the modified version of the Miller-
Rabin test as described in Section 3.2, assuming the conditions specified in Pre are satisfied.

In particular, we let party P1 compute γ1 = v(f
(1)−1)/2 mod N and every other party compute γi = vf

(i)/2

mod N . This leads to the correct result thanks to the assumption, that party P1 has an odd share of f while
all other shares are even, thus

∏
i∈[n]

γi mod N = v(f
(1)−1)/2

n∏
i=2

vf
(i)/2 mod N

= v(f
(1)−1)/2+

∑n
i=2 f(i)/2 mod N

= v(f−1)/2 mod N,

so the outcome is a multiplicative sharing ⟨γ⟩N of the value γ = v(f−1)/2 mod N , which is then turned into
an additive sharing [γ]N using macro Mult-to-add(ZN).

In step 1e, the parties then execute the divisibility test introduced in Section 5, twice per prime-candidate.
To hide which one of the two divisibility tests was successful if f is a prime, the protocol then multiplies the

22

two outputs of Divisible and opens this in step 1g. If f is a prime, this product will result in a sharing of 0.
If on the other hand f is not a prime, Divisible will output non-zero values, so the product is non-zero with
overwhelming probability. As we have already argued for correctness of the divisibility test in Lemma 5.2,
the parties end up with the knowledge about whether or not

(p|γp − 1 ∨ p|γp + 1) ∧ (q|γq − 1 ∨ q|γq + 1),

where γp and γq are the γ’s stemming from the divisibility test execution for p and q respectively, meaning
that the protocol outputs the right value to all parties at the end in step 2.

Simulator. The simulator for the protocol Biprime is provided in SBiprime (Figure 6.3). This simulator uses
all the sub simulators for the subprotocols in a modular fashion, and produces a view indistinguishable from
the view in the actual protocol. Remember that by convention party P1 is the only one that is honest, so
the simulator gets N and parties’ P\{P1} shares of [p]Z and [q]Z as input, and is then to construct the view
of those parties. The simulator as well gets a bit b ∈ {biprime, not-biprime} as input, indicating whether
or not N is bi-prime.

If b = not-biprime, the ideal functionality leaks p and q, meaning that in this case, we can just perfectly
simulate by running the protocol as the honest parties would do.

For the case where b = biprime, note that, along the way, we have already argued for the correctness of all
the sub-protocols. Together with the fact that the test we implement gives correct results with overwhelming
probability, this implies that the output of the protocol matches that of the functionality FBiprime, except
with negligible probability. Therefore, in this case, we run SBiprime which will simulate a view of the protocol
where the output is biprime.

It is enough to show that SBiprime produces a view with the same distribution as a real view where
the output is biprime. For this, we need to focus on all the values which are opened during the protocol
execution. In doing so, we argue separately for two facts:

1. All the values which are opened during the protocol are either random, or can efficiently be computed
from the output of the protocol.

2. All the shares of the honest parties which are revealed during the OpenTo and OpenAll sub-protocols are
uniformly random, with the only constraint that they determine the value that was opened, given the
shares of corrupt players.

These two facts together imply that the simulated view of all the openings is distributed exactly like the
real openings. Namely, SBiprime uses fact 1) to choose correctly the value to open in the simulated view, and
then use fact 2) to choose the honest shares to reveal with the correct distribution.

In order to argue for 2), note that all the secret-shared values which are opened during the protocol are
the direct output of some multiplication protocol Mult, and that the shares are not used by the protocol
after opening. This is easy to verify by inspection of the protocol. Being the output of Mult guarantees (by
assumption on the security of the Mult subprotocol), that the shares are distributed uniformly at random
(under the constraint of adding up to the correct result). The fact that the opened shares are not used in
any other computation in turn guarantees that no dependency is created between different opened values.

Then, we move onto arguing 1), namely that all the secret-shared values which are being declassified
within the protocol are either random or can be computed from the output of the functionality. Recall that
we only need to handle the case where the output is biprime: here the value y, which is the only value
opened in the body of Biprime, is always 0 in the real protocol. This is because the output is obtained as
the product of the results of the two divisibility tests, so the result is 0 as long as either of the divisibility
results is 0. The simulator therefore knows it should set y = 0.

For all other values which are being declassified within the sub-protocol, it holds that they are simulated
as uniformly random values within their domains. We argue that this is also the case in the real execution
of the protocol: recall that values are only being opened within the Invert and Membership sub-protocols. In
both cases it can be verified by inspection of the protocols that the opened values are non-zero values (as

23

argued in the correctness proof) which are multiplied by a uniformly random value before being declassified,
and crucially all of these multiplicative masks are used each to mask a single declassified value.

This leads to the following:

Theorem 6.2. Assuming a secure implementation of the Mult sub-protocol, protocol Biprime securely imple-
ments the FBiprime functionality against semi-honest adversaries.

FIGURE 6.3 (SBiprime(ZP ,ZQ, {p(2), . . . , p(n)}, {q(2), . . . , q(n)}, N)→ (viewBiprime, state))

This simulator takes as input the corrupt parties input shared of [p]Z and [q]Z, N . It produces a view
viewBiprime for Biprime, and a state state. The simulator assumes that N = pq is a biprime, as simulation
becomes trivial otherwise, since p and q are leaked.

Simulate:

1. Set [p]Z = (1, p(2), . . . , p(n)) and [q]Z = (1, q(2), . . . , q(n))
2. Set state0 = {[p]Z, [q]Z, N}
3. For f ∈ {p, q}

(a) Pick v ∈ ZN at random
(b) Set viewBiprime = viewBiprime ∪ {v}
(c) Calculate ⟨γ⟩N = v[(f−1)/2]Z mod N as in the protocol
(d) Call ([γ]N , view1, state1)← SMult-to-add(ZN , ⟨γ⟩, state0)
(e) Set viewBiprime = viewBiprime ∪ view1
(f) Calculate [γ ± 1] = (γ(1) ± 1, γ(2), . . . , γ(n))
(g) For δ ∈ {γ − 1, γ + 1}

i. Call
([yδ]Q, view2, state2)← SDivisible(k, s,ZN ,ZP ,ZQ, [δ]N , [f]Z, state1)

ii. Set viewBiprime = viewBiprime ∪ view2
iii. Set state1 = state2

(h) Call
([y]Q, view3, state0)← SMult(ZQ, [yγ−1]Q, [yγ+1]Q, state1)

(i) Set y(1) = 0−
∑n

i=1 y
(i)

(j) Set viewBiprime = viewBiprime ∪ view3 ∪ {y(1)}
Output (viewBiprime, state0)

Simulator for protocol Biprime

FIGURE 6.4 (FBiprime(n, k, s))

This functionality is parametrized by the number of parties participating, n, the length of the input primes
k and the statistical security parameter s.

Verify: Upon receiving (verify, ssid, N, pi, qi) from each party i, proceed as follows:
1. Compute p =

∑
i∈[n] pi and q =

∑
i∈[n] qi.

2. Compute
δ = p is prime ∧ q is prime

3. If δ = ⊥, send (not-biprime, ssid) as delayed output to all parties. On top of that, leak p and q,
by sending (leak, ssid, p, q) to all parties.

4. If instead δ = ⊤, send (biprime, ssid) as delayed output to all parties.

The ideal functionality for biprimality testing

24

6.1 How to achieve active security.

In this section we give some details on how we can achieve malicious security using the compiler from [DOS18],
which was implemented and optimized in [EKO+19].

This compiler takes a protocol secure against t2 + t semi-honest corruptions and produces a protocol
for the same number of players and the same purpose, tolerating t malicious corruptions. It works also for
protocols in the preprocessing model, where the protocol assumes correlated randomness is given “for free”.
The compiler is clearly more interesting for small values of t. In particular, for t = 1 we get the following: Let
π3,2 be our protocol instantiated for n = 3 and security against 2 semi-honest corruptions. It can be seen as a
protocol that works in the preprocessing model, given multiplication/Beaver triples for secure multiplication
modulo N (and modulo an auxiliary prime). Let C(π3,2) be the compiled version of that protocol. Thus,
C(π3,2) is a protocol for 3 players, secure against 1 malicious corruption that does the Miller-Rabin test
on N , given appropriate correlated randomness. Importantly, the compiler is not based on zero-knowledge
proofs, but on several players doing the same computation so they can verify each others’ actions. Therefore,
the overhead in going from π3,2 to C(π3,2) is small, roughly a factor 3.

Luckily, [DOS18,EKO+19] show how to efficiently construct a protocol πpreproc that generates multipli-
cations triples for 3 players and 1 malicious corruption, where the multiplications can be modulo any number
N . Hence, running πpreproc followed by C(π3,2) gives a protocol for exactly the same setting as in [DM10],
but without any set-up assumptions and no need for a computationally expensive commitment scheme13.

One can also instantiate our semi-honest protocol for n = 5 and 2 semi-honest corruptions. In this case,
the multiplications can be done using standard Shamir-sharing based methods. Running the compiler on this
protocol produces a 5-player protocol secure against 1 malicious corruption. This approach has the advantage
that we do not need multiplication triples generated by another protocol, which would lead to additional
overhead. Instead, the overhead over the semi-honest version is only a small constant factor incurred by the
compilation.

Finally, we note that the protocols mentioned so far only achieve malicious security with abort. At
the cost of assuming a larger ratio of honest to corrupt players, we can get guaranteed output delivery.
In particular, we can instantiate our semi-honest protocol for n = 4 tolerating 3 semi-honest corruptions
assuming correlated randomness and generate this randomness using a generalized version of πpreproc for 4
players and 1 malicious corruption (that always terminates). By the result in [DOS18], the compiled version
of this protocol will have guaranteed output delivery.

6.2 Achieving O(1) online multiplications

As already mentioned, the most computationally expensive operations in Biprime are the O(n) multiplications
required within the subprotocols Mult-to-add and Divisible (or rather the protocol Membership used within
Divisible). While this is of course not an issue for a small number of parties, it represents a bottleneck for
large n.

While we do not know how to get rid of this linear dependency (while keeping our overall good perfor-
mances in practice), we present in this section a variant of the protocol that pushes the O(n) multiplications
to a preprocessing phase (before N, [p]Z, [q]Z are available) and only requires performing O(1) multiplication
in the online phase (after the inputs are known).

First, consider the Mult-to-add(ZA, ⟨x⟩A) protocol: assuming the parties have access to a pre-processed
pair ([r]A, ⟨r⟩A), the protocol could be modified to let the parties compute and open ⟨y⟩A = ⟨r⟩A · ⟨x⟩A and
then locally compute [x]A = [r]A ·y−1. This requires in fact no multiplications, but only a single opening and
local operations. Unfortunately this does not quite work for us: the issue is that within the protocol Biprime,
the protocol Mult-to-add is called for the domain ZN , but since N is not known in the preprocessing phase,
the pair ([r]N , ⟨r⟩N) cannot be pre-computed. Instead, we will preprocess a pair ([r]Z, ⟨r⟩Z), aka a pair of a

13 Note that we are not going to run πpreproc in an off-line setting before the online protocol is executed. This would
not make sense as we do not know N until it is generated by the compiled protocol. Instead, we would run πpreproc

on the fly as needed.

25

multiplicative and additive sharing of a large enough random value r. In the online phase then the parties
can convert ([r]Z, ⟨r⟩Z) into ([r]N , ⟨r⟩N) by taking their shares modulo N . As long as r was chosen in such
a way that the share of each party is large enough so that ri mod N is uniformly random modulo N , then
this will allow to run the secure Mult-to-add described above. Note that the correlation ([r]Z, ⟨r⟩Z) can be
efficiently generated offline by having each party choose a random ri (their multiplicative share) uniformly
at random in a large enough domain. Then they can secret share this (modulo some larger B which allows
to simulate integer computation) and compute, using n multiplications in ZB , an additive sharing [r]Z.

Now, we turn our attention to reducing the number of online multiplications in the Divisible protocol. We
show how to do this at the cost of rejecting 3/4 valid candidates of N (in order to avoid leakage). Recall that
in Step 10 of the Divisible protocol the parties end up with a value [z]Q such that z = cP (for some constant
c < n) if the divisibility test is successful, and something bigger but unspecified otherwise. Since the value c
might leak sensitive information, we check whether z is of the form cP essentially by “brute force” thanks
to the Membership protocol, exploiting the fact that c < n. The idea towards reducing the number of online
multiplications is to avoid using the membership testing altogether, and instead compute and open the value

[u]Q = [z]Q + P · [t]Q,

for a large enough random t, which can be used to statistically hide c. Note at the same time that t cannot be
too large, as we do not want to have an overflow modulo Q. Therefore, we preprocess a value [t]Q uniformly
random constrained to the range 0 < t < Q/P − n. .

Note now that the parties can easily check (in cleartext) whether u is a multiple of P and reject otherwise.
If on the other hand f does not divide δ, opening [u]Q introduces some unspecified leakage. In our regular

protocol this is prevented by multiplying the result of the other divisibility test (which is guaranteed to be
0 when N is biprime) thus fully hiding u. This is not possible now, and therefore we must instead simply
discard N if the first divisibility test with γ+1 fails, thus preventing us from checking if the test would have
been succesfull with γ−1. This implies that we are only successful if by chance the divisibility tests for both
primes are succesfull in their first attempt which, over the randomness of picking v in the Miller-Rabin test,
happens with probability 1/4.

Finally, note that in our regular protocol we hide whether the divisibility test is succesfull for γ + 1 or
γ − 1 by multiplying the two results at the end. Clearly this is not possible anymore, as the result is learned
by the party in plaintext. We solve this by pre-processing an integer secret sharing of a bit over the integers
[b]Z which, during the online phase, is reduced to [b]N and is used to compute [γ + 2b − 1]N . Thus, we run
the divisibility test without knowing whether we are testing the divisibility of γ + 1 or γ − 1.

7 Experimental Evaluation

We compare our protocol against the one by Boneh-Franklin [BF97], and to a lesser extent the one by
Damg̊ard-Mikkelsen [DM10]. We observe that the Boneh-Franklin protocol only requires a single multipli-
cation over a domain 23k+s+2 log(n) using the approach of Frederiksen et al. [FLOP18], generalized to more
than two parties. For completeness we include this protocol in Figure 7.1. Similarly we observe that the
Damg̊ard-Mikkelsen protocol (which the authors present only for 3 parties) requires 42 multiplications, of
which one is over a domain of size 26k+6 and the rest over a domain of size at most 22k+3.

Code design. We benchmarked an implementation of our (semi-honest) protocol against the semi-honest
Boneh-Franklin protocol for several different choices of modulus size, security parameters and amount of
parties with the goal of comparing “apples-to-apples”. We did not implement the Damg̊ard-Mikkelsen proto-
col, since it closely follows the structure and has the same amount of rounds as ours, and the same amount of
exponentiations, but requires 48% more multiplications than our protocol! Thus we believe it is self-evident
that we will outperform this protocol. Furthermore, this protocol is only specified in the honest majority,
3-party setting, and thus is less general than both ours and the Boneh-Franklin protocol. Although it can be
generalized to more parties, at a significant increase in communication complexity and domain size in one of
its multiplications.

26

FIGURE 7.1 (Biprime(k, s,N, [p]Z, [q]Z)→ b)

This protocol is parameterized by the length of the primes, k and a security parameter s such that
k > 2s. It takes as input shares [p]Z, [q]Z and integer N satisfying the conditions specified in Pre below.
The protocol assumes access to Mult(·), Random-sample(ZN) and Int-to-mod(ZN , [x]Z).

Pre: All parties hold additive shares of [p]Z and [q]Z and an integer N , such that
– N = pq
– p, q ≡ 3 mod 4
– p, q ∈ [2k−1, 2k] and N ∈ [22k−2, 22k]
– p(1) and q(1) are odd while all other shares are even

Post: All parties output b ∈ {biprime, not-biprime} indicating whether or not N = pq is biprime.
Execute:

1. The parties in P execute the following test s times.
(a) P1 samples a random value γ ∈ Z×

N with Jacobi symbol 1 over N and sends this to all other
parties.

(b) P1 computes γ1 = γ
N+1−p(1)−q(1)

4 mod N and sends this to all other parties.

(c) Pi for i ̸= 1 computes γi = γ
−p(i)−q(i)

4 mod N and sends this to all other parties.
(d) All parties validate if

∏
i∈[n] γi mod N = ±1. If this is not the case, then output not-biprime.

2. The parties verify that gcd(N, p+ q − 1) = 1 as follows:
(a) Obtain [r]N ← Random-sample(ZN) // The parties will verify that r · (p+ q − 1) mod N = 1
(b) Convert [p]N ← Int-to-mod(ZN , [p]Z) and [q]N ← Int-to-mod(ZN , [q]Z)
(c) Compute [α]N ← Mult(ZN , [r]N , [p]N + [q]N − 1)
(d) Reveal α← OpenAll(ZN , [α]N).
(e) If α = 1, the parties output biprime, otherwise they output not-biprime.

Boneh and Franklin’s [BF97] protocol for biprimality testing secure against a passive adversary based on
the optimization of Frederiksen et al. [FLOP18], generalized to multiple parties.

We stress that our goal has not been to make as efficient an implementation as possible, but rather to
make a proof-of-concept implementation.14 For this reason we have prioritized architecture and readability
over optimizations. We did the implementation in Java and used the standard library BigInteger for big
integer arithmetic and (deterministic, yet seeded) SecureRandom for randomness generation, but optimize
computation of exponentiations in large domains by optional usage of the C-based GNU Multiple Precision
arithmetic library (GMP) through the Java Native Interface (JNI) by using a wrapper [Des]. All aspects
of our implementation use a single thread, and hence should scale directly in throughput linearly in the
amount of cores applied. This approach has the advantage of cross-platform portability and ease of usage
and readability when used without the JNI, but still allows more efficient runtimes when taking advantage
of the native implementation for the computationally heavy aspects of ours and Boneh-Franklin’s protocols,
i.e. modular exponentiations. We discuss the advantage of the JNI in more detail below, but here highlight
that all benchmarks unless otherwise stated, are using the JNI optimization.

We took a micro-benchmark approach to our implementation, letting it consist of several interchangeable
components. We did so, to both allow us to find the optimal setup of our protocol (and the one by Boneh-
Franklin), but also to allow us to give more detail, and to isolate bottlenecks, in our benchmarks. Concretely
we isolate exactly the amount of bytes to be sent over the network interface, rounds and the amount of
multiplications required. We then microbenchmark the core of the protocols, excluding any communication
and multiplications. We achieve this by using dummy modules for multiplication and the network interface.
This allowed us to run our benchmark on a single machine and find the formula for the expected latency under
any concrete network setup (in latency and bandwidth) and multiplication protocol. However, because of this,
our latency benchmarks are computed based on raw execution time, communication and round complexity.

14 The implementation is openly available at https://github.com/jot2re/rsa

27

https://github.com/jot2re/rsa

Hence we note that they exclude any TLS computational TCP overhead that might occur in practice (other
than a 40 kb header needed for each TCP package).

All our tests were executed on an AWS t3.micro instance with 2 virtual cores on an Intel Xeon 8000 series
given a baseline of 10% performance and 1 GB of RAM, running the latest version of Ubuntu and openJDK
19. We picked this system due to its pervasive usage and very competitive price point (something we believe
is high important for a protocol like ours), although it is not the fastest nor most performance consistent due
to the CPU cores being shared. Throughout the benchmarks we amortize communication s.t. each party will
send and receive an equal amount. All communication complexity numbers are only for sending or receiving.
I.e. the total network I/O is the double of the included numbers, but all modern networks are full duplex and
hence it will not affect throughput in practice. All benchmarks with networking estimates are based on a 1
gigabit connection with 10 ms latency, which reflects two servers connected in the same region, but not the
same LAN or building. We believe this reflects the desired use-case where multiple companies host servers
in the same region to collaborate in key generation. All our tests (except the microbenchmark of the Gilboa
multiplication and the malicious protocol) were run using the Java Microbenchmark Harness (JMH) with
parameters to expect at least 10 warm-up iterations and at least 10 iterations (each consisting of multiple
samples) for the actual benchmarks. The tests were furthermore executed with the parameters -Xms512m

-Xmx512m to ensure sufficient dedicated memory for the test from the beginning. I.e. it is sufficient to avoid
hitting a memory cap. Concretely we found the maximum memory used by both our protocol, and the Boneh-
Franklin protocol during the JMH benchmarks being 325 MB. Due to the microbenchmark nature of our
tests, some presented results are a combination of different microbenchmarks and hence not include an error
margin. However we note that in general the largest standard deviation was found on the micorbenchmarks
of the Shamir multiplication protocol as seen in Tab. 3. We found significantly lower standard deviation on
the actual protocol executions, with our protocol showing the largest instability as seen in Fig. 2.

Multiplication We implemented 3 different multiplication protocols, each of which works for different types
of secret-sharing schemes:

Shamir secret-sharing using the simplified multiplication protocol of Gennaro et al. [GRR98]. Constants
depending on the amount of parties are precomputed for 2, 3, 5, 7, 9, and 11 parties. Furthermore, we
optimize the inner workings of Shamir-based multiplications using long instead of BigInteger to avoid
unnecessary overhead during polynomial manipulation. Note that while Shamir secret-sharing requires
a field to work, we also need to perform sharing modulo the RSA candidate N . This fails (except with
negligible probability) only if N is not a biprime, in which case we can just reject it anyway.
Replicated secret-sharing for 1-out-of-3 parties based on additive shares [ISN89].
Gilboa/OT-based multiplication was carried out over additive secret-shares using the protocol of
Gilboa [Gil99]. Our benchmarks only include the online time and thus assume that a sufficient amount of
random OTs have been constructed previously, which can be done highly efficiently using OT-extensions
e.g. [KOS15,BCG+19,Roy22]. In addition, we also implemented the approach of Ishai et al. [IPS09]. In
relation to communication complexity, we unsurprisingly found it inferior to the approach of Gilboa. Fur-
thermore we also found it inferior in computation time in all situations required by both protocol and the
Boneh-Franklin protocol.

Shamir secret-sharing and replicated secret-sharing necessarily only give security in the honest majority
setting, whereas the OT-based approach works in the dishonest majority setting. However, Shamir and
replicated secret-sharing have the disadvantage of requiring conversions to and from additive secret-sharings
before and after any series of multiplications. Turning additive shares into Shamir or replicated shares
require a round of communication. Although turning Shamir or replicated shares into additive shares can be
done non-interactively. For Shamir this is done by having parties with id lower than t + 1 take their share
and multiply it with the relevant Lagrange coefficient. Parties with larger id, then set their share to be 0.
For replicated shares, simply taking the least significant share of the set of shares yield an additive share.
We also note that communication complexity for Shamir and replicated multiplication could be improved
further by having each party share a seed with each t other parties, which can be used to derive random
points when needed during sharing and multiplication.

28

bits
Replicated Shamir Gilboa
ms. KiB ms. KiB ms. KiB

2052 9.60± 0.70 101 1.48± 0.55 51.2 11, 800 26, 800
3096 16.1± 1.7 152 2.33± 0.98 76.9 19, 800 59, 900
5000 25.0± 1.6 202 3.10± 1.7 102 30, 400 106, 000

Table 3: Communication and
computation complexity for 100

multiplications operations for 3 parties
with standard deviation.

bits
Replicated Shamir
ms. KiB ms. KiB

2052 1.60± 0.24 101 1.34± 0.60 51.2
3096 2.40± 0.34 152 2.15± 1.3 76.9
5000 3.60± 0.40 202 2.43± 1.2 102

Table 4: Communication and computation
complexity for 100 additive sharing operations

for 3 parties.

We performed microbenchmarks of these protocols and outline the findings in Tables 3 and 4. Concretely
we did benchmarks for domains slightly larger than the bits of the modulus N we wish to validate biprimality
of. This is because our protocol requires us to do multiplication both modulo N , P and Q with N < P < Q.
Thus the microbenchmark can be considered upper bounds on any of the multiplications needed in our, or
the Boneh-Franklin, protocol.

Unsurprisingly we observe that the computation scales almost perfectly in n−1 for the OT-based protocol
and Shamir protocols, as does the communication. While we only implemented replicated secret sharing for
3 parties, we note that the communication complexity, and share-size scales in

(
n
t

)
. Concretely we find that

despite the disadvantages of Shamir and replicated sharing, they perform orders of magnitude better than the
OT-based approach, with Shamir always performing best in our situations, both in relation to computation
and communication.

Number of Rounds. Multiple places in our protocol we need to multiply a series of O(n) secret shared values.
As described earlier one way of doing so is using a tree-structure (leading to log n rounds), and one is based
on the Bar-Ilan Beaver [BIB89] trick (leading to constant rounds but at the price of a linear increase in
multiplication gates).

We implemented both approaches and express the impact on multiplication gates and rounds in Ta-
bles 5 and 6. These tables also take into account how the choice of multiplication protocol might impact
on our and the Boneh-Franklin protocol. More specifically some multiplication protocols work over ad-
ditive shares, similar to both our protocol and the Boneh-Franklin protocol. This typically includes OT
based [Gil99,IPS09] or additive homomorphic protocols [CDN01,DN03] 15. However other multiplication
protocols rely on having the inputs being shared using other types of linear sharing. This include Shamir
based protocols [GMW87,GRR98] or replicated secret sharing [ISN89]. This incurs some extra computa-
tion and an extra round of communication for each sequence of multiplications when coming from additive
shares. The total amount of times a single value must be converted is captured in the column From Add.
in Table 6 and the round overhead (assuming batched conversion) is captured in the rows Our (other) and
[BF97] (other) in table 5. On the other hand Shamir and replicated secret sharing based protocols allow a
multiplication followed by an opening to be done in a single round16. Furthermore, both additive and repli-
cated sharing can afford sampling of random values non-interactively through a common seed.17. Finally we
observe that due to the modular presentation of our protocol, a few operations are redundant and in fact

15 These are typically based on Paillier encryption, however for us to use such schemes we would require it to work
over an arbitrary domain that is not a prime (i.e. the candidate public key N). Hence such approaches will
likely be inefficient as the only additive homomorphic schemes we are aware of that work in this setting are class
groups [CL15] which are known to be quite inefficient in practice in setup for each new modulus [BCIL22, Tab. 3]
which we would require to happen for each biprimality test due to the changing modulus N .

16 For simplicity, and to follow typical implementation approaches we do however count this as 2 rounds.
17 For simplicity, we don’t reduce the rounds on this account, but note that a round can be removed from the

membership test if this optimization is applied.

29

only need to be done once. For instance, the Divisible protocol in Fig. 5.1 gets called twice on both [p]Z and
[q]Z, but the inversions in Steps 5 and 6 only need to be performed once.

We found that for all our test settings the logarithmic approach would always be the most efficient. Hence
this is the approach we used for our benchmarks.

Table 5: Round complexity of our protocol, the
Damg̊ard-Mikkelsen [DM10] and the

Boneh-Franklin [BF97] protocol depending on
whether additive or an other linear secret sharing
scheme is used, i.e. Shamir or replicated secret

sharing.

Parties 2 3 5&7 > 8
[BF97] (additive) 2 2 2 2
[BF97] (other) 3 3 3 3

[DM10] - 10 - -
Our (additive) 5 7 9 11
Our (other) 8 10 12 14

Table 6: Multiplicative complexity of our protocol, depending on the approach taken to handle
multiplications.

Rounds Parties Mults From Add.

Log
2 21 18
3 27 18
5 39 18
7 51 18
9 64 18
11 75 18

Const.
2 41 38
3 67 58
5 119 98
7 147 114
9 191 146
11 235 178

Protocol benchmark We perform our benchmark on the actual, online executable protocol code in the worst
case, meaning that a protocol will continue until the end regardless of whether the candidate N is a biprime
or not. In practice, both our protocol and the Boneh-Franklin protocol may output not-prime without
executing all steps. We exclude the time it takes to load classes and setup parameters. Hence for our protocol
we do not include the time it takes to sample P (which just needs to be a large enough prime) and Q (which
needs to be independent of N) and setting up other parameters. We find this the most fair and accurate in
the use-case where many biprimality tests have to be executed. We note, that once parameters have been
setup, an indefinite amount of biprimality tests can be executed, as long as the shares of p and q are picked
independently of the prime Q.

We present the micro benchmarks of the Boneh-Franklin protocol in Fig. 1 and our protocol in Fig. 2.
These benchmarks are raw in the sense that they exclude the time needed for performing necessary mul-
tiplications, along with network overhead and hence present the base confrontational and communication
requirements of the protocols. We see that our protocol performs orders of magnitude better than the one
by Boneh-Franklin at comparable choices of statistical security parameters. We also observe that neither we,
nor Boneh-Franklin, observe any significant increase in computation time with an increase in parties, but a

30

significant increase in communication. That is, more parties do not significantly hurt throughput, but only
latency.

Communication complexity

s = 40
s = 60
s = 80
s = 100

2 3 5 7 9 11
0

200

400

600

800

Parties

K
ib
ib
y
te
s

Computation complexity

2 3 5 7 9 11
0

1,000

2,000

3,000

4,000

5,000

Parties
M
il
li
se
co
n
d
s

Fig. 1: Raw communication and computation of the Boneh-Franklin protocol excluding the single multipli-
cation it requires. Each segment of 3 stacked bars represents, left to right, an RSA modulus of 2048, 3072,
4096 bits respectively.

Fig. 3 shows the comparison between the protocols in the honest-majority case when implemented with
the optimal choice of multiplication protocol (which turned out to always be Shamir), along with realistic
network overhead. It can be observed that the latency of our protocol is between 3.5x and 20x lower that
of the Boneh-Franklin protocol for 3 parties and generally decreases the more parties involved to between
3.2x and 14x for 11 parties. Note that in our protocol the statistical security parameter follows the size of
the biprime N we are generating, while in Boneh-Franklin it is an independent parameter. To make a fair
comparison we vary the statistical security parameter s in Boneh-Franklin to match ours for the different
sizes of N . We find that the main bottleneck in latency for the Boneh-Franklin protocol is computation
time, whereas for our protocol it is network latency, due to the rounds of communication needed.

We further compare the protocols in the 3-party case both for honest majority (using replicated secret-
sharing and Shamir secret-sharing) and dishonest majority (using the OT-based Gilboa protocol [Gil99]) in
Table 7. Here we compare according to price, where we consider price in USD cents for 1,000,000 biprimality
tests when using a t3.micro AWS instance priced at 1.04 cents per hour of usage and 2 cents per gigabyte
egress [aws]. From this we see that in the honest majority our protocol greatly outperforms Boneh-Franklin
both in throughput (improvement of 42x-77x) and price (improvement of 3.0x-7.5x). Alas, in the dishonest
majority case our protocol gets severely punished by the amount of multiplications we require and hence
Boneh-Franklin achieves a higher throughput and lower price than our protocol. In both the honest majority
and dishonest majority we found communication, and not computation, being the main price-bottleneck for
our protocol. For the Boneh-Franklin protocol this was only true in the dishonest majority setting.

Malicious version. While we did not make a full, working implementation of the malicious version of our
protocol, we did implement the operations (without JNI) and communication needed for a malicious version,
based the compiler of Damg̊ard et al. [DOS18], with some of the optimizations suggested by Eerikson et
al. [EKO+20]. In particular we used their “post-processing” approach to validate semi-honest multiplications.
We summarize the findings in Table 8. Unlike our semi-honest protocol we benchmark this on a t3.xlarge

31

2 3 5 7 9 11
0

10

20

30

40

2.4

4.9

10.2

12.4

16.5

20.6

3.4

7

14.4

18.4

24.5

30.7

4.5

9.1

18.7

24.4

32.5

40.7

Parties

K
ib
ib
y
te
s

Communication complexity

s = 37

s = 51

s = 60

2 3 5 7 9 11
0

10

20

30

40

50

7.3 7.37 6.82
8 7.58

8.33

16.8

18.4
17.2

18.8
17.4

18.7

35.6

33.5

37.8

33.4
34.5 35.1

Parties

M
il
li
se
co
n
d
s

Computational complexity

Fig. 2: Raw communication and computation of our protocol excluding the multiplications it requires and
any network latency. Each segment of 3 stacked bars represent, left to right, an RSA modulus of 2048, 3072,
4096 bits respectively. Error-bars represent standard deviation.

|N | = 2048
s = 40

|N | = 3072
s = 50

|N | = 4096
s = 60

0

1,000

2,000

3,000

402

1,123

2,501

T
im

e
(m

s)

Boneh-Franklin

Network
Mult
Raw

374

1,091

2,725

Boneh-Franklin

Network
Mult
Raw

383

1,113

2,639

Boneh-Franklin

Network
Mult
Raw

386

1,102

2,543

Boneh-Franklin

Network
Mult
Raw

395

1,108

2,645

Boneh-Franklin

Network
Mult
Raw

|N | = 2048
s = 37

|N | = 3071
s = 50

|N | = 4096
s = 61

0

100

200

108

121

135

T
im

e
(m

s)

Our protocol

Network
Mult
Raw

129
140

161

Our protocol

Network
Mult
Raw

133

145

162

Our protocol

Network
Mult
Raw

155

168

188

Our protocol

Network
Mult
Raw

162

177

197

Our protocol

Network
Mult
Raw

Fig. 3: Total computation time of our protocol and the Boneh-Franklin protocol for 3, 5, 7, 9 and 11 parties in
the honest majority model assuming 1 Gigabit network with 10 ms latency. The left bar in a pair represents
3 parties then 5, 7, and 9 parties (using Shamir secret sharing).

32

Latency Throughput Price
|N | Ours [BF97] Ours [BF97] Ours [BF97]

Shamir
2048 108 402 124 2.69 58.2 174
3072 121 1,124 52.0 0.915 89.3 439
4096 135 2,501 28.7 0.405 122 917

Replicated secret sharing
2048 111 402 97.6 2.69 104 180
3072 123 1,124 43.2 0.915 158 444
4096 142 2,501 24.4 0.405 213 911

Gilboa
2048 3,440 523 0.312 2.04 15,100 727
3072 5,550 1,326 0.187 0.775 33,200 1,661
4096 8,550 2,814 0.122 0.361 58,400 3,062

Table 7: Computation time for 3 parties on a
1 gigabit network with 10 ms latency for
different multiplication protocols. s is

37, 50, 61 for |N | = 2048, 3072, 4096 respective
for our protocol and 40, 50, 60 for

Boneh-Franklin.

instance which has the same CPU as t3.micro, but with access to 4 cores.18 We find the malicious version to
be around 4x slower in raw computation. Similar to the semi-honest protocol, network latency becomes the
bottleneck. Concretely, the compilation introduces 4 more rounds to the overall execution time, and the post
processing process introduces 2 more rounds (assuming the needed coin-tossing gets carried out in parallel
with the compiled protocol).

Table 8: Benchmark of our maliciously secure protocol for 3 parties on a 1 gigabit network with 10 ms
latency using the compiler of Damg̊ard et al. [DOS18]. “Compil.” is the raw computation time executing

the compiled protocol and “Post-Pro.” the time needed validate multiplications. s is 37, 50, 61 for
|N | = 2048, 3072, 4096. Times are in milliseconds and overhead compared with our semi-honest protocol.

Compil. Post-Pro.
Total comp. Latency

Time Overhead Time Overhead

2048 21.7 14.8 36.5 3.9x 199 1.8x
3072 70.4 22.5 92.9 4.1x 257 2.1x
4096 160 31.4 191 4.0x 356 2.4x

Pure Java vs. JNI Comparing our protocol against the Boneh-Franklin protocol it quickly becomes clear
that the computational bottlenecks are in the large-integer arithmetic. We experimented with replacing
these operations with JNI wrapped calls to a natively compiled GMP library. However, each call to the
JNI is not free and comes with a certain amount of computational and memory overhead. We found that
the only operation that did not result in worse performance when computed with JNI, was large modular
exponentiations. That is, we found out that simpler operations such as addition or computing of inverses,
were actually slower when executed using GMP through the JNI, due to overhead. Through experimentation
we found large exponentiations to account for around 70% of the raw protocol runtime in both ours and the
Boneh-Franklin protocols. Hence in our JNI implementation we only replaced all large exponentiations with
wrapped calls to GMP.

18 Due to an artifact of the protocol compilation, resulting in the benchmark only being possible when simulating
all 3 parties. Each party has their own thread, and to get a fair comparison in per-party runtime we require an
instance with at least 3 virtual CPUs of which the t3.xlarge offers.

33

We show the impact of the JNI vs. the pure Java implementation when running on at t3.micro instance
running an x64 architecture on AWS in Table 9. From this we see that the JNI always gives a significant boost
in performance for larger moduli, both for ours and the Boneh-Franklin protocols, whereas for a modulo of
2048 bits there is barely any performance difference.

As a side-note we found the impact JNI usage to be platform inconsistent; in the sense that tests run on an
ARM-based M1 Macbook Pro showed significantly higher performance improvements through the JNI than
the t3.micro x64-based architecture. In particular on this architecture we found a significant improvement
already at biprimality testing of the smaller 2048 bits candidates.

Table 9: Raw computation time of our
protocol and the Boneh-Franklin

protocol with and without using the JNI
to do exponentiations through GMP.

Ours [BF97]
|N | No JNI JNI Diff (%) No JNI JNI Diff (%)

3 parties
2048 7.03 7.37 - 362 372 -
3072 21.4 18.4 14.0 1,278 1,093 14.5
4096 39.6 33.6 15.1 3,260 2,470 24.2

7 parties
2048 7.94 8.00 - 367 352 -
3072 21.4 18.8 12.1 1,265 1,082 14.5
4096 40.4 33.7 16.6 3,089 2,610 15.5

11 parties
2048 7.78 8.33 - 362 384 -
3072 22.3 18.7 16.1 1,246 1,075 13.7
4096 46.5 35.1 24.5 3,033 2,610 13.9

Acknowledgment. The authors would like to thank Jesper Buus Nielsen, Benny Pinkas and Yehuda Lindell
for useful research discussions and Diego Aranha for helping with tips and tricks to get the implementation
running as fast as possible. We would also like to thank the anonymous CCS reviewers for useful suggestions
that helped us improve the experimental evaluation. The research described in this manuscript has received
funding from: the Concordium Blockhain Research Center, Aarhus University, Denmark; the Carlsberg Foun-
dation under the Semper Ardens Research Project CF18-112 (BCM); the European Research Council (ERC)
under the European Unions’s Horizon 2020 research and innovation programme under grant agreement No
803096 (SPEC); the EU Horizon 2020 research and innovation programme under grant agreement No 786725
OLYMPUS; the Danish Independent Research Council under Grant-ID 1051-001068 (ACBD).

34

References

ACS02. Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation modulo a shared secret with
application to the generation of shared safe-prime products. In Moti Yung, editor, CRYPTO 2002, volume
2442 of LNCS, pages 417–432. Springer, Heidelberg, August 2002.

aws. Amazon EC2 on-demand pricing. https://aws.amazon.com/ec2/pricing/on-demand/. Accessed: 2023-
05-02.

BBBF18. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 757–788. Springer,
Heidelberg, August 2018.

BBF19. Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators with applications to
IOPs and stateless blockchains. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part I, volume 11692 of LNCS, pages 561–586. Springer, Heidelberg, August 2019.

BCG+19. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl.
Efficient two-round OT extension and silent non-interactive secure computation. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 291–308. ACM
Press, November 2019.

BCIL22. Cyril Bouvier, Guilhem Castagnos, Laurent Imbert, and Fabien Laguillaumie. I want to ride my BICYCL:
BICYCL implements CryptographY in CLass groups. Cryptology ePrint Archive, Report 2022/1466, 2022.
https://eprint.iacr.org/2022/1466.

Bd94. Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative to digital
sinatures (extended abstract). In Tor Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS, pages
274–285. Springer, Heidelberg, May 1994.

BF97. Dan Boneh and Matthew K. Franklin. Efficient generation of shared RSA keys (extended abstract). In
Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 425–439. Springer, Heidelberg,
August 1997.

BIB89. Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in constant number of
rounds of interaction. In Piotr Rudnicki, editor, 8th ACM PODC, pages 201–209. ACM, August 1989.

Cd10. Octavian Catrina and Sebastiaan de Hoogh. Improved primitives for secure multiparty integer computa-
tion. In Juan A. Garay and Roberto De Prisco, editors, SCN 10, volume 6280 of LNCS, pages 182–199.
Springer, Heidelberg, September 2010.

CDK+22. Megan Chen, Jack Doerner, Yashvanth Kondi, Eysa Lee, Schuyler Rosefield, abhi shelat, and Ran Cohen.
Multiparty generation of an RSA modulus. Journal of Cryptology, 35(2):12, April 2022.

CDN01. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computation from threshold ho-
momorphic encryption. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages
280–299. Springer, Heidelberg, May 2001.

CHI+21. Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio, Tarik Riviere, abhi shelat,
Muthu Venkitasubramaniam, and Ruihan Wang. Diogenes: Lightweight scalable RSA modulus generation
with a dishonest majority. In 2021 IEEE Symposium on Security and Privacy, pages 590–607. IEEE
Computer Society Press, May 2021.

CL02. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient revocation
of anonymous credentials. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 61–76.
Springer, Heidelberg, August 2002.

CL15. Guilhem Castagnos and Fabien Laguillaumie. Linearly homomorphic encryption from DDH. In Kaisa
Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS, pages 487–505. Springer, Heidelberg, April 2015.

Des. Didier Deshommes. Gmp-java. https://github.com/dfdeshom/GMP-java. Accessed: 2023-07-27.
DLP93. Ivan Damg̊ard, Peter Landrock, and Carl Pomerance. Average case error estimates for the strong probable

prime test. Mathematics of computation, 61(203):177–194, 1993.
DM10. Ivan Damg̊ard and Gert Læssøe Mikkelsen. Efficient, robust and constant-round distributed RSA key

generation. In Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 183–200. Springer,
Heidelberg, February 2010.

DMRT21. Cyprien Delpech de Saint Guilhem, Eleftheria Makri, Dragos Rotaru, and Titouan Tanguy. The return of
eratosthenes: Secure generation of RSA moduli using distributed sieving. In Giovanni Vigna and Elaine
Shi, editors, ACM CCS 2021, pages 594–609. ACM Press, November 2021.

DN03. Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable efficient multiparty computation from
threshold homomorphic encryption. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages
247–264. Springer, Heidelberg, August 2003.

35

https://aws.amazon.com/ec2/pricing/on-demand/
https://eprint.iacr.org/2022/1466
https://github.com/dfdeshom/GMP-java

DOS18. Ivan Damg̊ard, Claudio Orlandi, and Mark Simkin. Yet another compiler for active security or: Efficient
MPC over arbitrary rings. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II,
volume 10992 of LNCS, pages 799–829. Springer, Heidelberg, August 2018.

EKO+19. Hendrik Eerikson, Marcel Keller, Claudio Orlandi, Pille Pullonen, Joonas Puura, and Mark Simkin. Use
your brain! arithmetic 3pc for any modulus with active security. Cryptology ePrint Archive, 2019.

EKO+20. Hendrik Eerikson, Marcel Keller, Claudio Orlandi, Pille Pullonen, Joonas Puura, and Mark Simkin. Use
your brain! Arithmetic 3PC for any modulus with active security. In Yael Tauman Kalai, Adam D. Smith,
and Daniel Wichs, editors, ITC 2020, pages 5:1–5:24. Schloss Dagstuhl, June 2020.

FLOP18. Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny Pinkas. Fast distributed RSA key
generation for semi-honest and malicious adversaries. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 331–361. Springer, Heidelberg, August 2018.

FMY98. Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust efficient distributed rsa-key generation. In
Jeffrey Scott Vitter, editor, STOC, pages 663–672. ACM, 1998.

Gil99. Niv Gilboa. Two party RSA key generation. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of
LNCS, pages 116–129. Springer, Heidelberg, August 1999.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987.

GRR98. Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track multiparty computa-
tions with applications to threshold cryptography. In Brian A. Coan and Yehuda Afek, editors, 17th ACM
PODC, pages 101–111. ACM, June / July 1998.

HMR+19. Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, Tomas Toft, and Angelo Agatino Nicolosi. Efficient
RSA key generation and threshold paillier in the two-party setting. Journal of Cryptology, 32(2):265–323,
April 2019.

HMRT12. Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, and Tomas Toft. Efficient RSA key generation and
threshold paillier in the two-party setting. In Orr Dunkelman, editor, CT-RSA, volume 7178 of Lecture
Notes in Computer Science, pages 313–331. Springer, 2012.

IPS09. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with no honest majority.
In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 294–314. Springer, Heidelberg, March
2009.

ISN89. Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing scheme realizing general access structure.
Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 72(9):56–64, 1989.

KOS15. Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal overhead.
In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS,
pages 724–741. Springer, Heidelberg, August 2015.

Mil76. Gary L Miller. Riemann’s hypothesis and tests for primality. Journal of computer and system sciences,
13(3):300–317, 1976.

MWB99. Michael Malkin, Thomas D. Wu, and Dan Boneh. Experimenting with shared generation of RSA keys. In
NDSS’99. The Internet Society, February 1999.

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Jacques Stern,
editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238. Springer, Heidelberg, May 1999.

PS98. Guillaume Poupard and Jacques Stern. Generation of shared RSA keys by two parties. In Kazuo Ohta
and Dingyi Pei, editors, ASIACRYPT, volume 1514 of Lecture Notes in Computer Science, pages 11–24.
Springer, 1998.

Rab80. Michael O Rabin. Probabilistic algorithm for testing primality. Journal of number theory, 12(1):128–138,
1980.

Roy22. Lawrence Roy. SoftSpokenOT: Quieter OT extension from small-field silent VOLE in the minicrypt model.
In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages
657–687. Springer, Heidelberg, August 2022.

RSA78. Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

RSW96. Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release crypto. 1996.
Shl20a. Omer Shlomovits. Diogenes Octopus*: Playing Red Team for

Eth2.0 VDF. Medium blog post, 2020. https://medium.com/zengo/

diogenes-octopus-playing-red-team-for-eth2-0-vdf-part-1-dac3f2e3cc7b.
Shl20b. Omer Shlomovits. DogByte Attack: Playing Red Team for Eth2.0 VDF. Medium blog post, 2020. https:

//medium.com/zengo/dogbyte-attack-playing-red-team-for-eth2-0-vdf-ea2b9b2152af.

36

https://medium.com/zengo/diogenes-octopus-playing-red-team-for-eth2-0-vdf-part-1-dac3f2e3cc7b
https://medium.com/zengo/diogenes-octopus-playing-red-team-for-eth2-0-vdf-part-1-dac3f2e3cc7b
https://medium.com/zengo/dogbyte-attack-playing-red-team-for-eth2-0-vdf-ea2b9b2152af
https://medium.com/zengo/dogbyte-attack-playing-red-team-for-eth2-0-vdf-ea2b9b2152af

Tof07. Tomas Toft. Primitives and Applications for Multi-party Computation. PhD thesis, Aarhus University, 3
2007.

Wes19. Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 379–407. Springer, Heidelberg, May 2019.

37

	Introduction
	Our Contributions
	Technical Overview

	Related Work
	Preliminaries
	Notation
	Probabilistic Primality Test
	From Distributed Biprimality Testing to Distributed Key RSA Generation

	Sub-protocols
	Multiplication
	Basic sub-protocols
	Sample random shared value
	From smaller to large domain
	From integer shares to constrained domain
	From multiplicative to additive shares
	Computing Inverses
	Computing Set-Membership

	New divisibility test
	Efficient Biprimality Test
	How to achieve active security.
	Achieving O(1) online multiplications

	Experimental Evaluation

